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Abstract

Software is an everyday companion in today’s technology society that need to be evolved
and maintained over long time periods. To manage the complexity of software projects, it
has always been an effort to increase the level of abstraction during software development.
Model-Driven Engineering (MDE) has shown to be a suitable method to raise abstraction
levels during software development. Models are primary development artifacts in MDE that
describe complex software systems from different viewpoints.

In MDE software projects, models are heavily edited through all stages of the devel-
opment process. During this editing process, the models can become inconsistent due to
uncertainties in the software design or various editing mistakes. While most inconsisten-
cies can be tolerated temporarily, they need to be resolved eventually. The resolution of an
inconsistency affecting a model’s design is typically a creative process that requires a devel-
oper’s expertise. Model repair recommendation tools can guide the developer through this
process and propose a ranked list of repairs to resolve the inconsistency. However, such
tools will only be accepted in practice if the list of recommendations is plausible and under-
standable to a developer. Current approaches mainly focus on exhaustive search strategies
to generate improved versions of an inconsistent model. Such resolutions might not be un-
derstandable to developers, may not reflect the original intentions of an editing process, or
just undo former work. Moreover, those tools typically resolve multiple inconsistencies at
a time, which might lead to an incomprehensible composition of repair proposals.

This thesis proposes a history-based approach for model repair recommendations. The
approach focuses on the detection and complementation of incomplete edit steps, which can
be located in the editing history of a model. Edit steps are defined by consistency-preserving
edit operations (CPEOs), which formally capture complex and error-prone modifications of
a specific modeling language. A recognized incomplete edit step can either be undone or
extended to a full execution of a CPEO. The final inconsistency resolution depends on the
developer’s approval. The proposed recommendation approach is fully implemented and
supported by our interactive repair tool called ReVision. The tool also includes configura-
tion support to generate CPEOs by a semi-automated process.

The approach is evaluated using histories of real-world models obtained from popular
open-source modeling projects hosted in the Eclipse Git repository. Our experimental re-
sults confirm our hypothesis that most of the inconsistencies, namely 93.4%, can be resolved
by complementing incomplete edits. 92.6% of the generated repair proposals are relevant
in the sense that their effect can be observed in the models’ histories. 94.9% of the relevant
repair proposals are ranked at the topmost position. Our empirical results show that the pre-
sented history-based model recommendation approach allows developers to repair model
inconsistencies efficiently and effectively.





Kurzfassung

Software ist in unserer heutigen Gesellschaft ein alltäglicher Begleiter. Diese wird ständig
weiterentwickelt und überarbeitet. Model-Driven Engineering (MDE) hat sich als geeignete
Methode erwiesen, um bei der Entwicklung komplexer Software von technischen Details zu
abstrahieren. Hierbei werdenModelle als primäre Entwicklungsartefakte verwendet, welche
ein Softwaresystem aus verschiedenen Sichten beschreiben.

Modelle inMDEwerden in allen Entwicklungsphasen einer Software fortlaufend überar-
beitet. Während der Bearbeitung können die Modelle aufgrund von Unklarheiten im Design
oder verschiedenen Bearbeitungsfehlern inkonsistent werden. Auch wenn Inkonsistenzen
vorübergehend toleriert werden können, so müssen diese letztlich doch behoben werden.
Die Behebung einer Inkonsistenz, welche sich auf das Design eines Modells auswirkt, ist
meist ein kreativer Prozess, der das Fachwissen eines Entwicklers erfordert. Empfehlungs-
werkzeuge können den Entwickler mit Reparaturvorschlägen unterstützen. Damit solche
Werkzeuge in der Praxis akzeptiert werden, müssen die Vorschläge plausible und nach-
vollziehbar sein. Die meisten aktuelle Ansätze verwenden Suchstrategien, welche Repara-
turen durch systematisches Ausprobieren generieren. Die so generierten Reparaturen sind
für Entwickler häufig schwer nachvollziehbar, da sie vorhergehende Bearbeitungsschritte
nicht beachten oder diese einfach rückgängig machen. Darüber hinaus lösen diese Repara-
turwerkzeuge in der Regel mehrere Inkonsistenzen gleichzeitig, was zu unverständlichen
und umfangreichen Reparaturen führen kann.

Diese Arbeit beschreibt einen Ansatz zum Erkennen und Ergänzen unvollständiger Bear-
beitungsschritte, basierend auf der Bearbeitungshistorie eines Modells. Dazu werden konsis-
tenzerhaltende Bearbeitungsoperationen definiert, die komplexe und fehleranfällige Ände-
rungen einer bestimmten Modellierungssprache formal erfassen. Ein unvollständiger Bear-
beitungsschritt kann dann entweder rückgängig gemacht oder zu einer konsistenzerhalten-
den Bearbeitungsoperationen erweitert werden. Die endgültige Reparatur der Inkonsistenz
hängt von der Einschätzung des Entwicklers ab. Der vorgeschlagene Ansatz wurde in un-
serem interaktiven Reparaturwerkzeug ReVision implementiert. Darüber hinaus umfasst
das Werkzeug Unterstützung zum Generieren von konsistenzerhaltenden Bearbeitungsope-
rationen.

Das Reparaturverfahren wurde anhand von Historien realer Modelle aus bekannten
Open-Source-Modellierungsprojekten im Eclipse-Git-Repository bewertet. Die experimen-
tellen Ergebnisse bestätigen unsere Hypothese, dass die meisten Inkonsistenzen, nämlich
93.4%, durch Ergänzung unvollständiger Bearbeitungen gelöst werden können. 92.6% der
generierten Reparaturvorschläge könnten in der entsprechenden Modellhistorie beobach-
tet werden. Von diesen Reparaturvorschläge wurden 94.9% an erster Stelle vorgeschlagen.
Unsere empirischen Ergebnisse zeigen, dass der vorgestellte historienbasierte Modellemp-
fehlungsansatz es Entwicklern ermöglicht, Modellinkonsistenzen effizient und effektiv zu
reparieren.
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1
Introduction

Software engineering raises the abstraction and modularity in the process of software develop-
ment. In Model-Driven Engineering (MDE), models describe complex software systems from
different modeling views abstracting from technical details. During their evolution, models are
heavily edited through all stages of the software development process. Meanwhile, models can
become inconsistent for various reasons. Model repair tools support developers by recommend-
ing a short list of repair alternatives. This thesis proposes a new approach to generate repair
proposals based on the assumption that inconsistencies are mainly introduced by incomplete
editing processes that can be located in the version history of a model. Such an incomplete
editing process is either undone or extended to a complete consistency-preserving edit operation
(CPEO) application.

S oftware systems are increasingly complex these days and often evolve over decades.
However, the increasing size and complexity of a software project can delay its devel-

opment or eventually lead to its abandonment. In order to address emerging development
issues, software engineering has been established as a discipline of systematically develop-
ing software [73, 118]. As emphasized by Watts Humphrey, software engineering has to be
approached as a multidisciplinary challenge of applying “engineering, scientific, and mathe-
matical principles and methods to the economical production of quality software” [70]. From
the dawn of software engineering during the 1960s [20,195] till today, one of its major chal-
lenges and efforts has been to raise abstraction and modularity in the process of software
development.

At the first conference on software engineering [20] in 1968, the question was raised
of how software development can become a systematic process. As mentioned by Edsger
Dijkstra [20], the process of implementation and documentation of a software system should
go hand in hand to simplify software development andmaintenance. As developers typically
experience writing documentation as an additional burden, Dijkstra suggested starting the
development by writing pre-documentation that can be mechanically processed to support
the implementation of a system [20].

A methodology for combining a system’s documentation and implementation by au-
tomation, researched in the 1980s and 1990s, was computer-aided software engineering

3



4 1 Introduction

(CASE). Corresponding CASE tools offer general-purpose graphical languages like state ma-
chines, structure diagrams, and data flow diagrams to describe programs, which are then
translated into implementation artifacts. The diagrams fulfill the purpose of a visual pre-
documentation of the system under development, and the generative process keeps this
documentation synchronized with the implementation. Such diagrams can describe a sys-
tem abstracting from technical details. Even though CASE has been extensively discussed
in the research literature, it has not been widely accepted in practice [160]. According to
Schmidt [160], the CASE method suffered from several problems: (1) The gap between the
high-level graphical representation and the low-level target platform interfaces could not be
compensated by the generation techniques at this time. (2) CASE projects were not designed
for concurrently working in teams. (3) The general-purpose graphical languages were not
customizable to efficiently express specific domain problems.

As mentioned by Niklaus Wirth [195], a computer system’s complexity can only be mas-
tered intellectually through abstractions, i.e., a development language must reflect the prob-
lem to be solved rather than the underlying machine [195]. Beyond general-purpose pro-
gramming languages, modeling languages allow developers to describe a software system
abstracting from technical details, resulting in a model specifying and documenting the sys-
tem under development. Given the lessons learned from CASE, a modeling language should
be expressive for the problems in a specific domain. A so-called domain-specific modeling
language (DSML) can bridge the gap between the problem space in which domain experts
work and the implementation space of a specific target platform [34]. A DSML can either
be created from scratch or by adapting modeling languages such as the Unified Modeling
Language (UML) [141], e.g., by domain-specific extensions, so-called profiles, or by adding
restrictive design constraints. Graphical syntax notations are well suited to visualize and
communicate relationships between the system components or to describe data and con-
trol flows of an application scenario. Modeling languages with textual syntax offer a more
programming-like workflow to the developer. The choice of language and visualization de-
pends on the domain, the problems to be solved, and the preferences of the development
team [143]. In the following, we will generally refer to these different notations as DSMLs
or modeling languages.

To create a general foundation and standards for software modeling, the Object Manage-
ment Group (OMG) introduced the concept of Model-Driven Architecture (MDA) [137, 138,
170] in the early 2000s. The MDA Guide [138] highlights different applications in which
a development process could derive value from software models. Starting with the initial
design, models help to deal with the complexity of large systems defining their structure
and semantics. During this phase, models can be used as communication vehicles to cre-
ate a common understanding of the system under development, e.g., within a development
team or with customers. Furthermore, the models can be used to analyze and monitor the
system’s development by generating statistics and metrics for quality assessment. The sim-
ulation and execution of models can help developers to understand the functionality and
validate the software system’s correctness. The practical benefit of models is their documen-
tary nature and the exchangeability of technology-dependent parts of the software system.
The methodology described by the MDA Guide [138] primarily focuses on the separation of
models from platform-specific details. Starting from a technical and platform-independent
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model (PIM), which will then be stepwise transformed and enriched with technical detail
until a platform-specific model (PSM) is derived. Finally, a model can either be executed by
an interpreter or by generating code for a specific target platform.

Models have shown to be a suitable method to raise abstraction levels and decouple
software development from technical implementation details. Model-Driven Software Engi-
neering (MDSE) or, for short, Model-Driven Engineering (MDE) can be considered as the dis-
cipline of applying MDA in practice [30]. This involves a variety of approaches, techniques,
and tools. Models, which are formal descriptions of the software system, are primary devel-
opment artifacts in MDE. Therefore, models need to be maintained with the same attention
as source code in classical software development. Models are developed using modeling lan-
guages that take advantage of different viewpoints to describe complex software systems.

From the adoption of MDE by a development team to the maintenance of a long-living
MDE software project, models are heavily edited through all stages of the development
process. During this editing process, the models can become inconsistent for various rea-
sons. For example, uncertainties in the software design, modeling views that need to be syn-
chronized, incomplete edit steps, or misunderstandings of the modeling language’s syntax.
While most inconsistencies can be tolerated temporarily, they need to be resolved eventu-
ally. However, the resolution of an inconsistency is typically a creative process in which
various factors need to be considered. Especially an inconsistency resolution that affects
the design of a model should involve the expertise of a developer. Model recommendation
tools can guide the developer through this process by recommending a ranked list of repairs
to resolve the inconsistency.

This thesis proposes a history-based approach for model repair recommendations in soft-
ware engineering. The approach focuses on recognizing and complementing incomplete
edit steps that can be located in the editing history of a model. Complete edit steps are de-
fined by consistency-preserving edit operations (CPEOs), which formally capture complex
and error-prone modifications of a specific modeling language. A recognized incomplete
edit step can either be undone or extended to a full execution of a CPEO. Finally, the de-
cision to choose a concrete inconsistency resolution depends on the developer’s approval.
The proposed recommendation approach is fully implemented and supported by our inter-
active tool called ReVision [8]. Starting with a meta-model and set of consistency rules
that formally define a modeling language’s syntax, ReVision also includes configuration
support to generate CPEOs by a semi-automated process.

1.1 Introduction of the Running Example
Let us take a look at the UML model of the video-on-demand system (VoD-System) in Fig-
ure 1.1. The VoD-System is described from three different modeling viewpoints. The first
viewpoint in Figure 1.1a is a class diagram, which shows the static components and prop-
erties of the system and their structural relations. Class diagrams represent a central UML
concept that is well suited to define a software system’s data structure, e.g., the class defini-
tions of an object-oriented language or a database schema. The VoD-System consists of the
classesUser, Video, and Server. In general, classes define the types of possible object instances
and their structural connection, e.g., a User can open [0..4] up to four videos simultaneously.
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VoD-Sytem

+ connect()

Server
+ play()
+ pause()
+ stop()
+ disconnect()

- playing : Boolean

Video

+ name : String

User 0..4

+ open

1

*

+ videos

+ main

*

*

+ videos

+ mirror

(a) Class diagram: Defines the static structure of a
VoD-System, i.e., the types of possible object

instances and their relations.

open : 
Video

main : 
Server

1 : play 2 : connect

5 : stop

6 : disconnect

sd start-stop

4 : stream

mirror : 
Server

 Alice :
User

(b) Sequence diagram: A start and stop the video
stream scenario. The objects and message signatures

are defined by the class diagram in Figure 1.1a.

stm playbackstm playback

entry / playing = true

stream

entry / playing = true

stream

entry / playing = false

waiting

entry / playing = false

waiting
play

pause

stop

stop
/playing = false

previewspreviews
play

after (15 sec)

pause

(c) State machine diagram: States and transitions of a video playback. The transitions are triggered by
operation calls of the class Video in Figure 1.1a.

Figure 1.1. A simple VoD-System that is modeled from three different UML diagram views.

A special case of a class diagram is an object diagram. While a class diagram models
the general construction plans for objects, an object diagram shows a concrete snapshot of
the system’s objects and their attribute values and references at runtime. An object in UML
is notated by an expression name:type, in which the type is specified by the corresponding
class. Such an object instance notation is also used by the sequence diagram in the second
viewpoint shown in Figure 1.1b. A sequence diagram illustrates an exemplary interaction
between objects of a system. They show the chronological sequence of the messages sent
between objects but do not describe their structural relations. The sequence diagram in
our running example in Figure 1.1a illustrates a simple “start and stop the video stream”
scenario.

The objects’ names in the name:type notations of the sequence diagram in Figure 1.1b are
defined by properties of the class diagram in Figure 1.1a. For example, the object open:Video
is contained in the property named open [0..4] of an object of type User. The property open
[0..4] is defined as an association between User and Video in the class diagram. A so-called
lifeline depicted below an object in the sequence diagram represents the life cycle of this
object. A lifeline can send and receive messages that represent operation calls on the re-
ceiving object. The operations are defined by the type of the receiving object. For example,
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the lifeline of open:Video receives the messages 1:play and 5:stop, which refer to calls of the
operations defined in the Video class. Such interaction diagrams are typically used for the
purpose of documentation or as a communication vehicle, e.g., between the developers of a
client-server application to define and analyze the communication protocol.

The third diagram in Figure 1.1c shows a (behavioral) state machine that describes the
behavior of the class Video. State machine diagrams can be used to supplement class dia-
grams to model the correct states in the life cycle of objects. A state machine can be owned
by a class that specifies the state machine’s context, e.g., accessible attributes. Every object
created according to the definition of a class is always in a certain state that is defined by
its attribute values. During its lifespan, an object can only have certain meaningful combi-
nations of attribute values that are modeled as states. The transitions between the states
are triggered by events in the system, e.g., by operation calls that are defined by the class
owning the state machine. For example, the operation call pause() can only be called when
the video is played (playing = true) and assumes that the playback is finally stopped (playing
= false). Moreover, our exemplary state machine defines a state for movie previews that is
entered by a so-called time event after pausing the video for 15 seconds.

As we can see, different modeling views can be used to define different aspects of the
system. However, these views depend on each other, i.e., formally speaking, they need to
be consistent. Technically, in our running example, changes in the class diagram need to
be reflected in the sequence diagram and the state machine diagram. However, the actual
editing process of a developer might temporarily violate the model’s consistency. For exam-
ple, a developer could add a new transition to a state machine before defining its trigger. To
define the triggering event, the developer then adds a new operation to the class diagram.
Moreover, changes in a single view can also break the consistency of a modeling view, e.g.,
deleting a state in the state machine diagram can lead to dangling transitions with missing
source or target states.

The syntactic consistency of the overall model can be checked by formally defined con-
sistency rules. Such rules statically check the integrity of a model, which is also referred to
as static semantics or well-formedness. However, rules can also be infeasible to be captured
by a formal consistency rule, e.g., if a call sequence in a sequence diagram is consistent with
the possible sequences in the corresponding state machine diagrams. Such requirements
are referred to as (dynamic or execution) semantics of a model [50, 103].

1.2 Problem Motivation
The maintenance and enhancements of long-living software projects make up a significant
part of a software system’s life cycle. Maintenance in the context of software engineering
is defined as the “process of modifying a software system or component after delivery to cor-
rect faults, improve performance or other attributes, or adapt to a changed environment” [73].
Typically, user requests for enhancements and extensions require most of the efforts during
software maintenance [21, 59, 110].

Some researchers and practitioners use the term software evolution as a synonym or even
a preferable substitute for software maintenance and enhancements [21, 32]. Moreover, the
development of software is typically performed in multiple iterative and incremental life
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cycles [102], i.e., maintenance activities can take place at several stages of software devel-
opment. According to Lehman [107, 108], continuing change is a law of software evolution
that is required to retain the usefulness and manage the complexity of software systems.
Technically, software evolution can be defined as the sequence of states and the transitions
between them, starting from the initial creation of the software to its final retirement [32].
According to Mens et al. [130], software evolution comprises several challenges, including
research on formalisms to analyze and understand software change, development of sup-
porting tools and techniques, and real-world validation of long-lived software systems on
an industrial scale. Moreover, such software evolution techniques should be raised to a
higher level of abstraction to support the evolution of higher-level artifacts such as analysis
and design models or software architectures [130].

Models are primary development artifacts inMDE. Thus, models are also primary targets
of continuous changes during software evolution. As models are technically independent
representations of the system, they are less likely to be affected by changes in the data or
processing environment, performance improvements related to the technical platform, or
fault corrections on the level of program code. However, models have to keep up with the
ever-changing user requirements and will be maintained to improve the models’ complexity,
e.g., the system’s architecture or modularity. Therefore, models are heavily edited during all
stages of software development. As a consequence, models may get inconsistent for various
reasons, e.g., due to misunderstandings or different interpretations of requirements when
being edited collaboratively in teams [41]. From a more technical perspective, one main
reason for consistency violations is the isolated editing of inter-related views [49, 52, 58, 60,
61, 149] or model fragments [2, 4].

While it is generally acknowledged that inconsistencies should be temporarily tolerated
for the sake of flexibility [16, 52, 60], they must be resolved eventually. Therefore, consis-
tency management is an essential discipline in MDE [115, 136, 172]. Engineers designing a
modeling language need a way to specify precisely what consistency in a concrete modeling
context actually means, and developers must be supported by techniques for detecting, di-
agnosing, and fixing inconsistencies. In MDE, the basic structure and typing of a modeling
language, referred to as abstract syntax, is typically defined by a meta-model. More com-
plex consistency and well-formedness rules are defined in addition to the meta-model using
a language such as the Object Constraint Language (OCL) [189], and violations of these rules
can be automatically obtained using inconsistency detection techniques [28, 43, 44, 61, 150].
While these techniques are widely established in practice, how to optimally support devel-
opers in resolving detected inconsistencies is still being actively discussed.

The primary origins of model evolution are changing requirements and related mainte-
nance activities. Such changes are likely to violate the consistency of a model. Resolving
inconsistencies that involve the design of the system is a creative process that requires the
expertise of a developer. According to the classification of software repair approaches pre-
sented by Monperrus et al. [132], the most appropriate repair approach for this type of
defect is a recommender system. Here, both a recommender system and a human developer
contribute to the repair. The role of the recommender system is to generate a ranked list
of suitable repair proposals from which developers can choose unless they create a hand-
crafted solution.
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Repair recommender systems aim at the following quality goals and related evaluation
criteria (see Table 2 in [132]). The proposed solutions should be understandable by humans,
and they should be filtered and ranked. Partial solutions are acceptable and preferred over
complete complex solutions that are hard to understand. More generally, the human work-
load to perform the repair should be as low as possible, and the quality and maintainability
of the solution should be high [106, 132]. Thus, a tool that supports model repair will only
be accepted in practice if it generates a limited set of plausible and understandable repair
proposals [88, 105]. Moreover, it is impractical to redevelop the tooling for each different
DSML in MDE, i.e., the repair tools should be adaptable to a specific modeling language.

Current approaches to automated model repair largely fail to meet these requirements.
Exhaustive search strategies, as presented, e.g., in References [49,114,147,186], aim at a fully
automated repair resolving all inconsistencies in a single step. If several solution candidates
are found, the most appropriate one is selected. This is typically achieved through simple
heuristics for assessing individual solution candidates, such as the minimal edit distance
with respect to the inconsistent version. Such strategies are also known as least-change
principle [115]. Turning a search-based approach into a recommender system by collecting
and presenting all solution candidates typically produces a huge number of repair alterna-
tives, which might overwhelm the developers [115]. Even ranked lists of repair proposals,
e.g., based on the least-change principle, are often unlikely to rank the most suitable repairs
in one of the topmost positions. Moreover, repairing all inconsistencies in a single step often
leads to solutions whose rationale is hard to grasp for developers.

From a conducted user study, Marchezan et al. [121] concluded that repair recommen-
dations help developers to fix inconsistencies more efficiently for complex repair tasks. Ac-
cording to Marchezan et al. [121], for simple tasks, however, repair recommendations may
have the opposite effect. Therefore, repair tools that support the developer in resolving
complex inconsistencies are crucial during modeling.

In this thesis, we will examine how developers can be effectively supported in dealing
with complex inconsistencies during modeling. The approach focuses on complex consis-
tency constraints that restrict the valid instances of a model, i.e., the static semantics of a
model. In particular, the technique generates history-based repair recommendations that
support the developer in resolving structural inconsistencies between modeling views and
error-prone modifications of complex modeling fragments.

Most model repair approaches do not consider the origin of a defect; they are not aware
of amodel’s change history (see Chapter 9). Therefore, they are likely to propose repairs that
just undo former changes that have caused an inconsistency. The inconsistency resolutions
analyzed in the approach’s evaluation reveal that only a fraction of the inconsistencies have
been repaired by undoing former changes. Thus, the history-based repair recommendations
enable the developer to make an informed decision whether to undo former work or, if this
work was just incomplete, retain and complete it.

1.3 Contributions
This thesis proposes a new approach to generate repair proposals based on the assumption
that inconsistencies are introduced by incomplete editing processes that can be located in
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the version history of a model. Such an incomplete editing process is either undone or is
extended to a full execution of a CPEO. These CPEOs are model transformations that pre-
serve the consistency rule under consideration, i.e., their partial execution typically leads to
an inconsistent model. The proposed recommendation technique is based on the concept of
detecting and complementing partially executed edit operations with respect to the histor-
ical changes applied to a model. This technique is enhanced for model repair by detecting
the origin of an inconsistency in the model’s editing history. The approach described in this
thesis has the following contributions and distinguishing features.

Contribution 1: Recognition of Partially Executed Edit Operations. The technique
recognizes partially applied edit operations in a difference between two model versions.
Given a CPEO and a set of historical changes applied to a model, the technique computes all
subsets of these changes that correspond to a sub-rule of the CPEO. No external knowledge
about the historical changes between revisions is required; these changes are calculated by
using readily available model differencing tools (see, e.g., References [80, 86]). The tech-
nique for detecting partial executions of CPEOs in a given model difference is based on the
approach presented by Kehrer et al. [1,78,82,83], which introduces a technique to recognize
complete applications of edit rules from the changes of a difference. However, the challenge
here is to detect all partial applications of an edit rule.

 See Reference [6] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and Timo Kehrer.
History-based Model Repair Recommendations. ACM Transactions on Software Engineering and Methodology
(TOSEM), 30(2):1–46, 2021.

Contribution 2: Complementation of Partially Executed Edit Operations. Given a
partially recognized CPEO, a complement rule is computed by subtracting the already ap-
plied changes from the CPEO. In the next step, all valid applications of the complement rule
on the current model version are calculated. Technically, the complement rule application
must continue the recognized partial edit step. The complementations are then presented
to the developer in a summarized way. Therefore, multiple applications of the same comple-
ment rule are combined into a parameterized rule. Finally, all ambiguous parameters have
to be selected or bound by the developer.

 See Reference [2] Gabriele Taentzer and Manuel Ohrndorf and Yngve Lamo and Adrian Rutle. Change-
Preserving Model Repair. Fundamental Approaches to Software Engineering - 20th International Conference,
FASE 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10202 of Lecture Notes in Computer Science, pages 283–
299. Springer, 2017.

Contribution 3: History-based Model Repair Recommendations. The approach to
model repair builds upon the technique for detecting partially executed CPEOs. Basically,
the detected incomplete edit step must have introduced the inconsistency under consider-
ation, and the proposed complementation must improve this inconsistency. The approach
introduced in this thesis generates two kinds of repair recommendations that are ranked
and presented to the developer.
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(1) Complements are repair proposals that extend a set of former model changes to a
complete CPEO.

(2) Rollbacks remove the inconsistency in a controlled manner through a case-specific
undo operation that reverts the inconsistency-inducing changes of a partially exe-
cuted CPEO.

Based on our tool ReVision, we evaluated our approach using a selected set of real-
world models extracted from 51 popular open-source Eclipse modeling projects [42]. The
editing histories of themodels have been retrieved from the corresponding public Eclipse Git
repositories. For example, our evaluation dataset includes the evolution of the entire UML
meta-model. The evaluation focuses on consistency violations in historical model versions,
which have been resolved in a later revision of the same model. The experimental results
confirm our hypothesis that most of the inconsistencies, namely 93.4%, can be resolved by
complementing incomplete edits. 92.6% of the generated repair proposals are relevant in
the sense that their effect can be observed in the models’ histories. In this context, 94.9%
of the relevant repair proposals are ranked at the topmost position. Our ReVision found at
least one repair for 597 out of 638 inconsistencies. In detail, 510 inconsistencies have been
resolved by complementing an edit step in the same way as it can be observed in a model’s
history. A minor number of 43 inconsistencies were resolved by undoing the invalid edit
step, which our repair tool could also propose as a case-specific rollback operation. This is
achieved at affordable costs and runtimes for the tool users. The number of repair operations
generated by our approach is typically low, i.e., 10 or fewer in 92.5% of all supported cases.
More importantly, the relevant proposal, i.e., the proposal observed in the model’s history,
was on the first two positions of the short list of repair proposals in virtually all cases.

 See Reference [6] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and Timo Kehrer.
History-based Model Repair Recommendations. ACM Transactions on Software Engineering and Methodology
(TOSEM), 30(2):1–46, 2021.

 See Reference [7] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and Timo Kehrer. A
Summary of ReVision: History-based Model Repair Recommendations. In Software Engineering 2023, pages
99–100. Gesellschaft für Informatik eV, 2023.

Contribution 4: ReVision: A Tool for History-based Model Recommendations.
According to studies by Staron [173] and Mohaghegi et al. [131], the lack of tool support
is one of the major drawbacks regarding the adoption and acceptance of MDE in practice.
The history-based analysis of inconsistencies as well as the generation and ranking of repair
recommendations are fully implemented in our tool called Re(pair)Vision or ReVision for
short.

ReVision interacts with the developer through an additional view that enhances the
model editor. The view is placed beside the model editor and allows for inspecting a ranked
list of repair proposals. Each proposal specifies a pair consisting of a sub-rule and a comple-
ment rule based on a partially applied CPEOwith respect to the inconsistency to be repaired.
A concrete complementation is applied by binding the parameters of the complement rule
to model elements and concrete values. The generation of a case-specific undo operation
based on the sub-rule can be triggered upon request at the discretion of the developer.
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 See Reference [5] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer. ReVision: A
Tool for History-based Model Repair Recommendations. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages
105–108. ACM, 2018.

 See Reference [1] Timo Kehrer, Udo Kelter, Manuel Ohrndorf, and Tim Sollbach. Understanding Model
Evolution through Semantically Lifting Model Differences with SiLift. In 28th IEEE International Conference on
Software Maintenance, ICSM 2012, Trento, Italy, September 23-28, 2012, pages 638–641. IEEE Computer Society,
2012.

 See Reference [4] Christopher Pietsch, Manuel Ohrndorf, Udo Kelter, and Timo Kehrer. Incrementally
Slicing Editable Submodels. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, pages 913–918. IEEE Computer
Society, 2017.

Contribution 5: Generation of Consistency-preserving Edit Operations. CPEOs
are the primary configuration input that adapts the proposed approach to a correspond-
ing modeling language. The specification of CPEOs is supported by a systematic process
that captures typical complex edit steps of a modeling language. During the evolution of a
model, such complex edit steps are likely to be applied only partially and consequently lead
to model inconsistencies.

The CPEOs are composed based on a given set of graph patterns that describe valid
model fragments with respect to a consistency rule. In this way, when designing a set of
CPEOs for a particular modeling language, there is no need to consider all possible trans-
formations between those patterns. The graph patterns are then automatically composed
to different kinds of CPEOs.

The management of rules is supported by tooling that transforms examples of model
fragments into graph patterns. An example-driven approach for the specification also allows
specifying CPEOs without a detailed understanding of the models’ abstract syntax, i.e., the
examples can be specified using the developer’s preferred model editor.

 See Section 5 in Reference [6] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and
Timo Kehrer. History-based Model Repair Recommendations. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(2):1–46, 2021.

 See Section 2.4 in Reference [3] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo
Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A Usability-Focused Framework for EMF Model
Transformation Development. In Graph Transformation - 10th International Conference, ICGT 2017, Held as
Part of STAF 2017, Marburg, Germany, July 18-19, 2017, Proceedings, volume 10373 of Lecture Notes in Computer
Science, pages 196–208. Springer, 2017.

1.4 Thesis Outline
This section summarizes the main chapters of this thesis. In addition, each chapter is dis-
cussed with respect to our related papers that have been published in peer-reviewed sci-
entific conferences and journals (see Thesis-related List of Publications). The chapters are
structured in relation to the contributions discussed in the previous Section 1.3. The thesis
is concluded by evaluating the approach and discussing related and future work.
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Chapter 2: State of the Art inModel Repair. Initially, this chapter prepares somemoti-
vating running examples demonstrating representative inconsistency-inducing and correc-
tive edit steps that typically occur during modeling. Subsequently, we discuss the state of
the art and define some terminology for model repair. Finally, a brief outline of the concepts
introduced in this thesis is given.

Chapter 3: Background andPreliminaries. This chapter introduces the technical foun-
dation for the approach presented in this thesis, i.e., the relevant concepts of modeling in
MDE. We start with the specification of modeling languages, i.e., the specification of meta-
models and consistency rules. For expressing modification in models, we introduce a nota-
tion for concrete changes and partially initialized change actions. In this context, a struc-
tural difference is computed as a set of concrete changes that describes the modifications
between two versions of a model. Furthermore, we formally describe edit operations based
on graph transformation concepts. Finally, a modeling language is defined to represent
model differences and edit rules using annotated graphs, which we will refer to as unified
difference graphs and unified edit rule graphs. This chapter contains basic parts published
in Reference [6].

Chapter 4: Complementation of Partially Executed Edit Operations. This chapter
presents the recognition and complementation of partially executed edit operations inmodel
histories. Basically, the change actions of the specifying edit rule must be detected in the
changes described by a model difference between two versions of a model. This problem is
solved by partially matching occurrences of the unified edit rule graph in the unified differ-
ence graph. In particular, the computational steps of the partial graph matching algorithm
are documented on a pseudocode level. This chapter presents a detailed specification of
the algorithm briefly outlined in Reference [6] and extends the algorithm concerning the
matching of complement rule applications.

Chapter 5: History-based Model Repair. In this chapter, we adapt the technique for
complementing partially executed edit operations from the previous Chapter 4 to repair in-
consistencies in models. Initially, the developer selects a certain inconsistency that is to be
repaired. The repair process starts by searching for the latest consistent versionwith respect
to the selected inconsistency in the model history. In the next step, the structural model dif-
ference between the latest consistent model version and the inconsistent model version is
computed. In addition, an analysis of the selected inconsistency is performed to determine
the problematic portion of the model. After recognizing possible inconsistency-inducing
edit steps, the corresponding consistency-improving complementations are turned into a
ranked list of repair proposals. This chapter is based on the approach presented in Refer-
ence [6] and includes a detailed specification of the inconsistency validation analysis.

Chapter 6: Presentation of History-based Recommendations. In this chapter, our
tool ReVision is presented as a proof of concept of our approach to history-based model



14 1 Introduction

repair recommendation. We will discuss some implementation insights and the technolog-
ical background of the tool. The interactions of the user interface during model repair is
demonstrated by applying them to our running example. In particular, the user interface
has been presented in References [5, 6].

Chapter 7: Generation of Consistency-preserving Edit Operations. Edit operations
are the main configuration input of our tool ReVision. Defining a comprehensive catalog
of complex edit operations by hand can be tedious. This chapter introduces our example-
based generation approach for edit operation. The process generates edit operations based
on graph transformation concepts that respect particular consistency rules. Initially, a con-
sistent, minimal example is modeled by the developer using the (graphical) model editor.
From a catalog of such minimal modeling examples, different CPEOs are generated. The
basic edit rule generation algorithm has been published in Reference [6].

Chapter 8: Evaluation. This chapter evaluates the model repair approach proposed in
this thesis. Our approach describes the effect of repair proposals in terms of user-level edit
operations. Based on the recognition of incomplete edits, our approach gives a detailed
description of the origin of an inconsistency. Those features are, first and foremost, qual-
itative advantages over existing approaches. To evaluate the helpfulness of our approach
quantitatively, the approach is evaluated in an offline experiment. The examined dataset is
obtained from real-world modeling projects, e.g., the entire history of the UML meta-model.
Comparing the extracted real-world repairs with those proposed by ReVision, we assess
the coverage, relevance, and efficiency with respect to the quality of the recommendation
results. Moreover, we evaluated the tool’s performance with respect to computational run-
times during the evaluation of the real-world repair samples. The evaluation results in this
chapter have been published and peer-reviewed in Reference [6].

Chapter 9: RelatedWork. In this chapter, we discuss publications that are related to the
presented approach. Therefore, the existing approaches are classified into fully automated,
language-specific, and adaptable model repair techniques. While our approach fundamen-
tally differs from fully automated and language-specific approaches, it falls into the category
of adaptable model repair. Finally, the generation of edit operations presented in Chapter 7
is compared to related techniques. This chapter is a revised and extended version of the re-
lated work analysis published in Reference [6].

Chapter 10: Conclusions and Future Work. In the concluding chapter, we summarize
the achieved contributions of this thesis. Finally, we discuss the lessons learned and possible
directions for future work.
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State of the Art in Model Repair

The most interesting repair scenario for ReVision are inconsistencies introduced by editing com-
plex model fragments and isolated editing of depending modeling views. Furthermore, inconsis-
tency resolution can be an iterative process in which negative side effects of a repair might have
to be repaired subsequently. In general, we differentiate between fully automated techniques
and recommender systems for model repair. A repair scenario that involves design changes to
the system model typically requires the expertise of a developer. In such a scenario, a recom-
mender system that supports the developer is preferable over fully automated approaches. The
conceptional idea of ReVision is to determine complementations and rollbacks of incomplete,
inconsistency-inducing edits, which are proposed as a ranked list of repairs.

T he approach presented in this thesis deals with repairing inconsistencies in models.
This chapter starts motivating model repair using some representative scenarios in Sec-

tion 2.1 applied to our running example from Section 1.1. The following Section 2.2 examines
the state of the art in model repair. Finally, Section 2.3 gives an overview of the concepts
introduced in this thesis.

2.1 Motivating Examples
This section shows some modeling examples that illustrate the kinds of inconsistencies and
development scenarios addressed in this thesis. A modeling scenario starts with an incom-
plete, inconsistency-inducing edit step, followed by a complementing, corrective edit step re-
solving the inconsistency. Moreover, we will show that repairing inconsistencies can be an
iterative process, i.e., a corrective edit step might have a negative side effect that introduces
new inconsistencies that must be resolved by a subsequent corrective edit step. In the fol-
lowing, we use numbered edit steps to describe a set of related changes in such a modeling
scenario.

2.1.1 Scenario 1: Editing of Complex Model Fragments
In the first modeling scenario, we will only edit a single modeling view. In this scenario,
we want to extend the state machine introduced in Version 1 of our exemplary model in
Figure 2.1 with the functionality of fast-forwarding the video.

15
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Initial edit steps (2.1) and (2.2): We add a new state named fast-forwarding, as shown in Ver-
sion 2 of the model in Figure 2.2. The new state is then connected to the streaming
state by a new transition named play. The transition is triggered by the corresponding
operation play() in the class Video.

Incomplete edit step (2.3): Next, we add the opposite transition fastForward from the state
streaming to the new state fast-forwarding.

Unrelated edit steps (2.4) and (2.5): Modifications between two model versions might include
several unrelated edit steps. In addition to the new fast-forwarding state, the edit step
(2.4) between Version 1 and Version 2 of the state machine removes the state for pre-
views, including its connected transitions. Finally, the edit step (2.5) renames the state
stream to streaming.

Complementing edit step (3.1): To create the trigger for the transition fastForward, we must
create a new operation in the class Video, as shown in Version 3 in Figure 2.3. This
modification is referred to as edit step (3.1a). Technically, the edit step (3.1) also in-
cludes the creation of an operation call event and a trigger referred to as edit steps
(3.1b) and (3.1c). However, UML has no explicit notation for these structures in the
concrete diagram syntax. We will show their representation in the abstract syntax of
a model in Section 3.1.

This is a typical example of complementing a complex model fragment in a multi-view
modeling environment. It can also be seen as a repair in terms of the well-formedness of
the state machine since transitions without triggers are only allowed in exceptional cases,
e.g., transitions of initial states. Such edit steps generally require tooling that integrates the
different modeling views. However, incomplete edit steps often occur alongside other mod-
ifications, making it more challenging to identify the origin of the resulting inconsistencies.

2.1.2 Scenario 2: Isolated Editing of Model Views
In this scenario, we demonstrate how isolated modifications in a modeling view can intro-
duce inconsistencies in another view. Modifications in a class diagram are typical examples
of isolated edits that can introduce inconsistencies into the overall system model.

Inconsistency-inducing edit step (4.1): In comparison to Version 3 in Figure 2.3, the Version 4
in Figure 2.4 shows that the operation disconnect() was moved from the class Video
to the class Server. The class diagram in Figure 2.4a is still consistent at this point.
However, in the sequence diagram in Figure 2.4b, the operation disconnect() is now
invoked by message 6:disconnect on the object open:Video. This will be detected as
an inconsistency since the required operation no longer exists in the corresponding
class Video. This relation between operation calls and their definition is checked by
the consistency rule message_signature(m:Message), which we will formally introduce in
Chapter 5.

Corrective edit step (5.1): However, it is not obvious how to resolve this inconsistency. In
general, the message 6:disconnect could be removed, or we can choose a different oper-
ation of class Video as a signature for the message. Ultimately, this decision depends
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on the intended semantics of the model. As illustrated by Version 5 in Figure 2.5,
we will resolve the inconsistency by changing the message end of 6:disconnect from
the lifeline open:Video to the lifeline mirror:Server. Syntactically, choosing the lifeline
main:Server would also resolve the inconsistency.

2.1.3 Scenario 3: Iterative Repair of Model Inconsistencies
The repair of the inconsistency after moving the operation disconnect() results in the Ver-
sion 5 of our VoD-System model shown in Figure 2.5. The message 6:disconnect is now sent
between the lifeline Alice:User and mirror:Server. However, this repair has a negative side
effect which introduces a new inconsistency that has to be repaired subsequently.

The consistency rule message_property(m:Message) only allows sending messages between
object instances that can reference each other. The consistency rule message_property(m:Mes-
sage) is formally defined in Chapter 5. It is necessary that the class that defines the type of the
sender has at least one property that refers to the type of the receiver. In the class diagram,
such properties are typically illustrated by a navigable association. The consistency rule
message_property(m:Message) is not fulfilled for the message 6:disconnect in Figure 2.5b and the
defining classes User and Server in Figure 2.5a.

Inconsistency-inducing edit step (5.1): The inconsistency has been introduced by the last
corrective edit step (5.1) which changed the receiver of the message 6:disconnect from
lifeline open:Video to lifeline mirror:Server.

Corrective edit step (6.1): Again, there are different possibilities to repair this inconsistency,
e.g., creating a new association or removing themessage 6:disconnect. The latter seems
unreasonable since we just started modifying the message to resolve the previous in-
consistency. As illustrated in Figure 2.6 showing Version 6 of our exemplary model,
we will correct the inconsistency by changing the sending lifeline of the message 6:dis-
connect. Changing the sender from Alice:User to open:Video will resolve the inconsis-
tency, as the navigable associations main [1] and mirror [*] connect the corresponding
defining classes.

VoD-SytemVoD-Sytem

+ connect()

Server

+ connect()

Server
+ play()
+ pause()
+ stop()
+ disconnect()

- playing : Boolean

Video

+ play()
+ pause()
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+ name : String

User

+ name : String

User 0..4
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0..4

+ open

1

*

+ videos

+ main

1

*

+ videos

+ main
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*
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+ mirror
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(a) The unmodified initial class diagram.
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(b) The unmodified initial state machine diagram.

Figure 2.1. Version 1: The initial version of the class and state machine diagram from Figure 1.1.
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VoD-Sytem
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(a) The unmodified class diagram.
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(b) Edit steps (2.1) - (2.3) are adding state
fast-forwarding. Edit step (2.4) removes state
previews. Edit step (2.5) renames state stream.

Figure 2.2. Version 2: Adding the functionality of fast-forwarding to the state machine.
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(a) Edit steps (3.1a) and (3.1b) are adding the
operation fastForward() with a call event.
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(b) Edit step (3.1c) adds a trigger to the fastForward
transition that refers to the corresponding call event.
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mirror : 
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(c) The unmodified sequence diagram.

Figure 2.3. Version 3: Adding an operation for fast-forwarding to the class diagram.
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Figure 2.4. Version 4: Inconsistency-inducing edit step that moves the operation disconnect().
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(b) Edit step (5.1) changes the receiver of message
6:disconnect from lifeline open:Video to mirror:Server,

which violates the message_property(m:Message)
consistency rule on message 6:disconnect.

Figure 2.5. Version 5: First corrective edit step that changes the receiver of message 6:disconnect.
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6:disconnect from lifeline Alice:User to open:Video.

Figure 2.6. Version 6: Second corrective edit step that changes the sender of message 6:disconnect.
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This modeling example shows that repairing inconsistencies can also have negative side
effects, introducing new inconsistencies. Therefore, repairing models can be considered an
iterative process in which multiple corrective edit steps are executed successively. This al-
lows the developer to focus on a single inconsistency at a time, which reduces the complexity
of a recommended corrective edit step and increases its understandability.

2.2 State of the Art
Large software systems are developed in teams where individual developers work on dif-
ferent tasks and parts of the project. Therefore, the team must develop a common under-
standing of the requirements and coordinate the interfaces between different software com-
ponents. Especially in the early design phases, this can lead to contradictions in the design
and implementation of the system. Such inconsistencies should be identified and commu-
nicated as early as possible; otherwise, more severe problems will likely arise in later devel-
opment phases. However, under certain circumstances, e.g., if some design decisions are
yet unclear, an inconsistency cannot be corrected immediately. In such cases, postponing
an inconsistency’s resolution can be helpful until more specific design decisions have been
made.

The likelihood of inconsistencies increases as a project grows in size and complexity.
If individual parts of a project are revised, overlapping or dependent parts in the system
model must always be adapted accordingly. However, newly introduced inconsistencies
can quickly be overlooked. Automated tooling should support the developers in detecting,
documenting, and resolving inconsistencies. Since inconsistencies can occur in any devel-
opment phase, the consistency of the project must be continuously monitored. Therefore,
all tasks associated with the life cycle of an inconsistency are referred to as consistency man-
agement (also known as inconsistency management). Consistency management covers all
activities, from the evolution of consistency rules and the detection of inconsistencies to
analyzing their impact and developing a final resolution [41, 136]. The main focus of this
thesis is the resolution of inconsistencies by recommending modifications that resolve a spe-
cific inconsistency in the latest model version. In the sequel, we will refer to this process as
model repair.

In MDE, models are enriched with technical details over several phases, i.e., a model is
developed from an abstract to a more refined model. In general, a model on a less abstract
level must also be consistent with its predecessors on the more abstract levels. We refer to
this kind of consistency as inter-model consistency or vertical consistency [71,112]. For exam-
ple, the derived platform-specific implementation and the corresponding database schema
must be inter-model consistent with the system’s class diagram. The refinements between
models at different abstraction levels are typically defined by incremental and bidirectional
model transformation techniques [68], including triple graph grammars (TGGs) [11,54,166].
In this case, inter-model consistency is defined through these well-defined model transfor-
mation rules. Corresponding model repair techniques are typically fully automated, non-
interactive approaches (see Table 2 in Reference [68]) with the objective of resolving all
inconsistencies at once. Generally, an interactive human-in-the-loop transformation sys-
tem could ask the developer to resolve ambiguous correspondences between transformed
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model fragments before resolving an inconsistency [68]. However, if the transformation be-
tween two abstraction levels is well-defined, an incremental transformation technique does
not necessarily have to choose between multiple repair alternatives.

Themodeling views of our running example in Figure 2.1 are on the same level of abstrac-
tion with respect to the MDE development process, i.e., a platform-independent description
of a VoD-System. Conversely to inter-model consistency or vertical consistency, the consis-
tency of models on the same level of abstraction is referred to as intra-model consistency or
horizontal consistency [71, 112]. The approach in this thesis focuses on intra-model consis-
tency between different views or within a single viewpoint on the same abstraction level.

Considering our running example from Figure 2.1, the views are defined by a single
meta-model, i.e., the meta-model of the UML. In general, the models of a system can also
be based on multiple meta-models, e.g., a meta-model for each viewpoint with connections
between the meta-models. Conceptually, we can combine multiple meta-models to form a
single unified meta-model [115]. An instance of such a (unified) meta-model can be concep-
tionally considered as an abstract syntax graph (ASG), basically, a typed attributed graph
with a containment structure in which the types of nodes and edges are drawn from the
meta-model serving as a type graph (see, e.g., Reference [27]). The containment structure
describes the abstract syntax tree (AST) within the ASG.

In the following sections, we will examine the state of the art in model repair approaches
for intra-model consistency. The feature-based classification system proposed by Macedo
et al. [115] distinguishes model repair approaches by several technical features. The main
technical features will be discussed in Section 2.2.1 to Section 2.2.3. In Section 2.2.1, we
will examine the adaptability and limitations of the repair approaches with respect to the
different modeling domains or languages that can be handled. Section 2.2.2 compares the
formalisms used to specify the consistency of a modeling language and its effect on the
repair calculations. In Section 2.2.3, we will discuss techniques that include information on
user modifications during the model repair.

Beyond the technical classifications of model repair, we will consider the repair scenario
as an additional criterion. Therefore, we will look at the underlying engine of the repair
generation procedure and the representation of the proposed repairs. In Section 2.2.4, as
discussed in Reference [132], we will distinguish between the two repair scenarios of fully
automated approaches and recommendation systems.

CPEOs are the primary configuration input of ReVision to define the consistent modi-
fications of a modeling language. Finally, we will give an overview of the state of the art in
generating edit operations in Section 2.2.5.

2.2.1 Modeling Domain
The modeling domain refers to a specific area of problems that should be represented by
a modeling language. Special kinds of model repair techniques are language-specific ap-
proaches that cannot be adapted to different modeling languages, e.g., specific repair tech-
niques for UML models [45, 129, 184, 185], architectural models [38, 48], or business process
models [51, 117]. Language-specific approaches have limited applicability, especially when
it comes to domain-specific modeling with a variety of languages in MDE.

A modeling language is typically defined by a meta-model or sometimes by similar
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(translatable) formalisms like graph grammars [9, 194]. All models defined for the speci-
fied modeling language must conform to the structure and type definitions of this meta-
model. Therefore, other kinds of model repair techniques are meta-model independent ap-
proaches, i.e., approaches that can be applied or adapted to any given meta-model. In the
context of modeling languages, we can also refer to meta-model independent approaches as
language-independent repair approach. A language-independent approach is presented by
the generic syntactic technique in References [134, 148, 149] that analyzes the logical con-
straints defining a consistency rule. A generic approach does not require language-specific
adaptions. In contrast, a rule-based technique, as described in References [2,22,28,133,199],
relies on language-specific rules that are used to adapt the technique to a given modeling
language. Finally, some search-based repair techniques can handle arbitrary meta-models
[64, 114, 147, 186]. Conclusively, meta-model independent model repair approaches have
a wide range of possible applications, but this can come at the cost of additional required
configurations.

A model repair technique can also be limited with respect to the supported model in-
stances, e.g., only a preconfigured set of textual values or a fixed range of numbers might
be supported [36, 45, 114, 186]. A bounded universe of possible model instances might help
the approach to limit the search space for repair alternatives [115]. However, some possible
repairs may not be found due to such limitations.

To work around this problem, some approaches introduce abstract placeholders, which
must be instantiated by the developer, e.g., as parameters of a proposed repair plan. In
general, parameterizable repair plans are also referred to as abstract repair plans. On the
other hand, a repair plan with fixed values and repair actions is referred to as a concrete
repair plan. Fully automated repair techniques naturally require concrete repair plans, while
abstract repair plans aremore suitable for recommendation approaches. Also, a combination
of both approaches is possible so that several concrete instantiations are suggested for an
abstract repair plan. However, the generation of attribute values is a challenging task. In
some cases, even the number of correct alternatives can be practically unlimited, e.g., the
name of a new element. Some approaches try to synthesize attribute values from existing
values in the model [95].

Similar to auto-completion tools of programming languages, auto-completion in MDE
can improve the quality of models and efficiency of modeling activities by supporting a de-
veloper with context-specific recommendations to extend a model. Several approaches have
been proposed for generic [123, 168, 174] and language-specific [29, 69, 91, 98, 99, 124] auto-
completion of models. In general, auto-completion techniques can also help to preserve
the consistency of models. However, such approaches are not intended to repair specific
inconsistencies already existing in a model.

Compared to model repair approaches, automated program repair approaches, as pre-
sented in References [74, 105, 126, 127, 135, 190], aim at repairing a program’s semantics.
Typically, the program must be repaired to pass a set of predefined test cases. However,
the approach presented in this thesis aims at resolving syntactical inconsistencies instead
of fixing a model’s behavior.
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2.2.2 Consistency Constraints
Ameta-model defines the basic structure and types of a model’s ASG. More complex consis-
tency constraints require additional rules that restrict the allowed model instances. Some
model repair techniques are designed to support only a fixed set of consistency rules, which
is also typical for language-specific approaches. In contrast, an adaptable model repair
approach allows the definition of new consistency rules. This is required for language-
independent approaches to adapt the technique to a new modeling domain. Moreover,
user-defined consistency rules can also constrain a modeling language in terms of domain-
specific design rules.

We assume that a consistency rule is described using a specific formalism so that it
can be checked automatically on a given model instance. The validation of a consistency
rule at least indicates whether it succeeded or failed. Typically, a constraint is defined and
checked on a specific type of element in the model that is referred to as the context element
of the validation. The evaluation of the consistency rule can be analyzed (see, e.g., Refer-
ences [148,151]) to reason about potential faulty locations in the model, e.g., missing edges
or wrong attribute values. Most approaches use logical constraint languages, like the Object
Constraint Language (OCL), which is based on the theory of first-order logic. Some graph-
based approaches use pattern matching techniques to formulate consistency rules. Those
graph constraints typically define positive and negative graph patterns that are combined
using basic logical operators. Generally, a model repair technique can depend on a specific
formalism or require a particular type of information as the result of the validation.

If multiple inconsistencies occur in a model, some repair approaches handle all inconsis-
tencies at the same time [35, 39, 114, 146, 186], which is also typical for model synchroniza-
tion and inter-model consistency approaches [12,65,65–67,104,113,116,142,171,200]. Other
model repair tools allow the developer to select a specific inconsistency [22, 45, 64, 100, 117,
129, 134, 149, 185], which is referred to as violation selection [115].

Approaches have different characteristics with respect to their completeness and cor-
rectness regarding a given inconsistency to be repaired. An approach is considered to be
complete if it can enumerate all possible repair alternatives for a concrete inconsistency [149].
A search-based approach can theoretically cover the entire search space of a model instance.
However, in practice, the search engine is typically limited by some kind of time or space
threshold. Moreover, we have to deal with those cases that can lead to practically unlimited
repair alternatives. In such cases, it is only possible to achieve completeness by utilizing
abstract repair plans.

2.2.3 Change-based Approaches
We can basically distinguish between state-based and delta-based model repair approaches
[115]. A state-based approach evaluates and repairs the current version of a model. A delta-
based technique involves the user’s actions to propose model repairs. Delta-based repairing
is mostly based on some kind of online logging of the modifications applied in the model
editor. Some early human-centric consistency management approaches use change logging
to help the developer to understand the cause of an inconsistency [41, 52, 61]. A few ap-
proaches log user actions to increase the efficiency of the inconsistency detection by incre-
mentally checking the changed parts of the model [45, 149, 188]. However, the calculation
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of model repairs remains basically independent of the user’s actions. Logging user actions
can also replace the need to manually select specific inconsistencies, enabling an immediate
resolution of conflicting actions [117, 199]. However, if user interactions directly trigger an
automated inconsistency resolution, the approach is not intended to tolerate inconsistencies
temporarily.

To determine the impact of user actions, some approaches define guard or detection
rules that trigger predefined repair plans [2,22,36,147]. However, the pairs of detection and
resolution rules must be defined a priori at the configuration time of the repair technique.
Thereby, only a few repair approaches can prevent undoing former work, which is referred
to as change-preserving [2] or delta-preserving [163, 164].

The approach proposed by Puissant et al. [147] uses meta-information of the modeling
history to guide search-based repair approaches, e.g., preferring to modify newer elements
and keeping the older ones.

2.2.4 Fully Automated vs. Recommendation Approaches
Existing model repair techniques can mainly be categorized into syntactic, rule-based and
search-based approaches. A syntactic approach analyzes a violated consistency rule to derive
repair plans. Rule-based techniques are configured with rules for repairing and sometimes
also with rules for detecting inconsistencies. Search-based model repair approaches [49, 90,
114, 186] heuristically explore the state space of a model to find suitable consistent states
of a given model. Search-based approaches are typically used for fully automated repair
processes. Similarly, rule-based approaches that exclusively aim at synchronizing multi-
view models [58, 92, 199] are mostly fully automated repair techniques.

Tools for model repair recommendation typically allow violation selection, which helps
developers to focus on a single inconsistency at a time. Inconsistencies can be resolved in in-
cremental steps, i.e., negative side effects that introduce new inconsistencies are acceptable
as long as the model converges to a consistent state. Moreover, model repair recommenda-
tion tools should be adaptable to the developers’ preferences.

We can basically distinguish between recommendation approaches that aim at elemen-
tary meta-model consistency [133] and those that support arbitrary complex consistency
rules [28, 147, 149]. The elementary consistency defines the basic structural constraints of
a model’s ASG, e.g., multiplicities of edges or containment relations between model ele-
ments [27].

Correspondingly, the modifications of edges, nodes, or attributes on the level of the
ASG are referred to as elementary changes. In the context of model repair, multiple ele-
mentary changes can be composed into a repair plan that resolves a complex inconsistency.
Assuming a repair plan addresses a specific inconsistency, we will refer to a repair plan as
inconsistency-improving if it addresses the inconsistency only partially, i.e., the repair plan
potentially requires additional changes to actually resolve the inconsistency. In particular,
the additional changes do not roll back any already applied changes of the inconsistency-
improving repair plan. A repair plan is called inconsistency-resolving if it effectively re-
solves the addressed inconsistency. In general, an inconsistency-resolving repair plan is
also inconsistency-improving, i.e., in this case, no additional changes are required.

Model repair recommendation techniques should present the set of repair proposals in
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a comprehensible way. The most basic representation is a ranked list of repair plans. Most
approaches rank repairs according to some kind of least-change criterion, i.e., proposing
the repair plan with the minimum number of changes on the top positions. This is typically
defined by a distance function comparing two alternative repair plans according to their
modifications, e.g., by the number of contained elementary ASG changes or custom edit
operations. However, this does not always mean that the topmost repair plan is actually the
smallest possible update. Finding the actual smallest repair would require considering every
existing repair [115]. Moreover, certain approaches also enable the developer to customize
the repair ranking, e.g., by adjusting the distance function [114] or by weighting additional
information like the creation time of a model element [147].

The repair plans can be described as state-based or delta-based proposals, i.e., by the
corrected model state or by the modification to be applied, respectively. State-based re-
pair plans are typically computed by search-based techniques that enumerate alternatives
of model instances derived from the inconsistent state of a model. In contrast, delta-based
repair plans can be proposed as parameterizable operations, i.e., proposing abstract repair
plans that are initialized by the developer. Moreover, since elementary changes can be chal-
lenging to understand for developers who primarily work on the concrete (diagram) syntax
of a model, some repair approaches utilize user-defined edit operations to describe the pro-
posed repair plans [2, 22, 64, 92, 111, 188].

Reder et al. [149] propose repair trees from which a developer selects different combina-
tions of repair actions to form a repair plan. The repair tree restricts the possible combina-
tions of abstract repair actions that eventually need to be initialized with concrete parameter
values.

2.2.5 Generation of Consistency-preserving Edit Operations
Edit operations are essential descriptions inmanymodeling tools [1,4,25,78,128,145,152,180]
inMDE. Edit operations can be used to define the correct transition between two validmodel
instances. An edit operation combines multiple elementary changes, i.e., modifications of
nodes, edges, or attributes in the ASG. CPEOs may be specified in a declarative way using
in-place model transformations based on graph transformation concepts. In the context of
our model repair approach, CPEOs are required that prevent typical inconsistencies when
models are edited in standard editors (see Section 3.5). However, the manual definition of
edit operations that pay attention to the complex consistency rules of a modeling language
can be tedious and error-prone. Therefore, techniques that support or fully automate the
specification of complex edit operations are required.

Some existing approaches for generating edit operations are used in the context of model
instance generation, e.g., for generating test cases. Similar to context-free grammars for tex-
tual languages, such approaches derive graph grammars from the meta-model of a modeling
language [47, 55, 178]. The derived rules are typically constructive, i.e., no rules for modify-
ing existing elements are generated. However, modifications to existing model fragments
may require synchronization during model evolution, especially when working with mul-
tiple modeling views. Other approaches like DeltaEcore [167] or SERGe [84, 85, 153] also
generate deleting or modifying edit operations that respect the multiplicity constraints in
a given meta-model. However, these approaches only consider the elementary consistency
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constraints specified by the meta-model. Such elementary edit operations can hardly serve
as CPEOs for repairing advanced consistency constraints.

Model transformations represent a central concept in MDE. Those transformations are
usually defined using the abstract syntax of a modeling language. As developers typically
work on a model’s concrete (diagram) syntax, some approaches suggest that it would be
preferable to define transformations using concrete modeling examples. This allows the
definition of transformations using the usual model editor. Approaches for model transfor-
mation by-example can basically be divided into demonstration-based and correspondence-
based techniques [76]. A demonstration-based approach [31, 177] does a live recording of
the changes applied in a model editor. Next, these recorded concrete modifications must be
generalized into an edit operation. In contrast, a correspondence-based approach [3, 158]
derives edit operation from a pair of model examples. These approaches compute corre-
spondences between themodel elements of both examples to derive the actual modifications
between both models. A correspondence-based approach can work offline, i.e., no logging
integration into the modeling environment is required. However, the derived modification
can differ from the actual ones the developer performed to produce the example depend-
ing on the computed correspondences. Creating transformations by-example can lower the
entry barrier for a formal edit operation specification. This task would otherwise require
knowledge about the meta-model of a modeling language.

Generally, example-based approaches allow the creation of arbitrary complex edit oper-
ations. However, providing a comprehensive set of edit operations by modeling all possible
scenarios using examples can still be challenging. In general, it is difficult to make assump-
tions about the completeness and correctness of a collected set of edit operations for a given
meta-model (see Reference [85]) and its consistency rules.

2.3 Approach Outline
The approach introduced by this thesis addresses the issues of existing approaches to model
repair analyzed in Section 1.2 and Section 2.2. It can be considered as analytic approach to
developer-centric model repair recommendations, in contrast to exhaustive search strate-
gies used for the automated repairing of model inconsistencies. Following the generally ac-
cepted debugging strategy of fixing a single defect at a time [201], the approach is designed
to iteratively analyze and repair the violations of consistency rules in a model. According
to the technical features discussed in Section 2.2, the approach can be classified as a hybrid
syntactic rule-based model repair technique based on a violation selection repair process.
Based on an impact analysis of the proposed repair plan changes with respect to the incon-
sistency, we determine whether a complementation is at least inconsistency-improving. As
the repair plan describes a complex consistency-preserving edit step based on a CPEO, this
typically implies that the repair plan is inconsistency-resolving. As shown by the modeling
examples in Section 1.1 and Section 2.1, the approach particularly addresses inconsistencies
in models introduced by isolated editing of single views or modifications of complex model
fragments.

As we have analyzed in Section 1.2, system models in MDE have to keep up with the
ever-changing requirements of the software evolution process. The most appropriate ap-
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proaches to the repair of design-related model inconsistencies are recommender systems
that assist a human developer. In general, recommender systems are software tools that
support users in their decision-making while interacting with large information spaces by
suggesting items that are likely to meet their needs and preferences [154]. According to the
definition of Robillard et al. [154], a recommendation system for software engineering pro-
vides valuable information for a software engineering task in a specific context. Generally,
recommender systems support developers in various activities such as searching codebases
and software documentation. Auto-completions, code templates, or refactoring proposals
are well-known tools that aim at speeding up a developer’s programming workflow. More
sophisticated recommendation systems for software engineering can aid developers during
program repair, e.g., bug localization [89, 101], program debugging [105] or adapting exist-
ing code bases to a new library [37].

Nature of the context Recommendation engine Output mode
Input: Data: Mode:

explicit | implicit | hybrid source | history | interaction | … push | pull
Ranking: Presentation:
yes | no batch | inline

Explanations:
from none to detailed

Table 2.1. Design dimensions of recommendation systems for software engineering tasks from
Table I in Reference [154].

Table 2.1 shows the classification schema for recommendation systems in software en-
gineering as proposed by Robillard et al. [154] in Table I of Reference [154]. This schema
classifies recommendation systems for software engineering by three general design dimen-
sions: nature of context, recommendation engine, and output mode. Initially, the context of a
recommendation needs to be established. The more precise the context is determined, the
more accurate a recommendation can be. The context of a recommendation can be given
explicitly by a user or is implicitly extracted for the corresponding task. The context of
ReVision is explicitly given by a developer in terms of the inconsistency to be resolved.

In general, the recommendation engine is responsible for the computation and ranking
of the recommendations. Its design mainly depends on the task-specific input data, which is
analyzed in addition to the recommendation context [154]. In addition to the inconsistency,
ReVision analyzes the modeling history for incomplete edit steps to discover corresponding
complementations and rollbacks that are finally presented as a ranked list. The objective of
our ranking is to find edit steps that are likely continuations of incomplete edit steps and
which, at the same time, keep the number of proposed modifications low.

The third design dimension of recommendation systems in Table 2.1 is the output mode.
The recommendation system can either interact with the developer by actively pushing rec-
ommendations to the developer or the developer can actively pull recommendations. Most
recommendation systems operate in pull mode to avoid unnecessary distractions for the de-
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veloper. In our repair tool ReVision, the developer must actively pull the recommendations,
which will be presented in a batch mode, i.e., a ranked list of recommendations. A pull de-
sign is also more appropriate to tolerate inconsistencies temporarily during modeling than
a push design (see Section 2.2.3).

Another essential task for recommender systems is to explain the proposals to the de-
veloper. Explaining the resulting recommendations can increase confidence in the sys-
tem. However, the amount of explanations should not overwhelm the developer [154].
Re(pair)Vision explains a recommended repair by describing it as a pair of an incomplete,
inconsistency-inducing edit step and a complementing, corrective edit step. Technically,
the computations of ReVision are deterministic, which can also increase the developers’
confidence in the recommendations.

defines defines

oldernewer

in historical changes

conform to preserve

recognize change actions

*negative *positive

invert to find applications

repair repair

negativepositive/negative

with * impact

evaluation

violation in

RankingRankingRankingRollbackRollback

Sub-rule ApplicationSub-rule ApplicationSub-rule Application Complement RuleComplement RuleComplement Rule

Partial CPEO RecognitionPartial CPEO RecognitionPartial CPEO Recognition

Impact AnalysisImpact AnalysisImpact Analysis

Inconsistent VersionInconsistent VersionInconsistent Version Consistent VersionConsistent VersionConsistent Version

Model HistoryModel HistoryModel HistoryDeveloperDeveloperDeveloper

Consistency RulesConsistency RulesConsistency RulesMeta-modelMeta-modelMeta-model

Modeling LanguageModeling LanguageModeling Language

selects current latest

CPEOsCPEOsCPEOs

ComplementationComplementation

Inconsistency! Inconsistency!

Model DifferenceModel DifferenceModel DifferenceModel Difference

Figure 2.7. Approach Outline: Basic concepts of the model repair technique and their relations. The
edges indicate the reading direction of the relations.

Figure 2.7 shows the basic concepts of our approach and their relations. We assume that
the correct instances of a modeling language are defined by a meta-model and additional
restrictive consistency rules. Transitions between correct instances are specified by CPEOs.
Inconsistencies can be automatically detected by evaluating the consistency rules on the
current model instance. If violations are detected, the developer can select the inconsistency
to be repaired.

To find the cause of an inconsistency, the model difference between the current incon-
sistent model version and the latest known consistent version with respect to the selected
inconsistency is computed. In the next step, potential inconsistency-inducing changes from
the model difference are detected by analyzing the negative impact of changes with respect
to the violated consistency rule. In contrast, a planned change action that can contribute
to a corrective edit step positively impacts the violation. Therefore, we also analyze the
potential negative and positive impact of the change actions specified by the CPEOs.
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Sub-rule
Application

Model Difference Complementation

Partial CPEO DetectionSub-rule Complement Rule

Complement Rule
Application

Figure 2.8. Complementation of partially executed CPEO detected in a model difference. The
involved modifications are illustrated as sequences of changes.

In the next step, partial applications of the CPEOs are detected in the model difference.
This process is illustrated in Figure 2.8 by showing the mappings between the involved
changes in the model difference and the CPEO. Notably, our approach for detecting partial
executions of CPEOs does not depend on the temporal order in which the changes have
been applied, and they may be intertwined with other changes. The detection results in
possible sub-rule applications of the CPEOs recognized in themodel difference. For each sub-
rule, a corresponding complement rule can be constructed comprising the remaining change
actions of the CPEO. In the following processing step, parameterizable complementations
are calculated that have an improving effect on the inconsistency. Conversely, a developer
can also apply the inverted changes of the sub-rule application to roll back the inconsistency-
inducing changes. Finally, the complementations and rollbackswill be ranked and presented
to the developer as a list of possible repairs.





3
Background and Preliminaries

The abstract syntax of a modeling language, e.g., class, sequence, and state machine diagrams
of the UML, is defined by a meta-model, including the types, attributes, references, and contain-
ment structure of the ASG. The abstract syntax of the meta-model itself is, in turn, defined by
a meta-metamodel. A meta-model can be further constrained by the specification of complex
consistency rules. Change actions during modeling can be generically expressed as elementary
changes on the basis of the abstract syntax of a model. Similarly, changes between successive
versions of a model can be represented as a model difference. Complex edit operations can be
expressed using model transformations based on graph transformation rules. As a compact no-
tation, change actions and changes can be represented using annotated graphs, which we will
refer to as edit rule graphs and difference graphs.

I n this chapter, we discuss the fundamental concepts that define a modeling language in
MDE. We start with the basic definition of the types and structure of a model’s ASG by

defining a meta-model in Section 3.1. The formal specifications of advanced consistency
rules that further restrict possible instances of a meta-model are introduced in Section 3.2.

In addition to the specification of modeling languages, we define a generic notation for
structural changes in models in Section 3.3. Such changes can represent change actions with
formal unbound parameters, abstract changes with partially bound parameters or concrete
changes. Based on the notation of concrete changes, the historical changes between two
versions of a model are represented as a model difference in Section 3.4. Section 3.5 defines
complex edit operations ofmodeling languages usingmodel transformations based on graph
transformation concepts. Furthermore, Section 3.3, Section 3.4, and Section 3.5 introduce the
concept of unified graphs to represent the different structural changes through a common
notation.

3.1 Specification of Modeling Languages
Modeling languages use constructs that are expressive for specific problems in a particular
domain. Developers define a model using its concrete syntax, i.e., a graphical diagram or a
textual notation. However, tools in MDE typically process a model based on its abstract syn-
tax. This allows the tools to be decoupled from the concrete syntax and their implementing
technologies.

31
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In MDE, specialized frameworks deal with the implementation of graphical editors [156]
or grammars for textual DSMLs [23]. Such frameworks handle the synchronization between
the concrete and abstract syntax. The specification of relations between the abstract and
concrete syntax is out of the scope of this thesis. In the following, we assume that modifi-
cations or selected elements in the concrete syntax representation can be synchronized to
the ASG and vice versa.

As usual in MDE, we assume that a meta-model specifies the abstract syntax of a model-
ing language, i.e., the allowed element types, their properties, and structural relations. Other
approaches for defining modeling languages are sometimes used due to formalization rea-
sons, e.g., graph grammars define modeling languages by graph transformation rules. Nev-
ertheless, even for a grammar-based approach, a meta-model can be derived from the gram-
mar in an automated way (see, e.g., [9,194]). In the following, we will discuss the definition
of the abstract syntax by the concept of meta-modeling.
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Figure 3.1. The definition of a simple modeling language for state machines by the concept of
meta-modeling. The table illustrates the concrete syntax of each layer in the first column and the

ASG representation in the second column.

Figure 3.1 (see column Concrete Syntax in rowModel (M1)) shows a simple state machine
diagram consisting of two states streaming and waiting connected by single transition play.
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The corresponding ASG of the model in Figure 3.1 (see column ASG in row Model (M1)) is
illustrated by an object diagram notation, i.e., an object name:Type is noted by the value of its
name attribute and its type. Assignments of attributes are optionally shown in the body of
the object notation. A reference is illustrated as a typed edge between two objects. The con-
tainment references specify the AST structure within an ASG. A reference is either directed,
indicated by an arrow, or undirected. In the ASG in Figure 3.1, the transition of the state
machine is represented by the object play:Transition connecting the objects streaming:State
and waiting:State by the references of type outgoing and target.

On the next layer in Figure 3.1 (see row Meta-Model (M2)), the corresponding meta-
model (also known as M2-layer) of the state machine model (also known as M1-layer) is
shown. Technically, the state machine model on the first layer is an instance of the state
machine meta-model on the second layer. The ASG of the model must conform with the
definitions in the meta-model, i.e., only types and structures defined on the meta-model
can be instantiated in the model. As a meta-model specifies the data structure of the ASG,
the concrete syntax of the meta-model in Figure 3.1 (see column Concrete Syntax in row
Meta-Model (M2)) uses a simplified class diagram notation. The meta-model shows that a
State contains its outgoing Transitions, a transition specifies a target state, and states and
transitions are named. As illustrated in Figure 3.1 (see column ASG in row Meta-Model
(M2)), a meta-model can also be viewed by its ASG.

The types and structure of a meta-model’s ASG are, in turn, defined by a so-called
meta-metamodel (also known as M3-layer), i.e., the meta-model is an instance of the meta-
metamodel. For example, as illustrated in Figure 3.1 (see column Concrete Syntax in row
Meta-Metamodel (M3)), a reference of the meta-model is specified by the meta-metaclass
EReference. A containment reference is indicated by setting the corresponding attribute.

Themeta-metamodel’s ASG in Figure 3.1 (see columnASG in rowMeta-Metamodel (M3))
only uses types and structures that are defined by the meta-metamodel itself. Such meta-
metamodels are referred to as self-describing or self-referencing definitions [33,53], i.e., the
meta-metamodel is an instance of itself.

3.1.1 Meta-Model (UML) of the Running Example
Consider again our motivating example introduced in Section 1.1. The diagrams shown in
Figure 1.1 represent different views of the same system in concrete syntax. Considered as an
ASG, they are one integrated model that conforms to the UML meta-model. For brevity, we
introduce a simplified excerpt of the UML meta-model [141] that is relevant to our running
example. For readability, the integrated UML meta-model is presented in separate excerpts
for each diagram type, namely, the specification of class diagrams (see Figure 3.2), sequence
diagrams (see Figure 3.3), and state machine diagrams (see Figure 3.4). The structural inter-
relations between the diagrams are indicated by marking the overlapping meta-classes with
an arrow icon.

Class diagram meta-model. Figure 3.2 shows the meta-model that defines the abstract
syntax of class diagrams. Class diagrams can be structured by ModelPackages. A Class con-
sists of Properties (also referred to as attributes) and parameterizable Operations. Classes can
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visibility : Visibility [1] = public
lowerBound : Integer [1] = 0
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Figure 3.2. Simplified UML meta-model (M2-layer) for specifying class diagrams.

define a type hierarchy by specifying Generalizations between classes. Two or more prop-
erties (memberEnd) can be combined into an Association. An association is navigable in a
specific direction if the property is contained by a class (ownedAttribute) and not by the as-
sociation itself (ownedEnd). In particular, properties and parameters have multiplicities that
define a lower-bound and upper-bound number of assignable entities.

Generally, the specification of the data types of attributes is represented as classes an-
notated with the «DataType» stereotype. We informally define the corresponding domain in
the body of the data type. For example, the Direction of operation parameters is specified by
enumerating the values of the domain.

Sequence diagram meta-model. Figure 3.3 extends the simplified UML meta-model
from Figure 3.2 with the abstract syntax of sequence diagrams. A sequence diagram is
contained by an Interaction, depicted as an outer frame in the concrete diagram syntax. A
Lifeline represents a property of a class and can send and receive Messages. A MessageEnd
defines the sending and receiving lifeline of a message. A message references an operation
of a class that serves as the message signature.

State machine diagram meta-model. Figure 3.4 shows the simplified excerpt of the
state machine meta-model. A state machine defines the behavior of a class. A StateMachine
is basically a composition of Regions and States. For simplicity, we note the kind of state,
e.g., a start or a final state, as an attribute value. Optionally, the entry and exit behavior of a
regular state can be specified by an interpretable expression. A Transition connects a source
and target state. Transitions can be annotated with a trigger [guard] /effect expression in the
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Figure 3.3. Simplified UML meta-model (M2-layer) for specifying sequence diagrams. Extends
the UML class diagram meta-model from Figure 3.2.
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Figure 3.4. Simplified UML meta-model (M2-layer) for specifying state machine diagrams. Extends
the UML class diagram meta-model from Figure 3.2.

concrete syntax of a state machine diagram. In the abstract syntax, we specify the guard and
effect by interpretable expressions. The UML [141] actually specifies five different kinds of
Events that can activate the Trigger of a transition. The simplified meta-model in Figure 3.4
includes the CallEvent that is triggered by an operation of a class.
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3.1.2 Meta-Metamodel (EMOF/Ecore) of the Running Example
The meta-metamodel defined in Figure 3.5 is a simplified version of the Ecore [175] meta-
metamodel (see Section 6.1). Ecore is an implementation of the EssentialMetaObject Facility
(EMOF) [140] that defines the meta-metamodel of the UML [141]. The meta-metamodel in
Figure 3.5 allows the definition of a type hierarchy of meta-classes by the meta-metaclass
named EClass. The type hierarchy must not contain any cycles. Each meta-class specifies
a set of direct supertypes, i.e., the directly inherited meta-classes. For example, the direct
supertype of CallEvent in the state machine meta-model in Figure 3.4 is the class Event. More-
over, a meta-class can be an abstract type that cannot be instantiated, e.g., Event is an abstract
meta-class.
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Figure 3.5. Simplified EMOF/Ecore meta-metamodel (M3-layer) for specifying meta-models of a
modeling language.

Ameta-class contains the specifications of its attributes (EAttributes) that have a primitive
data type. A meta-class may also contain parameterizable operations (EOperation). More-
over, the meta-class that contains a reference (EReference) is the source of that reference,
and the target meta-class is given by its type. Bidirectional references are represented as
opposite references between two adjacent classes. Containment references (containment =
true) define the AST structure of model instances. The opposite of a containment reference
is referred to as a container reference (/container = true).
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Attributes, operations, and parameters of meta-classes are typed. Primitive data types
and their (informally defined) domains are specified by EDataTypes. In this context, let the
data type Any be the base type that can be assigned with any kind of value or object instance.
The method eIsValueOf(v:Any) checks if a given value v is in the domain of the data type.

Structural features, namely, references and attributes, can have multiplicities that are
defined by an upper and lower bound value. An attribute with an upper bound greater
than one is referred to as a multivalued attribute, i.e., the attribute can be assigned with
a list of primitive values. Contrarily, an attribute with an upper bound of one is called a
single-valued attribute.

As specified by EStructuralFeature in Figure 3.5, references and attributes can be derived
features, i.e., the values or references are computed from the current state of the model’s
ASG. We assume that the expression which computes a derived feature is defined by a side-
effect-free query. Such a query can be formulated using the same query language that is
introduced in the following Section 3.2 for defining consistency rules for a meta-model. For
example, in Figure 3.5, the /many attribute is derived by the query

EStructuralFeature::many ≔ self.upperBound > 1 (3.1)

for a specific reference or attribute (self), the meta-attribute /many indicates a multivalued
attribute declaration. Moreover, the derived /container attribute value is true if the opposite
reference is a containment reference. In terms of meta-classes, the direct and indirect inher-
ited supertypes (/eAllSuperTypes), references (/eAllReferences), and attributes (/eAllAttributes)
can be derived. For example, for the meta-class CallEvent in the state machine meta-model
in Figure 3.4, we derive Event and PackageableElement as all super types.

3.1.3 Elementary ASG Consistency
Themeta-metamodel defines the syntactical constructs that have to be supported by generic
modeling tools. A generic modeling tool can be applied to all modeling languages defined by
meta-models based on the same meta-metamodel. In this context, the meta-metaclass EOb-
ject defined in Figure 3.6 is a central concept. This meta-metaclass is basically bootstrapping
the meta-modeling process [33]. Technically, all objects in the ASGs on all meta-modeling
layers are instances of EObject, i.e., all meta-classes and meta-metaclasses (implicitly) inherit
EObject as their base class.

Figure 3.6 extends the meta-metamodel from Figure 3.5. For the sake of simplicity, we
assume that EObject defines an attribute name:String, i.e., each object in any ASG can define
a name. Particularly, the meta-metaclass EObject defines reflective access to read and modify
the entire ASG of a model. The (unmodifiable) reference eClass [1] gives access to the meta-
class that defines the type of an object. The meta-class contains all structural features that
can be read from the object.

We can access the object’s data by calling eGet() with the specific attribute or reference
type. For the sake of simplicity, we assume that all referenced objects and attribute values
are returned as a list, regardless of their upper bound multiplicity. The references can be
modified by adding or removing references from the returned list. Notably, exceeding an
upper bound of 1 is not allowed. In this context, the operation eInvoke() in Figure 3.6 gives
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eGet(f:EStructuralFeature) : List
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Figure 3.6. Simplified EMOF/Ecore meta-metamodel (M3-layer) for specifying meta-models of a
modeling language. Extends the EMOF/Ecore meta-model from Figure 3.5.

reflective access to a parameterized operations of an object. For example, using reflective
access the object diagram representation of ASGs introduced in Figure 3.1 could be drawn
generically for any model.

As already introduced, for (non-reflective) model access, we use the objs.typeA.typeB no-
tation. Similar to the reflective model access, we assume that such a navigation expression
always returns a set of objects or values. In particular, we allow such navigation expressions
also on sets of objects, i.e., for a set of objects objs all referenced objects or values for typeA
are collected in a new flat set. Therefore, we can also chain multiple navigation expressions,
i.e., starting from the resulting set objects objs.typeA, all referenced objects or values of typeB
are collected. Notably, an unset reference or value with an upper bound of 1 is returned as
an empty set ∅.

For simplicity, in comparison expression (≡,≤, etc.), if a value or object is compared to a
singleton set, the singleton set is compared by its contained object or value. In this context,
we will note the size of set c by the expression |c|. As a convention, we will use the ≡
operator for equality checks of objects, values, or sets and the = operator for assignments.
In the context of equality checks (≡, ≢) of objects, we assume objects are compared by their
identity, not their content.

For all models, we assume some basic structural characteristics of a model’s ASG. In the
following, we refer to these characteristics as elementary consistency, i.e., a minimal level of
consistency of the ASG:

Basic well-formedness: In this context, we ignore cases in which a model is “physically dam-
aged”, e.g., a reference that can not be resolved to an object after loading the model
from a file. We require proper typing of the objects, attribute values, and references
in an ASG with respect to the corresponding meta-model.

AST structure: We assume the objects of an ASG are structured in a containment hierarchy
referred to as AST. Thus, an object exists in a model if the object is contained in the
AST. The common root model element of all models is defined in Figure 3.6 by the
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class EResource. In particular, we represent the empty model by an empty instance of
EResource with no content.

References: An ASG cannot contain parallel references of the same reference type, i.e., two
references are parallel if they share the same source and target object. Bidirectional
references that are represented as pairs of opposite references are handled as atomic
fragments that are always created or removed together.

Multiplicities: Regarding multiplicity constraints, we will only require that an upper bound
that is exactly one is not succeeded by references or attributes in an ASG. In particular,
lower bounds and upper bounds greater than one will not be required as elementary
consistency constraints. In general, multiplicities can be formulated as consistency
rules, as shown in the following Section 3.2.

3.2 Specification of Consistency Rules
Most modeling languages require more advanced constraints, which further restrict the
valid instance structures of anASG. Such consistency constraints are typically expressed in a
rule-based manner. Consistency rules are formulated using a dedicated constraint language,
typically based on first-order logic such as the Object Constraint Language (OCL) [189]. A
consistency rule consists of a context type and a logical expression that must be valid on all
ASG elements of this type or any of its subtypes. We refer to such an element as the context
element of a validation. A model that satisfies all consistency rules is called syntactically
valid or consistent. The violation of a consistency rule indicates an inconsistency with
respect to the specified context.

As an example, Definition (3.2) shows a formal specification of a consistency rule named
dangling_transition(t:Transition) that validates transitions of state machines. This consistency
rule explicitly implements the multiplicity constraints defined in the state machine meta-
model in Figure 3.4, i.e., a transition must always have a source and target state. The con-
text element of the validation is an object t of type Transition. The Boolean expression that
follows the context definition must be evaluated to true to pass the validation. An incon-
sistency is present if the expression is evaluated to false. The expression to be validated
in Definition (3.2) is a conjunction that checks the source and the target of a transition. In
general, a constraint language defines a set of functions for evaluating the structure and
attribute values of a model’s ASG. The validation expression of dangling_transition(t:Transition)
first navigates from the transition t to find the source and target state. In both cases, the
number of existing source and target references is determined, which must be exactly one.

dangling_transition(t:Transition) ≔ |t.source| ≡ 1 ∧ |t.target| ≡ 1 (3.2)

Figure 3.7 shows an excerpt of our exemplary VoD-Systemmodel, i.e., Version 2 shown in
Figure 2.2. The excerpt of the concrete statemachine diagram is shown alongside the excerpt
of the ASG. In this version, the new transition play is validated against the consistency rule
dangling_transition(t:Transition) defined in Figure 3.2. As illustrated in the ASG, the transition
can be successfully validated by checking the existence of the source and target reference.
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Figure 3.7. Excerpt of the VoD-System shown in Version 2 in Figure 2.2. The excerpt of the concrete
state machine diagram (on the top) is shown alongside the excerpt of the ASG (on the bottom).

Generally, the origin of the inconsistency that may cause an evaluation of a consistency
rule to fail is not necessarily the context element itself, i.e., a consistency rule can evalu-
ate a larger model fragment starting from the context element. The set of model elements,
references, and attributes of the ASG that are inspected during the evaluation of the consis-
tency rule is referred to as validation scope [149]. The area in Figure 3.7 highlighted in green
indicates the scope of the validation on context element play for the consistency rule dan-
gling_transition(t:Transition), i.e., the elements accessed during the evaluation of the consistency
rule’s Boolean expression. The scope of a validation can help the developer to understand
the inconsistency detected by a violated consistency rule. As shown by Reder et al. [150],
only modifications of the ASG that are applied within the validation scope can potentially
impact the result of the consistency rule. For example, modifying the trigger of the play
transition cannot impact the result of the validation of consistency rule dangling_transition(
t:Transition). Thus, a change in the scope of a validated consistency rule can potentially lead
to a violation of this rule. Conversely, a change in the validation scope of a violated consis-
tency rule may potentially resolve an inconsistency.

references_multiplicities(o:EObject) ≔
o.eClass.eAllReferences� ∀ r ∣ r.upperBound ≥ |o.eGet(r)|

(3.3)

In general, multiplicities defined in a meta-model can be handled as a constraint of the
meta-metaclass EObject shown in Figure 3.6. As a result, the constraint is (implicitly) in-
herited by all model elements. As defined by the consistency rule references_multiplicities(
o:EObject) in Figure 3.3, such a generic multiplicity constraint can be implemented by using
reflective access (see Section 3.1.3). The consistency rule checks all types of references of
an object by comparing the actual number of references with the upper bound specified in
the corresponding meta-class.

In Chapter 5, we will introduce additional functions of the constraint language and fur-
ther consistency rules, e.g., the rules message_signature(m:Message) and message_property(m:Mes-
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sage) of our modeling scenarios from Section 2.1. In this context, Section 5.1 and Section 5.2
discuss potential positive and negative impacts with respect to changes in the validation
scope of consistency rule’s evaluation in detail.

3.3 Specification of Model Changes
Duringmodeling, e.g., in amodel’s diagram editor, we need to specify possible modifications
that can be instantiated and applied to the model. Such modifications can be generically
specified for all modeling languages using the abstract syntax of a model. In this section,
we will define different kinds of change actions as the most elementary way of expressing
modifications in models, i.e., they cannot be split into smaller actions. Therefore, we will
also refer to such change actions and their concrete instantiations as elementary changes in
models.

3.3.1 Instantiation of Change Actions
ASGs of models basically consist of objects, references, and attributes. Objects and refer-
ences can be created or deleted; attributes can be modified. These modifications lead to five
kinds of elementary changes that can be applied on an ASG. Such elementary changes must
conform to the types defined by the meta-model of the modeling language.

As illustrated in Figure 3.8, a change action specifies a template of a modification that
can be initialized with specific model elements to form a concrete change. In this context,
a partially instantiated change action is referred to as abstract change. For binding model
elements to typed parameters, we use the following assignability test to check if the first
given type is equal to or a more concrete subtype of the second given type.

isAssignableTo(st:EClass, t:EClass) ≔ st ≡ t

∨ st.eAllSuperTypes� ∃ iht ∣ iht ≡ t
(3.4)

Change actions. Change actions specify the parameters of a modification without bind-
ing those parameters to concrete model elements. The parameters defined by a change
action must conform to the meta-model of a modeling language. An object change action
specifies the creation or deletion (ChangeAction::action) of an object of a specific type (Change-
Action::contextType).

A reference change action specifies the creation or deletion of a reference of a specific type
(ReferenceChangeAction::type). In general, a reference type is specified by an EReference in the
meta-model, including its source (EReference::eContainingClass) and target (EReference::eType
type (see Figure 3.5). Moreover, the type of the source (ChangeAction::contextType) and tar-
get (ReferenceChangeAction::targetType) object of a reference change action can be further
restricted to corresponding subtypes.

restrict_source_and_target(rca:ReferenceChangeAction) ≔
isAssignableTo(rca.contextType, rca.type.eContainingClass)
∧ isAssignableTo(rca.targetType, rca.type.eType)

(3.5)
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Figure 3.8. Meta-model that defines the refinement from change actions and abstract changes to
concrete changes. Uses the EMOF/Ecore meta-model in Figure 3.5 and Figure 3.6.

Similarly, an attribute change action is specified by an attribute type (AttributeChangeAc-
tion::type) of the meta-model. In general, we will consider the changing or initializing of an
attribute value as modifying change action (action =modify). A more concrete subtype of the
containing object can be specified by the context type (ChangeAction::contextType).

restrict_container(aca:AttributeChangeAction) ≔
isAssignableTo(aca.contextType, aca.type.eContainingClass)

(3.6)

Abstract changes. Abstract changes are partially bound change actions, i.e., some param-
eters of the abstract change still need to be defined. An abstract change binds the context
(AbstractChange::context) of a change action to a concrete object of the model’s ASG. In terms
of abstract reference changes, the source object of the reference is specified by the context
model element. Similarly, the context of an abstract attribute change specifies the model ele-
ment that contains the attribute to be modified. A bound model element must be assignable
to the specified context type.

context_binding(ac:AbstractChange) ≔ isAssignableTo(ac.context.eClass, ac.contextType) (3.7)

Concrete changes. A concrete change, or change for short, binds all parameters of a
change action or of an abstract change to concrete model elements. Therefore, the context
model element (AbstractChange::context) of a concrete object change refers to the concrete
element being created or deleted.
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Regarding a concrete attribute change, the concrete value to be set for the context model
element is specified. The assigned value must match the data type specified by the attribute
in the meta-model.

value_binding(ac:AttributeChange) ≔ ac.type.eType.eIsValueOf(ac.newValue) (3.8)

Similarly, a concrete reference change binds a model element that specifies the target
(ReferenceChange::target) of the reference. A bound model element must be assignable to the
specified target type.

target_binding(rc:ReferenceChange) ≔ isAssignableTo(rc.target.eClass, rc.targetType) (3.9)

3.3.2 Unified Graph Representation
This thesis will discuss structural changes in models utilizing a compact representation re-
ferred to as unified graphs. A unified graph illustrates elementary changes using an an-
notated variant of an object diagram, similar to the notation of the model transformation
tool Henshin [3] (see Section 3.5.3). Structurally, the unified graph is the union of two
ASGs that must be typed according to a specific meta-model. The elements of a unified
graph can represent either concrete elements of an ASG or unbound parameters of change
actions. Therefore, a unified graph can express change actions, abstract changes, and con-
crete changes. Moreover, the structural relations between change actions are declared by
the graph.

action = delete/create

: ObjectChange

action = delete/create

: ObjectChange contextcontext
obj : (Sub)Typeobj : (Sub)Type

attrType = value

«delete/create»
obj : (Sub)Type

attrType = value

«delete/create»
obj : (Sub)TypeType : EClassType : EClass

contextTypecontextType

Binding of an assignable model element 
for a concrete change.
Binding of an assignable model element 
for a concrete change.

Figure 3.9. The mapping between an object change (on the left side) and the corresponding unified
graph representation (on the right side).

Figure 3.9 illustrates a concrete object change (on the left side) and the corresponding
unified graph notation (on the right side). The action kind «delete» or «create» of the object
change is annotated accordingly on the model element in the unified graph. Initializations
of attribute values for a newly created object are not explicitly annotated with actions, i.e.,
the attributes are initialized as part of the creation of an object.

In the case that no context object is bound, the node of the unified graph represents an
object change action. In the diagram notation of the unified graph, concrete elements of an
ASG are depicted by underlining the object’s name and type, i.e., otherwise, the node can
represent unbound parameters of (abstract) change actions.

In Figure 3.10, a concrete reference change (on the left side) is illustrated by an accord-
ingly annotated («create» or «delete») edge in the unified graph (on the right side). The
context or target of the reference change may be unbound to represent an abstract change
or a change action, respectively.
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Figure 3.10. The mapping between a reference change (on the left side) and the corresponding
representation (on the right side).
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Figure 3.11. The mapping between an attribute change (on the left side) and the corresponding
representation (on the right side).

Figure 3.11 illustrates the notation of an attribute change in the unified graph (on the
right side). The attribute change (on the left side) is noted in the unified graph by two anno-
tated attributes of the same type. The first attribute showing the old value is annotated with
a «delete» action. The attribute of the new value is annotated with a «create» action. Techni-
cally, such an attribute value change is overwriting the value valueA with valueB. Therefore,
an attribute value change is handled as a single atomicmodification, which can also be noted
as an expression «modify» attrType = valueA→ valueB. In the case of an attribute change ac-
tion, the new valueB and, optionally, the old valueA represent variables that must be bound
to concrete values.

Technically, the approach implemented in our tool ReVision handles structural changes
without an explicit transformation into the unified graph notation, i.e., the unified graph
can practically be handled as a data view representation. However, within the following
definitions of our repair approach, we will represent unified graphs as instances of the meta-
model defined in Figure 3.12. Basically, this meta-model defines a data structure for typed,
attributed graphs with annotations. In general, we will refer to nodes, attributes, and edges
in such a unified graph as graph elements.

The types of graph elements are defined by the corresponding meta-model of the mod-
eling language. This allows us to represent a complete ASG of a model, i.e., also unchanged
model elements, as a unified graph. Each object, reference, and attribute of an ASG is rep-
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Figure 3.12. Meta-model that defines the abstract syntax of unified graphs. Uses the EMOF/Ecore
meta-metamodel from Figure 3.5.

resented by a corresponding node, edge, and attribute in the unified graph.
All graph elements of a unified graph can be annotated with graph actions. Change ac-

tions are annotated accordingly with «create» and «delete» actions. In the following, speak-
ing of changes or change actions in a unified graph, we refer to nodes, edges, or attributes
annotated with «delete» or «create» actions. Model elements that remain unchanged are an-
notated with the «preserve» action. In addition, as we will discuss in Section 3.5, a unified
graph can also define structural restrictions by adding graph constraints that forbid («forbid»)
or require («require») certain elements.

3.3.3 Elementary Change (Action) Dependencies
Given a set 𝐶 consisting of elementary change actions, some change actions 𝑐𝑎𝑛 ∈ 𝐶 can
have mutual dependencies with respect to the elementary ASG consistency defined in Sec-
tion 3.1.3, i.e., these change actions have to be applied in a single edit step to not intro-
duce intermediate elementary inconsistencies. We will refer to such a minimal edit step as
atomic change set 𝐴. In general, dependencies of change actions also apply to all their pos-
sible concrete change initializations. In the following dependency definitions, we only refer
to change actions for the sake of simplicity. A set of change actions 𝐶 can be partitioned
according to the following types of non-overlapping atomic change sets 𝐴𝑖 ⊆ 𝐶 :

Atomic opposite reference: An undirected reference in a model’s ASG is declared by a pair of
references with opposite directions. Such a pair of opposite references must be treated
as an atomic fragment, i.e., the references have to be created or deleted together. Two
opposite references of type association and memberEnd defining association ends in a
class diagram’s ASG (see meta-model in Figure 3.2) are an example of such a bidirec-
tional reference.

Atomic containment: As defined in Section 3.1.3, model elements must be structured in a con-
tainment hierarchy referred to as AST. Model elements that are created/deleted from
the model’s AST have to be created/deleted, including their containment references.
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It follows that a container reference, which is the opposite reference of a containment
reference, is also included in the atomic change set creating/deleting a model element.

Atomic move: If a model element is removed from its containing model element and added
to another container, then such a relocation in the model’s ASTmust be handled as an
atomic change set. Themoving of the operation disconnect() in Version 4 in Figure 2.4a
from class Video to Server is an example of such an atomic move.

Atomic model element attribute initializations: The creation of a model element in an ASG
including the initialization of its attribute values is treated as an atomic change set.

Assuming that all non-dependent changes in 𝐶 are contained in singleton atomic change
sets 𝐴𝑖 ⊆ 𝐶 , a dependency graph can be computed in which nodes represent atomic change
sets, and edges are pointing from atomic change set 𝐴𝑖 to all dependent atomic change
sets 𝐴𝑘 that can only be executed subsequently. The edges of the dependency graph are
constructed by checking for the following kinds of dependencies between the change actions
𝑐𝑎𝑛 ∈ 𝐴𝑖 and 𝑐𝑎𝑚 ∈ 𝐴𝑘 in the atomic change sets:

Elementary creation dependency: Generally, an elementary creation dependency exists if a
model element 𝑒 should be created togetherwith an incident reference 𝑟 , i.e., themodel
element has to be created before the incoming and outgoing references. Thus, if the
atomic change set 𝐴𝑖 creates the reference 𝑟 , then it depends on the creation of the
model element 𝑒 in atomic change set 𝐴𝑘 .

Following the elementary creation dependencies of containment references in the
ASG of a model, the corresponding AST is created from the root element to the child
elements. For example, according to state-machine meta-model in Figure 3.4, a new
triggered transition is created by first creating the transition and second the trigger
as a contained child model element.

Elementary deletion dependency: An elementary deletion dependency is the opposite of an
elementary creation dependency. If an atomic change set 𝐴𝑖 that deletes a model
element 𝑒, then it depends on all change actions 𝑐𝑎 ∈ 𝐴𝑘 that specify the deletion
of references in an ASG being incident to model element 𝑒. The deletion of a model
element from an ASG without its incident references would cause so-called dangling
references, i.e., references without connected source or target ends are not allowed in
the ASG of a model.

Elementary replacement dependency: The replacement of a single-valued reference (with an
upper bound multiplicity of 1) has to be executed in a distinct order. Such a reference
can only be replaced with a new one by first removing the old one. For example, we
can assume such a case in a modification that changes the target end of transitions
from one state to another (see Transition in meta-model shown in Figure 3.4).
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3.4 Structural Model Differences
An ASG represents the state of a model at a specific time, e.g., the current state in a model
editor. During a model’s evolution, it can have a variety of states, some of which need to be
shared between the developers. We will refer to such ASG states as model versions. Similar
to source code, thosemodel versions are typicallymaintained and shared in a version control
system. Conceptionally, a model history can be understood as a sequence of model versions
in which the model is changed gradually from one version to the next. Typically, this is a
sequence of model versions maintained in a version control system, including the currently
edited model version in the local workspace of a developer. Picking any two model versions
of such a model history, we will refer to the older model version as 𝑉𝐴 and the newer model
version as 𝑉𝐵.

Our repair approach uses the historical model changes that can be observed in a model’s
development history to detect and complement incomplete edits. To extract the changes
from the model history, we compare two successive versions 𝑉𝐴 and 𝑉𝐵 and compute a
structural difference.

Differencing

Matching Difference
Derivation

IN

IN

Model VB

Model VA

OUT

Model
Difference

VA/B

Correspondences

Figure 3.13. Process for calculating a model difference from two input model versions 𝑉𝐴 and 𝑉𝐵.

Figure 3.13 shows the typical processing steps of a model differencing calculation. As it
is customary for state-based model differencing, a structural model difference is calculated
in a pipeline architecture [78]. First, the corresponding model elements in 𝑉𝐴 and 𝑉𝐵 are
determined, then all historical changes are derived based on these correspondences.
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modelA [1]modelA [1]

modelB [1]modelB [1]

EObjectEObject
modelB [1]modelB [1]

modelA [1]modelA [1]

Figure 3.14. A meta-model for model differences. Extends the change meta-model from
Figure 3.8. Therefore, uses the EMOF/Ecore meta-metamodel from Figure 3.6.

A structural model difference is represented on the basis of a model’s ASG. As defined
by the meta-model in Figure 3.14, a ModelDifference Δ(𝑉𝐴, 𝑉𝐵) is computed between two
model version 𝑉𝐴 and 𝑉𝐵. Each model version is represented by a resource containing the
ASG of the model version 𝑉𝐴 (ModelDifference::modelA) and 𝑉𝐵 (ModelDifference::modelB). A
model difference contains the corresponding model elements and the changes between the
model versions. A Correspondence represents a pair of objects which originate from the
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ASG of model 𝑉𝐴 (Correspondence::modelA) and 𝑉𝐵 (Correspondence::modelB), respectively. A
historical Change is an instance of the five kinds of concrete changes defined by the meta-
model in Figure 3.8, i.e., the deletion/creation of objects/references and the modification
of attribute values. The model difference in Figure 3.15 shows an excerpt of the changes
between Version 1 in Figure 2.1 and Version 2 in Figure 2.2 of our exemplary VoD-System
model.
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container
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Figure 3.15. Excerpt of the difference between the models shown in Figure 2.1 and Figure 2.2. For
the sake of brevity, the correspondences and historical changes are only illustrated partially. For

example, the creations of containment references of transitions play and fastForward are not shown.

3.4.1 Matching
During the matching phase, shown in Figure 3.13, the corresponding model elements be-
tween the model versions will be determined, i.e., those model elements that have not been
changed from version 𝑉𝐴 to version 𝑉𝐵. A model element of 𝑉𝐴 can only correspond to ex-
actly one model element in 𝑉𝐵. As we do not allow the conversion of an object’s type in an
ASG, two corresponding model elements have to be of the same type. For example, in the
model difference in Figure 3.15 model elements of type Region and State are corresponding.

As described in the adaptable matching pipeline of SiDiff (see Reference [80]), to re-
duce the complexity of the matching calculation, the first step is to determine corresponding
model elements by computing unique signatures for each element in the ASG. Such signa-
tures might be computed specifically for a modeling language, e.g., by determining a kind
of unique namespace for model elements. If available, a signature can also be determined by
unique identifiers assigned and persisted, e.g., by the model editor, for each model element.
The remaining unmatched model elements can be processed by computing similarities be-
tween the model elements, e.g., by comparing and weighting the similarity of their attribute
values and references. For instance, the correspondence between the states in Figure 3.15
might not be found by a name-based signature, but the name stream and streaming can be
matched by measuring the textual similarity. The similarity-based comparison typically
depends on a domain-specific configuration for the modeling language.
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For each unmatched model element in 𝑉𝐴, a similarity value [0, 1] for all compatible,
unmatched model elements in 𝑉𝐵 is calculated. The similarity-based comparison results
in a ranked list of candidates for the model elements of version 𝑉𝐴. Model elements from
version 𝑉𝐵 that have a similarity value below a certain threshold are filtered. Finally, a
matching strategy (see Reference [80]) must be applied to select one model element from
each candidate list to form a correspondence. During the matching, a model element that is
selected for a correspondence must be removed from all other candidate lists.

3.4.2 Differencing
During the difference derivation phase shown in Figure 3.13, the changes of the model dif-
ferences are derived based on the correspondences between 𝑉𝐴 and 𝑉𝐵 computed by the
matching pipeline step. The attributes of all corresponding model elements are compared.

Attribute changes: If the attribute values of two corresponding model elements are not equal,
an attribute change is generated for the object in 𝑉𝐴 to set the new value in 𝑉𝐵. In
this context, changes in multivalued attributes are treated as an atomic value change
of that attribute. However, initializations of attributes for new objects are handled
implicitly as part of an object’s creation, i.e., no explicit changes are created.

Object changes: Next, for all unmatched model elements in 𝑉𝐴/𝑉𝐵 an object change with a
delete/create action is generated.

Reference changes: Finally, the deleted/created references between 𝑉𝐴/𝑉𝐵 need to be derived.
Therefore, a reference in 𝑉𝐴 must not have a corresponding reference in 𝑉𝐵. Ref-
erences correspond if they have the same type, and their source and target objects
correspond. This matching of references is unique as we do not allow duplicated
references of the same type between objects (see Section 3.1). For each unmatched
reference, a reference change is generated accordingly for the model difference.

As illustrated in the model difference in Figure 3.15, the changes annotate the model el-
ements from version 𝑉𝐴 and 𝑉𝐵. The new state fast-forwarding and the connecting transition
play result in two object creations. In addition, the two reference creations are shown in
Figure 3.15, namely, the definition of the source and the target of the play transition. For the
sake of brevity, the model difference excerpt in Figure 3.15 does not show the creations of
the containment references of the transitions play and fastForward, which includes the new
model elements in the AST. Finally, the renaming of the state from “stream” to “streaming”
is annotated as an attribute change.

A state-based model differentiation calculation makes it unnecessary to log changes
during modeling, e.g., in a model editor. Notably, the derived sequence of changes does not
necessarily reflect the original editing sequence performed by a developer or tool.

Deviating correspondences: The matching and its resulting correspondences might deviate
from those correspondences in the original editing sequence, leading to another se-
quence of changes. In particular, these changes applied to model version 𝑉𝐴 still lead
to the same result, namely, model version 𝑉𝐵. Moreover, similarity-based matching
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might also discover new correspondences in comparison to the original editing se-
quence, e.g., if the developer removes and similarly recreates some model elements,
leading to a smaller number of changes. Likewise, similarity-based matching may rea-
sonably remove correspondences in comparison to the original editing sequence, e.g.,
if a developer reuses some model element for purely technical reasons but completely
modifies it from a contextual perspective.

Transient effects: A model difference describes the “direct transition” between two model
versions 𝑉𝐴 and 𝑉𝐵. Changes to objects or references that have been applied and
rolled back between 𝑉𝐴 and 𝑉𝐵 are not included in Δ(𝑉𝐴, 𝑉𝐵). Likewise, if attribute val-
ues have been overwritten multiple times, Δ(𝑉𝐴, 𝑉𝐵) only includes the final attribute
value change (assuming the final value in 𝑉𝐵 differs from the value in 𝑉𝐴). Such edit-
ing sequences are also referred to as transient effects [78]. However, missing such
transient effects has the advantage that the model difference does not involve unnec-
essary changes.

3.4.3 Unified Difference Graph
For a compact notation of model differences, we can apply the concept of the unified graph
introduced in Section 3.3.2. A structural difference Δ(𝑉𝐴, 𝑉𝐵) between an original model 𝑉𝐴
and its revised version 𝑉𝐵 is conceptually treated as a unified graph over 𝑉𝐴 ∪ 𝑉𝐵, where
𝑉𝐴 ∩ 𝑉𝐵 is defined by pairs of corresponding elements in 𝑉𝐴 and 𝑉𝐵. In such a unified graph,
in the following referred to as difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵), corresponding elements just appear
once, while all other elements and attribute values that are unique to model 𝑉𝐴 and 𝑉𝐵 are
marked as deleted and created, respectively.

fast forwardingfast forwarding
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streaming

...

streaming

(2.2) «create»(2.2) «create»(2.1) «create»(2.1) «create»
playback  Videoplayback  Video
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target

substatesubstate

container «preserve»

Figure 3.16. Excerpt of the unified graph representing the model difference illustrated in
Figure 3.15, i.e., the difference between the model versions shown in Figure 2.2 and Figure 2.3.

The historical changes in a difference graph are represented according to the transforma-
tion patterns defined in Section 3.3.2. Figure 3.16 shows an excerpt of the difference graph
between the model versions in Figure 2.1 and Figure 2.2 of our running example, i.e., the
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difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) of the model difference Δ(𝑉𝐴, 𝑉𝐵) in Figure 3.15. The upper part
of Figure 3.16 depicts the excerpt of our running example in concrete diagram syntax, i.e.,
the resulting version of the state machine diagram. The lower part of Figure 3.16 illustrates
the corresponding difference graph. As discussed in Section 3.4, a new state fast-forwarding
is created, including a new transition play connected to the streaming state. The renaming
of the state is illustrated using the compact notation stream → streaming instead of «create»
and «delete» annotated attributes. For the sake of readability, the changes are numbered and
color-coded by their kind of action.
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modelBmodelBmodelAmodelA
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Figure 3.17. The mapping between two corresponding objects (on the left side) and the difference
graph representation (on the right side).

In addition to the representation of changes in Section 3.3.2, the unchanged elements in
the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) are derived from the model elements that correspond in the
model difference Δ(𝑉𝐴, 𝑉𝐵). The left side of the transformation pattern in Figure 3.17 shows
two correspondences of objects in amodel difference. The objects are connected by the same
type of reference in both model versions, i.e., these references implicitly correspond to each
other. On the right side of Figure 3.17 the resulting unified difference graph is illustrated.
The nodes and edges of the corresponding model elements are annotated with «preserve»
action. Moreover, the unchanged attribute and its value is shown once (without «preserve»
annotation) for the corresponding objects. As a result, in terms of our running example,
the difference graph in Figure 3.3.2 shows the corresponding state machine region and the
renamed stream → streaming state as annotated «preserve» nodes.

3.5 Specification of Edit Operations
Change actions, as defined in Section 3.3.1, are the most elementary way of defining mod-
ifications in models. More complex modifications of a modeling language can be defined
by edit operations combining multiple elementary change actions, e.g., edit operations can
define the modifications that are allowed in a model editor. For example, an edit operation
can specify the creation of a transition in a state machine diagram, including their source
and target state. The modifications described by an edit operation can be specified as a set
of change actions 𝐸𝑂 = {𝑐𝑎0, … , 𝑐𝑎𝑚}. As defined in Section 3.3.1, the change actions 𝑐𝑎𝑛
specify the elementary modification in the ASG of a model. This set-based specification of
EOs does not restrict the structural relations of the contained change actions.

Initially, in the following Section 3.5.1, we define our notion of edit operations with
respect to the consistency of a modeling language. The formal and structural specification
of edit operations as edit rules will be discussed in the Section 3.5.2 and Section 3.5.3.
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3.5.1 Consistency-Preserving Edit Operations (CPEOs)
Specialized edit operations can support the developer while editing complex model frag-
ments. For example, the transition fastForward in the state machine and its triggering oper-
ation in the class diagram in Figure 2.2 could be created by a single complex edit operation.
Although not typically offered by standard model editors, an additional recommender tool
can offer such complex edit operations to speed up the developer’s workflow. Thus, the
developer does not have to create and connect several model fragments in different views,
with the risk of missing some parts and possibly violating the model’s consistency. Inconsis-
tencies caused by incomplete edit steps, as in our motivating examples in Figure 2.4, can be
avoided by using more complex edit operations that may synchronize isolated editings from
one modeling view to another. For instance, moving the operation disconnect() and chang-
ing the target end of message 6:disconnect could be performed in a single edit step without
violating the model’s consistency. In general, we assume that a complex edit operation pre-
vents the violation of a subset of the consistency rules of a modeling language. Therefore,
we refer to these edit operations as consistency-preserving edit operations (CPEOs).

A CPEO may also preserve all consistency rules of a modeling language. However, al-
lowing only fully consistent editing steps forces the developer to execute edit rules in a
specific order. Editors implementing such a so-called syntax-directed editing process suffer
from several usability issues in practice. As noted by Khwaja et al. [87], the edit opera-
tions of a syntax-directed editor that strictly operates according to the underlying syntactic
structure of language can be in conflict with the edit operations expected by a developer,
leading to confusion and frustration during editing. According to Welsh et al. [191], an ed-
itor should not require that the syntax of a document be correct before or after applying a
certain edit operation. However, it might be useful to impose some practical constraints on
edit operations to benefit from editors designed for a specific language [191].

In terms of CPEOs, such practical constraints might limit possible parameter binding of
the edit operation for a simpler application of the operation by the developer. Thus, the
CPEO should be designed carefully with respect to the preserved consistency rules. Basi-
cally, we assume that a CPEO preserves a specific consistency rule of the modeling language
and the elementary consistency that is implied by the model fragment to be edited.

CPEOs are the main configuration input of our recommendation tool ReVision in order
to adapt its behavior to a given modeling language. Notably, ReVision does not require an
explicit mapping between CPEOs and consistency rules, i.e., the relevance of a CPEO dur-
ing a recommendation is determined on case-specific criteria. Moreover, we do not make
explicit assumptions about the CPEOs given as configuration input for a specific model-
ing language. In principle, one can construct arbitrarily many complex CPEOs. The most
important criterion for selecting a CPEO is that it avoids typical inconsistencies which oc-
cur when models are edited in standard editors of that language. If available, project- or
language-specific editing style guides, as well as interviews with domain experts, provide a
promising starting point for the development of a set of useful CPEOs. In general, the most
interesting kinds of CPEOs for our approach are creations, deletions, and modifications of
complex model fragments, potentially ranging over different modeling views. Chapter 7
presents a systematic process for deriving a set of CPEOs from a given meta-model of a
modeling language.
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3.5.2 Model Transformation Rules
Complex edit operations of a modeling language can be specified by parameterized in-place
model transformation rules. Such transformation rules have shown to be well-suited to
configure tools in MDE tool suites. Examples of this are modern refactoring tools [14, 128],
merge tools [81, 161, 180], evolution analysis tools [56], or slicing tools [4]. Due to their
declarativeness and well-defined formal semantics, our tool ReVision uses in-place model
transformations [3, 13, 27] based on graph transformation concepts [40, 46] for the specifi-
cation of edit operations. In the following, we will refer to the specifications of in-place
model transformations as transformation rules. In particular, such transformation rules can
be parameterized. Input parameters can supply model elements and additional values, such
as the names or other properties of newly created elements.

Rule Specification
More formally, an edit operation 𝐸𝑂 is declaratively defined by a parameterized edit rule
𝐸𝑅(𝑝0, … , 𝑝𝑛) through a transformation rule 𝑟 specified by a precondition and postcondition
graphs 𝐿 and 𝑅, called the left-hand side (LHS) and right-hand side (RHS) of the rule. Input
parameters can be mapped to nodes and attributes occurring in the LHS 𝐿.

𝐸𝑂 = {𝑐𝑎0, … , 𝑐𝑎𝑚} = 𝐸𝑅(𝑝0, … , 𝑝𝑛) = 𝑟 ∶ 𝐿 ⇸ 𝑅 (3.10)

In particular, all graphs that specify the transformation rule are typed attributed graphs,
i.e., each node, edge, and attribute of the rule refer to a type that is defined in themeta-model
of the modeling language. The graphs are not allowed to contain parallel edges of the same
type, i.e., directed edges with the same type, source, and target node.

The transformation is specified by a partial graph morphism 𝑟 ∶ 𝐿 ⇸ 𝑅, i.e., a sub-
graph of 𝐿 is mapped to a subgraph of 𝑅. This partial graph mapping is injective, structure-
compatible, and type-preserving, i.e., the mapping is unique, the mapped element must have
the same type, and the mapping preserves the graph structure with respect to nodes and in-
cident edges. The mapping is explicitly specified by a set of mapped nodes. Consequently,
two edges with the same type are mapped if their source and target nodes are mapped. Sim-
ilarly, two equally typed attributes are mapped if their containing node is mapped, and they
share the same attribute value. In this context, we assume an attribute value is either a
concrete value or a variable mapped to a parameter.

Based on the mapping of graph elements, we can specify the semantics of the transfor-
mation. The resulting graph of the intersection 𝐿 ∩ 𝑅 specifies the graph elements to be
preserved by the transformation rule. The graph fragments 𝐿 ⧵ 𝑅 and 𝑅 ⧵ 𝐿 specify the
model elements and references to be deleted and created by the rule, respectively. However,
as attributes can not be removed directly, the attributes in 𝐿⧵𝑅 are considered as additional
preconditions. Finally, attributes in 𝑅 ⧵ 𝐿 specify the attribute values to be modified or
initialized.

Figure 3.18 illustrates the transformation rule createTransition using an object diagram
notation for the LHS and RHS. The input parameters are mapped to nodes (name:Type) of
the LHS by their names, namely, the parameters specifying the region, source, and target of
the transition. Besides that, the names of the nodes do not have any effect on the model
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Figure 3.18. Model transformation rule based on graph transformation concepts. Creating a new
transition, including its source and target state in the ASG of a state machine diagram.

transformation. In Figure 3.18, the name of the new transition is specified by the transition-
Name parameter and the corresponding variable in the attribute. Thus, the precondition
graph 𝐿 is fully specified by the input parameters. In this rule, the LHS is fully mapped to
the RHS. Computing the graph fragment 𝑅 ⧵ 𝐿 to be created, we get the node newTransition,
its incident edges, and the name attribute. The graph fragment 𝐿 ⧵ 𝑅 to be deleted is empty
for the createTransition transformation rule.

Application condition. The specification of the transformation rule can be extended
with an application condition. In general, the application condition of a rule is a Boolean
formula 𝑎𝑐 that must be fulfilled in order to apply the transformation to an ASG. A literal in
𝑎𝑐 is an atomic graph constraint 𝐶𝑖. The graph 𝐶𝑖 is mapped to the LHS graph 𝐿 by a partial
graph morphism 𝑒𝑖 ∶ 𝐿 ⇸ 𝐶𝑖. An atomic graph constraint that is checked as a positive literal
in the Boolean formula 𝑎𝑐 is referred to as positive application condition (PAC). Conversely,
an atomic graph constraint that is a negative literal in 𝑎𝑐 is referred to as negative application
condition (NAC). Let 𝐵𝑖 be the intersection 𝐵𝑖 = 𝐶𝑖 ∩ 𝐿 of the graph constraint with the LHS,
which is also referred to as the boundary of the embedded graph. Thus, 𝐵𝑖 defines the
context with respect to the LHS in which the graph constraint is to be checked. Therefore,
the graph fragment 𝐶𝑖 ⧵ 𝐵𝑖 is said to be required by the PAC and forbidden by the NAC.

Nodes of the LHS of a rule or graph conditions can also involve checks on attribute
value. Therefore, variables 𝑣 , which are defined as parameters of the rule, can be assigned
to attributes 𝑎 = 𝑣 . For other attributes 𝑏 = 𝑣 assigning the same variable, the equality of
the mapped attribute values is required. The value of the variable can be given as input
parameter binding or is determined during the application of the rule.

The dangling condition is an optional application condition of a transformation rule. As-
suming 𝐺 is the graph to be transformed by the rule 𝑟 . The dangling condition states that a
node of 𝐺 can only be removed during the execution of a transformation rule if also all inci-
dent edges are removed. Otherwise, the deletion of 𝐿⧵𝑅 from𝐺 would lead to dangling edges
without a source or target node. The dangling condition is a consequence of the graph trans-
formation concept defined in the double-pushout (DPO) approach (see References [46,155]).
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In contrast, the single-pushout (SPO) graph transformation approach allows dangling edges
after the deletion of 𝐿⧵𝑅 from 𝐺. In the SPO approach, the dangling edges are also removed
from 𝐺 as a side effect of the graph transformation (see References [46, 155]). We assume
that a model transformation rule checks the dangling condition if not further specified. Con-
versely, if the dangling condition is to be ignored, the dangling edges are removed implicitly
during the execution of the transformation.

Multi-rules. In addition, a transformation rule can contain nested rules 𝑟𝑖 ∶ 𝐿𝑖 ⇸ 𝑅𝑖 that
are applied with a universally quantified execution semantic [26, 63]. In general, the rules
can be nested in an arbitrary depth. The parent rule to be executed is referred to as kernel
rule. In particular, the topmost kernel rule 𝑟𝑘 = 𝑟 is the rule itself. Nested rules of a kernel
rule are referred to as multi-rules. A multi-rule is executed as often as possible for each
execution of its kernel rule. Multi-rules are embedded into their kernel rule by a partial
graph morphism 𝑒𝑖 ∶ 𝐿𝑘 ⇸ 𝐿𝑖 of the LHS 𝐿𝑘 of the kernel rule and the LHS 𝐿𝑖 of the multi-
rule. Similarly, the RHS 𝑅𝑘 of the kernel and the RHS 𝑅𝑖 of the multi-rule can be mapped
𝑒′𝑖 ∶ 𝑅𝑘 ⇸ 𝑅𝑖.
Rule Application
The execution of a model transformation 𝑟 ∶ 𝐿 ⇸ 𝑅 is referred to as rule application. Given
a so-called working graph 𝐺 to be transformed, the first step is to find an occurrence of 𝐿
in 𝐺 by mapping the node, attributes, and edges of 𝐿 to 𝐺. The initial context of a rule
application can be determined by passing model elements and attribute values from the
input parameters to form a partial pre-match 𝑚0 ∶ 𝐿 ⇸ 𝐺 of the LHS. This partial mapping
𝑚0 is extended to a complete match 𝑚 by matching the graph 𝐿 as a subgraph in 𝐺. In
general, the matching of 𝐿 can result in several matches in 𝐺.

A transformation rule 𝑟 ∶ 𝐿 ⇸ 𝑅 is applicable to 𝐺 if there is a match 𝑚 ∶ 𝐿 → 𝐺, an
injective, type-compatible, and structure-compatible mapping that denotes an occurrence
of 𝐿 in 𝐺. In an injective mapping, each node of 𝐺 is mapped at most once to a node in
𝐿. A mapping of a node is type-compatible if the type of the object in 𝐺 is the same or a
subtype of the node in 𝐿. For edges and attributes, the types must be matched exactly. A
mapping is structure-compatible if, for a given mapping of nodes, all edges in 𝐿 are mapped
with respect to their source and target nodes to references in 𝐺. In addition, the rule’s
application condition, if defined, must be fulfilled.

The matching of possible applications of the model transformation rule 𝑟 ∶ 𝐿 ⇸ 𝑅 with
a given input parameter binding can be computed by the following steps:

(1) Derivation of the partial pre-match 𝑚0 ∶ 𝐿 ⇸ 𝐺 from the input parameters.

(2) Extending pre-match 𝑚0 to a complete match 𝑚 by matching 𝐿 in the ASG 𝐺.
(3) Evaluation of the application condition 𝑎𝑐𝑐 != true with the graph constraints 𝐶𝑖:

(3.1) Derivation of the pre-match 𝑚𝑖 ∶ 𝐵𝑖 → 𝑚(𝐵𝑖) with 𝐵𝑖 = 𝐶𝑖 ∩ 𝐿.
(3.2) Check if 𝑚𝑖 can be extended to a complete match by matching 𝐶𝑖 in 𝐺.
(3.3) Evaluation of the graph constraint’s existence as NAC or PAC in 𝑎𝑐.
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(4) Collect all possible applications of multi-rules 𝑟𝑖 ∶ 𝐿 ⇸ 𝐿𝑖 with kernel rule 𝑟 :
(4.1) Derivation of the pre-match 𝑚𝑖 ∶ 𝐵𝑖 → 𝑚(𝐵𝑖) with 𝐵𝑖 = 𝐿𝑖 ∩ 𝐿
(4.2) Starting at step (2) with 𝑟 = 𝑟𝑖 and 𝑚0 = 𝑚𝑖 and 𝐿 = 𝐿𝑖.

(5) Optional: Checking the dangling condition with respect to all node deletions.

For a computed matching, the transformation is finally executed, i.e., the changes are
applied to the model’s ASG. First, if the rule 𝑟 contains multi-rules 𝑟𝑖, a so-called amalga-
mated rule is constructed by merging a copy of the multi-rule 𝑟𝑖 for each match 𝑚𝑖 in the
kernel rule 𝑟 and including the corresponding matchings 𝑚𝑖 in the matching 𝑚 of the kernel
rule [63]. The initial step of the transformation execution with match 𝑚 removes the model
elements and references 𝑚(𝐿 ⧵ 𝑅) from 𝐺. In the next step, an instance of 𝑅 ⧵ 𝐿 is created
in 𝐺 within the context of 𝑚. In order to create such an instance, the graph fragment 𝑅 ⧵ 𝐿
must only contain nodes that refer to concrete (non-abstract) types of the meta-model (see
Section 3.1.2). Finally, the attribute values specified by 𝑅 ⧵ 𝐿 are set in the preserved and
newly created model elements in 𝐺. In this context, new attribute values of the RHS are
inserted that are specified by input parameters 𝑝0, … , 𝑝𝑛 of the rule.

Model Transformation based on Graph Transformation Concepts
Graph transformation concepts consider 𝐺 as a graph, and the mapping from 𝐿 to 𝐺 is a
(total) graphmorphism. In contrast, references and attributes in an ASG of a model are parts
of objects (see Section 3.1.2). Given anASG𝐺 of amodel, an occurrence of 𝐿 in𝐺 is described
by mapping the node, attributes, and edges of 𝐿 to objects, attributes, and references in 𝐺,
respectively. In particular, references and attributes do not have their own identity and
cannot be referenced directly. Assuming the graph of 𝐿 is an instance of the graph meta-
model in Figure 3.12 (without action annotations). Technically, we define 𝑚 ∶ 𝐿 → 𝐺 by an
explicit, type-compatible mapping of a node 𝑛 ∈ 𝐿 to an object 𝑚(𝑛) ∈ 𝐺.

type_compatible(n:Node) ≔ n.type ≡m(n).eClass()

∨ n.type ∈m(n).eClass().eAllSuperTypes()
(3.11)

The edges 𝑒 ∈ 𝐿 are mapped to type- and structure-compatible references with respect to
objects matched in 𝑚. In particular, the ordering of matched edges and references is not
checked, i.e., their position with respect to the containing list in the rule’s graph and the
model’s ASG must not match.

structure_compatible(e:Edge) ≔ m(e.target) ∈m(e.source).eGet(e.type) (3.12)

Similarly to references, the mapping of attributes can be checked. First, all unbound param-
eters 𝑝𝑖 must be determined with respect to the mapping 𝑚(𝑛). Therefore, the value of a
parameter named x is determined by an attribute a = x with x = m(a.node).eGet(a.type) from
the model. As mentioned before, if multiple attributes are assigned to the same variable
x, then the determined values must be equal. Generally, assuming the function eval() sub-
stitutes variables in attribute values with the bound (input) parameter value, the attribute
values must match the values in the model.

value_compatible(a:Attribute) ≔ eval(a.value) ≡m(a.node).eGet(a.type) (3.13)
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In terms of an edit operation 𝐸𝑂 = {𝑐𝑎0, … , 𝑐𝑎𝑚} defined for a modeling language, we
assume that the input parameters of the edit rule 𝐸𝑅(𝑝0, … , 𝑝𝑛) = 𝑟 ∶ 𝐿 → 𝑅 uniquely define
the change actions 𝑐𝑎𝑖 to be executed (see Definition (3.10)). Therefore, to execute an edit
operation, it is sufficient to find the first applicable match of 𝐿.

3.5.3 Unified Edit Rule Graph
In the remainder of this thesis, transformation rules based on graph transformation concepts
are represented in an integrated form. Figure 3.19 shows the corresponding integrated graph
of the transformation rule createTransition illustrated in Figure 3.18. The LHS and RHS are
merged into a single edit rule graph, referred to as 𝐺𝑟 , following the visual syntax of the
model transformation language Henshin [3, 13, 24]. Basically, 𝐺𝑟 is the unified graph over
𝐿 ∪ 𝑅, where mapped elements that are to be preserved just appear once while all other ele-
ments are annotated with change actions. The LHS comprises all model elements annotated
with «delete» and «preserve» actions, while the RHS contains all model elements annotated
with «preserve» and «create» actions. Similar to the transformation rule in Figure 3.18, the
rule definition in Figure 3.19 starts with the declaration of its edit rule signature, i.e., the
operation name and the required input parameters. In the following discussions about edit
operations, we refer to the operation’s specification as an edit rule 𝐸𝑅 defined by an edit
rule graph 𝐺𝑟 .

Rule createTransition(region, transitionName, source, target)

«preserve»
source:State

«preserve»
target:State

container
«create»

target
«create»

transition
«create»

source
«create»

«preserve»
region:Region

«create»
newTransition:Transition

name=transitionName

Figure 3.19. Example of a unified edit rule graph that creates a new transition in a state machine
and connects it to a source and a target state.

Figure 3.20 shows an extension of the edit operation createTransition, namely, the CPEO
createTriggeredTransition. In addition, this edit rule also creates a new trigger that is connected
to an existing event. The edit rule graph of createTriggeredTransition in Figure 3.20 also shows
the integrated graphs of a NAC and a PAC. The graph elements of the NAC graph constraint
are annotated with «forbid» actions. In this case, the NAC forbids that a transition with the
same name already exists for the given source state. Similarly, the PAC graph constraint is
annotated with «require» actions. In Figure 3.20, the PAC requires that the source state and
the new transition are contained in the same region of the state machine. In this case, the
PAC graph constraint determines the region in which the transition is created by selecting
the source state as an input parameter. Similar to the LHS and RHS, the graph constraints 𝐶𝑖
are integrated into the edit rule graph by their mapping to the LHS 𝐿, i.e., the extension of
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the unified edit rule graphwith 𝐿∪𝐶𝑖. If not further specified, we assume that the application
condition 𝑎𝑐 of the edit rule graph is a simple conjunction of all contained graph constraints.

Rule createTriggeredTransition(transitionName, source, target, event)

«preserve»
source:State

«preserve»
target:State

«create»
newTransition:Transition

name=transitionName

«create»
trigger:Trigger

«preserve»
event:Event

container
«create»

target
«create»

trigger
«create»transition

«create»

source
«create»

event
«create»

 

substate
«require»

«preserve»
region:Region

container
«require»

«forbid»
outgoing:Transition

name=transitionName

source
«forbid»

Figure 3.20. Example of a CPEO that creates a complex fragment consisting of a transition between
a source and a target state triggered by a specific event.

More formally, we can derive the action of a graph element 𝑒 from a transformation rule
by the action() function defined in Definition (3.14). In this context, the functions positive()
and negative() determine if a given graph constraint 𝐶𝑖 is a positive or negative literal in the
application condition 𝑎𝑐 of the transformation rule (see Section 3.5.2).

action(e:GraphElement) ≔

⎧⎪⎪
⎨⎪⎪
⎩

«preserve» if e ∈ L ∩ R
«delete» if e ∈ L ⧵ R

«create» if e ∈ R ⧵ L

«require» if e ∈ Ci ⧵ L ∧ positive(Ci, ac)
«forbid» if e ∈ Ci ⧵ L ∧ negative(Ci, ac)

(3.14)

Figure 3.21 depicts an example of a transformation rule with multi-rules. The edit rule
deleteStateWithTransitions consists of a kernel rule with two multi-rule, namely, in and out. The
kernel rule removes a state from a state machine diagram, and the multi-rules remove all
incoming and outgoing transitions of that state. Annotations of multi-rules are marked by
an asterisk (*) added to the actions. For example, the «delete*» and «preserve*» actions in Fig-
ure 3.21 are indicating the multi-rules. Nodes of a multi-rule are illustrated as multi-objects
known from UML object diagrams [63]. Multi-rules 𝑟𝑖 are integrated recursively into the
corresponding edit rule graph 𝐺𝑟 by the mappings 𝑒𝑖 ∶ 𝐿𝑖 → 𝐿𝑘 and 𝑒′𝑖 ∶ 𝑅𝑘 ⇸ 𝑅𝑖, i.e., they
are integrated by their LHS and RHS mapping into the parent kernel rule 𝑟𝑘 . The name of
a multi-rule is indicated as part of the action annotation, e.g., annotation «preserve*/out»
for the multi-rule named out. In the rule’s header, we can note additional configurations
as injective matching, checking for dangling edges and the application condition 𝑎𝑐 as set
{injective_matching = true/false, check_dangling = true/false, ac = …}. The edit rule deleteStateWith-
Transitions is configured for a non-injective matching of the LHS. This allows matching the
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Rule deleteStateWithTransitions(remove)

«delete»
remove:State

«delete*/out»
outgoing:Transition

substate
«delete»

container
«delete*/in»

container
«delete»

source

«delete*/out»

transition
«delete*/in»

target

«delete*/out»

«preserve*/out»
out:Region

«preserve»
region:Region

«preserve*/out»
target:State

«preserve*/in»
source:State

«delete*/in»
incoming:Transition

container
«delete*/in»

target

«delete*/in»

transition
«delete*/in»

source

«delete*/in»

«preserve*/in»
in:Region

{injective_matching = false}

Figure 3.21. CPEO deleteStateWithTransitions with multi-rules that delete a state, including all
incoming and outgoing transitions. The rule is configured for a non-injective matching.

states and transitions regardless of the containing region, i.e., the region may be the same
or a different one in the kernel and multi-rules.

ChangeSetChangeSet

GraphFragmentGraphFragment

action : GraphAction [0..1]

GraphElement

action : GraphAction [0..1]

GraphElement

elements [1..*]elements [1..*]

negative : Boolean [1] = false

GraphConstraint

negative : Boolean [1] = false

GraphConstraint ApplicationContextApplicationContext

LeftHandSideLeftHandSide

RightHandSideRightHandSide
succeeding [0..*]

preceding [0..*]

succeeding [0..*]

preceding [0..*]

{delete, create
 preserve, 

require, forbid}

«DataType»
GraphAction

{delete, create
 preserve, 

require, forbid}

«DataType»
GraphAction

{delete, create
 preserve, 

require, forbid}

«DataType»
GraphAction

dependenciesdependencies

Figure 3.22. Extends the unified graph meta-model from Figure 3.12 with graph fragments.

We describe instances of edit rule graphs by the meta-model for unified graphs in Fig-
ure 3.12. The extension of the graph meta-model in Figure 3.22 allows the edit rule graph to
be structured into GraphFragments. Technically, the graph fragments are allowed to overlap
with respect to the contained graph elements. The left-hand side graph fragment contains
the graph elements with «preserve» and «delete» actions. Similarly, the right-hand side graph
fragment contains the graph elements with «preserve» and «create» actions. A change set con-
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tains graph elements annotated with «create» or «delete» actions. In addition, a change set
can define execution dependencies (see Section 3.3.3) by referencing the preceding change
sets it depends on and the dependent succeeding change sets. NACs or PACs of the ap-
plication condition are represented by graph constraint graph fragments. We will refer to
the graph annotated with «preserve» actions as application context of the edit rule, i.e., the
context in the model for applying the transformation.



4
Complementation of Partially

Executed Edit Operations

In this chapter, we discuss the algorithm for the detection and complementation of partially
executed edit operations in a model difference. The algorithm is introduced in terms of a con-
straint satisfaction problem (CSP) and the implementation of its solver. Partially executed edit
operations are detected bymapping the change actions of an edit operation to historical changes
of a model difference. For each detection, the edit operation is split into the already executed
sub-rule and a complement rule containing the remaining changes. Finally, possible parameter
bindings are computed for the complement rule. As an alternative to complementing partially
executed edits, the changes of a recognized sub-rule can also be inverted to compute a case-
specific rollback operation.

M odels are the main subject within the continuous evolutionary process of MDE. As
new features are requested or requirements change, the models must be extended,

modified, or enhanced. Modeling is a creative process that requires the expertise and efforts
of a developer. However, the developer must follow the syntactic rules of the modeling
language and must pay attention to the overall model consistency, e.g., while describing a
system from differentmodeling views. Therefore, themodeling process should be supported
by tools that speed up the workflow and assist the developer during each edit step. Such
recommendation tools are known from source-code editors, such as auto-completions, quick
fixes, refactorings, or code templates.

Recommendation tools for modeling languages must take into account MDE-specific
requirements. Approaches that implement hard-coded, domain-specific recommendation
strategies have only limited applicability with respect to the various DSMLs in MDE. There-
fore, a recommendation approach should be adaptable to different modeling languages. Our
tool ReVision uses edit operations for the adaption to a DSML. ReVision proposes history-
based model recommendations by recognizing partially executed edit operations from a
model’s editing history. In contrast, most recommendation tools implement a state-based
approach, suggesting recommendations by analyzing only the model’s current state, ignor-
ing the developer’s intention with respect to the actual editing process. Taking into account

61
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the historical changes of a model reduces the number of possible complementation alterna-
tives and prevents accidentally undoing former work.

The process of modeling can be described as developing and applying a partially-ordered
sequence of edit steps on a model version 𝑉𝐴 to achieve a certain editing goal in a new
model version 𝑉𝐵. Such edit steps can be described by an edit operation applied to the
model. However, in some cases, an edit operation may have only been executed partially
and requires a complementing edit step to finally achieve the editing goal. In the following,
we will examine how such incomplete editing steps can be detected and complemented.

Difference graph. In practice, models are typically stored in a version control system
comprising only state-based information of the model’s evolution. However, the applica-
tion of an edit operation can be recognized from the state-based model history. The first
step is to compute the model difference Δ(𝑉𝐴, 𝑉𝐵) between the older version 𝑉𝐴 and the
newer model 𝑉𝐵. As described in Section 3.4, the model difference Δ(𝑉𝐴, 𝑉𝐵) describes the
modifications as a set of historical changes between the ASGs of version 𝑉𝐴 and version 𝑉𝐵
of the model. This model difference can be represented by a difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) as
introduced in Section 3.4.3. Figure 4.1 shows an excerpt of the difference graph between
the model versions in Figure 2.1 and Figure 2.2 of our running example in which two new
transitions, namely, fastForward and play, are created.

(2.2) «create»
source

(2.2) «create»
source

(2.1) «create»
fast-forwarding : State

(2.1) «create»
fast-forwarding : State

«preserve»
stream  streaming  : State

«preserve»
stream  streaming  : State

(2.2) «create»
play : Transition

(2.2) «create»
play : Transition

(2.3) «create»
fastForward : Transition

(2.3) «create»
fastForward : Transition

«preserve»
playback : Region

«preserve»
playback : Region

«preserve»
playback : StateMachine

«preserve»
playback : StateMachine

«preserve»
Video : Class
«preserve»

Video : Class
«preserve»

VoD-System : Package
«preserve»

VoD-System : Package

«preserve»
play : Operation

«preserve»
play : Operation

(2.3) «create»
target

(2.3) «create»
target

(2.2) «create»
target
(2.2) «create»
target

(2.3) «create»
source
(2.3) «create»
source

(2.1) (2.2) (2.3) 
«create»

container

(2.1) (2.2) (2.3) 
«create»

container

(2.3) «create»
transition

(2.3) «create»
transition

packagedElementpackagedElement

(2.2) «create»
transition

(2.2) «create»
transition

region
«preserve»

region
«preserve»

«preserve»
ownedBehavior

«preserve»
ownedBehavior

«preserve»
ownedOperation

«preserve»
ownedOperation

«preserve»
packagedElement

«preserve»
packagedElement

(2.2) «create»
play : Trigger
(2.2) «create»
play : Trigger

«preserve»
play : CallEvent

«preserve»
play : CallEvent«preserve»

operation
«preserve»
operation

(2.2) «create»
event

(2.2) «create»
event

(2.2) «create»
trigger
(2.2) «create»
trigger

«preserve»
packagedElement
«preserve»
packagedElement

fast forwardingfast forwarding
fastForward

play ...

streaming

...

streaming

(2.2) «create»(2.2) «create»

(2.3) «create»(2.3) «create»(2.1) «create»(2.1) «create»

+ play()
...

...

Video

+ play()
...

...

Video

«preserve»
container

stateMachine

class

stm playbackstm playback VoD-SystemVoD-System

Figure 4.1. Excerpt of the unified difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) between the model Version 1 and
Version 2 illustrated in Figure 2.1 and Figure 2.2, respectively.
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Edit rule graph. As discussed in Section 3.5, an edit operation 𝐸𝑂 = {𝑐𝑎0, … , 𝑐𝑎𝑚} com-
prises a set of change actions 𝑐𝑎𝑖 defining possible modifications of the ASG of a model. The
change actions have structural connections that are formally defined by a parameterized
edit rule 𝐸𝑅(𝑝0, … , 𝑝𝑛) = 𝑟 ∶ 𝐿 ⇸ 𝑅 (see Definition (3.10)). As defined in Section 3.5.3, such
an edit rule based on graph transformation concepts can be represented by a corresponding
edit rule graph 𝐺𝐸𝑅. Figure 4.2 shows the edit rule graph of the edit operation createOpera-
tionTriggeredTransition. This edit rule graph describes the creation of a transition in a region of
a state machine, including the creation of a new operation in a class diagram, which serves
as a trigger for the transition.

The application condition of the edit rule comprises some NAC and PAC graph con-
straints. For example, assuming a domain-specific constraint for class diagrams that do
not allow overloading of operations, the NAC forbids the creation of a new operation if an-
other operation with the same name already exists in the specified class. The PAC graph
constraints restrict the application context of the edit rule. The edit rule assumes that the
transition and its source state are contained in the same region of the state machine. More-
over, the call event of the transition is created in the model’s package containing the class.

Rule createOperationTriggeredTransition(transitionName, region, source, target, class, package)

«create»
operation:Operation

name=transitionName

«preserve»
package:Package

«preserve»
source:State

«preserve»
target:State

«create»
newTransition:Transition

name=transitionName

«create»
trigger:Trigger

«create»
event:CallEvent

source
«create»

container
«create»

packagedElement
«create»

target
«create»

event
«create»

trigger

«create»transition
«create»

operation

«create»

A1

 

«preserve»
class:Class

ownedOperationclass
«create»«create»

«forbid»
opNAC:Operation

name=transitionName

ownedOperation
«forbid»

packagedElement
«require»

substate
«require»

«preserve»
region:Region

container
«require»

A2 A3

A4

A5

A6

A7
A8

Figure 4.2. Edit rule createOperationTriggeredTransition creating a transition and an operation
connected by a trigger.

Complementation of partially executed edit operations. Let us again have a look at
our VoD-System running example in Figure 4.1, which is an excerpt of the model Version 2
shown in Figure 2.2. In comparison to the previous Version 1, the edit step (2.3) in Version 2



64 4 Complementation of Partially Executed Edit Operations

of the state machine diagram introduces the new transition fastForward. The transition con-
nects the state streaming with the in edit step (2.1) newly created fast-forwarding state.

These edit steps are incomplete with respect to a missing trigger of the newly created
transition fastForward. In the successive Version 3 of the class diagram in Figure 2.3, the
operation fastForward() is created in edit step (3.1a). Finally, the transition fastForward is con-
nected to the operation by a call event, namely the edit steps (3.1b) and (3.1c) also indicated
in Figure 2.3.

The edit operation createOperationTriggeredTransition in Figure 4.2 describes the compound
effect of the discussed edit steps (2.3) and (3.1), i.e., the creation of a transition triggered by a
new operation. However, it does not include the edit step (2.1) that creates the fast-forwarding
state. In the following, we will discuss the detection of the edit operation createOperationTrig-
geredTransition as a partially executed edit operation, i.e., the recognition of the sub-rule cre-
ating the transition fastForward in the model difference shown in Figure 4.1. Finally, we will
compute the complementation of this partial execution of createOperationTriggeredTransition,
which produces model Version 3 in Figure 2.3 of our running example, i.e., the recommenda-
tion proposal that inserts the operation fastForward() in the class Video and connects it with
the fastForward transition by a new trigger.

As described by Kehrer et al. [1,78,82,83], the complete execution of an edit operation can
be recognized by detecting the effect of its application in themodel difference. Therefore, we
need to find the historical changes in Δ(𝑉𝐴, 𝑉𝐵) that correspond to all change actions in the
edit rule 𝐸𝑅. Consequently, to find a partially executed edit operation, we need to recognize
a change set included in Δ(𝑉𝐴, 𝑉𝐵) that corresponds to a sub-rule 𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅 of the edit
rule 𝐸𝑅. In this context, we will refer to the remaining parts of the edit rule 𝐸𝑅 ⧵ 𝐸𝑅𝑠𝑢𝑏 as
complement rule 𝐸𝑅.

complementation (Δ(𝑉𝐴, 𝑉𝐵)) = complementation (𝑉𝐴
𝑎⟹ 𝑠𝑟⟹ 𝑏⟹ 𝑉𝐵)

= 𝑉𝐴
𝑎⟹ 𝑠𝑟⟹ 𝑐𝑟⟹ 𝑏⟹ 𝑉 ′𝐵

= 𝑉𝐴
𝑎⟹ 𝑒𝑟⟹ 𝑏⟹ 𝑉 ′𝐵

!= 𝑉𝐴
𝑎⟹ 𝑉 ′𝐴

𝑠𝑟⟹ 𝑏⟹ 𝑉𝐵
𝑐𝑟⟹ 𝑉 ′𝐵

(4.1)

As shown in Definition (4.1), the problem of complementing a partially executed edit
step can be described as the complementation of a sequence of edit steps 𝑎, 𝑠𝑟 , 𝑏 applied on
a model version 𝑉𝐴 that results in a new model version 𝑉𝐵. In this sequence, the edit step
𝑠𝑟 refers to the changes of the sub-rule 𝐸𝑅𝑠𝑢𝑏 . The previous edit step 𝑎 has to be executed
before 𝐸𝑅𝑠𝑢𝑏 , i.e., the minimal set of changes that create the application context of 𝐸𝑅𝑠𝑢𝑏 .
The last edit step 𝑏 contains all remaining changes of the model difference. The edit step 𝑏
can also include changes that depend on the changes in edit step 𝑎 and 𝑠𝑟 . In general, the
edit steps 𝑎 and 𝑏 can also be empty.

The edit step 𝑐𝑟 refers to the changes of the complement rule 𝐸𝑅 that takes place after
the edit step 𝑠𝑟 . In our complementation scenario, the edit step 𝑐𝑟 must be postponed to
be applied to the current model version 𝑉𝐵, producing the complemented model version 𝑉 ′𝐵.
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However, we have to consider that parts of the application context of the edit rule might
have been removed in edit steps 𝑠𝑟 and 𝑏. Moreover, the application condition of the edit
rule might not be fulfilled anymore on 𝑉𝐵 due to elements created or deleted by the edit
steps 𝑠𝑟 and 𝑏.

A complement rule application 𝑐𝑟 can be constructed from a sub-rule application 𝑠𝑟 if the
effect of applying the complement rule to model version 𝑉𝐵 is the same as replacing 𝑠𝑟 and
𝑐𝑟 with a full execution 𝑒𝑟 of the edit rule 𝐸𝑅. The application context of 𝐸𝑅 is determined
after edit step 𝑎. Therefore, the application context and condition of 𝐸𝑅 and 𝐸𝑅𝑠𝑢𝑏 need
to be computed for an intermediate model version 𝑉 ′𝐴. The intermediate model version 𝑉 ′𝐴
can be constructed by applying a subset of the changes in the model difference to 𝑉𝐴. In
particular, we will not consider any transiently applied changes between 𝑉𝐴 and 𝑉𝐵 for
the construction of 𝑉 ′𝐴 (see Section 3.4.2). In general, 𝑉 ′𝐴 can also be equal to 𝑉𝐴 or 𝑉𝐵 by
applying no or all changes of the model difference. In Section 4.5, we will further discuss
possible approximations of 𝑉 ′𝐴 for the recognition of sub-rules.

The final step of generating complementation proposals is to determine all possible pa-
rameter bindings yielding applications of the complement rule 𝐸𝑅 such that the applied
𝐸𝑅𝑠𝑢𝑏 is extended to a full execution of 𝐸𝑅. Therefore, the application contexts regarding
the model version 𝑉 ′𝐴 is transferred to parameter bindings of the complement rule with
respect to model version 𝑉𝐵. In particular, the elements in the application context of the
complement rule must not be deleted in edit step 𝑏. Moreover, as the application condition
is already checked by the sub-rule, the complement rule can ignore such checks.

The detected partial execution of an edit operation can help the developer to understand
the intention of the historical changes and to make an informed decision to complement or
rollback an incomplete edit step. In particular, a rollback of the edit step 𝑠𝑟 can only be
applied without further side effects if the edit step 𝑏 does not depend on 𝑠𝑟 .

CSP Algorithm. The recognition and complementation of partially executed edit opera-
tions is implemented by translating this problem into an equivalent constraint satisfaction
problem (CSP) [157, 181]. The data structure in Figure 4.3 describes the representation of
an edit rule graph 𝐺𝐸𝑅 in the CSP. Basically, every graph element annotated with a change
action in 𝐺𝐸𝑅 is considered as a variable in the CSP. Figure 4.4 extends the data structure
from Figure 4.3 to describe the mapping of change actions from 𝐺𝐸𝑅 to the difference graph
𝐺Δ(𝑉𝐴,𝑉𝐵). For each variable, a domain slot is created comprising the changed graph elements
in the model difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) serving as possible variable values. The CSP solver
assigns values to variables by a backtracking algorithm [97, 125] that removes impossible
values for the variables by imposing restrictions on their domain. A solution found by the
CSP solver defines a partial mapping from change actions of the edit rule 𝐸𝑅 to historical
changes of the model difference Δ(𝑉𝐴, 𝑉𝐵). The partial mapping represents an application
of a sub-rule 𝐸𝑅𝑠𝑢𝑏 of 𝐸𝑅. Finally, possible parameter bindings of the complement rule 𝐸𝑅
are computed as recommendation proposals.

In the following Section 4.1, the derivation of a sub-rule and complement rule based on
a given set of change actions of an edit rule is introduced. In Section 4.2, we define the
syntactical criteria that must be fulfilled by all possible sub-rules that can be derived from
an edit rule. Following the syntactical definition of sub-rules, in Section 4.3, the application
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Figure 4.3. Meta-model of the CSP data structure. The CSP variables represent graph elements of
the edit rule graph meta-model from Figure 3.22.
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Figure 4.4. Defines the domain of a variable by extending the CSP meta-model in Figure 4.3. The
values of a domain refer to the unified graph meta-model from Figure 3.12 for representing

elements of a difference graph.

of a sub-rule is recognized in a model difference. Based on a recognized sub-rule applica-
tion, in Section 4.4, we determine all possible complement rule applications. In addition, in
Section 4.5, the application condition of the edit rule is considered for the sub-rule recog-
nition. In Section 4.6, we will discuss possible adaptations of the approach in the context
of a recommendation scenario, e.g., by specifying an editing context. In the context of user
interactions, Section 4.7 introduces possible refinements of the proposed complementations.

Finally, Section 4.8 extends the approach to multi-rules (see Section 3.5.2). As an alterna-
tive to a complementation, in Section 4.9, a rollback of the sub-rule’s changes is computed
to undo an incomplete edit step.
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4.1 Derivation of Sub-Rules and Complement Rules
An edit rule graph 𝐺𝐸𝑅 can be split into a sub-rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 and a complement rule graph
𝐺 𝐸𝑅 based on the corresponding sets of change actions 𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅 and 𝐸𝑅 = 𝐸𝑅 ⧵ 𝐸𝑅𝑠𝑢𝑏 .
Notably, during the detection of sub-rules in Section 4.3, the (potential) sub-rules are not
constructed explicitly. Conceptually, a sub-rule 𝐺𝐸𝑅𝑠𝑢𝑏 can be constructed by removing the
complementing change actions 𝐸𝑅 from 𝐺𝐸𝑅.

SubRule createOperationTriggeredTransition(transitionName, region, source, target, class, package)
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Figure 4.5. Sub-rule of the edit rule createOperationTriggeredTransition in Figure 4.2.

The sub-rule graph shown in Figure 4.5 is an example of a syntactically correct sub-rule
of the edit rule graph shown in Figure 4.2. The sub-rule only creates the transition between
two given states of a state machine. In Figure 4.5, the complementing change actions are
illustrated as dashed nodes and edges with overlined graph actions. In general, the sub-rule
construction can be described by applying the following transformation steps on the edit
rule graph:

(1) All graph elements (nodes, edges, and attributes) that represent change actions of 𝐸𝑅
annotated with «create» are removed from 𝐺𝐸𝑅.

(2) As a result, attribute value changes «modify» attrType = valueA→ valueB (≡ {«delete» at-
trType = valueA, «create» attrType = valueB}) in 𝐺𝐸𝑅 might be reduced to «delete» valueA
attributes. Therefore, we change their graph actions to «require» valueA to interpret
them as part of the sub-rule’s application condition.

(3) Complement rule nodes with «delete» actions that have incident edges to be deleted
by the sub-rule are converted to context nodes annotated with «preserve» actions.
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(4) The remaining «delete» actions of all graph elements that represent changes of 𝐸𝑅 are
replaced with «require» actions.

Based on a given sub-rule 𝐸𝑅𝑠𝑢𝑏 of an edit rule 𝐸𝑅 a corresponding complement rule 𝐸𝑅
can be derived. Basically, the complement rule graph 𝐺 𝐸𝑅 is constructed by removing the
change actions of the sub-rule from the edit rule graph, i.e., there is exactly one complement
rule for each sub-rule. A formal treatment of the complement rule construction can be found
in Reference [2].

Rule createOperationTriggeredTransition(transitionName, newTransition, class, package)

«create»
operation:Operation

name=transitionName

«preserve»
package:Package

«create»
trigger:Trigger

«create»
event:CallEvent
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event
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trigger

«create»

operation
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«preserve»
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ownedOperation
«create»

newTransition:Transition
«preserve»

Figure 4.6. Complement rule of the edit rule createOperationTriggeredTransition in Figure 4.2.

Consider again the edit rule specified in Figure 4.2 and its sub-rule that creates a tran-
sition between two states. The complement rule constructed from this sub-rule is shown
in Figure 4.6. In comparison to the sub-rule in Figure 4.5, the complement rule does not
include the application conditions. The application context in the lower part of Figure 4.6 is
adapted and reduced to the newly created transition. Moreover, the attribute transitionName
is given as predefined input of the complement rule. Generally, the complement rule 𝐸𝑅 is
obtained as follows:

(1) All creation change actions comprised by 𝐸𝑅𝑠𝑢𝑏 are turned into application context
that is to be preserved by 𝐸𝑅.

(2) Next, all graph elements that specify deletion change actions comprised by 𝐸𝑅𝑠𝑢𝑏 are
removed from 𝐸𝑅.

(3) As the application condition of the edit rule is already checked by the sub-rule, the
application context of the complement rule is reduced to preserve only the boundary
nodes of the remaining change actions.

(4) The input parameters are derived from the remaining application context and at-
tribute values of the resulting complement rule.
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4.2 Generation of Sub-Rules
To detect partial executions of an edit rule, we will first define how to enumerate all syntac-
tically correct sub-rules without considering their occurrence in the model difference. Ba-
sically, a sub-rule 𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅 can be specified as a nonempty, proper subset of the change
actions contained in the edit rule 𝐸𝑅. While an edit rule may have many sub-rules, we are
only interested in those sub-rules meeting the specific conditions specified in Section 4.2.1
to Section 4.2.3.

Basically, a complex edit operation can be composed of multiple atomic change sets
that specify the minimal edit steps that can be partially executed without violating the el-
ementary consistency of a model (see Section 3.1.3). Moreover, the change actions of an
edit rule are partially ordered by their dependencies, i.e., the changes cannot be applied in
an arbitrary order. A sub-rule is an initially executable part of an edit rule, e.g., the node
newTransition:Transition in the edit rule createOperationTriggeredTransition in Figure 4.2 must be
created before the edges specifying its source and target state.

The conditions from Section 4.2.1 to Section 4.2.3 are implemented as constraints in the
CSP solver shown in the pseudocode in Listing 4.1. In particular, the algorithm in Listing 4.1
specifies the initial part of the CSP solver for enumerating all possible sub-rules.

4.2.1 Preservation of Elementary ASG Consistency
Since a sub-rule is expected to be a valid edit rule, which does not cause elementary defects
in a model, it must adhere to the elementary ASG consistency, as defined in Section 3.1.3.
According to Section 3.3.3, we will first identify all atomic change sets in 𝐺𝐸𝑅. An atomic
change set consists of graph elements of the edit rule graph 𝐺𝐸𝑅, i.e., nodes, edges, or at-
tributes annotated with a «create» or «delete» action. The dashed boxes in Figure 4.2 are
showing the atomic change sets 𝐴𝑖 of the edit rule createOperationTriggeredTransition. For ex-
ample, the atomic change set 𝐴1 contains the creation of a new transition, including its
containment edge. Moreover, the container edge is also included in 𝐴1 as the opposite edge
of the transition containment edge.

Considering an edit rule with 𝑚 change actions, the number of all possible sub-rules
(without considering further conditions) is (2𝑚 − 2), i.e., the power set of all change ac-
tions excluding the empty set and the complete edit rule. Combining the change actions
into atomic change sets that cannot be split, the number of all considered sub-rules will be
reduced accordingly.

The pseudocodes in Listing 4.1 and Listing 4.2 describe the basic algorithm to enumerate
all sub-rules of an edit rule. In particular, all subsets of change actions of the corresponding
edit rule graph 𝐺𝐸𝑅 are enumerated, taking into account that the atomic change sets are not
split.

Initialization (Line 1): The atomic change sets of an edit rule are represented by correspond-
ing variable sets in the CSP. As illustrated in the CSP’s data structure in Figure 4.3, a
VariableSet consisting of Variables can represent a ChangeSet consisting of correspond-
ing GraphElements. The CSP in Listing 4.1 is initialized by creating such variable sets
from the edit rule graph 𝐺𝐸𝑅. The function call changeSets(GER) inserts the initial vari-
able sets corresponding to the atomic change sets into the stack named remaining of
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1 remaining: Stack<VariableSet> = changeSets(GER)
2 removed: Stack<VariableSet> = []
3 solution: Stack<VariableSet> = applicationContext(GER) ∪ graphConstraints(GER)
4 bounds: Bounds = Bounds{lower = |solution| + 1, upper = |solution| + |remaining| − 1}

5 function expandSolution():
6 if constraintSolution() then ⟩ Is the solution within the solution space?
7 if remaining ≢ ∅ then ⟩ Is the partial solution finished?
8 vars: VariableSet = selectVariableSet() ⟩ (A) Expand Solution: remaining→ solution
9 findSolution(vars) ⟩ ↪ solutions with selected variables
10 removeVariableSet() ⟩ (B) Reduce Solution: solution→ removed
11 expandSolution() ⟩ ↪ solutions without selected variables
12 returnVariableSet() ⟩ (B, A) Backtracking: removed→ remaining
13 else
14 solutionFound(solution, removed) ⟩ next (partial) solution found
15 endif
16 endif

17 function constraintSolution(): Boolean
18 return |solution| ≤ bounds.upper ⟩ is below!
19 ∧ |solution| + |remaining| ≥ bounds.lower ⟩ is above!
20 ∧ (solution ≢ ∅ ⟹ solution.peek().dependsOn ≡ ∅) ⟩ is independent!
21 … ⟩ see Listing 4.5 and Listing 4.9

22 function selectVariableSet(): VariableSet
23 if hasIndependent(remaining) then ⟩ (A) Expand Solution: with …
24 independent: VariableSet = selectIndependent(remaining)
25 remaining.remove(independent)
26 solution.push(independent) ⟩ …independent node
27 else
28 solution.push(remaining.pop()) ⟩ …dependent node
29 endif
30 selected: VariableSet = solution.peek()
31 removeFromDependencyGraph(selected) ⟩ (C) Consider the change as executed.
32 return selected

33 function removeVariableSet():
34 removed.push(solution.pop()) ⟩ (B) Reduce Solution
35 reinsertIntoDependencyGraph(removed.peek()) ⟩ (C) Backtracking
36 function returnVariableSet():
37 remaining.push(removed.pop()) ⟩ (B, A) Backtracking

Listing 4.1. Initial part of the CSP solver algorithm to generate all sub-rules of an edit rule.

38 function findSolution(vars:VariableSet):
39 expandSolution() ⟩ ↪ solutions with selected variable

Listing 4.2. Stub of the assignment function for generating sub-rules without assignments.
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the CSP solver. For our example edit rule in Figure 4.2 the variable sets representing
the atomic change sets 𝐴0 to 𝐴7 are created.

CSP solution (Line 2 - 3): In order to enumerate all sub-rules of an edit rule, the CSP solver
implements a recursive algorithm. The result of the CSP solver is finally contained in
the solution stack, i.e., a stack of variable sets representing the atomic change sets of a
recognized sub-rule 𝐸𝑅𝑠𝑢𝑏 . In contrast, the variable sets in the removed stack represent
the atomic change sets of the complement rule 𝐸𝑅. As the application context and
graph constraints of the edit rule are always contained in the sub-rule, the solution is
initialized by the applicationContext(GER) and graphConstraints(GER) function calls with
the corresponding variables.

Main function (Line 5 - 6): The recursive computation is implemented in the expandSolution()
function. The recursion continues as long as the constraintSolution() function evalu-
ates to true. This function checks the actual constraints of the CSP, which we will
introduce in the following sections. In particular, if we would ignore all constraints
and dependencies between atomic change sets, then the algorithm would simply enu-
merate all possible 2𝑚 subsets of the 𝑚 given variable sets in the remaining stack.

Step (A) expand solution (Line 7 - 8): In order to compute a solution, the variable sets are sys-
tematically moved from the remaining stack to the solution or removed stack as long as
the remaining stack is not empty (remaining≢ ∅). In this process, an atomic change set
must always be fully contained in a sub-rule, i.e., a variable set must also be fully in-
cluded in the CSP’s solution. Therefore, calling the function selectVariableSet() always
moves a complete variable set from the remaining variables to the solution variables
(Line 28).

Solutions with selected variables (Line 9): In this section, we only discuss the derivation of
syntactically correct sub-rules. Therefore, we will skip the assignment of variables
by replacing the responsible function findSolution() with a simplified function stub, as
shown in Listing 4.2. In order to enumerate all sub-rules that include the just selected
atomic change set, the function expandSolution() is recursively called (via findSolution())
until no more variables are contained in the remaining stack.

Next (partial) solution found (Line 14): As soon as the remaining stack is empty, a new solution
has been found and can be processed further by the solutionFound() function (Line 14).
For example, storing the sub-rule and the complement rule by processing the solution
and removed stack, respectively.

Step (B) reduce solution (Line 10 - 11): After handling the new solution, the function expand-
Solution() returns to its last recursive call (Line 9). In the next step, calling removeVari-
ableSet() moves the last variable set from the solution stack to the removed stack (Line
34). The following recursive call of expandSolution() (Line 11) computes all remaining
partial solutions that exclude the removed variable set.
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Backtracking step (B, A) (Line 12): In order to search the entire solution space, the function
expandSolution() implements a backtracking algorithm. Therefore, the function return-
VariableSet() always moves the last variable set from the removed stack back onto the
remaining stack. (Moving the variable set to the solution stack can be skipped in the
backtracking for efficiency.) In terms of the sub-rule enumeration, this backtracking
step allows an atomic change set to be reselected as part of a sub-rule while another
atomic change set is temporarily removed from the solution space.

4.2.2 Minimal/Maximal Size of Sub-rules
In general, we are only interested in partial edit rules, i.e., the sub-rule without change ac-
tions and 𝐸𝑅 itself can be excluded. Moreover, the developer might want to specify the
sub-rule size in terms of a lower and an upper bound number of atomic change sets depend-
ing on task-specific preferences, e.g., specified as a percentage value. For example, a partial
execution should only be detected if 50% of the edit rule has already been executed. In
general, a large sub-rule with respect to the edit rule leads to a small complement rule min-
imizing the proposed edit step, i.e., small modifications are more likely recommendations
than large ones.

Moreover, increasing the lower bound or decreasing the upper bound also reduces the
number of sub-rules to be checked by the CSP solver. The bounds can be computed initially
for each 𝐸𝑅 and specified as constraints of the CSP in Listing 4.1 (Line 4). The bounds need
to be checked after modifying the solution. Checking the predefined upper bound in the
function constraintSolution() will skip the subsequent computation of all larger sub-rules. If
the solution is outside of the solution space with respect to the predefined lower bound,
the subsequent smaller solutions will be skipped. Therefore, the predefined lower bound
is compared with the potential maximal solution size (|solution| + |remaining|) during the
computation.

4.2.3 Dependencies Between Change Actions
Change actions defined by a sub-rule 𝐸𝑅𝑠𝑢𝑏 must not depend on change actions within the
complement rule 𝐸𝑅 = 𝐸𝑅 ⧵ 𝐸𝑅𝑠𝑢𝑏 , i.e., 𝐸𝑅𝑠𝑢𝑏 is self-contained with respect to all depen-
dencies between change actions defined by 𝐸𝑅. According to Section 3.3.3, a dependency
graph can be created in which nodes represent atomic change sets of the edit rule. As il-
lustrated for edit rule createOperationTriggeredTransition in Figure 4.2, the dependencies are
drawn as edges between atomic change sets 𝐴𝑖 indicating their execution order. The edit
rule createOperationTriggeredTransition contains several elementary creation dependencies.

The dependencies between atomic change sets form a directed acyclic graph (DAG). The
nodes of a DAG can be sorted in a topological order [75] representing a correct execution
order of the atomic change sets. Sub-rules of 𝐸𝑅 that do not represent an initial sequence
of any topological ordering of atomic change sets of 𝐸𝑅 can be excluded. This constraint
further reduces the number of potential sub-rules to be considered. For example, the edit
rule in Figure 4.2 has 55 possible sub-rules considering the topological ordering of its atomic
change sets.

As shown by the data structure in Figure 4.3, the dependencies of the atomic change sets
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(ChangeSet::preceding, ChangeSet::succeeding) are correspondingly stored by the variable sets
(VariableSet::dependsOn, VariableSet::hasDependent). For example, in the edit rule in Figure 4.2,
the atomic change set 𝐴2 is a succeeding change set of 𝐴1, i.e., the corresponding variable
set 𝐴2 depends on 𝐴1.

The topological ordering is maintained by the selectVariableSet() function of the CSP
solver in Listing 4.1 (Line 22). Basically, the function selects the variable sets from the de-
pendency graph in any valid topological ordering. The function hasIndependent() (Line 23)
checks the remaining stack for variable sets without current dependencies. A variable set vi ∈
remaining is independent if it currently does not depend on other variables sets (vi.dependsOn
≡ ∅). Finally, one of the independent variable sets is selected and moved from the remaining
set to the solution stack (Line 25 - 26).

After the selection of a variable set vi, the function removeFromDependencyGraph() re-
moves vi from the dependency graph by removing vi from all of its dependent variable sets.
For example, selecting the variable set corresponding to 𝐴1 from the edit rule in Figure 4.2,
𝐴1 is removed as dependency from 𝐴2, 𝐴3, and 𝐴4. Technically, we only modify the de-
pendsOn references for each VariableSet, i.e., the preceding atomic change sets. The Variable-
Set::hasDependent references containing the succeeding atomic change sets are preserved
and will be used to reinsert a variable set into the dependency graph during the backtrack-
ing.

If no independent variable set exists in the remaining stack (Line 23), which can occur if
some required variable set is already pushed to the removed stack, the solution cannot be
extended any further. Therefore, all remaining variable sets are removed from the solution
space. Technically, the selectVariableSet() function temporarily pushes any of the remaining
dependent variable sets to the solution stack (Line 28). A dependent variable set in the
solution will cause the function constraintSolution() to discard the current solution (Line 20).
Subsequently, the dependent variable set will be removed from the solution space by the
removeVariableSet() function (Line 10).

Whenever a variable set is temporarily removed from the solution space, the removeVari-
ableSet() function will reinsert the variable set into the dependency graph (Line 35). Tech-
nically, the removed variable set is added back as a dependency (VariableSet::dependsOn) to
all of its dependent (VariableSet::hasDependent) variable sets. Backtracking the removal of
𝐴1 from the dependency graph with respect to our previous example, we add 𝐴1 back as
dependency to 𝐴2, 𝐴3, and 𝐴4. This procedure prevents the generation of sub-rules that
do not contain an initial sequence of any topological ordering of the change actions in the
processed edit rule.

4.3 Recognition of Sub-Rules
In this section, we will extend the sub-rule generation in order to detect partially executed
edit rules in a model difference Δ(𝑉𝐴, 𝑉𝐵). The difference Δ(𝑉𝐴, 𝑉𝐵) contains all concrete,
historical changes between two versions 𝑉𝐴 and 𝑉𝐵 of a model. The task is to recognize cor-
responding historical changes in Δ(𝑉𝐴, 𝑉𝐵) that match the definitions of the change actions
of a sub-rule of the edit rule. Therefore, we can take advantage of the approach introduced
by Kehrer et al. [1, 78, 82, 83], which reduces the edit rule recognition problem to a graph
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matching problem. The basic idea is that each edit rule can be transformed into a well-
defined graph pattern consisting of the change actions, structural relations, and application
conditions that can be matched in a model difference. However, instead of recognizing a
complete edit rule 𝐸𝑅, the task is to do such a recognition for all proper sub-rules 𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅
of the edit rule.

Similar to the edit rule graph𝐺𝐸𝑅 themodel differenceΔ(𝑉𝐴, 𝑉𝐵) can be viewed as unified
graph 𝐺Δ(𝑉𝐴,𝑉𝐵) (see Section 3.4). Figure 4.1 shows the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) for the VoD-
System between the model version in Figure 2.1 and the version in Figure 2.2. The difference
graph shows the creation of the transition fastForward between the states streaming and fast-
forwarding on the level of the model’s ASG. To recognize the partial execution of an edit rule,
we need to find a partial matching between the edit rule graph 𝐺𝐸𝑅 and the difference graph
𝐺Δ(𝑉𝐴,𝑉𝐵).

For example, the edit rule graph shown in Figure 4.2 can be mapped partially to the dif-
ference graph in Figure 4.1. The partial mapping matches the change actions of the edit rule
and the historical changes creating the transition between the two states. The unmatched
change actions of the edit rule will create an operation connected to the transition by a new
event and a trigger. Basically, the partially matched change actions represent the sub-rule,
and the unmatched change actions represent the complement rule.

The partial matching of changes must be connected by the structure imposed by the edit
rule graph 𝐺𝐸𝑅. Moreover, we will only consider maximal sub-rule matches, i.e., a sub-rule
must not be contained in another larger sub-rule match. In particular, the partial graph
matching between the edit rule graph 𝐺𝐸𝑅 and the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) must meet the
conditions defined in the following Section 4.3.1 to Section 4.3.3. The sub-rule recognition
and the condition from Section 4.3.1 to Section 4.3.3 are implemented by extending the CSP
solver from Listing 4.1 in Listing 4.3.

4.3.1 Compatibility of Sub-rule Matchings
We can describe an edit rule by its edit rule graph 𝐺𝐸𝑅. Therefore, a sub-rule leads to a
subgraph 𝐺𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐺𝐸𝑅 of the edit rule graph, which has to be matched in the difference
graph𝐺Δ(𝑉𝐴,𝑉𝐵). Given a sub-rule graph𝐺𝐸𝑅𝑠𝑢𝑏 and a difference graph𝐺Δ(𝑉𝐴,𝑉𝐵), thematching
problem is to find an injective, yet type-, structure- and action-compatible mapping 𝑚 ∶
𝐺𝐸𝑅𝑠𝑢𝑏 → 𝐺Δ(𝑉𝐴,𝑉𝐵). Specifically, the following compatibility constraints must be fulfilled for
all mapped graph elements in 𝑚:

type-compatible: Basically, the type of a node, edge, or attribute in the sub-rule graph 𝐺𝐸𝑅𝑠𝑢𝑏
must match the type in the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵). Excluding node creations («cre-
ate»), nodes in 𝐺𝐸𝑅𝑠𝑢𝑏 can also be mapped to model elements in 𝐺Δ(𝑉𝐴,𝑉𝐵) with a com-
patible subtype, i.e., the type of the node in 𝐺Δ(𝑉𝐴,𝑉𝐵) can be a more concrete subtype
compared to the 𝐺𝐸𝑅𝑠𝑢𝑏 node’s type.

action-compatible: Table 4.1 gives an overview of the action compatibility rules between the
edit rule graph and the difference graph. Depending on the mapping between the
graphs, we can derive the corresponding action of the sub-rule (see Section 4.1).



4.3 Recognition of Sub-Rules 75

40 function findSolution(vars: VariableSet):
41 if hasUnassignedVariables(vars) then ⟩ select variable and compute assignments…
42 v: Variable = selectUnassignedVariable(vars)

43 foreach assignment ∈ v.domain.assignable do
44 assignVariable(v, assignment) ⟩ (D) assign selected variable
45 if constraintAssignment(v, vars) then ⟩ Is the assignment within the solution space?
46 findSolution(vars) ⟩ ↪ assign next variable in given set
47 endif
48 freeVariable(v) ⟩ (D) backtracking assignment
49 endforeach
50 else
51 expandSolution() ⟩ ↪ solutions with assigned variables
52 endif

53 function constraintAssignment(v: Variable, vars: VariableSet): Boolean
54 return checkAssignmentInjectivity(v, solution)
55 ∧ checkStructureCompatibility(v, solution)
56 ∧ checkAttributeConstraints(v, solution)
57 … ⟩ see Listing 4.4
58 function assignVariable(v: Variable, assignment: GraphElement):
59 v.assignment = assignment ⟩ (D) assign selected variable
60 restrictDomains(v, assignment) ⟩ (E) structural restrictions starting with v

61 function freeVariable(v: Variable):
62 v.assignment = undefined ⟩ (D) backtracking assignment
63 unrestrictDomains(v) ⟩ (E) backtracking structural restrictions

Listing 4.3. CSP algorithm to compute the assignments of a given variable set.

Edit Rule Difference Sub-Rule Comment
(1) «create» «create» «create» sub-rule creations

(2) «create» ∅ ∅ to be created by the complement rule
(see Section 4.4)

(3) «delete» «delete» «delete» sub-rule deletions

(4) «delete» «preserve» «preserve»
to be deleted by the complement rule
(see Section 4.4)

(5) «preserve»
«preserve»

/ «delete» / «create»
«preserve»

including preceding/succeeding changes
(see Section 4.4)

Table 4.1. Action compatibility of the sub-rule matching.

In general, graph elements in the edit rule graph 𝐺𝐸𝑅 that are annotated with «create»
or «delete» actions must be mapped to difference graph elements that are annotated
with the same kind of action (Row 1 and 3). Graph elements with «create» actions that
cannot be mapped to the difference graph (∅) are to be created by the complement
rule (Row 2). Conversely, graph elements to be deleted by the complement rule must
be mapped to graph elements preserved in the difference graph (Row 4). Notably,
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mapping the graph elements to be deleted to elements created with respect to the
difference graph would result in changes being undone instead of complementing an
editing step.

A graph element in the edit rule annotated with a «preserve» action can be mapped
to graph elements annotated with «preserve» actions in the difference graph (Row 5).
Moreover, such a graph element can also be mapped to a difference graph element
that is annotated with a «create» or «delete» change action. In this latter case, the
graph element is created or deleted by another edit step before or after the recognized
sub-rule.

In general, the graph constraints («require» /«forbid») of an edit rule’s application con-
dition are checked subsequently (see Section 4.5) after determining all possible appli-
cation context matchings (see Section 4.4) for a partial matching of change actions.

structure-compatible: The matching of nodes in the mapping 𝑚 ∶ 𝐺𝐸𝑅𝑠𝑢𝑏 → 𝐺Δ(𝑉𝐴,𝑉𝐵) must
be injective, i.e., all nodes, edges, and attributes of 𝐺𝐸𝑅𝑠𝑢𝑏 are mapped, and a graph
element of 𝐺Δ(𝑉𝐴,𝑉𝐵) is only mapped once to a graph element in 𝐺𝐸𝑅𝑠𝑢𝑏 . The edges in
the sub-rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 must be mapped to edges of the same type incident to the
mapped nodes in difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵).

As a preliminary step, the domains of all variables have to be initialized with elements
from the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) that can be potential assignments for the variables of any
sub-rule. As shown in the data structure in Figure 4.4, a variable is associated with a domain
that comprises the compatible graph elements in model difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) serving
as possible variable assignments. Initially, the type- and action-compatible graph elements
from the difference graph are collected for the domains. Moreover, attributes in the edit rule
graph that are bound to constant values are checked during the domain initialization, i.e.,
non-matching graph elements can already be filtered from the domains.

Regarding our running example, the corresponding domains of the creation of the tran-
sition in the edit rule in Figure 4.2 can be initialized with the new transitions play and fastFor-
ward from the difference graph in Figure 4.1. Regarding the application context, for example,
the corresponding domain of the source:State node can be initialized with all states from the
model Version 2 in Figure 2.2. In particular, the domain of this application context node also
contains the newly created state fast-forwarding.

All CSP constraints that cannot be checked during the initialization of the domains need
to be checked dynamically during the assignment of the solution. Generally, the CSP solver
assigns variables with values from their corresponding domains, whereby the variable as-
signment must fulfill certain constraints. A solution to the CSP is found when all currently
selected variables that represent the change actions of a sub-rule are assigned to changes in
the model difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵).

Computing a matching from scratch for each sub-rule generated by the algorithm in
Listing 4.1 would be very inefficient. In fact, the matchings are computed incrementally by
the CSP solver in Listing 4.3 while the variables are added and removed from the solution.
The findSolution() function in Listing 4.3 is called by the sub-rule generation algorithm in
Listing 4.1 (Line 9) for each selected variable set. The CSP solver in Listing 4.3 determines a
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concrete solution by the findSolution() function, which takes an unassigned set of variables
and computes all possible valid assignments.

Select next unassigned variable (Line 41 - 42): The findSolution() function is called with the
variable set vars to be assigned. Initially, as long as not all variables are assigned, an
unassigned variable v is selected from the given variable set vars. Technically, the al-
gorithm can be optimized by preferring variables with a small number of remaining
assignable elements in their domain. In particular, if the domain of a variable in the
given set is empty (v.domain.assignable ≡ ∅), then no complete assignment of the vari-
able set is possible and the current assignment is not explored further. Therefore, the
selectUnassignedVariable() (see Listing 4.3) always selects the unassigned variable with
the currently smallest domain. In this context, the selectVariableSet() (see Listing 4.1)
selects the variable set with the currently smallest product of their domain sizes, i.e.,
the maximum number (possibly 0) of assignment combinations. Notably, after each
assignment, the size of the domains of the unassigned variables might change due to
structural restrictions, which we will discuss in the following Section 4.3.2.

Compute assignments (Line 43 - 49): For the selected variable v, all values of its domain are
processed. To generate all possible assignments, the findSolution function implements
a recursive backtracking algorithm. After assigning a variable by the assignVariable()
function (Line 44), the findSolution() function is called recursively (Line 46) until all
variables of the given set are assigned. In a backtracking step, the variable is unas-
signed by the freeVariable() function (Line 48), and the next value of the domain is
assigned until all possible combinations of valid assignments are found.

Constraint assignment (Line 45): The constraintAssignment() function (Line 53) checks the lat-
est assignment incrementally. In this context, the injectivity of the overall assignment
and the local structure compatibility to assignments of adjacent nodes is checked. In
general, if we would ignore all constraints and restrictions during the assignment,
then all possible combinations of values in the variable’s domains would be gener-
ated.

Based on the mapping of a node of the edit rule, the contained attributes attribute-
Name = parameterName mapped to a parameter of the transformation rule need to be
checked, e.g., the attribute name = transitionName in the edit rule in Figure 4.2 defining
the name of the new transition and operation. In general, if multiple attributes are
assigned to the same parameter, the values of the mapped attributes in the difference
graph must be equal. In particular, for a given mapping of a node, a contained at-
tribute of an edit rule with a «preserve» or «require» action can be assigned to attributes
of a difference graph with «delete» action at the same time (see Table 4.1). Therefore,
the checkAttributeConstraints() (Line 56) checks incrementally for each parameter that
at least one valid assignment exists.

Expand solution (Line 51): If a complete assignment is found for all given variables, the
solution can be further expanded with the remaining variables by (recursively) calling
the expandSolution() function in Listing 4.1.
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4.3.2 Connectivity of Sub-rule Matchings
Referred to as the “principle of locality” by Heckel et al. [63], an edit rule with a connected
edit rule graph 𝐺𝐸𝑅 applied to a model has a local effect in terms of the performed modifica-
tions. To limit possible partial matching, we also assume such local effects for the sub-rules
𝐸𝑅𝑠𝑢𝑏 ⊆ 𝐸𝑅. Searching for locally connected changes drastically reduces the search space
when searching for sub-rule occurrences in a large model difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵). It fol-
lows that change actions in the edit rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 of the sub-rule must be connected
by at least one path retained from the complete edit rule graph 𝐺𝐸𝑅. As described for the
mapping 𝑚 ∶ 𝐺𝐸𝑅𝑠𝑢𝑏 → 𝐺Δ(𝑉𝐴,𝑉𝐵), such a path requires an injective, type-, structure-, and
action-compatible mapping to a path in the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵).

To give an illustration, consider again the edit rule createOperationTriggeredTransition in
Figure 4.2. All changes specified by the edit rule form a connected graph, including the con-
text elements that are to be preserved by the edit rule. The edit rule graph has to be mapped
partially to the difference graph shown in Figure 4.1. We can recognize two corresponding
sub-rule executions in the model difference graph. The creation of the transition can be
mapped to the transition fastForward or play.

We are only interested in those assignments that are also structure-compatible with
respect to the edit rule graph and the difference graph. As defined in Listing 4.3, starting
with the assignment (Line 59) in function assignVariable() (Line 44), the domains of the other
variables in the CSP are restricted by the restrictDomains() function (Line 60) to contain only
those elements that are structurally reachable from the currently assigned element.

During the structural restriction, we consider the complete edit rule graph 𝐺𝐸𝑅, i.e., the
variables representing the change actions, application context, and graph constraints (see
Section 4.3.1) contained in the remaining and removed stack. Conceptually, the CSP solver in
Listing 4.1 only assigns variables representing change actions of the edit rule with changes
of the difference graph. Finally, the domains of the variables that represent the application
context and graph constraints contain all partial graph fragments of the difference graph
connecting the assigned changes.

As shown in the example graph Figure 4.7, the computation of the structural restriction
can be described as a graph coloring algorithm. An edit rule graph is illustrated by the gray
boxes in the background of Figure 4.7. The nodes and edges from a difference graph are
shown on top. In this example, for brevity, we will not further specify the concrete edit rule
and model difference. Basically, this process can be described by a depth-first traversal on
the edit rule graph 𝐺𝐸𝑅. During the traversal, the reachable elements in the corresponding
domains are identified. The traversal follows all non-cyclic paths between adjacent nodes
of 𝐺𝐸𝑅, i.e., the direction of edges in 𝐺𝐸𝑅 is not considered, and parallel edges are combined
into one evaluation step.

In the CSP, each node and edge of the edit rule graph is represented by a variable with a
domain comprising the nodes and edges of the difference rule graph. As depicted in the CSP
data structure in Figure 4.4 the coloring is stored for each domain of a variable. Moreover,
for each domain, the computed restrictions are stored for later backtracking.

Step 1: Initially, we assume all elements of the difference graph are colored in green. First,
the variable representing the node named 𝑁1, with its domain colored in orange, is
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Figure 4.7. Structural restriction of the variable’s domains representing the edit rule graph 𝐺𝐸𝑅 and
the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵).

assigned. Following all paths of the edit rule graph from node 𝑁1, the nodes and
edges of the difference graph in the corresponding domains are colored in blue. We
use the colors cyan and blue to mark the current state of the depth-first traversal, i.e.,
the current path is colored with cyan, and the previously traversed nodes are colored
in blue. The result of the first traversal is shown in Step 1 of Figure 4.7.

Step 2: In computation Step 2 in Figure 4.7, all nodes and edges that are finally still colored
in green are restricted by coloring them in red, and all blue nodes are reset to green.
Moreover, the restricted elements of the domains are stored for later backtracking. As
defined in the CSP data structure inFigure 4.4, the restrictDomains() function (Line 60)
adds a Restriction to all variables of the CSP. Notably, the number of restricted values
can also be empty, e.g., node 𝑁3 in Step 2.

Step 3: Nowwe assign the next variable representing the edge 𝐸34 of the edit rule graph. An
edge is always selected, including its source and target node. After Step 3 in Figure 4.7,
the resulting blue colored paths within the remaining unrestricted, green colored dif-
ference graph is shown.

Step 4: The restriction that results from the selected paths in Step 3 are shown in Step 4
in Figure 4.7. In particular, the domain corresponding to edge 𝐸23 is now empty, i.e.,
the current assignment is a partial matching of the edit rule and the difference graph.
The subsequent assignments in the example can be done without further restrictions,
namely, the variables representing the nodes and edges 𝑁2, 𝐸12, and 𝐸24.
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Backtracking: After finishing a partial match, a backtracking step is performed to the ini-
tial state shown in Figure 4.7. Therefore, the stored restrictions of each domain are
removed by coloring the elements green. This is done by first calling (Line 48) the
freeVariable() function (Line 61) to reset the assignment of the variable. Next, the un-
restrictDomains() function (Line 63) removes the latest restriction from all variables of
the CSP. Subsequently, another path can be selected starting from node 𝑁3 of the edit
rule graph.

4.3.3 Maximality of Sub-rule Occurrences
A sub-rule occurrence must cover a maximal number of historical changes in the difference
Δ(𝑉𝐴, 𝑉𝐵). That is, for a sub-rule 𝐸𝑅𝑠𝑢𝑏 and its corresponding edit rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 having
a match 𝑚 in the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵), there must not be a larger sub-rule 𝐸𝑅′𝑠𝑢𝑏 with
𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅′𝑠𝑢𝑏 ⊆ 𝐸𝑅 such that the match 𝑚 can be extended to become a match 𝑚′ of the
edit rule graph 𝐺𝐸𝑅′

𝑠𝑢𝑏 in 𝐺Δ(𝑉𝐴,𝑉𝐵). Otherwise, the complementation of a partially executed
edit operation could accidentally repeat or overwrite historical changes already performed
between the model versions 𝑉𝐴 and 𝑉𝐵.

For instance, regarding our running example in Figure 2.2, a sub-rule of the edit rule in
Figure 4.2 that comprises only the historical changes of the atomic change set 𝐴1 (that cre-
ates a new transition) is not amaximal sub-rule. There is a larger sub-rule which, in addition,
covers also the change sets 𝐴2 and 𝐴3, namely, the source and target of the transition.

However, there is a minor number of 5 out of 596 observable cases in the evaluation
of the approach (see Chapter 8) in which a sub-rule is slightly too large, namely, a newly
created text-based annotation of a model element is modified instead of creating a new
additional annotation. Nevertheless, it might be confusing for the developer to find the
required sub-rule in a recommendation list that also includes all sub-rules of sub-rules.

64 function constraintAssignment(v: Variable, vars: VariableSet): Boolean
65 return … ⟩ extends Listing 4.3
66 ∧ (vars.represents.eClass ≡ ChangeSet ⟹ v.assignment.action ≢ «preserve» )

Listing 4.4. Maximality of sub-rule with respect to the contained change actions.

Graph elements to be deleted by the complement rule have to be matched to elements
preserved in the difference graph (see Table 4.1). Those preserved elements are also re-
quired to form a connected subgraph 𝐺𝐸𝑅𝑠𝑢𝑏 between the change actions of the sub-rule (see
Section 4.3.2). However, during the sub-rule recognition, we must first maximize the set of
recognized deletions of the sub-rule, i.e., we only allow the matching of sub-rule deletion
actions to deletions in the difference graph. As shown in Listing 4.4, this can be enforced
by a constraint during the assignment of variables. Technically, we can also optimize the
assignment by already restricting elements with «preserve» actions from the variables’ do-
mains at the time of their selection. The selectVariableSet() function in Listing 4.1 can apply
such a restriction on the domains. Accordingly, the backtracking of this restriction can be
done by the removeVariableSet() function.

In the partial CSP solver, the maximality of a sub-rule matching simply means that the
solver always does a full exploration up to the maximum number of variables that can be
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67 function constraintSolution(): Boolean ⟩ extends Listing 4.1
68 return … ⟩ partial solution finished
69 ∧ (remaining ≡ ∅ ⟹ isMaximalPartialSolution())

Listing 4.5. Maximality of sub-rule with respect to the contained change actions.

successfully assigned. A partial solution is not accepted if the domain of an unassigned
variable is not empty, i.e., the variable representing a change action of the edit rule could be
assigned with a change from the model difference.

Within the algorithm in Listing 4.1, the maximality of the assignment is checked by the
constraint isMaximalPartialSolution() extending the function constraintSolution() in Listing 4.5.
After all variables from the remaining set have been selected and assigned, the isMaximalPar-
tialSolution() constraint checks the domains of all independent variables (see Section 4.2.3)
currently contained in the removed stack. Those domains must be empty or contained val-
ues must not be assignable, i.e., the solution can not be extended with any of the variable
sets in the removed stack.

Notably, the structural restrictions (see Section 4.3.2) computed during the assignment
of a variable are always computed with respect to the full edit rule graph, i.e., the restrictions
are also computed for variables in the removed stack. In addition, incomplete assignments
of atomic change sets can already be filtered during the initialization of their corresponding
variable domains. In this case, for actual maximal solutions, the domains are typically just
checked as being empty. For actual non-maximal solutions, a variable set can typically be
tested as being assignable, starting with any value in its non-empty domains.

N1 N2
E12

1 2
3 4

12

Figure 4.8. Maximality of sub-rule occurrence during backtracking.

Such non-maximal assignments can occur during the backtracking computation and can
occur if a maximal solution comprising the set of variables 𝑆𝑚 overlaps with another maxi-
mal solution 𝑆𝑛 ⊂ 𝑆𝑚. For example, the graph in Figure 4.8 consists of two nodes 𝑁1 and 𝑁2
and an edge 𝐸12 that depends on its source and target nodes. The subgraph matching prob-
lem has three maximal, structurally-connected solutions: 𝑆0 = {𝑁1 = 1, 𝐸12 = 12, 𝑁2 = 2},
𝑆1 = {𝑁1 = 3}, and 𝑆2 = {𝑁2 = 4}. To compute such solutions, we initialize the CSP solver
in Listing 4.1 with the remaining = {N1, E12, N2} variables. Assuming 𝑁1 is selected before 𝑁2
(Line 8), the backtracking algorithm first determines the solutions for 𝑁1, 𝐸12, 𝑁2, before
the partial solution 𝑁1 and 𝑁2 are computed. However, during the assignments starting
from 𝑁2, we will first find the non-maximal solution {𝑁2 = 2}.

During the backtracking from the solution 𝑆0 = {𝑁1 = 1, 𝐸12 = 12, 𝑁2 = 2}, the CSP
solver also computes the partial solutions 𝑆0.1 = {𝑁1 = 1} and 𝑆0.2 = {𝑁1 = 1, 𝑁2 = 2}.
Both solutions are non-maximal solutions, i.e., the solutions 𝑆0.1 and 𝑆0.2 are subsets of the
solution 𝑆0. As an optimization, the isMaximalPartialSolution() function should first check the
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variable on top of the removed stack, i.e., the latest variable that has been removed during
the backtracking search to identify such cases directly.

4.4 Matching of Application Contexts
As discussed in Section 4.1 and Definition (4.1), the sub-rule must be applicable in an in-
termediate model version 𝑉 ′𝐴 considering the model difference Δ(𝑉𝐴, 𝑉𝐵). To compute the
application context of a sub-rule in 𝑉 ′𝐴, the CSP solver in Listing 4.6 extends the algorithm
from Listing 4.1 and Listing 4.3. Therefore, the partial solution that represents the changes
of a sub-rule application in 𝐺Δ(𝑉𝐴,𝑉𝐵) has to be extended.

Create sub-rule context (Line 72 - 73): Initially, the variables of the sub-rule’s application
context that are to be matched in the intermediate model version 𝑉 ′𝐴 are collected.
The application context consists of all graph elements of the edit rule annotated with
«preserve» actions (Line 72). In addition, all graph elements that are to be deleted by the
complement rule are included as elements to be preserved by the sub-rule application
context (Line 73).

Prepare domains (Line 75), (Line 84): Thematching of connected subgraphs (see Section 4.3.2)
can lead to a sub-rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 consisting of unmatched disconnected subgraphs
𝐺𝑐 ⊂ 𝐺𝐸𝑅𝑠𝑢𝑏 . For example, the sub-rule graph illustrated in Figure 4.5 consists of two
disconnected subgraphs. However, only the subgraph related to the creation of the
transition is mapped to the difference graph. In this context, let 𝐺𝑠𝑟 ⊂ 𝐺𝐸𝑅𝑠𝑢𝑏 be the
subgraph that is mapped to the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵). Therefore, the domains
of the variables representing the disconnected subgraphs 𝐺𝑐 ≢ 𝐺𝑠𝑟 are completely
restricted, i.e., their domains do not contain any assignable values. To match the
application context, we ignore the restrictions of such variables (Line 75), i.e., we allow
all values of the variables’ domains to be assigned. Finally, such domain restrictions
are restored (Line 84) in a backtracking step.

Matching the sub-rule’s application context (Line 78 - 79): The findSolution() function in List-
ing 4.6 generalizes the findSolution() function from Listing 4.3. To compute a complete
application context matching, we call the findSolution() function with the prepared sub-
rule application context (Line 79). The found matchings are combined (Line 78 - 79)
with respect to each graph element (Line 88) of the application context.

Edit Rule Difference Sub-Rule Context Comment
«delete» «preserve» «preserve» to be deleted by the complement rule

«preserve»
«preserve» /

«create» / «delete»
«preserve» including preceding/succeeding changes

«preserve»
«preserve»
/«create»

«preserve» complement rule context nodes

Table 4.2. Compatibility of the complement rule matching.
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70 function solutionFound(solution: Stack<VariableSet>, removed: Stack<VariableSet>):
71 ⟩ initialize application context:
72 context: VariableSet = { v ∈ solution.variables | v.represents.action ≡ «preserve» }
73 context = context ∪ { v ∈ removed.variables | v.represents.action ≡ «delete» }
74 solution.push(context)

75 fullyRestricted : VariableSet = ignoreDomainRestrictions({ v ∈ context | v.assignable ≡ ∅ })
76 restrictions : VariableSet = restrictContextDomains(context)

77 ⟩match application context:
78 matches: Map<GraphElement, Set> = { context.variables.represents↦∅ }

79 if findSolution(context, test=false, vars → contextFound(vars, matches)) then
80 deriveComplementRule(subChanges=solution, contexts=matches)
81 endif

82 ⟩ backtracking step…
83 unrestrictContextDomains(restrictions)
84 restoreIgnoredDomainRestrictions(fullyRestricted)
85 solution.pop()

86 function contextFound(context: VariableSet, matches: Map<GraphElement, Set>): Boolean
87 if evaluateApplicationCondition(context) then
88 return addMatchFromAssignment(context, matches)
89 endif
90 return false

91 function findSolution(vars: VariableSet, test: Boolean, yield: VariableSet→Boolean): Boolean
92 exists : Boolean = false ⟩ Does at least one assignment exists?

93 if hasUnassignedVariables(vars) then ⟩ select variable and compute assignments…
94 v: Variable = selectUnassignedVariable(vars)

95 foreach assignment ∈ v.domain.assignable do
96 assignVariable(v, assignment) ⟩ (D) assign selected variable

97 if constraintAssignment(v, vars) then ⟩ Is the assignment within the solution space?
98 exists = findSolution(vars, test , yield) ∨ exists ⟩ ↪ assign next variable in given set
99 endif
100 freeVariable(v) ⟩ (D) backtracking assignment
101 test ∧ exists⇒ break ⟩ Only find the first solution?
102 endforeach
103 else
104 exists = yield(vars) ⟩ process complete assignment…
105 endif
106 return exists

Listing 4.6. Matching of the application context in the model difference graph.
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107 recommendations: List<Proposal> = []

108 function restrictContextDomains(context: VariableSet): VariableSet
109 complementChanges: Set<GraphElement> = removed.represents.elements
110 complementContext = { v ∈ context.variables | isContextOf(v.represents, complementChanges) }
111 restrictDomainsByAction(complementContext, «delete» )
112 return complementContext

113 function deriveComplementRule(subChanges: VariableSet, contexts: Map<GraphElement, Set>): Boolean
114 complement: Rule = deriveComplementRule(ER, subChanges.represents.elements)
115 parameters: Map<String, Set> = deriveParameterInput(complement, subChanges, contexts)
116 recommendations.add(Proposal{rule = complement, input = parameters})

Listing 4.7. Matching and derivation of the complement rule.

In addition, in the deriveComplementRule() function in Listing 4.7, the actual complement
rule is derived, and the matching of the application context is translated into possible pa-
rameter bindings.

Application context domain restrictions (Line 108 - 112): Except for the sub-rule’s application
context, the complement rulemust be applicable inmodel version 𝑉𝐵. Considering the
corresponding graph transformation rule, the left-hand side of the complement rule
must be mapped to nodes in the difference graph with «preserve» or «create» actions.
In particular, the matching of the sub-rule application context and the complement
application context can be performed in the one matching step. Therefore, based on
the variables representing the sub-rule’s application context in Listing 4.7, the restrict-
ContextDomains() function call (Line 76) first determines the variables that represent
the complement rule’s application context. Next, the domains of those variables are
restricted to not contain any graph elements of the difference graph annotated with
«delete» actions.

Derive the complement rule (Line 113 - 116): As defined in Section 4.1, we can derive the
complement rule from the edit rule by a given set of change actions that represent
the sub-rule (Line 114). In addition, the parameter bindings are derived from the
application context matching (Line 115). Finally, we store the complement rule and
parameter bindings as a new complementation recommendation (Line 116).

As shown in the model excerpt in Figure 4.1 of the model version in Figure 2.2, the sub-
rule depicted in Figure 4.5 can be recognized, which creates the transition fastForward in
the state machine diagram. As shown in the corresponding complement rule in Figure 4.6,
the parameter newTransition is bound to the transition fastForward as container of the new
trigger. The name of the transition fastForward is set as an input parameter transitionName
for the operation to be created. The parameter of the class can be bound to one of the classes
User, Video, or Server in the class diagram in Figure 2.2. The parameter defining the package
is bound to the VoD-System package containing those classes.
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4.4.1 Approximation of Parameter Bindings
The application context to be recognized can consist of multiple disconnected graphs 𝐺𝑐 ⊂
𝐺𝐸𝑅𝑠𝑢𝑏 . During their matching, all possible combinations of matches of the disconnected
graphs are computed. For example, for the edit rule createOperationTriggeredTransition in Fig-
ure 4.2 the source and target state of the new transition can be selected independently.
Searching all applications of the complete edit rule in a model, we must compute the prod-
uct of all states in the model for the application context. In general, this combinatorial
computation can lead to runtime problems during the matching of the application context.

For the recommendation proposals, we combine the matchings into lists of input pa-
rameter bindings with respect to the complement rule. In the case of the edit rule create-
OperationTriggeredTransition, this simply means we show all states of the model as possible
parameter binding of the source and the target state. In general, as an approximation of the
parameter bindings, the combinatorial problem can be avoided by separately computing the
matchings for each disconnected subgraph 𝐺𝑐 ⊂ 𝐺𝐸𝑅𝑠𝑢𝑏 of the application context. In partic-
ular, the overall matching of the application context fails if no matching can be found for
one of the subgraphs 𝐺𝑐 .

The matching of the disconnected subgraphs 𝐺𝑐 is an over-approximation of the parame-
ter bindings if application conditions between the subgraphs have to be checked. If the edit
rule only allows injective matchings of its LHS (see Section 3.5.2) this constraint has to be
checked for a concrete binding selected by the developer. For example, requiring an injective
matching for edit rule createOperationTriggeredTransition would mean that no self-transitions
can be created.

A similar problem appears for the testing of disjunctive connected graph constraints 𝑎∨𝑏
of the edit rule’s application condition. Basically, one graph constraint can be considered
optional if the other graph constraint is fulfilled. As an over-approximation of the possible
parameter bindings, we ignore such constraints and check the complete application con-
dition only for a concrete parameter binding. In general, we could also leave it up to the
developer whether to filter such parameter bindings or to make an informed decision to
(temporarily) ignore certain edit rule application conditions.

4.5 Validation of Application Conditions
According to Section 3.5.2, an edit rule can define additional application conditions that have
to be checked in order to determine the applicability of the rule in a model’s ASG 𝐺. Given
a matching of the application context, the application condition is a logical formula that is
checked over atomic graph constraints, i.e., PAC and NAC graph constraints that require
or forbid specific graph patterns embedded into the application context. Moreover, the edit
rule can require an injective matching, i.e., two nodes of 𝐺𝐸𝑅 are not allowed to be mapped
to the same node in 𝐺. Optionally, the dangling condition can be required for the edit rule,
i.e., nodes in 𝐺 can only be deleted if their incident edges are also deleted by the edit rule.

During the sub-rule recognition, for each matching of the application context and graph
constraints, the injectivity of the mapping from 𝐺𝐸𝑅𝑠𝑢𝑏 with respect to 𝐺Δ(𝑉𝐴,𝑉𝐵) must be
checked. The dangling constraint only has to be checked for the nodes to be deleted by the
complement rule. By definition, the dangling condition for the nodes deleted by the sub-rule
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is always fulfilled, i.e., if a node is deleted according to the model difference Δ(𝑉𝐴, 𝑉𝐵), then
Δ(𝑉𝐴, 𝑉𝐵) also contains the deletions of incident edges of this node (see Section 3.4.2).

Let us consider again the recognized sub-rule in Figure 4.5 of the edit rule createOpera-
tionTriggeredTransition in Figure 4.2. With respect to the model difference in Figure 4.1, the
creation of the transition fastForward is detected as a partial edit step. In this application
context, the NAC is fulfilled for all classes in the class diagram, i.e., none of the classes con-
tain an operation named fastForward(). The PAC of the class matches the VoD-System package
of the class diagram. The PAC of the state is fulfilled for the already matched application
context nodes, i.e., the source state streaming is contained in the same region playback as the
fastForward transition.

As already discussed in Listing 4.6, for each partial solution that is computed, the func-
tion evaluateApplicationCondition() checks the application condition for the recognized sub-
rule application. The application condition ac (Line 117) is a logical formula over atomic
graph constraints (see solution stack (Line 3) in Listing 4.1). Each graph constraint is repre-
sented as a set of variables in the CSP. We first check the dangling condition for the nodes
to be deleted by the complement rule (Line 119). Finally, the evaluate() function in List-
ing 4.8 determines the result of the logical formula ac by checking the graph constraints
using the findSolution() function (Line 120). We apply the generalized findSolution() function
from Listing 4.3 to check if at least one (test=true) assignment exists for a given variable set
representing a graph constraint.

117 ac: Formula<VariableSet> = applicationCondition(GER, solution) ⟩ application condition

118 function evaluateApplicationCondition(context: VariableSet): Boolean
119 return checkDangling({ v ∈ context.variables | v.represents.action ≡ «delete» }) ⟩ of complement rule
120 ∧ ac.evaluate(context, graphConstraint→ findSolution(graphConstraint, test=true, vars→ true))

Listing 4.8. Validation of the edit rule’s application condition (optionally) including the dangling
condition of the matching.

In the extension of the CSP in Listing 4.8, each atomic graph constraint in the application
condition formula ac is represented as individual VariableSet. As shown in the CSP data
structure in Figure 4.3, a variable set can represent a GraphConstraint, which is a special kind
of GraphFragment. A GraphConstraint that contains a NAC is marked as negative = true.

4.5.1 Precondition Graph Constraints
The application context and the PAC graph constraints define graph fragments that must
exist in a model’s ASG. Similar to the recognition of the sub-rule’s application context, the
PACs of an edit rule are checked on the union 𝑉𝐴 ∪ 𝑉𝐵 of the old and the new model version.
This results in the action compatibility for PAC graph matchings as defined in Table 4.3,
i.e., the elements in the edit rule annotated with «require» actions can be mapped to model
elements in the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) annotated with «preserve», «delete», or «create»
actions.

In contrast, a NAC graph constraint checks for the absence of a certain graph fragment.
During the recognition of a sub-rule according to Definition (4.1), we have to check if the
application condition has been fulfilled prior to the execution of the sub-rule. This has
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to be checked on the intermediate model version 𝑉 ′𝐴. However, finding 𝑉 ′𝐴 that fulfills all
PAC and NAC graph constraints of an edit rule simultaneously requires considering all
possible intermediate versions between version 𝑉𝐴 and 𝑉𝐵. Therefore, the absence of NAC
graph constraints during the sub-rule recognition is approximated based on the minimal
intermediate model version 𝑉 ′𝐴, i.e., the intersection of the model versions 𝑉𝐴 ∩ 𝑉𝐵. As
defined in Table 4.3, the graph elements of a NAC can be mapped to the model elements in
the difference graph annotated with «preserve» actions.

Edit Rule Difference Sub-Rule AC Comment

«require»
«preserve»

/ «create» / «delete»
«require» PAC precondition graph constraint

«forbid» «preserve» «forbid» NAC precondition graph constraint

Table 4.3. The action compatibility of the variables’ domains that represent graph constraints that
define preconditions of the edit rule.

4.5.2 Invariant Graph Constraints
Alternatively, we assume a graph constraint can be configured as an invariant instead of a
precondition. In this case, from the perspective of recognizing an edit rule 𝐸𝑅 in a model dif-
ference Δ(𝑉𝐴, 𝑉𝐵), the application condition of 𝐸𝑅 must be valid for the intermediate model
version 𝑉 ′𝐴 and must stay valid for all succeeding model versions. Therefore, the application
condition can be checked onmodel version 𝑉𝐵. In the CSP solver, the variables’ domains rep-
resenting invariant PAC or NAC graph constraints are initialized with the action-compatible
element from the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) as defined in Table 4.4, i.e., the graph elements
in 𝐺Δ(𝑉𝐴,𝑉𝐵) annotated with «preserve» and «create» actions.

Edit Rule Difference Sub-Rule AC Comment

«require»
«preserve»
/ «create»

«require» PAC invariant graph constraint

«forbid»
«preserve»
/ «create»

«forbid» NAC invariant graph constraint

Table 4.4. Action compatibility of the variables’ domains representing invariant graph constraints.

For example, the PAC graph constraints of the edit rule createOperationTriggeredTransition
in Figure 4.2 can also be interpreted as invariant conditions. As a precondition, the PAC
defines that the new transition is created in the region of its source state. As an invariant,
it states that a transition must always be contained in the region of its source state, i.e., the
state cannot bemovedwithout moving its outgoing transitions to another region. Assuming
we apply the complete edit rule, the NAC graph constraint, however, is not fulfilled anymore.
The NAC checks that an operation with the name of the operation to be created not already
exists in the target class. After creating the operation, the NAC would detect that operation.
Therefore, the NAC can only be interpreted as a precondition graph constraint of the edit
rule.
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4.6 Impact of Change Actions
In the context of a recommendation tool, the developer needs to define the context of the
recommendation with respect to the task to be performed (see Table 2.1 in Section 2.3). Gen-
erally, the context of our approach can be restricted by specifying the model elements that
can be potentially modified by the sub-rule and complement rule. As shown in Listing 4.9
extending the CSP solver, this can be achieved by additional constraints with respect to the
sub-rule and complement rule.

121 function constraintSolution(): Boolean
122 return … ⟩ extends Listing 4.1
123 ∧ hasHistoricalImpact(solution ∪ remaining) ⟩ in sub-rule!
124 ∧ hasComplementaryImpact(removed ∪ remaining) ⟩ in complement rule!

Listing 4.9. Constraint impact of change actions.

4.6.1 Historical Impact of Change Actions
Generally, the recommendation approach of ReVision focuses on the complementations
of incomplete edits. The editing history is represented as a model difference that contains
concrete, historical changes between two versions of a model 𝑉𝐴 and 𝑉𝐵. Let Δ𝜇(𝑉𝐴, 𝑉𝐵) ⊂
Δ(𝑉𝐴, 𝑉𝐵) be the set of changes with a historical impact within the current recommendation
context, i.e., historical changes that indicate potential incomplete edits. A sub-rule 𝐸𝑅𝑠𝑢𝑏
is considered to have a historical impact if at least one change action of 𝐸𝑅𝑠𝑢𝑏 matches a
concrete change in Δ𝜇(𝑉𝐴, 𝑉𝐵). Therefore, we first compute the subset of the change actions
𝐸𝑅𝜇 ⊂ 𝐸𝑅 which have a potential historical impact, i.e., the change actions that can be
initialized to form a concrete change included in Δ𝜇(𝑉𝐴, 𝑉𝐵).

For example, let us assume the newly created transition fastForward of edit step (2.3) in
our running example in Figure 4.1 is selected by the developer as the context for detecting
incomplete edits. By collecting the historical changes related to the selectedmodel fragment,
the changes of edit step (2.3) define Δ𝜇(𝑉𝐴, 𝑉𝐵). The change actions 𝐸𝑅𝜇 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 of
the edit rule createOperationTriggeredTransition shown in Figure 4.2 are matching the historical
changes of the edit step (2.3) as potential historical impact. Therefore, only those 51 sub-
rules that contain at least one of the change actions in 𝐸𝑅𝜇 are considered. Moreover, if a
larger set of edit rules is processed, all edit rules which have no historical impact will be
ignored immediately.

The historical impact is tested as part of the constraintSolution() function in Listing 4.9.
The function hasHistoricalImpact() first checks the potential impact of the sub-rule. Therefore,
we can check if at least one atomic change set with historical impact is contained in the
solution or the remaining set, i.e., the maximal possible sub-rule that can be constructed at
the current computational state of the CSP solver.

Given a sub-rule and a matching 𝑚 ∶ 𝐺𝐸𝑅𝑠𝑢𝑏 → 𝐺Δ(𝑉𝐴,𝑉𝐵) in the difference graph, we can
also check for the actual historical impact of change actions. Let Δ𝜇(𝑉𝐴, 𝑉𝐵) ⊂ Δ(𝑉𝐴, 𝑉𝐵) be a
set of concrete historical changes from the model difference Δ(𝑉𝐴, 𝑉𝐵). A sub-rule matching
𝑚 has an actual historic impact if𝑚 contains at least one changed graph element of 𝐺Δ(𝑉𝐴,𝑉𝐵)
that corresponds to change in Δ𝜇(𝑉𝐴, 𝑉𝐵).
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For example, we assume that the developer has selected the transition fastForward from
our running example in Figure 4.1. The historical impact Δ𝜇(𝑉𝐴, 𝑉𝐵) contain the historical
changes from the edit step (2.3). The changes of Δ𝜇(𝑉𝐴, 𝑉𝐵) can be found in the domains of
the variables representing the creation of the transition 𝐸𝑅𝛼 = {𝐴1, 𝐴2, 𝐴3}. In contrast, the
sub-rule that creates the transition play in edit step (2.2) is filtered by the historical impact.

The function hasHistoricalImpact() returns true if at least one of the variables with a poten-
tial historical impact also contain elements in their domain with an actual historical impact.
Moreover, to reduce the number of backtracking steps of the computation, the selectVariable-
Set() function can be optimized to prefer change sets with historical impact.

4.6.2 Complementary Impact of Change Actions
Similar to the potential historical impact, the computed applications of a complement rule
𝐸𝑅 may require additional restrictions depending on a specific recommendation task. For
example, the recommendation context might be restricted to the currently selected model
fragment or a particular inconsistency to be fixed. Let 𝐸𝑅𝛼 ⊂ 𝐸𝑅 be a subset of the change
actions in 𝐸𝑅 that have a potential complementary impact. A complement rule 𝐸𝑅 is consid-
ered to have a complementary impact if at least one change action of 𝐸𝑅 matches a change
action in 𝐸𝑅𝛼 .

Let us again consider the example of assigning a trigger to the newly created transition
fastForward in Figure 4.1. Assuming that the developer has selected the transition as a con-
text for the detection and complementation of incomplete edits. Therefore, 𝐸𝑅𝛼 is computed
by collecting all change actions from 𝐸𝑅 that are adjacent to the creation of a transition. In
the case of the edit rule createOperationTriggeredTransition in Figure 4.2, the creation of the tran-
sition’s trigger is adjacent to the creation of the transition. In terms of the atomic change
sets in Figure 4.2, we can denote the complementary impact as 𝐸𝑅𝛼 = 𝐴4. In this case, 20
sub-rules exist that have a potential historical and complementary impact. In general, con-
sidering a larger set of edit rules, an edit rule that has no potential complementary impact
can be filtered instantly.

As shown by the CSP solver in Listing 4.1, the complementary impact is checked simi-
larly to the historical impact. The function hasComplementaryImpact() of the constraintSolu-
tion() function checks if at least one atomic change set of the complement rule has a com-
plementary impact. The function checks the change actions of the change sets currently
represented by the variable sets in the removed and remaining stacks. The change sets that
are currently removed from the solution space correspond to the complement rule, and the
remaining change sets are not yet decided.

Let Δ𝛼 be a set of abstract change actions (see Section 3.3) that can be initialized and ap-
plied to the current model version 𝑉𝐵. Similarly to the historical impact in Section 4.6.1, we
can check the change actions of the complement rule 𝐸𝑅 = 𝐸𝑅 ⧵ 𝐸𝑅𝑠𝑢𝑏 for an actual comple-
mentary impact. A complement rule has an actual complementary impact if the matching
𝑚′ ∶ 𝐿𝐸𝑅 → 𝑉𝐵 initializes at least one change action of 𝐸𝑅 that matches an abstract change
contained in Δ𝛼 .

We have determined the change actions 𝐸𝑅𝛼 = {𝐴4} of the edit rule in Figure 4.2 as
potential complementary impact, i.e., the change actions adjacent to the potential historical
impact 𝐸𝑅𝜇 = {𝐴1, 𝐴2, 𝐴3}. The complementary impact Δ𝛼 can constraint those change
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actions to be bound as abstract changes in the context of the selected fastForward transition.
In other words, the complement of the partially executed edit step should be performed at
the boundary of the selection in the model editor. This condition is fulfilled for the creation
of the trigger in the edit rule createOperationTriggeredTransition.

The actual complementary impact is also checked by the function call hasComplementary-
Impact() function in Listing 4.1. The change actions of the complement rule are represented
by the variables in the removed or remaining stack of the CSP solver. The function checks if at
least on change action represented by those variables has a complementary impact. There-
fore, for each change action with a potential historical impact, a set of impacted model
elements can be collected from the context elements of the matching abstract changes in
Δ𝛼 . During the assignments in the CSP solver, the domains of the variables that represent
the context of a change action with a potential historical impact must be monitored. For
example, the context of the creation of the trigger and, in particular, its containment edge
in Figure 4.2 is the node newTransition. For a historical impact, at least one of those domains
must contain an impacted model element.

4.7 Refinement of Sub-Rules
The described algorithm in Section 4.3 for recognizing sub-rules deals with some limitations
to reduce the complexity and numbers of resulting complementation alternatives. However,
as discussed below, those limitations can be mitigated by allowing the developer to request
omitted sub-rules interactively.

4.7.1 Historically Preserved Elements as Creations
Based on the action compatibility of the sub-rule matching described in Table 4.1 of Sec-
tion 4.3.1, a «create» action in the edit rule cannot be mapped to a «preserve» action in the
difference graph. For example in Figure 4.2, to use an existing operation as a trigger in our
running example, another edit rule would be required that preserves that operation. In gen-
eral, the action compatibility could be extended to also allow such mappings. However, this
can result in a vast number of additional sub-rules, possibly overwhelming the developer.

As an interactive solution, we allow the developer to refine an already selected comple-
ment rule by computing additional sub-rules. During this refinement step, the action com-
patibility is relaxed to allow the mapping of «create» actions to «preserve» actions. Moreover,
the developer might already select some of the parameters of the complement rule to refine
the recommendation context. In our running example, the Video class could be selected to
recommend only the contained operations.

4.7.2 Combine Disconnected Sub-rules
As described for the structural graph matching in Section 4.3.2, the structural restriction al-
lows only connected matchings of the sub-rule graph 𝐺𝐸𝑅𝑠𝑢𝑏 matchings in the difference
graph 𝐺Δ(𝑉𝐴,𝑉𝐵). This prevents the combination of structurally independent changes in
the sub-rule that can potentially lead to a combinatorial explosion of the possible sub-rule
matchings in themodel difference. However, such disconnected sub-rule graphs can be com-
bined in an interactive refinement step. For a selected complement rule and its sub-rule, we
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search for additional sub-rules within the proposed complement rule.
For example, if the developer selects the new transition fastForward in Figure 4.1 as the

context for a complementation, the proposal based on edit rule createOperationTriggeredTran-
sition in Figure 4.2 is to create a new operation as a trigger. Assuming the operation fast-
Forward() has already been created manually, the new operation can be recognized from the
model difference in a subsequent refinement step. To further restrict the application context
of the refined sub-rule, the developer can also select some parameters of the complement
rule, e.g., class or package of the edit rule createOperationTriggeredTransition.

4.7.3 Reduce Sub-rules
As described in Section 4.3.3, the matching of a sub-rule graph in a model difference graph
must cover the maximal possible number of historical changes. Showing all non-maximal
sub-rules might overwhelm the developer with recommendation proposals. Instead, such
cases in which the sub-rule is too large might be handled as an interactive refinement of the
sub-rule. In the recommendation tool, we allow the developer to shift recognized change
actions from the sub-rule to the complement rule. Notably, in terms of deletion actions,
this requires determining the elements to be deleted by the complement rule in the current
model version 𝑉𝐵.

4.8 Complementation of Multi-rules
As defined in Section 3.5.2, a graph transformation rule that specifies an edit rule can con-
tain nested multi-rules, which implements a “for all” semantic to apply recurring transfor-
mations within a single rule. Basically, partially executed multi-rules can be recognized in
the model difference by the same technique as for regular edit rules.

The nesting of multi-rules can be considered as a tree of embedded rules. For each path
in this tree, starting from the topmost kernel rule, an edit rule graph 𝐺𝐸𝑅 of the nested
multi-rules is created that contains the kernel rule and a single instance of all nested multi-
rules on that path, i.e., the multi-rules are flattened into a single edit rule graph. Based on
the flattened edit rule graphs, possible sub-rules can be recognized in the model difference
graph.

For example, consider again Figure 3.21, which shows amulti-rule that deletes a state and
all of its incoming and outgoing transitions. From this multi-rule, we derive two flattened
edit rule graphs for the incoming and outgoing transitions, respectively. In this case, the
multi-rules have to be considered separately to not recognize the product of all sub-rules
with respect to partially removed incoming and outgoing transitions.

Assuming that from Version 1 to Version 2, shown in Figure 2.1 and Figure 2.2, the state
named previews is deleted without removing the outgoing transitions play and pause. Based
on the edit operation deleteStateWithTransitions in Figure 3.21, we can recognize a partial ex-
ecution of the multi-rule deleteStateWithTransitions/out in the model Version 2 illustrated in
Figure 2.2. In this case, the kernel rule and the multi-rule deleting the incoming transition
deleteStateWithTransitions/in are fully executed, i.e., the deletion of the state previews, includ-
ing the incoming transition with the trigger after(15 sec). The multi-rule that deletes the
outgoing transitions is only executed partially, i.e., only the edges in the ASG determining
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the source state of the transitions are already deleted from the objects play and pause. In
this case, one partially executed sub-rule is found for the flattened edit rule graph 𝐺𝐸𝑅 of
multi-rule deleteStateWithTransitions/out. The resulting complement rule deletes the remain-
ing transitions play or pause by selecting them one after another as input parameters, i.e.,
the same complement rule is executed twice with different parameter bindings.

For a multi-rule with a tree-like embedding structure, this approach results in a single
complementation proposal for each partial execution with respect to different paths in that
tree. In general, multiple recognized sub-rules contribute to the same partially executed edit
rule if they share the same recognized changes with respect to their kernel rule(s). For future
work, a recommendation tool could also group such complement rules with a common sub-
rule into units to execute all complementations in one step.

4.9 Rollback of Partially Executed Edit Operations
In contrast to the complementation of partially executed edits, the changes of a partially
recognized edit step can also be rolled back. The rollback might be done at the developer’s
discretion, e.g., in a situation where no reasonable complementation exists. In order to
construct a rollback, the change actions of the sub-rule must be inverted. Therefore, in the
sub-rule 𝐸𝑅𝑠𝑢𝑏 , the «create» actions are replaced by «delete» actions, and vise versa. This
includes undoing attribute changes performed by the sub-rule.

Rollback createOperationTriggeredTransition(transitionName, newTransition, region, source, target)

«preserve»
source:State

«preserve»
target:State

«delete»
newTransition:Transition

name=transitionName

source
«delete»container

«delete»

target
«delete»

transition
«delete»

 

«preserve»
region:Region

Figure 4.9. Rollback rule of the edit rule createOperationTriggeredTransition in Figure 4.2.

As discussed for the reconstruction of edit sequences in Definition (4.1), a sub-rule can
have preceding and succeeding edit steps performed between the versions 𝑉𝐴 and 𝑉𝐵 of a
model. If changes in a succeeding edit step 𝑏 in the model difference depend on changes in
𝐸𝑅𝑠𝑢𝑏 , those changes must also be rolled back. For a given set of changes of the difference,
the dependent changes can be computed according to the elementary dependencies defined
in Section 3.3.3. Those dependent changes lead to side effects of the rollback, e.g., a model
element deleted by a sub-rule must be inserted in 𝑉𝐵, including its attribute values defined
in 𝑉𝐴. In such cases, the developer should be informed about the dependent changes and
side effects of the rollback.
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Figure 4.9 shows the rollback rule of the newly created transition fastForward. The roll-
back contains only the boundary nodes of the change actions. In this case, the rollback has
no side effects. Moreover, the parameter newTransition of the rollback rule is bound to the
transition fastForward, including the parameters of the corresponding application context.
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History-based Model Repair

Models in MDE are primary development artifacts that are heavily edited in all software de-
velopment stages and can become temporarily inconsistent during editing. Model repair tools
can support developers by proposing a list of the most promising repairs. Such repair recom-
mendations will only be accepted in practice if the generated proposals are plausible and under-
standable and the set as a whole is manageable. The main idea of our approach is to consider
CPEOs as ideal edit operations and to recommend the “gap” between ideal edits and the ed-
its which have caused an inconsistency as model repairs. Based on the approach for detecting
and complementing partial executions of edit operations described in the previous Chapter 4,
incomplete edit steps are detected in the model history and can be either undone or extended
to the full execution of a CPEO. Technically, we recognize sub-rules that could have caused the
inconsistency. At the same time, the resulting complement rule must repair the inconsistency.

T his chapter presents our interactive repair approach for models, which exploits informa-
tion about the editing history of a model to generate meaningful repair recommenda-

tions. InMDE,models are the primary development artifacts that are frequently edited. Dur-
ing this development process, a model can become inconsistent by temporarily violating the
consistency rules of the modeling language. Inconsistencies are particularly likely to hap-
pen in systems that are modeled from several viewpoints, which is a widespread paradigm
in managing the complexity of large-scale software-intensive systems. Such large system
models are often edited in distributed teams. Moreover, in a development team that covers
multiple disciplines, different developers can be responsible for designing different system
views. During its evolution, a model is exposed to various potential sources of inconsistency.
Especially in the early design phases of a software project, some requirements may be un-
decided or still need to be understood [129]. Furthermore, during the ongoing evolution
of a software project, multiple versions or variants of a model can be developed in parallel
branches. Such branches must eventually be merged, and changes must be propagated to
local workspaces [81].

The VoD-System introduced in Section 2.1 is an example of a software system that is
modeled from different viewpoints. The system’s static structure is defined by the class
diagram in Figure 2.3a. In addition, the sequence diagram in Figure 2.3c depicts a “start

95
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message_signature(m:Message): The signature of a message in a sequence diagrammust be identical
to an operation of the class that defines the type of the receiving lifeline.

message_signature(m:Message) ≔
m.signature.name ≡m.name ⟩ (a)

∧
m.receiveEvent.covered.represents.type.ownedOperation ⟩ (b)� ∃ o ∣m.signature ≡ o ⟩ (c)

(5.1)

Figure 5.1. Version 4 with difference to Version 3: Excerpt of the unified difference graph
𝐺Δ(𝑉𝐴,𝑉𝐵) between the model Version 3 in Figure 2.3 and Version 4 in Figure 2.4 of the VoD-System.
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message_property(m:Message): For a message in a sequence diagram, the sender’s class must be able
to reference objects of the receiver’s class by a property.

message_property(m:Message) ≔
m.receiveEvent.covered� ∃ rl ∣m.sendEvent.covered� ∃ sl ∣ sl.represents.type.ownedAttribute� ∃ p ∣ p.type ≡ rl.represents.type

(5.2)

Figure 5.2. Version 5 with difference to Version 4: Excerpt of the unified difference graph
𝐺Δ(𝑉𝐴,𝑉𝐵) between the model Version 4 in Figure 2.4 and Version 5 in Figure 2.5 of the VoD-System.
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and stop the video stream” use case scenario. In particular, the class diagram describes
the possible operations that can be invoked by messages between objects in the sequence
diagram. In this context, the sequence diagram must conform to the following exemplary
consistency rules.

message_signature(m:Message): The formal description of the consistency rule message_signa-
ture(m:Message) is expressed in Definition (5.1). The type of its context is a Message of
a sequence diagram (see Figure 3.3). The logical expression is a conjunction of two
parts. The first part (see Definition (5.1a)) checks that there is an operation serving
as the signature for the message. The operation must have the same name as the
message. In the second part (see Definition (5.1a, 5.1b)), the consistency rule checks
the lifelines that receive the message (m.receiveEvent.covered). The lifeline represents
an instance of a class (represents.type) that is located in a property. This class must
contain the operation (o) that is specified as the signature of the message (m.signature).

message_property(m:Message): The formal specification of a second exemplary consistency rule
message_property(m:Message) is shown in Definition (5.2). This rule states that for a
message between two lifelines (rl and sl), the classes of the sender (sl.represents.type)
must contain a property (p) with the type (p.type) of the receiver (rl.represents.type). In
other words, sending a message can also be read as an operation call. In this context,
it must be possible for the calling object to store a reference of the called object. As
shown in the class diagram in Figure 2.3a, such a referencing property can be included
and illustrated by a navigable association between two classes.

As defined in Section 3.2, the consistency rules are evaluated for all elements on a
model’s ASG that match the type of the rule’s context. Validating the consistency rules
message_signature(m:Message) and message_property(m:Message) on Version 3 in Figure 2.3, no
such inconsistencies are found with respect to the sequence diagram. Now let us consider
again the modeling scenarios described in Section 2.1.2 and Section 2.1.3, which introduce
and resolve two inconsistencies between the sequence and class diagram. The scenario
comprises three subsequent edit steps on the VoD-System model.

Inconsistency-inducing edit step (4.1): First, we edit only the class diagram by moving the
operation disconnect() from class Video to class Server, producing Version 4 shown in
Figure 2.4. The validation of the consistency rule message_signature(m:Message) will fail
now for the message 6:disconnect as illustrated in Figure 2.4b. Figure 5.1 shows an
excerpt of Version 4 and the corresponding difference graph between Version 3 and
Version 4 of the model. In the ASG of the difference graph, moving the operation
disconnect() is described by the deletion and creation of the containment references
between the disconnect() operation and the Video and Server class.

First corrective edit step (5.1): Next, a complementary modification in the sequence diagram
is required. The message 6:disconnect, sent from the lifeline Alice:User to the lifeline
open:Video, must now be received by an object of class Server that owns the operation
disconnect(), e.g., the objects represented by the lifelines main:Server and mirror:Server.
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To resolve the inconsistency, we perform a corrective edit step in the sequence diagram.
We change the target of the message 6:disconnect to the lifelinemirror:Server as shown
in Figure 2.5, which we will refer to as Version 5. The changes of the edit step are
illustrated in the excerpt of the difference graph in Figure 5.2, i.e., the changing of the
target end of the message 6:disconnect.

Second corrective edit step (6.1): The first consistency rule is now satisfied. However, our
first corrective edit step has introduced a new defect. As illustrated in Figure 2.5b,
the consistency rule Definition (5.2) is violated now. In fact, the sending and receiv-
ing lifelines, namely, Alice:User and mirror:Server, are not connected by an association
or property in the class diagram. This inconsistency can be fixed in various ways,
one option is to change the source of the message from lifeline Alice:User to lifeline
open:Video as shown in Figure 2.6, which we will refer to as model Version 6.

The described evolution scenario is a typical example of how the editing of dependent
views in isolation causes inconsistencies. According to the requirements on repair recom-
mendations analyzed in Section 1.2, the most viable approaches to resolve such inconsisten-
cies are recommender systems, which interactively support the developer in resolving the
inconsistencies.

In general, a recommender system determines and suggests a ranked list of repair pro-
posals from which the developer can choose. For example, the violation of consistency rule
message_signature(m:Message) on context element 6:disconnect could be alternatively resolved
by (i) moving the operation disconnect() from class Server to class Video, (ii) creating a new
operation disconnect() in class Video serving as the signature for message 6:disconnect, or (iii)
deleting the message 6:disconnect. In general, each of these repair alternatives above would
be considered highly relevant by a recommender system since, starting from the inconsistent
model, they employ only a single change. However, considering the development history
of our example, these alternatives are unlikely to meet a developer’s intention. Alternative
(i) can be immediately spotted as undo operation. Alternative (ii) seems bizarre since opera-
tion disconnect() is recreated in class Video after having been removed from this class in the
previous step. Finally, alternative (iii) is not very likely, too. We know that the functionality
offered by operation disconnect() still exists, though offered by another class, so why should
we delete the message disconnect(), ending up in an incomplete “start and stop the video”
scenario?

By having a look at the initial violation of the consistency rule message_signature(m:Mes-
sage) at message 6:disconnect, developers may quickly understand the correction of the target
of that message, while they are likely to wonder about the rationale of changing the mes-
sage’s source at the same time. The second change is better explained in a two-step process
as described by the corrective edit steps (5.1) and (6.1). This is a typical example of resolv-
ing only one inconsistency at a time and dealing with the potential side effects of a fix in a
separate step.

Our model repair tool ReVision considers a model’s editing history and supports the
developer to iteratively repair each individual violation of a consistency rule. The approach
utilizes CPEOs as ideal edit operations and recommends the “gap” between ideal edits and
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Rule moveOperationAndChangeMessageTarget(moveOperation, toClass, changeMessage, toLifeline)
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Figure 5.3. CPEO moveOperationAndChangeMessageTarget: Moving an operation in a UML class
diagram from one class to another and simultaneously changing the receiver of a corresponding

message in a sequence diagram.
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Figure 5.4. Exemplary illustration of the changes from CPEO moveOperationAndChangeMessageTarget
in Figure 5.3 using the concrete UML diagram syntax.
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Rule moveMessage(changeMessage, toSenderLifeline, toReceiverLifeline)
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Figure 5.5. CPEO moveMessage: Moving a message’s source and target end in a UML sequences
diagram between lifelines.
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Figure 5.6. Exemplary illustration of the changes from CPEO moveMessage in Figure 5.5 using the
concrete UML diagram syntax.
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the edits which have caused an inconsistency as model repairs. Based on the approach de-
scribed in the previous Chapter 4, partial executions of CPEOs are detected in the model
history and can be either undone or extended to the full execution of a CPEO. Our exem-
plary evolution scenario, namely, the edit steps (4.1), (5.1), and (6.1), can be described by two
CPEOs.

moveOperationAndChangeMessageTarget: Figure 5.3 shows the CPEO moveOperationAndChange-
MessageTarget. Its edit rule graph specifies the move of an operation from one class to
another (upper part of the rule). At the same time, the receiver lifeline of a message
using this operation as a message signature is changed accordingly (lower part of the
rule). Binding the parameters moveOperation and toClass applies the CPEO onto a con-
crete operation in a class diagram. The parameters changeMessage and toLifeline specify
a concrete message in a sequence diagram. Notably, the targetEnd:MessageEnd node
is uniquely determined during the matching of the edit rule’s application context. To
give an idea of the specified transformation, Figure 5.4 illustrates the CPEO’s changes
by an exemplary LHS and RHS of the edit rule (see Section 3.5.2) using the concrete
UML diagram syntax.

This CPEO describes the compound effect of the inconsistency-inducing edit step (4.1)
and the first corrective edit step (5.1) in our modeling scenario, i.e., the moving of
the operation disconnect() from the class Video to the class Server, and the changing of
the target of message 6:disconnect to the lifelinemirror:Server. Therefore, applying the
CPEO with the input parameter binding moveOperation = disconnect(), toClass = Server,
changeMessage = 6:disconnect, and toLifeline = mirror:Server to model Version 3 would
produce the revised model Version 5 without violating the consistency rule message-
_signature(m:Message).

moveMessage: The CPEO moveMessage in Figure 5.5 moves a message in a UML sequence dia-
gram between two lifelines. According to consistency rulemessage_property(m:Message),
the edit rule requires that the type of the sending lifeline contains an attribute refer-
encing objects of the receiving lifeline. As illustrated in Figure 5.6, such an attribute
is typically defined as an association between the classes defining the lifeline’s types.

Applying the CPEO moveMessage with the input parameter binding changeMessage =
6:disconnect, toSenderLifeline = open:Video, and toReceiverLifeline = mirror:Server to model
Version 3, the inconsistency with respect to the consistency rule message_signature(
m:Message) would be avoided, i.e., the execution of the edit steps (5.1) and (6.1) of our
modeling scenario. Notably, to produce the model version Version 6 without tem-
porary inconsistencies, the CPEOs moveOperationAndChangeMessageTarget and moveMes-
sage must be combined with respect to the changing of the message’s target end.

Initially, ReVision expects the developer to select the inconsistency to be resolved. After
generating a ranked list of repair proposals, the developer selects and applies the repair. It
may be necessary that the developer binds certain input parameters that cannot be uniquely
determined by ReVision. Figure 5.7 depicts an iteration of the overall repair process, focus-
ing on the involvement of developers by indicating the different options for manual inter-
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vention. The successive computation steps of repairing a single inconsistency, including
their intermediate results, are illustrated in Figure 5.8 and Figure 5.9.

2 Origin Analysis
(Sec. 5.2, Fig. 5.8b)

1 Validation
(Sec. 5.1, Fig. 5.8a)

5 Repair Ranking
(Sec. 5.5, Fig. 5.9b)

Select and Apply
Repair or Undo

6 Undo Generation
(Sec. 5.6, Fig. 5.9c)

3 Impact Analysis
(Sec. 5.3, Fig. 5.8c)

4 Repair Generation
(Sec. 5.4, Fig. 5.9a)

Select
Inconsistency

Figure 5.7. Overview of the approach: Overall, iterative process and options for manual
intervention.

In Step 1 (see Figure 5.8a), the potentially inconsistent version 𝑉𝐵 of a model, typically
the latest version, is validated against the set of predefined consistency rules that are to
be evaluated on that model. As described in Section 3.2, a validation tool delivers a set
of all detected inconsistencies. Initially, the developer selects the concrete inconsistency
that is to be fixed in the current iteration. As an initial step, the evaluation of the selected
inconsistency is analyzed to determine possible starting points for repairing the version 𝑉𝐵
of the model (details see Section 5.1).

Step 2, referred to as origin analysis (see Figure 5.8b), traces the selected inconsistency in
the model history back to the latest version 𝑉𝐴 in which this inconsistency does not occur.
It also calculates the model difference Δ(𝑉𝐴, 𝑉𝐵) comprising all the changes from 𝑉𝐴 to 𝑉𝐵
(details see Section 5.2).

Step 3 (see Figure 5.8c) takes the selected inconsistency from Step 1, the difference
Δ(𝑉𝐴, 𝑉𝐵) calculated in Step 2 and the set of predefined CPEOs as input, and carries out two
kinds of impact analyses (details see Section 5.3). The change impact analysis determines
those changes in Δ(𝑉𝐴, 𝑉𝐵) that may have caused the inconsistency. They are referred to
as the set of inconsistency-inducing changes. The action impact analysis determines those
change actions in the predefined CPEOs that may have a positive impact on the inconsis-
tency under consideration. As a result, CPEOs are annotated with the information on po-
tentially consistency-improving change actions.

Next, the Step 4 and Step 5 are dedicated to the generation of repair recommendations
(see Figure 5.9a and Figure 5.9c). Given the selected inconsistency, the difference Δ(𝑉𝐴, 𝑉𝐵)
calculated in Step 2 as well as the inconsistency-inducing changes and annotated CPEOs
determined in Step 3 as input, we first generate a set of repair proposals that complement
partial edit steps. This is achieved by searching for partial executions of CPEOs where (i)
the partial execution leads to inconsistency-inducing changes, and (ii) complementing the
partial execution to a full CPEO has a positive impact on the inconsistency that is to be fixed
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Figure 5.8. Overview of the approach: Successive, automated steps 1 - 3 of a single iteration,
including their producer/consumer dependencies.

(details see Section 5.4). Finally, the set of repair proposals is further processed in Step 5 (see
Figure 5.9b) to produce a ranked list of repair recommendations, sorted by relevance (details
see Section 5.5).

Instead of complementing an incomplete edit step, a developer might want to undo the
inconsistency-inducing changes. Re(pair)Vision proposes repairs as pairs of a sub-rule
and a complement rule corresponding to the inconsistency-inducing and complementing
changes, respectively. Step 6 (see Figure 5.9c) can optionally be triggered at the discretion
of the developer to generate a case-specific undo operation. The developer can choose one
of the recognized partial executions of a CPEO from the list of repair proposals (details see
Section 5.6).

5.1 Validation
The first step of our repair process illustrated in Figure 5.7 and Figure 5.8a is to validate the
model against a predefined set of consistency rules. As defined in Section 3.2, a consistency
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Figure 5.9. Overview of the approach: Successive, automated steps 4 - 6 of a single iteration,
including their producer/consumer dependencies.

rule is defined for a specific context type of the modeling language. The consistency rule
validates a logical expression for all model elements of the specified context type and com-
patible subtypes. The result is a list of inconsistencies from which the developer selects the
one to be repaired.

Let us consider again the excerpt of the class and sequence diagram illustrated in Fig-
ure 5.1. It refers to Version 4 of the evolution of the VoD-System shown in Figure 2.4, after
moving the operation disconnect() from class Video to Server and before resolving the incon-
sistency by a complementary edit step in the sequence diagram. This state of the model
violates the consistency rule message_signature(m:Message) from Definition (5.1) for the mes-
sage 6:disconnect.

The changes that introduced the inconsistency are annotated in the difference graph in
Figure 5.1. Starting from the message 6:disconnect, Figure 5.1 shows the validation scope
(see Section 3.2) of the consistency rule message_signature(m:Message), i.e., the set of nodes,
edges, and attributes accessed during the validation (see Section 3.2). The green box shown
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in the background indicates the validation scope of the first part of the consistency rule in
Definition (5.1a) with respect to the conjunction of checking the message’s names and the
receiving lifeline. The red box indicates the validation scope of the second part of the rule
in Definition (5.1b, 5.1c). While the first part evaluates to true, the second part evaluates
to false since the required operation disconnect() has been removed from the receiving Video
class for message 6:disconnect.

In the following sections, we will analyze the violation of a consistency rule on a specific
model element to identify starting points for the repair of the indicated inconsistency. This
processing step is referred to as scope analysis in Figure 5.8a.

5.1.1 Abstract Repairs
A concrete repair plan is a sequence of concrete changes (see Section 3.3.1) that describes
a transition between an inconsistent and a consistent version of a model with respect to a
specific inconsistency. The repair plan is minimal if none of the changes can be removed
from the plan without resulting in an intermediate, still inconsistent model state, i.e., no
subset of the repair plan’s changes resolve the inconsistency.

When generating repair proposals, in some cases, it is not possible to provide concrete
repair plans without producing a huge number of alternatives. For example, if the nega-
tive value of a numerical attribute must be repaired by setting it to any positive value. A
method to avoid such countless repairs are so-called abstract repairs, as, e.g., utilized in
References [95, 134, 149], that have unbound parameters.

Such abstract repairs can be understood as starting point for concrete repair plans. Our
approach takes advantage of abstract repairs for determining the relation between partially
executed edit operations detected from a model’s history and the specific inconsistency to
be repaired. Generally, not all partially executed edit operations may be related to the se-
lected inconsistency. Moreover, the abstract repairs allow the recognition of sub-rules, as
described in Chapter 4, to focus on a specific part of the model, significantly lowering the
complexity of the graph matching problem in terms of large models. Assuming a complete
and minimal set of abstract repairs with respect to a specific inconsistency, we use the ab-
stract repairs to determine whether a given a set of changes has an improving effect related
to that inconsistency.

Technically, we define abstract repairs as abstract changes (see Section 3.3.1), which
are elementary modifications of model elements, attributes, or references in the model’s
ASG. An abstract change only binds the context of the change action to a concrete model
element. For example, an abstract change may specify the model element of an attribute to
be modified without providing a specific value for the attribute. In this context, an abstract
repair plan can consist of concrete changes and abstract changes at the same time.

We specify abstract repairs according to the meta-model in Figure 3.8 of Section 3.3 by
the functions defined in Listing 5.1. Those functions instantiate an abstract change with
a given context model element and the reference or attribute type to be created, deleted or
modified, respectively. Furthermore, Listing 5.1 defines the initialization of (abstract) object
changes. In particular, an object and reference modification is split into a corresponding
creation and deletion change.

The scope analysis illustrated in Figure 5.8a takes the inconsistency to be repaired and
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1 function change(𝜌:RepairHint, context:EObject, type:EStructuralFeature): Set<AbstractChange>}
2 changes:Set<AbstractChange> = ∅
3 context ∈meta-model⇒ return changes ⟩ The meta-model is considered to be constant.

4 if type.eClass ≡ EReference then ⟩ Create an abstract reference change.
5 if 𝜌 ≡ create ∨ 𝜌 ≡modify then
6 changes ∪ AbstractReferenceChange{action = ChangeKind::create, context = context, type = type}
7 endif
8 if (𝜌 ≡ delete ∨ 𝜌 ≡modify) ∧ context.eGet(type) ≢ ∅ then
9 changes ∪ AbstractReferenceChange{action = ChangeKind::delete, context = context, type = type}
10 endif
11 else if type.eClass ≡ EAttribute then ⟩ attribute change (create, delete,modify, increase, decrease, exp(v))
12 changes ∪ AbstractAttributeChange{action = ChangeKind::modify, context = context, type = type}
13 endif

14 return changes

15 function change(𝜌:RepairHint, type:EClass): Set<ChangeAction>
16 if 𝜌 ≡ create ∨ 𝜌 ≡modify then
17 return { ObjectChangeAction{action = ChangeKind::create} }
18 endif
19 if (𝜌 ≡ delete ∨ 𝜌 ≡modify) then
20 return { ObjectChangeAction{action = ChangeKind::delete} }
21 endif

22 function delete(context:EObject): Set<Change>
23 return { ObjectChange{action = ChangeKind::delete, context = context} }

Listing 5.1. Initialization of model changes as defined in Figure 3.8.

outputs a set of abstract repairs. The goal is to approximate a complete and minimal set
of abstract repairs 𝑅. A set 𝑅 is complete if all possible concrete repair plans for a given
inconsistency can be derived from 𝑅. In other words, every concrete repair plan instantiates
at least one abstract repair. Finally, 𝑅 isminimal if it contains only abstract changes that have
the potential to repair the inconsistency [149], i.e., each abstract repair can be instantiated
as a change of at least one possible concrete repair plan.

In some cases, if the repair of an inconsistency requires to create/delete objects in a
model’s ASG, there is only an abstract repair for creating/deleting the corresponding con-
tainment reference in 𝑅. The abstract repair does not specify whether the object (or a com-
plete subtree of the AST) should be created/deleted or moved from/to another location in
the model. However, in addition to the approach in Reference [149], a single object change
is included in 𝑅 that removes the context element of a validation to resolve an inconsistency.

Notably, the instantiation of an abstract repair in a concrete repair plan that also main-
tains the elementary consistency of a model (see Section 3.1.3) can involve additional depen-
dent changes not included in 𝑅. For example, an actual removal of a model element from
the AST requires to also delete all references pointing to that element. As 𝑅 only indicates
starting points for repairs within the validation scope of an inconsistency, we do not include
such dependent changes in 𝑅.



108 5 History-based Model Repair

A complete abstract repair set 𝑅scope can be specified by defining an abstract change
modifying each reference and attribute in a validation scope. However, the derived abstract
repair set 𝑅scope ⊆ 𝑅 is not necessarily minimal. For example, only modifications in the
validation scope of the second part of message_signature(m:Message) in Figure 5.1 can resolve
the inconsistency. As the first part of the consistency rule is already fulfilled, neither chang-
ing the operation name nor the message name would improve the inconsistency. The basic
idea of the scope analysis is to ignore the already correct parts of the validation in order to
narrow down the real cause of an inconsistency.

5.1.2 Validation Trace
To analyze the scope of a consistency rule’s validation, Reder et al. [149] describes the con-
cept of validation trees, which record the results of each logical operation and the accesses
of model elements during the validation. Similarly, we will record the validation of a con-
sistency rule in a structure which we will refer to as validation trace. Figure 5.10 shows
an excerpt of the validation trace of the second part of the consistency rule message_signa-
ture(m:Message) in Definition (5.1b, 5.1c). In comparison to a validation tree, the trace also
illustrates the data flow of all variable assignments and intermediate results of non-Boolean
function calls. In practice, the recording of the validation trace is only performed for the in-
consistency to be repaired, i.e., when the developer selects the inconsistency, the validation
is performed again and recorded.

Basically, the validation trace can be read as a kind of data flow notation. A rounded
node in the validation trace represents a function call, e.g., a logical operator or a predicate
function. Similarly, constant values and the context element are also represented as func-
tions returning the corresponding value or object, e.g., the message 6:disconnect assigned to
the context variable m of the consistency rule message_signature(m:Message) in Figure 5.10.

Functions can declare variables that can be used in expressions computing parameters
of that function, e.g., the universal and existential quantification specifies an iteration vari-
able. The values assigned to a variable are represented by rectangular nodes in Figure 5.10.
Containment edges (noted with a diamond) specify a single variable or a group of variables
owned by a function. For example, consider the iterate function in Figure 5.10 with the as-
signment traces of the variables acc[i]. As illustrated in Figure 5.10, the iteration variable
o[i] has no explicit assignment trace. The assignment is represented by the c={o[i] ∣ 0 ≤ i ≤ 3}
edge of the iterate function.

Directed edges in the validation trace show the flow of data values, i.e., the input and
output of functions and the writing and reading of variable values. Notably, variable values
are only written once but can be read multiple times. If a variable x is overwritten, e.g., in
an iteration over a set of model elements, we enumerate each assigned value by x[i].

5.1.3 Scope Analysis
A consistency rule is formulated using a specific constraint language. The constraint lan-
guage defines the functions that can be evaluated on a model. To generate the abstract
repairs for a given validation trace, we define a repair operation repairOp(e:CallTrace, 𝜌:Repair-
Hint) for each function of a constraint language. A repair operation is invoked for a function
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Figure 5.10. Validation trace of the second part of the consistency rule message_signature(m:Message)
in Definition (5.1b, 5.1c) on the ASG of Version 4 in Figure 2.4 of the VoD-System. The model’s

ASG, including the validation scope with respect to Version 4 is illustrated in Figure 5.1.

call e recorded in the validation trace. Similar to the approach of Reder et al. [149], the repair
operation computes the abstract repairs with respect to the input parameter bindings and
the returned and expected value of the function call e.

In addition, a repair operation repairOp(e:CallTrace, 𝜌:RepairHint) is invoked with a repair
hint 𝜌, which indicates the difference between the actual returned and expected result of the
function call e during the validation. The repair hint exp(v) specifies an expected value, e.g.,
the expected Boolean value exp(true) if a logical operator actually returns false. The repair
hints increase and decrease are related to numeric evaluations, e.g., the size of a set of model
elements computed during the validation. Similar to their corresponding change action, the
repair hints create, delete, and modify indicate modifications of the model’s ASG.

Figure 5.11 shows the meta-model for validation traces, which is basically a graph con-
sisting of nodes (TraceNode) and edges (TraceEdge) representing function calls, variable as-
signments, and parameter bindings, respectively. A function of a constraint language is
declared by a subclass of the meta-class Function including its owned parameters, variables,
and its repair operation repairOp(e:CallTrace, 𝜌:RepairHint).
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Figure 5.11. Meta-model for recording and repairing validation traces of a consistency rule.
Abstract repairs are specified by changes based on the meta-model in Figure 3.8.

1 CallTrace::repair(𝜌:RepairHint):
2 if 𝜌 ∉ self.repairs then ⟩ Check if result is in the cache.
3 self .repairs[𝜌] = ∅ ⟩ Initialize repair hint cache.
4 self .declaration.repairOp(self, 𝜌) ⟩ Invoke the repair operation of the recorded function call.
5 endif

6 AssignmentTrace::repair(𝜌:RepairHint):
7 |self . in| > 0 ⇒ self.in[0].source.repair(𝜌) ⟩ Follow the writing trace of the variable assignment.

8 Function::repairOp(e:CallTrace, 𝜌:RepairHint): ⟩ To be overwritten by concrete function implementations.
9 foreach trace ∈ e.in do ⟩ If no specific repair hints are specified, …
10 trace.source.repair(modify) ⟩ then repair all input parameters with 𝜌 =modify.
11 endforeach

12 CallTrace::trace(parameter:String): TraceEdge
13 declared:Parameter = p ∈ self.declaration.parameters ∣ p.name ≡ parameter ⟩ Get parameter by name.
14 trace:TraceEdge = t ∈ self.in ∣ declared ≡ t.binding ⟩ Get incoming edge by parameter.
15 return trace ⟩ Trace to node (call or assignment) binding the input of the given parameter.

Listing 5.2. Operation implementations of the meta-classes defined in the validation trace
meta-model in Figure 5.11. Regarding the pseudocode notation, the variable self refers to the object
on which the operation is invoked. Moreover, the set-builder notation is used to select and return a

single unique value of a set.

Technically, to generate all abstract repairs 𝑅 of validation trace, we invoke the repair
operations following the inverse data flow in the validation trace. In the illustration of
the validation trace in Figure 5.10, this means we follow the incoming edges of the func-
tion calls to generate the abstract repairs. Initially, we invoke the generation operation
NodeTrace::repair(𝜌:RepairHint) for abstract repairs on the root function call of the validation
trace. As shown in Listing 5.2 (Line 4), the generation operation CallTrace::repair(𝜌:RepairHint)
of a function call invokes the repair operation of its declaring function (self.declaration).

As illustrated by the CallTrace::repairs reference in Figure 5.11, the abstract repairs are
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stored for each function call with respect to the provided repair hint during the generation
process. The overall set of abstract repairs 𝑅 are finally collected from all function calls in
a validation trace. During the generation process, the CallTrace::repair(𝜌:RepairHint) function
initializes an empty set for each provided repair hint (Line 3). As an optimization, all sub-
sequent invocations of the generation function with an already provided repair hint can be
ignored (Line 2), i.e., such repair hints would lead to the same abstract repairs.

In general, if no specific repair operation is specified for a constraint language function,
the generic implementation of the repair operation Function::repairOp(e:CallTrace,𝜌:RepairHint)
is invoked. As defined in Listing 5.2 (Line 9), in such a case, the repair generation is simply
delegated to the function calls computing the input parameters of that function. The input
parameters are represented as incoming edges of the function calls in the validation trace. In
this context, an input parameter of a function call may be bound to a variable assignment. To
generate the corresponding abstract repairs, the AssignmentTrace::repair(𝜌:Repair Hint) trace
repair operation (Line 6) recursively delegates the abstract repair generation to the function
call computing the assignment (self.in[0]). Notably, for the sake of brevity of the notation,
we use a recursive algorithm for processing the validation trace. In practice, this may be
implemented by an iterative algorithm that follows the edges of the trace accordingly.

Basically, using only the generic repair operation, we invoke all repair operations in a
validation trace with the modify repair hint. In this context, the modify repair hint can be un-
derstood as the most general repair hint. However, using only the generic repair operation,
no abstract repairs are generated.

In order to define specific repair operations, we use the shorthand notations shown in
Definition (5.3), Definition (5.4), and Definition (5.5). In this context, let e be a function call
e(p) of the validation trace. The output of a function call e is stored in the TraceNode::value at-
tribute of that validation trace node. As defined in Definition (5.3), the notation e= yields the
computed value of e. In addition, the operation CallTrace::trace(parameter:String): TraceEdge,
described in Figure 5.11 and Listing 5.2 (Line 12), determines the incoming edge of the val-
idation trace for a given parameter name, i.e., the expression e.trace(’p’) returns the edge
representing the parameter named p of the function call e. In this context, as defined in
Definition (5.5), let e=p be the value bound to the parameter named p for the function call e.
Furthermore, as defined in Definition (5.4), let ep be the source node (TraceNode) of the edge
representing the parameter binding in the validation trace, i.e., the function call or variable
assignment bound to the input parameter p.

e=≕≕= e.value (5.3)

e=p≕≕= e.trace(’p’).value (5.4)

ep≕≕= e.trace(’p’).source (5.5)

In the following sections, we introduce the basic functions of a constraint language and
their repair operations. This approach builds upon the work introduced by Reder et al. [149]
andNentwich et al. [134]. Reder et al. directly define repair operations for Boolean operators
such as conjunction, disjunction, implication, and equivalence. Here we utilize if-then-else
expressions to derive Boolean operators. Moreover, Reder et al. introduce existential and
universal quantifiers to make statements about sets of model elements. In contrast, in the
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following Section 5.1.5, we derive quantifiers from a general iterate function (as defined
in OCL [139]). Additionally, Section 5.1.4 introduces support for set-based navigation for
references in models.

An extension of the approach introduced by Marchezan et al. [120] include functions
such as isEmpty, includes, and includesAll to check the existence of elements in sets. Such
functions can be generalized by a conditional counting function (see Section 5.1.5). Similarly,
Marchezan et al. introduce a greater/smaller-then-or-equal function, such as a size function
for sets.

Notably, Reder et al. and Marchezan et al. consider the modification of references as
atomic changes, while our approach considers such changes as a combination of creations
and deletions of references. In addition, the concept for generating abstract repairs is ex-
tended to support operation invocations, derived references, and reflective access to mod-
els. Finally, basic repair operations for set theory and arithmetic operations are introduced.
Based on the defined repair operations, in Section 5.1.6, we will discuss in detail the genera-
tion of abstract repairs for the message_signature(m:Message) validation trace recorded for our
exemplary VoD-System in Figure 5.10.

5.1.4 Basic Repair Operations
For the specification of repair operations, Table 5.1 to Table 5.6 show the constraint language
functions and their concrete syntax notation in the first column. The parameters as they are
named in the validation trace are underlined in this notation. The second column describes
the canRepair() test that defines the repair hints that can be processed by the corresponding
repair function. In particular, we assume that all repair operations can handle the modify
repair hint. For example, a function call e with a Boolean return value would interpret a
modify repair hint as the inversion of it actually returned value (¬e=). Moreover, the canRe-
pair() test typically compares the repair hint exp(v)with the actually returned value, i.e., if the
function needs to be repaired at all. The last column specifies the actual repair operation
repairOp() of each constraint language function. Notably, the templates of the canRepair()
and the repairOp() are outlined in the header of each specification table.

Validation (c:EObject, T:EClass, v:Boolean, return:Boolean)
In our example in Figure 5.10 we start the process with message_signature.repair(exp(true)) for
the consistency rule violation of the message 6:disconnect of our VoD-System. As defined
by the repair operation in Table 5.1, the first (abstract) repair delete(e=c ) generated for the
Validate function deletes the context element. To start the generation of abstract repairs for
the actual consistency rule, the initial repair hint exp(true) is passed to the repair operation
of the root predicate ev.repair(exp(true)).

Get/eGet/AllInstances (objs:EObject, type:EStructuralFeature, return:Set)
We primarily use navigating between objects and reading attribute values to access infor-
mation from a model. In this context, the Get function is called with a set of objects (objs)
and the reference or attribute type (see meta-metamodel in Figure 3.5) to be accessed. For all
given objects e=obj, the Get function collects the references or attribute values with respect to
the given type in a flat set. To always return a valid result on chained model accesses, we
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Core Function Is Repairable? Repair Operation

⟨Function⟩≕≕=
⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:CallTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
R = e.repairs[𝜌]
⟨…⟩

endif

Validation<T>≕≕=
rulename(c:T)≔ v

e= ≡ false ∧
𝜌 ≡ exp(true)

R ∪ delete(e=c )
ev.repair(exp(true))

Get≕≕=
objs.type

𝜌 ≡modify ∨
𝜌 ≡ create ∨
𝜌 ≡ delete

foreach o ∈ e=objs do
R ∪ change(𝜌, o, e=type)

endforeach
eobjs.repair(𝜌)

AllInstances≕≕=
allInstances(type)

𝜌 ≡modify ∨
𝜌 ≡ create ∨
𝜌 ≡ delete

R ∪ change(𝜌, e=type)
etype.repair(modify)

Invoke≕≕=
objs.op(…)

𝜌 ≢ exp(e=) eobjs.repair(𝜌)
eop.repair(𝜌)

isValueOf≕≕=
T ::isValueOf(value)

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

evalue.repair(modify)

ConstantLiteral≕≕=
⟨literal value⟩ false

Reflection Operations (see Invoke, e.g., objs.eGet())

EObject::eGet≕≕=
eGet(type)

𝜌 ≡modify ∨
𝜌 ≡ create ∨
𝜌 ≡ delete

etype.repair(modify)

EObject::eInvoke≕≕=
eInvoke(eOp, [p0, …, pn])

with eOp≕≕= op(p0, …, pn)
𝜌 ≢ exp(e=) eop.repair(𝜌)

eeOp.repair(modify)

EDataType::eIsValueOf≕≕=
eIsValue(value)

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

evalue.repair(modify)

Table 5.1. Definition of basic repair operations for model access.
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assume that a model element navigation or reading an attribute value at least returns the
empty set (∅).

The corresponding repair operation of a constraint language function in Table 5.1 is
invoked with the function call e to be repaired and a repair hint 𝜌. The repair operation
of the Get function generates an abstract repair for each accessed reference/attribute of the
elements in e=objs. The type of the abstract change corresponds to the given repair hint 𝜌.

Consistency rules might also depend on information from the meta-model. For exam-
ple, in the consistency rule Definition (3.3), which checks the multiplicity bounds of an
object’s references, all reference types of the object are determined dynamically using re-
flective model access. However, from the perspective of repairing a model, the meta-model
has to be considered a constant, not changeable, structure. Therefore, we ignore the initial-
ization of abstract changes that propose to modify the meta-model in the change() function
in Listing 5.1 (Line 3).

As the consistency rule in Definition (3.3) also demonstrates, the eGet operation of EOb-
ject allows reflective model access (see Section 3.1.3). Similar to the Get function, the repair
operation of eGet generates an abstract repair for the accessed reference or attribute of the
object (self). Modifying the given type will change the result of an eGet call. Therefore, the
corresponding repair operation in Table 5.1 additionally invokes the repair operation of the
expression bound to its type parameter.

AllInstances is another function that can be used to access elements in a model. The
function collect all model elements of a specific type from a model. As defined in Table 5.1,
the repair operation of allInstances generates (abstract) object changes that ignore the con-
crete context of an object and just specify its type. Moreover, if the meta-class of the type
parameter is computed by an expression, it can possibly be repaired.

In general, derived references or operations that are defined in a meta-model of a mod-
eling language can be defined by queries that use the same functions as the constraint
language. Such queries can also be recorded and processed in the validation trace. Al-
ternatively, a specific repair operation can be provided for derived references or operations.
As an example, a Closure function can be implemented using set-based navigation. Such
a Closure function can be recorded in the validation trace as a sequence of Get functions.
For example, to collect all supertypes of a meta-class, as defined by the derived reference
EClass::eAllSuperTypes in Figure 3.5.

Invoke/eInvoke (objs:EObject, eOp:EOperation)
As defined in Table 5.1, the Invoke and eInvoke functions will simply delegate the repair
generation to the invoked operation, i.e., the recorded query or the specific repair operation.
Similar to the Get function, the repair hint is also delegated to the repair generation of the
expression computing the objects (objs) on which the operation is invoked. Additionally,
the reflective invocation eInvokemay generate repairs for the dynamically derived operation
(eOp). The parameters of an operation invocation are to be handled by the repair operation
of the invoked operation.

IsValueOf/eIsValueOf (T:EClass, value:Any)
In addition, Table 5.1 provides some repair operations for functions that handle literal values
and single model elements. To check if a literal value is in the domain of a specific data
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type, the IsValueOf function or EDataType::eIsValueOf operation can be used to test a value.
Basically, the repair operation for literal values or single model elements either modifies
the expression that computes the value or creates a new value if an empty set is given. In
contrast, the repair operation of constants do not provide any abstract repairs, i.e., the repair
operation invocation is ignored by the ConstantLiteral function.

Considering only the basic repair operations defined in Table 5.1 and the generic repair
operation in Listing 5.2 that always propagates the modify repair hint, an abstract reference/
attribute creation and deletion is generated for each reference/attribute access recorded in
the validation trace, i.e., the full validation scope with respect to an inconsistency. However,
as mentioned, the resulting abstract repair set 𝑅 is not necessarily minimal.

5.1.5 Essential Repair Operations
The first part in Definition (5.1a) and the second part in Definition (5.1b, 5.1c) of the consis-
tency rule message_signature(m:Message) are connected by a conjunction. The validation trace
of the conjunction in Figure 5.10, shows that the first part of the consistency rule, comparing
the name of the message with the name of the operation signature, passes the validation.
Thus, the first part of the validation does not need to be repaired, i.e., no abstract repairs
have to be generated for the validation scope of the first part of the consistency rule.

In contrast, let us assume a conjunction with both sides evaluated to false and an ex-
pected value of true. To change the expression false ∧ false to the expected value true, the
left-hand and right-hand side must be repaired at the same time. As described by Reder
et al. [149], a repair plan that fully resolves an inconsistency always includes abstract re-
pairs with respect to both sides of the conjunction. In practice, this can be a problem if a
constraint language does a short-circuit evaluation of Boolean operators. For example, in a
conjunction a ∧ b, the value of b is unknown if a is evaluated to false. However, to identify
a given set of changes as a repair with a positive impact on the inconsistency, as described
in Section 5.1.1, it is sufficient to include the abstract repairs with respect to one side of the
conjunction in 𝑅.

Basically, as described by Reder et al. [149], the repair operation of conjunction and dis-
junction carry on the expected value to the connected Boolean expressions, while a negation
¬a inverts the expected value exp(¬v) for the repair operation invocation. As specified in Def-
inition (5.6) to Definition (5.8), the repair operation of the conjunction, disjunction, negation,
and, in general, other Boolean operators can be implemented by an if-then-else expression.
Notably, Definition (5.6) and Definition (5.7) implement a short-circuit evaluation of the
Boolean operators.

a ∧ b ≔ if a then b else false endif (5.6)

a ∨ b ≔ if a then true else b endif (5.7)

¬a ≔ if a then false else true endif (5.8)

If-then-else (c:Boolean, th:T, el:T, return:T)
Depending on the result of the Boolean if-condition c, the repair of the then-branch th and
the else-branch el is handled analogously. The repair operation always passes the repair
hint to the expression computing the returned value of a branch.
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Core Function Is Repairable? Repair Operation

⟨Function⟩≕≕=
⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:CallTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
⟨…⟩

endif

IfThenElse<T>≕≕=
if c then th else el endif

𝜌 ≢ exp(e=)

canRepairThen(𝜌:RepairHint): Boolean
return 𝜌 ≡ exp(v)⇒ v ∈ dom(th)

canRepairElse(𝜌:RepairHint): Boolean
return 𝜌 ≡ exp(v)⇒ v ∈ dom(el)

if e=c then
eth.repair(𝜌) ⟩ then-branch
if self.canRepairElse(𝜌) then
ec.repair(exp(¬e=c ))

endif
else
eel.repair(𝜌) ⟩ else-branch
if self.canRepairThen(𝜌) then
ec.repair(exp(¬e=c ))

endif
endif

Iterate<T,R>≕≕=
c� iterate(o:T; acc:R = init ∣ b) 𝜌 ≢ exp(e=)

𝜌c =modify
ec.repair(𝜌c)
eb.repair(𝜌)

Table 5.2. Definition of repair operations for the consistency rule control flow.

To change the result of an if-then-else evaluation, we may have to switch to the alter-
native branch by inverting the result of the if-condition (ec.repair(exp(¬e=c ))). However, in
some cases, the alternative branch cannot contribute to the repair. In general, the repair
with respect to condition c can lead to a non-minimal abstract repair set 𝑅. Such cases can
be avoided by implementing and using derived functions and repair operations that filter
such repairs by the repairableThen() and repairableElse() tests. By default, for a given expected
value v, the repair operation requires that the expected value is at least in the domain of the
expression specifying the corresponding branch. For example, the Definition (5.6) specifies
the Boolean conjunction by an if-then-else expression. In this case, the domain of the then-
branch can be specified as dom(th)≔ Boolean, and the domain of the else-branch is given by
the constant dom(el)≔ {false}.

To illustrate the derivation of a repair operation, let us consider again the if-then-else
implementation of the conjunction in Definition (5.6). To derive the repair operation, we
map the parameters of the conjunction to the corresponding parameters of the IfThenElse
function as defined in Table 5.2. For example, let us assume the expression a ∧ b = false
∧ false is expected to be 𝜌 = exp(true). In this case, the repair operation first delegates the
repair hint to the expression of the else-branch eel.repair(𝜌 = false). This repair operation
invocation is actually ignored by the constant value el≔ false of the else-branch. Next, the
filter canRepairThen() evaluates to true based on the domain of the then-branch, i.e., with
the domain th ≔ b being Boolean, and true ∈ Boolean, the then-branch can contribute to
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Derived Functions Is Repairable? Repair Operation

⟨Function⟩⇽
⟨Function (derived)⟩≕≕=

⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:CallTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
⟨…⟩

endif

Iterate<T,R>⇽
Exists<T, Boolean> (Def. 5.9)≕≕=

c� ∃ o:T ∣ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡modify then 𝜌 = ¬e= endif

𝜌c = if 𝜌 ≡ exp(true) then
create else delete endif

ec.repair(𝜌c)
eb.repair(𝜌)

Iterate<T,R>⇽
ForAll<T, Boolean> (Def. 5.10)≕≕=

c� ∀ o:T ∣ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡modify then 𝜌 = ¬e= endif

𝜌c = if 𝜌 ≡ exp(true) then
delete else create endif

ec.repair(𝜌c)
eb.repair(𝜌)

Iterate<T,R>⇽
Count (Def. 5.11)≕≕=
c� count(o:T ∣ b)

𝜌 ≡modify ∨
𝜌 ≡ increase ∨
𝜌 ≡ decrease ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

𝜌c = if (𝜌 ≡ exp(value) ∧ e= > value)
∨ 𝜌 ≡ decrease then delete

else if (𝜌 ≡ exp(value) ∧ e= < value)
∨ 𝜌 ≡ increase then create

elsemodify endif
ec.repair(𝜌c)
eb.repair(𝜌)

IfThenElse<T>⇽
Increment<Integer> (Def. 5.12)≕≕=
increment(i:Integer, b:Boolean)

𝜌 ≡modify ∨
𝜌 ≡ increase ∨
𝜌 ≡ decrease ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

canRepairThen(e:CallTrace, 𝜌:RepairHint)
return 𝜌 ∈ {increase,modify} ∨

(𝜌 ≡ exp(value) ∧ e= < value)
canRepairElse(e, 𝜌)
return 𝜌 ∈ {decrease,modify} ∨

(𝜌 ≡ exp(value) ∧ e= > value)

Table 5.3. Definition of repair operations for derived functions.

the repair. Therefore, the repair operation invokes ec.repair(exp(¬e=c )) ≡ ec.repair(exp(true)) to
generate abstract repairs that invert the if-condition c≔ a.

Iterate (c:Set<T>, o:T, acc:R, b:R, return:R)
As shown in Table 5.2, the Iterate function applies an expression b on each object in a given
set o ∈ c. The result of the expression b is stored in the so-called accumulator variable acc
after each iteration step. Finally, the latest value of the accumulator variable is returned
by the Iterate function. In particular, the accumulator variable must be initialized with a
value, i.e., an iteration on an empty set returns the initial acc value. Optionally, we allow to
annotate the type T of the elements in the given set and the type of the result R in a function
call.
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The repair operation delegates the given repair hint 𝜌 to the iteration expression b. In
the validation trace, the result of the iteration expression b is represented by the latest ac-
cumulator variable acc[n-1] with n = |c|. As we can see in the validation trace in Figure 5.10,
the iteration steps are connected by the accumulator variable.

In addition, to change the result of an iteration, we can add or remove elements from
the given set c. By default, the repair operation with respect to set c is invoked with a modify
repair hint. However, this can lead to an over-approximation of the generated abstract
changes 𝑅 if only creations or deletions can directly contribute to the repair. Therefore, we
allow functions that are derived from Iterate to specify the repair hint 𝜌c that is applied to
the processed collection.

As an example of derived iteration functions, Definition (5.9) and Definition (5.10) show
the existential and universal quantifier as functions. Their corresponding repair operations,
which specifically define the repair 𝜌c, are defined in Table 5.2. In particular, the collection
examined by an existential quantifier can only be repaired by adding at least one of the re-
quired elements to the collection [149]. In contrast, the universal quantifier must delete the
elements from the collection that do not match [149]. In particular, an existential quantifier
can be derived from a universal quantifier (c� ∃ o ∣ p) ≡ ¬(c� ∀ o ∣ ¬b), and vice versa (c� ∀ o
∣ b) ≡ ¬(c� ∃ o ∣ ¬b).

c� ∃ o:T ∣ b ≔ c� iterate(o:T; acc:Boolean = false ∣ acc ∨ b) (5.9)

c� ∀ o:T ∣ b ≔ c� iterate(o:T; acc:Boolean = true ∣ acc ∧ b) (5.10)

Another useful example of a derived function is shown in Definition (5.11). The Count
function evaluates a Boolean expression on all elements of a given set of objects c. The
function increments the accumulator variable for each object in c for which b evaluates to
true. As shown in Definition (5.12), a conditional increment function can be specified using
an if-then-else expression.

c� count(b:Boolean) ≔ c� iterate(o:T; acc = 0 ∣ increment(acc, b)) (5.11)

increment(i:Integer, b:Boolean) ≔ if b then i + 1 else i endif (5.12)

The corresponding repair operations are specified in Table 5.3. For the Count function,
we translate a given expected number or an increase/decrease repair hint into a corresponding
create/delete repair hint for the evaluated set c. To switch between the then-branch and else-
branch in terms of the Increment function, the repair operation must decide whether to
modify the object evaluated in the Boolean expression b. If the then-branch is executed
and the returned value is too large, the repair operation can invert the value of condition
b. Conversely, if the value returned by the else-branch is too small, the result of b can be
inverted to execute the then-branch.

Sets (a:Set, b:Set, return:Set) and Size (c:Set, return:Number)
To include or exclude elements from sets, we introduce the set union and set difference
in Table 5.4. Basically, the repair operations translate the repair hints modify, create, delete
accordingly based on the set operators applied to the given sets a and b.
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Core Function Is Repairable? Repair Operation

⟨Function⟩≕≕=
⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:CallTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
⟨…⟩

endif

SetUnion≕≕=
a ∪ b

𝜌 ≡modify ∨
𝜌 ≡ create ∨
𝜌 ≡ delete

ea.repair(𝜌)
eb.repair(𝜌)

SetDifference≕≕=
a ⧵ b

𝜌 ≡modify ∨
𝜌 ≡ create ∨
𝜌 ≡ delete

if 𝜌 ≡ ⟨modify/create/delete⟩ then
ea.repair(⟨modify/create/delete⟩)
eb.repair(⟨modify/delete/create⟩)

endif

SetSize≕≕=
|c|

𝜌 ≡modify ∨
𝜌 ≡ increase ∨
𝜌 ≡ decrease ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡modify then
ec.repair(modify)

else if 𝜌 ≡ increase ∨
𝜌 ≡ exp(s) ∧ s > e= then

ec.repair(create)
else if 𝜌 ≡ decrease ∨

𝜌 ≡ exp(s) ∧ s < e= then
ec.repair(delete)

endif

Table 5.4. Definition of repair operations for working with sets.

In addition, a size function to determine the number of contained elements is introduced
in Table 5.4. The repair operation of the size function translates an exact expected number,
or increase//decrease repair hints into create/delete repair hints for the given set c accordingly.

Arithmetic (a:Number, b:Number, return:Number)
Table 5.5 introduces the repair operations of the basic arithmetic operators, e.g., to sum and
compare the size of different sets of references in a model. First, Table 5.5 introduces the
addition and multiplication operator. Subtraction and division can be derived by negation
and complementing expressions, respectively. In general, numeric computations can be
repaired with the repair hints increase, decrease, exp(v), or modify. Based on the operator, such
repair hints are translated accordingly to the operands of a computation. In particular, the
repair hint can be refined if a constant value is involved and a specific expected value is
given. For the sake of brevity, the different case distinctions for constants ⟨a/b⟩, operators
⟨+/×⟩, and repair hints increase/decrease are combined in the notation in Table 5.5.

In addition, to repair a greater-than(-or-equal) function, the repair operation must mod-
ify the numbers on one or both sides of the inequality accordingly, i.e., increasing or de-
creasing the numbers until the formula is fulfilled. Notably, if the result is expected to be
false, the increase/decrease repair hints are swapped.
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Core Function Is Repairable? Repair Operation

⟨Function⟩≕≕=
⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:CallTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
⟨…⟩

endif

Addition≕≕=
a + b

Multiplication≕≕=
a × b

𝜌 ≡modify ∨
𝜌 ≡ increase ∨
𝜌 ≡ decrease ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

𝜌 = if 𝜌 ≡ exp(value) then
if ⟨a/b⟩ ∈ Constant then
exp(value ⟨−/÷⟩ ⟨e=a /e=b ⟩) ⟩ for ⟨+/×⟩

else
e= > value⇒ decrease
e= < value⇒ increase

endif
endif

ea.repair(𝜌)
eb.repair(𝜌)

with a ∈ ℝ+

Negation≕≕=
−a≔ (−1) × a

MultiplicativeInverse≕≕=
a−1 ≔ 1

a

𝜌 ≡modify ∨
𝜌 ≡ increase ∨
𝜌 ≡ decrease ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡ ⟨increase/decrease⟩ then
ea.repair(⟨decrease/increase⟩)

else if 𝜌 ≡ exp(value) then
⟨ ea.repair(exp((−1) × value)) ⟩ ⟩ for −a
⟨ ea.repair(exp(1 ÷ value)) ⟩ ⟩ for a−1

else
ea.repair(modify)

endif

GreaterThan≕≕=
a > b

GreaterThanOrEqual≕≕=
a ≥ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡modify then 𝜌 = ¬e= endif

if 𝜌 ≡ exp(true) then
ea.repair(increase)
eb.repair(decrease)

else
ea.repair(decrease)
eb.repair(increase)

endif

Table 5.5. Definition of repair operations for basic arithmetic operations.

Equivalence (a:Any, b:Any, return:Boolean)
Table 5.6 defines the repair operations of the equivalence (a ≡ b) for different types of com-
parison. In general, the corresponding repair operations handle the left-hand and right-hand
side of the formula in the same way, which is implemented by their repairSide() functions.

Equivalence: In the general case, when two values are compared, e.g., the names of two
model elements, one side must be made equal to the other side, or both sides must be
changed to the same value. Conversely, in a negated equivalence test, at least one side
must be changed to another value. Summing up, this always leads to the propagation
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Core Function Is Repairable? Repair Operation

⟨Function⟩≕≕=
⟨notation with parameters⟩

canRepair(e:CallTrace,
𝜌:RepairHint): Boolean
return ⟨…⟩

repairOp(e:NodeTrace, 𝜌:RepairHint):
if self.canRepair(e, 𝜌) then
⟨…⟩

endif

Equivalence≕≕=
a ≡ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

if 𝜌 ≡modify then 𝜌 = ¬e= endif

repairSide(ea, e
=
b , 𝜌)

repairSide(eb, e
=
a , 𝜌)

repairSide(e:NodeTrace, value:Any, 𝜌:RepairHint):
e.repair(modify)

Equivalence⇽
ConstantEquivalence≕≕=

a ≡ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

repairSide(e:NodeTrace, value:Any, 𝜌:RepairHint):
if 𝜌 ≡ exp(true) ∧ value ∈ Constant then
e.repair(exp(value))

else
e.repair(modify)

endif

Equivalence⇽
SetEquivalence≕≕=

a ≡ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

repairSide(e:NodeTrace, value:Any, 𝜌:RepairHint):
if e= ≡ ∅ then
e.repair(create) ⟩ 𝜌 ≡ exp(true/false)

else if value ≡ ∅ then ⟩ e= ≢ ∅
e.repair(delete) ⟩ 𝜌 ≡ exp(true)

else
e.repair(modify) ⟩ 𝜌 ≡ exp(true/false)

endif

Equivalence⇽
NumberEquivalence≕≕=

a ≡ b

𝜌 ≡modify ∨
(𝜌 ≡ exp(value) ∧
value ≢ e=)

repairSide(e:NodeTrace, value:Any, 𝜌:RepairHint):
if 𝜌 ≡ exp(true) then
e= > value⇒ e.repair(decrease)
e= < value⇒ e.repair(increase)

else
e.repair(modify)

endif

Table 5.6. Definition of repair operations for the comparison of values, sets, constants, and numbers.

of a modify repair hint for both sides of an equivalence test. Notably, the left-hand
and right-hand side expressions (e) of a Boolean equivalence test translate the modify
repair hint into an expected value, i.e., their inverted result (exp(¬e=))).

ConstantEquivalence: An equivalence test with any constant value (including Boolean and
Number literal constants) is recorded as ConstantEquivalence function call in the valida-
tion trace. In a comparison involving a constant value, only the computed expression
can be changed by a repair.
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SetEquivalence: Expecting two sets to be equal or unequal, elements can be added or removed
on both sets accordingly.

NumberEquivalence: For numerical equality, a number can be increased or decreased tomatch
the compared number. In contrast, for inequality, we may increase or decrease any
of the compared numbers, i.e., in this case, the repair operation is invoked with the
modify repair hint.

5.1.6 VoD-System Scope Analysis
Let us consider again our modeling scenario of the VoD-System in Figure 2.4. After moving
the operation disconnect() from class Video to Server, the consistency rule message_signature(
m:Message) validation fails for the corresponding message 6:disconnect. To analyze the incon-
sistency with respect to the model’s ASG in Figure 5.1, we record the validation trace as
illustrated in Figure 5.10.

Starting from the root function call of the message_signature(m:Message) validation, we
generate the first abstract repair. As the context element of the validation is message 6:dis-
connect, we can simply delete the context to resolve the inconsistency. Notably, a corre-
sponding concrete repair plan would involve several additional changes, e.g., removing the
source and target ends of the messages, including all the references connecting these objects
to the model’s ASG:

𝛼⟨model version⟩⟨abstract change⟩ : ObjectChange{ ⟨action⟩, ⟨context⟩ }
𝛼4.1 : ObjectChange{ delete, 6:disconnect:Message }

The first function call to be repaired is the conjunction of the first part in Definition (5.1a)
and the second part in Definition (5.1b, 5.1c). This expression is expected to be true in order
to pass the validation, i.e., the left- and right-hand-side of the conjunction must also be true.
Technically, the repair operation of the conjunction is given by the if-then-else function
defined in Table 5.2. As the first part, evaluated by an equivalence test (see Table 5.6) of the
message’s name and operation’s name, passes the validation (e=a ≡ true), the invocation of the
repair operation is ignored by the canRepair() check. The right-hand-side of the conjunction,
i.e., the second part of the consistency rule evaluates to false. Therefore, its repair operation
is invoked with an exp(true) repair hint.

The second part in Definition (5.1b, 5.1c) of the consistency rule evaluates an existential
quantifier, which checks if the operation that is invoked by a message exists in the class
definition of the receiving object. As already discussed for the recording of the validation
trace, the existential quantifier (see Definition (5.9) and Table 5.3) can be evaluated by the
Iterate function. Basically, the result of each evaluated operation in the given set is connected
by a disjunction. Then each iteration step is connected by the accumulator variable (acc) of
the Iterate function.

Initially, the navigation sequence m.receiveEvent.covered.represents.type.ownedOperation
(part Definition (5.1b)), which determines the set operations, is considered by the repair
operation of the Iterate function defined in Table 5.2. In this case, the existential quantifier
in Table 5.3, as a derived iterate function, provides a specific repair hint 𝜌c = create (with
exp(true)) for the processed set.
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The navigation expression is evaluated by the Get function (see Table 5.1). The cor-
responding repair operation generates an abstract repair for all model elements accessed
during the navigation. Therefore, the create repair hint is passed in reverse direction of the
original navigation through the validation trace. Notably, the creation of a single-valued
reference (with an upper bound of 1) in the meta-model, also requires the deletion of the
former reference. As described in Section 5.1.1, we do not include those dependent changes
in the abstract repairs 𝑅, i.e., in such a case, a deletion alone does not positively affect the val-
idation result of existential quantifier. This finally results in the following abstract changes:

𝛼⟨model version⟩⟨abstract change⟩ : AbstractReferenceChange{ ⟨action⟩, ⟨context⟩, ⟨type⟩ }
𝛼4.2 : AbstractReferenceChange{ create, Video:Class, ownedOperation }

𝛼4.3 : AbstractReferenceChange{ create, open:Property, type }

𝛼4.4 : AbstractReferenceChange{ create, open:Lifeline, represents }

𝛼4.5 : AbstractReferenceChange{ create, disconnectReceive:MessageEnd, covered }

𝛼4.6 : AbstractReferenceChange{ create, disconnect:Message, receiveEvent }

The repair generation of the existential quantifier starts at the latest accumulator vari-
able acc[3] in Figure 5.10. Here both input values of the disjunction are false. The abstract
repair set 𝑅 is generated in reverse order of the iteration as we follow the trace between
the disjunctions and the accumulator variables. Within each iteration, one operation of the
class Video is compared to the signature of the message 6:disconnect, i.e., the class Video is
compared to the operation disconnect() in the class Server. Finally, the repair operation ends
at the initialization constant false of the existential quantifier.

The disjunction used in the iteration in Figure 5.10 is derived from the if-then-else func-
tion as specified in Definition (5.7). In this case, the repair operation of both sides of the
conjunction are invoked with the repair hint 𝜌 = exp(true), i.e., the accumulator of the previ-
ous iteration step or the equivalence test is expected to be true.

In the general equivalence test in the last part of the consistency rule in Definition (5.1c),
both sides of the formula can bemodified to establish equality (see Table 5.6). The navigation
m.signature on the left-hand-side results in the operation disconnect() for the equivalence
test. The repair operation of the equivalence function invokes the repair operation of the
Get repair operation with a modify repair hint. Therefore, an abstract modification repair is
generated for them.signature navigation, i.e., an abstract creation and deletionwith respect to
the signature reference of the operation disconnect(). As the left-hand-side of the equivalence
is identical in all iteration steps Figure 5.10, the same abstract repair are generated for all
iteration steps in the validation trace:

𝛼⟨model version⟩⟨abstract change⟩ : AbstractReferenceChange{ ⟨action⟩, ⟨context⟩, ⟨type⟩ }
𝛼4.7 : AbstractReferenceChange{ delete, disconnect:Operation, signature }

𝛼4.8 : AbstractReferenceChange{ create, disconnect:Operation, signature }

The repair operation of the right-hand side of the equivalence test is invoked with amod-
ify repair hint in Figure 5.10. However, the variable assignment o[i] is not further processed.
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As discussed above, the abstract repair generation of the iterated set is already handled, i.e.,
the abstract repairs 𝛼4.2 to 𝛼4.6 generated by the repair operation of the Iterate function.

Finally, the complete set of abstract repairs 𝑅 can be derived by collecting all abstract re-
pairs generated for the function calls in the validation trace. Thereby, duplicated abstracted
repairs will be eliminated.

5.2 Origin Analysis
The abstract repairs provide insight into an inconsistency in the current model version.
However, to understand the cause that introduced an inconsistency, we need to examine
the editing history of a model. To understand the history of an inconsistency, we first have
to identify the latest version which is not affected by that inconsistency. Starting from this
version, we are further interested in the historical changes which led to the current model
version since a subset of these changes must have caused the inconsistency. As depicted by
Step 2 in the overview of the approach in Figure 5.7 and Figure 5.8b, we refer to this process
step as origin analysis.

5.2.1 Inconsistency Tracing
To find the latest model version which is not affected by the inconsistency under considera-
tion, we need to be able to identify an inconsistency in different versions. In the sequel, let
[𝑣1, ..., 𝑣𝑛] be a version history, i.e., a sequence of model versions 𝑣1, ..., 𝑣𝑛. An inconsistency
that occurs in model version 𝑣𝑖 is denoted by a tuple 𝜂𝑖 = (𝐶𝑅, 𝑜𝑖) where 𝐶𝑅 is a consistency
rule which is violated on context element 𝑜𝑖 ∈ 𝑣𝑖. In order to identify the inconsistency in
the predecessor version 𝑣𝑖−1, we first have to identify the corresponding context element
𝑜𝑖−1 in this version. If version 𝑣𝑖−1 does not contain this context element, then the incon-
sistency does not exist in version 𝑣𝑖−1. Otherwise, a validation of the consistency rule 𝐶𝑅
is performed on the context element 𝑜𝑖−1. If the validation fails, the inconsistency exists in
version 𝑣𝑖−1, and we repeat this predecessor check until we find a historic version 𝑉𝐴 that
is not affected by the inconsistency. If the inconsistency already exists in the initial model
version 𝑣1, we conceptually consider the empty model 𝜖 (see Section 3.1.3) to be the latest
consistent version 𝑉𝐴.

As introduced in Section 3.4.1, a rather simple solution to identify corresponding model
elements 𝑜𝑖 and 𝑜𝑖−1 is to use a model matcher [93]. Typically, a matcher delivers a set of cor-
respondences, where each correspondence is a pair of model elements which are considered
to be the same in versions 𝑣𝑖 and 𝑣𝑖−1. A more sophisticated solution is to use the approach
presented in Reference [193], which analyzes the correspondences of model elements over
time in order to further optimize the identification of model elements, e.g., through the han-
dling of breaks and gaps in the historical evolution of a model element. The selection of the
most appropriate approach and model matcher depends on the characteristics of the models
and the organization of model histories. Guidelines for this selection are out of the scope of
this thesis but may be found, e.g., in References [80, 93, 193]. For the sake of efficiency, all
the tracing information is saved and updated incrementally on demand, e.g., as meta-data in
the version control system or by using a separate database as suggested in Reference [193].

In our modeling scenario introduced in Section 2.1.2, starting from the violation of con-
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sistency rule message_signature(m:Message) on context element 6:disconnect in Version 4 (see
Figure 2.4b), we can easily identify this context element in the previous Version 3 (see
Figure 2.3c) since the sequence diagram has not been changed at all in the inconsistency-
inducing edit step (4.1). No validation error of the same rule is found for that context element
when validating against the class diagram in Version 3, thus this version is the latest version
in the history that is not affected by the inconsistency.

5.2.2 Differencing
As a first step towards detecting the changes that may have caused the inconsistency, we
calculate a structural difference (see Section 3.4.2) between the current inconsistent version
𝑉𝐵 and the last consistent model version 𝑉𝐴. Corresponding model elements in 𝑉𝐴 and
𝑉𝐵 can be determined by exploiting the traces between model elements computed in the
previous step (see Section 5.2.1).

An excerpt of the difference between the model Version 3 in Figure 2.3 and Version 4 in
Figure 2.4 of our running example, including the changes of the inconsistency-inducing edit
step is illustrated in Figure 5.1. Figure 5.1 shows the elementary changes in the difference
graph 𝐺Δ(𝑉𝐴,𝑉𝐵) that result from moving the operation disconnect() from class Video to Server.
In the model difference Δ(𝑉𝐴, 𝑉𝐵), the moving of the operation disconnect() is described by
the following historical changes (see Section 3.3):

c⟨model version⟩.⟨edit step⟩⟨change⟩ : ReferenceChange{ ⟨action⟩, ⟨context⟩, ⟨type⟩, ⟨target⟩ }
c4.1a : ReferenceChange{ delete, Video:Class, ownedOperation, disconnect:Operation }

c4.1b : ReferenceChange{ delete, disconnect:Operation, class, Video:Class }

c4.1c : ReferenceChange{ create, Server:Class, ownedOperation, disconnect:Operation }

c4.1d : ReferenceChange{ create, disconnect:Operation, class, Server:Class }

5.3 Impact Analysis
Our repair approach is based on the principle of complementing incomplete edit steps.
Given a set of CPEOs, there are, in general, many possible partial executions of them in
a difference. However, a detected partial execution of a CPEO and the resulting comple-
menting changes are not necessarily inconsistency-inducing and -resolving, respectively.
For example, the complementing changes can take place in a completely different part of
the model or will be an optional extension of the model elements that do not directly af-
fect the inconsistency. Technically, a partially executed CPEO can be related to a different
inconsistency than the one currently being repaired. A similar problem occurs if a CPEO
contains smaller yet consistent edit steps. Such edit steps will be recognized as partial exe-
cutions regardless of the inconsistency. Such complements are not effective with respect to
the task of repairing a specific inconsistency in a model. In this section, we will introduce
a technique to discard such complements in the early phases of the repair algorithm, which
also enhances its performance and scalability.

The impact analysis, illustrated in Step 3 in Figure 5.7 and Figure 5.8c, basically tests
whether a change in a model has a positive or negative impact on a given inconsistency. In
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essence, a consistency rule either requires or forbids certain elements in the ASG of a model.
Thus, a change performed on an ASG has a positive (or negative) impact on the inconsistency
if it (i) creates (or deletes) a node or edge which is required by the respective consistency
rule, (ii) deletes (or creates) a node or edge which is forbidden by the rule, or (iii) changes
an attribute value which is forbidden (or required) by the rule. For a given inconsistency
𝜂 = (𝐶𝑅, 𝑒) and a change 𝑐, the predicates positive(𝜂, 𝑐) and negative(𝜂, 𝑐) state that the impact
of 𝑐 on 𝜂 is positive and negative, respectively. Conversely, ¬positive(𝜂, 𝑐) (or ¬negative(𝜂, 𝑐))
states that 𝑐 does not have a positive (or negative) impact on 𝜂. The latter does not imply
that a change has a negative (or positive) impact on the given inconsistency, it may also be
neutral with respect to that inconsistency.

A change with a positive impact does not necessarily fully resolve an inconsistency, i.e.,
a positive impact indicates an improving change that may require additional changes (see
Section 5.1). Likewise, an inconsistency does not necessarily have to be caused by a sin-
gle change with a negative impact, i.e., an inconsistency can occur through a combination
of changes. Therefore, our repair approach uses CPEOs to determine repairs for complex
edit steps. In fact, the partial execution of a CPEO is considered as a repair if (i) the recog-
nized sub-rule has a negative impact, and (ii) the complement rule has a positive impact on
the inconsistency under consideration. In particular, the relation between the CPEO and
a consistency rule that detects an inconsistency does not have to be explicitly known, i.e.,
the relation is determined by the impact analysis. A CPEO represents a complex edit step
that is assumed to be consistency-preserving regarding a specific consistency rule. There-
fore, complementing a partially executed CPEO typically implies that the inconsistency is
resolved. As we only check for the positive impact, a complementation might require addi-
tional changes to resolve a specific inconsistency. In general, to check if a repair proposal
actually resolves an inconsistency, an inefficient state space exploration would be required
that simulates all possible applications of the complement rule.

As an example, let us consider the second part of the consistency rule message_signature(
m:Message) described in Definition (5.1b, 5.1c). It states that the lifelines receiving a mes-
sage must represent an instance of a class that contains the operation being specified as
the signature of the message. Amongst others, two changes having a potential negative (or
positive) impact are the removal (or addition) of an operation of a class. However, the in-
consistency is only introduced (or resolved) if the removed (or added) operation is specified
as the signature of the message.

The impact analysis can be implemented based on the set of abstract repairs 𝑅 derived by
the scope analysis in Section 5.1. Let 𝑅(𝜂) be the complete set of abstract repairs determined
for a given inconsistency 𝜂. Technically, an abstract repair 𝛼 ∈ 𝑅(𝜂) is expressed by an
abstract reference/attribute changes or an object change (action) (see Section 3.3). For a
given abstract repair 𝛼 the predicate positive(𝜂, 𝛼) holds if 𝛼 ∈ 𝑅(𝜂). In particular, a concrete
change 𝑐 is contained in a set of abstract repairs 𝑐 ∈ 𝑅(𝜂) if 𝑐 is a valid instantiation of at
least one abstract repair 𝛼 ∈ 𝑅(𝜂).

Definition (5.13) describes the instantiation check for the concrete change 𝑐 and the
abstract repair 𝛼 that is represented by an abstract reference/attribute change. A concrete
change 𝑐 is a valid instantiation of 𝛼 if 𝑐 and 𝛼 are of the same kind, and if the context bound
by 𝛼 is bound to the same model element by 𝑐. Parameters that are yet unbound in 𝛼 may
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be bound to any element or value by 𝑐.
isInitialization(𝛼 :AbstractReferenceChange, 𝑐:ReferenceChange) ≔
isInitialization(𝛼 :AbstractAttributeChange, 𝑐:AttributeChange) ≔

𝛼 .action ≡ 𝑐.action
𝛼 .context ≡ 𝑐.context
𝛼 .type ≡ 𝑐.type

(5.13)

In addition, an abstract repair specifying the deletion of the context element is contained
in 𝑅(𝜂). In this case, a concrete change 𝑐 must exactly match the abstract repair 𝛼 that is
expressed by an concrete object change.

isInitialization(𝛼 :ObjectChange, 𝑐:ObjectChange) ≔
𝛼 .action ≡ 𝑐.action
𝛼 .context ≡ 𝑐.context

(5.14)

Definition (5.15) shows the instantiation check for the abstract repairs as they are gen-
erated by the repair operation of the AllInstances function (see Table 5.1). Here the context
element of the concrete change must be assignable (see Definition (3.4)) to the context type
specified by the abstract repair that is represented as an object change action.

isInitialization(𝛼 :ObjectChangeAction, 𝑐:ObjectChange) ≔
𝛼 .action ≡ 𝑐.action
isAssignableTo(𝑐.context.eClass, 𝛼 .contextType)

(5.15)

Such an implementation of testing abstract changes with respect to positive impacts can
be re-used for implementing a negative impact test. The idea is to test whether the inverse
change of 𝑐, say 𝑐−1, has a positive impact on 𝜂. To invert a change, its create action is
replaced with a delete action and vice versa. More formally, the following rules apply.

negative(𝜂, 𝑐) ⟺ positive(𝜂, 𝑐−1) and ¬negative(𝜂, 𝑐) ⟺ ¬positive(𝜂, 𝑐−1) (5.16)

5.3.1 Change Impact Analysis
As illustrated by Step 3 in Figure 5.8c, the change impact analysis takes the inconsistency
under consideration as well as the model difference Δ(𝑉𝐴, 𝑉𝐵) calculated in Step 2 as input.
The goal is to identify the historical changes which may have caused the inconsistency 𝜂,
referred to as inconsistency-inducing changes and denoted by Δ𝜂(𝑉𝐴, 𝑉𝐵)with Δ𝜂(𝑉𝐴, 𝑉𝐵) ⊆
Δ(𝑉𝐴, 𝑉𝐵). For each historical change 𝑐 ∈ Δ(𝑉𝐴, 𝑉𝐵), we test whether 𝑐 has a negative impact
on the inconsistency 𝜂.

Δ𝜂(𝑉𝐴, 𝑉𝐵) = {𝑐 ∣ 𝑐 ∈ Δ(𝑉𝐴, 𝑉𝐵) ∧ negative(𝜂, 𝑐)} (5.17)

To give an illustration, consider the difference graph 𝐺Δ(𝑉𝐴,𝑉𝐵) shown in Figure 5.1. The
inconsistency-inducing edit step, i.e., moving the operation disconnect(), leads to four histor-
ical changes on the model’s ASG, namely the deletion (c4.1a, c4.1b) and re-creation (c4.1c, c4.1d)
of the edges of type ownedOperation and class between the disconnect():Operation node and
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the old owning Video:Class and new owning Server:Class nodes. The opposite containment
edges are shown as a single undirected edge in the in Figure 5.1.

Among the four historical changes, the deletion c4.1a of the edge of type ownedOperation,
between the class Server and the operation disconnect(), has a negative impact on the valida-
tion of the consistency rule message_signature(m:Message). Intuitively, the message’s receiver
in the sequence diagram does not provide a suitable message signature anymore. For com-
puting the negative impact, we compare the model difference Δ(𝑉𝐴, 𝑉𝐵) with the abstract
repairs 𝑅 (see Section 5.1.6). In this case, we find the inverted historical change c4.1a⁻¹ can be
initialized from the abstract change 𝛼4.2 that suggests creating a new operation in the class
Server. Notably, the inverted change c4.1a⁻¹ specifies the creation of the operation disconnect()
in class Video.

The fact that the disconnect() operation is moved to another class and not completely
deleted from the model has no impact on the inconsistency, i.e., the two edge creations
c4.1c and c4.1d of that relocation have a neutral impact on the inconsistency. Likewise, the
path expression in the existence check of the consistency rule (see Definition (5.1b)) only
incorporates edges of type ownedOperation. Thus, the deletion c4.1b of its opposite edge of
type class is considered to have a neutral impact on the inconsistency, too. Finally, the set
of inconsistency-inducing changes can be specified as a singleton set:

Δ𝜂(𝑉𝐴, 𝑉𝐵) = { c4.1a : ReferenceChange{ delete, Video:Class, ownedOperation, disconnect:Operation } }

5.3.2 Action Impact Analysis
In contrast to the change impact analysis, the action impact analysis, shown as part of Step 3
in Figure 5.8c, works on the set of predefined CPEOs. Each CPEO is defined by an edit
rule 𝐸𝑅 that specifies a set of change actions (see Section 3.5). For each 𝐸𝑅, the goal is to
determine which of the change actions defined by 𝐸𝑅 have a potential positive (or negative)
impact on the given inconsistency 𝜂. The impact of a change action 𝑐𝑎 is potential in the sense
that the conditions defined for checking positive(𝜂, 𝑐𝑎) and negative(𝜂, 𝑐𝑎) are necessary but
not sufficient, i.e., the actual impact depends on the concrete arguments supplied to a change
action. The result of the analysis is a set of annotated CPEOs comprising that information.
We will later utilize these annotations in Step 4 (see Section 5.4). Repair proposals are only
generated for CPEOs comprising at least one change action having a potential positive (and
negative) impact on the given inconsistency.

Similar to the change impact analysis, the action impact analysis is based on the pos-
itive impact test positive(𝜂, 𝛼) as introduced for abstract repairs. To determine the impact
of an edit rule 𝐸𝑅, this test is adapted to change actions by ignoring the context parame-
ter bindings of the abstract repair. For a given change action 𝑐𝑎 and an inconsistency 𝜂,
positive(𝜂, 𝑐𝑎) holds if there exists an abstract repair 𝛼 ∈ 𝑅(𝜂) such that 𝛼 can be instantiated
from 𝑐𝑎. Analogous to the negative impact, the potential negative impact can be derived
from the potential positive impact.

negative(𝜂, 𝑐𝑎) ⟺ positive(𝜂, 𝑐𝑎−1) and ¬negative(𝜂, 𝑐𝑎) ⟺ ¬positive(𝜂, 𝑐𝑎−1) (5.18)

In contrast to the instantiation checks in Definition (5.13) to Definition (5.15), here we
check that the abstract repair 𝛼 can potentially be initialized from the given change action
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𝑐𝑎. In terms of an abstract reference/attribute change 𝛼 , this means that the context element
must be assignable to the specified context type of the change action 𝑐𝑎. Notably, the binding
of the context element for 𝑐𝑎 can be further restricted by the edit rule, i.e., if the context
node is also created, the types must match exactly. However, this case is handled by the
sub-rule recognition described in Chapter 4 that also checks for the structural compatibility
of changes.

isInitialization(𝑐𝑎:AbstractReferenceChange, 𝛼 :ReferenceChange) ≔
isInitialization(𝑐𝑎:AbstractAttributeChange, 𝛼 :AttributeChange) ≔

𝑐𝑎.action ≡ 𝛼 .action ∧
isAssignableTo(𝛼 .context.eClass, 𝑐𝑎.contextType) ∧
𝑐𝑎.type ≡ 𝛼 .type

(5.19)

The above-mentioned case of object creation is handled by the object change initializa-
tion check in Definition (5.20). Notably, this may only be relevant for possible user-defined
repair operations. The scope analysis in Section 5.1 only generates a context element re-
moval as abstract repair 𝛼 .

isInitialization(𝑐𝑎:ObjectChangeAction, 𝛼 :ObjectChange) ≔
𝑐𝑎.action ≡ 𝛼 .action ∧
𝑐𝑎.action ≡ create⇒𝛼 .context.eClass ≡ 𝑐𝑎.contextType ∧
𝑐𝑎.action ≡ delete⇒ isAssignableTo(𝛼 .context.eClass, 𝑐𝑎.contextType)

(5.20)

For the abstract object changes 𝑐𝑎 and 𝛼 , we have to check if any possible binding of
𝑐𝑎 is a valid initialization of 𝛼 . An object deletion 𝑐𝑎 in an edit rule can be initialized with
any assignable type. In contrast, object creations 𝑐𝑎 are initialized with the exact type of
the change action. For abstract repairs, on the other hand, an abstract object changes 𝛼 can
always be initialized with any assignable type (see Definition (3.7)).

isInitialization(𝑐𝑎:ObjectChangeAction, 𝛼 :ObjectChangeAction) ≔
𝑐𝑎.action ≡ 𝛼 .action ∧
𝑐𝑎.action ≡ create⇒ isAssignableTo(𝑐𝑎.contextType, 𝛼 .contextType) ∧
𝑐𝑎.action ≡ delete⇒ isAssignableTo(𝑐𝑎.contextType, 𝛼 .contextType)

∨ isAssignableTo(𝛼 .contextType, 𝑐𝑎.contextType)

(5.21)

As an example, consider the consistency rule message_signature(m:Message) shown in Def-
inition (5.1) and the CPEO moveOperationAndChangeMessageTarget shown in Figure 5.3. As
illustrated by the edit rule graph of moveOperationAndChangeMessageTarget, to move an op-
eration between classes and consistently change the receiving lifeline of a corresponding
message, the following elementary change actions have to be performed:

ca⟨corresponding to changes⟩ : ReferenceChangeAction{ ⟨action⟩, ⟨contextType⟩, ⟨type⟩, ⟨targetType⟩ }
ca4.1a : ReferenceChangeAction{ delete, Class, ownedOperation, Operation } ⟩ negative
ca4.1b : ReferenceChangeAction{ delete, Operation, class, Class }

ca4.1c : ReferenceChangeAction{ create, Class, ownedOperation, Operation } ⟩ positive
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ca4.1d : ReferenceChangeAction{ create, Operation, class, Class }

ca5.1a : ReferenceChangeAction{ delete, MessageEnd, covered, Lifeline } ⟩ negative
ca5.1b : ReferenceChangeAction{ delete, Lifeline, coveredBy, MessageEnd }

ca5.1c : ReferenceChangeAction{ create, MessageEnd, covered, Lifeline } ⟩ positive
ca5.1d : ReferenceChangeAction{ create, Lifeline, coveredBy, MessageEnd }

The change action ca5.1c of type covered, which creates the connection of the message
end with the receiver’s lifeline may have a positive impact on the inconsistency. Intu-
itively, this action can change the receiving lifeline of message 6:disconnect to another life-
line that potentially resolves the inconsistency, i.e., a lifeline representing a class contain-
ing a suitable operation signature. Technically, we compare the change actions of the
edit rule moveOperationAndChangeMessageTarget to the set of abstract repairs 𝑅(𝜂), as com-
puted in Section 5.1.6. In this context, the abstract repair 𝛼4.5 represents a valid instanti-
ation of the change action ca5.1c by binding the context to the model element disconnectRe-
ceive:MessageEnd (see Figure 5.1).

In addition, the change action ca4.1c creating the reference ownedOperation, during the
moving of the operation, has a potential positive impact. The abstract change 𝛼4.2 ∈ 𝑅(𝜂)
initializes the change action ca4.1c by binding the context to the element Video:Class (see
Figure 5.1). However, this potential positive impact is not relevant in our particular repair
scenario. In general, this could be useful in a scenario in which we change the receiver of
the message first and complement that edit step by moving the operation. This is due to the
fact that the potential impact analysis on the edit rule does not consider the actual historical
changes yet.

Likewise, the negative(𝜂, 𝑐𝑎) impact is checked and annotated for the change actions 𝑐𝑎
of the edit rule 𝐸𝑅. In the CPEO moveOperationAndChangeMessageTarget shown in Figure 5.3
the change action ca4.1a removing the operation from its containing class is annotated as
potential inconsistency-inducing change. This case of a potential negative impact is anal-
ogous to the actual negative impact detected in the model difference in Section 5.3.1 that
caused the inconsistency by moving the operation disconnect() from class Video to the Server
class. In terms of the potential impact analysis, the inverted abstract change 𝛼4.2⁻¹ initializes
the change action ca4.1a with the context element Video:Class (see Figure 5.1).

Contrary to the positive impact, the change action ca5.1a in the edit rule, which removes
a message from a receiving lifeline, has a potential negative impact. This change action
can be initialized as the inverted abstract change 𝛼4.5⁻¹ by binding the context element to
disconnectReceive:MessageEnd (see Figure 5.1). Likewise, this potential negative impact is
not relevant in our particular repair scenario but could be useful in the scenario mentioned
above.

5.4 Repair Generation
The general idea of considering model repair as a complementation of partially executed
CPEOs is illustrated in Figure 5.12. As a refined version of Figure 2.8, the Figure 5.12 vi-
sualizes a difference as a sequence of concrete changes. Similarly, a CPEO is visualized as a
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sequence of change actions. A subset of the change actions of the CPEO, together with a sub-
set of concrete historical changes of the model difference, represents the partial execution
of a CPEO. In order to generate a repair for the inconsistent model 𝑉𝐵, the remaining change
actions of the CPEO need to be bound to concrete elements and values of the model’s ASG.
Chapter 4 describes the detection of partially executed CPEOs in model difference. In the
following Section 5.4.1 to Section 5.4.3, we adapt this technique to construct case-specific
repair operations.

partial execution
of the CPEO

model difference 
(with concrete changes)

repair

abstract
repairs

CPEO (with change actions)sub-rule

complement
of the CPEO

complement rule

-1negative
impact

positive
impact

Figure 5.12. Changes in a difference and in a CPEO involved in the generation of repair proposals
through complementing partially executed CPEOs.

In the context of history-based model repair, a principal question is how models can
become inconsistent during an editing process. We exclude reasons such as system crashes,
editing of the internal structure, etc., which “physically” damage a model. Our approach
cannot repair such damages; this is beyond the scope of our approach andmust be addressed
by recovery techniques, notably by backup copies. We assume that models are only changed
by tools that maintain a minimum degree of consistency. If one starts an editing process
with an empty model, which is consistent, and later arrives at an inconsistent model, then
in general, two kinds of modifications are possible to restore the model consistency. The
sequence of edit steps that leads to an inconsistent model can be continued to reach a new
consistent state of themodel, or several edit steps can be undone to reach an older consistent
state of the model. That leads to the following general repair scenarios:

Complementing edit step: The editing process can be meaningfully continued without undo-
ing previous edit steps. This case is primarily addressed by our repair approach.

Rollback edit step: The editing process can, in principle, be continued to repair the model
without undoing previous edit steps, but this does not make sense from a developer’s
point of view, and some or all of the former edit steps are undone at the discretion of
the designer.

Our repair tool supports the developer in this case by showing the edit steps that
caused the inconsistency and allowing them to make an informed decision to undo
those modifications. This case-specific rollback operation is constructed by inverting
the changes of the detected partially executed CPEO.
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Replacing edit step: A repair will undo some previous modifications that do not directly
repair the inconsistency, and after that, some new repairing changes will be applied on
the model. This can be seen as equivalent to, but more efficient than, first completely
undoing an incorrect edit step (a) and then redoing a similar but correct edit step.

Our approach can support these kinds of repairs for correcting attribute values of ex-
isting model fragments. For example, if a model fragment was created correctly with
respect to its structure but some attribute values are specified incorrectly. Based on a
corresponding CPEO, the repair tool can suggest a complement rule that overwrites
those values with corrected values.

As a basis for generating history-based repair recommendations, we use the approach
introduced in the previous Chapter 4 for detecting and complementing partial executions of
edit rules in a model difference. Given an inconsistency and a model difference comprising
changes that potentially caused the inconsistency, we have to find related partial applica-
tions of CPEOs in this difference that can be complemented to resolve the inconsistency. For
a CPEO specified by an edit rule 𝐸𝑅, this means that we want to find a sub-rule 𝐸𝑅𝑠𝑢𝑏 ⊂ 𝐸𝑅
whose effect is observable in the model difference Δ(𝑉𝐴, 𝑉𝐵). At the same time, the sub-
rule must be related to the inconsistency-inducing changes, i.e., we are only interested in
sub-rules that might have caused the inconsistency. Next, we derive the corresponding
complement rule 𝐸𝑅 = 𝐸𝑅 ⧵ 𝐸𝑅𝑠𝑢𝑏 and search for possible applications of that rule with the
potential to resolve the inconsistency under consideration. Technically, the algorithm dis-
cussed in Chapter 4 allows to refine the context for detecting and complementing partially
executed edit rules. Therefore, the historical impact of sub-rules and the complementary
impact of complement rules, introduced in Section 4.6.1 and Section 4.6.2, are configured
according to the inconsistency to be repaired.

5.4.1 Sub-Rule Recognition
As discussed in Chapter 4, while there may be many sub-rules of an edit rule and many oc-
currences of these sub-rules in a given difference, we are only interested in those meeting
the conditions for syntactically correct sub-rules. For the preservation of elementary ASG
consistency (see Section 3.3.3), all atomic change sets and their dependencies are identified
in the CPEO moveOperationAndChangeMessageTarget in Figure 5.3. The edges of type ownedOp-
eration and class used in our CPEO of Figure 5.3, which move the operation in the AST, must
be treated as atomic fragments. Moreover, the pairs of edges of type covered and coveredBy
are opposite edges that form an atomic change set.

As illustrated by Step 4 in Figure 5.9a, the repair generation is initialized with the model
difference computed in Step 2 and a CPEO to be processed. Step 4 shows the processing of a
single CPEO. Technically, all CPEOs can be processed in parallel, and the results are finally
collected for the repair proposal ranking depicted in Step 5 of Figure 5.9b.

A sub-rule 𝐸𝑅𝑠𝑢𝑏 of an edit rule 𝐸𝑅 must contain at least one change action that has
a potential negative impact with respect to inconsistency 𝜂, as defined in the analysis in
Section 5.3.2. This information can be obtained from the CPEO annotations calculated by
the action impact analysis described in Section 5.3.2. In terms of the detection of partially
executed edit rules in Section 4.6.1 of Chapter 4, at least one change action with a potential
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historical impact 𝐸𝑅𝜇 is required; otherwise, the edit rule is ignored. Therefore, the potential
historical impact 𝐸𝑅𝜇 simply corresponds to the change actions annotated with a potential
negative impact.

𝐸𝑅𝜇 = {𝑐𝑎 ∈ 𝐸𝑅 ∣ negative(𝜂, 𝑐𝑎)} (5.22)

This condition is fulfilled for the CPEOmoveOperationAndChangeMessageTarget in Figure 5.3.
As determined in Section 5.3.2, the change actions ca4.1a and ca5.1a deleting the edge of type
ownedOperation and covered are annotated as potential negative impact.

At least one change action of 𝐸𝑅𝑠𝑢𝑏 with a potential negative impact must finally be
mapped to a historical change in the set of inconsistency-inducing changes. In other words,
𝐸𝑅𝑠𝑢𝑏 may indeed have caused the inconsistency. The negative impact is defined by the
inconsistency-inducing changes Δ𝜂(𝑉𝐴, 𝑉𝐵) calculated by the change impact analysis de-
scribed in Section 5.3.1. Therefore, the detection of partially executed edit rules in Sec-
tion 4.6.1 can be restricted by specifying an actual historical impact Δ𝜇(𝑉𝐴, 𝑉𝐵) using the
inconsistency-inducing changes Δ𝜂(𝑉𝐴, 𝑉𝐵).

Δ𝜇(𝑉𝐴, 𝑉𝐵) = Δ𝜂(𝑉𝐴, 𝑉𝐵) (5.23)

For our running example, a sub-rule of the CPEO shown in Figure 5.3 that just moves
the operation in the class diagram can be recognized in the model difference Δ(𝑉𝐴, 𝑉𝐵) il-
lustrated in Figure 5.1. The change action ca4.1a that deletes the edge of type ownedOpera-
tion can be mapped to a concrete historical change c4.1a ∈ Δ𝜂(𝑉𝐴, 𝑉𝐵), i.e., a change in the
difference Δ(𝑉𝐴, 𝑉𝐵) which, as an outcome of the change impact analysis (see Section 5.3.1),
is known to have a negative impact on the inconsistency 𝜂 under consideration. The fol-
lowing listing shows the mapping of change actions to changes in the model difference,
including the inverted abstract change identified in the impact analysis:

ca4.1a : ReferenceChangeAction{ delete, Class, ownedOperation, Operation } ⟩ negative
↦ 𝛼4.2⁻¹ : AbstractReferenceChange{ delete, Video:Class, ownedOperation }

↦ c4.1a : ReferenceChange{ delete, Video:Class, ownedOperation, disconnect:Operation }

ca4.1b : ReferenceChangeAction{ delete, Operation, class, Class }
↦ c4.1b : ReferenceChange{ delete, disconnect:Operation, class, Video:Class }

ca4.1c : ReferenceChangeAction{ create, Class, ownedOperation, Operation }
↦ c4.1c : ReferenceChange{ create, Server:Class, ownedOperation, disconnect:Operation }

ca4.1d : ReferenceChangeAction{ create, Operation, class, Class }
↦ c4.1d : ReferenceChange{ create, disconnect:Operation, class, Server:Class }

5.4.2 Complement Rule Matching
As described in Section 4.1, based on a recognized sub-rule, a corresponding complement
rule 𝐸𝑅 = 𝐸𝑅⧵𝐸𝑅𝑠𝑢𝑏 can be derived. Conversely to the potential negative impact, at least one
of the remaining change actions in the complement rule 𝐸𝑅 must have a potential positive
impact on that inconsistency 𝜂. In terms of the partial edit rule detection in Section 4.6.2
of Chapter 4, at least one change action with a potential complementary impact 𝐸𝑅𝛼 is
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required; otherwise, the edit rule is ignored. Therefore, the potential complementary impact
𝐸𝑅𝛼 is defined by the change actions of the CPEO annotated with a potential positive impact.

𝐸𝑅𝛼 = {𝑐𝑎 ∈ 𝐸𝑅 ∣ positive(𝜂, 𝑐𝑎)} (5.24)

Regarding our running example, given the sub-rule of CPEO moveOperationAndChange-
MessageTarget in Figure 5.3 that moves an operation between two classes, the corresponding
complement rule changes the target end of a message to another lifeline. Here, the comple-
ment rule does not comprise the change actions of types ownedOperation and class, which
are already executed by the sub-rule. In this case, as determined by the action impact anal-
ysis in Section 5.3.2, the change action ca5.1c creating the edge of type covered indicates a
complementary impact.

To ensure a positive impact of the complement rule 𝐸𝑅 application with respect to the
inconsistency 𝜂, at least one change action with a potential positive impact must represent
an initialization of an abstract change in 𝑅(𝜂). In other words, applying 𝐸𝑅 may improve or
resolve the inconsistency under consideration. Likewise, the detection of partially executed
edit rules in Section 4.6.2 can be configured with an actual complementary impact Δ𝛼 . As
illustrated by Step 4 in Figure 5.7, the complementary impact Δ𝛼 is defined by the abstract
repairs 𝑅(𝜂) computed in Step 1.

Δ𝛼 = 𝑅(𝜂) (5.25)

Regarding the derived complement rule of our running example, the creation ca5.1c of
the edge of type covered with a potential positive impact on the inconsistency must be ini-
tialized. In our current version of the VoD-System in Figure 5.1, we can find two valid
application of the complement rule. One application changes the receiver of the message
to the mirror:Server lifeline and the other one changes the receiver to the main:Server lifeline.
Both complement rule applications have an actual complementary impact as they initialize
the abstract change 𝛼4.5 with the receiving end of the message 6:disconnect. The following
listing shows the initialized (abstract) changes for each change action of the complement
rule as it is applied to model Version 4 resulting in model Version 5 illustrated in Figure 5.1
and Figure 5.2, respectively:

ca5.1a : ReferenceChangeAction{ delete, MessageEnd, covered, Lifeline }

↦ c5.1a : ReferenceChange{ delete, disconnectReceive:MessageEnd, covered, open:Lifeline }

ca5.1b : ReferenceChangeAction{ delete, Lifeline, coveredBy, MessageEnd }

↦ c5.1b : ReferenceChange{ delete, open:Lifeline, coveredBy, disconnectReceive:MessageEnd }

ca5.1c : ReferenceChangeAction{ create, MessageEnd, covered, Lifeline } ⟩ positive
↦ 𝛼4.5 : AbstractReferenceChange{ create, disconnectReceive:Lifeline, covered }

↦ c5.1c : ReferenceChange{ create, disconnectReceive:MessageEnd, covered, mirror:Lifeline }

ca5.1d : ReferenceChangeAction{ create, Lifeline, coveredBy, MessageEnd }

↦ c5.1d : ReferenceChange{ create, mirror:Lifeline, coveredBy, disconnectReceive:MessageEnd }
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5.4.3 Repair Construction
A repair suggested by our approach is a complement rule computed by the approach in-
troduced in Chapter 4. Technically, a complement rule is defined by an in-place model
transformation rule supplied with concrete parameters. The final task to come up with a
concrete repair proposal is to turn all possible applications of a complement rule into a list
of selectable parameter bindings. Therefore, each parameter is associated with a domain
that collects the model elements of all complement rule applications. The developer can
select the appropriate model elements if multiple alternatives are available. Only those pa-
rameters that lead to countless alternatives, e.g., names of new model elements, have to be
specified by the developer.

In our running example, the parameters moveOperation, toClass, and changeMessage of the
complement rule of the CPEO moveOperationAndChangeMessageTarget in Figure 5.3 are bound
to model elements disconnect(), Server, and 6:disconnect in the model version 𝑉𝐵, respectively.
Finally, the developer must select a specific lifeline for the parameter toLifeline. In Version 5
of the VoD-System in Figure 2.5b the developer can choose between the main:Server and the
mirror:Server lifeline.

Technically, the selection of each parameter restricts the domains of other, not yet se-
lected, parameters. Such restrictions can be computed incrementally by a CSP solver in
Chapter 4. The domains of the complement rule are used as initial domains for the appli-
cation context of the complement rule. Each time a parameter is selected, the CSP solver
computes the remaining possible application context matchings. Finally, the application
context matchings are propagated back to the parameter domains of the repair proposal.

5.5 Repair Ranking
Re(pair)Vision proposes repairs as pairs of a sub-rule and a complement rule. The repair
proposals are ranked based on multiple criteria of both of these rules. The inverted changes
of the sub-rule correspond to a rollback and the complement rule to the complementing
repair, i.e., we rank and propose two kinds of repair at the same time. While each pair of a
complement and a rollback is distinct in the list of repair proposals (by construction), it is
likely that a rollback will be recurring. However, we can conclude from our experimental
results (see Chapter 8) that a complementation is more likely in practice, preserving the
efforts of former changes. In order to rank the calculated repair proposals, we consider the
number of changes from the complement rule |𝑅| as well as the historical changes of the
sub-rule |𝑅𝑠𝑢𝑏 |. The repairs with the greatest ratio |𝑅𝑠𝑢𝑏 | / |𝑅| of historic and complementing
changes, referred to as change ratio in the sequel, will be preferred. A large overlap of a
CPEO with the history can be seen as an indication of an uncompleted edit step. On the
other hand, a small complement rule leads to a repaired model that is close to the original
model, referred to as the “least-change principle” in Reference [115].

If two repair proposals share the same change ratio, we prefer the repair with the larger
sub-rule, i.e., a large sub-rule is more likely an actually uncompleted edit step than a smaller
one. In order to consider the level of concreteness of the repair alternatives, the repair with
the smallest number of unbound parameters is subsequently preferred. In general, modifi-
cations that just add new elements to a model are commonly less critical than modifications
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that delete model elements, e.g., in terms of meta-models and already existing model in-
stances which would need migrations after deleting type definitions. Therefore, in the next
ranking step, the repair with the larger number of creation changes minus the number of
deletion changes is preferred.

In the unlikely case that all of the aforementioned ranking criteria do not break ties, we
keep the remaining partial order on the ranked list of repair proposals. In the respective
GUI component of our interactive repair tool (see Chapter 6), such proposals are presented
in groups, accounting for the fact that they are ranked on the same position.

In our repair scenario in Figure 5.1, the developer selects applies the repair proposal that
changes the receiver of message 6:disconnect from lifeline open:Video to mirror:Server. The
result of applying this complementation is shown in Figure 5.2.

5.6 Undo Generation
In some cases, developers may find no reasonable complementation of their editing process
and cannot repair the model without undoing previous edit steps. Thus, some or all of the
former edit steps are undone at the discretion of the developer. Our repair tool supports this
case by showing the edit steps that caused the inconsistency and by enabling developers to
make the informed decision to undo those modifications.

For every partially applied CPEO that may have caused the inconsistency under consid-
eration, a case-specific undo operation that inverts the changes of the recognized sub-rule
can be constructed instantly upon request. Such a rollback is constructed as described in
Section 4.9. As mentioned in Section 4.9, a rollback can cause side effects that also undo
dependent changes, of which the repair tool should make the developer aware.

Our repair tool basically shows all recognized edit steps alongside with their comple-
menting edit steps derived from the CPEO. The undo operation is calculated instantly by
inverting the changes of a recognized sub-rule (see Figure 5.9c). The developer can either
choose to apply a complement rule or undo a recognized sub-rule. Our approach provides
no recommendation on whether to prefer undoing or complementing a partially applied
CPEO; this is left at the discretion of the developers. Applying an undo operation causes
the rollback of the inconsistency-inducing changes. For example, the undo operation in the
scenario of Figure 5.1 would be to move the operation disconnect() from the class Server back
to the class Video. This rollback would also resolve the inconsistency with respect to the
message 6:disconnect.

5.7 Iterative Repair Process
Following the requirements analyzed in Section 1.2, the understandability of proposed re-
pairs is of utmost importance for a repair recommendation system, while partial solutions
may be accepted. On purpose, a repair recommended by our approach is not guaranteed to
be free of negative side effects since this can lead to complex repair proposals and a possible
state space explosion. The repair process described in Figure 5.7 breaks up such complex
repair scenarios by focusing on a single inconsistency at a time. After performing a model
repair, ReVision automatically triggers a re-validation of the resulting model, i.e., starting
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a new iteration beginning with Step 1 in Figure 5.7. If the repair had a negative side effect,
then all new inconsistencies have to be repaired subsequently.

As shown in Figure 5.1 of the VoD-System, this is the case for the sender of the message
6:disconnect, since the sending class Server can not reference an object of type User through
an owned property. This inconsistency 𝜂 is detected by the consistency rulemessage_property(
m:Message) specified in Definition (5.2).

For the sake of brevity, wewill only discuss the abstract repairs 𝛼 ∈ 𝑅(𝜂) that are relevant
to our repair scenario. As shown by the validation scope in Figure 5.2, the validation of the
consistency rule message_property(m:Message) checks the sending and receiving ends of the
6:disconnect message by the existential quantifiers. Therefore, creating different message
ends may have a positive impact on the validation. Analyzing the negative impact of the
difference graph in Figure 5.2, we find the deletion of the covered edge of c5.1a ∈ Δ(𝑉𝐴, 𝑉𝐵):
c⟨model version⟩.⟨edit step⟩⟨change⟩ : ReferenceChange{ ⟨action⟩, ⟨context⟩, ⟨type⟩, ⟨target⟩ }
c5.1a : ReferenceChange{ delete, disconnectReceive:MessageEnd, covered, open:Lifeline }

c5.1b : ReferenceChange{ delete, open:Lifeline, coveredBy, disconnectReceive:MessageEnd }

c5.1c : ReferenceChange{ create, disconnectReceive:MessageEnd, covered, mirror:Lifeline }

c5.1d : ReferenceChange{ create, mirror:Lifeline, coveredBy, disconnectReceive:MessageEnd }

In the next repair iteration, as described in the second corrective edit step (6.1) in Fig-
ure 5.2, the developer changes the sender of the message 6:disconnect to the open:Video life-
line. This time, the previous repair described by the first corrective edit step (5.1), which
changed the receiver of the message 6:disconnect, is recognized as an incomplete, inconsis-
tency-inducing edit step. This repair proposal can be computed based on the CPEOmoveMes-
sage shown in Figure 5.5. The sub-rule is formed by the change actions ca5.1a, ca5.1b, ca5.1c,
and ca5.1d that change the receiving message end. This sub-rule is mapped to the changes
of edit step (5.1) in the difference graph in Figure 5.2:

ca5.1a : ReferenceChangeAction{ delete, MessageEnd, covered, Lifeline } ⟩ negative
↦ 𝛼5.2⁻¹ : AbstractReferenceChange{ delete, disconnectReceive:MessageEnd, covered }

↦ c5.1a : ReferenceChange{ delete, disconnectReceive:MessageEnd, covered, open:Lifeline }

ca5.1b : ReferenceChangeAction{ delete, Lifeline, coveredBy, MessageEnd }
↦ c5.1b : ReferenceChange{ delete, open:Lifeline, coveredBy, disconnectReceive:MessageEnd }

ca5.1c : ReferenceChangeAction{ create, MessageEnd, covered, Lifeline }
↦ c5.1c : ReferenceChange{ create, disconnectReceive:MessageEnd, covered, mirror:Lifeline }

ca5.1d : ReferenceChangeAction{ create, Lifeline, coveredBy, MessageEnd }
↦ c5.1d : ReferenceChange{ create, mirror:Lifeline, coveredBy, disconnectReceive:MessageEnd }

Based on this sub-rule, the corresponding complement rule is derived from the edit rule
in Figure 5.5. As shown in the final Version 6 of the VoD-System in Figure 2.6, the comple-
ment will change the sender of the message 6:disconnect from lifeline Alice:User to open:Video.
This complement rule application has a positive impact with respect to the inconsistency,
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i.e., the action ca6.1c changing the sender of the message initializes an abstract repair with
respect to the inconsistency. Applying this repair proposal complements edit step (5.1) and
restores the consistency of the VoD-System. This results in the following changes with
respect to model Version 5 initialized by the complement rule:

ca6.1a : ReferenceChangeAction{ delete, MessageEnd, covered, Lifeline }
↦ c6.1a : ReferenceChange{ delete, disconnectSend:MessageEnd, covered, Alice:Lifeline }

ca6.1b : ReferenceChangeAction{ delete, Lifeline, coveredBy, MessageEnd }
↦ c6.1b : ReferenceChange{ delete, Alice:Lifeline, coveredBy, disconnectSend:MessageEnd }

ca6.1c : ReferenceChangeAction{ create, MessageEnd, covered, Lifeline } ⟩ positive
↦ 𝛼5.4 : AbstractReferenceChange{ create, disconnectSend:Lifeline, covered }

↦ c6.1c : ReferenceChange{ create, disconnectSend:MessageEnd, covered, open:Lifeline }

ca6.1d : ReferenceChangeAction{ create, Lifeline, coveredBy, MessageEnd }
↦ c6.1d : ReferenceChange{ create, open:Lifeline, coveredBy, disconnectSend:MessageEnd }



6
Presentation of History-based

Recommendations

This chapter presents the user interface of ReVision developed as a proof of concept for history-
based model repair recommendation. In particular, the lack of tool support is identified as one
of the major challenges faced by MDE practitioners [131]. ReVision offers a view that enhances
the model editor, allowing developers to inspect a ranked list of history-based repair proposals
for a selected inconsistency. Each repair proposal specifies a detected partially executed edit
operation and its possible completions with respect to the inconsistency. In addition, for each of
these repair proposals, a case-specific undo operation can be created upon request. The chapter
also discusses the technological background and implementation insights of the tool.

W e presented our interactive tool ReVision that supports developers who have to re-
pair inconsistent models in MDE environments. Our tool, called ReVision, is imple-

mented on top of the widely used Eclipse modeling technology stack. It is publicly available
at Reference [8].

As discussed in Chapter 5, we assume that inconsistencies are introduced by former
editing processes that are incomplete in the sense that additional changes are necessary to
achieve a new consistent state. Assuming that the evolution of a model is managed in a ver-
sion control system, the tool locates incomplete editing processes in the version history of a
model. Our tool enables developers to complete such an incomplete editing process and to
catch up on the missing changes. At the same time, our approach prevents undoing former
edit steps. Alternatively, we enable developers to make the informed decision to simply
undo these changes. As defined in Section 5.5, the generated repair proposals are ranked
using properties of the history-based repair proposals. The tool supports the developer in
iteratively repairing each single violation of a consistency rule.

In order to prevent inconsistencies, a restrictive editing environment could force devel-
opers to use only CPEOs for editing amodel. However, this wouldmake editing very clumsy,
similar to syntax-directed editors, which are not very popular in practice [87]. Moreover,
developers typically follow a task-oriented model editing process, e.g., focusing on a dedi-
cated view, as in our example. Based on such a conceptual focus of one developer, it might

139
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also happen that inconsistencies have to be migrated by another developer who did not in-
troduce them. As a consequence, inconsistencies have to be tolerated temporarily but must
be resolved eventually.

The main idea of our approach is to consider CPEOs as ideal edit operations and to rec-
ommend the “gap” between ideal edits and the edits that have caused an inconsistency as
model repairs. In particular, the tool works offline, i.e., no monitoring of the local workspace
modifications is needed. In the following sections, we give a brief summary of the underly-
ing technologies and design decisions (see Section 6.1) as well as the user interface of the
tool (see Section 6.2).

6.1 Basic Technologies and Design Decisions
We implemented our approach to model repair as a plug-in for the Eclipse Modeling Frame-
work (EMF) [175]. The plug-in is available from the project website of ReVision [8].

Our implementation relies on the EMF core components and on further EMF-based tech-
nologies. For specifying CPEOs (see Section 3.5), we utilize the model transformation tool
Henshin [13] which is based on graph transformation concepts as used in our approach.
For the calculation of model differences (see Section 3.4), we build on the model differencing
framework SiLift [1] which implements the approach presented in Reference [82]. In order
to determine corresponding model elements in successive model versions during inconsis-
tency tracing in a version history (see Section 5.2), ReVision provides an extension point
that can be configured with different model matching algorithms according to the modeling
domain and development process (see i7 Figure 6.1). The scope analysis (see Section 5.1)
is implemented by utilizing the concept of ASG-based repair actions as implemented in the
tool Model/Analyzer [148]. To be used in our tooling environment, we re-implemented
the basic concepts of the Model/Analyzer algorithm [149] for EMF-based models.

6.2 Repair Tool
To give an impression of how to use our repair tool, particularly how the generated repair
proposals are presented to the developer, Figure 6.1 shows the interactive GUI components
during the first corrective edit step (5.1) of our running example as described in Section 2.1
and shown in Section 2.4. ReVision is placed in an additional view next to the model editor.
The validation of the currently opened model detects the inconsistency message_signature(
m:Message) (see i1 in Figure 6.1). Selecting this inconsistency ig invokes the repair calcula-
tion. As illustrated in Figure 6.1, the repairs are presented as a list in which every entry
represents the partial execution of a CPEO. In this example, change ratios induce a totally
ordered ranking of the repair proposals. Every repair proposal contains three sets of infor-
mation: ib the parameters of the CPEO, id the change actions of the recognized sub-rule,
including the inconsistency-inducing changes, and ie the change actions of the complement
rule that are proposed as a repair. As shown in the class and sequence diagram view in Fig-
ure 6.1, by selecting a repair proposal, parameters, or change sets in the repair view, the
involved model elements are highlighted i9 in the diagram.

For the first corrective edit step (5.1), ReVision proposes three possible repair alter-
natives. All of them are based on the same recognized change set, which includes the
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Figure 6.1. ReVision: First corrective edit step edit step (5.1) of the running example.

inconsistency-inducing changes moving the operation disconnect() between the classes Video
and Server. To understand the inconsistency-inducing changes, the developer can also open
and compare the last consistent version of the model with respect to the selected inconsis-
tency (see i2 in Figure 6.1).

The first repair alternative i8 proposes to change the signature of the message to one of
the operations contained by class Video. The second repair ia corresponds to the desired edit
step (5.1), as described in our running example of Section 2.1, which changes the target end
of the message 6:disconnect. This repair can be parameterized with the new target lifeline
that must be an instance of class Server (see ib in Figure 6.1). Parameters are automatically
assigned to a repair operation as long as their assignment is unique. Otherwise, a specific
parameter value must be assigned by the developer. ReVision found two concrete options
for the parameter toLifeline representing the new target lifeline. As in our running example,
the developer can choose between the lifelines main:Server and mirror:Server. The third and
last repair if alternative resolves the inconsistency by completely removing the message
6:disconnect from the sequence diagram.

As in our running example, we choose the second repair alternative moveOperationAnd-
ChangeMessageTarget ia and select i5 the lifeline mirror:Server ic for the parameter toLifeline.
After applying ia the repair, which changes the target of the message 6:disconnect to the life-
line mirror:Server, the inconsistency is resolved. In particular, all applied repairs are stored
on an editing stack so that every repair step can be undone i6 , allowing the developer to
explore different repair alternatives.
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Figure 6.2. ReVision: Second corrective edit step edit step (6.1) of the running example.

As introduced in Section 5.6, instead of applying the repair with its complementing
changes, the developer can also choose to undo the changes that induce the inconsistency
(see i4 in Figure 6.1). Instead of applying the second repair alternative in Figure 6.1, the
developer could select and undo any of the recognized change sets id of the proposed repairs.
The rollback repairs the VoD-System by moving the operation disconnect() back from the
class Server to the class Video.

After applying the repair, ReVision again validates the VoD-System model and recog-
nizes a new inconsistency message_property(m:Message) (see i4 Figure 6.2). This inconsistency
indicates the missing association between the classes User and Server of the sending and re-
ceiving instances of message 6:disconnect. As in our running example, Figure 6.2 illustrates
the second corrective edit step (6.1) described in Section 2.1.

In this scenario, the developer can choose between two repair alternatives for this in-
consistency. These repairs are recognized with the previous corrective edit step as inconsis-
tency-inducing changes, i.e., the changing of the receiving lifeline of message 6:disconnect.

The first repair alternative i1 in Figure 6.2 proposes to move the source end of the mes-
sage 6:disconnect to the already existing lifeline open:Video, which represents an object of
the property open [0..4] defined by class Video. This repair leads to the same corrective edit
step (6.1) as described in Section 2.1. The second repair i2 suggests creating the required as-
sociation between the class User and the class Server. In this repair proposal, the developer
must insert i3 the role names of the new association by a parameter argument.

As all repairs are based on the same recognized historical changes, only the number
of complementing changes affects the repair ranking. The creation of a new association
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requires 16 change actions with respect to the model’s ASG. The higher-ranked alternative,
which moves the source end of the message, requires just 4 change actions.

Applying the second repair proposal changes the sender of themessage 6:disconnect from
the lifeline online:User to the lifeline open:Video. As in our running example in Figure 2.6,
this results in resolving the inconsistencies in the model Version 6.





7
Generation of Consistency-preserving

Edit Operations

Our repair tool ReVision uses edit rules as the main configuration input for adapting to a
specific modeling language. However, defining a comprehensive catalog of complex edit rules
manually can be a time-consuming task. To support developers in configuring the repair tool,
this chapter presents an example-based generation approach for CPEOs based on graph transfor-
mation concepts. The CPEOs are assembled based on a given set of minimal modeling examples,
each describing a valid model fragment in terms of a consistency rule. This approach allows
developers to specify CPEOs using their preferred model editor without directly formulating
edit rules using the model’s abstract syntax.

T o adapt our repair tool to a given modeling language, we have to specify a set of CPEOs,
preserving the consistency constraints defined by this language. As already mentioned

in Section 3.5.1, the goal is to provide a set of CPEOs that avoid typical inconsistencies occur-
ring when models are edited in standard editors of the given modeling language. The most
interesting kinds of CPEOs for our approach are creations, deletions, relocations, and trans-
formations of complex model fragments. Such CPEOs typically comprise a set of change
actions that must be applied together to preserve a model’s consistency.

To that end, we employ a systematic process to synthesize a set of CPEOs. Specifi-
cally, we follow an example-driven approach inspired by techniques from other fields, such
as model transformation by-example [79], programming by-example [109], or query-by-
example [202]. The idea is to manually specify sets of minimal yet valid example model
fragments, technically ASG patterns. Then, the graph patterns will be automatically com-
posed into the following kind of CPEOs:

(1) Pattern-Creating and -Deleting CPEOs: The basic building blocks of a modeling lan-
guage are CPEOs for creating and deleting model fragments. Such CPEOs are gener-
ated for each given graph pattern.

(2) Pattern-Relocating CPEOs: A CPEO which synchronizes the relocation of a graph pat-
tern in a consistency-preserving manner and which is, therefore, a typical example
that leads to inconsistencies when applied partially.
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(3) Pattern-Transforming CPEOs: Such an edit rule transforms a match of one graph pat-
tern into another graph pattern. To limit the number of pattern-transforming CPEOs,
only the smallest transformations for each pair of ASG patterns that share at least a
minimum number of overlapping nodes are generated.

7.1 Specification of Consistency Patterns
For each consistency rule 𝐶𝑅 in the overall set of consistency rules defined for the given
modeling language, a domain expert specifies a set 𝑃𝐶𝑅 of ASG patterns. Each pattern 𝑝 ∈
𝑃𝐶𝑅 represents a model fragment that shows how the rule 𝐶𝑅 can be fulfilled in a minimal
context, and it includes some basic information that is later exploited for the generation of
CPEOs. Conceptually, an ASG pattern 𝑝 ∈ 𝑃𝐶𝑅 can be thought of as being created in three
steps:

1. We start with a minimal (non-empty) ASG pattern 𝑝″ such that the consistency rule
𝐶𝑅 evaluates to true when validated on 𝑝″ and none of the graph elements in 𝑝″ can
be removed without violating 𝐶𝑅.

2. Next, the elements in 𝑝″ are classified into static and dynamic parts of the pattern. Dy-
namic parts indicate model elements that may be modified by the generated CPEOs.
Static parts indicate model elements that are not modified by a CPEO but which must
exist in a model to not violate 𝐶𝑅. Moreover, the pattern may be extended by further
ASG elements that must not exist in a model such that 𝐶𝑅 remains fulfilled. Syntac-
tically, the static nodes, edges, and attributes of the ASG pattern are annotated with
exist and not, respectively. We refer to the pattern resulting from this step as 𝑝′. In
general, we may define different static and dynamic parts for the same ASG pattern
𝑝″, leading to variants of 𝑝′.

3. Finally, 𝑝′ is extended to become the final ASG pattern 𝑝 ∈ 𝑃𝐶𝑅 by adding missing
container nodes which are needed to create (or delete) the dynamic elements of the
pattern. Like static parts, container nodes must exist in a model such that a generated
CPEO is applicable, but they are not modified by the CPEO.

An example of an ASG pattern is shown in Figure 7.1. The lower part shows how the
consistency rule message_signature(m:Message) in Definition (5.1) can be fulfilled in a minimal
context. The nodes called message, targetEnd, and operation, as well as their incident edges
constitute the dynamic parts of the pattern, while the nodes called lifeline, receiverType and
class, as well as the incident edges of type represents and type indicate static parts that must
exist in a model to not violate message_signature(m:Message). A variant may be obtained, e.g.,
by adding the node operation to the static part of the pattern. The node called container
shown on top represents a container node that must exist such that the nodes message and
targetEnd, which belong to the dynamic part of the pattern, can be created (or deleted) by a
generated CPEO.

Edges that are incident to the nodes message, targetEnd, and operation belong to the
dynamic part of the ASG pattern shown in Figure 7.1. The example shows that, in general,
the dynamic part of an ASG pattern is not a graph but just a graph fragment (i.e., when
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removing the static or container elements, it would comprise dangling edges). Those nodes
in an ASG pattern that complement such a graph fragment to form a graph will be referred
to as boundary nodes in the sequel. In our example, the nodes called container, lifeline, and
class are boundary nodes. More generally, container nodes as well as those static nodes
which are adjacent to dynamic ones form the boundary nodes of an ASG pattern.

message : Message

name = signatureName

targetEnd : MessageEnd <<exists>>
lifeline : Lifeline

<<exists>>
receiverType : Property

<<exists>>
class : Class

operation : Operation

name = signatureName

<<exists>>
container : Interaction

receiveEvent

<<exists>> 
represents

<<exists>> 

type

coveredBy

covered

class

ownedOperation

enclosingInteraction

fragment

interaction

message

signature

Figure 7.1. ASG pattern representing a model fragment; a message calls an operation on a lifeline.
The pattern is an example of how to not violate the consistency rule message_signature(m:Message) in

a minimal context.

message : Message

name = signatureName

targetEnd : DestructionEnd <<exists>>
lifeline : Lifeline

<<exists>>
receiverType : Property

<<exists>>
class : Class

operation : Operation

name = signatureName

<<exists>>
container : Interaction

receiveEvent

<<exists>> 
represents

<<exists>> 

type

coveredBy

covered

class

ownedOperation

enclosingInteraction

fragment

interaction

message

signature

Figure 7.2. ASG pattern representing a model fragment; a destruction message is sent to a lifeline.
The pattern is an example of how to not violate the consistency rule message_signature(m:Message) in

a minimal context.

Another example ASG pattern is shown in Figure 7.2. Compared to the pattern shown
in Figure 7.1, the type of the node targetEnd is replaced by the specialized sub-type Destruc-
tionEnd, a special message end used in UML sequence diagrams to denote the end of an
object’s lifeline (see meta-model in Figure 3.3). This is possible since the concrete type of
the message end is not relevant for the consistency rule message_signature(m:Message).

ReVision supports the creation of ASG patterns by providing a visual editor whose ASG
notation is used in the examples shown in Figure 7.1 and Figure 7.2. A generic model-to-
pattern transformation allows the tool configurator to define and validate example model
fragments in the native editing environment of the given modeling language. Only refining
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steps, like the specification of static and dynamic parts, must be performed using the visual
ASG editor.

7.2 Generation of CPEOs
The basic idea of our example-driven generation of a CPEO is to take two ASG patterns
𝑝𝑎, 𝑝𝑏 ∈ 𝑃𝐶𝑅 and a partial mapping 𝑎𝑏 ∶ 𝑝𝑎 ⇸ 𝑝𝑏 as inputs, which are then processed to a
transformation rule 𝑟(𝑥1, … , 𝑥𝑛) ∶ 𝐿 → 𝑅 in a stepwisemanner (see Figure 7.3). The selection
of 𝑝𝑎, 𝑝𝑏 and 𝑎𝑏 ∶ 𝑝𝑎 ⇸ 𝑝𝑏 , performed in an outer process, determines the kind of a generated
CPEO (pattern-creating and -deleting, pattern-relocating, or pattern-transforming), which
will be explained later in this section. Before that, we first describe the stepwise construction
of a single CPEO, illustrated in Figure 7.3, which is the same for all kinds of CPEOs:

1. Boundary Extension: Unmapped dynamic edges in 𝑝𝑎 and 𝑝𝑏 that are incident to a bound-
ary node shall be created and deleted by a generated CPEO, respectively. This is only
possible if the respective boundary node is to be preserved by the CPEO. Thus, if such
a boundary node is not included in the mapping 𝑎𝑏 ∶ 𝑝𝑎 ⇸ 𝑝𝑏 , we perform a so-called
boundary extension. An unmapped boundary node in 𝑝𝑎 is created in 𝑝𝑏 (and vice
versa), and this pair of boundary nodes is added to the mapping 𝑎𝑏. We refer to the
extended mapping resulting from this step as 𝑎𝑏′ ∶ 𝑝′𝑎 ⇸ 𝑝′𝑏 . The dynamic and bound-
ary parts of 𝑝′𝑎 and 𝑝′𝑏 form the left- and right-hand side 𝐿 and 𝑅, respectively, of the
generated CPEO.

2. Integrate Conditions: After the boundary extension, non-boundary static elements in 𝑝′𝑎
and 𝑝′𝑏 may remain unmapped. These unmapped static graph elements are not part
of the generated CPEO’s left- and right-hand side. Instead, unmapped static graph
elements in 𝑝′𝑎 and 𝑝′𝑏 can be considered as structural pre- and postconditions of the
generated CPEO. In this step, such unmapped static graph elements are transformed to
PAC and NAC graph constraints (see Section 3.5.2), i.e., graph fragments in the unified
rule graph of a CPEO which are either required or forbidden by a successful rule
application. Non-boundary graph elements in an ASG pattern which are annotated
as static elements that must exist are transformed to PAC graph constraints while
elements that are annotated as static elements that must not exist are transformed to
NAC graph constraints.

3. Derive Parameters: Finally, we need to derive the parameters for the CPEO. Therefore, we
create an input parameter for each context node of the rule, i.e., for each preserved
node containing attributemodifications or having incident edges that are to be created
or deleted. In addition, an input parameter is created for all nodes that are to be
deleted. Furthermore, all attributes are scanned for assigned variables that have to
be mapped to an input parameter. Some parameter assignments of a CPEO may be
derived by the assignment of another parameter, which is automatically handled by
our repair tool as shown in Chapter 6.

In general, some consistency rules may share identical ASG patterns, leading to equiv-
alent CPEOs generated from these patterns. Since we do not store the relation between
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CPEO Generation

Boundary
Extension

Integrate 
Conditions

CPEO

RHS with Postconditions

LHS with Preconditions

Mapping

LHS-RHS

Graph 
Transformation

OUT
Derive

Parameters

INPb

INPa

INMapping
Pattern

Figure 7.3. Overview of the stepwise derivation of a CPEO from a pair of example ASG patterns
and a partial mapping between them.

CPEOs and consistency rules, such duplicates can be discarded. We check for duplicates
before adding a generated CPEO to the overall tool configuration.

7.2.1 Generation of Pattern-Creating and -Deleting CPEOs
Given a set 𝑃𝐶𝑅 of ASG patterns, for each 𝑝 ∈ 𝑃𝐶𝑅, we generate a CPEO for creating (deleting)
the model fragment defined by the dynamic part of 𝑝. The CPEO generation illustrated in
Figure 7.3 starts by using 𝑝, the empty pattern 𝑝𝜖 and an empty mapping as input. Pattern-
creating CPEOs are generated by choosing 𝑝𝑎 = 𝑝𝜖 and 𝑝𝑏 = 𝑝, while pattern-deleting
CPEOs are generated by 𝑝𝑎 = 𝑝 and 𝑝𝑏 = 𝑝𝜖 .

Boundary nodes of the pattern 𝑝 lead to boundary extensions in 𝑝𝜖 such that these nodes
are preserved by the generated CPEO. Non-boundary yet static elements in 𝑝 lead to appli-
cation conditions in the generated CPEO. All other graph elements constitute the dynamic
part of the ASG pattern 𝑝. They are not included in the mapping 𝑎𝑏 and will be created (or
deleted) by the generated CPEO.

Rule createMessage(toContainer, toLifeline, toClass, signatureName)

«preserve»
toLifeline:Lifeline

«preserve»
toClass:Class

«preserve»
toContainer:Interaction

name=signatureName

«create»
newTargetEnd:MessageEnd

«create»
newOperation:Operation

name=signatureName

«require»
receiverType:Property

class
«create»

enclosingInteraction
«create»

represents
«require»

interaction
«create»

fragment
«create»

signature
«create»

type
«require»

covered
«create»receiveEvent

«create»

ownedOperation
«create»

coveredBy
«create»

message
«create»

Figure 7.4. CPEO creating a message including its target end and operation signature.

Figure 7.4 shows the pattern-creating CPEO derived from the ASG pattern shown in
Figure 7.1 and the empty pattern. The latter is extended by the boundary nodes container,
lifeline, and class, which are to be preserved by the generated CPEO. The node receiverType,
including its incident edges, is interpreted as a positive application condition. The remaining
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dynamic nodes message, targetEnd, and operation, as well as their incident edges, are to be
created.

The integrated rule graph of the pattern-deleting CPEO derived from the same ASG
pattern is isomorphic to the one shown in Figure 7.4 up to action annotations (i.e., deletions
instead of creations).

7.2.2 Generation of Pattern-Relocating CPEOs
Given a set 𝑃𝐶𝑅 of ASG patterns, for each 𝑝 ∈ 𝑃𝐶𝑅, pattern-relocating CPEOs are generated
by using 𝑝𝑎 = 𝑝𝑏 = 𝑝 and different variants of a partial mapping 𝑎𝑏 ∶ 𝑝 ⇸ 𝑝 as input for
the CPEO generation.

A single such variant is constructed as follows. Starting from the mapping 𝑎𝑏𝑓 𝑢𝑙𝑙 ∶
𝑝 ⇸ 𝑝 that forms a graph isomorphism on the subgraph of 𝑝, which is induced by the
union of dynamic and boundary nodes, we construct a reduced mapping 𝑎𝑏𝑟𝑒𝑑 ⊆ 𝑎𝑏𝑓 𝑢𝑙𝑙
by excluding a pair of boundary nodes. The generated CPEO then relocates the adjacent
dynamic nodes by deleting and re-creating all edges being incident to the two unmapped
boundary nodes excluded from 𝑎𝑏𝑓 𝑢𝑙𝑙 . By a “relocation”, we mean that a dynamic node is
either moved to another container (by the deletion and re-creation of a containment edge),
or re-connected to a different neighbor (by the deletion and re-creation of one or several non-
containment edges). The idea behind this construction is to obtain a CPEO that synchronizes
the relocation of dynamic nodes of an ASG pattern in a consistency-preserving manner and
which is therefore a typical example that leads to inconsistencies when applied partially.

All variants of reduced mappings are created by excluding all pairwise combinations of
distinct boundary nodes of the ASG pattern 𝑝. That is, let 𝑛 be the number of boundary
nodes in 𝑝, then we obtain a total of 𝑛(𝑛−1)

2 reduced mappings, each of which serves as input
for the generation of a CPEO. If not all combinations are useful for a specific modeling
environment, a tool configurator may refine this default behavior by explicitly defining the
types of edges which may be deleted and re-created through relocations.

The example ASG pattern shown in Figure 7.1 comprises three boundary nodes, namely
the nodes (1) container, (2) lifeline, and (3) class. When being excluded from 𝑎𝑏𝑓 𝑢𝑙𝑙 , this leads
to relocations of (1) the message and its target end to a different interaction, (2) the target
end of the message to a different lifeline, and (3) the operation to a different class. In sum,
we obtain three variants of a reduced mapping 𝑎𝑏𝑟𝑒𝑑 .

In fact, the combination of (2) and (3) generates a CPEO which is equivalent to move-
OperationAndChangeMessageTarget of our running example shown in Figure 5.5. The reduced
pattern mapping comprises all dynamic nodes message, targetEnd and operation, i.e., the
fragment to be (partially) relocated, and the boundary node container. The boundary nodes
lifeline and class are not mapped. They serve as context for the relocation and the application
condition, which results from the static node receiverType and its incident edges. For the sake
of simplicity, we omitted the container node of type Interaction in Figure 5.5 since it is not
needed for the relocating change actions of this CPEO.
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7.2.3 Generation of Pattern-Transforming CPEOs
For a given set 𝑃𝐶𝑅 = {𝑝1, ..., 𝑝𝑛} of ASG patterns belonging to a consistency rule 𝐶𝑅, in
principle, several CPEOs could be derived for each pair (𝑝𝑖, 𝑝𝑗) with 𝑖 ≠ 𝑗, transforming 𝑝𝑖
into 𝑝𝑗 . Each CPEO transforms 𝑝𝑖 into 𝑝𝑗 in a consistency-preserving way, they differ from
each other in the number of element creations and deletions.

Rule transformMessageToDestructionMessage(container, message, signatureName, lifeline, oldTargetEnd)

«preserve»
message:Message

name=signatureName

«delete»
oldTargetEnd:MessageEnd

«preserve»
lifeline:Lifeline

«preserve»
receiverType:Property

«preserve»
class:Class

«preserve»
operation:Operation

name=signatureName

«preserve»
container:Interaction

«create»
newTargetEnd:DestructionEnd

fragment
«create»

signature
«preserve»

ownedOperation
«preserve»

coveredBy
«create» covered

«delete»

coveredBy
«delete»

type

«preserve»

receiveEvent
«delete»

enclosingInteraction
«create»

receiveEvent
«create»

represents
«preserve»covered

«create»

class
«preserve»

fragment
«delete»

message
«preserve»

enclosingInteraction
«delete»

interaction
«preserve»

Figure 7.5. CPEO transforming a regular message into an object’s lifeline destruction message.

In order to limit the number of pattern-transforming CPEOs, we generate the smallest
transformations for each pair (𝑝𝑖, 𝑝𝑗) in terms of the number of change actions of the result-
ing CPEO. To that end, the partial mapping 𝑎𝑏 ∶ 𝑝𝑖 ⇸ 𝑝𝑗 is derived from the maximum
common subgraph of 𝑝𝑖 and 𝑝𝑗 [165]. Maximality is defined in the number of nodes, and
all graph elements in the maximum common subgraph must have the same type (drawn
from the meta-model) and annotation (dynamic or static). Unmapped graph elements will
be created or deleted by the generated CPEO.

A matching of the pattern in Figure 7.1 will map all nodes to the pattern in Figure 7.2
except from the nodes of type MessageEnd and DestructionEnd. A node in the ASG cannot
change its type, so the target end has to be replaced. The resulting CPEO is shown in
Figure 7.5, which takes care of correctly replacing the node and connecting the message
with the former lifeline. Optionally, the preserved elements in Figure 7.1 that do not involve
any changes can be transformed to PAC graph constraints using the refactoring operation
Extract Pre-condition as defined by Taentzer et al. [179].





8
Evaluation

This chapter discusses the evaluation of our approach tomodel repair. The approach is evaluated
using a selected set of real-world models obtained from popular open-source Eclipse modeling
projects. In particular, the experimental results confirm that most of the inconsistencies can be
resolved by complementing incomplete edits. The number of repair operations generated by the
approach is typically low, and the relevant proposal is ranked at the topmost position of the
short list of repairs in virtually all cases. All evaluation results presented in this chapter have
been published and peer-reviewed in Reference [6].

T he broad discussion of the evaluation of software repair tools in Reference [132] shows
that different repair scenarios lead to different, if not contradictory, evaluation criteria

and evaluation goals. In the scenario of fully automated repair, the correctness and com-
pleteness of an approach are primary concerns. In contrast to this, interactive repair rec-
ommendation systems propose tentative patches to developers; thus the understandability
of the proposed short list of patches is of primary importance [132]. Our approach clearly
falls into the latter category of interactive repair.

One main feature of our approach is to describe the effect of repair proposals in terms of
user-level edit operations. In this way, a developer gets an overview of the proposed repairs
very quickly. A second unique feature of our approach is to give a precise description of
the origin of an inconsistency. Both features are, first and foremost, qualitative advantages
over existing approaches. To evaluate the helpfulness of our approach quantitatively, our
evaluation is driven by the following research questions:

• RQ1 (Coverage): How many inconsistencies can be resolved by our approach? This
aims at assessing the limitations of our approach of resolving inconsistencies by com-
pleting partial edit steps.

• RQ2 (Relevance): If an inconsistency can be resolved by our approach, do we generate
a repair alternative whose effect can be observed in the history of a model? This aims
at assessing whether proposed repair operations are capable of meeting a developer’s
intention of how to resolve an inconsistency.

153
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• RQ3 (Efficiency): How many repair alternatives must be inspected by developers until
they find a relevant one? This aims at assessing how quickly developers may pick and
apply a relevant repair from an ordered set of generated repair alternatives.

• RQ4 (Performance): How long does it take to generate the repair alternatives for a
given inconsistency? This aims at assessing the usefulness of our approach as a devel-
opment support tool which should generate repairs in acceptable latency times in the
order of seconds.

Following general guidelines of how to evaluate quality aspects of recommendation sys-
tems [169], we examine research questions RQ1 to RQ4 in an offline experiment using ex-
perimental datasets obtained from real-world modeling projects. Section 8.1 summarizes
the subject modeling projects and justifies their selection. Section 8.2 outlines how we con-
figured our repair tool ReVision for the selected subject models. We introduce our research
methodology in Section 8.3 and present the experimental results. Threats to validity are
discussed in Section 8.4.

8.1 Subject Selection
The selection of suitable subject projects for our empirical study is driven by the following
requirements.

Model representation: From a technical point of view, we need to work with EMF models
since ReVision is implemented on top of the Eclipse modeling technology stack.

Modeling language: A modeling language is only suitable for our evaluation if it has consis-
tency constraints which can be specified in an OCL-like manner.

Active consistency management: We need to find real-world models for which violations
of the given consistency rules, as well as resolutions of these inconsistencies can be
observed in the historical evolution of a model. This requirement aims at having an
oracle at hand which tells us whether the effect of a generated repair proposal can be
observed in the history of a model.

We have chosen Ecore as modeling language due to its widespread usage within the
Eclipse modeling project as a de-facto standard for data- and meta-modeling. Although
no OCL specifications of the Ecore consistency constraints are readily available, their for-
malization in an OCL-like manner is straightforward. We did so for 20 Ecore consistency
constraints comprised in Table 8.2 (𝑆𝑢𝑝𝑝𝑜𝑟 𝑡𝑒𝑑 = 𝑦𝑒𝑠), which we consider to be relevant
to our approach. We focused on structural constraints and ignored simple checks such as
well-formedness rules of certain string expressions of attribute values (𝑆𝑢𝑝𝑝𝑜𝑟 𝑡𝑒𝑑 = 𝑛𝑜).

To obtain historical evolutions of real-world models, we have determined a set of Ecore
models developed in popular open-source Eclipse modeling projects being hosted in the
Eclipse Git repository [42]. As illustrated in Figure 8.1, we have explored the active devel-
opment branches of 51 Ecore modeling projects, shown in column Project Name in Table 8.1.
For each of those 51 projects, we extracted the version histories of all Ecore models, sum-
marizing to 148 model histories (cf. column All Models in Table 8.1) spanning a time period
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Selection of 51
modeling projects

Eclipse Git
repository

Extraction of 148
model histories

Active consistency
management?

[yes] 28 model histories
included in experiments

Figure 8.1. Overview of the subject selection process.

of several years (2004 - 2018) for the most long-living modeling projects. Next, we filtered
those 148 model histories as follows. First, we disregarded those model histories for which a
validation check passes on every version of the history, i.e., the history does not expose any
inconsistencies at all. Second, we also disregard those model histories which only contain
inconsistencies that were never solved during the lifespan of a model history. The remain-
ing 28 model histories (cf. column Inc. Models in Table 8.1) do expose inconsistencies in
some historical versions, while the model history as a whole can be safely assumed to be
subject of an active consistency management since all inconsistencies have been resolved
eventually.

Table 8.1 further characterizes the size of the extracted models. The average numbers
of model elements, calculated over all considered model histories of a project, are shown
in column Avg. Elements. To characterize the size of the extracted model histories, column
Source Revisions shows the number of revisions of the examined model histories per mod-
eling project. Since an Ecore model may have cross-references to other Ecore models, we
also considered these interrelated models. Interrelated models have their own development
history and may co-evolve in parallel. Once an interrelated model is changed in the time
interval between two revisions of the considered model history, a new intermediate version,
counted in column Co-ev. Revisions, with the updated co-evolving model version is created.
As a result, we extracted a total number of 1396 versions (incl. co-evolving versions) for the
28 considered model histories, yielding 1368 pairs of successive model versions referred to
as evolution steps in the sequel. The dataset of all model histories is available on the project
website of ReVision [8].

8.2 Experimental Tool Configuration
Set of CPEOs for the Ecore modeling language. In order to configure our tool, we
constructed CPEOs for the 20 consistency rules shown in Table 8.1 using the approach de-
scribed in Chapter 7. We manually specified a total of 89 ASG patterns, i.e., an average
number of 4.5 ASG patterns per consistency rule. All Ecore ASG patterns, as well as the
generated CPEOs can be found on the project website of ReVision [8], classified by the
consistency rules they have been derived from. In general, some consistency rules may lead
to equivalent ASG patterns. After a duplicate check, our configuration comprises 74 unique
ASG patterns serving as input for the generation of 311 CPEOs. Moreover, the application
conditions of the Ecore CPEOs are interpreted as invariants with respect to detection of
partial CPEO executions in Section 4.5.

For each unique ASG pattern, we obtain a corresponding pattern-creating and -deleting
CPEO, summarizing to a total of 148 CPEOs. As described in Section 7.2.2, the genera-
tion of pattern-relocating CPEOs allows us to define the relevant relocations that should be
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considered. We selected relocations that represent typical drag and drop operations of the
Ecore diagram editor, including relocations of packages and classifiers (i.e., classes, inter-
faces, data types and enumerations), structural features (i.e., attributes, references and enu-
meration literals), and inheritance relationships. This configuration leads to a total number
of 23 pattern-relocating CPEOs. Finally, our set of CPEOs comprises a total number of 140
pattern-transforming CPEOs.

Comparison of Ecoremodels. Furthermore, ReVisionmust be configured with a model
matcher, which is used for the comparison of Ecore models. The main elements in an Ecore
model have qualified names that are also used to store references between model elements
on a technical level. To determine corresponding model elements in successive versions
of Ecore models, we employ the signature-based matching algorithm of the SiDiff model
comparison framework [80], using qualified names of model elements as signatures.

8.3 Methodology and Experimental Results
Our methodology to answer research questions RQ1 through RQ4 is outlined in Figure 8.2.
The results of our empirical study are summarized in Table 8.1 for RQ1 and RQ2, and visu-
alized in Figure 8.3 and Figure 8.4 for RQ3 and RQ4, respectively. Details will be presented
in the remainder of this section.
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[no]
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Ranking
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41 unsupported
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inconsistency

510 complements /
43 undos

44 unobservable
repairs

Repair 
 Generation

Figure 8.2. Overview of our methodology to answer research questions RQ1 through RQ4.

8.3.1 RQ.1 (Coverage)
To address RQ1, we calculate the number of inconsistencies that are resolvable by generated
model repairs of our approach. An inconsistency 𝛾𝑖 = (𝐶𝑅, 𝑒𝑖) introduced in model version
𝑣𝑖 is resolvable if there is a generated repair that can be applied to 𝑣𝑖, yielding a changed
model 𝑣 ′𝑖 in which 𝛾𝑖 does not occur. The latter is the case if (i) there is no inconsistency
𝛾 ′𝑖 = (𝐶𝑅, 𝑒′𝑖 ) where 𝑒′𝑖 ∈ 𝑣 ′𝑖 is the corresponding element of 𝑒𝑖, or (ii) 𝑒′𝑖 is removed in 𝑣 ′𝑖 , i.e.,
no corresponding element of 𝑒𝑖 can be found in 𝑣 ′𝑖 .
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Subject RQ1 RQ2
Project Models Elements Revisions Inconsistencies Observable
Name All Inc. Avg. Source Co-ev. Total RegEx Supp. Resolvable Complement Undo Not Obs.
(acceleo) 5 1 120 24 15 14 14 0 0 0 0 0
atl 5 2 623 32 3 32 14 18 18 11 7 0
birt 7 1 381 17 97 1 0 1 1 0 1 0
bpmn2 4 1 3297 23 11 1 0 1 1 1 0 0
buckminster 4 1 340 3 7 10 2 8 8 0 8 0
cbi 7 3 597 188 15 7 0 7 7 6 0 1
e4 1 1 286 115 7 1 0 1 1 1 0 0
eavp 1 1 188 3 1 4 0 4 4 4 0 0
edapt 2 1 294 7 8 1 0 1 1 0 1 0
emf 13 3 237 82 25 5 1 4 4 4 0 0
gmf-tooling 7 3 295 110 23 32 0 32 32 28 2 2
ocl 12 2 711 20 11 2 1 1 1 0 1 0
papyrus 14 1 89 7 2 10 9 1 1 0 1 0
qvt-oml 4 1 561 35 24 1 0 1 0 0 0 1
qvtd 29 1 82 42 214 2 0 2 2 0 1 1
sirius 7 1 3835 62 1 4 0 4 4 4 0 0
stem 17 1 289 17 22 1 0 1 1 0 1 0
uml2 9 3 3775 100 23 510 0 510 510 451 20 39
33 Others 133 0 n.a. n.a. n.a. 0 0 0 n.a. n.a. n.a. n.a.
Summary 148 28 889 887 509 638 41 597 596 510 43 44

Table 8.1. The evaluated projects and results of the resolvable and observable inconsistencies for
RQ1 and RQ2.

The considered model histories contain a total number of 638 historically resolved in-
consistencies, shown in column Total Inconsistencies of Table 8.1, which serve as the basis
for the evaluation of our generated repairs. The results in column Resolvable Inconsistencies
show that our tool ReVision can propose at least one repair for 596 of all 638 inconsistencies
(see column Total Inconsistencies) in our evaluation dataset.

A first explanation for this limitation are certain kinds of constraints that are not sup-
ported by our approach. Specifically, our repair approach considers inconsistent attribute
values as atomic elements and does not support grammatical analyses of attribute values
and related repairs. They are out of the scope of our approach, which focuses on structural
inconsistencies. The upper part of Table 8.2 shows all 20 supported constraints alongside
with the number of their violations in the different projects. The lower part of Table 8.2
shows the unsupported “is not well-formed” constraints. In our experiment, 41 inconsis-
tent String values were found by 5 different regular expression constraints (see also column
RegEx Inconsistencies in Table 8.1). We also found 3 inconsistencies that belong to 3 dif-
ferent domain-specific regular expression constraints that extend the default set of Ecore
constraints for a specific type of Ecore models (in project papyrus). Since we just looked at
the default Ecore constraints during the configuration phase, we obviously could not repair
such inconsistencies.

Looking at the violations of supported constraints only, as summarized in column Supp.
Inconsistencies of Table 8.1, ReVision proposes at least one repair for 596 out of 597 incon-
sistencies. There was only one inconsistency (in project qvt-oml) for which no repair was
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Consistency constraint descriptions
(with placeholders {i} for specific inconsistencies) Violations Projects Supported

The generic type associated with the {0} classifier
should have {1} type argument(s) to match the num-
ber of type parameter(s) of the classifier

469 gmf-tooling, uml2, eavp, cbi,
emf, buckminster

yes

There may not be an operation {0} with the same sig-
nature as an accessor method for feature {1}

50 uml2 yes

A class that is an interface must also be abstract 29 gmf-tooling yes
The default value literal {0} must be a valid literal of
the attribute’s type

14 gmf-tooling, sirius, edapt,
atl, bpmn2, cbi, e4

yes

A containment reference of a type with a container
feature {0} that requires instances to be contained
elsewhere cannot be populated

10 uml2, atl, emf yes

There may not be two features named {0} 7 qvtd, papyrus, birt, atl yes
A container reference must have an upper bound of
1 not {0}

5 atl yes

The attribute {0} is not transient, so it must have a
data type that is serializable

3 cbi, buckminster yes

The opposite of a transient reference must be tran-
sient if it is proxy resolving

2 uml2, stem yes

The required feature {0} of {1} must be set 2 buckminster yes
The typed element must have a type 2 buckminster yes
The generic type associated with the {0} classifier
must not have {1} argument(s) when the classifier has
{2} type parameter(s)

1 qvt-oml yes

The opposite of the opposite may not be a reference
different from this one

1 gmf-tooling yes

There may not be two classifiers named {0} 1 buckminster yes
There may not be two operations {0} and {1} with the
same signature

1 ocl yes

A containment or bidirectional reference must be
unique if its upper bound is different from 1

0 yes

The features {0} and {1} cannot both be IDs 0 yes
The opposite of a containment reference must not be
a containment reference

0 yes

The opposite may not be its own opposite 0 yes
There may not be two parameters named {0} 0 yes
The source URI {0} is not well-formed 16 papyrus, acceleo no
The namespace URI {0} is not well-formed 6 atl no
The name {0} is not well-formed 7 ocl, acceleo, buckminster no
The namespace prefix {0} is not well-formed 7 atl, emf no
The instance type name {0} is not well-formed 2 atl no
additional domain-specific constraints (3) 3 papyrus no

Table 8.2. Overview of the supported and not supported inconsistencies by consistency constraints.

found, although the violated constraint is supported in principle. This inconsistency oc-
curred as a side effect of a technical defect, namely a dangling reference to a non-existing
model element. Since we ignore the defect parts of a model during inconsistency analysis,
the inconsistency-inducing edit step could not be recognized. As a consequence, no repair
proposal has been generated in the subsequent repair generation step.
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ReVision covered 93.4% (596 of 638) of the inconsistencies of our evaluation dataset. Vir-
tually all inconsistencies for which no repair has been generated, namely 97.6% (40 of 41),
are not supported by our approach since they are caused by incorrectly formed String val-
ues. Only one inconsistency which is supported in principle has been missed. The reason
for this was a technical defect in the underlying model.

8.3.2 RQ.2 (Relevance)
We use the history of a model as an oracle to answer the question whether the effect of a
generated repair proposal can be observed in the changes made by developers. Given an
inconsistency 𝛾𝑥 introduced in version 𝑣𝑥 historically and resolved in a later version 𝑣𝑦 , we
check if there is a generated repair alternative that, when applied to 𝑣𝑥 , leads to an effect that
is observable in the evolution step from 𝑣𝑦−1 to 𝑣𝑦 . We call a repair alternative that fulfills this
criterion a historically observable resolution. For each generated repair for an inconsistency
𝛾𝑥 , the oracle compares the ASGmodifications of the model difference between version 𝑣𝑦−1
and 𝑣𝑦 with the change actions of the repair operation. For each change action, there must
be a concrete historical change in Δ(𝑣𝑦−1, 𝑣𝑦 ) of the same kind applied to the same model
element.

ReVision has found the historically observable resolution for 553 of 597 supported in-
consistencies. We can further differentiate between those resolutions that are complements
of a recognized partial execution of a CPEO and those that undo recognized edit steps. In
sum, we found 510 historically observable complements and 43 historically observable undo
repair operations, referred to as Observable Complement and Observable Undo in Table 8.1.
Only 44 inconsistencies, referred to as Not Observable in Table 8.1, could not be resolved by
our approach in the same way as observed in the model history.

Wemanually investigated the inconsistencies that could not be repaired by a historically
observable resolution and found two reasons for this: (1) The CPEO that would have been
needed to recognize and complement the inconsistency-inducing edit step was missing in
the tool configuration. Our tool configuration lacked 8 CPEOs that were needed for 38
inconsistencies in our evaluation dataset. (2) Since we always try to recognize the maximal
possible sub-rule of a CPEO (see Section 4.3.3), some recognized partial CPEO executions
covering inconsistency-inducing changes were actually too large. For example, if a CPEO
adds a model element to a list of elements, a generated repair may propose to modify an
existing element of this list instead of creating a new one. This can happen if the evolution
step in which the inconsistency is introduced contains a creation of such an element in
that location. We found such a case where an EAnnotation is created that stores additional
information in the Ecore model. An EAnnotation is just a pair of a key and a value and
ReVision currently cannot guess whether to overwrite a recently created annotation or to
create a new one. In sum, we found 5 occurrences of this kind of ambiguity which eventually
led to repair proposals that could not be observed historically. As already discussed for RQ1,
one inconsistency that is supported in principle could not be resolved at all due to a defect
in the model.
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Figure 8.3. Ranges of the number of repair alternatives and the ranking of the historically
observable repairs.

For 92.6% of the supported inconsistencies of our evaluation dataset, ReVision generated
a repair proposal which is relevant in the sense that it could be observed in the model’s
editing history and thus, arguably, is capable of meeting a developer’s intention. 92.2% of
the historically observable repairs are completions of partial executions of CPEOs, which
confirms our hypothesis that a majority of inconsistencies are the result of incomplete
edits.

8.3.3 RQ.3 (Efficiency)
To address RQ3, we record the number of repair alternatives that are generated for each
inconsistency and the ranking of the historically observable repairs. The latter is inspired
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by the so-called EXAM measure, which is a generally acknowledged quality measure for
evaluating statistical fault localization techniques [144, 196–198] and which is defined as
the number of program statements that have to be examined until the first statement con-
taining the bug to be localized is reached. To find out how many repair alternatives must
be inspected by developers until they find a relevant one, we consider those inconsisten-
cies from which we know that our approach generates a repair operation being historically
observable in a later evolution step (see RQ2). Given such an inconsistency, let [𝜌1, … 𝜌𝑘]
be the sequence of repair alternatives generated and ranked by our approach. Let 𝜌𝑖 with
(1 ≤ 𝑖 ≤ 𝑘) be the repair operation whose effect is historically observable in a later version
of the model history. A smaller 𝑖 conforms to a better prioritization since we assume that
developers will consider those repair alternatives having a higher priority first.

In Figure 8.3, we show the ranges of the number of repair alternatives and the prior-
itization of the historically observable repairs for each modeling project. The historically
observable repair is in 525 of the supported inconsistencies on the top position (𝑖 = 1) of
the ranking and in 28 cases on the second position (𝑖 = 2), even in those cases with a high
number of repair alternatives. Moreover, most of the time, our approach was able to limit
the number of generated repair alternatives to a manageable quantity. Actually, for 92.5%
of the cases, the number of repair alternatives is 10 or fewer, which is a reasonable number
of options to be inspected by a developer.

In addition to selecting a suitable repair, a developer is also responsible for providing
all arguments of a repair operation if not all its parameters can be bound automatically.
The use of graph transformation rules makes it possible to automatically determine most
of the concrete parameter values. Typically, the possible matches of a complement rule
are restricted by the pre-match induced by the sub-rule which covers the inconsistency-
inducing changes. However, the size of the parameter domain of a complement rule can
vary significantly. This can be observed, for example, for some repair proposals for the UML
meta-model history, where a parameter can be initialized with any classifier of the meta-
model, i.e., the parameter domain is only limited by its type but not by the structure of the
CPEO. Moreover, value parameters have to be determined by the developer in any event.
On average, in addition to the selection of a suitable repair, a developer had to manually
select 0.07 unbound parameters for all observable repairs of our evaluation dataset.

Repair proposals generated by ReVision are highly efficient in the sense that they do not
overwhelm developers with huge numbers of irrelevant repair alternatives. For 92.5% of
the supported inconsistencies, the number of repair alternatives is 10 or fewer, and the
historically observable repair was ranked on the top position in 94.9% of the cases. This
strongly correlates with the finding that 92.2% of the historically observable repairs are
complements of partial executions of CPEOs. This confirms our hypothesis that it is a
highly reasonable choice to resolve inconsistencies by complementing partial executions
of CPEOs that induce an inconsistency.

8.3.4 RQ.4 (Performance)
To assess the performance and scalability of ReVision, we measured the runtime for the
3 major phases of the calculation process, namely: 1) Analysis: The history-based analysis



162 8 Evaluation

comprising our origin and impact analysis (see Section 5.2 and Section 5.3), 2) Recognition:
The recognition of partially executed CPEOs (see Chapter 4), and 3) Complement: The gen-
eration of repair proposals, which is dominated by the construction of complement rule
applications (see Section 5.4.3). For each of the three phases, the ranges of runtimes per
project are shown in Figure 8.4.

The runtime of the analysis phase tends to increase mainly with two parameters, namely
(i) the size of the model and (ii) the number of historical revisions that, starting from the
inconsistent model, have to be analyzed until we find the evolution step in which the incon-
sistency has been introduced. For example, the analysis runtimes for the UML meta-model
history are clustered around three different values. The first time interval is around 300ms
and has been measured for some smaller models with about 3393 elements. The second and
third time intervals refer to later and, thus, larger versions of the UML meta-model with
about 11594 elements. The runtimes around 2s have been measured for inconsistencies in-
troduced in the predecessor version of an inconsistent model, i.e., only a very small subset
of the history needs to be analyzed. In contrast, the times around 7s refer to situations that
span up to 20 versions of the UML meta-model history that needed to be analyzed in order
to find an inconsistency-inducing change. Note that, in order to better quantify the second
parameter, we do not cache any results of an inconsistency analysis between different runs.

The runtime of the recognition phasemainly depends on the number of historical changes
in the difference between the latest consistent model version and the inconsistent version
that shall be repaired. Moreover, a minor negative influence on the runtime can also be
observed for the number of change actions of a CPEO. The more change actions a CPEO
has, the more changes are to be considered per CPEO. Both phenomena can be explained
by the algorithm that solves the underlying partial CSP problem (see Chapter 4). In this
encoding, the change actions of the CPEO are treated as variables of the CSP problem, and
their domains are defined by the changes comprised by the model difference between the
consistent and inconsistent model versions. Finally, another parameter affecting the overall
runtime of this phase is the complexity of the consistency rule that is violated. The more
complex the consistency rule, the more CPEOs might have an impact on the inconsistency
and therefore need to be considered. Nevertheless, in 96.1% of the supported inconsistencies,
the runtime of the partial CPEO recognition phase is less than 1s.

The runtime of the complement phasemainly depends on the number of possiblematches
that can be found for the left-hand sides of CPEOs. We combine all matches to build the
elements and values for the parameter domains of a complement rule. Figure 8.4 shows that
for all evaluated projects the runtime of this phase is less than 1s.

Compared to the above phases, the time needed for the inconsistency detection (step 1
in the overview pictures presented in Figure 5.7 and Figure 5.8) can be neglected. In our
experiment, which uses the EMF built-in validation facilities for detecting inconsistencies,
the runtimes for the detection were in the order of milliseconds. These observations are
confirmed by larger and more systematic experiments on the runtime performance of OCL
validation. For example, Reder et al. [150] report on an experiment where the validation of
20 consistency rules takes about a millisecond on UML models comprising 100k elements,
much less when being optimized to run in an incremental fashion.
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Figure 8.4. Runtime of the phases: Analysis, Recognition and Complementing.

In the majority of inconsistencies of our evaluation dataset, the overall runtimes to calcu-
late repair proposals for a given inconsistency was in the order of seconds. Negative effects
on the runtime could be observed if an inconsistency existed for a long period of time, or
if a complement rule has many possible applications due to the combination of different
parameter bindings. The results suggest that it is feasible to use ReVision in an interactive
repair process in which inconsistencies are resolved step by step, as it is assumed by our
approach.
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8.4 Threats to Validity
8.4.1 Internal Validity
Our evaluation is based on an automated analysis of model histories. Several auxiliary tools
have been developed for this purpose, a general threat to the internal validity of our evalu-
ation results and thus pertains to their accuracy. First, model elements in a version history
are identified by a stepwise calculation of corresponding elements between consecutive revi-
sions. If an element temporarily does not occur in a version history, i.e., if it has been deleted
in version 𝑣𝑖 and re-created in a later version 𝑣𝑖+𝑥 with 𝑥 >= 2, the chain of correspondences
is broken, and the repair of the involved inconsistency is wrongly identified. However, as
shown by an empirical study on model evolution [192], such gaps occur rather seldom in
less than 2% of all correspondence chains. Second, for the calculation of corresponding ele-
ments in successive model versions, we use qualified names of model elements as signatures
in our matching algorithm. This can influence the accuracy of tracing inconsistencies along
version histories if (i) names are changed, but the re-named model elements remain the
same or (ii) two different model elements accidentally have the same names. However, as
shown in Reference [192], there is strong evidence that both errors do not have a significant
influence on the correctness of matching results, particularly for class-diagram-like models
which show a high stability of model element names.

The application conditions of the CPEOs are interpreted as invariants during the detec-
tion of partially applied CPEOs (see Section 4.5), i.e., the application conditions are checked
stricter than necessary. This method slightly under-approximates the possibly recognizable
sub-rules of a CPEO in a model difference. However, this conservative approach ensures
that only valid complementations based on an edit rule’s application conditions are com-
puted. In particular, we could not observe any missing repair proposals with respect to RQ1
and RQ2, i.e., if proposals have been missed, they seem to be irrelevant with respect to the
observed repairs in the model’s history.

Last, our oracle slightly over-approximates the classification of historically observable
repairs, i.e., repair alternatives which presumably match the intention of a developer. While
we can be sure that all the change actions of a repair which is classified as historically observ-
able occur as changes in the evolution step in which the inconsistency has been resolved,
we cannot determine whether the proposed repair is complete in the sense of the intention
of the developer. In other words, we observe the minimal repair but there might be some
additional changes to form the actual edit step intended by the developer. Nevertheless, the
observed repair is at least a subset of such an intended repair edit step, and any additional
changes can be considered as out of the scope of the repair problem.

8.4.2 Construct Validity
Arguably, it is not our generic functionality that is evaluated in our experimental setup, but
a configuration of ReVision which has been written by ourselves. We are familiar with
the Ecore meta-model and the attached constraints. A toolchain configurator of an MDE
environment, which shall use our technique for other modeling languages, might have a
different background and thus come up with a less sophisticated set of CPEOs. This is a
general issue pertaining to all rule-based approaches to automated model repair (see Chap-
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ter 9), which can hardly be evaluated in an academic setting, but which needs to be addressed
in an empirical field study involving MDE practitioners. Nevertheless, we have lowered the
formalization effort and probability of missing CPEOs by a tool-supported systematic pro-
cess. Instead of formulating all consistent transformations for a modeling language, a tool
configurator just has to prepare the correct model fragments regarding the consistency rules
defined by a modeling language.

8.4.3 Conclusion Validity
Although our experimental results suggest that ReVision has the potential to serve as an in-
teractive repair tool which may be effectively used in practice, we did not directly measure
the effort needed by developers to turn an inconsistent model into a fully consistent one.
This would need to consider the overall iterative process shown in Figure 5.7, measuring
the time needed by developers to understand the generated repair proposals and assessing
the impact of potential negative side effects caused by the repairs selected; all of which is not
possible in an offline experiment as conducted by us. However, the general strategy of (in-
teractively) handling one inconsistency at a time is not new but has also been suggested by
others [149, 201]. More importantly, the majority of the inconsistencies in our experiments
could be resolved by generated repair proposals whose effect is historically observable. We
consider this as sufficient evidence that these repair proposals are understandable and plau-
sible. Nonetheless, we acknowledge that empirical user studies and larger field studies are
required to ultimately test the acceptance of ReVision in the future.

8.4.4 External Validity
A final important question is whether our results are generalizable. So far, we have only
studied one particular modeling language and its consistency constraints. We choose Ecore
as an evaluation target because of its widespread adoption in open-source projects. It is far
more difficult to find a comprehensive and publicly available evaluation set for languages
such as the UML [62]. However, from our UML case studies [5] we are confident that our
repair approach is especially useful for any kind of multi-view modeling approach. In Ecore
we could observe the same effect when inconsistencies arise in one model but were actually
introduced by changes in a co-evolving model. In these cases, ReVision was able to detect
the inconsistency-inducing changes in the co-evolving model and to generate a historically
observable inconsistency resolution. The biggest challenge when adapting our approach to
other modeling languages is the engineering of a set of CPEOs. The required efforts may
be higher in case of larger meta-models, assuming that the number of consistency rules,
and thus the number of CPEOs that need to be specified, correlates with the size of the
meta-model.





9
Related Work

This chapter examines related publications to the presented approach of model repair. Related
approaches are categorized into fully automated, language-specific, and adaptable model re-
pair techniques. While the presented repair approach is fundamentally different from fully
automated and language-specific approaches, it falls into the category of adaptable model re-
pair. Regarding Chapter 7, the generation of edit rules is compared to related techniques.

T his chapter addresses related work to the presented model repair recommendation ap-
proach. As discussed for the state of the art in Section 2.2, a feature-based classifica-

tion system for automated model repair techniques has been proposed in Reference [115].
The classification system is driven by technical features, the engine underlying the auto-
mated repair generation procedure being the most distinguishing feature. Existing tech-
niques are mainly categorized into syntactic, rule-based and search-based approaches. This
scheme would classify our technique as a hybrid syntactic rule-based approach.

Regarding model repair recommendations, two other criteria are more suitable for po-
sitioning our approach. The first criterion is the supported repair scenario. Unlike fully
automated approaches, our approach is considered a recommendation system, as discussed
in Reference [132]. The second criterion is whether an approach to model repair is, like
ours, adaptable in the sense that it can be applied to diverse modeling languages and kinds
of inconsistencies. To that end, we will first review approaches that are hard to compare
to ours since they address a different repair scenario (Section 9.1). Next, Section 9.2, we
discuss how our approach differs from approaches that are designed to work with a specific
modeling language or rely on specific assumptions, which are difficult to generalize. In Sec-
tion 9.3, we will have a closer look at approaches that can be adapted to different modeling
languages. Similar to the approach proposed in this thesis, such approaches consider model
repair as an interactive yet semi-automated process in which a model repair tool plays the
role of a recommendation system. Finally, in Section 9.4, concerning the edit rule generation
approach introduced in Chapter 7, we have a look at related approaches and discuss whether
such techniques can be helpful for generating CPEOs for our model repair scenario.

167
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9.1 Fully Automated Model Repair
Most approaches to model repair proposed in the literature aim at a fully automated repair
process, typically resolving all inconsistencies in a single step. This includes all search-based
approaches which take the inconsistent model as input and search for a consistent model us-
ing off-the-shelf solvers [49,90,114,186] or other domain-specific search heuristics [64,147].
Exhaustive search strategies suffer from the well-known state space explosion problem, and
turning a search-based approach into a recommendation system by collecting and present-
ing all solution candidates is simply infeasible [115].

Barriga et al. [17–19, 72] propose to tackle this problem using a reinforcement learning
approach. The idea is to consider models as agents whose environment interactions are en-
coded as edit operations which, in turn, are rewarded or penalized based on their positive
or negative impact with respect to consistency and based on potential feedback from devel-
opers. The hypothesis is that such a repair tool will learn the efficient yet relevant repairs
for common inconsistencies over time. While these goals are similar to ours, their approach
does not exploit domain knowledge when generating repair proposals, and there is yet no
empirical evidence confirming its central hypothesis.

Finally, many rule-based approaches, including triple graph grammars (TGGs) [11, 54,
94, 166], bidirectional and incremental model transformation techniques [68], and other ap-
proaches which primarily focus on the synchronization of multi-view models [58, 92] fall
into the category of fully automated model repair. Similar to search-based approaches, they
typically aim at providing certain completeness and correctness guarantees, e.g., to always
generate a repair turning an inconsistent model into a fully consistent one. As already men-
tioned, such guarantees are of minor importance or even counterproductive when using a
repair tool as a recommendation system at design time, as it is the case in our scenario
of model repair. Moreover, synchronization approaches are inherently restricted to han-
dle multi-view consistencies, while consistency rules formulated in an OCL-like manner, as
supported by our approach, may be used to specify both consistency rules over multiple
views and over complex model fragments within a single model.

9.2 Language-Specific Repair
Many automatedmodel repair techniques support only one specific type of model, e.g., UML
models [45,129,184,185], architectural models [38], or business process models [51]. These
techniques cannot be transferred to other domain-specific modeling languages as it is the
case for our adaptable technique.

Moreover, repair techniques that target a specific (family of) modeling languages often
assume a very special notion of consistency. Fahland et al. [51], for instance, consider model
repair as the task of aligning a given business process model with the logs of a monitored
system Kautz and Rumpe [77] consider semantic model inconsistencies being introduced
by erroneous model refinements. Given an inconsistent model which is supposed to be a
refinement of an original model, i.e., its semantics is supposed to be subsumed by the seman-
tics of the original model, the repair technique computes a minimal sequence of syntactic
changes which repairs the inconsistent model towards refining the original one. Although
the approach is not language-specific in general, it requires that the modeling language has
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a formal semantics. Frequently, however, there is no formal semantics and the meaning of
a model is mainly defined by transformations to platform-specific models or code.

In the context of editing the source code of object-oriented programs, Jiang et al. [74]
propose an approach to generate auto-completions upon so-called multi-entity edits. In re-
sponse to adding a field (or method) to a class, their technique recommends missing changes
such that all accesses to the added file (or method) are performed in a consistent manner. Al-
though sharing with our approach the principle idea of complementing edits, the approach
is tightly bound to fragments of object-oriented programs.

Finally, automated program repair has gained considerable attention in the software en-
gineering research community. Since the advent of GenProg [190] in 2009 – which uses a
genetic algorithm to evolve and search for source code patches that cause the buggy program
to pass all test cases of a given test suite – various repair techniques have been proposed in
the literature, and surveys can be found in, e.g., [106,132]. In the early years, similar to Gen-
Prog, most of the proposed techniques followed a syntax-based or generate-and-validate
approach. They generate huge sets of candidate patches and validate the quality of these
candidate patches against an existing test suite. Semantic program repair approaches syn-
thesize patches based on a specific description of the correct behavior. Examples are cor-
rected path conditions extracted from symbolic execution in SemFix [135] and Angelix [127],
or a known correct reference implementation in SemGraft [126]. The approach proposed by
Le et al. [105] is the only one known to us which exploits historical development data. It uses
the histories of (large sets of) arbitrary software projects in order to mine recurring bug fix
patterns, which are then used to control the generation of repair proposals for a given bug.
Unlike their approach, we use the history of the inconsistent development artifact under
consideration to analyze the cause of an inconsistency which, in turn, is used to generate
repair proposals. In contrast to all approaches to program repair, we do not need executable
program specifications and test cases in order to generate and validate candidate patches,
and we aim at model repair on a syntactical level instead of fixing a program’s behavior.

9.3 Adaptable Model Repair Recommendation
Only a minor fraction of the proposed approaches to model repair are, like ours, adapt-
able to various modeling languages and consider model repair as a recommendation system.
They share with our approach the general process of typically handling a single consistency
violation at a time.

This category includes the generic syntactic approaches producing abstract repair ac-
tions presented in References [134,148,149]. Their basic principles and disadvantages have
already been discussed in Section 5.1.3 and Section 2.2. We draw from the line of research
followed by Reder et al. (i) by adopting an iterative process in which each inconsistency
is addressed in a single step, which helps developers in focusing on one inconsistency at
a time, and (ii) by using validation techniques which let us determine the model elements
on which the validation fails [151], which drastically reduces the search space for viable
repairs. However, in addition to this spatial dimension of inconsistency analysis, we argue
that there is also a temporal cause of an inconsistency that needs to be taken into account
to optimally guide developers in resolving an inconsistency.
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As discussed in Section 5.1.3, Marchezan at al. [120] extends the approach of Reder et
al. [149] for computing abstract repairs. In particular, the approach introduces a so-called
ownership-based filter for repair proposals based on the assumption that model elements
are owned by a specific developer. Such a filter can be interesting to improve and reduce
the ranking of repair techniques in general. However, the approach relies on very specific
information that may not be available in a general modeling environment.

As an add-on functionality to the syntactic repair technique of Reder et al. [149,151], the
work presented by Kretschmer et al. [95] specifically addresses those repair actions affecting
attribute values of model elements. The goal is to help developers in turning abstract repair
actions, which only mention the attribute which needs to be changed, into concrete repair
actions, which also include the concrete value to be assigned to the attribute. Relying on
what is known as the “plastic surgery hypothesis” [122] in the field of automated program
repair, the idea is to synthesize suitable attribute values from other values of attributes that
already exist in the model. In fact, this approach can be complementary to any repair gener-
ation technique that, like ours, primarily works on the structural level of a model’s syntactic
representation.

Kretschmer et al. [96] propose an approach to change propagation that, similar to ours,
focuses on incomplete model changes. In relation to our approach, their technique does
not utilize the version history of a model to identify the cause of an inconsistency. Instead,
it assumes that the specific developer change that should be propagated is known. The
technique of Kretschmer et al. [96] systematically tries alternative modifications for resolv-
ing inconsistencies. As discussed in Section 9.1, such state space exploration approaches
can lead to huge numbers of repair alternatives. Moreover, instead of repairing one incon-
sistency at a time, the technique also addresses possible negative side effects in the same
repair step. In comparison, the approach relies on elementary changes on a model’s ASG
rather than edit operations to suggest a ranking of repairs to the developer.

An approach that also deals with change propagation is presented by Marchezan et
al. [119]. Similarly to Kretschmer et al. [96], the technique explores the state space of a
model to find repairs and deal with possible negative side effects. The main focus of the
approach is to detect conflicts of repairs with respect to changes of other developers dur-
ing collaborative editing, i.e., it allows filtering repairs that would undo changes of other
developers. Similar to our approach, Marchezan et al. [119] extracts these changes from
a model’s version history. While our repair approach prevents undoing former changes
that introduced an inconsistency, their approach avoids repairs that undo recent changes
of other developers. In general, such a filter can complement a repair technique in a sce-
nario where the intent is to avoid editing conflicts rather than resolving those conflicts in a
merging process (see Reference [81]) at a later time.

In general, there are a few rule-based techniques sharing some similarities with our
approach [2, 28, 133, 199]. Similar to a set of CPEOs serving as configuration input of our
technique, they rely on a set of predefined rules which are used to adapt the technique to a
given modeling language and which are applied when an inconsistency is detected.

Nassar et al. [133] present an algorithm for repairing some kinds of inconsistencies in
EMF models by trimming and completing an inconsistent model. Although being designed
to work fully automatically, tool support is provided such that certain decisions of the algo-
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rithm can be interactively influenced by developers. However, only elementary constraints
in EMF models [27] and multiplicity constraints defined by a meta-model are supported,
while our approach can handle arbitrary OCL-like constraints.

The approach presented by Blanc et al. [28] shares with ours the idea of exploiting the
changes causing an inconsistency to better control the generation of possible repairs. How-
ever, the configuration effort is much higher than for our approach. The specification of
inconsistency detection rules is an integral part of their technique for inconsistency reso-
lution, while we use consistency rules specified in an OCL-like manner which are readily
available for a given modeling language. In order to use readily available OCL constraints
as a basis, Xiong et al. [199] propose a language called Beanbag as an OCL add-on to de-
scribe fixing procedures along with consistency rules. A fixing procedure shall specify how
to propagate inconsistency-inducing changes in order to restore consistency. In contrast to
our approach, however, they do not perform a history-based origin and impact analysis at
runtime, which makes it hard and often impossible to anticipate a suitable fixing procedure
at design time. Moreover, we offer a semi-automated process for specifying and generating
CPEOs, whereas Blanc et al. [28] and Xiong et al. [199] rely on a purely manual specification
of rules.

Taentzer et al. [2] consider the construction of complement rules, which we adopt in
our approach (see Section 5.4.3), from a theoretical point of view. However, the possible
complement rules are already determined at design time. Therefore, the approach assumes
that a set of edit operations for a given modeling language is partitioned into CPEOs and
non-CPEOs, the latter being true sub-rules of the former. Partial edits are suggested to be
complemented whenever possible without analyzing the cause of an inconsistency as in our
approach. Thus, important requirements of a recommendation system, notably the filtering
of all possible complements to the most relevant repair alternatives, are not addressed.

Finally, Schneider et al. [162–164] present an approach to graph repair in which they
formalize consistency by graph conditions which are exploited to derive repair proposals
using constraint solving techniques. To date, however, the work is a purely theoretical one.
It would be interesting to transfer their concept into the MDE context and to implement a
prototypical tool for the sake of a comparative, experimental evaluation.

9.4 Edit Rule Generation
In Chapter 7, we present a novel systematic process to synthesize CEPOs that meet our re-
quirement of preventing typical inconsistencies when models are edited in standard editors.
As already discussed in Section 2.2, some approaches exists that, similar to ours, derive edit
rules from modeling examples. The demonstration-based approach of Brosch et al. [31] and
Sun et al. [176,177] record edit rules from example edits of a model. Similar to our approach,
the correspondence-based approach of Saada et al. [158], Alshanqiti et al. [10] and Strüber
et al. [3] derive edit rules from pairs of modeling examples. In contrast to these approaches,
we derive multiple edit rules by combining several minimal modeling examples into differ-
ent types of CPEOs that capture complex and error-prone edit steps with respect to complex
modeling constraints. This systematic approach significantly lowers the number of required
examples.
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Kehrer et al. [79,84,85,153] present an approach and supporting tool suite called SERGe
to derive edit rules that preserve basic structure and typing constraints from a given meta-
model. Similarly, some approaches derive graph grammars from meta-models [47, 55, 178]
that consists of basic constructive edit rules. As already discussed in Section 2.2, these
edit operations can hardly serve as CPEOs for our repair approach, which concentrates on
advanced consistency constraints.

Ghannem et al. [57] present an approach that derives refactoring operations frommodel-
ing examples. With the same goal, Mokaddem et al. [57] developed a search-based approach
that yields model refactorings. Regarding our repair approach, refactorings are indeed an
interesting category of CPEOs. However, as analyzed in Section 1.2, we have to consider
that incomplete edits can occur during several different development stages and modeling
activities.

Tinnes et al. [182,183] describe a novel unsupervised approach called OCKHAM, which
learns domain-specific edit operations from histories in model repositories. OCKHAM em-
ploys frequent subgraphmining to discover actually applied domain-specific edit operations
in a model difference graphs. Assuming a sufficiently large modeling history with respect
to a specific modeling language, this approach indeed can help to extract interesting CPEOs.
While the approach presented in Chapter 7 can produce an extensive basis of CPEOswithout
any modeling histories, e.g., while designing a new modeling language, additional CPEOs
could be added by such a mining approach during a model’s evolution.

Finally, model transformation by-example approaches such as References [15, 159, 187]
deal with learning transformations from exemplary source and target models. However,
the derived transformation rules are designed to translate between models of different mod-
eling languages rather than formulating edit operations of a particular modeling language.
Therefore, it has yet to be investigated whether these approaches can be adapted to generate
CPEOs with respect to different complex constraints within the same modeling language or
between modeling views.

Technically, ReVision can be configured with any edit rule that can be expressed declar-
atively and converted into an edit rule graph as described in Section 3.5. Our history-based
repair approach determines on a case-specific basis if an incompletely applied edit rulemight
have caused the inconsistency under consideration and whether a complementation with
respect to this rule could improve or resolve it. Most existing approaches do not guaran-
tee that the generated edit rules preserve a model’s consistency with respect to the complex
constraints of a modeling language. Generally, the systematic approach introduced in Chap-
ter 7 can serve as starting point for a comprehensive set of CPEOs while additional edit rule
generation approaches could be used to complement this set.



10
Conclusions and Future Work

This chapter summarizes the idea, computation, and evaluation of history-based repair recom-
mendations presented in this thesis. Finally, possible directions for future work are discussed,
such as extending the approach to synchronization of multiple interrelated views and vertical
model consistency, extracting CPEOs from the modeling history, and generalizing the approach
to general-purpose programming languages.

T o conclude this thesis, we will summarize the main contributions and findings in Sec-
tion 10.1. Finally, Section 10.2 provides a perspective for future work of the approach.

10.1 Summary
In MDE, complex software systems are described by models that abstract from technical de-
tails and represent different views of the system. However, inconsistencies can arise during
a model’s evolution, and the number of possible repairs is usually huge.

As we observed in our evaluation of real-world model histories, such inconsistencies are
often caused by incomplete editing processes. Thus, this thesis presents a new history-based
approach to derive repair proposals from incomplete edits. Such edits are incomplete in the
sense that additional changes are necessary to achieve a new consistent state of a model.
One overly simple decision is to undo these changes. In most cases, the better decision is
to complement such an incomplete edit step and to catch up on the missing changes. The
proposed complementations are particularly useful in resolving inconsistencies introduced
by editing complex model fragments or by isolated editing of dependent modeling views.

Our approach assumes that a model version history is available to detect an incomplete
edit step within this history. This detection requires the complex transitions between consis-
tent states to be specified as consistency-preserving edit operations (CPEOs). Such CPEOs
can be expressed using model transformations based on graph transformation rules. As a
compact notation, related changes can be represented using annotated graphs, which are
referred to as difference graphs and edit rule graphs, respectively.

The biggest technical challenge is to find partial edit rule graphs in the difference graph
that can be recognized as partial applications of the corresponding CPEOs. Such a par-
tial graph matching algorithm can be implemented using a constraint satisfaction problem
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(CSP) solver. The CSP solver detects partially executed edit operations by mapping change
actions of an edit rule graph to historical changes of a model difference graph. Based on
a recognized sub-rule, a complement rule is computed by subtracting the already applied
changes of the sub-rule from the edit rule. To create concrete complementations, we deter-
mine all valid applications of the complement rule on the current model version. Finally,
all valid applications are mapped to parameter bindings of the complement rule, which a
developer can select. As an alternative to complementing an incomplete edit, the changes
of a recognized sub-rule can be inverted into a case-specific rollback operation.

The presented history-based model repair recommendation approach is implemented in
our tool called ReVision. The tool supports developers in repairing each single violation of a
consistency rule iteratively. Based on a selected inconsistency, it analyzes the model history
to detect the former model changes that induced the inconsistency. Utilizing the algorithm
to detect partially executed edit operations in a model difference, ReVision generates com-
plementing repair proposals extending these inconsistency-inducing changes. Therefore,
such a complementing repair is a case-specific repair operation that extends a partial execu-
tion of a CPEO into a complete one. This way, implausible repair alternatives can be largely
avoided, and we also prevent undoing former edit steps. Finally, the repair recommenda-
tions will be ranked using multiple properties of the repair operation. Basically, all repair
plans are compared by their change ratio with respect to the elementary change actions
of the complement and sub-rule. The pairs of inconsistency-inducing and complementing
changes are then presented to the developer as a ranked list of repair proposals. The de-
veloper can either apply the complementation or create a case-specific undo operation to
resolve the inconsistency.

In general, an inconsistency cannot be resolved by our approach if no suitable CPEO is
available. To support the configuration of the repair tool, we provide a systematic yet semi-
automated process to derive a set of CPEOs from the modeling language’s meta-model and
its attached set of consistency rules. The example-based generation assembles CPEOs based
on a given set of minimal modeling examples, each describing a valid model fragment in
terms of a consistency rule. This approach allows developers to specify CPEOs using their
preferred model editor without directly formulating edit rules using the model’s abstract
syntax. To guide the generation process, annotations can be added to the derived graph
fragments.

Compared to other model repair approaches, our approach delivers more concrete re-
pair proposals. It avoids implausible proposals by analyzing the context and history of the
inconsistency, and it avoids accidentally undoing former work. These qualitative achieve-
ments are confirmed by our experimental results. The proposed approach is evaluated us-
ing a selected set of real-world models obtained from popular open-source Eclipse modeling
projects. The experimental results confirm that most of the inconsistencies can be resolved
by complementing incomplete edits. The number of repair operations generated by the ap-
proach is typically low, and the relevant proposal is ranked at the topmost position of the
short list of repairs in virtually all cases.

All evaluation results are published and peer-reviewed in Reference [6]. Moreover, the
dataset and evaluation configuration is available from the project website of ReVision (see
Reference [8]). For 92.6% of the supported inconsistencies of our experimental dataset, Re-
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Vision generates a repair proposal that is relevant in the sense that it can be observed in the
model’s editing history and thus, arguably, meets a developer’s intention. In fact, in 94.9%
of the cases, the most relevant repair is ranked on the top position of the ranked repair
proposals generated by ReVision, and 92.2% of these repair proposals are complements of
partial executions of CPEOs inducing an inconsistency. Performance measurements show
that repair proposals for a given inconsistency are typically generated in the order of sec-
onds, which suggests that it is feasible to use ReVision in an iterative yet interactive repair
process as it is assumed by our approach.

Although the configuration of ReVision used in our empirical study covers 93.4% of the
inconsistencies of our evaluation dataset, our approach has two limitations: (i) It does not
support consistency constraints which pertain to the well-formedness of attribute values of
model elements, and (ii) it does not provide any formal guarantees with respect to the cov-
erage of structural constraints. The latter primarily depends on the set of CPEOs specified
for a given modeling language.

The history-based model recommendation approach allows developers to repair model
inconsistencies efficiently and effectively. In this context, ReVision provides a valuable
tool for MDE practitioners to resolve inconsistencies in models. Despite that, ReVision is
not meant to serve as a replacement for existing approaches to model repair but rather as
a complementary tool that should be used as the first one in a potentially larger chain of
repair techniques.

10.2 Future Work
An interesting avenue for futurework on conducting acceptance testingwith real developers
is to evaluate ReVision in settings where consistency rules span more than just two views,
a scenario that is hardly addressed in the current literature on model repair. Combining
the specifications of multiple views might also help the repair tool to compute more precise
repair proposals, i.e., proposals that create conflicts between different views could be filtered.
Technically, the specification of CPEOs can be extended to cover multiple views. The actual
challenge here is to deal with the potential combinatorial explosion of the number of CPEOs
that need to be specified at design time. In particular, if a consistency rule spans multiple
views, not all of these views may be used in a concrete model. By using only the basic
constructs of the Henshin transformation language, all of the combinations of multiple
views would have to be covered by a separate CPEO. However, we assume that this problem
of combinatorial explosion can be tackled by specifying optional parts in CPEOs. This may
be achieved by using advanced concepts such as rule schemes or variability add-ons for the
Henshin language.

This thesis has primarily focused on horizontal consistency concerning models at the
same level of abstraction or within the same development phase. However, another impor-
tant consistency dimension in MDE is vertical consistency, which involves synchronizing
different levels of abstraction. In MDE, models are typically transformed from an abstract
platform-independent model (PIM) to a more concrete platform-specific model (PSM). Ex-
isting incremental synchronization approaches automatically propagate the modifications
from the abstract to the more concrete model without fully regenerating the model. Simi-
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larly, ReVision could propagate such changes to the PSM based on the appliedmodifications
on the PIM. To enable automated synchronization without user interactions in ReVision,
stricter assumptions have to be made about CPEOs, consistency rules, and the history-based
analysis to guarantee a correct automatic synchronization.

Conversely, a repair tool can also support the developer in backpropagating the man-
ual changes from a PSM to its PIM. As the model evolves, this ensures the integrity of the
model in further development cycles. This synchronization direction is mainly done man-
ually in practice or requires specifying bidirectional synchronization rules. Our repair rec-
ommendation approach could support the developer in synchronizing frequently occurring
modifications without fully specifying both transformation directions.

In addition, futurework can focus on extending the proposed approach beyondmodeling
languages and Domain-Specific Modeling Languages (DSMLs) to involve general-purpose
programming languages and other textual Domain-Specific Languages (DSLs). Such a gen-
eralization of the approach includes the identification of possible inconsistencies and cor-
responding CPEOs with respect to these languages. One particularly interesting starting
point to investigate consistency-preserving edits are applications of refactorings in such
languages. In this context, our history-based repair technique could address the migration
of breaking changes in Application Programming Interfaces (APIs), which often lead to in-
consistencies in client libraries accessing these APIs. Technically, this requires bridging
the conceptual gap between the abstract syntax of general-purpose languages and the ab-
stract syntax defined by meta-models. Moreover, this problem is not only relevant to our
repair approach but also a general challenge in transferring and utilizing modeling-related
approaches to general-purpose programming languages.

Despite the widespread adoption of auto-completion techniques in programming lan-
guages, they are still rarely available in the practice of MDE. Such tools play a crucial role
in helping developers to understand a language’s syntax and the functionality of large code
bases and libraries. Context-sensitive auto-completion tools can significantly enhance de-
velopment productivity, particularly when dealing with repetitive language patterns. The
technique for complementation of partially executed edits, as described in Chapter 4, can
be utilized to compute history-based auto-completions for models in MDE. However, po-
tential completions of an incomplete edit step can become ambiguous when the specific
editing goal, e.g., repairing a particular inconsistency, is unclear. This ambiguity can result
in a large number of possible completions, making it challenging for a developer to select
the appropriate one. One interesting approach could involve combining similar completion
proposals. If multiple CPEOs share common parts, the developer could first select from a
ranking of combined proposals, narrowing down the appropriate one. Then, in a second
interactive step, a concrete variant of the proposal can be selected.

In our current approach, CPEOs are generated from modeling fragments derived from
modeling examples. An interesting future direction is to reverse this process by converting
CPEOs into modeling fragments and modeling examples. Technically, this allows to back-
propagate manual revision of the CPEOs (or modeling fragments) to the modeling examples,
allowing an additional way to refine the set of CPEOs. More interestingly, this allows us to
integrate other CPEO generation techniques and existing sets of CPEOs into the generation
process. Assuming the CPEO is described by a precondition and postcondition graph, we
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can basically derive two new modeling fragments. By combining these two new fragments
with the already existing ones, we can generate multiple CPEOs with respect to the different
combinations of fragments and rule categories supported by our generation tool.

Another interesting approach for extending the CPEO generation based on modeling
fragments could be to extract such complex fragments from the modeling history. There
are two particularly interesting sources to explore: complex consistent edit steps within
a single revision and complex intermediate inconsistent edit steps across multiple model
versions. The latter source has served as an oracle in our evaluation. Additionally, we can
analyze both consistent and inconsistent editing steps to learn project-specific rankings of
parameter values, e.g., model elements that have to be selected for a repair proposal by a
developer.

Our experimental findings support our hypothesis that the majority of inconsistencies
result from incomplete edits. However, we recognize that conducting empirical user stud-
ies and more extensive field studies will be essential to definitively assess the acceptance
of ReVision in the future. Furthermore, it would be valuable to extend the evaluation to
various languages and compare it with related approaches to model repair. Presently, the
absence of a standard benchmark makes it challenging to empirically compare these differ-
ent repair approaches. Future advancements in model repair can only be achieved if the
diverse approaches and repair tools can be systematically compared through experimental
results obtained using common benchmarks.
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