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Efficient Gaussian process updating under linear

operator data for uncertainty reduction on

implicit sets in Bayesian inverse problems

Cédric Travelletti

Abstract

This thesis aims at developing sequential uncertainty reduction techniques for set
estimation in Bayesian inverse problems. Sequential uncertainty reduction (SUR)
strategies provide a statistically principled way of designing data collection plans
that optimally reduce the uncertainty on a given quantity of interest. This thesis
focusses on settings where the quantity of interest is a set that is implicitly defined
by conditions on some unknown function and one is only able to observe the values
of linear operators applied to the function. This setting corresponds to the one en-
coutered in linear inverse problems and proves to be challenging for SUR techniques.
Indeed, SUR relies on having a probabilistic model for the unknown function under
consideration, and these models become untractable for moderately sized problem.
We start by introducing an implicit representation for covariance matrices of Gaus-
sian processes (GP) to overcome this limitation, and demonstrate how it allows one
to perform SUR for excursion set estimation in a real-world 3D gravimetric inversion
problem on the Stromboli volcano. In a second time, we focus on extending vanilly
SUR to multivariate problems. To that end, we introduce the concept of ’generalized
locations’, which allows us to rewrite the co-kriging equations in a form-invariant
way and to derive semi-analytical formulae for multivariate SUR criteria. Those
approaches are demonstrated on a river plume estimation problem. After having
extended SUR for inverse problems to large-scale and multivariate settings, we de-
vote our attention to improving the realism of the models by including user-defined
trends. We show how this can be done by extending universal kriging to inverse
problems and also provide fast k-fold cross-validation formulae. Finally, in order to
provide theoretical footing for the developed approaches, show how the conditional
law of a GP can be seen as a disintegration of a corresponding Gaussian measure
under some suitable condition.
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Chapter 1

Introduction

This thesis focuses on sequential estimation of implicit sets in Bayesian inverse prob-
lems. Broadly speaking, an inverse problem is the task of recovering some unknown
function describing some physical quantity from indirect observations thereof. Such
problems arise in various areas of the natural sciences as well as in machine learning.
In this thesis, we focus on situations where one is not interested in reconstructing
the unknown physical phenomenon in itself, but would rather like to estimate re-
gions that are implicitly characterized by properties thereof. These can include, for
example, regions where the unknown function takes high values (excursion sets) or
regions of high curvature (transition regions). Our goal is to propose adaptive data
collection plans that leverage previous knowledge about the physical process at hand
to sequentially collect new data and adapt the future data gathering to optimally
decrease the uncertainty about the target region. Given the current state of the art
in Bayesian inverse problems, such a task is fraught with computational challenges
and Chapter 4 is devoted to overcoming these. Then, Chapter 5 shows how prior
domain-specific knowledge can be used to produce more realistic models. Finally,
Chapter 6 extends our framework to multivariate physical phenomena. Most of the
approaches developed in this thesis rely on theoretical developments introduced in
Chapter 3. We next give a detailed summary of our contributions for each chapter.

Chapter 3: Our first contribution is the construction of a theoretical framework
for the updating of Gaussian processes under linear operator data. Such updating
situations arise frequently in Bayesian inverse problems, which is the core motiva-
tion for the work done in this chapter. Although update formulae for GPs have been
known for some time (Chevalier et al., 2014b; Emery, 2009; Gao et al., 1996; Barnes
and Watson, 1992), these approaches silently take various properties of the condi-
tional distribution of the process for granted, which is of minor harm in the case
of pointwise observations but can be problematic in the presence of linear operator
data.

To enable a rigorous treatment of the conditional law under linear operator ob-
servations, we build upon the theory of disintegrations of Gaussian measures. In
passing, we clarify some links between Gaussian processes and Gaussian measures
and provide characterizations of the type linear operators that can be assimilated
for a given GP prior. Overall, our results provide an extension of GP update for-
mulae to disintegrations as well as a purely functional formulation of the Bayesian
assimilation/inversion process. This is leveraged in Chapter 4 to develop fast up-
date formulae and can be used for further theoretical inquiries in Bayesian inversion.

13
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Chapter 4: Even though GP priors have been shown to perform well on smaller-
scale inverse problems, difficulties arise when one tries to apply them to large inverse
problems (be it high dimensional or high resolution) and these get worse when one
considers sequential data assimilation settings such as in Chevalier et al. (2014a).
The main goal of Chapter 4 is to overcome these difficulties and to provide solutions
for scaling GP priors to large-scale Bayesian inverse problems.

Specifically, this chapter focuses on a triple intersection of i) linear operator data,
ii) large number of prediction points and iii) sequential data acquisition. There ex-
ists related works that focus on some of these items individually. For example,
methods for extending Gaussian processes to large datasets (Hensman et al., 2013;
Wang et al., 2019) or to a large number of prediction points (Wilson et al., 2020)
gained a lot of attention over the last years. Also, much work has been devoted
to extending GP regression to include linear constraints (Jidling et al., 2017) or
integral observations (Hendriks et al., 2018; Jidling et al., 2019). On the sequential
side, methods have been developed relying on infinite-dimensional state-space rep-
resentations (Särkkä et al., 2013) and have also been extended to variational GPs
(Hamelijnck et al., 2021). There are also works that focus on the three aspects at
the same time (Solin et al., 2015). All these approaches rely on approximations of
the covariance.

The topic of large-scale sequential assimilation of linear operator data has also
been of central interest in the Kalman filter community. To the best of our knowl-
edge, techniques employed in this framework usually rely on a low rank representa-
tion of the covariance matrix, obtained either via factorization (Kitanidis, 2015) or
from an ensemble estimate (Mandel, 2006).

Our contribution in Chapter 4 is the elaboration of update methods for Gaus-
sian processes that do not rely on a particular factorization of the covariance matrix,
nor on an approximation scheme. This is achieved through the introduction of an
implicit representation of the posterior covariance matrix that builds on theoreti-
cal results from Chapter 3. This new way of looking at the posterior covariance
allows us to perform Bayesian inversion in large-scale settings, as well as applying
sequential uncertainty reduction strategies in this setting. All our techniques are
demonstrated on a real-world gravimetric inverse problem involving field data col-
lected on the Stromboli volcano.

Chapter 5: After having shown in Chapter 4 how Bayesian inversion can be
brought to bear on large-scale inverse problems, allowing for the inclusion of expert
knowledge in the inversion process through the specification of the prior, we seek
in Chapter 5 to extend this framework to priors that enable a more fine-grained
expression of pre-existing knowledge about the inversion situation at hand. Indeed,
traditional GP models used in Bayesian inversion have a limited degree of flexibility
in the choice of the prior, most of which resides in the choice of the covariance
kernel, allowing only for control of properties such as regularity and periodicity of
the realizations of the model.

In traditional GP regression, more expressive priors have been developed under
the framework of universal kriging (Matheron, 1969). These allow the user to encode
their knowledge about the situation into linear combinations trend functions whose
coefficients are learned from the data. In this chapter, we extend this framework to
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Bayesian inversion by building on (Kitanidis, 1995) and demonstrate on real-world
gravimetric inverse problems how the inclusion of trends in the prior enables users
to incorporate their knowledge of the local geology in the inversion process.

Considering more flexible models creates new questions about model selection.
In the second part of Chapter 5 we leverage fast k-fold cross-validation formulae
(Ginsbourger and Schärer, 2021) to compare different trend models. We provide an
overview of the new research question brought forth by the use of cross-validation
in Bayesian inversion and present a heuristic study of possible cross-validation ap-
proaches for inversion, leaving rigorous theoretical groundwork for future inquiries.

Chapter 6: In this chapter, we present the theoretical side of developments
that were achieved as part of a collaboration with NTNU Trondheim (Fossum et al.,
2021b) focussing on sequential design strategies for estimating excursion sets of an
unknown latent multivariate field. While sequential design of experiments strategies
have been well studied in the case of scalar responses, not much has been done to
extend these results to situations where the latent field of interest is multivariate,
let alone to address the estimation of excursion sets. Though approaches such as
co-kriging (see, e.g., Wackernagel, 2003) have been developed to learn multivariate
latent functions from vector-valued observations and even if those estimates can be
updated efficiently in the context of sequential data assimilation (Vargas-Guzmán
and Jim Yeh, 1999), sequential strategies for estimating features of vector-valued
random fields are still in their infancy. Le Gratiet et al. (2015) used co-Kriging
based sequential designs to multi-fidelity computer codes, Poloczek et al. (2017)
used related ideas for multi-information source optimization, but these did not con-
sider excursion sets. To the best of our knowledge, the only works that mentions the
possibility of stepwise uncertainty reduction strategies for excursion sets of multivari-
ate functions is the PhD thesis (Stroh, 2018, p.82), yet only under the assumption
of independent outputs.

Our goal in Chapter 6 is to develop sequential design strategies for the estima-
tion of excursion sets of multivariate latent field using vector-valued observations. To
that end, we start by providing a unified framework for multivariate GP regression
from heterogeneous observations and then use it to extend uncertainty reduction
criterion to vector-valued cases. Our approaches build on the general sequential
design strategies from Ginsbourger (2018) and on the excursion volume estimation
strategies from Bect et al. (2012). Using techniques developed in Chevalier et al.
(2014a), we provide solutions to make the strategies computationally efficient and
adapted to batch observations. When it comes to estimating the excursion sets
themselves, rather than their volumes, we build upon the works of French and Sain
(2013); Chevalier et al. (2013); Bolin and Lindgren (2015); Azzimonti et al. (2016).
We note that our multivariate techniques could be extended to provide conservative
estimates (Azzimonti et al., 2021) of multivariate excursion sets, tough this approach
is not pursued in this work.
We demonstrate our strategies on a river plume mapping application (see Sec-
tion 2.4.2) where the goal is to map the river-ocean interface at the mouth of a
river, the problem being modeled as an excursion set estimation problem for a bi-
variate temperature-salinity field. Our strategies prove competitive against other
pre-existing strategies in synthetic experiments and a real field test using an au-
tonomous underwater vehicle (AUV) to map a river interface in Trondheim, Norway
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was performed by an independent respearch group (Fossum et al., 2021b).
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Chapter 2

Bayesian Inversion, Gaussian
Processes and Applicative
Examples

2.1 Inverse Problems and Deterministic Inversion

The core of this thesis centers around inverse problems. Here an inverse problem is
the task of recovering some unknown function (or features thereof) ρ ∈ F in some
abstract function space from the observation of some operator G mapping into a
Banach space: G : F → Y, applied to ρ. The operator G is called the forward
operator and the Banach spaces F and Y are traditionally called the model space
and data space respectively. The inverse problem is then the task of inverting the
relation

y = G(ρ) + ε, (2.1)

from the observed data y, where ε is some Y-valued random noise. The defining
characteristic of inverse problems is their ill-posedness (Hadamard, 1902), meaning
that the solution of the problem presents one of the following properties: (1) it might
fail to exist, (2) it can be non-unique, or (3) it can be sensitive to perturbations in
the data. Of all these properties, the third one has generated the most interest and
is usually tamed using either some deterministic form of regularization (Tikhonov,
1963) or via probabilistic methods (Tarantola et al., 1982; Tarantola, 2005). We
here quickly present some deterministic approaches, while probabilistic ones will be
introduced in Section 2.2.2 and will be the focus of this thesis.

For the rest of this work, unless mentioned otherwise, we will always assume that
the function ρ to be recovered is scalar-valued and at least continuous, so that we
have ρ ∈ C(D) for some domain D, where C(D) denotes the space of real-valued
functions on D. One of the first obvious paths towards solving the problem Eq. (2.1)
is to discretize the domain and range of the forward operator, so that one is left
with a linear algebra task

ȳ = Ḡ ρ̄, Ḡ ∈ Rq×r, (2.2)

where the overbars are used to denote the vectors and matrices representing the
discretized version of the problem. There are then, assuming Ḡ has maximal rank,
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three cases according to the relation between the dimension of the data space q and
the dimension of the model space r:

• If q = r: then a unique solution exists and is given by the inverse of the
forward ρ̄ = Ḡ−1ȳ.

• If q < r: then the problem is underdetermined and the solution is not unique.

• If q > r: then the problem is overdetermined and the solution will fail to
exist if the data does not lie withing the range of the forward.

In the overdetermined and underdetermined cases, a natural way to obtain a unique
(approximate) solution is to look for least-squares solutions or minimum norm so-
lutions. That is, in the overdetermined case one looks for the model vector that is
closest (in Euclidean norm) to solving Eq. (2.2) and in the underdetermined case
one looks for the solution with minimum Euclidean norm among all possible solu-
tions. It turns out that all those cases can be subsumed by computing the solution
in terms of the Moore-Penrose pseudoinverse Ḡ+ of the forward operator (Ben-Israel
and Greville, 2003).

Theorem 1 ((Penrose, 1956)). Let Ḡ ∈ Rq×r be a matrix with maximal rank. Then,
for any ȳ ∈ Rq, the vector z0 = Ḡ+ȳ enjoys the following properties:

• If q ≥ r: ||Ḡz − ȳ|| ≥ ||Ḡz0 − ȳ||, all z ∈ Rr.

• If q ≤ r: ||z0|| ≤ ||z|| for all z ∈ Rr such that Ḡz = ȳ.

Even if the above theorem offers a way to compute (approximate) solutions to
inverse problems, the issue of sensitivity to the data still remains. Indeed, the
computation of the pseudoinverse is numerically unstable for matrices with a large
condition number, calling for approaches to regularize the solution. The most suc-
cessful of these is Tikhonov regularization, where the idea is to solve the regularized
problem:

arg min
z∈Rr

||Ḡz − ȳ||2 + λ||z − zT ||2T ,

where zT is some prespecified vector and || · ||T is some norm on the model space.
There exists several algorithms to solve such regularized problems. Since determin-
istic inversion is not the focus of this thesis, we refer readers to (Hansen, 2010)
for more details thereupon. Of significantly more interest to us is the probabilistic
interpretation that can be given to Tikhonov regularization, which is explained in
the next section.

2.2 Gaussian Processes and Probabilistic Inver-

sion

Aside from the traditional deterministic inversion algorithms, a large literature has
been devoted to developing probabilistic approaches to inverse problems, among
which the most successful is Bayesian inversion (Tarantola et al., 1982; Stuart, 2010;
Dashti and Stuart, 2016). The philosophy of Bayesian inversion is to consider the
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solution ρ : D → R to the inverse problem as a realization of a random function
Z, where our prior knowledge about ρ or (expert knowledge, physical laws, ...) is
encoded in the prior distribution of Z. One then uses the conditional distribution of
Z under the observed data to approximate the true solution ρ (mathematical details
are given in Section 2.2.2).

Bayesian inversion requires one to specify a prior on the set of real-valued func-
tions on the domain D. The most popular class of functional priors is that of
Gaussian processes (GP) (Rasmussen and Williams, 2006), owing to the existence
of closed-form formulae for their conditional distribution under linear operator ob-
servations (Solak et al., 2003; Särkkä, 2011; Jidling et al., 2017; Mandelbaum, 1984;
Tarieladze and Vakhania, 2007; Hairer et al., 2005; Owhadi and Scovel, 2015; Kle-
banov et al., 2021). The goal of the following sections is to provide an introduction
to Gaussian processes and their practical use in Bayesian inversion, together with
the mathematical theory underpinning the whole construction.

2.2.1 Mathematical Background and Definitions

We start by recalling some basic definitions. Our exposition will be mostly based
on (Bovier, 2015) and on (Pavliotis, 2014). We also refer the reader to (Kallenberg,
2021) for a more rigorous exposition.

In the following, let (Ω,F ,P) be a complete probability space. A couple (F,A)
where the second letter is in calligraphic font will always denote a measurable space,
the second member of the couple being the σ-algebra. When talking about measur-
able mappings, we will liberally use the notation

f : (F,A)→ (Y, C)

allowing us to specify both the spaces and their respective σ-algebras at once.
We now proceed to define stochastic processes, which are, intuitively, collections

of random variables indexed by an arbitrary index set D taking values in a measur-
able space E. The key concept needed to define stochastic processes is that of the
cylindrical σ-algebra.

Definition 1 (Cylindrical σ-algebra). Let (E, E) be a measurable space and D an
arbitrary index set. Consider the evaluation functionals defined by πx(f) := f(x) for
any f : D → E and any x ∈ D. The, the cylindrical σ-algebra ED is defined as the
smallest σ-algebra on ED making all pointwise evaluation functionals πx : ED → E
measurable.

Stochastic processes are then defined as measurable mappings with respect to
the cylindrical σ-algebra.

Definition 2 (Stochastic Process). An E-valued stochastic process indexed by D
is a measurable mapping

Z : (Ω,F)→ (ED, ED)

Any stochastic process induces a measure on the space of functions from D to
E, called the law of the process.

Definition 3 (Law of a Stochastic Process). Let Z be an E-valued stochastic process
indexed by D, then the law of Z is the image measure µZ of P under Z on (ED, ED)
defined by

µZ := P ◦ Z−1.
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Two useful by-products of the law of a stochastic process are its mean function
and covariance kernel.

Definition 4. Let Z be an E-valued stochastic process indexed by D and assume
that Z is second order, that is, for all x ∈ D, E [Z2

x] <∞. Then the mean function
m : D → E and covariance kernel k : D ×D → E of the process are defined as

mx = E [Zx]

kxx′ = E [(Zx −mx) (Zx′ −mx′) .]

Note that for the sake of conciseness we use subscript notation for the argu-
ments of the mean function and covariance kernel. Of all the possible types of
stochastic processes, in this thesis we will be mostly interested in the class of Gaus-
sian processes. Gaussian processes (GPs) are defined as stochastic processes whose
finite-dimensional laws at any set of points are Gaussian.

Definition 5 (Gaussian Process). A Gaussian process on a domain D is a real-
valued stochastic process Z, such that for any finite set of points in the index space
x1, .., xn ∈ D, the random vector (Zx1 , ..., Zxn) is multivariate Gaussian distributed.

It can be shown that, for a GP, its mean function and covariance kernel com-
pletely determine the law of the process (this is a consequence of (Dudley, 2002,
Theorem 12.1.3)). We will thus write Z ∼ Gp(m, k) to indicate that Z is a Gaus-
sian process with mean function m and covariance kernel k. Most of the regularity
properties of the sample paths of a GP are encoded in its covariance kernel, includ-
ing continuity and differentiability. While most of these regularity results are now
classics in the GP community, we refer readers to (Steinwart, 2019) for the latest
refinements in the study of sample path regularity.

This encoding of the regularity properties of the GP in the kernel allows one to
tailor the process to the problem at hand by specifically tuning the kernel function
of the GP. In general, any real valued function m : D → R is a valid mean function
for defining a GP on D, whereas the kernel function has to be a symmetric positive
(semi-) definite function on D ×D (Dudley, 2002, Theorem 12.1.3). In this thesis,
we will mainly consider cases where the domain is a subset of Euclidean space
D ⊂ Rd and covariance kernels are from one of the following families (Rasmussen
and Williams, 2006):

• exponential: k(x, x′) = σ2e−||x−x
′||/λ

• squared exponential k(x, x′) = σ2e−||x−x
′||2/2λ2

• Matérn kν(x, x
′) = σ2 21−ν

Γ(ν)

Ä√
2ν||x−x′||

λ

äν
Kν
Ä√

2ν||x−x′||
λ

ä
,

where σ2 and λ, ν > 0 are real parameters, ||·|| is the Euclidean norm and Kν denotes
the modified Bessel function of the second kind. These kernels are among the most
used in the literature and lead to simple regularity properties of the sample paths.
Informally, the sample paths of a GP with exponential kernel are continuous but
not differentiable, those of the squared exponential kernel are infinitely differentiable
and those of the Matérn kernel are k-times continuously differentiable for k < ν.
We note that this characterization, though often sufficient in practice, is far from
rigorous. For a rigorous treatment using powers of reproducing kernel Hilbert spaces
we refer to Section 4.4 of the review article (Kanagawa et al., 2018).
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2.2.2 Bayesian Inversion

Gaussian processes have become a fundamental tool in the Bayesian approach to
inverse problems, owing to the ease with which they allow one to define priors on
function spaces. Before considering the use of GPs in an inversion setting, we first
introduce Gaussian process regression, also known as kriging.

The goal in GP regression is to learn an unknown function ρ : D → R from
(noisy) evaluations of the function at a finite set of points W = (w1, ..., wr) ∈ Dr.
There exists several approaches to tackle this problem. We will here only focus on the
ones based on random functions. These techniques first originated in geostatistics
(Krige, 1951; Matheron, 1962) and a comprehensive historical account can be found
in (Chilès and Desassis, 2018). We here adopt a Bayesian perspective (O’Hagan,
1978), rather than sticking to the traditional approach.

To approximate ρ, we assume it is a realization of some prespecified GP prior
Z ∼ Gp(m, k). Our goal is then to use the conditional law of Z under the avail-
able data to approximate ρ. To streamline equations, it helps to introduce no-
tation that compactly represents concatenated quantities and matrices built from
kernel evaluations. Thus, given two set of points X = (x1, ..., xm) ∈ Dm and
W = (w1, ..., wr) ∈ Dr, we will use KXW to denote the m × r matrix obtained
by evaluating the covariance function at all couples of points Kij = k(xi, wj). In a
similar fashion, let ZX ∈ Rm denote the vector obtained by concatenating the values
of the field at the different points. Similar notation will be used for the concate-
nated vector of mean function evaluated at several locations mX ∈ Dm. In general,
boldface uppercase letter will be used to denote batches of points and concatenated
quantities (usually datasets).

Using this compact notation, the data observation process is distributed accord-
ing to:

Y = ZW + ε, (2.3)

where we have assumed that the observations are corrupted by additive centered
Gaussian noise ε ∼ N (0,∆) with covariance matrix ∆ ∈ Rr×r. Then, assuming
that one observes the values of ρ at the batch of points W and gets the data vector
y = (y1, ..., yr) ∈ Rr, the conditional law of the process Z, conditionally on Y = y
is Gaussian with mean function and covariance kernel given by:

m̃X = mX +KXW (KWW + ∆)−1 (y −mW ) , (2.4)

K̃XX′ = KXX′ −KXW (KWW + ∆)−1KWX′ . (2.5)

In this setting (known mean function and covariance kernel), these equations agree
with the simple kriging ones. In practice, the mean is usually inferred from the
data (ordinary kriging, universal kriging) and the covariance kernel as well (MLE
for parametric models, variogram fitting). Since GP regression under pointwise
evaluation data is not the focus of this thesis, we refer the reader to (Rasmussen
and Williams, 2006; Chilès and Delfiner, 2012) for more details and now turn to the
case of linear operator data and inverse problems.

As explained in Section 2.1, a linear inverse problem can be viewed as a regres-
sion task with linear operator data observations. One possible approach is then to
extend GP regression to such linear operator data in order to bring it to bear on
inverse problems (Tarantola and Valette, 1982; Särkkä, 2011). Our exposition here

Chapter 2 Cédric Travelletti 21



Efficient Gaussian process updating for uncertainty reduction on implicit sets

will follow the one in (Tarantola, 2005). For the rest of this section, assume that the
forward operator is a linear operator between finite dimensional spaces G : F → Y.
Chapter 3 will be dedicated to infinite-dimensional formulations of Bayesian inver-
sion, but in practice most problems are discretized before an attempt at a solution
is made, so that finite-dimensional formulations are not much of a limitation. We
also assume that the action of the forward only involves the values of the unknown
function at a finite set of points W ∈ Dr, so that the observation model can be
written as:

Y = GZW + ε, (2.6)

where we assume the data is corrupted by additive Gaussian noise ε ∼ N (0,∆).
Under this observation model, assuming that the matrix

(
GKWWG

T + ∆
)

is in-
vertible, the posterior law of Z, conditional on Y = y is Gaussian with mean and
covariance given by (Tarantola, 2005, Chapter 3):

m̃X = mX +KXWG
T
(
GKWWG

T + ∆
)−1

(y −GmW ) , (2.7)

K̃XX′ = KXX′ −KXWGT
(
GKWWG

T + ∆
)−1

GKWX′ . (2.8)

The posterior can then be used to approximate the unknown solution to the in-
verse problem. The Bayesian approach bears some connections to the traditional
Tychonov regularization method, in that the posterior mean can be seen as the so-
lution of a regularized problem with a regularization term that penalizes solutions
away from the prior (Calvetti and Somersalo, 2018).

Although the Bayesian framework for inverse problems seems complete and
straightforward to apply, in practice it can break down when one tries to scale
it to large-scale problems. Chapter 4 of this thesis is dedicated to overcoming these
difficulties. Moreover, the standard priors used in Bayesian inversion tend to lack
expressiveness when it comes to the inclusion of expert knowledge. Chapter 5 tack-
les this issue by devlopping techniques for the use of more flexible priors. Finally,
the theory behind the use of GP with linear operators observations generally leaves
aside the details involved in constructing the conditional law in the infinite di-
mensional context. Chapter 3 is dedicated to providing a theoretical grounding in
modern probability theory for Bayesian inversion, based on the theory of Gaussian
measures, which we briefly introduce next.

2.2.3 Gaussian Measures

When trying to generalize Gaussian random variables beyond the usual scalar set-
ting, one of the natural concepts that arises is that of Gaussian measures. Gaussian
measures can in many ways be seen as a theoretical counterpart to GPs, the for-
mer being the tool of choice for theoretical inquiries while the latter is preferred for
applied endeavours. While the two communities (process versus measure) tend to
be mutually isolated, we believe that many fruitful developments can emerge from
a tighter interplay of the two. Chapter 3 of this thesis is devoted to fostering such
interplay, and we here introduce the basics in Gaussian measure theory that will be
needed later.

The usual setting in which Gaussian measures are defined is that of Banach
spaces. A Gaussian measure then being a measure upon a Banach space, satisfying
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some Gaussianity properties. When thinking of the potential connection with GPs,
one can, for all practical purposes, think of this Banach space as a space of functions
in which sample paths of an “equivalent” GP would live (in a way that has yet to
be defined). In the following, we will always assume that the Banach spaces under
consideration are separable. Our exposition will mostly be based on (Bogachev,
1998). Other useful references include (Kuo, 1975) and also (Hairer, 2009) for a
more introductory treatment.

Definition 6 (Gaussian Measure). A Gaussian measure µ on a separable Banach
space F is a Borel measure on F such that for any continuous linear functional ` ∈ F∗,
the measure `#µ := µ ◦ `−1 on R is Gaussian.

The assumption of separability is not a very restricting one, since most usual
function spaces, such as Lp(D) spaces or Sobolev spaces W k,2(D) are separable (for
finite p) and so is the space of continuous functions over a compact set (equipped
with the sup-norm). The main reason for requiring separability is that it makes the
two natural definitions of measurability on the space under consideration coincide,
which prevents pathological cases from arising.

Theorem 2. On a separable Banach space F the Borel σ-algebra and the cylindrical
σ-algebra coincide.

Proof. See Hairer (2009).

Compared to GPs, when working with Gaussian measures, the notions of mean
and covariance functions are respectively replaced by the mean element and co-
variance operator. Here we denote by F∗ the (continuous) dual space of F, and
for any element f ∈ F and continuous linear form g∗ we use the duality notation
〈f, g∗〉 = g∗(f).

Definition 7. Given a Gaussian measure µ on a Banach space F, the mean of µ is
the unique element mµ ∈ F such that:∫

F
〈f, g∗〉dµ(f) = 〈mµ, g

∗〉, ∀g∗ ∈ F∗. (2.9)

The covariance operator of µ is the linear operator Cµ : F∗ → F defined by

〈Cµg∗1, g∗2〉 =

∫
F

(〈f, g∗1〉 − 〈mµ, g
∗
1〉) (〈f, g∗2〉 − 〈mµ, g

∗
2〉) dµ(f), ∀g∗1, g∗2 ∈ F∗ (2.10)

We note that there are some subtleties in the definition of the above notions.
For example, at first sight the mean element should be an element of the bi-dual
space F∗∗ and the covariance operator should also map in that space. Nevertheless,
in the separable setting, one can identify these with elements of F itself, thus greatly
simplifying the theory. We will not focus on these details further and refer readers
to (Vakhania et al., 1987, Chapter 3) for details on this identification.
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2.3 Bayesian Set Estimation

Compared to usual “pointwise” estimation, where the goal is to learn a (possibly
multivariate) unknown value, the problem of set estimation has received comparably
less attention in the machine learning community. We here summarize some of the
main techniques for set estimation in a Bayesian setting, focusing on the case of
excursion sets.

Given an unknown function ρ : D → R and some threshold T , the excursion
set of ρ above T is the set

Γ∗ = {x ∈ D : ρ (x) ≥ T}.

When the unknown function of interest arises as part of a Bayesian inverse problem
(see Section 2.2.2) with prior Z, there exists several approaches to approximate Γ∗

using the posterior. For example, a naive estimate for Γ∗ may be obtained using the
plug-in estimator:

Γ̂plug-in := {x ∈ D : m̃x ≥ T},
where m̃x denotes the posterior mean function of the GP prior. In this work, we will
focus on recently developed more sophisticated approaches to Bayesian excursion set
estimation (Azzimonti et al., 2016; Chevalier et al., 2013) based on the theory of
random sets (Molchanov, 2005). We here briefly recall some theory taken from the
aforementioned source.

In the following, we focus on a Bayesian inversion setting as introduced in Sec-
tion 2.2.2. Given some initial dataset, we denote by Z̃ a random field on D that
is distributed according to the posterior distribution conditionally on the initial
dataset. Then, the posterior distribution of the field gives rise to a random closed
set (RACS):

Γ := {x ∈ D : Z̃x ≥ T}. (2.11)

One can then consider the probability for any point in the domain to belong to that
random set. This is captured by the coverage function:

pΓ :D → [0, 1]

x 7→ P [x ∈ Γ] .

The coverage function allows us to define a parametric family of set estimates for
Γ, the Vorob’ev quantiles:

Qα := {x ∈ D : pΓ(x) ≥ α}. (2.12)

The family of quantiles Qα gives us a way to estimate Γ by controlling the (point-
wise) probability α that the members of our estimate lie in Γ. There exists several
approaches for choosing α. One such possible approach is to choose it such that the
volume of the resulting quantile is equal to the expected volume of the excursion
set. This gives rise to the Vorob’ev expectation.

Definition 8. (Vorob’ev Expectation) The Vorob’ev expectation is the quantile
QαV with threshold αV chosen such that

µ(Qα) ≤ E[ν(Γ)] ≤ µ(QαV ), ∀α > αV ,

where ν(·) is some fixed measure on the domain D.
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In practice, the computation of the Vorob’ev expectation requires the computa-
tion of the expected excursion volume under the posterior. While direct computation
of this quantity is cumbersome, under suitable conditions, Robbins’s theorem relates
the expected excursion volume to an integral of the coverage function:

E[ν(Γ)] =

∫
D

pΓ(x)dν(x).

We refer the reader to Robbins (1944) and Molchanov (2005) for more details.

To illustrate the various Bayesian set estimation concepts introduced here, we
apply them to a simple one-dimensional inverse problem, where one wants to es-
timate the excursion set above 1.0 of a function f : [−1, 1] → R after 3 pointwise
evaluations of the function have been observed (Figure 2.1).

Figure 2.1: One-dimensional Bayesian set estimation example. Excursion threshold
in red. True function in black, posterior mean and 2σ confidence regions in blue
(conditionally on observations at the red dots). True excursion region is highlighted
in black and plug-in estimate is highlighted in blue. Top right: coverage function
(dark red). Bottom left: Vorob’ev quantiles at level α = 0.5 (dark blue) and α = 0.75
(light blue). Bottom right: Vorob’ev expectation (threshold αV = 0.4).

2.4 Applicative Examples

Since one of the core goals of this thesis is to bring more realistic GP models to
the inverse problem community, we will strive to test all our methods on real-world
problems. Compared to the synthetic examples that are sometimes used as bench-
marks in the GP literature, inverse problems originating in the natural sciences tend
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to carry their own load of contingencies that are usually unforeseen when develop-
ing algorithms for in-silico problems. In this regard, most of the chapters of this
thesis are built with a target application in mind, that serves as a red thread for the
development of our proposed techniques. Our two main applications are introduced
next.

2.4.1 Gravimetric Inversion

One of the type of inverse problems that embodies the challenges that this thesis
ambitions to tackle are gravimetric ones. In gravimetric inverse problems, the goal is
to reconstruct the mass density distribution ρ : D → R in some given underground
domain D from observations of the vertical component of the gravitational field at
points u1, ..., uq on the surface of the domain.

(a) (b)

Figure 2.2: Overview of a generic gravimetric inverse problem: (a) underground
mass density (realization from GP prior), (b) vertical intensity of the generated
gravity field at selected locations.

Such gravimetric data are extensively used on volcanoes, and, in this thesis, we
will focus on the Stromboli volcano as an applicative example, using gravimetric data
gathered on the surface of the volcano during a field campaign in 2012 (Linde et al.,
2014). For volcanoes, reconstructing the underground mass density field is useful
for understanding geology, localizing ancient volcano conduits and present magma
chambers, and for identifying regions of loose light-weight material that are prone to
landslides that could in the case of volcanic islands generate tsunamis (Montesinos
et al., 2006; Represas et al., 2012; Linde et al., 2017). Figure 2.2 displays the main
components of the problem.

The observation operator describing gravity measurements is an integral one
(see Section 4.6), which, after discretization, fits the Bayesian inversion framework
of Section 2.2. After discretization on a finite grid of points X = (x1, . . . , xm), the
forward version of the problem writes as:

Y = ḠρX + ε, (2.13)

where the q × m matrix Ḡ represents the discretized version of the observation
operator for the gravity field at u1, . . . , uq and we assume i.i.d Gaussian noise
ε ∼ N (0, τ 2Iq). The posterior may then be computed using Eqs. (4.3) and (4.4).

This gravimetric inverse problem is an interesting example, in that it embodies
some of the key challenges that arise when trying to scale the Bayesian inversion
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techniques from Section 2.2 to real-world applications. First, the numerical resolu-
tion of such problems is fraught with memory overloads, owing to the domain being
three-dimensional and often of large extent, resulting in large grid sizes. Second,
the integral nature of the observation operator usually prevents the application of
sparsification techniques that are meant to alleviate the computational difficulties
linked with large grids. One of the contributions of this thesis is the development of
new approaches to tackle these challenges and allow the solution of such large-scale
Bayesian inverse problems. This will be the focus of Chapter 4.

(a) (b)

Figure 2.3: Set estimation in a generic gravimetric inverse problem (continuation of
Fig. 2.2): (c) high density regions and (d) low density regions. Thresholds and color
scales were chosen arbitrarily.

On top of the aforementioned characteristics, gravimetric inverse problems also
provide a natural setting to demonstrate UQ and set estimation techniques in
Bayesian inverse problems. Indeed, estimating excursion- and sojourn-sets, that
is high- and low-density regions within the volcano is of interest for understand-
ing the history and evolution of the volcano, these regions being typically linked to
geological features of interest.

2.4.2 River Plume Mapping

The second applicative example considered in this thesis is that of mapping a river
plume from observations of the temperature and salinity field inside a fjord. When a
river enters a fjord, the mixing of river and ocean water does not happened straight
away, and the inflow of cold freshwater creates a strong gradient in both temperature
and salinity, forming a frontal region called river plume (see Fig. 2.4b).

River plumes host a range of complex bio-geophysical interactions, driven by
an agglomeration of physical forcings (e.g. wind, topography, bathymetry, tidal
influences, etc.) and incipient micro-biology driven by planktonic and coastal an-
thropogenic input, such as pollution and agricultural runoff transported into the
ocean by the river. These interactions can result in a range of ecosystem-related
phenomena such as blooms and plumes, with direct and indirect effects on society
(Ryan et al., 2017), making river plumes a prototypical example of regions where
the intermingling and climate change and anthropogenic impact can be studied and
monitored.

This river plume mapping problem can be seen as a kind of inverse problem and
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river plume

AUV

buoybuoy

remote sensing

ship
onshore
assets

(a) Illustration of a range of ocean sensing
opportunities.

(b) Frontal patterns off of the Nidelva river,
Trondheim, Norway.

Figure 2.4: River plume mapping problem (Nidelva river). River-ocean interactions
dynamically affect shape of rive plume (2.4b), calling for autonomous real-time
mapping strategies (2.4a).

set estimation problem. Indeed, denoting by

ρ(1), ρ(2) : D → R

the temperature and salinity field inside the fjord, then the river plume can be
characterized as the region (sojourn set) of low temperature and salinity, or as the
complement of the excursion set:

Γ∗ := {x ∈ D : ρ(1)
x ≥ T1, ρ

(2)
x ≥ T2},

where T1, T2 denote temperature and salinity thresholds. Note that we here chose
to formulate the problem as an estimation of the excursion (ocean) rather than the
sojourn (river) set, due to the fact that the techniques presented next are tailored
for excursion sets (though they can in principle be extended to sojourn sets). The
goal is then to estimate the region Γ∗ from partial observations of the multivari-
ate temperature-salinity field. Owing to these features, we will use this application
to demonstrate multivariate extensions to traditional Bayesian inversion techniques.

Moreover, river-ocean interactions depend on variations in river discharge, tidal
effects, coastal current and wind, leading to frequent distortions of the river plume
boundary. This undermines any static mapping attempt and calls for dynamic and
adaptive mapping strategies. In a Bayesian framework, this makes river plume
estimation a natural testbed for multivariate extensions to sequential uncertainty
reduction strategies, which we will develop in Chapter 6. In practice, the mapping
strategies will be executed by an autonomous underwater vehicle (AUV) equipped
with temperature and salinity sensors.
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Chapter 3

Sequential Bayesian Inversion and
Disintegrations of Gaussian
Measures

This chapter reproduces the paper Travelletti and Ginsbourger (2022), co-authored
with David Ginsbourger and submitted to the Electronic Journal of Statistics
(DOI:10.48550/ARXIV.2207.13581).

3.1 Background

As explained in Section 2.2, Gaussian processes are able to assimilate pointwise ob-
servations and can also handle discretized operator observations. Recently however,
the advent of indirect, functional data (tomographic data, derivative data (Solak
et al., 2003; Ribaud, 2018)) that do not boil down to simple pointwise evaluations of
the original latent function has sparked interest in extending GPs to different types
of observations, such as integral observations (Hendriks et al., 2018; Jidling et al.,
2019) or linear constraints (Jidling et al., 2017; Agrell, 2019). In this chapter, we
aim at providing theoretical foundations to those approaches, focusing particularly
on the question of what types of operator data can be assimilated using GPs and
trying to provide a framework for sequential assimilation of operator data. To that
end, we will formulate the assimilation process using the language of disintegrations
of Gaussian measures. This will also allow us, in passing, to clarify some relations
between Gaussian processes and Gaussian measures; which we hope will open new
research venues at the intersection of Gaussian measures theory and Bayesian as-
similation/inversion.

3.2 Introduction

Broadly speaking, all the methods for linear operator data assimilation with GPs
aim at learning ρ from linear form data `i(ρ), where ` → R (i = 1, . . . , q) are
linear functionals on some Banach space F of functions on D. Just like under
pointwise observations, working out conditional distributions boils down to applying
conditioning formulae to finite-dimensional vectors, in that case to vectors of the
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form (Zx, Zx′ , `1(Z), . . . , `q(Z)) (x, x′ ∈ D).
Compared to the basic case of pointwise observations, however, ensuring that the

usual way of deriving conditional distributions does actually work under linear form
data requires a bit of care. The usual approach in practice is to silently assume that
the considered functionals of Z can be expressed as limits of linear combinations
of pointwise field evaluations, so that everything will work as intended. In several
cases, this condition might not be straightforward to verify, and things can get even
worse when one considers observations described by linear operators between Banach
spaces G : F → Y, thus raising the question of what kind of operator data can be
assimilated, or more precisely, of which properties an operator G needs to satisfy in
order for the conditional law to be well-defined. While this question can be tricky
to answer using the traditional Gaussian process framework, modern probability
theory in Banach spaces offers a rigorous, generic approach to conditioning under
linear operator using the language of disintegrations of measures, as we will clarify
next.

Beyond establishing solid mathematical foundations for conditioning on linear
operator data, another problem that has received much attention lately in the GP
literature is that of efficiently performing sequential data assimilation (Attia et al.,
2018; Huber, 2014; Solin et al., 2015). In such a framework, new data become avail-
able sequentially and predictions have to be recomputed along the way to incorporate
the new information. To alleviate the computational burden associated to sequen-
tial learning, various updating scheme have been developed (Chevalier et al., 2014b;
Emery, 2009; Gao et al., 1996; Barnes and Watson, 1992) which aim at expressing
the contribution of the new data as an update to the current posterior.

In the present work, we focus on the intersection of the two aforementioned
topics, that is, we concentrate on sequential assimilation of linear operator data.
Our aim is to provide an abstract mathematical foundation for the above setting
by formulating it in the language of disintegrations and to derive update formulae
for disintegrations. In passing, we clarify the link between the traditional Gaussian
process framework and the Gaussian measure language.

In this chapter, we will start by reviewing results from Rajput and Cambanis
(1972) in order to prove equivalence of the Gaussian process and Gaussian measure
approaches in various cases. We will also connect this with recent results on sample
path properties of GP (Steinwart, 2019) to characterize situations under which GPs
induce a Gaussian measure on some suitable space of functions.

We will then turn to disintegrations of Gaussian measures (Tarieladze and Vakha-
nia, 2007), which we will extend to the non-centered and sequential case, thereby
providing an extension of the usual kriging update formulae (Chevalier et al., 2014b)
to disintegrations.

Those results offer prospects for theoretical inquiries in Bayesian optimization
(Bect et al., 2019) as well as more applied uses, such as the formulation of discretization-
independent algorithms in Bayesian inversion (Cotter et al., 2013). We also hope
that our efforts to shed light on the Gaussian process - Gaussian measure equivalence
will help bring benefits of the abstract language of disintegrations to the applied GP
community. In Chapter 4 the results of the present chapter will be used to provide
rigorous theoretical foundations to an implicit updating scheme for large covariance
matrices.

Example. For the rest of this work, we will consider the task of learning an unknown
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function ρ living in a separable Banach space F from data of the form yi = Gi(ρ), i =
1, . . . , q, where

Gi : F→ Y,

are bounded linear operators into a separable Banach space Y, we will call the Gi

the observation operators. As a simple example of a problem falling into this setting,
consider the task of learning a continuous function defined on the interval [−1, 1] via
different types of data: pointwise function values, integrals of the function, Fourier
coefficients, etc. Figure 3.1 provides an illustration of solutions obtained under a
Gaussian process prior. Note that the three different combinations of observations
in Figure 3.1 can each be described by a linear operator G : C ([−1, 1])→ Rq

(a) prior (b) pointwise

(c) pointwise + integral (d) pointwise + integral + Fourier

Figure 3.1: Conditional mean (blue) and 2σ credible intervals after inclusion of
different types of data: (a) realizations independently sampled from the prior GP, (b)
prediction based on pointwise data at 3 locations, (c) prediction based on pointwise
data + integral over domain, (d) prediction based on pointwise data + integral over
domain + first two Fourier coefficients. The true unknown function is shown in
dashed black.

Note that this example can already serve to illustrate the theoretical difficulties
associated with the conditional law under linear operator observations. Consider for
example derivative observations of the form y = ρ′(x0), x0 ∈ D. The usual proce-
dure when working with derivatives of GPs is to assume mean square differentiability
of the process. But even then, results on the link between mean square differentia-
bility of the process and almost sure differentiability of the paths (Cambanis, 1973;
Scheuerer, 2010) require additional assumptions to ensure path differentiability, and
in general the observation operator is not guaranteed to be bounded.
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3.3 Gaussian Process-Measure Equivalence

As briefly explained in Section 2.2.3, when working with Gaussian priors over spaces
of functions defined over an arbitrary domain D, two complementary approaches are
often used: Gaussian processes and Gaussian measures. The goal of this section is
to provide conditions under which the two approaches are equivalent.

When considering Gaussian processes with continuous trajectories over a com-
pact metric space D, the Gaussian process and Gaussian measure points of view
are known to be equivalent, with F being the Banach space of continuous functions
C(D) equipped with the sup norm. Indeed, one can show that a Gaussian measure
on C(D) defines an equivalent Gaussian process on D with continuous trajectories,
and vice-versa. This allows one to work with Gaussian measures and Gaussian pro-
cesses interchangeably on this Banach space. The equivalence is ensured by the
following two theorems, which are multidimensional analogues of the one presented
in Rajput and Cambanis (1972).

We first show that a Gaussian process onD with continuous sample paths induces
a Gaussian measure on C(D). Indeed, given such a Gaussian process Z, one may
try to induce a measure on C(D) by setting µZ := P◦Φ−1, where Φ(ω) := Z (·;ω) ∈
C(D). The next theorem guarantees that this indeed defines a Gaussian measure.
This result is well known in the Gaussian measure literature (see e.g. Bogachev
(1998)) and we provide a proof in the appendix for the sake of completeness.

Theorem 3. Let (Ω,F ,P;Z(ω, x), x ∈ D) be a Gaussian process on a compact met-
ric space D with continuous sample paths. Then the induced measure

µZ := P ◦ Φ−1

is well-defined (as a Borel measure) and Gaussian.

On the other hand, given a Gaussian measure µ on C(D), the following theorem
ensures that µ induces indeed a Gaussian process.

Theorem 4. Let µ be a Gaussian measure on C(D), for a compact metric space D.
Then, letting Ω = C(D) and F be the Borel sigma algebra on C(D), the collection
of random variables

Zx : (Ω,F , µ)→ (R,B (R)) , ω 7→ δx (ω)

for all x ∈ D defines a Gaussian process with paths in C(D) which induces µ on
C(D).

Under this correspondence, the mean and covariance functions of the process
may be obtained as special cases of the mean element and covariance operator of
the corresponding measure by acting on them with pointwise evaluation function-
als (which in this case belong to the continuous dual of the Banach space under
consideration):

Lemma 1. Let Z be a Gaussian process on a compact metric space D with contin-
uous trajectories, and let µ be the corresponding induced measure on C(D). Then
the covariance operator and mean element of the measure are related to the mean
and covariance function of the process via

mx = E [Zx] = 〈mµ, δx〉, (3.1)

k(x, x′) = E [ZxZx′ ]− E [Zx] E [Zx′ ] = 〈Cµδx′ , δx〉, (3.2)
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for all x, x′ ∈ D.

These considerations allow us to work interchangeably with the two points of views.
While in many practical circumstances the GP point of view is sufficient, Gaussian
measures can be leveraged to provide rigorous updating of GPs under linear operator
observations, as we will show in Section 3.4.

Remark 1. The correspondence between Gaussian processes and measures is not
limited to the Banach space C(D) of continuous functions over a compact metric
space. Indeed Rajput and Cambanis (1972) also prove correspondence for Lp spaces
and spaces of absolutely continuous functions. However, the proofs are done on a
case by case basis.

Even if the Banach space C(D) of continuous functions on a compact domain
provides a basic setting for the Gaussian process - Gaussian measure equivalence, it
often proves insufficient when one wants to use this correspondence to tackle con-
ditioning under linear operator observations. For example, the differential operator
d/dx is not even a well-defined operator on C(D). For such operators, the natural
domains to consider are Sobolev spaces. This shows that, in the Gaussian measure
framework, when one wants to assimilate observations that are “finer” than simple
pointwise evaluations, one has to go beyond the Banach space C(D). This is what
we will do in the following section by considering reproducing kernel Hilbert spaces.

The Reproducing Kernel Hilbert Space Case: The proofs of the process-
measure equivalence theorems Theorems 3 and 4 in the Banach space of continuous
functions over a compact domain rely on having a characterization of the dual space
of the Banach space under consideration, and on being able to approximate elements
of the dual via pointwise evaluations. Indeed, Gaussian measures on a Banach
space are characterized by the Gaussianity of their linear functionals, whereas GPs
are characterized by the Gaussianity of finite collections of pointwise evaluations,
making the link between linear functionals and pointwise evaluations a crucial one
in the correspondence.

The natural class of spaces where such a link exists is that of reproducing kernel
Hilbert spaces (RKHS) (Aronszajn, 1950; Schwartz, 1964; Berlinet and Thomas-
Agnan, 2004; Kanagawa et al., 2018). Indeed, one of the defining properties of RKHS
is that their (continuous) dual contain the evaluation functionals, so that one can
directly adapt the process-measure correspondence theorems. Note that the product
measurability is still guaranteed by Theorem 12 since RKHS of functions over a
compact metric space are contained in the Banach space of continuous functions
provided that the reproducing kernel is continuous.

Theorem 5. Let (Ω,F ,P;Z(ω, x), x ∈ D) be a Gaussian process with trajectories in
a separable RKHS H of functions over a compact metric space D. Then the induced
measure

µZ := P ◦ Φ−1

is well-defined (as a Borel measure) and Gaussian.
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Theorem 6. Let µ be a Gaussian measure on a separable RKHS H of functions
over a compact metric space D. Then, letting Ω = H and F be the Borel sigma
algebra on H, the collection of random variables

Zx : (Ω,F , µ)→ (R,B (R)) , ω 7→ δx (ω)

for all x ∈ D is a Gaussian process with paths in H which induces µ on H.

The question whether GP sample paths lie in an RKHS has been widely studied
in the literature (Steinwart and Scovel, 2012; Steinwart, 2019). One of the most
well-known results in this domain is a negative one, namely that for a GP with
continuous covariance kernel and almost-sure sample paths, the probability that
the trajectories lie within the RKHS associated to the kernel of the process is zero
(Driscoll, 1973; Lukić and Beder, 2001). Recent works have aimed at finding “larger”
RKHS that contain the paths of the process. It turns out that for a broad class of
GPs, one can find an “interpolating” RKHS lying between the RKHS of the kernel
of the process and L2(ν) (for some measure ν) that contains the sample paths almost
surely (Steinwart, 2019, Corollary 5.3).

We here only consider kernels that are bounded on the diagonal: k(x, x) <
∞, for all x ∈ D (as is the case for all the usual kernels). Then, Steinwart and
Scovel (2012, Lemma 5.1, Theorem 5.3) guarantees that the conditions required for
the sample paths to be contained in powers of the base RKHS hold. Under these
conditions, there are results that guarantee the existence of an RKHS containing the
trajectories of the process with probability 1. The RKHS depends on the eigenvalues
of the operator

Tk(f) :=

∫
D

k(·, x)f(x)dν(x), f ∈ L2(ν),

where ν is any finite Borel measure supported on D. The embedding RKHS is then
constructed as a power Hθ

k of the RKHS Hk of the kernel (Kanagawa et al., 2018,
Definition 4.12).

Theorem 7. [Kanagawa et al. (2018, Theorem 4.12), Steinwart (2019, Theorem
5.2)] Let Z be a Gaussian process over a compact domain D ⊂ Rd with covariance
kernel k. Let also (λi, φi)i∈N be the eigensystem of the operator Tk. Then, provided∑

i∈N λ
1−θ
i < ∞, there exists a version of Z whose sample paths lie in Hθ

k with
probability 1.

In particular, for GPs with Gaussian kernels or Matérn kernels and sufficiently
regular D, one can always find an RKHS that contains the sample paths of the GP
with probability 1, as the following results from Kanagawa et al. (2018) guarantee:

Corollary 1 (Squared Exponential Random Fields, Kanagawa et al. (2018)). If Z
is a Gaussian random field with squared exponential kernel k over a compact domain
D ⊂ Rd with Lipschitz boundary, then for any 0 < θ < 1 there exists a version of Z
that lies in Hθ

k with probability 1.

Corollary 2 (Matérn Random Fields and Sobolev Spaces, Kanagawa et al. (2018)).
When Z is a Mátern Gaussian random field with Matérn kernel kMat

α,λ of order α and

lengthscale λ over a domain D ⊂ Rd with Lipschitz boundary, then (Kanagawa et al.,

34 Chapter 3 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

2018, Corollary 4.15) guarantees that there exists a version of Z that lies in HkMat
α′,λ′

with probability 1 for all α′, λ′ > 0 satisfying α > α′ + d/2, provided that D satisfies
an interior cone condition (see (Kanagawa et al., 2018, Definition 4.14)).

Wrapping everything together, we can formulate a sufficient condition for a Gaus-
sian process to induce a Gaussian measure on its space of trajectories:

Corollary 3. Let (Ω,F ,P;Z(ω, x), x ∈ D) be a Gaussian process on a compact
metric space D with covariance kernel k that is continuous and bounded on the
diagonal. Then there exists 0 < θ ≤ 1 such that Z induces a Gaussian measure on
Hθ
k.

Remark 2. Note that the construction of the power of a RKHS depends on the
choice of the measure ν. This is not a significant handicap since the goal of Corol-
lary 3 is to show that under given conditions on a GP one can always induce a
measure from it. Nevertheless, recent results (Karvonen, 2021) provide construc-
tions of RKHS containing the sample paths that do not depend on a given measure
and are “smaller” than constructions involving powers of RKHS. These construc-
tions are mostly useful in providing more fine-grained descriptions of sample path
properties for infinitely smooth kernels (Karvonen, 2021, Chapter 2). We refer the
interested reader to the aforementioned literature for more details.

Remark 3. In practice, when working with derivative-type observations, it is often
preferable to have simple conditions on the covariance kernel that enforce the paths
to live in some Sobolev space that makes the observation operator under consider-
ation a bounded one. Useful results to that end can be found in (Scheuerer, 2010).
In particular, it is shown that continuity on the diagonal of the generalized mixed
derivatives of the covariance kernel up to order k ensures that the sample paths
lie in the local Sobolev space W k,2

loc (D) of order k almost-surely (Scheuerer, 2010,
Theorem 1).

3.4 Disintegration of Gaussian Measures under

Operator Observations

Now that we have discussed the equivalence of the process and the measure ap-
proaches, we consider the posterior in the Gaussian measure formulation of condi-
tioning. In this setting, conditional laws are defined using the language of disinte-
grations of measures. The treatment presented here will follow that in Tarieladze
and Vakhania (2007) and extend some of the theorems therein.

In the following, we will let F be a separable Banach space of functions over
an arbitrary domain D such that the measure-processes correspondence introduced
in Section 3.3 holds, and use µ to denote a Gaussian measure on F and Z for a
corresponding associated Gaussian process on D. Again G : F → Y will denote a
bounded linear operator.

Definition 9. Given measurable spaces (F,A) and (Y, C), a probability measure µ
on F and a measurable mapping G : F→ Y, a disintegration of µ with respect to G
is a mapping µ̃ : A× Y→ [0, 1] satisfying the following properties:
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1. (measurability) For each y ∈ Y the set function µ̃(·, y) is a probability
measure on F and for each A ∈ A the function µ̃(A, ·) is C-measurable.

2. (concentration on the fiber) There exists Y0 ∈ C with µ ◦ G−1 (Y0) = 1
such that for all y ∈ Y0 we have {y} ∈ C and for each y ∈ Y0, the probability
measure µ̃(·, y) is concentrated on the fiber G−1 ({y}) that is:

µ̃
(
G−1 ({y}) , y

)
= 1.

3. (mixing) The measure µmay be written as a mixture of the family (µ̃(·, y))y∈Y

with respect to the mixing measure µ ◦G−1:

µ (A) =

∫
Y
µ̃ (A, y) d

(
µ ◦G−1

)
(y) , ∀A ∈ A.

We will use the notation µ|G=y (·) := µ̃ (·, y) for the disintegrating measure.

The computation of the posterior, in the Gaussian measure formulation, then
amounts to computing a disintegration of the prior with respect to the observa-
tion operator. The existence of the disintegration is guaranteed by Theorem 3.11
in Tarieladze and Vakhania (2007), which we will here generalize to non-centered
measures. Explicit formulae for the posterior mean and covariance can be obtained
through the use of representing sequences, which we quickly introduce before pre-
senting the disintegration theorem.

Definition 10 (Tarieladze and Vakhania (2007)). Given a Banach space F and a
symmetric positive operator R : F∗ → F, a family (f ∗i )i∈I of elements of F∗ is called
R-representing if the following two conditions hold:

• R-orthogonality: 〈Rf ∗i , f ∗j 〉 = δij,

• spanning property:
∑

i∈I〈Rf ∗i , f ∗〉2 = 〈Rf ∗, f ∗〉, ∀f ∗ ∈ F∗.

Theorem 8. Let F, Y be real separable Banach spaces and µ be a Gaussian measure
on the Borel σ-algebra B (F) with mean element mµ ∈ F and covariance operator
Cµ : F∗ → F. Let also G : F→ Y be a bounded linear operator. Then, provided that
the operator Cν := GCµG

∗ : Y∗ → Y has finite rank q, there exists a continuous affine
map m̃µ : Y → F, a symmetric positive operator C̃µ : F∗ → F and a disintegration(
µ|G=y

)
y∈Y

of µ with respect to G such that for each y ∈ Y the measure µ|G=y is

Gaussian with mean element m̃µ(y) and covariance operator C̃µ. Furthermore, for
any Cν-representing sequence y∗i , i = 1, ..., q, these mean and covariance are equal
to

m̃µ(y) = mµ +

q∑
i=1

〈y −Gmµ, y
∗
i 〉CµG∗y∗i (3.3)

C̃µ = Cµ −
q∑
i=1

〈CµG∗y∗i , ·〉CµG∗y∗i . (3.4)

The mean element also satisfies Gm̃µ(y) = y for all y ∈ Y0 := Gmµ + Cν(Y∗).
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For further developments, it will be useful to introduce the pushforward measure
ν := G]µ, which is a Gaussian measure on Y with mean element Gmµ and covariance
operator Cν .

Remark 4. In the case where F is a finite-dimensional Hilbert space of dimen-
sion q, one can explicitly compute an R-representing sequence by defining f ∗i :=
R−1/2ei, i = 1, ..., q where ei, i = 1, ..., q is an orthonormal basis of F (see Section 3.7
for a proof). This fact will be used to link the posterior provided by Theorem 8 to
the usual formulae for Gaussian processes in the case of finite-dimensional data.

Using Lemma 1 we can translate the disintegration provided by Theorem 8 to the
language of Gaussian processes in the case where F is the Banach space C(D) of
continuous functions over a compact metric space D:

Corollary 4. Let Z be a Gaussian process on some domain D with trajectories
in a space F such that either of the equivalence theorems Theorem 3 or Theorem 5
hold. Furthermore, let G : F→ Y be a linear bounded operator into a real separable
Banach space Y. Denote by Cµ the covariance operator of the measure associated to
the process Z. Provided the operator Cν := GCµG

∗ has finite rank q, then, for all
y ∈ Y the conditional law of Z given GZ = y is Gaussian with mean and covariance
function given by, for all x, x′ ∈ D:

m̃x(y) = 〈m̃µ(y), δx〉 = mx +

q∑
i=1

〈y −Gm·, y
∗
i 〉(CµG∗y∗i )|x,

k̃(x, x′) = 〈C̃µδx′ , δx〉 = k(x, x′)−
q∑
i=1

(CµG
∗y∗i )|x′ (CµG

∗y∗i )|x,

where mx denotes the mean function of Z and Gm· denotes application of the op-
erator G to the mean function seen as an element of F and (y∗i )ı=1,...,q is any Cν-
representing sequence.

Link to Finite-Dimensional Case: When G maps into a finite-dimensional
Euclidean space and F = C(D) for some compact metric space D, then one can
explicitly compute representing sequences and duality pairings, allowing the con-
ditional mean and covariance in Corollary 4 to be entirely written in terms of the
prior mean and covariance function of the process, making the link to the Gaussian
process conditioning formulae as found for example in Tarantola and Valette (1982).
Indeed, since the dual of C(D) is the space of Radon measures on D, any bounded
linear operator G : C(D)→ Rq may be written as a collection of integral operators
GZ =

(∫
D
Zxdλi (x)

)
i=1,...,q

where the λi’s are Radon measures on D. This special

form allows us to compute closed-from expressions for the conditional mean and
covariance.

Corollary 5. Consider the situation of Corollary 4 and let G : F → Rq. Then the
conditional law of Z given GZ = y is Gaussian with mean and covariance function
given by, for all x, x′ ∈ D:

m̃x(y) = mx −KxGK
−1
GG (y −Gm·) , (3.5)

k̃(x, x′) = k(x, x′)−KxGK
−1
GGK

T
x′G (3.6)
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where we have defined the following vectors and matrices:

KxG : = (Gik (·, x))Ti=1,...,q ∈ R1×q, (3.7)

KGG : = (Gi (Gjk (·, ·)))i,j=1,...,q ∈ Rq×q, (3.8)

where k (·, ·) denotes the covariance function of Z. This corollary provides a
Gaussian measure-based justification to previously used formulae (Särkkä, 2011;
Jidling et al., 2018; Purisha et al., 2019; Longi et al., 2020).

The above corollary provides rigorous formulae for the conditional law under
linear operator observations when the GP has trajectories that lie either in C(D) or
in some RKHS.

Sequential Disintegrations and Update: We now turn to the situation
where several stages of conditioning are performed sequentially. Let again F be a
real separable Banach space and consider two bounded linear operators G1 : F→ Y1

and G2 : F → Y2, where Y1 and Y2 are also real separable Banach spaces. Then, if
one views these operators as defining two stages of observations, there are two ways
in which one can compute the posterior.

• On the one hand, one can compute it in two steps by first computing the
disintegration of µ under G1 and then, for each y1 ∈ Y1, compute the disin-
tegration of µ|G1=y1 under G2.

• On the other hand, one can compute it in one go by considering the disin-
tegration of µ with respect to the bundled operator G : F → Y1

⊕
Y2, f 7→

(G1 (f) , G2 (f)). From now on, we will denote this operator by G1 ⊕G2.

We show that these two approaches yield the same disintegration, as guaranteed by
the following theorem.

Theorem 9. Let F,Y1,Y2 be real separable Banach spaces, µ be a Gaussian measure
on B (F) with mean element mµ and covariance operator Cµ : F∗ → F. Also let
G1 : F → Y1 and G2 : F → Y2 be bounded linear operators. Suppose that both the
operators G1CµG

∗
1 and G2CµG

∗
2 have finite rank q1 and q2, respectively. Then

µ|(G1,G2)=(y1,y2) =
(
µ|G1=y1

)
|G2=y2

,

where the equality holds for almost all (y1, y2) ∈ Y1

⊕
Y2 with respect to the push-

forward measure (G1 ⊕G2)]µ on Y1

⊕
Y2.

This theorem can be viewed as a measure-theoretic counterpart to the update
formulae for GPs. Since both disintegrating measures are equal, it follows that their
moments are equal too, we can thus characterize sequential disintegration in terms
of mean element and covariance operator. Indeed, for the special case of GPs with
trajectories in the Banach space of continuous functions on a compact domain with
finite-dimensional data, we can provide explicit update formulate, this yields, using
Corollary 5:
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Corollary 6. Let Z be a Gaussian process on a compact metric space D with contin-
uous trajectories. Consider two observation operators G1 : C(D)→ Rq1 , (G1Z)i =∫
D
Zxdλ

(1)
i and G2 : C(D) → Rq2 , (G2Z)i =

∫
D
Zxdλ

(2)
i . Denote by m· and k (·, ·)

the mean and covariance function of Z. Then, for any y = (y1, y2) ∈ Rq1+q2 and any
x, x′ ∈ D, we have:

m̃x(y) = mx +KxG1K
−1
G1G1

(y1 −G1m·) +KxG2

Ä
K̃

(1)
G2G2

ä−1 Ä
y2 −G2m̃

(1)
·

ä
,

k̃(x, x′) = k(x, x′)−KxG1K
−1
G1G1

KT
x′G1
− K̃(1)

xG2

Ä
K̃

(1)
G2G2

ä−1 Ä
K̃

(1)
x′G2

äT
,

where G := (G1, G2) and m̃(1) denotes the conditional mean of Z given G1Z = y1 as

given by Corollary 5. Also K̃
(1)
G2G2

and K̃
(1)
xG2

denote the same matrices as in Eqs. (3.7)
and (3.8) with the prior covariance k (·, ·) replaced by the conditional covariance of
Z given G1Z.

Infinite Rank Data: For the sake of completeness, we also consider sequential
conditioning in the presence of ’infinite rank data’. That is, we want to adapt
Theorem 8 and its corollaries, as well as Theorem 9 to the case where Cν := GCµG

∗ :
Y∗ → Y does not have finite rank. Thanks to (Tarieladze and Vakhania, 2007,
Lemma 3.5) we are still able to find a Cν-representing sequence and (Tarieladze and
Vakhania, 2007, Lemma 3.4) guarantees the convergence of the series defining the
covariance operator. The main difference compared to the finite rank case is that
we can only define the disintegration on a full measure subspace of the data:

Theorem 10. Let F, Y, µ, G, ν and Cν be as in Theorem 8 and assume that
Cν has infinite rank. Then there exists a subspace Y0 of Y with ν(Y0) = 1 and
a disintegration

(
µ|G=y

)
y∈Y0

of µ with respect to G such that for each y ∈ Y0 the
measure µ|G=y is Gaussian with mean element and covariance operator:

m̃µ(y) = mµ +
∞∑
i=1

〈y −Gmµ, y
∗
i 〉CµG∗y∗i (3.9)

C̃µ = Cµ −
∞∑
i=1

〈CµG∗y∗i , ·〉CµG∗y∗i , (3.10)

where (y∗i )i∈N is any Cν-representing sequence. Furthermore, the map m̃µ : Y0 → F
is continuous and affine and the mean element satisfies Gm̃µ(y) = y for all y ∈
Y0 := Gmµ + Cν(Y∗).

Concerning the transitivity of disintegrations in the infinite rank data setting,
one sees that Theorem 9 holds with only slight modifications. Indeed, the only
necessary adaptation is that one should restrict the joint disintegration to the direct
sum of the subspaces where the individual disintegrations are defined, but since
those are of full measure, the conclusion of the theorem still holds.

Theorem 11. Let F,Y1,Y2 be real separable Banach spaces, µ be a Gaussian measure
on B (X) with mean element mµ and covariance operator Cµ : F∗ → F. Also let
G1 : F → Y1 and G2 : F → Y2 be bounded linear operators. Then there exists a
subspace Y0 := (Y(1)

0 ,Y(2)
0 ) ⊂ Y such that ν(Y0) = 1 and for all (y1, y2) ∈ (Y(0)

1 ,Y(0)
2 )

we have:
µ|(G1,G2)=(y1,y2) =

(
µ|G1=y1

)
|G2=y2

.
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This theorem provides a rigorous basis for Gaussian process update in the case
of infinite rank data. We stress that assimilation of such data can be theoretically
challenging when using the standard Gaussian process framework, which relies on
linear combinations of pointwise field evaluations to define conditional laws. We be-
lieve the above showcases the convenience of the measure-disintegration framework
and how it can handle such type of data more naturally. We hope this can serve as
a basis for further contributions.

As a final byproduct, one can write update formulae for sequential condition-
ing (disintegration) of Gaussian measures in terms of their moments. Denoting by

m
(1)
µ (y1) and C

(1)
µ the mean element and covariance operator of the disintegrating

measure µ|G1=y1 and by m
(1⊕2)
µ (y1, y2), respectively C

(1⊕2)
µ those of the disintegration

measure µ|(G1,G2)=(y1,y2) one obtains the following corollary.

Corollary 7. Consider the same setting as Theorem 11 and let (y
∗(2)
i )i=1,...,p2 be any

G2C
(1)
µ G∗2-representing sequence. Then the mean element and covariance operator

of the disintegrating measure µ|(G1,G2)=(y1,y2) can be written in terms of the moments
of the intermediate disintegrating measure µ|G1=y1 as:

m(1⊕2)
µ (y1, y2) = m(1)

µ (y1) +
∞∑
i=1

¨
y2 −G2m

(1)
µ (y1) , y

(2)∗
i

∂
C(1)
µ G∗2y

(2)∗
i

C(1⊕2)
µ = C(1)

µ −
∞∑
i=1

¨
C(1)
µ G∗2y

(2)∗
i , ·

∂
C(1)
µ G∗2y

(2)∗
i ,

where the equalities hold for almost all (y1, y2) ∈ Y1

⊕
Y2 with respect to µ◦(G1, G2)−1.

Note that this corollary provides an extension to Gaussian measures and operator
observations of the well-known kriging update formulae (Chevalier et al., 2014b) and
can be viewed as subsuming various Gaussian conditioning update formulae under
a rigorous and abstract theoretical framework.

Example (continued). We now come back to the example from the introduction to
demonstrate the machinery developed in the two preceding sections. Assume that
we want to add derivative observation at x = 0.
First, in order to apply the disintegration theorems, we need to make sure that
the observation operator under consideration is a bounded operator on a Banach
space in which the path of the prior lie with probability one. In this example, the
prior that was used was a Matérn 5/2 GP with lengthscale parameter λ = 0.4.
According to Corollary 2, the path of the prior almost surely lie in the Sobolev
space H2([−1, 1]), so taking F = H2([−1, 1]) ensures that the observation operators
are bounded (integral and Fourier observations are bounded since the domain is
compact and the paths continuous).

Now, H2([−1, 1]) is a RKHS and thus by Theorem 5 the Gaussian measure - Gaussian
process correspondence is applicable. Furthermore, the 7 observations (3 pointwise
+ 1 integral + 2 Fourier + 1 derivative) considered can be described by a bounded
operator between separable Banach spaces G : H2([−1, 1]) → R7, so that the dis-
integration framework from Section 3.4 can be used. Finally, using the updated
formulae (Corollary 7) one can express the posterior mean and covariance after in-
clusion of the derivative observation as an update of the one after assimilation of
the previous observations:
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(a) pointwise + integral + Fourier + derivative

Figure 3.2: Continuation of the introductory example with addition of derivative
observation at x = 0.

m̃(7)
x1

(y7) = m̃(6)
x1

(y1, ..., y6)

+
d

dx′
k̃(6)(x1, x

′)|x′=0

Å
d

dx

d

dx′
k̃(6)(x, x′)|x,x′=0

ã−1

(y7 −
d

dx
m̃(6)
x (y1, ..., y6)|x=0)

k̃(7)(x1, x2) = k̃(6)(x, x)− d

dx
k̃(6)(x1, x)|x=0

Å
d

dx

d

dx′
k̃(6)(x, x′)|x,x′=0

ã−1 d

dx
k̃(6)(x, x2)|x=0

where m̃
(6)
x1 (y1, ..., y6) and k̃(6)(x1, x2) denote the mean and covariance function af-

ter inclusion of the first 6 observations. Note that the correspondence between the
mean element and covariance operator of the induced measure and the mean and
covariance function of the process (Lemma 1) can be used since the pointwise eval-
uation functionals belong to the dual of H2([−1, 1]). This example demonstrates
how the Gaussian measure framework can be used to provide a thorough theoretical
grounding to previously known techniques (Solak et al., 2003; Ribaud, 2018; Agrell,
2019).

3.5 Conclusion

By bridging recent results about GP sample path properties with the framework of
Gaussian measures, we provide a formulation of sequential data assimilation of linear
operator data under Gaussian models in the language of disintegrations of measures.
We show equivalence of the Gaussian process and Gaussian measure approaches and
generalize the GP update formulae to disintegrations. While providing a purely
functional formulation of the assimilation process, the framework of disintegrations
also allows for a more rigorous abstract treatment of the conditional law. This
can be leveraged to provide fast update formulae for GP under linear operator
observations (Travelletti et al., 2023) and we hope it can serve as foundations for
further theoretical inquiries and practical developments in probabilistic function
modelling.
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3.6 Appendix A: Proofs of Equivalence of Gaus-

sian Process and Gaussian measure

We here briefly recall the theorems and definitions needed to prove our main results,
and present the proofs. For the functional analysis background, we refer the reader
to Folland (2013) and to Tarieladze and Vakhania (2007); Vakhania et al. (1987) for
the background about Gaussian measures. The theorems for equivalence between
Gaussian processes and Gaussian measures are adapted from Rajput and Cambanis
(1972), while the one for conditioning / disintegration of Gaussian measures are
adapted from Tarieladze and Vakhania (2007).

Most of this chapter will be concerned with random variables taking values in
the space of continuous function C(D), where D is a compact metric space. When
endowed with the sup-norm, C(D) turns into a Banach space. This space enjoys
two useful properties:

1. C(D) is separable, and as a consequence, the Borel σ-algebra and the cylin-
drical σ-algebra on C(D) agree.

2. The dual space C(D)∗ is the space of Radon measures on D and (by Riesz-
Markov-Kakutani (Rudin, 1974)) for all ` ∈ C(D)∗ : ∃λ Radon measure on
D such that

∀f ∈ C(D) : `(f) =

∫
fdλ.

In order to prove Theorem 3 and Theorem 4, we first recall a classic approxi-
mation result for continuous real-valued functions on compact metric spaces that
will be useful for proving measurability properties and Gaussianity of the measure
induced by a GP. For reference, see (Folland, 2013, Theorem 2.10).

Lemma 2. Let D be a compact metric space and f : D → R be continuous. Then,
there exists a sequence of simple functions fn converging to f uniformly on D. For
each n, the approximating function can be written as:

fn =

K(n)∑
k=0

f
Ä
t
(n)
k

ä
1
A

(n)
k
, (3.11)

where K(n) ∈ N, t
(n)
k ∈ D and the A

(n)
k ’s are Borel measurable sets for all k.

We now show that, for stochastic processes on compact metric spaces, having con-
tinuous sample paths is enough to ensure product measurability.

Theorem 12. Let (Ω,F ,P;Z(x;ω), x ∈ D) be a stochastic process on a compact
metric space D with continuous sample paths. Then it is measurable as a mapping
(D × Ω, B(D)×F)→ (R, B(R)) (product measurable).

Proof. This is a direct consequence of Gowrisankaran (1972, Theorem 2).

We now have all the ingredients to prove the main theorems about equivalence
of process and measure.

42 Chapter 3 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

Proof. (Theorem 3) By Theorem 12, the only thing left to prove is that for all
` ∈ C(D)∗ the real random variable ` ◦ Φ is Gaussian.
By the Riesz-Markov representation theorem, there exists a Radon measure λ on D
representing `. Now, for each ω ∈ Ω, we use Lemma 2 to get a uniform approxima-
tion Zn(·;ω)→ Z(·;ω) as in Equation (3.11). We then have:

` ◦ Φ(ω) = `
(

lim
n→∞

Zn (·;ω)
)

= lim
n→∞

∫ K(n)∑
k=0

Z
Ä
t
(n)
k ;ω

ä
1
A

(n)
k
dλ

= lim
n→∞

K(n)∑
k=0

Z
Ä
t
(n)
k ;ω

ä
λ
Ä
A

(n)
k

ä
.

Now, as a convergent series of Gaussian random variables, the above is Gaussian
(use characteristic functions and Lévy convergence theorem).

We now turn to the proof of Theorem 4.

Proof. (Theorem 4) Let Ω = C(D) and F be the Borel sigma algebra on C(D) and
define a collection of random variables

Zx : (Ω,F , µ)→ (R,B (R)) , ω 7→ δx (ω)

for all x ∈ D. Since for all x ∈ D, the pointwise evaluation functionals δx belong
to the dual of C(D), we have that Zx is a Gaussian real random variable for all
x ∈ D. Now, for x1, ..., xn ∈ D, any linear combination of the components of the
vector (Zx1 , ..., Zxn) may be written an element of C(D)∗, and will hence be Gaussian
distributed by Gaussianity of the measure. This shows that Z is a Gaussian process
on D.

From Theorems 3 and 4 and a simple change of variable, we have that, if Z is
the process induced by a Gaussian measure µ on C(D), then for any x ∈ D, we have

〈mµ, δx〉 =

∫
C(D)

δx(f)dµ(f) =

∫
Ω

δx(Z(·, ω))dP(ω) = E [Zx] (3.12)

and the same is true if Z is a GP on D with trajectories in C(D) and µ is the
measure induced by the process. This allows us to translate everything from process
to measure and back without needing to worry about the details. Finally, using the
fact that the pointwise evaluation functionals belong to the dual we may also prove
Lemma 1 about the correspondence between mean element and covariance operator
of the induced measure and mean and covariance function of the process.

Proof. (Lemma 1) For x, x′ ∈ D, let:

〈δx, Cµδx′〉 =

∫
C(D)

(f(x′)− 〈mµ, δx′〉) (f(x)− 〈mµ, δx〉) dµ(f)

= E [ZxZx′ ]− E [Zx] E [Zx′ ] .

where the last equality is a consequence of Equation (3.12).
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The extension of Theorem 3 and Theorem 4 to processes and measures on RKHS
is straightforward. Indeed, the measure-to-process correspondence follows directly
from the fact that the evaluation functionals belong to the dual of the RKHS. For
the process-to-measure correspondence, the crucial property is the Gaussianity of
linear functionals of the field, which in a RKHSH is automatically satisfied since any
linear functional can be expressed as an infinite linear combination of reproducing
kernel values, which in turn act as evaluation functionals:

〈`, Z〉 =

〈
∞∑
i=1

aik(xi, ·), Z

〉
H

=
∞∑
i=1

aiZxi ,

which, as a convergent sum of Gaussian random variables, is Gaussian.

3.7 Appendix B: Conditioning, Disintegration and

Link to Finite-Dimensional Formulation

We now turn to the proof of Theorem 8.

Proof. (Theorem 8) To prove the theorem, we have to adapt the proof of Tarieladze
and Vakhania (2007)[Theorem 3.11] to the non-centered case. Compared to the
original theorem, the conditional covariance operator C̃µ hasn’t changed, whereas
the conditional mean m̃µ (y) clearly still defines a continuous mapping satisfying
Gm̃µ (y) = y for all y in the range of Cν . Hence, for all y ∈ Y, we can still use
Tarieladze and Vakhania (2007)[Lemma 3.8] to define µ|G=y as a Gaussian measure

having mean element m̃µ (y) and covariance operator C̃µ. What is left to check is
that it satisfies the conditions in Definition 9 to be a disintegration of µ with respect
to G.

In the following, let y ∈ Y and A ∈ A be arbitrary.

• The measurability of the mapping y 7→ µ|G=y (A) for fixed A holds since,
compared to the centered case, the conditional mean m̃µ (y) is only translated
by an element that does not depend on y.

• Define Y0 := Gmµ + Cν (Y∗). We have µ ◦ G−1 (Y0) = 1 by Tarieladze and
Vakhania (2007)[Lemma 3.3] and Tarieladze and Vakhania (2007)[Corollary
3.7]. Following the exact same reasoning as in the proof of Tarieladze and
Vakhania (2007)[Theorem 3.11] we have that µy (G−1 (y)) = 1.

• By Tarieladze and Vakhania (2007)[Proposition 3.2], the last thing we have
to check is that

µ̂ (g∗) =

∫
Y
µ̂|G=y (g∗) dν (y) , ∀g∗ ∈ F∗,

where µ̂ (·) denotes the characteristic functional of µ (see Tarieladze and
Vakhania (2007)[Section 3.2]. Compared to the original proof, only the mean
element is changed, so for the sake of simplicity we only consider the steps
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of the proof that differ from the original ones.
We have that∫

Y
exp [i 〈m̃µ (y) , g∗〉] dν (y) = exp [i 〈mµ, g

∗〉]

·
∫

Y
exp

[
i

〈
n∑
i=1

〈y −Gmµ, y
∗
i 〉CµG∗y∗i , g∗

〉]
dν (y) ,

which, after a change of variable y 7→ y − Gmµ can be seen to be the char-
acteristic function of a centered Gaussian measure with covariance Cµ by
following the same argument as in the original proof (the same argument is
presented in more detail in the proof of the next theorem).

We can now turn to the proof of our central result Theorem 9 about the transi-
tivity of disintegrations.

Proof. (Theorem 9) Since, by construction, µ|(G1,G2) is a disintegration of µ with
respect to G, by uniqueness of disintegrations (see Remark 3.12 in Tarieladze and
Vakhania (2007)), we only have to prove that the familyÄ(

µ|G1=y1

)
|G2=y2

ä
(y1,y2)∈Y1

⊕
Y2

defines a disintegration of µ with respect to G1⊕G2. First a word of caution: there
exist no canonical norm on the direct sum of Banach spaces. However, there are
several norms on the direct sum that induce the product topology (see, for example,
Exercise 1.30 in Bühler and Salamon (2018)). We here assume that Y1

⊕
Y2 has been

endowed with any of these. Then, the Borel σ-algebra on the direct sum is given
by the product of the Borel σ-algebras of the components (see p.244 of Billingsley
(1999)).

After one step of disintegration, one obtains the (family of) disintegrating mea-
sure µ|G1=y1 which is Gaussian and whose mean element and covariance operator we

denote by m
(1)
µ (y1) and C

(1)
µ . Before proceding further, we introduce the Gaus-

sian measures ν1 := (G1)]µ and ν2,y1 := (G2)](µ|G1=y1) on Y1, respectively Y2.
These measures are Gaussian, with mean element and covariance operator G1µ
and Cν1 = G1CµG

∗
1, respectively G2m

(1)
µ (y1) and Cν2 = G2C

(1)
µ G∗2. Note that the as-

sumptions of the theorem guarantee that Cν2 has finite rank p2, for some p2. Now, by
construction, for any (y1, y2) ∈ Y1

⊕
Y2, the measure

(
µ|G1=y1

)
|G2=y2

is a Gaussian

measure with mean element

m(1,2)
µ : = m(1)

µ (y1) +

q2∑
i=1

¨
y2 −G2m

(1)
µ (y1) , y

(2)∗
i

∂
C(1)
µ G∗2y

(2)∗
i ,

and covariance operator

C(1,2)
µ : = C(1)

µ −
q2∑
i=1

¨
C(1)
µ G∗2y

(2)∗
i , ·

∂
C(1)
µ G∗2y

(2)∗
i ,
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where (y
(2)∗
i )i=1,...,q2 is any Cν2-representing sequence. Since for all y1 ∈ Y1 the

measure µ|G1=y1 is Gaussian, we have by Theorem 8 that
(
µ|G1=y1

)
|G2=y2

is Gaussian.

To ease the notation for the coming proofs, we isolate the update components
stemming from G1, respectively G2 in the conditional covariance, by rewriting it as:

C(1,2)
µ = Cµ −R1 −R2, (3.13)

where C
(1)
µ = Cµ − R1, so that C

(1,2)
µ = C

(1)
µ − R2. We now check that the family

of measures constructed above satisfies the conditions of Definition 9 for it to be a
disintegration of µ with respect to G1⊕G2. We begin by checking the measurability
and concentration on the fiber properties:

• For fixed A, the mapping (y1, y2) 7→
(
µ|G1=y1

)
G2=y2

(A) is an addition of a

B (Y1)-measurable mapping with a B (Y2)-measurable mapping, and, as such,
measurable with respect to the product σ-algebra.

• Let Y := Y1

⊕
Y2 and note that Y∗ = Y∗1

⊕
Y∗2 (dual of direct sum is the

direct sum of the duals). Then define Y0 = Gmµ + GCµG
∗ (Y∗1

⊕
Y∗2). Note

that the Gaussian measure µ ◦G−1 has mean Gmµ and covariance operator
GCµG

∗, hence µ ◦ G−1 (Y0) = 1 by Tarieladze and Vakhania (2007)[Lemma
3.3].

For any (y1, y2) ∈ Y0 we have that the Gaussian measure
(
µ|G1=y1

)
|G2=y2

◦G−1

has covariance operator GC̃
(1,2)
µ G∗. Computing the operator componentwise,

we have that:

G2C̃
(1,2)
µ G∗2 = G2C̃

(1)
µ G∗2 −

q2∑
i=1

¨
C̃(1)
µ G∗2y

(2)∗
i , G∗2

∂
G2C̃

(1)
µ G∗2y

(2)∗
i = 0,

where the last equality follows from Tarieladze and Vakhania (2007)[Lemma

3.4, (c)] since y
(2)∗
i is a G2C̃

(1)
µ G∗2-representing sequence. An analogous com-

putation for the other components shows that they all vanish.

Finally, for the mixing property, we proceed as in the last proof by showing that the
characteristic functional of the original measure can be written as a mixing of the
characteristic functionals of the disintegrating measure, i.e. we show that, for any
g∗ ∈ F∗:

µ̂ (g∗) =

∫
Y1

⊕
Y2

µ̂(1,2)
y1,y2

(g∗) d
Ä
µ ◦ (G1 ⊕G2)−1

ä
(y1, y2), (3.14)

where we use the compact notation µ
(1,2)
y1,y2 :=

(
µ|G1=y1

)
|G2=y2

. Before proceeding any

further, we want to rewrite the integral over the direct sum as a double integral. To
that end, we use the following result.

Lemma 3. For any µ ◦ (G1 ⊕G2)−1-integrable function h : Y1 × Y2 → R, we have:∫
Y1

⊕
Y2

h(y1, y2)d
Ä
µ ◦ (G1 ⊕G2)−1

ä
(y1, y2) =

∫
Y1

∫
Y2

h(y1, y2)dν2,y1(y2)dν1(y1).
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Using the above integration lemma and the general form of the characteristic
function of a Gaussian measure, we can rewrite the right-hand side of Eq. (3.14) as:∫

Y1

∫
Y2

exp

ï
i
¨
m(1,2)
µ (y1, y2), g∗

∂
− 1

2

¨
C(1,2)
µ g∗, g∗

∂ò
dν2,y1(y2)dν1(y1). (3.15)

By factoring the exponential, the covariance term can be taken out of the integral.
The integral over the mean term can then be expanded using the formulae for the
conditional mean and one has to compute:∫

Y1

∫
Y2

exp

[
i

〈
m(1)
µ (y1) +

p2∑
i=1

¨
y2 −G2m

(1)
µ (y1), y

(2)∗
i

∂
C(1)
µ G∗2y

(2)∗
i , g∗

〉]
dν2,y1(y2)dν1(y1)

Now, by considering the transformation T : y2 7→ y2 − G2m
(1)
µ (y1) and noticing

that T]ν2,y1 is a Gaussian measure with mean 0 and covariance Cν2 we can change
variables and obtain:∫

Y1

∫
Y2

exp

[
i

〈
m(1)
µ (y1) +

p2∑
i=1

¨
y2, y

(2)∗
i

∂
C(1)
µ G∗2y

(2)∗
i , g∗

〉]
d(T]ν2,y1)(y2)dν1(y1).

Defining the mapping: M2 : Y2 → F, M2(y2) :=
∑p2

i=1

¨
y2, y

(2)∗
i

∂
C

(1)
µ G∗2y

(2)∗
i , we

can rewrite the above term as:∫
Y1

∫
Y2

exp
î
i
¨
m(1)
µ (y1), g∗

∂
+ i 〈y2,M

∗
2 (g∗)〉

ó
d(T]ν2,y1)(y2)dν1(y1).

The integral over Y2 can be computed as a characteristic function of a Gaussian
measure, yielding:∫

Y1

exp
î
i
¨
m(1)
µ (y1), g∗

∂ó Ä÷T]ν2,y1

ä
(M∗

2 (g∗)) dν1(y1),

and since T]ν2,y1 is a Gaussian measure with mean 0 and covariance operator Cν2 ,
we can compute the characteristic function:Ä÷T]ν2,y1

ä
(M∗

2 (g∗)) = exp

ï
−1

2
〈Cν2M∗

2 (g∗) ,M∗
2 (g∗)〉

ò
= exp

[
−1

2

〈
Cν2

p2∑
i=1

y
(2)∗
i

¨
C(1)
µ G∗2y

(2)∗
i , g∗

∂
,

p2∑
j=1

y
(2)∗
j

¨
C(1)
µ G∗2y

(2)∗
j , g∗

∂〉]
= exp

[
−1

2

p2∑
i=1

¨
C(1)
µ G∗2y

(2)∗
i , g∗

∂2

]
= exp

[
−1

2

p2∑
i=1

〈R2g
∗, g∗〉

]
,

where the penultimate equality follows from the Cν2-orthogonality of the y
(2)∗
i ’s, and

we have used the decomposition of the conditional covariance operator Eq. (3.13).
Coming back to Eq. (3.15), we are left with an integral over Y1:∫

Y1

exp

ï
i
¨
m(1)
µ (y1) , g∗

∂
− 1

2

¨
C(1)
µ g∗, g∗

∂ò
dν1(y1).
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Performing the same calculation as before on the first term of the integral gets rid
of the 〈R1g

∗, g∗〉 part and we are left with:

exp

ï
i 〈mµ, g

∗〉 − 1

2
〈Cµg∗, g∗〉

ò
,

which is the characteristic function of µ. This completes the proof.

Link to Finite Dimensional case When the inversion data is finite-dimensional,
that is the observation operator G maps into Rn and Rn is considered as a Banach
space with respect to the 2-norm. One can then canonically identify Rn with its dual
using the dot product: v 7→ 〈v, ·〉. In the following, when elements of Rn are involved,
the duality bracket 〈·, ·〉 will denote the dot product, also, ei, i = 1, ..., n will be used

to denote the canonical basis of Rn. We now prove that yi := C
−1/2
ν ei, i = 1, ..., n

forms a Cν-representing sequence.

Proof. (Remark 4) First of all, the yi form a Cν-orthonormal family since

〈Cνyi, yj〉 = 〈C1/2
ν yi, C

1/2
ν yj〉 = 〈ei, ej〉 = δij,

where the first equality follows by self-adjointness of Cν . Also remember that
since here we are working over Rn, the duality bracket denotes the dot product
and Rn is identified with its dual. Finally, according to Tarieladze and Vakha-
nia (2007)[Lemma 3.4], the last thing we have to show is that for any v ∈ Rn:
Cνv =

∑n
i=1〈Cνyi, v〉Cνyi. Note that since Cν is a positive self-adjoint operator, the

yi’s form a basis of Rn, and we can thus write v =
∑n

i=1 viyi for some component vi.
Then

n∑
i=1

〈Cνyi, v〉Cνyi =
n∑

i,j=1

〈Cνyi, vjyj〉Cνyi =
n∑
i=1

viCνyi = Cνv

Proof. (Corollary 5) As before, let yi := C
−1/2
ν ei, i = 1, ..., n. In order to get closed-

form formulae for the posterior under such operators, we need to be able to compute
the action of the adjoint G∗. We begin by recalling the definition of the adjoint of
a linear operator T : F→ Y between Banach spaces:

T ∗ :Y∗ → F∗

y∗ 7→ (f 7→ 〈y∗, T f〉) .

Now if we consider a (bounded) linear form Gj : F :→ R, then its adjoint is given
by:

G∗j :R→ F∗

a 7→ (f 7→ a ·Gjf) .

So the adjoint of the observation operator may be written as:

G∗ : Rn → F∗

(a1, ..., an) 7→ (f 7→ a1 ·G1f + ...+ an ·Gnf) .
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There is one last computation that we need to perform before getting the mean
and covariance:¨

CµG
∗y(i), δx

∂
=
¨
Cµδx, G

∗y(i)
∂

= y(i) ·G (Cµδx) = y(i) ·Gk(·, x) = y(i) ·KxG.

Putting everything together we are now able to express the covariance operator:

k̃(x, x′) = k(x, x′)−
n∑
i=1

y(i) ·KxGy
(i) ·Kx′G

= k(x, x′)−
n∑
i=1

KT
xGy

(i)
Ä
y(i)
äT
Kx′G

= k(x, x′)−
n∑
i=1

KT
xGC

−1/2
ν eie

T
i C
−1/2
ν Kx′G

= k(x, x′)−KT
xGK

−1
GGKx′G.

Where we have used the fact that
∑n

i=1 eie
T
i = In and that:

ei ·GCµG∗ej = Gi(Gjk(·, ·)).

Note that this last step requires one to explicitly compute the action of the Gi’s on
the covariance operator Cµ. This can be done in the case where F = C(D) since
the individual components on the observation operator can be written as integrals
with respect to Radon measures Gif =

∫
D
f(x)dλi (x) or in the case where F is a

RKHS, since then the components can be written as infinite linear combinations of
pointwise evaluation functionals Gif =

∑∞
k=1 a

(i)
k f(x

(i)
k ). Computing the action on

the covariance operator in the general case is not trivial. The mean can be obtained
through a similar argument.

Proofs for Infinite Rank Data

Proof. (Theorem 10) As before, compared to the centered case, only the conditional
mean changes. Thanks to (Tarieladze and Vakhania, 2007, Lemma 3.5) we can
still select a countably infinite Cν representing sequence (yi)i∈N. Now define, for all
n ∈ N:

m̃(n)
µ (y) = mµ +

n∑
i=1

〈y −Gmµ, y
∗
i 〉CµG∗y∗i . (3.16)

Furthermore, define the spaces: Y2 := {y ∈ Y : m̃
(n)
µ (y) converges}, and Y3 := {y ∈

Y : limn→∞ ||y −
∑n

i=1 〈y −Gmµ, y
∗
i 〉Cνy∗i || = 0}. We begin by showing that these

subspaces of Y have full measure.

Claim: ν(Y2) = 1.

Proof. Our goal is to show that the random element m̃n
µ converges ν-almost surely

in F. First, define ξi := 〈y −Gmµ, y
∗
i 〉CµG∗y∗i . Thanks to Cν-orthonormality, the

y∗i are independent Gaussian random variables, and hence the ξi too. Hence, by
Ito-Nisio (Vakhania et al., 1987, Theorem 5.2.4), we get ν-almost-sure convergence
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provided we can show that there exists a random probability measure µ′ on F such
that the joint characteristic function converges to the characteristic function of µ′:

n∏
i=1

P̂ξi (f)→ µ̂′(f), all f ∈ F∗.

By independence of the ξi, we have, for f ∈ F∗:

n∏
i=1

P̂ξi(f) =

∫
Y

exp

[
i

〈
f,

n∑
i=1

〈y −Gmµ, y
∗
i 〉CµG∗y∗i

〉]
dν(y)

=

∫
Y

exp

[
i

〈
y′,

n∑
i=1

y∗i 〈f, CµG∗y∗i 〉

〉]
dν ′(y′),

where we have performed a change of variable y′ := y−Gmµ and hence ν’ is a cen-
tered Gaussian measure with covariance operator Cν . Now, using the characteristic
function of Gaussian measures, the above is equal to:

ν̂

(
n∑
i=1

y∗i 〈f, CµG∗y∗i 〉

)
= exp

[
−1

2

n∑
i,j=1

〈f, CµG∗y∗i 〉
〈
f, CµG

∗y∗j
〉 〈
Cνy

∗
i , y
∗
j

〉]

= exp

[
−1

2

n∑
i=1

〈f, CµG∗y∗i 〉
2

]
,

where the last equality follows from Cν-orthonormality of the representing sequence.
We thus have:

lim
n→∞

n∏
i=1

P̂ξi(f) = exp

ï
−1

2
〈R1f, f〉

ò
, (3.17)

whereR1 := limn→∞
∑∞

i=1 〈CµG∗y∗i , •〉CµG∗y∗i is a Gaussian covariance by (Tarieladze
and Vakhania, 2007, Lemma 3.4 and Proposition 3.9). The Claim follows from the
fact that for any Gaussian covariance, there exists a Gaussian measure having that
covariance as covariance operator (Tarieladze and Vakhania, 2007, Lemma 3.8).

Claim: ν(Y3) = 1.

Proof. Note that if y − Gmµ can be written as Cνy
∗ for some y∗ ∈ Y∗, then it

immediately follows, by (Tarieladze and Vakhania, 2007, Lemma 3.4), that:

∞∑
i=1

〈y −Gmµ, y
∗
i 〉Cνy∗i =

∞∑
i=1

〈y∗, Cνy∗i 〉Cνy∗i = Cνy
∗ = y −Gmµ.

Now, the subspace whose elements can be written as above is exactly the Cameron-
Martin space Cν (Y∗). While this is a ν-null space, it is a well-known fact that its
closure in Y has full measure, so that there exists a subset of full measure whose
elements can be approximated by elements of Cν (Y∗) and thus the defining property
of Y3 holds on a set of full measure.

50 Chapter 3 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

Now, we define Y0 := Y2 ∩ Y3. We construct a disintegration
(
µ|G=y

)
y∈Y0

as in
the finite rank case, but now restricting to the subspace Y0 where the conditional
mean is defined. What is left to check is that it satisfies the three defining properties
of disintegrations (Definition 9). Property 1 holds as in the finite rank case. For
Property 2, we notice that, for any y ∈ Y0:

Gm̃µ(y) = lim
n→∞

m̃(n)
µ (y) = Gmµ −

∞∑
i=1

〈Gmµ, y
∗
i 〉Cνy∗i +

∞∑
i=1

〈y, y∗i 〉Cνy∗i = y,

since Gmµ is the mean of ν and thus belongs to the Cameron-Martin space. Finally,
for Property 3, thanks to (Tarieladze and Vakhania, 2007, Proposition 3.2), we
only have to show that the characteristic function of µ writes as a mixing of the
characteristic functions of the conditionals, i.e. that:

µ̂(f) =

∫
Y
µ̂|G=y(f)dν(y), all f ∈ F∗.

Now, for y ∈ Y0, we have that µ|G=y is Gaussian, with mean m̃µ(y) and covariance
operator Cµ −R1. Hence, we have:∫

Y
µ̂|G=y(f)dν(y) =

∫
Y

exp

ï
i 〈m̃µ(y), f〉 − 1

2
〈Cµ, f〉+

1

2
〈R1f, f〉

ò
dν(y)

= exp

ï
i 〈mµ, f〉 −

1

2
〈Cµf, f〉

ò
= µ̂(f),

where the second-to-last equality follow from Equation (3.17). This completes the
proof in the infinite rank case.

3.8 Appendix C: Explicit Update Formulae for

Mean Element and Covariance Operator

For the sake of completeness, we here provide detailed update formulae for the mean
element and covariance operator, as a direct consequence of Theorem 9.

Corollary 8. Consider the setting of Theorem 9 and let (y
∗(12)
i )i=1,...,p12 be a GCµG

∗-

representing sequence, (y
∗(1)
i )i=1,...,p1 be a G1CµG

∗
1-representing sequence and (y

∗(2)
i )i=1,...,p2

be a G2C
(1)
µ G∗2-representing sequence. Then we have:

Cµ −
p12∑
i=1

¨
CµG

∗y
(12)
i , •

∂
CµG

∗y
∗(12)
i = Cµ −

p1∑
i=1

¨
CµG

∗y
∗(1)
i , •

∂
CµG

∗
1y

∗(1)
i −

p2∑
j=1

¨
CµG

∗
2y

∗(2)
j , •

∂
CµG

∗
2y

∗(2)
j

+

p2∑
j=1

p1∑
i=1

¨
CµG

∗
2y

∗(2)
j , •

∂ ¨
CµG

∗
1y

∗(1)
i , G∗

2y
∗(2)
j

∂
CµG

∗y
∗(1)
i

−
p2∑
j=1

p1∑
i=1

p1∑
k=1

¨
CµG

∗
1y

∗(1)
i , G∗

2y
∗(2)
j

∂ ¨
CµG

∗
1y

∗(1)
i , •

∂ ¨
CµG

∗
1y

∗(1)
i , G∗

2y
∗(2)
j

∂
CµG

∗
1y

∗(1)
i ,

and the equality is independent of the choice of the representing sequences.
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As for the mean element, we have:

mµ +

q∑
i=1

¨
y −Gmµ, y

∗(12)
i

∂
CµG

∗y
∗(12)
i = mµ +

q1∑
i=1

¨
y1 −G1mµ, y

∗(1)
i

∂
CµG

∗
1y
∗(1)
i

+

q2∑
j=1

¨
y2, y

∗(2)
j

∂
CµG

∗
2y
∗(2)
j −

q2∑
j=1

q1∑
i=1

¨
y2, y

∗(2)
j

∂ ¨
CµG

∗
1y
∗(1)
i , G∗2y

∗(2)
j

∂
CµG

∗
1y
∗(1)
i

−
q2∑
j=1

¨
G2mµ, y

∗(2)
j

∂
CµG

∗
2y
∗(2)
j

−
q2∑
j=1

q1∑
i=1

¨
G2CµG

∗
1y
∗(1)
i , y

∗(2)
j

∂ ¨
y1 −G1mµ, y

∗(1)
i

∂
CµG

∗
2y
∗(2)
j

+

q2∑
j=1

q1∑
k=1

¨
G2mµ, y

∗(2)
j

∂ ¨
CµG

∗
1y
∗(1)
k , G∗2y

∗(2)
j

∂
CµG

∗
1y
∗(1)
k

+

q2∑
i=1

q1∑
i=j

q1∑
k=1

¨
G2CµG

∗
1y
∗(1)
i , y

∗(2)
j

∂ ¨
y1 −G1mµ, y

∗(1)
i

∂ ¨
CµG

∗
1y
∗(1)
k , G∗2y

∗(2)
j

∂
CµG

∗
1y
∗(1)
k .
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Chapter 4

Implicit Covariance
Representation for Fast Update in
Large-scale Bayesian Inversion

This chapter reproduces the paper Travelletti et al. (2023), co-authored with David
Ginsbourger and Niklas Linde and published in the SIAM Journal of Uncertainty
Quantification
(DOI:10.48550/ARXIV.2109.03457).

4.1 Introduction

In this chapter, we use the theoretical background on sequential disintegrations
of Gaussian measures developed in Chapter 3 to devise a new framework for se-
quentially updating Gaussian processes that allow them to be brought to bear on
large-scale linear Bayesian inverse problems.

We focus on a subcategory of Bayesian inverse problems that are situated at
a triple intersection, namely, we consider situations in which As stated above, we
focus on the case where: (1) the number of prediction points is large, (2) the data
has to be assimilated sequentially, and (3) it comes in the form of integral operators
observations. Integral operators are harder to handle than pointwise observations
since, when discretized on a grid (which is the usual inversion approach), they turn
into a matrix with entries that are non-zero for most grid points, preventing the
use of techniques that leverage sparse matrices. This situation is typical of Bayesian
large-scale inverse problems because those are often solved on a discrete grid, forcing
one to consider a large number of prediction points when inverting at high resolution;
besides, the linear operators found in inverse problems are often of integral form (e.g.
gravity, magnetics).

Our main contribution to overcome the above difficulties is the introduction of
an implicit representation of the posterior covariance matrix that only requires stor-
age of low rank intermediate matrices and allows individual elements to be accessed
on-the-fly, without ever storing the full matrix. Our method relies on an extension of
the kriging update formulae (Chevalier et al., 2014b; Emery, 2009; Gao et al., 1996;
Barnes and Watson, 1992) to linear operator observations. As a minor contribution,
we also provide a technique for computing posterior means on fine discretizations
using a chunking technique and explain how to perform posterior simulations in the
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considered setting. The developed implicit representation allows for fast updates of
posterior covariances under linear operator observations on very large grids. This
is particularly useful when computing sequential data acquisition plans for inverse
problems, which we demonstrate by computing sequential experimental designs for
excursion set learning in gravimetric inversion. We find that our method provides
significant computational time savings over brute-force conditioning and scales to
problem sizes that are too large to handle using state-of-the-art techniques.

This whole chapter will use the Stromboli gravimetric inversion example from
Section 2.4.1 as a red thread for the development of new techniques and as an
applicative testbed for these. To the best of our knowledge, this is the first time that
sequential experimental design for set estimation is considered in such a setting.

4.2 Background: Sequential Bayesian Data As-

similation and Related Challenges

In this section, we focus on the challenges that arise when using Gaussian process
priors to solve Bayesian inverse problems with linear operators observations. Most
of these problems trace their roots back to the discretization of the problem. Indeed,
even tough one could formulate everything in an infinite dimensional setting (see
Chapter 3) and should discretize as late as possible (Stuart, 2010), in practice there
is always some form of discretization involved, be it through quadrature methods
(Hansen, 2010) or through basis expansion (Wagner et al., 2021). It turns out that,
regardless of the type of discretization used, one quickly encounters computational
bottlenecks arising from memory limitations when trying to scale inversion to real-
world problems. We here focus on inverse problems discretized on a grid, but stress
that the computational difficulties described next also plague spectral approaches.
For the rest of this section, we consider the same setting as in Section 2.2.2.

LetW = (w1, ..., wr) ∈ Dr be a given set of discretization points, we consider ob-
servation operators that (after discretization) may be written as linear combinations
of Dirac delta functionals

G : C(D)→ Rq, G =

(
r∑
j=1

gijδwj

)
i

, i = 1, ..., q, (4.1)

with arbitrary coefficients gij ∈ R. When working with such discrete operators it is
more convenient to use matrices, we will thus use Ḡ to denote the q× r matrix with
elements gij. Then, assuming we have a GP prior Z ∼ Gp(m, k) on D and data of
the form:

Y = ḠZW + ε, (4.2)

where ε ∼ N (0,∆) is some observational noise, we can compute the conditional
law of the process, conditionally on the data using Corollary 5. Given a batch of
prediction pointsX = (x1, ..., xm), the conditional mean and covariance, conditional
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on Y = y are then given by:

m̃X = mX +KXW Ḡ
T
(
ḠKWW Ḡ

T + ∆
)−1 (

y − ḠmW

)
, (4.3)

K̃XX′ = KXX′ −KXW ḠT
(
ḠKWW Ḡ

T + ∆
)−1

KWX′ . (4.4)

Even if Eqs. (4.3) and (4.4) only involve basic matrix operations, their computa-
tional cost depends heavily on the number of prediction points X = (x1, ..., xm) and
on the number of discretization points W = (w1, ..., wr), making their application
to real-world inverse problems a non-trivial task. Indeed, when both m and r are
big, there are two main difficulties that hamper the computation of the conditional
distribution:

• the r × r matrix KWW may never be built in memory due to its size, and

• the m×m posterior covariance KXX may be too large to store.

While the first of these difficulties can be solved by performing the product
KWWG

T in chunks, as described in Section 4.3, the second one only becomes of
particular interest in sequential settings. Indeed, in practice, data often becomes
available in stages and one is interested in updating the posterior from stages to
stages. In such a setting, a set of observations described by a (discretized) operator
Gi is made at each stage (from now on we only consider observation operators in
matrix form and drop underbars). One then observes a realization yi of

Yi = GiZWi
+ εi, (4.5)

where Wi is some set of points in D and εi is some centered Gaussian distributed
noise with covariance matrix ∆i. Then, in order to avoid a full recomputation of the
posterior, one can use Corollary 6 to obtain the posterior mean and covariance after
each stage by performing a low rank update of their counterparts at the previous
stage:

Theorem 13. Let Z ∼ Gp(m, k) and let m(n) and K(n) denote the conditional
mean and covariance function conditional on the data {Yi = yi : i = 1, ..., n} with
Yi defined as in Eq. (4.5), where n ≥ 1 and m(0) and K(0) are used to denote the
prior mean and covariance. Then:

m
(n)
X = m

(n−1)
X + λn (X)T

Ä
yn −Gn m(n−1)

Wn

ä
,

K
(n)

XX′
= K

(n−1)

XX′
− λn (X)T Snλn

(
X ′
)
,

with λn (X), Sn defined as:

λn (X) = S−1
n GnK

(n−1)
WnX

,

Sn = GnK
(n−1)
WnWn

GTn + ∆n.

This is in essence an extension of Chevalier et al. (2014b); Emery (2009); Gao
et al. (1996); Barnes and Watson (1992) to linear operator observations. At each
stage n, these formulae require computation of the qn × m matrix λn (X), which
involves a qn × qn matrix inversion, where qn is the dimension of the operator Gn

describing the current dataset to be included. This allows computational savings

Chapter 4 Cédric Travelletti 55



Efficient Gaussian process updating for uncertainty reduction on implicit sets

by reusing already computed quantities, avoiding inverting the full dataset at each
stage, which would require a q2

tot matrix inversion, where qtot =
∑n

i=1 qi.

In order for these update equations to bring computational savings, one has to
be able to store the past covariances K

(n−1)
WnWn

(Chevalier et al., 2015). This makes
their application to large-scale sequential Bayesian inverse problems difficult, since
the covariance matrix on the full discretization may become too large for storage
above a certain number of discretization points. The next section presents our main
contributions to overcome this limitation. They rely on an implicit representation of
the posterior covariance that allows the computational savings offered by the kriging
update formulae to be brought to bear on large scale inverse problems.

4.3 Implicit Covariance Representation and Up-

date

We consider the same sequential data assimilation setup as in the previous section,
and for the sake of simplicity we assume that W1, ...,Wn = X and use the lighter
notation m(i) := m

(i)
X and K(i) := K

(i)
XX . The setting we are interested in here is the

one where X is so large that the covariance matrix gets bigger than the available
computer memory.

Our key insight is that instead of building the full posterior covariance K(n)

at each stage n, one can just maintain a routine that computes the product of the
current posterior covariance with any other low rank matrix. More precisely, at each
stage n, we provide a routine CovMuln (Algorithm 1), that allows to compute the
product of the current covariance matrix with any thin matrix A ∈ Rm×a, a� m:

CovMuln : A 7→ K(i)A,

where thin is to be understood as small enough so that the result of the multiplica-
tion can fit in memory.

This representation of the posterior covariance was inspired by the covariance
operator of Gaussian measures. Indeed, if we denote by Cµ(n) the covariance operator
of the Gaussian measure associated to the posterior distribution of the GP at stage
n, then Ä

K(n)A
ä
ij

=
m∑
k=1

〈
Cµ(n)δxi , δxk

〉
Akj.

Hence, the procedure CovMuln may be thought of as computing the action of the
covariance operator of the Gaussian measure associated to the posterior on the Dirac
delta functionals at the discretization points.

This motivates us to think in terms of an updatable covariance object, where
the inclusion of new observations (the updating) amounts to redefining a right-
multiplication routine. It turns out that by grouping terms appropriately in The-
orem 13 such a routine may be defined by only storing low rank matrices at each
data acquisition stage.
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Lemma 4. For any n ∈ N and any m× a matrix A:

K(n)A = K(0)A−
n∑
i=1

K̄iR
−1
i K̄T

i A,

with intermediate matrices K̄i and R−1
i defined as:

K̄i : = K(i−1)GT
i ,

R−1
i : =

Ä
GiK

(i−1)GT
i + ∆i

ä−1
.

Hence, in order to compute products with the posterior covariance at stage n, one
only has to store n matrices K̄i, each of size m×qi and n matrices R−1

i of size qi×qi,
where qi is the number of observations made at stage i (i.e. the number of lines in
Gi). In turn, each of these objects is defined by multiplications with the covariance
matrix at previous stages, so that one may recursively update the multiplication
procedure CovMuln. Algorithms 1, 2, and 3 may be used for multiplication with the
current covariance matrix, update of the representation and update of the posterior
mean.

Algorithm 1 Covariance Right Multiplication Procedure CovMuln

Require:
Precomputed matrices K̄i, R

−1
i , i = 1, . . . , n.

Prior multiplication routine CovMul0.
Input matrix A.

Ensure: K(n)A.
procedure CovMuln(A)

Compute K(0)A = CovMul0(A).
Return K(0)A−

∑n
i=1 K̄iR

−1
i K̄T

i A.

Algorithm 2 Updating intermediate quantities at conditioning stage n

Require:
Last multiplication routine CovMuln−1.
Measurement matrix Gn, noise variance τ 2.

Ensure: Step n intermediate matrices K̄n and Rn

procedure Updaten
Compute K̄n = CovMuln−1G

T
n .

Compute R−1
n =

(
GnK̄n + ∆n

)−1
.

Prior Covariance Multiplication Routine and Chunking: To use Algorithm 1,
one should be able to compute products with the prior covariance matrix K(0). To
achieve this, we use the same technique as in (Wang et al., 2019), performing prod-
ucts in chunks. We note that our implicit representation framework is able to handle
updates, whereas (Wang et al., 2019) only consider a single step of assimilation.
We start by chunking the set of grid points into nc subsetsX = (X1, ...,Xnc), where
each X i contains a subset of the points. Without loss of generality, we assume all
subsets to have the same size mc. We may then write the product as

K
(0)
XXA =

Ä
K

(0)
X1X

A, . . . ,K
(0)
XncX

A
äT
.
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Algorithm 3 Computation of conditional mean at step n

Require:
Previous conditional mean m(n−1).
Current data yn and forward Gn.
Intermediate matrices K̄n and R−1

n .
Ensure: Step n conditional mean m(n).

procedure MeanUpdaten
Return m(n−1) + K̄nR

−1
n

(
yn −Gnm

(n−1)
)
.

Each of the subproducts may then be performed separately and the results gathered
together at the end. The individual products then involve matrices of size mc ×m
and m × a. One can then choose the number of chunks so that these matrices can
fit in memory. Each block K

(0)
XiX

may be built on-demand provided K
(0)
XX is defined

through a given covariance function.
This ability of the prior covariance to be built quickly on-demand is key to our
method. The fact that the prior covariance matrix does not need to be stored allows
us to handle larger-than-memory posterior covariances by expressing products with
it as a multiplication with the prior and a sum of multiplications with lower rank
matrices.

Remark 5 (Choice of Chunk Size). Thanks to chunking, the product may be com-
puted in parallel, allowing for significant performance improvements in the presence
of multiple computing devices (CPUs, GPUs, ...). In that case, the chunk size should
be chosen as large as possible to limit data transfers, but small enough so that the
subproducts may fit on the devices.

Computational Cost: For the sake of comparison, assume that all n datasets have
the same size qc and let q = nqc denote the total data size. The cost of computing
products with the current posterior covariance matrix at some intermediate stage is
given by:

Lemma 5 (Multiplication Cost). Let A be an m×a matrix. Then, the cost of com-
puting KnA at some stage n using Algorithms 1 and 2 is O (m2a+ n(mqca+ q2

ca)).

Using this recursively, we can then compute the cost of creating the implicit
representation of the posterior covariance matrix at stage n:

Lemma 6 (Implicit Representation Cost). To leading order in m and q, the cost of
defining CovMuln is O (m2q +mq2 + q2qc). This is also the cost of computing m(n).

This can then be compared with a non-sequential approach where all datasets
would be concatenated into a single dataset of dimension q. More precisely, define
the q ×m matrix G and the q-dimensional vector y as the concatenations of all
the measurements and data vectors into a single operator, respectively vector. Then
computing the posterior mean using Eq. (4.3) with those new observation operators
and data vector the cost is, to leading order in q and m:

O
(
m2q +mq2 + q3

)
.

In this light, we can now sum up the two main advantages of the proposed sequential
approach:

58 Chapter 4 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

• the cubic cost O (q3) arising from the inversion of the data covariances is
decreased to O (q2qc) in the sequential approach

• if a new set of observations has to be included, then the direct approach
will require the O (m2q) computation of the product K G T , which can be-
come prohibitively expensive when the number of prediction points is large,
whereas the sequential approach will only require a marginal computation of
O (m2qc).

Aside from the computational cost, our implicit representation also provides sig-
nificant memory savings compared to an explicit approach where the full poste-
rior covariance matrix would be stored. The storage requirement for the implicit-
representation as a function of the number of discretization points m is shown in
Figure 4.1.

Figure 4.1: Memory footprint of the posterior covariance matrix as a function of
discretization size for explicit and implicit representation.

4.4 Application: Scaling Gaussian Processes to

Large-Scale Inverse Problems

In this section, we demonstrate how the implicit representation of the posterior co-
variance introduced in Section 4.3 allows scaling Gaussian processes to situations
that are too large to handle using more traditional techniques, such as frequently
arises in large-scale inverse problems. We will focus our exposition on the gravimetric
inverse problem example presented in Section 2.4.1, demonstrating how our implicit
representation allows training prior hyperparameters, sample from the posterior on
large grids and finally how it allows us to address a state-of-the-art sequential ex-
perimental design problem for excursion set recovery.
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4.4.1 Hyperparameter Optimization

When using Gaussian process priors to solve inverse problems, one has to select
the hyperparameters of the prior. There exists different approaches for optimizing
hyperparameters. We here only consider maximum likelihood estimation (MLE).

We restrict ourselves to GP priors that have a constant prior mean m0 ∈ R
and a covariance kernel k that depends on a prior variance parameter σ2

0 and other
correlation parameters θ0 ∈ Rt:

k(x, x′) = σ2
0r(x, x

′;θ0), (4.6)

where r(., .;θ0) is a correlation function, such that r(x, x;θ0) = 1,∀x ∈ D. The
maximum likelihood estimator for the hyperparameters may then be obtained by
minimizing the negative marginal log likelihood (nmll) of the data, which in the dis-
cretized setting of Section 4.2 may be written as (Rasmussen and Williams, 2006):

L (m0, σ0,θ0;y) =
1

2
log detR+

1

2

(
y −GmX

)T
R−1

(
y −GmX

)
+
n

2
log 2π,

R :=
Ä
GKXXG

T + ∆
ä
.

(4.7)

Since only the quadratic term depends on m0, we can adapt concentration iden-
tities (Park and Baek, 2001) to write the optimal m0 as a function of the other
hyperparameters:

m̂MLE
0 (σ0,θ0) =

(
1TmG

TR−1G1m

)−1

yTR−1G1m, (4.8)

where 1m denotes the m-dimensional column vector containing only 1’s. Here we
always assume R to be invertible. The remaining task is then to minimize the
concentrated nmll:

(σ0,θ0) 7→ L
(
m̂MLE

0 (σ0,θ0) , σ0,θ0

)
.

Note that the main computational challenge in the minimization of Eq. (4.7) comes
from the presence of the m×m matrix KXX . In the following, we will only consider
the case of kernels that depend on a single length scale parameter: θ0 = λ0 ∈ R,
though the procedure described below can in principle be adapted for multidimen-
sional θ0.

In practice, for kernels of the form Eq. (4.6) the prior variance σ2
0 may be fac-

tored out of the covariance matrix (for known noise variance), so that only the prior
length scale λ0 appears in this large matrix. One then optimizes these parameters
separately, using chunking to compute matrix products. Since σ0 only appears in
an q× q matrix which does not need to be chunked (the data size q being moderate
in real applications), one can use automatic differentiation libraries such as Paszke
et al. (2019) to optimize it by gradient descent. On the other hand, there is no way
to factor out λ0 out of the large matrix KXX , so we resort to a brute force approach
by specifying a finite search space for it. To summarize, we proceed here in the
following way:
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(i) (brute force search) Discretize the search space for the length scale by only
allowing λ0 ∈ Λ0, where Λ0 is a discrete set (usually equally spaced values
on a reasonable search interval);

(ii) (gradient descent) For each possible value of λ0, minimize the (concentrated)
L over the remaining free parameter σ0 by gradient descent.

We ran the above approach on the Stromboli dataset with standard stationary
kernels (Matérn 3/2, Matérn 5/2, exponential). In agreement with Linde et al.
(2014), the observational noise is i.i.d. Gaussian distributed with standard devia-
tion is 0.1 [mGal]. The optimization results for different values of the length scale
parameter are shown in Fig. 4.2. The best estimates of the parameter values for
each kernel are shown in Table 4.1. The table also shows the practical range λ̄ which
is defined as the distance at which the covariance falls to 5% of its original value.

(a) (b)

Figure 4.2: (a) Concentrated negative marginal log-likelihood and (b) optimal hy-
perparameter values for different length scale parameters λ0.

We assess the robustness of each kernel by predicting a set of left out observations
using the other remaining observations. Fig. 4.3 displays RMSE and negative log
predictive density for different proportion of train/test splits.

Hyperparameters Metrics

Kernel λ λ̄ m0 σ0 L Train RMSE

Exponential 1925.0 5766.8 535.4 308.9 -804.4 0.060
Matérn 3/2 651.6 1952.0 2139.1 284.65 -1283.5 0.071
Matérn 5/2 441.1 1321..3 2120.9 349.5 -1247.6 0.073

Table 4.1: Optimal hyperparameters (Stromboli dataset) for different kernels.

Note thatthe above procedure is more of a quality assurance than a rigorous sta-
tistical evaluation of the model, since all datapoints were already used in the fitting
of the hyperparameters. Due to known pathologies of the exponential kernel (MLE
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(a) (b)

Figure 4.3: (a) Root mean squared error and (b) negative log predictive density on
test set for the different models (with optimal hyperparameters). The full dataset
contains 501 observations.

for length scale parameter going to infinity), we choose to use the Matérn 3/2 model
for the experiments of Section 4.4.2 and Section 4.4.3. The maximum likelihood
estimator of the prior hyperparameters for this model are m̂MLE

0 = 2139.1 [kg/m3],
σ̂MLE

0 = 284.65 [kg/m3] and λ̂MLE
0 = 651.6 [m].

4.4.2 Posterior Sampling

Our implicit representation also allows for efficient sampling from the posterior by
using the residual kriging algorithm (Chilès and Delfiner, 2012; de Fouquet, 1994),
which we here adapt to linear operator observations. Note that in order to sample
a Gaussian process at m sampling points, one needs to generate m correlated Gaus-
sian random variables, which involves covariance matrices of size m2, leading to the
same computational bottlenecks as described in Section 4.2. On the other hand,
the residual kriging algorithm generates realizations from the posterior by updating
realizations of the prior, as we explain next.

As before, suppose we have a GP Z defined on some compact Euclidean domain
D and assume Z has continuous sample paths almost surely. Furthermore, say
we have q observations described by linear operators `1, ..., `q ∈ C(D)∗. Then the
conditional expectation of Z conditional on the σ-algebra Σ := σ (`1 (Z) , ..., `q (Z))
is an orthogonal projection (in the L2-sense (Williams, 1991)) of Z onto Σ. This
orthogonality can be used to decompose the conditional law of Z conditional on Σ
into a conditional mean plus a residual. Indeed, if we let Z

′
be another GP with

the same distribution as Z and let Σ
′

:= σ
(
`1

(
Z
′)
, ..., `q

(
Z
′))

, then we have the
following equality in distribution:

Zx | Σ = E [Zx | Σ] +
Ä
Z
′

x − E
î
Z
′

x | Σ
′óä

, all x ∈ D. (4.9)

Compared to direct sampling of the posterior, the above approach involves two main
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operations: sampling from the prior and conditioning under operator data. When
the covariance kernel is stationary and belongs to one of the usual families (Gaussian,
Matérn), methods exist to sample from the prior on large grids (Mantoglou and
Wilson, 1982); whereas the conditioning part may be performed using our implicit
representation.

Remark 6. Note that in a sequential setting as in Section 4.2, the residual kriging
algorithm may be used to maintain an ensemble of realizations from the posterior
distribution by updating a fixed set of prior realizations at every step in the spirit
of Chevalier et al. (2015).

4.4.3 Sequential Experimental Design for Excursion Set Re-
covery

As a last example of application where our implicit update method provides sub-
stantial savings, we consider a sequential data collection task involving an inverse
problem. Though sequential design criteria for inverse problems have already been
considered in the literature (Attia et al., 2018), most of them only focus on selecting
observations to improve the reconstruction of the unknown parameter field, or some
linear functional thereof.

We here consider a different setting. In light of recent progress in excursion
set estimation (Azzimonti et al., 2016; Chevalier et al., 2013), we instead focus on
the task of recovering an excursion set of the unknown parameter field ρ, that is,
we want to learn the unknown set Γ∗ := {x ∈ D : ρ (x) ≥ T}, where T is some
threshold. In the present context of Stromboli, high density areas are related to
dykes (previous feeding conduits of the volcano), while low density values are related
to deposits formed by paroxysmal explosive phreato-magmatic events (Linde et al.,
2014). To the best of our knowledge, such sequential experimental design problems
for excursion set learning in inverse problems have not been considered elsewhere in
the literature.

Remark 7. For the sake of simplicity, we focus only on excursion sets above some
threshold, but all the techniques presented here may be readily generalized to gen-
eralized excursion sets of the form Γ∗ := {x ∈ D : ρ (x) ∈ I} where I is any finite
union of intervals on the extended real line.

We here consider a sequential setting, where observations are made one at a time
and at each stage we have to select which observation to make next in order to op-
timally reduce the uncertainty on our estimate of Γ∗. Building upon Picheny et al.
(2010); Bect et al. (2012); Azzimonti et al. (2021); Chevalier et al. (2014a), there
exists several families of criteria to select the next observations. Here, we restrict
ourselves to a variant of the weighted IMSE criterion (Picheny et al., 2010). The
investigation of other state-of-the-art criteria is left for future work. We note in pass-
ing that most Bayesian sequential design criteria involve posterior covariances and
hence tend to become intractable for large-scale problems. Moreover in a sequential
setting, fast updates of the posterior covariance are crucial. Those characteristics
make the problem considered here particularly suited for the implicit update frame-
work introduced in Section 4.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Realizations from Matérn 3/2 GP prior (hyperparameters taken from
Table 4.1) with corresponding excursion sets: (left to right) Underground mass
density field (arbitrary color scale), high density regions and low density regions,
thresholds: 2600 [kg/m3] and 1700 [kg/m3].

The weighted IMSE criterion selects next observations by maximizing the vari-
ance reduction they will provide at each location, weighted by the probability for
that location to belong to the excursion set Γ∗. Assuming that n data collection
stages have already been performed and using the notation of Section 4.2, the vari-
ant that we are considering here selects the next observation location by maximizing
the weighted integrated variance reduction (wIVR):

wIVRn(u) =

∫
D

Ä
K(n)
xx −K(n+1)

xx [Gu]
ä
pn(x)dx, (4.10)

where u is some potential observation location, K(n+1) denotes the conditional co-
variance after including a gravimetric observation made at u (this quantity is inde-
pendent of the observed data) andGu is the forward operator (matrix) corresponding
to this observation. Also, here pn denotes the coverage function at stage n (we re-
fer the reader to Section 2.3 for more details on Bayesian set estimation). After
discretization, applying Theorem 13 turns this criterion into:∑

x∈X

K
(n)
xXG

T
u

Ä
GuK

(n)
XXG

T
u + ∆

ä−1
GuK

(n)
Xxpn(x), (4.11)

where we have assumed that all measurements are affected by N (0,∆) distributed
noise.

Note that for large-scale problems, the wIVR criterion in the form given in
Eq. (4.11) becomes intractable for traditional methods because of the presence of

the full posterior covariance matrix K
(n)
XX in the parenthesis. The implicit repre-

sentation presented in Section 4.3 can be used to overcome this difficulty. Indeed,
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the criterion can be evaluated using the posterior covariance multiplication routine
Lemma 4 (where the small dimension q is now equal to the number of candidate ob-
servations considered at a time, here 1 but batch acquisition scenarios could also be
tackled). New observations can be seamlessly integrated along the way by updating
the representation using Algorithm 2.

Experiments and Results: We now study how the wIVR criterion can help
to reduce the uncertainty on excursion sets within the Stromboli volcano. We here
focus on recovering the volume of the excursion set instead of its precise location. To
the best of our knowledge, in the existing literature such sequential design criteria
for excursion set recovery have only been applied to small-scale inverse problems
and have not been scaled to larger, more realistic problems where the dimensions at
play prevent direct access to the posterior covariance matrix.

In the following experiments, we use the Stromboli volcano inverse problem and
work with a discretization into cubic cells of 50 [m] side length. We use a Matérn
3/2 GP prior with hyperparameters trained on real data (Table 4.1) to generate
semi-realistic ground truths for the experiments. We then simulate numerically the
data collection process by computing the response that results from the considered
ground truth and adding random observational noise. When computing sequential
designs for excursion set estimation, the threshold that defines the excursion set can
have a large impact on the accuracy of the estimate. Indeed, different thresholds will
produce excursion sets of different sizes, which may be easier or harder to estimate
depending on the set estimator used. For the present problem, Fig. 4.5 shows
the distribution of the excursion volume under the considered prior for different
excursion thresholds.

Figure 4.5: Distribution of excursion set volume under the prior for different thresh-
olds. Size is expressed as a percentage of the volume of the inversion domain.
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It turns out that the estimator used in our experiments (Vorob’ev expectation)
behaves differently depending on the size of the excursion set to estimate. Indeed,
the Vorob’ev expectation tends to produce a smoothed version of the true excursion
set, which in our situation results in a higher fraction of false positives for larger sets.
Thus, we consider two scenarios: a large scenario where the generated excursion sets
have a mean size of 10% of the total inversion volume and a small scenario where
the excursion sets have a mean size of 5% of the total inversion volume. One should
note that those percentages are in broad accordance with the usual size of excursion
sets that are of interest in geology. The chosen thresholds are 2500 [kg/m3] for the
large excursions and 2600 [kg/m3] for the small ones.

(a) (large scenario) threshold: 2500
[kg/m3]

(b) (small scenario) threshold:
2600[kg/m3]

Figure 4.6: Distribution of excursion volume (with kernel density estimate) under
the prior for the two considered thresholds, together with excursion volumes for each
ground truth.

The experiments are run on five different ground truths, which are samples from a
Matérn 3/2 GP prior (see previous paragraphs). The samples were selected such that
their excursion set for the large scenario have volumes that correspond to the 5%,
27.5%, 50%, 72.5% and 95% quantiles of the prior excursion volume distribution for
the corresponding threshold. Fig. 4.6 shows the prior excursion volume distribution
together with the volumes of the five different samples used for the experiments.
Fig. 4.7 shows a profile of the excursion set (small scenario) for one of the five
samples used in the experiments. The data collection location from the 2012 field
campaign (Linde et al., 2014) are denoted by black dots. The island boundary is
denoted by blue dots. Note that, for the sake of realism, in the experiments we only
allow data collection at locations that are situated on the island (data acquired on
a boat would have larger errors); meaning that parts of the excursion set that are
outside the island will be harder to recover.

Experiments are run by starting at a fixed starting point on the volcano surface,
and then sequentially choosing the next observation locations on the volcano sur-
face according to the wIVR criterion. Datapoints are collected one at a time. We
here only consider myopic optimization, that is, at each stage, we select the next

66 Chapter 4 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

(a) xy projection

(b) xz projection (c) yz projection

Figure 4.7: Projection of the excursion set (small scenario) for the first ground truth.
Island boundary denoted in blue, observation location from previous field campaign
denoted by black dots. Distances are displayed in [m] and density in [kg/m3].

observation site un+1 according to:

un+1 = arg min
u∈Uc

wIVRn(u),

where ties are broken arbitrarily. Here Uc is a set of candidates among which to
pick the next observation location. In our experiments, we fix Uc to consist of
all surface points within a ball of radius 150 meters around the last observation
location. Results are summarized in Figs. 4.8 and 4.9, which shows the evolution
of the fraction of true positives and false positives as a function of the number of
observations gathered.

We see that in the large scenario (Fig. 4.8) the wIVR criterion is able to correctly
detect 70 to 80% of the excursion set (in volume) for each ground truth after 450
observations. For the small scenario (Fig. 4.9) the amount of true positives reached
after 450 observations is similar, though two ground truths are harder to detect.

Note that in Figs. 4.8 and 4.9 the fraction of false negatives is expressed as a
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(a) True positives (b) False positives

Figure 4.8: Evolution of true and false positives for the large scenario as a function
of the number of observations.

percentage of the volume of the complementary of the true excursion set D \Γ∗. We
see that the average percentage of false positives after 450 observations tends to lie
between 5 and 15%, with smaller excursion sets yielding fewer false positives. While
the Vorob’ev expectation is not designed to minimize the amount of false positives,
there exists conservative set estimators (Azzimonti et al., 2021) that specialize on
this task. We identify the extension of such estimators to inverse problems as a
promising venue for new research.

(a) True positives (b) False positives

Figure 4.9: Evolution of true and false positives for the small scenario as a function
of the number of observations.

In both figures we also plot the fraction of true positives and false positives that
result from the data collection plan that was used in Linde et al. (2014). Here only
the situation at the end of the data collection process is shown. We see that for
some of the ground truths the wIVR criterion is able to outperform static designs
by around 10%. Note that there are ground truths where it performs similarly to
a static design. We believe this is due to the fact that for certain ground truths
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most of the information about the excursion set can be gathered by spreading the
observations across the volcano, which is the case for the static design that also
considers where it is practical and safe to measure.

(a) xy projection

(b) xz projection (c) yz projection

Figure 4.10: Projection of the true excursion set (small scenario) and visited loca-
tions (wIVR strategy) for the first ground truth. Island boundary is shown in blue.
Distances are displayed in [m] and density in [kg/m3].

Limiting Distribution: The dashed horizontal lines in Figs. 4.8 and 4.9 show
the detection percentage that can be achieved using the limiting distribution. We
define the limiting distribution as the posterior distribution one were to obtain if
one had gathered data at all allowed locations (everywhere on the volcano surface).
This distribution may be approximated by gathering data at all points of a given
(fine-grained) discretization of the surface. In general, this is hard to compute since
it requires ingestion of a very large amount of data, but thanks to our implicit repre-
sentation (Section 4.3) we can get access to this object, thereby, allowing new forms
of uncertainty quantification.

In a sense, the limiting distribution represents the best we can hope for when cov-
ering the volcano with this type of measurements (gravimetric). It gives a measure
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of the residual uncertainty inherent to the type of observations used (gravimetric).
Indeed, it is known that a given density field is not identifiable from gravimetric
data alone (see Blakely (1995) for example). Even if gravity data will never allow
for a perfect reconstruction of the excursion set, we can use the limiting distribution
to compare the performance of different sequential design criteria and strategies.
It also provides a mean of quantifying the remaining uncertainty under the chosen
class of models. A sensible performance metric is then the number of observations
that a given criterion needs to approach the minimal level of residual uncertainty
which is given by the limiting distributions.

As a last remark, we stress that the above results and the corresponding recon-
struction qualities are tied to an estimator, in our case the Vorob’ev expectation. If
one were to use another estimator for the excursion set, those results could change
significantly.

Posterior Volume Distribution: Thanks to our extension of the residual
kriging algorithm to inverse problems (see Section 4.4.2), we are able to sample from
the posterior at the end of the data collection process. This opens new venues for
uncertainty quantification in inverse problems. For example, we can use sampling to
estimate the posterior distribution of the excursion volume and estimate the residual
uncertainty on the size of the excursion set.

(a) (large scenario) threshold: 2500 [kg/m3] (b) (small scenario) threshold: 2600 [kg/m3]

Figure 4.11: Empirical posterior distribution (after 450 observations) of the excur-
sion volume for each ground truth. True volumes are denoted by vertical lines.

Fig. 4.11 shows the empirical posterior distribution of the excursion volume for
each of the ground truths considered in the preceding experiments. When compared
to the prior distribution, Fig. 4.6, one sees that the wIVR criterion is capable of
significantly reducing the uncertainty on the excursion volume. This shows that
though the location of the excursion set can only be recovered with limited accuracy,
as shown in Figs. 4.8 and 4.9, the excursion volume can be estimated quite well.
This is surprising given that the criterion used (wIVR) is a very crude one and
was not designed for that task. On the other hand, there exist more refined criteria,
like the so-called SUR strategies (sequential uncertainty reduction) (Chevalier et al.,
2014a; Bect et al., 2019), among which some were specifically engineered to reduce
the uncertainty on the excursion volume (Bect et al., 2012). Even though those
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criteria are more computationally challenging than the wIVR one, especially in
the considered framework, we identify their application to large Bayesian inverse
problem as a promising avenue for future research.

4.5 Conclusion and Perspectives

Leveraging the new results about sequential disintegrations of Gaussian measures
developed in Chapter 3, we have introduced an implicit almost matrix free represen-
tation of the posterior covariance of a GP and have demonstrated fast update of the
posterior covariance on large grids under general linear functional observations. Our
method allows streamline updating and fast extraction of posterior covariance in-
formation even when the matrices are larger than the available computing memory.
Using our novel implicit representation, we have shown how targeted design criteria
for excursion set recovery may be extended to inverse problems discretized on large
grids. We also demonstrated UQ on such problems using posterior sampling via
residual kriging. Our results suggest that using the considered design criteria allows
reaching close-to-minimal levels of residual uncertainty using a moderate number of
observations and also exhibit significant reduction of uncertainty on the excursion
volume. The GP priors used in this work are meant as a proof of concept and future
work should address the pitfalls of such priors, such as lack of positiveness of the
realizations and lack of expressivity. Other promising research avenues include ex-
tensions to more sophisticated estimators such as conservative estimates Azzimonti
et al. (2021). On the dynamic programming side, extending the myopic optimiza-
tion of the criterion to finite horizon optimization in order to provide optimized data
collection trajectories is an obvious next step which could have significant impact
on the geophysics community. Also, including location dependent observation costs
such as accessibility in the design criterion could help provide more realistic obser-
vation plans. These last two topics are briefly touched upon in the conclusion of
this thesis.

4.6 Appendix A: Forward operator for Gravimet-

ric Inversion

Given some subsurface density ρD → R inside a domain D ⊂ R3 and some location
u outside the domain, the vertical component of the gravitational field at u is given
by:

Gu [ρ] =

∫
D

ρ(x)g(x, u)dx, (4.12)

with Green kernel

g(x, u) =
x(3) − u(3)

‖x− u‖3
, (4.13)

where x(3) denotes the vertical component of x.
We discretize the domain D into m identical cubic cells D = ∪mi=1Di with cen-

troids X = (X1, . . . , Xm) and assume the mass density to be constant over each
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cell, so the field ρ may be approximated by the vector ρX. The vertical component
of the gravitational field at u is then given by:∫

∪mi=1Di

g(x, u)ρ(x)dx ≈
m∑
i=1

(∫
Di

g(x, u)dx

)
ρXi := GuρX.

Integrals of Green kernels over cuboids may be computed using the Banerjee
formula (Banerjee and Das Gupta, 1977).

Theorem (Banerjee). The vertical gravity field at points (x0, y0, z0) generated by a
prism with corners (xh, xl, yh, yl, ...) of uniform mass density ρ is given by:

gz =
1

2
γNρ

[
x log

(√x2 + y2 + z2 + y√
x2 + y2 + z2 − y

)
+ y log

(√x2 + y2 + z2 + x√
x2 + y2 + z2 − x

)
− 2z arctan

( xy

z
√
x2 + y2 + z2

)]∣∣∣∣∣
xh−x0

xl−x0

∣∣∣∣∣
yh−y0

yl−y0

∣∣∣∣∣
zh−z0

zl−z0

4.7 Appendix B: Proofs

Proof. (Lemma 4) We proceed by induction. The case n = 1 follows from Eq. (4.4).
The induction step is directly given by Theorem 13.

Proof. (Lemma 5) The product is computed using Algorithm 1. It involves mul-
tiplication of A with the prior covariance, which costs O (m2a) and multiplication
with all the previous intermediate matrices, which contribute O (mqca) and O (q2

ca)
respectively, at each stage.

Proof. (Lemma 6) The cost of computing the i-th pushforward K̄i isO (m2qc + i(mq2
c + q3

c )).
Summing this cost for all stages i = 1, . . . , n then gives O (m2Q+mQ2 + q2qc). To
that cost, one should add the cost of computing R−1

i , which costs O (q3
c ) at each

stage, yielding a O (Qq2
c ) contribution to the total cost, which is dominated by Q2qc

since qc < Q.

4.8 Appendix C: Supplementary Experimental Re-

sults

We here include more detailed analysis of the results of Section 4.4.3 that do not fit
in the main text.

Figs. 4.8 and 4.9 showed that there are differences in detection performance for
the different ground truths. These can be better understood by plotting the actual
location of the excursion set for each of the ground truths as well as the observation
locations chosen by the wIVR criterion, as done in Fig. 4.12. One sees that the
(comparatively) poor performance shown by Fig. 4.9 for Sample 2 in the small
scenario may be explained by the fact that, for this ground truth, the excursion set
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is located mostly outside the accessible data collection zone (island surface), so that
the strategy is never able to collect data directly above the excursion.
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(a) sample 1: small scenario (b) sample 1: large scenario

(c) sample 2: small scenario (d) sample 2: large scenario

(e) sample 3: small scenario (f) sample 3: large scenario

(g) sample 4: small scenario (h) sample 4: large scenario

(i) sample 5: small scenario (j) sample 5: large scenario

Figure 4.12: True excursion set and visited locations (wIVR strategy). Island bound-
ary is shown in blue.
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Chapter 5

Universal Inversion: Bayesian
Inversion with Trends

5.1 Introduction

After having introduced techniques to apply Gaussian processes to large-scale inverse
problems, a natural next step is to try to extend other methods from geostatistics
to be brought to bear on such problems. Among these methods, the first obvious
candidate is universal kriging (Matheron, 1969).

The idea behind universal kriging is to fit a parametric linear model to the
response and to use a centered GP to fit the fluctuations around the trend. This
model allows one to include expert knowledge in the definition of the trend and is
one of the simplest way to extend GP regression to non-stationary mean functions.
Universal kriging has found use in areas as diverse as the study of air pollutants
(Romary et al., 2011), the modelling of forest inventory (Mandallaz, 2000) and
the prediction of road traffic (Selby and Kockelman, 2013). Considering the broad
potential applications, it is natural to try to extend universal kriging to inverse
problems. The first attempt in this direction was the seminal paper (Kitanidis,
1995). We here expand on this contribution to bring it up to date with the state of
the art Bayesian inversion framework and apply it to real-world large-scale inverse
problems (whereas (Kitanidis, 1995) only considered one-dimensional toy examples).

As in Chapter 4, this chapter will use the gravimetric inversion problem from
Section 2.4.1 as an applicative red thread. The inclusion of user-defined trends in
such gravimetric inversion problems is of great interest since it allows the incorpora-
tion of a-priori knowledge about the underground geology in the domain of interest,
be it layer structures, depth dependencies or tunnel-like networks. We note that
the inclusion of such structural knowledge in the inversion process has already gath-
ered some attention, be it via layer deformations (Berrino and Camacho, 2008), or
via object-based methods that leverage knowledge of the possible geological pro-
cesses that have led to the current underground situation (Guillen et al., 2008).
Nevertheless, those methods are either purely deterministic, or Monte Carlo based,
whereas our universal inversion algorithm provides fast, analytic expressions for the
full posterior.
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5.2 Background: Universal Kriging

We start by recalling the main ideas behind universal kriging. Instead of following
the usual formulation of the universal kriging predictor as the best linear unbiased
predictor (BLUP), we here follow the less common Bayesian approach (Omre and
Halvorsen, 1989; Helbert et al., 2009). Readers interested in more conventional
treatments of the subject matter are referred to (Chilès and Delfiner, 2012; Cressie,
1993). A good introduction to both approaches can also be found in (Bachoc, 2013).

Universal kriging models the unknown phenomenon of interest as a sum of a
trend and fluctuations around the trend described by a centered Gaussian process.
The goal is to use the trend to incorporate a priori expert knowledge, while the GP
part is meant to fit local ”residuals” that are not captured by the trend. The trend
is encoded as a linear combination of user specified basis functions fi : D → R with
unknown coefficients βi. The full model writes as:

Zx = ηx +
b∑
i=1

βifi(x). (5.1)

In the Bayesian approach, one assumes that the trend coefficients are endowed
with some prior distribution, here a multivariate Gaussian prior β ∼ N (βprior,Σ).
Then, conditionally on observed field values y ∈ Rq at locations W ∈ Dr the
posterior of the trend parameters is Gaussian with mean vector and covariance
matrix given by:

βpost = βprior + ΣF T
WQ

−1 (y − FWβprior) (5.2)

Σ̃ = Σ−ΣF T
WQ

−1FWΣ, (5.3)

where the data is assumed to be corrupted by additive Gaussian noise ε ∼ N (0,∆)
and the matrix: Q := (FWΣF T

W + KWW + ∆) is assumed invertible. We use the
shorthand notation FW to denote the r × b matrix with elements fj(Wi). The
posterior law of the full GP Z is also Gaussian, with mean and covariance function
given by:

m̃X = FXβprior +
(
FXΣF T

W +KXW
)
Q−1 (y − FWβprior) (5.4)

K̃XX′ = KXX ′ + FXΣF T
X′ −

(
FXΣF T

W +KXW
)
Q−1

(
FWΣF T

X′ +KWX′
)
.

(5.5)

From the above Bayesian kriging equations, universal kriging can be recovered as
a limiting case. Universal kriging first estimates the trend coefficients by maxi-
mum likelihood and then computes the kriging predictor as the BLUP. Considering
Eq. (5.3) and taking the limit of a flat prior, that is the limit where all eigenvalues
of the trend prior covariance matrix Σ tend to infinity, the optimal trend coefficient
vector writes (see (Omre and Halvorsen, 1989) for details):

β̂UK =
(
FWR

−1F T
W

)
FWR

−1y, (5.6)

where the matrix R := (KWW + ∆) is assumed invertible. The conditional mean
and covariance function of the field itself tend to:

m̃UK
X = FXβ̂UK +KXWR

−1
Ä
y − FW β̂UK

ä
(5.7)

K̃UK
XX′ = KXX′ −KXWR−1KWX′ , (5.8)

and we see that we recover the usual universal kriging equations.
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5.3 Universal Inversion

We now extend the universal/Bayesian kriging equations from last section to the case
of linear operator observations, to allow for their use in Bayesian inverse problem.
In the following, we consider a GP model with a parametric trend as in Eq. (5.1)
and (discretized) linear operator observations as in Eq. (4.2). The posterior can
then be computed in a similar way as in usual universal kriging.

Theorem 14. Let Z be a Gaussian process on D with parametric trend as in
Eq. (5.1) and let G ∈ Rq×r be a linear operator. Assume that one observes data
of the form:

Y = GZW + ε,

where ε ∼ N (0,∆) is some additive Gaussian noise. Then, conditionally on Y = y,
the posterior of the trend coefficients is Gaussian, with mean and covariance given
by:

βpost = βprior + ΣF T
WG

TQ−1 (y −GFWβprior) (5.9)

Σ̃ = Σ−ΣF T
WG

TQ−1GFWΣ, (5.10)

where the matrix: Q := G(FWΣF T
W + KWW )GT + ∆ is assumed invertible. Fur-

thermore, the posterior of the GP is also a GP with mean and covariance given
by:

m̃X = FXβprior +
Ä
FXΣF TW +KXW

ä
GTQ−1 (y −GFWβprior) (5.11)

K̃XX′ = KXX′ + FXΣF TX′

−
Ä
FXΣF TW +KXW

ä
GTQ−1G

Ä
FWΣF TX′ +KWX′

ä
.

(5.12)

In the limit of an uninformative prior on the trend coefficients, the posterior
mean function and covariance kernel of the GP reduce to:

m̃UK
X = FX β̂ +KXWGTR−1

Ä
y −GFW β̂

ä
(5.13)

K̃UK
XX′ = KXX′ −KXWGTR−1GKWX′

+
Ä
FX −KXWGTR−1FW

ä Ä
F TWR−1FW

ä−1 Ä
FX′ −KX′WGTR−1FW

äT
,

(5.14)

where the optimal trend coefficients are given by:

β̂ =
(
FWG

TR−1GF T
W

)−1
FWG

TR−1y, (5.15)

and the matrix R :=
(
GKWWG

T + ∆
)

is assumed invertible. We note that in this

case, the estimator β̂ corresponds to the maximum likelihood estimator. Interested
readers are referred to (Bachoc, 2013) for more details on parameter estimation
procedures in universal kriging.

Remark 8 (Covariance Estimation). It is well known in the geostatistics commu-
nity that universal kriging is fraught with problems when it comes to covariance
estimation. Indeed, the universal kriging equations Eqs. (5.4) to (5.6) require the
covariance to be known in order to estimate the trend, but the estimation of the
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covariance itself depends on the estimated trend, leading to a chicken and egg prob-
lem (Armstrong, 1984; Cressie, 1993). While we are well aware of the potential
pitfalls originating in the interplay between the trend and the covariance, we leave
this question for future work and will content ourselves with MLE for estimating all
parameters, as a first demonstration of universal kriging in inverse problems.

By using the MLE of the trend coefficients, the log-likelihood writes as (up to a
constant and a prefactor):

L ∝ log |R|+
Ä
y −GFW β̂

äT
R−1
Ä
y −GFW β̂

ä
(5.16)

5.4 Fast multiple-Fold Cross-Validation for Uni-

versal Inversion

One of the main statistical tools for model validation and parameter estimation
is cross-validation (CV) (Stone, 1974). Compared to other procedures based on
train-test dataset splitting, cross-validation is an approach that allows to make out
the most of the available data, which is of particular importance in data-scarce
settings, such as if often the case in inverse problems. Apart from these general
considerations, in the special case of Universal Inversion, the additional freedom in
the choice of the basis functions included in the trend model calls for a solution to
detect and prevent overfitting, making cross-validation even more appealing in this
context.

There exists a whole array of different cross-validation procedures, among which
practitioners should choose according to their statistical goals (Arlot and Celisse,
2010), the most widespread forms of CV being leave-one out (LOOCV), leave-k-out
and multiple fold CV. While being the simplest and one of the computationally
cheapest form of CV, leave-one-out possesses several flaws and is overoptimistic in
the presence of highly correlated datapoints. On the other hand, more sophisticated
CV procedures tend to suffer from combinatorial explosion and can be computa-
tionally expansive even for small datasets. To overcome these limitations, fast CV
formulae have been developed (Ginsbourger and Schärer, 2021). We next leverage
those formulae for fast cross-validation in the Universal Inversion setting.

Notation: The basic principle behind CV is to remove parts of the dataset from
the fitting step and then compute the error in predicting these held-out datapoints
using the model fitted on the restricted dataset. This calls for a notation that is able
to express the action of selecting subsets of a given dataset. In the following, we
assume that q datapoints are available. Then, a boldface ’i’ will be used to denote
a strictly ordered (no repetitions) subset of data indices: i ⊂ {1, . . . , q}. Given a
q-dimensional vector y, we use yi to denote the subvector built from y by extracting
the elements whose indices belong to i and y−i to denote the remaining part of the
original vector.

For the rest of this section, assume that one has a GP model as in Theorem 14
with a flat prior on the trend coefficients (the full Bayesian case is not treated here)
and (noiseless) observations Y = GZW . As noted in (Ginsbourger and Schärer,
2021), all the information about the distribution of the CV residuals can be encoded
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in sub-blocks of a single matrix, which, in the Universal Inversion case, is given by
the augmented (q + b)× (q + b) matrix

K̃ =

Å
GKWWG

T GFW
F T
WG

T 0

ã
.

Our goal is to derive efficient formulae for the characterization of the distribution of
the CV residuals Ei := Yi− Ŷi, where Ŷi = GẐ−iW denotes the prediction of the left-

out data using the remaining data Y−i and Ẑ−i denotes the posterior mean Eq. (5.13)
conditional on this part of the data. Leveraging (Ginsbourger and Schärer, 2021,
Corollary 1) and noting that GZW is a Gaussian random vector with covariance
matrix GKWWG

T and trend GFW , the CV residuals can then be computed as:

Theorem 15. Let Z be a Gaussian process on D with parametric trend as in
Eq. (5.1), furthermore let G ∈ Rq×r be a linear operator and assume we have data
Y = GZW . Then, for any two strictly ordered subset of indices i, j, the cross-
validation residuals can be written as:

Ei =
Ä
K̃−1
ii

ä−1 Ä
K̃−1[1 : q, 1 : q]Y

ä
i
, (5.17)

where K̃−1
ii denotes the ii subblock of the K̃−1 matrix and K̃[:, 1 : q] stands for the

first q columns of K̃. Furthermore, the residuals are jointly Gaussian distributed,
centered and with covariance

Cov (Ei,Ej) =
Ä
K̃−1
ii

ä−1
K̃−1
ij

Ä
K̃−1
jj

ä−1

The above allows for the computation of any CV residual by extracting sub-
blocks from K̃−1, which can lead to substantial computational savings by avoiding
recomputation of the posterior at each cross-validation pass.

5.5 Application: Gravimetric Inversion with Trends

Now that we have developed a full-fledged framework for universal inversion, we
demonstrate its versatility by applying it to our gravimetric inverse problem example
Section 2.4.1. Our main goal is to improve upon the results from Chapter 4 by
including expert knowledge in the trend of the GP prior.

In the following, we will consider a few basic trend models to demonstrate the
main features of Universal Inversion, leaving the inclusion of more sophisticated,
domain-informed trends to future work. In the specific case of volcano gravimetric
inversion Section 2.4.1, there are a few natural trend functions that one may want
to consider. Using a right-handed coordinate system x, y, z with x pointing south,
one can consider the following basis functions:

• Depth-dependence Due to the way volcanoes aggregate mass, one expects
the density field to have some dependence on the depth. We here model this
phenomenon using the naive basis function:

fdepth(x, y, z) = ztop − z

, where ztop denotes the altitude of the volcano top.
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• Chimney: Volcanoes from around a central lava conduit. For most active
volcanoes, one can expect higher densities within that region, which can be
modelled as a cylindrical dependency around the central axis:

fchimney(x, y, z) = 1− κ
»

(x− x0)2 + (y − y0)2

, where κ is some fixed scale constant and x0, y0 denote the planar coordinates
of the chimney axis.

• Fault-line: Some active volcanoes such as the Stromboli separate along
a fault line, through which dense magma can infiltrate, leading to higher
densities around the fault. This can be modelled as a dependence on the
distance to a fixed plane Π representing the fault line:

ffault(x, y, z) = tanh
( π

2κ
dist ((x, y, z) ,Π)

)
, where we use a tanh activation function to sharpen the transition and κ is
a scale parameter controlling the cut-off of the dependency.

• Layers: It is sometimes known from the history of the volcano formation
that there exists layers of different materials within the volcano, each layer
having a different typical density. This can be modelled by summing

• Piecewise domains One might also want to allow for regions with different
typical density. This can be achieved by considering trend functions that are
given by the characteristic functions of some domains within the volcano.

Several of the above mentioned trend functions depend on parameters that have to be
fixed beforehand. We stress that universal inversion only estimates the coefficients β
of the trend functions, but not the free parameters within the functions themselves.
Those have to be chosen according to expert knowledge, or via some other estimation
procedure, the consideration of which we leave to future work. We note that among
all the aforementioned trend functions, the fault line one is the most interesting for
our Stromboli example, since it is known that this volcano indeed separates along a
fault line whose direction is known (Linde et al., 2014).

5.5.1 Cross-Validation and Model Selection

We now use Universal Inversion with the trend models from the previous section
to invert the Stromboli gravimetric data from Section 2.4.1. For each trend model,
the hyperparameters of the GP are trained using MLE. The posterior mean for each
model is shown in Fig. 5.2.

All models are in qualitative agreement with what is known about the interior
of the Stromboli volcano (Linde et al., 2014). Owing to the difficulty of collecting
direct samples of the density field, the last available option for model selection is
cross-validation.

In order to further discriminate among the trend models, we leverage the fast
cross-validation formulae from Theorem 15 to bring CV to bear on the problem
of model identification. In the following, we consider a similar setting as the one
in Theorem 15 and define the k-fold cross-validation criterion following (Arlot and
Celisse, 2010).

80 Chapter 5 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 [k
g/

m
3]

(a) depth-dependence

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 [k
g/

m
3]

(b) chimney

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 [k
g/

m
3]

(c) fault-line

0

2

4

6

8

10

12

14

16

D
en

si
ty

 [k
g/

m
3]

(d) domains

Figure 5.1: Trend basis functions used in the experiments. Solid balls denote the
locations of the gravimetry observations (Stromboli dataset).
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Figure 5.2: Posterior mean for the various trend models (Stromboli data).
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k-Fold Cross-Validation Criterion. Consider a GP model with parametric trend
as in Eq. (5.1) and a q-dimensional data vector y which is a realization of the data
model Eq. (4.2). Then, given a k-partition of {1, ..., q} into folds I = (i1, ..., ik), the
k-folds cross validation criterion is given by:

LCV(Z,y, I) =
1

k

k∑
j=1

1

|ij|
||eij ||2, (5.18)

where eij denotes the cross-validation residual that corresponds to the realization of
the (random) residual Eq. (5.17).

One can then use the above criterion to select between different trend models.
We begin by considering leave-one-out residuals. Results for the considered trend
models are displayed in Fig. 5.3.

(a) constant (b) chimney

(c) fault-line (d) domains

Figure 5.3: Leave-one-out cross-validation residuals [mGal] for the different trend
models. RMS residual over all data points is also given for each trend model.

One sees that the residuals are sensibly the same across all trend models, meaning
that leave-one-out is unable to discriminate among different trends for the gravimet-
ric inverse problem under consideration. In retrospect, such an inconclusive result
does not seem suprising, considering the high correlation of gravimetric observa-
tions at close-by locations that results from the integral nature of the observation
operator Eq. (4.12). In order to overcome this difficulty, we next resort to k-fold
cross-validation.
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The first difficulty that arises when using k-fold CV is that of defining the folds.
To the best of our knowledge, no established procedure exists for such a task. As
a first candidate procedure for fold definition we use spatial clustering. In our
gravimetric inverse problem, this is a sensible procedure since we expect nearby
gravimetric observations to be highly correlated, so that folds should be as spatially
separated as possible in order to be informative (in a sense that remains to be
defined). Figure 5.4 shows the k-fold residuals for 10 folds defined using kMeans
clustering.

(a) constant (b) chimney

(c) fault-line (d) domains

Figure 5.4: Root mean square k-fold cross-validation residuals [mGal] over each fold
for the different trend models. RMS k-fold residual over all data points is also given
for each trend model.

One sees that, unlike the leave-one-out case, cross-validation is now able to dis-
tinguish between the different trends, giving a significant preference to the bare
constant model. Apart from model ranking, there is more information that is con-
tained in the CV residuals. For example, one sees that all models, have a hard time
predicting the cluster in the bottom left-part, indicating that the estimation of the
trend is highly sensitive to this region of the volcano for these models.

While this might indeed be a signal that there is some interesting phenomenon
to be studied in this region, one should also remember that this particular regions
is isolated from the rest of the dataset, owing to its location close to an inaccessible
region. We stress that one should not rely too much on any fixed data-partitioning
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scheme / choice of folds except if having strong reasons to do so. Indeed, when
looking at the median (over folds) of the within-fold mean squared cross-validation
residual Fig. 5.4, the model comparison changes drastically from the one done using
the mean over folds. The median over fold squared residuals ranks the domains
model as the best, whereas the mean ranks it as the worst. This suggests that the
bottom-left fold exhibits an outlier-like behavior, having a too strong influence over
the CV mean. Figure 5.5 shows how the within-fold mean squared residuals vary
over the different folds.

Figure 5.5: Distribution of the MS CV residual over folds (k = 10 and k = 100) for
the different models.

One notices that in 10-fold cross-validation fold nr. 4 is sensibly harder to predict
across all model, the piecewise domains model being even wildly wrong for that
particular fold. The figure also shows how increasing the number of folds (still
defined with kMeans clustering) makes each individual fold easier to predict and
uniformizes the residuals across folds.

The above figure presents strong evidence that one should be careful in the choice
of folds when using cross-validation. It calls for the development of CV diagnostics
that enable one to quantify the sensitivity of the chosen CV approach and shows
the necessity of elaborating robust cross-validation procedures.

While we leave principled developments to future works, we next present a few
heuristic diagnostics that can help to assess the quality of a given cross-validation
procedure. Our goal is to present an exhaustive overview of the situation, which we
believe can serve as inspiration for further developments in CV research.

Before proceeding further, we also note that the above phenomenon of fold sen-
sitivity can also be of practical interest in the particular inverse problem considered.
Indeed, volcanoes tend to have inaccessible regions where no data can be collected.
One would thus like to use models that do not depend too strongly on data that
could potentially be collected in those regions. Here, cross-validation can be used
as an interesting diagnostic for regional sensitivity.
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5.6 Cross-Validation for Hyperparameter Train-

ing

In the previous sections as well as in most applications of Bayesian inversion, models
hyperparameters were trained using maximum likelihood estimates (MLE). While
MLE for hyperparameters training is well established and enjoys theoretical guar-
antees, it suffers from several drawbacks in practice. In particular, it is known that
MLE tends to overestimate the range parameter and that it suffers from numeri-
cal instabilities (Basak et al., 2022). In this regard, cross-validation can offer an
alternative to MLE for hyperparameters estimation.

The usual procedure for training hyperparameters with CV is to pick the set of
hyperparameters that minimize the across-fold mean MSE Eq. (5.18). While this
constitutes a reasonable training scheme, results from last section have shown how
some folds can have outlier-type behaviors for some trend models. By that we mean
that, for a given choice of folds, some trend models might be highly sensitive to one
given fold, leading to a big MSE for that fold. For example, in our gravimetric inverse
problem example, the piecewise domains trend model has a hard time predicting two
of the folds (see Fig. 5.4), probably because the estimation of the trend within one
domain depends highly on those regions of the dataset. Even though one can wonder
whether models with such high sensitivity to parts of the data are appropriate, we
leave this question for later and here focus solely on hyperparameters training.

One possible way to alleviate the sensitivity of the training on “outlier folds”
is to consider the across-fold median MSE instead of the mean. In the context of
Eq. (5.18), the median k-fold CV criterion writes as:

θ̂CV = arg min
θ
LCV,median(θ;Z,y, I) (5.19)

LCV,median(θ, Z,y, I) := median

ÇÅ
1

|ij|
||eij ||2

ã
=1,...,k

å
, (5.20)

Note that while considering the median is one possible way of mitigating the depen-
dence on outliers, one could also consider other techniques, for example replacing
the L2 norm of the residuals the L1 norm.

We study the difference between MLE and CV hyperparameters training by
applying them to our example gravimetric inverse problem (see Section 4.4.1 for
MLE training without trends). Table 5.1 lists the optimal hyperparameters for each
training scheme, for different trend models (Matérn 3/2 kernel). The CV training
is done with 10 folds, with folds defined by kMeans spatial clustering over the
datapoints (same folds as in Fig. 5.4).
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λ0 σ0

training method MLE CV (10 fold) MLE CV (10 fold)

constant 651.6 467.3 284.7 49.8
chimney 923.7 574.9 318.8 86.5
fault line 1231.3 790.1 257.7 49.8
domains 539.2 287.9 147.6 245.4

Table 5.1: Optimal hyperparameters (Matérn 3/2) for MLE and 10-fold CV training.

One notices that CV tends to favor noticeably smaller lenghtscale parameters
and variances. Also, compared to MLE, CV training does not present any numerical
instabilities. Indeed, the log-determinant term in the MLE criterion (Eq. (4.7)) is
unstable for large values of λ0. In practice, one discards unstable regions of the
parameter space by excluding hyperparameters for which the prediction error on the
training set is significantly larger than the noise standard deviation (see Fig. 5.6).

(a) maximum likelihood

(b) cross-validation

Figure 5.6: Comparison of MLE and 10-fold CV hyperparameters training. Optimal
hyperparameters for each training scheme are marked with a red cross. Regions
where the log-determinant did not compute are left blank.
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5.7 Appendix: Proofs of the Theorems

Proof. (Theorem 14) We begin by noticing that Y and ZX are jointly multivariate
Gaussian distributed: Å

Y
ZX

ã
∼ N

ÅÅ
µ1

µ2

ã
,

Å
Σ11 Σ12

Σ21 Σ22

ãã
,

with µ1 := GFWβprior, µ2 := FXβprior, Σ22 := Q and Σ12 := GKWX + GFWΣF T
X .

Then, applying the usual Gaussian conditioning formulae (see e.g. (Rasmussen and
Williams, 2006, A.2)) yields the desired result for the posterior mean and covariance
of Z. The exact same reasoning gives the posterior distribution of β.

For the flat prior limit, we first apply the Woodbury identity to the helper matrix
Q to get:

Q−1 = R−1 −R−1GFW
(
Σ−1 + F T

WG
TR−1GFW

)−1
F T
WG

TR−1.

Then, in the limit where all eigenvalues of the trend coefficients prior covariance
Σ tend to 0, applying the matrix identity (where the matrices A,B are assumed
invertible): (

A−1 +B−1
)−1

= A− A (A+B)−1A,

and defining S := F T
WG

TR−1GFW , the product involved in the computation of the
posterior mean tends to:Ä
FWΣF TW +KXW

ä
GTQ−1 Σ→0−→ FWΣF TWGTR−1 − FWΣF TWGTR−1GFW

(
Σ−1 + S

)
F TWGTR−1

+KXWGTR−1 −KXWGTR−1GFWS−1

= FWΣF TWGTR−1

+KXWGTR−1 −KXWGTR−1GFWS−1

− FWΣS
Ä
S−1 − S−1

(
S−1 + Σ

)−1
S−1
ä
F TWGTR−1

→ FWS−1F TWGTR−1 +KXWGTR−1 −KXWGTR−1GFWS−1,

which yields the desired result. A similar calculation give the covariance in the flat prior

limit.
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Chapter 6

Multivariate Bayesian Inversion
and Sequential Uncertainty
Reduction

This chapter reproduces the paper Fossum et al. (2021b), co-authored with Trygve
Olav Fossum, Jo Eidsvik, David Ginsbourger and Kanna Rajan and published in the
Annals of Applied Statistics
(DOI:10.1214/21-AOAS1451). with a few reformulations and corrections.

6.1 Introduction

After having considered extensions of Gaussian processes to linear operator observa-
tions and large-scale Bayesian inverse problems in Chapter 4, we now pursue another
direction by extending GPs to vector-valued responses. Although GP regression in
a multivariate setting is already known in the geostatistics community under the
name of cokriging (see for example (Wackernagel, 2003)), the use of Gaussian pro-
cesses for multivariate inverse problems is still a fresh topic of inquiry. We note
that there already exists theoretical works on the topic that apply to vector-valued
responses as well (Knapik et al., 2011; Dashti and Stuart, 2016), but these lack
practical applications.

In this chapter, we focus on the Bayesian estimation of excursion set of vector-
valued fields. To that end, we extend uncertainty reduction criteria to multivariate
GPs and provide semi-analytical expressions for their computation. We then turn
to the sequential optimization of these criteria and provide algorithms for myopic as
well as lookahead optimization. Related works in probabilistic estimation of excur-
sion sets include (Duhamel et al., 2023) and (Fossum et al., 2021a). We also note
that, during the elaboration of this thesis, new results concerning the consistency of
SUR strategies in multivariate settings have been derived (Stange, 2022).

Our techniques are demonstrated on a river plume mapping problem as presented
in Section 2.4.2, performing synthetic benchmarks as well as a real-world field cam-
paign. Our benchmarks demonstrate how adaptive sampling strategies are able to
beat traditional static predefined data collection plans, opening new venues of re-
search in oceanography that leverage fruitful interactions between marine robotics
and spatial statistics.

88



Efficient Gaussian process updating for uncertainty reduction on implicit sets

6.2 Multivariate Gaussian Processes and UQ on

their Excursion Sets

In order to model multivariate fields such as temperature and salinity in a fjord,
traditional GP models are insufficient. We thus here introduce a multivariate gen-
eralization of GPs. Although kriging for multiple outputs has been known for some
time under the name of cokriging (Journel and Huijbregts, 1978; Cressie, 1993; Ver
Hoef and Barry, 1998; Wackernagel, 2003) and has been recently revisited in ma-
chine learning under the umbrella of multiple output Gaussian processes (Conti and
O’Hagan, 2010; Álvarez et al., 2012), most works forego a systematic presentation of
the subject. For the sake of completeness, we here start from scratch by extending
the definition of GPs to multivariate outputs in a straightforward fashion.

Definition 11 (Multivariate Gaussian Process). A p-dimensional Gaussian process
Z on a domain D is an Rp-valued stochastic process, such that for any finite set of
locations x1, ..., xn ∈ D and any set of indices i1, ..., ip the distribution of the vector

(Zx1,i1 , ..., Zxp,ip)

is n-variate Gaussian.

Here, we use Zx,i to denote the i-th component of Zx (1 ≤ i ≤ p), specifying the
spatial location first, followed by the vector index. For the rest of this work, Greek
subscripts will be used to denote vector indices.

Example 1 (Uncorrelated Basis Functions). Let Vi ∼ Gp(m(i), k(i)), i = 1, ..., p be
a set of independent Gaussian processes on D and let ai : D → R be a collection of
real-valued functions. Then, the stochastic process

Z :=

p∑
i=1

aiVi

is a p-variate Gaussian process.

Generalized Locations: To simplify notation, we introduce the concept of
generalized locations, which stands for a couple χ = (x, i) of spatial location x and
vector index i. The notation Zχ will be used to denote Zx,i and will allow us to
think of Z as a scalar-valued random field indexed by D × {1 . . . , p}, which will
give the co-Kriging equations a particularly simple form that parallels the one of
univariate Kriging. From now on, Greek letters will be used to denote generalized
locations and the letters x and i will usually denote spatial locations and response
indices respectively.
Furthermore, boldface letters (and uppercase in the case of latin letters) will be
used to denote concatenated quantities corresponding to batches of observations.
Given a dataset consisting of q observations at spatial locations (x1, . . . , xq) ∈ Dq

and response indices (i1, . . . , iq) ∈ {1, ..., p}q, we use the concatenated notation

χ := (χ1, . . . , χq), with xi = (xi, ii).
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We also compactly denote the field values at those different locations by

Zχ :=
(
Zx1,i1 , ..., Zxq ,iq

)
∈ Rq.

For a second order random field Z on D with mean function mx and matrix co-
variance function k(x, x′), one can straightforwardly extend and vectorize the mean
function into a function of the batch-generalized locations mχ. As for k, it in-
duces a covariance kernel K on the set of extended locations via K((x, i), (x′, i′)) =
K(x, x′)i,i′ . In vectorized/batch form, Kχχ′ then amounts to a matrix with num-
bers of lines and columns equal to the numbers of generalized locations in χ and χ′,
respectively. For a collection of spatial locations X = (x1, . . . , xr) ∈ Dr, we write
ZX := (Zx1,1, ..., Zx1,p, ..., Zxr,1, ..., Zxr,p) ∈ Rp×r, concatenating first the vector in-
dices and then the spatial locations. Such vectorized quantities turn out to be useful
in order to arrive at simple expressions for the co-Kriging equations presented next.

6.2.1 Cokriging and Update

Given a GRF Z and observations of some of its components at locations in the
domain, one can predict the value of the field at some unobserved location x ∈ D
by using the conditional mean of Zx, conditional on the data. This coincides with
co-Kriging equations, which tell us precisely how to compute conditional means and
covariances. We will present a general form of co-Kriging, in the sense that it allows
inclusion of several (batch) observations at a time; observations at a given location
x ∈ D may only include a subset of the components of Zx ∈ Rp (heterotopic).

Using generalized locations, the simple cokriging equations for generalized ob-
servations then amount to kriging with respect to a scalar-valued GP indexed by
D × {1 . . . , p}.

Theorem 16. Let Z be a p-variate GP on D with mean function m and (general-
ized) covariance function K. Assume that one observes the following q-dimensional
batch generalized data:

Y := Zξ + ε, (6.1)

where ε is a q-dimensional centered Gaussian vector with covariance matrix ∆ and
ξ is a batch of generalized locations. Then, conditionally on Y = y, and assuming
that (Kξξ + ∆) is invertible, the distribution of Z is Gaussian with mean function
and (generalized) covariance function:

m̃χ = mχ + λ(χ)T (y −mξ) (6.2)

K̃χχ′ = Kχχ′ − λ(χ)T (Kξξ + ∆)λ(χ′), (6.3)

with (generalized) cokriging weights

λ(χ) = (Kξξ + ∆)−1Kξχ. (6.4)

In the following applications, we will always silently assume that invertibility
assumptions are met. This is reasonable as long as the observations are not too
correlated (many observations of the same component at the same location). Next,
we consider a sequential setting similar as that of Section 4.2 where new (batches
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of) observations arrive in sequence and one wants to update the posterior in a
computationally efficient way, without having to re-assimilate the data from scratch
using the bare conditioning equations Eqs. (6.2) and (6.3). We assume that n
batches of observations have already been assimilated, so that the current posterior
has mean function m(n) and generalized covariance K(n). Then, a new batch of
generalized observations made at ξn+1 with observed values yn+1 is made available.
Then, extending Corollary 6 to the multivariate case, one obtains the analogon of
Theorem 13 that allows to update the posterior by only computing a subset of the
cokriging weights.

Theorem 17. Assume that Z(n) is a multivariate GP with mean function m(n) and
(generalized) covariance function K(n). Then, given a new batch of qn observations
made at generalized locations ξn+1 with values yn+1 and following observations model
Eq. (6.1), the posterior of Z(n) is multivariate Gaussian with mean function and
generalized covariance given by

m(n+1)
χ = mχ + λn+1(χ)T (y −m(n)

ξ ) (6.5)

K
(n+1)
χχ′ = K

(n)
χχ′ − λn+1(χ)T (K

(n)
ξn+1ξn+1

+ ∆)λn+1(χ′). (6.6)

Here λn+1(χ) denotes cokriging weights Eq. (6.4) when conditioning the field Z(n)

on the new data yn+1.

These update formulae are essentially a multivariate extension of the batch-
sequential Kriging update formulae from (Chevalier et al., 2014b) As noted in
(Chevalier et al., 2015) in the case of scalar-valued fields, these update formulae
naturally extend to universal Kriging in second-order settings and apply without
Gaussian assumptions. Apart from offering computational savings, these formulae
We will enable us to derive semi-analytical expressions for step-wise uncertainty
reduction criteria for vector-valued random fields.

6.2.2 Multivariate Excursion Sets and UQ

We now turn to the estimation of excursion sets of multivariate random fields. For
the rest of this section, we assume that Z is a p-variate GP on a domain D. We are
interested in predicting regions where the values of the field lie in a certain range,
i.e. sets of the form

Γ := Z−1(T ) = {x ∈ D : Zx ∈ T}, (6.7)

where T ⊂ Rp is some set of specified values. If we assume that Z has continuous
trajectories and T is closed, then Γ becomes a Random Closed Set (Molchanov,
2005) and concepts from the theory of random sets will prove useful to study Γ.
Note that while some aspects of the developed approaches do not call for a specific
form of T , we will often, for purposes of simplicity, stay with the case of orthants:
T = ((−∞, t1] × · · · × (−∞, tp]) where t1, . . . , tp ∈ R, as this allows for efficient
calculation of several key quantities. Note that changing some ≤ inequalities to
≥ ones would lead to immediate adaptations. Figure 6.1 shows a realization of
a bivariate GP together with the corresponding excursion set above two arbitrary
thresholds.

Apart from the precise location of the excursion set Γ, one might consider the
(less ambitious) objective of estimating its volume. In the following, let ν be a
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(locally finite, Borel) measure on D. Our goal is to investigate the distribution of
the (random) excursion volume ν(Γ). Centered moments of this distribution may
be computed using the following theorem (we refer the reader to the section on
generalized locations for a reminder of the notation).

Theorem 18. Let Z be a measurable stochastic process defined on a domain D and
ν be a locally finite measure on D. Then, ν(Γ) is a random variable and for any
r ≥ 1,

E[ν(Γ)r] =

∫
Dr

P (ZX ∈ T r) dν⊗ (X) ,

where the product measure is denoted as ν⊗ :=
⊗r

i=1 ν, T r denotes the Cartesian
product and X ∈ Dr.

Furthermore, in the case where Z is a p-variate GP with mean function m
and (generalized) covariance function K, for any X ∈ Dr the probability of r-joint
excursion can be computed with the help of the p×r-dimensional Gaussian probability
density function ϕp×r(·; mX ,KXX) as

P (ZX ∈ T r) =

∫
T r
ϕp×r (t; mX ,KXX) dt,

where mX ∈ Rp×r and KXX ∈ R(p×r)×(p×r) is assumed to be non-singular.

Corollary 9. In the case where the excursion range is an orthant, t = (t1, ..., tp) ∈
Rp and T = ((−∞, t1]×· · ·×(−∞, tp]), the joint excursion probability directly writes
in terms of the multivariate Gaussian cumulative distribution:

P (ZX ∈ T r) = Φp×r (1r ⊗ t; mX ,KXX) ,

where Φp×r denotes the p × r-variate Gaussian cumulative distribution function
(CDF) and we use the notation 1r = (1, ..., 1) ∈ Rr and 1r⊗t = (t1, . . . , tp, . . . , t1, . . . , tp) ∈
Rp×r.

(a) Zx,1. (b) Zx,2. (c) Regions of interest.

Figure 6.1: Realization of a bivariate Gaussian process Z (first component (a) and
second computational (b)) and excursion set above some threshold (c). Joint excur-
sion in red and excursion of a single variable in light-red.
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A natural way of quantifying the uncertainty on the excursion volume is through
its (residual) variance (Chevalier et al., 2014a). This is the goal of the excursion
measure variance (EMV), which is the second centered moment of the excursion
measure distribution.

Definition 12 (Excursion Measure Variance). Given a p-variate GP Z defined on
a domain D, and a target range T ⊂ Rp, the excursion measure variance of the
excursion set of Z in T is defined as:

EMV(Z) := Var[ν(Γ)] =

∫
D2

P (Zx ∈ T, Zx′ ∈ T ) dν⊗(x, x′)

−
Å∫

D

P (Zx ∈ T ) dν(x)

ã2

,

where the random set Γ is defined as in Eq. (6.7) and the dependence on T is left
silent for the sake of readability.

In the orthant case of Corollary 9 and denoting as usual by m and K the mean
and covariance function of Z, the above can be computed semi-analytically as

EMV(Z) =

∫
D×D

Φ2p

(
12 ⊗ t;m[x,x′],K[x,x′][x,x′]

)
dν⊗(x, x′)

−
Å∫

D

Φp (t;mx,Kxx) dν(x)

ã2

,

where the brackets denote concatenation. We note that in practice, the above in-
tegral can be efficiently evaluated numerically using (Genz and Bretz, 2009), but
still require integration over the product domain D×D. In contrast, the integrated
Bernoulli variance (IBV) of Bect et al. (2019) involves solely an integral over the
domain.

Definition 13 (Integrated Bernoulli Variance). Given the same setting as in Defi-
nition 12, the integrated Bernoulli variance of the excursion of Z in T is defined
as:

IBV(Z) :=

∫
D

P (Zx ∈ T ) (1− P (Zx ∈ T ))dν(x).

This functional also provides a natural way of measuring the uncertainty in the
excursion volume, since it is equal to the integral of the variance of the pointwise
excursion indicator function IBV =

∫
D

Var[1(Zx ∈ T )]dν(x). Again, in the orthant
case of Corollary 9, the above can be expanded as:

IBV(Z) =

∫
D

Φp (t;mx,Kxx)− (Φp (t;mx,Kxx))
2 dν(x).

6.2.3 SUR Strategies for Multivariate Excursion Sets

We now focus on the engineering of stepwise uncertainty reduction strategies (SUR)
in the vein of (Bect et al., 2012) for the estimation of excursion sets of multivariate
GPs. To that end, we consider the same sequential setting as in Theorem 17 and
denote by Z(n) a GP that is distributed according to the conditional law of the

Chapter 6 Cédric Travelletti 93



Efficient Gaussian process updating for uncertainty reduction on implicit sets

original GP Z conditional on n stages of already performed assimilations. The
introduction of the stochastic process Z is useful in simplifying notations, but we
stress that in the end all quantities only depend on the conditional law and not on
the process itself. Our goal is to compute the expected effect of the inclusion of
new observations on the uncertainty functionals EMV and IBV, thereby extending
results from (Chevalier et al., 2014a; Bect et al., 2019) to the multivariate setting.

Remark 9. The uncertainty measures EMV(Z) and IBV(Z) (Definitions 12 and 13)
only depend on the law of the GP Z in the sense that if Z ′ is another GP that is
equal in law to Z, then EMV(Z) = EMV(Z ′) and IBV(Z) = IBV(Z ′). Owing to
this fact, the notation IBV(Z(n)), where Z(n) is any GP having as law the current
conditional law of Z, is well-defined, and we will liberally use it next.

In order to study the effect of the inclusion of a new data point, we denote by
IBV(Z(n)|Z(n)

χ ) the IBV under the current law (the law of Z(n)), conditioned on

observing Z
(n)
χ (generalized, possibly batch observation) at generalized location χ.

Our goal is then to compute the expected effect of a new observation on the IBV:

EIBV(χ;Z(n)) := EZ(n)

î
IBV(Z(n)|Z(n)

χ )
ó
, (6.8)

where χ is any (batch) generalized location.
We next present a result that allows efficient computation of EIBV as an integral

of CDFs of the multivariate Gaussian distribution. This will prove useful when
designing sequential expected uncertainty reduction strategies. For the next two
propositions, assume that the target range is an orthant as in Corollary 9 with
upper threshold t ∈ Rp.

Proposition 1. Let the current law of the field be that of the p variate GP Z(n)

with mean function m(n) and covariance K(n). Also let χ be any batch-generalized
location and denote by K(n+1) the conditional covariance functions of Z(n) condi-
tionally on observations at χ (note that according to Eq. (6.3) this does not depend
on the values of the observations). Then the expected IBV at χ can be computed as:

EIBV(χ;Z(n)) =

∫
D

Φp
Ä
t;m(n)

x ,K(n)
xx

ä
dν(x)

−
∫
D

Φ2p

ÇÇ
t−m(n)

x

t−m(n)
x

å
; Σ(n)(x)

å
dν(x),

(6.9)

where the 2p× 2p matrix Σ(n)(x) is given by:

Σ(n)(x) :=

Ç
K

(n)
xx K

(n)
xx −K(n+1)

xx

K
(n)
xx −K(n+1)

xx K
(n)
xx

å
,

A similar semi-analytical expression can also be derived for the expected EMV,
which is defined in the same way as the expected IBV.

Proposition 2. Consider the same setting as in Proposition 1, then the expected
EMV at the batch-generalized location χ can be computed as:

EEMV(χ;Z(n)) =

∫
D

Φ2p

(
12 ⊗ t;m[x,x′],K[x,x′][x,x′]

)
dν⊗(x, x′)

−
∫
D

Φ2p

ÇÇ
t−m(n)

x

t−m(n)
x′

å
; Σ̃(n)(x, x′)

å
dν⊗(x, x′),
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where the matrix Σ̃(n)(x, x′) is defined blockwise as

Σ̃(n)(x, x′) =

Ç
Σ̃1,1(x, x) Σ̃1,2(x, x′)

Σ̃2,1(x′, x) Σ̃2,2(x′, x′)

å
with blocks given, for i, j ∈ {1, 2} and x, x′ ∈ D, by

Σ̃i,j(x, x
′) = λn+1(x)TK(n)

χχλn+1(x′) + δi,jK
(n+1)
xx′ .

Here we use the obvious convention that the cokriging weights for the spatial location
x ∈ D are given by Eq. (6.4) for the generalized location ((x, 1), ..., (x, p)), i.e. the
weights for all components of the field at location x.

We remark that Propositions 1 and 2 are twofold generalizations of results from
Chevalier et al. (2014a): they extend previous results to the multivariate setting and
also allow for the inclusion of batch or heterotopic observations through the concept
of generalized locations. A key element for understanding these propositions is that
the conditional co-Kriging mean entering in the EPs depend linearly on (batch)
observations. The conditional equality expressions thus become linear combinations
of Gaussian variables whose mean and covariance are easily calculated. Related
closed-form solutions have been noted in similar contexts (Bhattacharjya et al., 2013;
Stroh, 2018), but not generalized to our situation with random sets for multivariate
GPs.

Figure 6.2 displays of the EBV is reduced depending on which component of a
bivariate GP is observed. In the situation of the figure, a first set of observations
are done at the locations depicted in gray (see Fig. 6.2a), and the data is used
to update the GP model. We then consider the green triangle as a potential next
observation location and plot the EBV reduction (at each location) that would result
from observing only one component of the field (Zx,1 or Zx,2), or both at location x.

(a) Regions. (b) Zx,1 observed. (c) Zx,2 observed. (d) Both observed.

Figure 6.2: Pointwise Bernoulli variance reduction for observation of a single or both
components of the random field at one location. Data collection locations in green.
True excursion set in red. Places where only one response is above threshold are
depicted in pink. EBV reduction associated to observing one or both responses at
the green location are shown in 6.2b, 6.2c and 6.2d.

6.3 Application: Sequential Design for Multivari-

ate Excursion Set Estimation

Now that we have uncertainty functionals for quantifying the reduction of uncer-
tainty on excursion sets of multivariate GPs that would result from adding obser-
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vations at a given (batch of) location, we want to use these to develop sequential
design strategies for reducing the uncertainty on said excursion sets. This section
will be guided by the river plume estimation example from Section 2.4.2.
For the rest of this section, we will assume that Z is a p-variate GP on a domain
D and that n data collection steps have been performed so that the current condi-
tional distribution of the GP is the same as that of a p-variate GP Z(n) having mean
function m(n) and generalized covariance function K(n). Our goal is to estimate the
excursion set Eq. (6.7) for which the value of the GP lie in the pre-specified range
T ⊂ Rp.
The data collection process is performed in a sequential way, so that at stage n one
selects the next observation location among a set of candidates using some criterion
and then proceeds to gather data at the chosen location. Once the data has been
gathered, one updates the model with the observed data values using Eqs. (6.2)
and (6.3) to get a new GP Z(n+1). This process is then repeated iteratively.
Note that the type of data collected at each stage can be of various type (all compo-
nents of the field at a single location, only some components at a subset of selected
locations, etc.) because of the concept of generalized location in the co-Kriging ex-
pressions. In general, a design strategy must choose the spatial location as well as
the components to observe (heterotopic), or where several observations are allowed
at each stage (batch). In this work, we will limit ourselves to the case where one
observation location has to be chosen at each stage and all components of the field
there are then observed (isotopic), since this corresponds to the limitations encoun-
tered in our river plume mapping example Section 2.4.2. We nevertheless stress
that, in principle, the ideas presented next can be applied to any type of sampling
situations.

6.3.1 Sampling Strategies

Although, for each criterion, one could write down the Bell equations for the solution
of the full dynamic program describing the optimal design problem under the given
criterion, in practice this involves a series of intermixed minimizations over designs
and integrals over data so that the optimal solution is intractable because of the
enormous growth over stages (see e.g. Powell (2016)). We thus resort to heuristic
strategies, of which we present a few below.
We assume that at each stage n the next location is chosen from a set of candidate
locations J . This set depends on the current location (where the last observation
has been performed), but we drop the dependence in the notation for the sake of
readability. The next location is then chosen by minimizing a criterion C over the
candidates J .

Strategy. [Naive Greedy Sampling]
One of the simplest heuristic for adaptive sampling is to select the candidate
location that has (current) excursion probability closest to 1/2:

Cnaive(u) = |P(Z(n)
u ∈ T )− 1/2| (6.10)

While easy to implement, this strategy does not account for the expected
reduction in uncertainty and ignores the effects the locations other that the
one observed, leading it to exhibit a too greedy behavior, spending many stages
in excursion boundary regions.
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In order to go beyond naive sampling, one needs to use more sophisticated un-
certainty functionals such as EMV or IBV and take into account the effects of the
added observation on the subsequent design stages. For the rest of this section, we
will only consider the IBV, tough the dynamic programming approaches presented
here can be applied to the EMV as well. The easiest way to account for the future
effects of the assimilation of a new observation is to compute its expected effect on
the uncertainty functional, under the current distribution of the GP model. This
results in the myopic sampling strategy.

Strategy. [Myopic]
At each stage n, the location minimizing the expected future uncertainty is
chosen:

Cmyopic(x) = EIBV
Ä
u, Z(n)

ä
. (6.11)

This criterion can be efficiently computed using Proposition 1. Even though
this myopic strategy is non-anticipatory, it still provides a reasonable approach for
creating designs in many applications and is reasonably easy to compute. We also
note that this strategy is optimal if there is only one last observation allowed.
The myopic strategy can be extended by considering two stages of measurements,
resulting in a two-step look-ahead strategy. The principle of is to select as next
observation location the one that yields the biggest reduction in EIBV if we were to
(optimally) add one more observation after that again.

Strategy. [2-step Look-ahead]
The next observation location is chosen among the minimizers in J of the
criterion

C2-steps(u) = EY

ï
min

u′∈J (u)
EIBVn

Ä
u′, Z(n)|Z(n)

u = Y
äò

(6.12)

where Y is the random data realization of Z
(n)
u given the observation model

Eq. (6.1).

In practice, the outer expectation is computed by Monte Carlo sampling of data
Y from the current conditional distribution of the GP. For each sample, the second
expectation is then solved using the closed-form expressions for EIBV provided by
Proposition 1.

6.3.2 Benchmarks on a Synthetic Test Case

We now study the performances of the above strategies on a synthetic test case that
is meant to reproduce the characteristics of a real river plume mapping problem
like the one presented in Section 2.4.2. As a reminder, the goal is to estimate the
excursion set (ocean)

Γ∗ := {x ∈ D : ρ(1)
x ≥ T1, ρ

(2)
x ≥ T2},

where ρD → R2 denotes the temperature (first component) and salinity (second
component) field in a region D around a river mouth, and T1, T2 are prespecified
thresholds. The experiments are performed by first generating a bi-variate function
on the unit square ρ : D = [0, 1]2 → R2 by sampling from some prespecified bi-
variate GP model. This realization is then used as ground truth to mimic the data
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collection process. The data collection is performed by an agent that is allowed to
move on a discrete 31× 31 rectangular grid over the domain.

GP Model: In the experiments, we use a bi-variate GP model Z that is meant to
reproduce the characteristics of a real river plume situation. To that end, the mean
function is endowed with a liner trend:

mx = = a+Bx,

where a is a two dimensional vector and B a 2× 2 matrix. For the covariance part
we use a separable covariance model, that is we assume that the covariance can be
written as a product of a spatial part and a vector part:

K((x, i), (x′, j)) = h(x, x′)γij, γij =

®
σ2
i , i = j

γσiσj, i 6= j,

where h is some covariance kernel on D and γ, σ1, σ2 ∈ R. We note that in theory
one could consider non-separable covariance models for multivariate GPs such as
(Gneiting et al., 2010; Genton and Kleiber, 2015), but in practice those would require
extensive data to fit the model. For the rest of this section, we fix the spatial
covariance kernel h to be a Matérn 3/2 kernel with lenghtscale 0.495. The other
parameters are set to:

a =

Å
5.8
24.0

ã
, B =

Å
0.0 −4.0
0.0 −3.8

ã
, σ1 = 2.5, σ2 = 2.25, γ = 0.2.

Those values are meant to approximate real river plume situations. Figure 6.3
show a realization of the aforementioned GP model, together with a run of the
myopic strategy. Plots and experiments are generated with a Python toolbox called
MESLAS 1, developed for the needs of this work.
Static Strategies: In order to compare our sampling strategies with the ones
usually used in design problems involving autonomous vehicles, we consider static
designs, where the data collection plan is pre-scripted. In the experiments, we
will consider a static north and static east strategy, which basically travel the do-
main along the vertical, respectively horizontal middle line. We also consider a
static zigzag strategy which travels along the vertical middle line in a zigzag pattern.

Results: The strategies are compared by running them on 100 different ground
truth sampled from the bi-variate GP model presented before. For the adaptive
strategies, the same GP model is used as the one for sampling, so that we are in a
well-specified setting. All strategies are allowed to collect 10 data points. For each
strategy, we monitor the decrease in uncertainty on the excursion set (decrease in
IBV) as well as the predictive performance on the whole field, measured by root
mean square error (RMSE) between the conditional mean and the ground truth, as
well as the reduction in predictive variance. It is important to note that the objective
function used by the AUV is focused on reducing the EIBV, but we nevertheless
expect that we will achieve good predictive performance for criteria such as RMSE
as well. Another non-statistical criterion that is relevant for practical purposes is

1https://github.com/CedricTravelletti/MESLAS
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(a) Excursion realization. (b) BV reduction.
(c) Expected reduction of
BV.

Figure 6.3: Example run of the myopic strategy on a realization of the given GP
model. Reduction in Bernoulli variance compared to the prior is shown in 6.3b,
with past observation locations in green and current agent position in cyan. The
expected IBV reduction associated to data collection at neighbouring nodes of the
current location is shown in 6.3c. The thick and light color indicates the node at
30◦ to be the best possible choice.

the computational time needed for the strategy. The results of the replicate runs
are shown in Fig. 6.4, where the different criteria are plotted as a function of survey
distance.

We see that both myopic and look-ahead strategies perform well here, but some
of the static east and static zigzag also achieve good results because they cover
large parts of the domain without re-visitation. Sequential strategies targeting IBV
will sometimes not reach similar coverage, as interesting data may draw the AUV
into twists and turns. There is a relatively large variety in the replicate results as
indicated by the vertical lines. Nevertheless, the ordering of strategies is similar.
On the computational side, the naive strategy is on par with the static designs,
while the myopic strategy is slower because it evaluates expected values for all
candidate directions at the waypoints. But it is still able to do so in reasonable
time, which allows for real-world applicability. The look-ahead strategy is much
slower, reaching levels that are nearly impractical for execution on an AUV. We
also studied the sensitivity of the results by modifying the input parameters to have
different correlations between temperature and salinity, standard deviations, and
spatial correlation range. In all runs, the myopic and look-ahead strategies perform
the best in terms of realized IBV, and much better than naive. The look-ahead
strategy seems to be substantially better than the myopic design only for very small
initial standard deviations or very large spatial correlation range.

6.3.3 Real-world Application: River Plume Mapping in Trond-
heim Fjord

This subsection summarizes field experiments performed by Trygve Olav Fossum and
Jo Eidsvik (NTNU Trondheim). These results are included for the sake of complete-
ness but are not original work of the author of this thesis.

To demonstrate the applicability of using multivariate EPs and the IBV to inform
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(a) IBV.
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Figure 6.4: Simulation results from 100 replicate simulations for 10 sampling
choices/stages on the grid. Vertical lines show variation in replicate results.

oceanographic sampling, we present a case study mapping a river plume with an
AUV. The experiment was performed in Trondheim, Norway, surveying the Nidelva
river (Fig. 2.4b). The experiments were conducted in late Spring 2019, when there
is still snow melting in the surrounding mountains so that the river water is colder
than the water in the fjord. The experiment was focused along the frontal zone
that runs more or less parallel to the eastern shore. The GP model parameters were
specified based on a short preliminary survey where the AUV made an initial tran-
sect to determine the trends in environmental conditions and correlation structures.
Based on the initial runs we get a reasonable idea of the temperature and salinity
of river and ocean waters, and also specify the trend by linear regression, where
both temperature and salinity were assumed to increase linearly with the west co-
ordinate. Next, the residuals from the regression analysis were analyzed to specify
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the covariance parameters of the GRF model, leading to the parameters listed in
Table 6.1. The regression parameters shown here are scaled to represent the east
and west boundaries of the domain as seen in the preliminary transect data, and
the thresholds are intermediate values. These parameter values were then used in
field trials, where we explored the algorithm’s ability to characterize the river plume
front separating the river and fjord water masses.

Parameter Value Source

Cross correlation temperature and salinity 0.5 AUV observations
Temperature variance 0.20 AUV observations (variogram)
Salinity variance 5.76 AUV observations (variogram)
Correlation range 0.15 km AUV observations (variogram)
River temperature 10.0 ◦C AUV observations
Ocean temperature Tocean 11.0 ◦C AUV observations
River salinity Sriver 14.0 g/kg AUV observations
Ocean salinity Socean 22.0 g/kg AUV observations
Threshold in temperature 10.5 ◦C User specified
Threshold in salinity 18.0 g/kg User specified

Table 6.1: Model and threshold parameters from an initial survey.

The platform used for data collection is a Light AUV (Sousa et al., 2012)
(Fig. 6.5) equipped with a 16 Hz Seabird Fastcat-49 conductivity, temperature, and
depth (CTD) sensor was used to provide salinity and temperature measurements.
The AUV is a powered untethered platform that operates at 1-3 m/s in the upper
water column. We assume that the measurements are conditionally independent be-
cause the salinity is extracted from the conductivity sensor which is different from
the temperature sensor. We specify variance 0.252 for both errors, which is based
on a middle ground between the nugget effect in the empirical variogram and the
sensor specifications.

Figure 6.5: The commercially available Light Autonomous Underwater Vehicle
(LAUV) platform for upper water-column exploration used in our experiments.

The AUV was guided using the myopic strategy from Section 6.3.1, computed
on a equilateral grid discretization of the survey domain. At each stage, it takes the
AUV about 30 seconds to assimilate data and evaluate the EIBV for all the possible
candidates (grid nearest neighbors). The survey was set to take approximately 40
minutes, visiting 15 grid points in total, with the vehicle running near the surface to
capture the plume. On its path from one grid point to the next, the AUV collects
data with an update frequency of 30 seconds, giving three measurements per batch
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in the updates at each stage. The resulting designs are shown in Fig. 6.6 for two
surveys performed 2 hours apart.

(a) AUV survey area (b) Temperature tracks

(c) Survey 1 (d) Survey 2

Figure 6.6: Results from mapping the Nidelva river, Trondheim, Norway over two
survey missions. 6.6a shows an overview of the survey area overlaid with the AUV
path in black and dashed line. Note the shaded region indicating a typical frontal
region. 6.6b shows the collected temperature data as colored trails. Note waypoint
5 (WP5) which indicates where the two surveys diverge. 6.6c and 6.6d shows the
collected salinity data overlaid on the final EP, which indicate the AUVs statistical
impression of the front. For both missions, the temperature and salinity data cor-
respond with an indication of the EP front. About 2 hours time separated the two
runs.

6.3.4 Results

The recorded temperatures are shown as colored trails in Fig. 6.6b, clearly indi-
cating the temperature difference between fjord and riverine waters. The salinity

102 Chapter 6 Cédric Travelletti



Efficient Gaussian process updating for uncertainty reduction on implicit sets

data are then shown separately, overlaid with the estimated EP for each survey
in Fig. 6.6c and Fig. 6.6d. We see that both surveys successfully estimated and
navigated the separation zone, crossing the frontal boundary multiple times. As
conditions changed slightly between the two surveys, the resulting trajectory (after
waypoint 5) is shown to deviate. Survey 1 continued northwards, tracking the north-
eastern portion of the front, while Survey 2 turned west, mapping the south-western
region.

The final predictions of the front location, represented by conditional EPs in
Fig. 6.6c and Fig. 6.6d as dashed lines, correspond with one another. In both surveys
they yield a picture of the front being to the west in the southern portions of the
region and gradually bending off toward the north east. The amount of exploration
done by Survey 1 which turned north is greater than Survey 2 which was coming
close to the survey area borders in the south-western corner.

6.4 Conclusion

By extending excursion set uncertainty functionals to multivariate Gaussian process,
this work is able to provide strategies for estimation of multivariate excursion sets.
In particular, the characterization of uncertainties in random sets is extended in the
vector-valued case with new results for the expected integrated Bernoulli variance
reduction achieved by spatial sampling designs. This is provided in semi-analytical
form for static designs, and then extended to the adaptive situations. The sequential
derivations provide new insights into efficient applications of adaptive data collec-
tion, as demonstrated in our application. characterizing water mass properties.

6.5 Appendix: Proofs of the Theorems

Proof. (Theorem 18) That ν(Γ) defines indeed a random variable follows from Fu-
bini’s theorem relying on the joint measurability of (x, ω)→ 1Γ(ω)(x), itself inherited
from the assumed measurability for (x, ω)→ Zx(ω) and T , respectively. From there,
following the steps of Robbins’ theorem Robbins (1944), we find that

E[ν(Γ)r] = E
ïÅ∫

D

1Zx∈T dν(x)

ãrò
= E

[
r∏
i=1

Å∫
D

1Zxi∈T dν(xi)

ã]
= E
ï∫

Dr
1Zx1∈T,...,Zxr∈T dν⊗ (X)

ò
=

∫
Dr

P (ZX ∈ T r) dν⊗ (X) ,

where X = (x1, ..., xr) ∈ Dr. The rest consists in expliciting the probability of
T × · · · × T under the multivariate Gaussian distribution of (Zx1 , . . . , Zxr).

The propositions below provide formulae for computations of expectations of
moments of multivariate Gaussian CDFs.

Proposition 3. Let p, q, h ≥ 1, a ∈ Rp, B ∈ Rp×q, and C, CV be two covariance
matrices in Rp×p and Rq×q, respectively. Then, for V ∼ Nq(0q, CV ),

E
î
Φp (a+BV ;C)h

ó
= Φph (a; Σ) ,

where the vector a ∈ Rph is defined as a := 1h ⊗ a = (a, . . . , a)′ and the ph × ph
covariance matrix is given by Σ := 1h1

′
h ⊗BCVB′ + Ih ⊗ C.
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Remark 10. In blockwise representation, Σ can be expressed as follows:Ö
C

. . .

C

è
+

Ö
BCVB

′ . . . BCVB
′

...
...

BCVB
′ . . . BCVB

′

è
Proof. By definition of Φp, for N ∼ Np(0p, C),

P(N ≤ a+BV |V ) = Φp (a+BV ;C) .

Now for Φp (a+BV ;C)h, provided that the probability space is sufficiently large
to accommodate h independent Gaussian random vectors Ni ∼ Np(0, C) (which is
silently assumed here), using the former equality delivers

Φp (a+BV ;C)h =
h∏
i=1

P(Ni ≤ a+BV |V ).

Now by independence of the Ni’s we obtain the joint conditional probability

h∏
i=1

P(Ni ≤ a+BV |V ) = P(N1 ≤ a+BV, . . . , Nh ≤ a+BV |V ),

whereof, by virtue of the law of total expectation,

E
[
Φp
Ä
a+BV ;K(n)

äh]
= E [P(N1 ≤ a+BV, . . . , Nh ≤ a+BV |V )]

= P(N1 ≤ a+BV, . . . , Nh ≤ a+BV )

= P(W1 ≤ a, . . . ,Wh ≤ a)

= Φph (1h ⊗ a; (1h1
′
h)⊗ (BΣVB

′) + Ih ⊗ C) ,

where W = (W1, . . . ,Wh) with Wi = Ni −BV (1 ≤ i ≤ h) and the last line follows
W forming a Gaussian vector (by global independence of the Ni’s and V ) and from
the definition of Φph. The covariance matrix Σ of W is obtained by noting that
cov(Wi,Wj) = BCVB

′ + δijC (i, j ∈ {1, . . . , h}).

We now generalize Proposition 3 to the case of multivariate monomials in orthant
probabilities with thresholds affine in a common Gaussian vector.

Proposition 4. Let g, p, q ≥ 1, h1, . . . , hg ≥ 1 with H =
∑g

i=1 hi, ai ∈ Rp, Bi ∈
Rp×q, and covariance matrices Ci ∈ Rp×p (1 ≤ i ≤ g). Then, for any covariance
matrix CV ∈ Rq×q and V ∼ Nq(0q, CV ),

E

[
g∏
i=1

Φp (ai +BiV ;Ci)
hi

]
= ΦpH (a; Σ) , (6.13)

with a = (1h1 ⊗ a1, . . . , 1hg ⊗ ag) ∈ RpH and Σ ∈ RpH×pH is defined blockwise by
(Σi,j)i,j∈{1,...,g} where, for any i, j ∈ {1, . . . , g},

Σi,j = (1hi1
′
hj

)⊗ (BiΣVB
′
j) + δi,j(Ihi ⊗ Ci) ∈ Rphi×phj . (6.14)
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Remark 11. Using blockwise representation for the blocks themselves delivers

Σij =

Ö
BiΣVB

′
j . . . BiΣVB

′
j

...
...

BiΣVB
′
j . . . BiΣVB

′
j

è
+ δij

Ö
Ci

. . .

Ci

è
Here each Σij is made of hi times hj (vertically/horizontally) p×p sub-blocks, hence
possesses phi lines and phj columns.

Proof. The proof relies (again) heavily on the fact that, by definition of Φp, for any
covariance matrix C ∈ Rp×p, a ∈ Rp, B ∈ Rp×q, and N ∼ Np(0p, C),

P(N ≤ a+BV |V ) = Φp (a+BV ;C) .

In particular, for globally independent Ni,j ∼ Np(0p, Ci) (1 ≤ j ≤ hi, 1 ≤ i ≤ g),

g∏
i=1

Φp (ai +BiV ;Ci)
hi =

g∏
i=1

hi∏
j=1

P(Ni,j ≤ ai +BiV |V )

= P(N1,1 ≤ a1 +B1V, . . . , Ng,hg ≤ ag +BgV |V ),

so that, by the law of total expectation,

E

[
g∏
i=1

Φp (ai +BiV ;Ci)
hi

]
= P(W1 ≤ 1h1 ⊗ a1, . . . ,Wg ≤ 1hg ⊗ ag)

whereW1 = (N1,1−B1V, . . . , N1,h1−B1V ),W2 = (N2,1−B2V, . . . , N2,h2−B2V ), . . . ,Wg =
(Ng,1 − BgV, . . . , Ng,hg − BgV ). Noting that W = (W1, . . . ,Wg) is a centred pH-
dimensional Gaussian random vector, we finally obtain that

E

[
g∏
i=1

Φp (ai +BiV ;Ci)
hi

]
= ΦpH (a; Σ) ,

with a = (1h1 ⊗ a1, . . . , 1hg ⊗ ag) and Σ = (cov(Wi,Wj))i,j∈{1,...,g}.

Those two general results allow us to derive simple expressions for the expected
effect of the inclusion of new datapoints on the IBV (Proposition 1) and on the
EMV (Proposition 2)) for which we provide proofs below.

Proof. (Proposition 1) Applying Tonelli-Fubini followed by the law of total expec-
tation first delivers

EIBV(χ;Z(n)) =

∫
D

EY
î
P
Ä
Z(n)
x ∈ T |Z(n)

χ + ε = Y
ä

(1− P
Ä
Z(n)
x ∈ T |Z(n)

χ + ε = Y
ä
)
ó
dν(x)

=

∫
D

Φp
Ä
t;m(n)

x ,K(n)
xx

ä
dν(x)

−
∫
D

EY
[
Φp
Ä
t;m(n+1)

x (Y ),K(n+1)
xx

ä2
]

dν(x)
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where m
(n+1)
x (Y ) and K

(n+1)
xx denote the conditional mean and covariance function

conditionally on the data Y . Now, by using the cokriging update formulae Eqs. (6.5)
and (6.6) we get:

Φp
Ä
t;m(n+1)

x (Y ),K(n+1)
xx

ä
=Φp
Ä
t−m(n+1)

x (Y );K(n+1)
xx

ä
=Φp
Ä
t−mx − λn+1(x)T (Y −m(n)

x );K(n+1)
xx

ä
=Φp
Ä
a+BV,K(n+1)

xx

ä
,

with a = t−mx, B = −λn+1(x)T and V = Y −m(n)
x . Applying Proposition 3 then

delivers that

EY
[
Φp
Ä
t;m(n+1)

x (Y ),K(n+1)
xx

ä2
]

= Φ2p

ÇÇ
t−m(n)

x

t−m(n)
x

å
; Σ(n)(x)

å
,

with Σ(n)(x) as in the formulation of the proposition. This completes the proof.

Proof. (Proposition 2)

EEMV(χ;Z(n)) =

∫
D×D

Φ2p

(
12 ⊗ t;m[x,x′],K[x,x′][x,x′]

)
dν⊗(x, x′)

−
∫
D×D

EY [Φp (t;mx,Kxx)Φp (t;mx′ ,Kx′x′)] dν⊗(x, x′).

and the proof follows by applying Proposition 4 with

V = Y −m(n)
χ ∼ N (0,K(n)

χχ)

and a1 = t−mx, B1 = −λn+1(x)T , a2 = t−mx′ , and C1 = K
(n)
xx , C2 = K

(n)
xx .
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Chapter 7

Conclusion and Perspectives

In this thesis, we have proposed new approaches for implicit set estimation in
Bayesian inverse problems and demonstrated them on real-world inverse problems
originating in the natural sciences. More specifically, we have focused on linear in-
verse problems with Gaussian process priors and have devoted special attention to
large-scale settings.

In Chapter 2 we have introduced the necessary background in inverse problem
theory and Gaussian processes. We have also presented the basics of Gaussian
measure theory that is used to build connections between the Gaussian process and
Gaussian measure point of view of Bayesian inversion in Chapter 3. We have also
presented the most recent developments in Bayesian set estimation (Azzimonti et al.,
2016; Chevalier et al., 2013) based on the theory of random sets (Molchanov, 2005).
Finally, we have introduced two concrete inverse problems that are used throughout
the thesis to demonstrate our contributions in realistic settings. The first of these is a
gravimetric inverse problem where the aim is to reconstruct the interior density field
of the Stromboli volcano from observations of the gravity field on the surface. This
problem exemplifies the challenges arising in large-scale Bayesian inversion owing
to the non-sparse nature of the involved observation operators and to the three-
dimensional nature of the problem. The second problem introduced is a river plume
mapping task that is of special interest for demonstrating Bayesian estimation of
excursion sets of multivariate functions.

In Chapter 3 we have studied the connection between the Gaussian process and
Gaussian measure point of view of Bayesian inversion. By bridging classical results
in Gaussian measure theory (Rajput and Cambanis, 1972) with recent developments
in the study of GP sample paths properties (Steinwart, 2019), we are able to provide
conditions under which the two point of views are equivalent. Then, we leverage the
framework of disintegrations of measures to derive a purely functional formulation of
Gaussian process updating under linear operator observations, providing an abstract
and generic version of the Gaussian update formulae.

In Chapter 4, we have introduced a new representation of the posterior covari-
ance of GPs. We have shown how this representation allows for efficient updating
of GPs under linear operator data and how it enables substantial computational
savings in the computation of the posterior. This new representation is given sound
foundations by basing on the developments in Gaussian measure theory from Chap-
ter 3. We have demonstrated how our techniques allow for sequential estimation of
excursion sets in a gravimetric inverse problem. To the best of our knowledge, this is

107



Efficient Gaussian process updating for uncertainty reduction on implicit sets

the first time that sequential design criteria for excursion set estimation are applied
in Bayesian inverse problems. We have shown how the criteria are able to signif-
icantly reduce the uncertainty on the excursion volume. In passing, we have also
shown how to efficiently sample from the posterior in large-scale inverse problems.

In Chapter 5 we have introduced universal inversion as an extension of universal
kriging that allows for the inclusion of parametric trends in Bayesian inversion. We
have derived explicit formulae for the posterior when trend coefficients are treated
in a Bayesian way and have computed the uninformative prior limit. We have
demonstrated how our framework allows for the incorporation of expert knowledge
in Bayesian inversion and have leveraged fast k-fold cross-validation results Gins-
bourger and Schärer (2021) to provide heuristic diagnostics for model selection. We
have also shown how cross-validation can be used for hyperparameter training. To
the best of our knowledge, this is the first time that k-fold cross-validation is used
for hyperparameter training in Bayesian inversion.

In Chapter 6 we have considered multivariate extensions of GPs. We have in-
troduced the novel concept of generalized locations and shown how it allows for
the co-kriging equation to be written in a from-invariant way in the most general
setting (heterotopic observations). Then, by extending excursion set uncertainty
functionals to the multivariate setting, we have developed sequential uncertainty
reduction strategies for the estimation of excursion sets of multivariate functions,
providing semi-analytic formulae for the computation of the sampling criteria. We
have demonstrated how our techniques on a river plume mapping problem.

Overall, this thesis shows how traditional GP techniques can be made to scale to
large-scale Bayesian inverse problems and how they can be extended to multivariate
settings, while still enjoying strong theoretical foundations.

Perspectives: While we have shown how Bayesian inversion techniques can
be successfully applied to real-world inverse problems, these still rely on simplifying
assumptions that need to be replaced if one wants to build a fully realistic framework
for implicit set estimation in Bayesian inverse problems. We next list what we think
are the most promising directions for future research.

• Beyond Gaussianity: During this whole thesis, we only considered Gaus-
sian process priors. While this class of priors is of great interest owing to
its tractability, it suffers from clear limitations. In most applications there is
no reason to expect the underlying phenomenon to be a realization of a GP.
For example, in gravimetric inversion, density fields can only take on positive
values, which clearly violates the Gaussian assumptions. Also, most natural
phenomenon exhibit (spatial) non-stationarity, which cannot be described by
the usual GP covariance kernels (Matérn family, ...). While still remaining
in the Gaussian realm, one can build more realistic models by incorporating
non-stationarity. One possible such approach is to formulate the GP prior as
a solution to a stochastic partial differential equation with spatially varying
coefficients (Lindgren et al., 2011). When considering non-Gaussian models,
analytical formulae for the posterior usually aren’t available, forcing one to
resort to MCMC to approximate the posterior. This tends to make non-
Gaussian models computationally expansive and inapplicable to real-world
problems. One class of non-Gaussian models that still enjoys closed form
formulae for the posterior is that of skew-Gaussian processes (Benavoli et al.,
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2021), and we believe these could be successfully applied to Bayesian inver-
sion. Another class of non-Gaussian models that could be of potential interest
for Bayesian inversion are Besov priors. While their theoretical properties in
this context have been thoroughly studied (Dashti et al., 2012), convincing
practical applications are stilly lacking.

• Cost-aware Path Planning: While the sequential uncertainty reduction
criterion studied in Section 4.4.3 provide good performance for excursion set
estimation, they are out of touch with reality, in that the feasibility of the
proposed data collection plan is never questioned and the terrain-specific
constraints are not included the design process. Indeed, in most inverse
problems, data collection is limited or influenced by domain specificities. For
example, in our Stromboli gravimetric inverse problem, some locations may
be harder to reach than others and some are even inaccessible. Furthermore,
there may exist topographic feature that influence the optimal path between
two data collection locations. Apart from these local factors, there may
also exist global features that influence the data collection process, such as
the presence of shortcuts between two distant locations (in the case of the
Stromboli island a ferry line) or global constraints (having to be back to base
before nightfall).

While all these factors could, in theory, be taken into account by adding
a cost term to the sampling criterion Eq. (4.10), myopic optimization as
performed in Section 4.4.3 performs poorly in the presence of global features.
Such settings require more sophisticated dynamic programming approaches
for path optimization that include a given amount of lookahead. While there
has been some preliminary work in adding path constraints to sequential
design (Ge et al., 2022), we believe that a fully realistic framework is still
lacking.

• Cross-Validation Diagnostics for Model Selection: In Chapter 5 the
potential of cross-validation for model selection has been briefly touched upon
in a heuristic fashion, without providing any theoretical development. We
believe that the availability of fast formulae for the computation of the k-fold
cross-validation residuals, as well as their theoretical covariance Theorem 15
allows for the creation of sophisticated models selection procedures and di-
agnostics, as sketched in (Ginsbourger and Schärer, 2021).

For example, the residual covariance matrix can be used to decorrelate the
residuals, allowing one to apply the usual tests available for Gaussian data.
Figure 7.1 shows a QQ-plot of the decorrelated residuals for the first fold in
the 10-fold cross-validation example of Section 5.5.1.

While these plots suggest that the behavior of this fold is captured surpris-
ingly well by all models, we stress that the situation is drastically different
for other folds. Overall, one should instead look at QQ-plots of the con-
catenated vector of all folds residuals. Nevertheless, the computation of the
associated residual covariance is fraught with numerical instabilities, owing
to the multiple inversions of ill-conditioned matrices involved in the process.
We believe that the development of numerically stable computation tech-
niques for the covariance of the residuals is a necessary next step towards
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Figure 7.1: Quantile-quantile plot of decorrelated cross-validation residuals for fold
nr.1 in 10-fold CV.

more sophisticated CV diagnostics. Apart from that, the phenomenon of
“fold outliers” identified in Section 5.5.1, where some given folds are signifi-
cantly harder to predict has to be examined further. Towards that end, one
should investigate the behaviour of CV under different clustering schemes.
Finally, in order to come up with a principled model selection criterion, one
should study how model complexity is handled by cross-validation, since it
seems that CV already penalizes complex models under the hood.

Apart from these main directions, we also think that one venture worth pursuing
is the application of more sophisticated set uncertainty quantification criteria in
Bayesian inversion. One natural class of criteria that can be of interest in inverse
problems is that of conservative set estimation (Azzimonti et al., 2021). On the
more theoretical side, the question of the consistency of the sequential designs in the
multivariate setting (Chapter 6) should be elucidated and we believe that extending
the results from (Bect et al., 2019) to the multivariate case should prove a fruitful
effort.

Overall, optimal design for implicit set estimation in Bayesian inverse problems
is a research topic with promising applications in the natural sciences. We strongly
think that it has the potential to dramatically change the way data is collected and
the way field campaigns are planned in the natural sciences and hope that this thesis
can serve as a first step in that direction.
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