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Abstract

The use of artificial intelligence in computational neuroscience has increased within the last
years. In the field of electroencephalography (EEG) research machine and deep learning,
models show huge potential. EEG data is high dimensional, and complex models are well
suited for their analysis. However, the use of artificial intelligence in EEG research and
clinical applications is not yet established, and multiple challenges remain to be addressed.
This thesis is focused on analyzing neurological EEG signals for clinical applications with
artificial intelligence and is split into three sub-projects.

The first project is a methodological contribution, presenting a proof of concept that deep
learning on EEG signals can be used as a multivariate pattern analysis technique for
research. Even though the field of deep learning for EEG has produced many publications,
the use of these algorithms in research for the analysis of EEG signals is not established.
Therefore for my first project, I developed an analysis pipeline based on a deep learning
architecture, data augmentation techniques, and feature extraction method that is class
and trial-specific. In summary, I present a novel multivariate pattern analysis pipeline
for EEG data based on deep learning that can extract in a data-driven way trial-by-trial
discriminant activity.

In the second part of this thesis, I present a clinical application of predicting the outcome
of comatose patients after cardiac arrest. Outcome prediction of patients in a coma is
today still an open challenge, that depends on subjective clinical evaluations. Importantly,
current clinical markers can leave up to a third of patients without a clear prognosis. To
address this challenge, I trained a convolutional neural network on EEG signals of coma
patients that were exposed to standardized auditory stimulations. This work showed a high
predictive power of the trained deep learning model, also on patients that were without a
established prognosis based on existing clinical criteria. These results emphasize the poten-
tial of deep learning models for predicting outcome of coma and assisting clinicians.

In the last part of my thesis, I focused on sleep-wake disorders and studied whether un-
supervised machine learning techniques could improve diagnosis. The field of sleep-wake
disorders is convoluted, as they can cooccur within patients, and only a few disorders have
clear diagnostic biomarkers. Thus I developed a pipeline based on an unsupervised cluster-
ing algorithm to disentangle the full landscape of sleep-wake disorders. First I reproduced
previous results in a sub-cohort of patients with central disorders of hypersomnolence.
The verified pipeline was then used on the full landscape of sleep-wake disorders, where I
identified clear clusters of disorders with clear diagnostic biomarkers. My results call for
new biomarkers, to improve patient phenotyping.
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1 Introduction

The use of algorithms of artificial intelligence, especially machine, and deep learning mod-
els, has increased in the field of computational neuroscience in the last few years. These
techniques are well-suited for analyzing big databases and complex data. In the field of
neurology neural signals in the form of electroencephalography (EEG) are regularly col-
lected and analyzed. They are high dimensional and contain complicated patterns. The
analysis of these signals aims at discovering functions of the brain, and also has clinical
applications, such as helping to diagnose patients with neurological disorders. The analysis
of EEG data of patients in the clinical setting often requires clinical expertise and can be
very time-consuming. For example, in sleep scoring, an overnight recording of physiological
signals is by clinicians split into stages, making up the architecture of sleep. This infor-
mation is then used for diagnosing sleep-wake disorders (Bargiotas et al., 2019; Schmidt
et al., 2021), but is also crucial for questions in research topics studying sleep (Miskovic
et al., 2018; Züst et al., 2019). Sleep scoring is a complex and time-consuming task that
requires advanced clinical expertise and training. Another example is the assessment of
EEG signals of patients in a comatose state. The manual examination of EEG signals by
clinicians is tedious but essential to optimize patient care and to predict their outcome
(Rossetti et al., 2016). A last example of the manual analysis of EEG signals in the clinics
is the assessment of epileptic activity and seizure detection in epileptic patients. Seizure
detection is essential for diagnosing epilepsy, and clinicians need to assess hours of recorded
EEG signals (Cho and Jang, 2020). Additionally, there are many benefits of automated
seizure detection, as they could, in the future, be used to predict seizures to warn patients
(Burrello et al., 2020). The above examples from the clinics rely today on visual scoring
by experts and subjective assessment of clinical data. They could benefit from automated
algorithms, such as artificial neural networks, that could assist clinicians.

Artificial intelligence has revolutionized many fields, most related to imaging applications
and speech or text generation. In the medical field, deep learning has found several appli-
cations for medical imaging data. For example, deep learning can accurately detect skin
cancers from images (Brinker et al., 2019) or from pathological slides (Parwani, 2019).
Deep learning can also be used to accurately segment three-dimensional scans of the retina
(Fauw et al., 2018). However, for signals reflecting neural activity, artificial intelligence is,
in comparison, underexplored. The modality of the data is different compared to images,
and the application to EEG signals is not straightforward. Nevertheless, in recent years,
publications on machine and deep learning for EEG signals have shown great potential
(Roy et al., 2019; Craik et al., 2019; Zhang et al., 2019).

Several obstacles still need to be overcome before these algorithms can be used to analyze
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EEG signals in research and clinical applications. To train deep artificial neural networks,
tremendous amounts of data are required. Nowadays, big datasets of EEG data are still
not always publicly available, except for data in clinical applications such as sleep scoring
or seizure detection. First data collection of EEG data is time-consuming. Second, labeling
large amounts of clinical data depends on clinical expertise and is tedious. Therefore big
clinical datasets are expensive to build up. The risk with small datasets is that complex
models will overfit on a limited number of patients, therefore generalizing poorly and
potentially introducing bias. The field of computer vision offers multiple solutions to train
artificial neural networks with small datasets (Goodfellow et al., 2016). However, an open
challenge is integrating these solutions and models into neuroscience and using them to
answer standing clinical questions, such as assisting clinical decision-making.

This introduces the first question this thesis addresses, namely assessing whether artificial
deep neural networks can be used to analyze EEG signals for research and if features
extracted from a trained model can be used to evaluate changes in EEG activity over the
course of an experiment.

The second topic this thesis focuses on is a clinical application where deep learning on
EEG signals can assist in predicting outcome of comatose patients after a cardiac arrest.
Additionally, the focus is set on patients without a clear prognosis, according to current
clinical makers, and it is explored whether deep learning models could give additional
predictive information for this cohort.

The last topic of this thesis presents a machine learning algorithm applied to a second
clinical application, namely on the diagnosis of sleep-wake disorders. In this case, it is
investigated whether unsupervised machine learning techniques could assist in refining
phenotypes of patients with sleep-wake disorders.

The introduction of this thesis is split into three parts, each introducing the relevant
literature for each of the three topics. Chapter 1.1 introduces how neural signals in the
form of EEG are measured in humans, and the use of machine and deep learning techniques
for their analysis. Chapter 1.2 presents coma after cardiac arrest and the topic of outcome
prediction, with a focus on deep learning models. Lastly, in chapter 1.3, the focus is set on
sleep-wake disorders, the challenges with current diagnostic criteria, and how unsupervised
machine learning algorithms can assist in identifying unique patient profiles.

1.1 Electroencephalography (EEG) and deep learning

This first section of the introduction outlines how neural signals of the human brain are
generated and measured. The later sections describe how artificial neural networks can be
used to analyze this data and establishes previous literature on this topic.
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1.1.1 Measurement of EGG data

The brain processes information continuously and integrates environmental stimuli from
all senses. Information is exchanged between neurons in the brain via electrical currents.
Namely a neuron receives input from connected neurons via ions. It is polarized by ag-
gregating these ions, and if the membrane potential rises above a threshold, an action
potential, an electrical pulse of 100 mV and 1-2 seconds in duration, is generated, and the
neuron is polarised (Bear, 2016). In the post-firing phase, the neuron is in a refractory
period for around 10 ms, making it impossible for the neuron to fire again (Hari and Puce,
2017). With electroencephalography (EEG), the postsynaptic potentials (input into the
soma and dendrites of the neuron) can be measured from neurons located in the cortex.
EEG is a non-invasive recording technique using electrodes placed on the scalp (Bear,
2016). The cortex has a laminar structure of multiple layers, folded into itself to increase
the surface, building gyri. The pyramidal neurons are in the cortex perpendicular to the
surface, with the somas (neuronal bodies) in deeper layers of the cortex (Hari and Puce,
2017). Therefore the current of large neuronal ensembles firing simultaneously can be
measured from the scalp with electrodes. The signal measured on the scalp with the EEG
electrodes is a combination of currents from different origins. The biggest contribution
comes from the neurons perpendicular to the scalp located directly below the skull, but
tangential-oriented neurons and strong deeper currents can also contribute (Bear, 2016).
One limitation of EEG recordings is that the measured currents originate from multiple
sources. This makes it hard to localize the source of an EEG signal measured on the scalp,
as it might have multiple contributions (Hari and Puce, 2017). The biggest limitation of
EEG is its relatively poor spatial resolution compared to functional magnetic resonance
imaging (fMRI) and other commonly used neuroimaging techniques. The poor spatial
resolution is caused by the inhomogeneities of the skull and scalp that distort the signal
and result in widespread patterns. The advantage of EEG is its high temporal resolution,
which is needed when analyzing fast processes, such as responses to external stimulations,
e.g., of auditory or visual nature. (Hari and Puce, 2017)

EEG measures an electrical potential difference between two points. For scalp EEG, one
reference electrode is selected, such as the vertex (Cz) electrode or the mastoid. EEG
signals in all the remaining electrodes are recorded with respect to this reference electrode.
The data is usually re-referenced during preprocessing, most commonly to an average
reference.

EEG is especially well suited for analyzing neural responses to external stimulations, com-
monly referred to as evoked responses. However, the low signal-to-noise ratio of the EEG
signal makes the analysis of evoked responses to single external stimuli practically im-
possible. Therefore, usually, numerous single evoked responses are averaged to compute
event-related potentials (ERPs) (Figure 1.1 for an exemplar auditory ERP of 64 elec-
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Figure 1.1: Auditory ERP in response to pure tones, as well as topographic maps for local
maxima, from 100 ms to 500 ms after stimulus onset. The data was recorded with 64
electrodes and represented here as an average over 127 trials.

trodes). The analysis of ERPs is restricted to an interval around the presented stimulus,
for example, 100 ms pre and 500 ms post-stimulus.

EEG signals are measured all over the scalp, with different numbers of electrodes, also
called channels. There are some standard numbers of channels and montages, from 16 to
256 electrodes, that are most commonly used. EEG montages for clinical applications are
usually restricted to a low number of electrodes. However, a larger number of channels is
preferred for research purposes, as they can provide a better estimation of neural activity
and its underlying sources (Michel et al., 2004). The recorded EEG data can also be
represented as a topographic map, showing the distribution of electrical activity across the
head, either at single time-points or averaged over short time intervals (see Figure 1.1 for
an example).

In summary, the EEG data that will be of importance in this thesis is recorded with respect
to a stimulation, primarily auditory but also visual. The data is epoched with respect to
the stimulation, for example, 100 ms pre and 500 ms post-stimulus.

1.1.2 Analysis of EEG data

A mean auditory ERP displays characteristic components, such as a negative deflection at
around 100 ms after the onset of an auditory stimulus (N100) or a positive peak at 300 ms
(P300) over central and frontal electrodes, following the presentation of an unexpected
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Figure 1.2: Auditory ERP in response to pure tones, represented here as a heatmap, from
100 ms to 500 ms after stimulus onset. The data was recorded with 64 electrodes and
represented here as an average over 127 trials.

stimulus (Fonken et al., 2020). Traditional analysis of EEG data focuses on measuring
response amplitudes or latencies and compares differences in activations between experi-
mental conditions for single electrodes. For example, (Fischer et al., 1999) showed that
patients in a comatose state were more likely to awake if they had a N100 response to
auditory stimulations in the Fz electrode, compared to patients that did not have a clear
N100 response. However, these analyses are restricted, as they focus on single electrodes
and fixed latencies, which are defined based on findings in healthy controls, and may not
reflect the characteristics of clinical populations.

1.1.3 Multivariate pattern analysis for EEG data

To address the limitations of analyzing average EEG responses in single electrodes, the field
of neuroscience has introduced the use of machine learning techniques (Grootswagers et al.,
2017; Kurth-Nelson et al., 2015). (Haynes, 2015) was among the first to propose this new
set of analyses, referred to as multivariate pattern analysis (MVPA), initially developed
for fMRI data. These analyses focus simultaneously on multiple electrodes and have great
advantages compared to univariate analysis (Grootswagers et al., 2017). The integration
of information from multiple electrodes increases the sensitivity of identifying differences
between experimental conditions (for example response to man-made versus natural stim-
uli). Additionally, MVPA follow a data-driven approach, which allows for the detection of
differences between experimental conditions with minimal a priori assumptions. The most
common way of applying MVPA on EEG data consists of training a machine learning clas-
sifier to discriminate different conditions at different points in time. As training data, the
EEG responses at a given time-point, as a multivariate observation over all recorded chan-
nels is used. Only a percentage of all the EEG data is used to train the classifiers, while
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Figure 1.3: Decoding performance, a time course of accuracy. For each time-point, a
classifier was trained and tested on an independent test set of EEG data at that time-
point. The dashed line indicates the chance level. Adapted from (Kurth-Nelson et al.,
2015), published under a “CC BY 4.0 DEED Attribution 4.0 International” licence.

the rest is used to validate and test the model to avoid overfitting. A performance score
is then computed, to quantify the percentage of the held-out test trials that are correctly
classified, per time-point. This results in a time course of performance scores (see Figure
1.3). Therefore, the analysis of EEG data with MVPA is data-driven, and discriminative
information is automatically extracted. A classification score significantly above chance
level suggests that the EEG data contained discriminative patterns of activity between
the experimental conditions investigated. Identifying time-points with significant decod-
ing performance allows the extraction of latencies of differential EEG responses between
experimental conditions, in a data-driven way.

A trained classifier can also be used for further analysis to gain additional insights into the
data. For example, the trained classifier from an early temporal latency may be used to
test if similar patterns of neural activation can be found at different latencies (temporal
generalization; King and Dehaene, 2014). This analysis can identify whether late patterns
of sequences are already represented in earlier stages or if the early patterns are reactivated
again later. Alternatively, the weights of a trained model together with the EEG data at
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the electrode level can be used in order to identify which brain regions mostly contribute
to an above-chance classification for source localization (van de Nieuwenhuijzen et al.,
2013).

However, the majority of existing MVPA algorithms for EEG rely on machine learning
classifiers. These have the limitation that they only consider patterns at single latencies.
Additionally, it is impossible to extract class or trial-specific information from a trained
MVPA model. Most commonly, MVPA classifiers are trained per subject, where the train
and test data are from the same subject but distinct sets containing different epochs.
Therefore all extracted patterns are subject-specific and not extracted from whole group
analysis. These limitations can be addressed with the use of more complex models, such
as artificial neural networks.

1.1.4 Deep learning for EEG data

In the field of computer vision, state-of-the-art algorithms for analyzing images are based
on deep learning models. Tasks for image analysis, such as image recognition, image
segmentation, etc., no longer rely on linear classifiers but use deep multilayer models to
achieve outstanding performances (Goodfellow et al., 2016). Following the success of deep
learning models in computer vision, they have been used in numerous fields, among others,
for medical applications. However, in the field of EEG analysis and especially MVPA, only
sparse literature is available.

Similar to MVPA, deep learning models can also be used to analyze EEG signals in the
context of answering research questions. Traditional MVPA algorithms suffer from the lim-
itation that they focus on single latencies and are usually less suited for analysis performed
on a group level, as inter-subject differences for most research-related tasks may be too big.
However, deep learning models, especially convolutional neural networks (CNNs), can con-
sider multiple latencies simultaneously and therefore capture inter-subject differences, such
as delayed neural responses. Deep learning models have more trainable parameters than
machine learning models and can extract more complex patterns and subtler differences
between experimental conditions. Additionally, they are able to detect space-unlocked pat-
terns, because of their translational equivariance property (Goodfellow et al., 2016). This
allows for the integration of EEG activity from multiple channels and time-points across
the whole trial.

Deep learning can be applied in multiple ways to EEG data. Even though EEG responses
have a temporal component, one can also use CNNs with architectures similar to the
ones used for image applications. The literature on deep learning for EEG data uses
different types of network architectures, such as CNNs, recurrent neural networks (RNNs),
autoencoders, or similar (Roy et al., 2019; Craik et al., 2019). RNNs exploit the temporal
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dimension of the data explicitly. Moreover, CNN architectures have been developed that
explicitly use the temporality of the data, by convolutions along the temporal axis before
integrating information from the spatial dimension (Lawhern et al., 2018; Schirrmeister
et al., 2017). There are also different approaches to how the data is represented for training
the networks. For example, the raw EEG signal (channels x time), frequency transforms
(frequency x time), or pre-selected features can be used as input for the artificial neural
networks (Roy et al., 2019). Each type of architecture and data representation has its
advantages and limitations. This thesis focuses on CNNs trained on minimally processed
EEG signals, with the shape of (channels x time).

The currently available literature on EEG data and deep learning focuses mainly on brain-
computer-interfaces (BCI) (Tang et al., 2016; An et al., 2014), sleep scoring (Fiorillo et al.,
2019; Vallat and Walker, 2021; Stephansen et al., 2018), seizure detection (Cho and Jang,
2020; Burrello et al., 2020) or other clinical applications ((Roy et al., 2019; Zhang et al.,
2019; Craik et al., 2019) for reviews). Most deep learning studies for EEG that try to
automate clinical tasks focus on classification performance. They have the goal to simplify
time-consuming and tedious clinical work. However, in applications of deep learning for
research purposes, the focus is slightly different, and the initial goal is to test whether
classification performance is above chance. The magnitude and level of performance are
usually of lesser importance, and the focus is more on feature interpretability.

1.1.5 Data augmentations for EEG data

Deep learning models can efficiently process high-dimensional data and extract more de-
tailed patterns than machine learning methods. They are, therefore, very well suited to
analyze EEG data, as that data has high sample frequency, with many temporal points and
a large number of recorded electrodes. The bigger or deeper an artificial neural network
is, the more data is required to train it, without facing the problem of overfitting. The
greatest limitation of deep learning for EEG signals is still the limited amount of avail-
able data for training. For clinical applications, the amount of data is limited, because
of two main reasons. On the one hand, the labeling of clinical datasets is highly time-
consuming. For example, clinicians spend hours on the annotation of EEG recordings, to
mark seizures. On the other hand, patient confidentiality often forbids the publication
of these datasets. Therefore the acquisition of big publicly available clinical datasets is
hard. For research-related purposes, the collection of task-specific datasets is also time
and resource expensive.

To address the problems of limited data availability the field of computer vision proposes
multiple solutions, one of which is data augmentations. The rationale behind data augmen-
tations is to slightly and randomly distort each training sample and increase the available
amount of training data. In computer vision, this would, for example, entail flipping an
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image vertically as the objects on pictures usually are physically meaningful in both ori-
entations (see (Shorten and Khoshgoftaar, 2019) for a review of data augmentations for
computer vision). However, the data augmentation techniques must fit the data and the
selected model. For raw EEG signals, with a shape of (channels x times), a flipping of nei-
ther the time nor the channel dimension has physical meaning. Yet, flipping the channels
from the left to right hemispheres might be more meaningful if the task does not involve
hemisphere-specific activations (such as right versus left-hand movements). For the clas-
sification of continuous data, such as sleep staging or seizure detection, a sliding window
over the data as an augmentation technique might greatly improve classification perfor-
mance. However, this is not meaningful for epoched EEG signals in response to external
stimulation.

Although data augmentations are commonly used for training artificial neural networks
for images, their use in the field of EEG research is not established. (Lashgari et al.,
2020) presents a review of data augmentation techniques for EEG data, and (Rommel
et al., 2022) tested 13 different techniques previously introduced on two datasets (and deep
learning models) to compare the improvement in the performance of these methods. The
data augmentations in (Rommel et al., 2022) were split into time, frequency, and spatial
augmentations. Time augmentations included: Gaussian noise (Wang et al., 2018), the
replacement of an arbitrary interval of the signal with zero for all electrodes (Mohsenvand
et al., 2020), sign flip (Rommel et al., 2021) and time reversal (Rommel et al., 2021). The
frequency augmentations the authors selected were frequency shift (Rommel et al., 2021),
random shifts in the phase of the EEG signals (Schwabedal et al., 2018), and bandstop
filtering (Cheng et al., 2020; Mohsenvand et al., 2020). Last, the spatial augmentations
entailed the switching of hemispheres (Deiss et al., 2018), channel dropout (Saeed et al.,
2021), channel shuffling (Saeed et al., 2021), and sensor rotation (Krell and Kim, 2017)
(rotating the sensor positions around one of the axis, to simulate a rotation of the EEG cap
during data collection). (Rommel et al., 2022) has shown that the random shift of phases
in the Fourier space had the biggest improvement in the classification performance of at
least 45% on small datasets. For a dataset with two electrodes, the spatial augmentation
techniques resulted in meager improvements and no improvement was observed with the
sensor rotation technique. This highlights that the augmentation technique needs to match
the data, network architecture, and task.

Despite the vast potential of data augmentations for EEG signals, the limited amount of
available studies focuses on clinical applications. These techniques remain under-explored
for use in research as MVPA decoding algorithms.
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1.1.6 Feature visualisations for EEG data

The use of MVPA in research aims, on the one hand, to show an above-chance performance
of a classifier, indicating a difference between the experimental conditions. But on the other
hand, a trained model has the big advantage that the weights from the classifier can be
extracted, giving information on which channels were most informative for the model’s
decision for different time-points. Unfortunately, this information is neither class nor trial
specific. A big advantage of deep learning models is that the prediction of the network
can be backpropagated through the network to give trial-specific information about which
parts of the input were most important for the model’s decision. Aggregated information
over multiple trials can then give class-specific features. Feature visualizations of neural
networks are important to gain insight into the decision of the models and can increase
trust. This is especially important for clinical applications, and additional features can
guide clinicians towards important information, for example, as in (Jonas et al., 2019).
However, the use of features is also hugely beneficial for research. They allow the extrac-
tion of information about which channels or time ranges are most discriminant between
conditions. For example, the activations of a trained artificial neural network can expose
the most important brain regions for the processes under exploration.

The most common feature visualization methods for deep learning used in computer vision
are saliency maps (Simonyan et al., 2013), gradient-weighted class activation mapping
(Grad-CAM) (Selvaraju et al., 2019) or kernel visualizations (Goodfellow et al., 2016) and
variations thereof. The first two rely on backpropagation, and the latter depends on the
forward pass only and involves visualizing kernels of convolutional layers. These techniques
have been previously used in the field of EEG. For example (Farahat et al., 2019; Vahid
et al., 2020) used saliency maps, (Ghosh et al., 2018; Jonas et al., 2019) a variation of Grad-
CAM, and kernel visualisations were used by (Nurse et al., 2016; Schirrmeister et al., 2017;
Lawhern et al., 2018). However (Schirrmeister et al., 2017; Ghosh et al., 2018; Lawhern
et al., 2018; Farahat et al., 2019; Vahid et al., 2020) presented features on an average level
and (Nurse et al., 2016; Lawhern et al., 2018; Jonas et al., 2019) only displayed exemplar
single trials. Previous literature has not yet explored how representative features are with
respect to the entire dataset or how they change over time.

In summary, deep learning for EEG data shows enormous potential for applications in re-
search as an MVPA method. The more complex models can outperform traditional MVPA
techniques. This thesis addresses several open questions in chapter 2. As a proof of concept,
this chapter first shows that deep learning can be used as an MVPA method and outper-
forms traditional MVPA algorithms. Second, three different types of data augmentation
techniques are investigated, to overcome the limited data available in the datasets used.
Third, the presented MVPA pipeline is validated on two different datasets, in the auditory
and visual domains respectively, to discriminate between standard and deviant stimuli.
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The stimulations for this task were presented to participants as a deviance paradigm (Sec-
tion 1.2.3.1). Forth, saliency maps (Simonyan et al., 2013) are used to extract trial-specific
information and aggregate them to show class-specific differences. Last, a potential appli-
cation of MVPA techniques is presented, that can be used to test theories of learning over
the course of an experiment purely based on EEG data.

1.2 Coma after cardiac arrest

In the first clinical application of this thesis, I focus on postanoxic patients in a comatose
state. Based on deep learning models, the outcome of these patients is predicted. This
chapter introduces coma after cardiac arrest and outcome prediction based on currently
used clinical markers and novel deep learning models.

Coma after cardiac arrest is a prevalent medical problem today, and within recent years
cases have been increasing steadily (Holmberg et al., 2019). As the medical field has ad-
vanced and new technologies and medications have emerged, patients are more likely to
survive a cardiac arrest. They are therefore more often admitted to intensive care units of
hospitals (Rossetti et al., 2016). It has thus become increasingly important to make precise
and informed decisions about treatment and maintaining live support for these patients.
One of the recent advancements increasing patients’ chances of survival is the implementa-
tion of targeted temperature management (Rossetti et al., 2016). This protocol decreases
the body temperature down to either 33°C, called hypothermia (HT), or 36°C, called nor-
mothermia (NT), within the first 24 hours. A decreased body temperature reduces the
metabolic rate, and this protocol has the advantage of preserving brain functions (Holzer,
2010). After the first 24 hours of post-anoxic coma, the targeted temperature management
is stopped, and patients are rewarmed to their normal body temperature. The standard
temperature treatment used to be hypothermia between 32°C and 34°C. However, this
was adjusted to 32 °C - 36 °C in 2016 (Donnino et al., 2016). The different temperature
treatments each influence brain signals recorded for the patients during clinical evalua-
tions differently (Madhok et al., 2012; Choi et al., 2012). Therefore different temperature
treatments might influence clinical assessments and outcome predictions.

The Glasgow Coma Scale (GCS) measures the depth of the coma/unresponsiveness of
patients and is evaluated on different scales for eye-opening, motor, and verbal response
(Teasdale and Jennett, 1974). Patients are considered to be in a comatose state if their
GCS measure is lower than eight.

One of the ways to evaluate outcome of coma is measured by the Cerebral Performance
Category (CPC) (Booth et al., 2004), assessed some months after cardiac arrest. A CPC of
1 indicates that a patient has fully recovered and their health is back to the same level as
before the hospitalization. A patient with a CPC of 2 shows some moderate impairments,

11



CHAPTER 1. INTRODUCTION

whereas one with a CPC of 3 has severe impairments and requires considerable assistance
in daily life. A CPC of 4 indicates a vegetative state, which might be more prevalent in
certain countries than others. For example, it is more common in the US to keep patients
in a vegetative state alive for years, whereas, in Switzerland, this rarely happens (Stretti
et al., 2018; Hirsch, 2005). CPC 5 is a patient who deceased naturally or by stopping life
support.

1.2.1 Outcome prediction based on current clinical markers

Outcome prediction has become increasingly important in the intensive care unit for op-
timal treatment as well as maintenance of live support. It is also important for families
of patients to get precise information. Currently used predictors in clinics are based on a
multi-modal assessments. This includes the absence of motor response in reaction to pain,
which is characterized by a score of three or less on the Glasgow motor scale (a subcategory
of the GCS). The absence of a motor response is a reliable indicator of bad outcome at 72
hours (FPRs 24%) (Rossetti et al., 2016). Second, the absence of a pupil or corneal reflexes
(short brainstem reflexes) in response to light indicates a bad outcome at 72 hours after
coma onset (FPR 0.5%). However, the presence of brainstem reflexes does not necessarily
predict good outcome, and the positive predictive value for this marker is especially bad
at 72 hours (positive predictive value (PPV) 61%) (Rossetti et al., 2016). The next types
of predictors are all based on the EEG signal recorded at the bedside of comatose patients.
A third predictor, called discontinuous or suppressed EEG background, describes intervals
of attenuated or suppressed EEG during the absence of any stimulation, which is also a
predictor for bad outcome at 24 hours (FPRs 0%). However, a continuous background as
early as 12 hours is associated with a good outcome (PPV 92%) (Rossetti et al., 2016). An
unreactive EEG in response to auditory stimulation, such as a clap, measured by the lack
of change in amplitude or frequency, is a predictor for poor outcome (FPRs 7%) (Rossetti
et al., 2016). A reactive EEG is, in this case, associated with a positive outcome (PPV 86%
- 78%, depending on the temperature treatment). In summary, several clinical predictors
exist, but all of these rely on clinical expertise, can be time consuming to evaluate, and
are most predictive of non survival (Rossetti et al., 2016; Benghanem et al., 2022).

An open challenge of multi-model approaches based on existing markers is that they can
leave patients without a clear prognosis. Based on four clinical markers, brainstem reflexes,
motor response, unreactive EEG background, and discontinuous EEG background, patients
with an inconclusive prognosis can be defined (Rossetti et al., 2016; Perkins et al., 2021;
Westhall et al., 2015). If the outcome prediction of these four markers does not agree one
can describe a ’grey zone’ of patients without a clear prognosis. For example, a patient
with a motor response and brainstem reflex, but a discontinuous and unreactive EEG
background, would be in an uncertain state. This criterion can leave up to a third of
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patients without a clear prognosis. There is, therefore, a demand for new markers that
would help predictions for patients in an uncertain state.

1.2.2 Deep learning for prognostication of coma outcome

Prediction of coma outcome is a manual, tedious, and time consuming task that requires
a great deal of clinical expertise. Therefore new techniques based on machine or deep
learning have been proposed to automate and simplify this work. Multiple deep learning
models have been proposed for predicting the outcome of coma within recent years (Jonas
et al., 2019; Tjepkema-Cloostermans et al., 2019; Zheng et al., 2021; Altıntop et al., 2022).
Most of these publications focus on resting state EEG recordings, i.e., recordings in absence
of stimulations.

In one of the first attempts to predict the outcome of postanoxic coma, (Jonas et al., 2019)
attempted a classification of 10-second signals recorded from a 5-minute recording without
any epileptic artifacts and in the absence of external stimulations. Patients in their cohort
were treated with hypothermia and normothermia, and outcome were defined as favorable
(CPC 1 and 2) and unfavorable (CPC 3-5). The neural network architecture was a CNN
architecture previously used for images but viewed the signal as one-dimensional. However,
it allowed for a mixture of channel information already within the first layer. (Jonas et al.,
2019) reached a final area under the Receiver Operator Characteristic curve (AUC) score
of 0.89 on a test set of 54 patients. They also provided a feature extraction approach by
producing feature maps, based on Grad-CAM (Selvaraju et al., 2017) indicating for 26-
time-points in each 10 s epoch and each class the strength of the activation of the neural
network. Implementing this in the clinics would have the advantage of displaying epochs of
data that indicate good or bad outcome, drawing the clinician’s attention to essential data
segments. However, this method has the weakness that it requires a clinician to select
data segments without epileptic artifacts, therefore it is not possible to implement this
algorithm in a fully automated pipeline.

In another attempt to use deep learning for outcome prediction, (Tjepkema-Cloostermans
et al., 2019) built their model based on a CNN architecture previously used for images and
predicted good (CPC 1 and 2) versus bad (CPC 3-5) outcome, both at 12 and 24 hours
after cardiac arrest. Similar to (Jonas et al., 2019) they selected a 5-minute artifact-free
interval within either 12 or 24 hours and used a 10-second epoch of this data to predict
patients’ outcome. They reached an AUC score of 0.92 at 12 and 0.88 at 24 hours after
a cardiac arrest on an external validation set of 234 patients. At 12 hours good outcome
was predicted most accurately with a PPV of 89% and at 24 hours with 65% (Tjepkema-
Cloostermans et al., 2019). This study also faces the limitation of not having a fully
automated data selection pipeline.
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(Zheng et al., 2021) evaluated the classification performance of an artificial neural network
from 12 to 96 hours after cardiac arrest to predict the outcome. The novelty of this study
was the continuous integration of more information as is standard in clinical evaluations.
Their cohort spanned a total of 1’038 patients over seven different centers. This study
defined good outcome as CPC 1 and 2, and CPC 3-5 as an unfavorable outcome, which
includes patients with major impairments in daily life (CPC 3), patients in a vegetative
state (CPC 4), and patients that deceased (CPC 5). From their recordings, for every 5
minutes time window, nine clinically interpretable EEG features were extracted, such as
burst suppression ratio, Shannon entropy (Shannon, 1948), or delta (0.1 - 3.5 Hz) band
power. These were then used to train the neural network. The best performing architecture
was based on bidirectional long short term memory (LSTM) layers and reached an AUC
score of 0.78 at 12 hours and a maximum of 0.88 at 66 hours after cardiac arrest (Zheng
et al., 2021). With the preselection of interpretable features, this study already restricted
the amount of information the neural network could learn from the data. Additionally, their
finding of a maximally predictive score of 0.88 at 66 hours after cardiac arrest contradicts
the findings from (Jonas et al., 2019) and (Tjepkema-Cloostermans et al., 2019), reaching
AUC scores of above 0.90 within 24 hours after cardiac arrest. (Tjepkema-Cloostermans
et al., 2019) even found a better predictive power at 12 hours compared to 24 hours.

(Altıntop et al., 2022) attempted a different approach and tried to predict the levels of
consciousness based on the patient’s GCS score, divided into two levels: low consciousness
(GCS 3-5) and high consciousness (GCS 6-8). The dataset contained 39 comatose patients
recorded in different states, during resting state (3 times 5 minutes), family interaction (5
minutes), and tactile stimulation (hand touching) by a nurse (5 minutes) for a total of 35
minutes. Each of the 5-minute segments and four of the signals (recording electrodes,
with bipolar reference) recorded were used as input to their model, which had a one
dimensional convolutional architecture with convolutional and fully connected layers. The
study reached an F1-score of 0.85, and an accuracy of 0.83 (Altıntop et al., 2022). The
extensive recording protocol makes a possible implementation in a clinical routine difficult.
Additionally, while the prediction of the level of consciousness is interesting, it is non-trivial
to link the level of consciousness to the outcome of coma.

In summary, existing deep learning techniques reach excellent performances in predicting
outcome of coma. However, the majority of existing approaches require either a manual
selection of an appropriate time interval for the analysis (Jonas et al., 2019; Tjepkema-
Cloostermans et al., 2019) or are based on complicated paradigms where implementation
within the clinics would be more difficult, such as interactions with family or nurses (Altın-
top et al., 2022). Additionally, the studies actually predicting outcome are based on resting
state EEG recordings (Jonas et al., 2019; Tjepkema-Cloostermans et al., 2019; Zheng et al.,
2021). The information these studies use is the same that current clinical markers are built
on, EEG of patients in the absence of stimulations. Therefore these algorithms will not
give additional insight for patients without a clear prognosis based on available clinical
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markers. However, none of these studies has tested the performance of their models on
the subset of patients without a clear prognosis. To address the challenges of predicting
outcome of patients in a ’grey zone’, novel paradigms are needed to gain additional insight
into the neural processes of the brain in a comatose state.

1.2.3 Auditory processing in coma

1.2.3.1 Deviance paradigm

An alternative way to trigger neural functions in coma is through the auditory pathway,
by measuring EEG responses to auditory stimuli. The deviance paradigm is a commonly
used paradigm in EEG research in particular in coma patients, where a sequence consisting
primarily of a single stimulus, for example, of auditory or tactile nature, is presented. This
stimulus is, for instance, a pure tone at a specific frequency and is often called a standard
stimulus. Once in a while, this repeated presentation is broken, and the standard stimulus
is replaced with a deviant stimulus. An example based on auditory stimulations can be
found in (Fischer et al., 1999) where participants and coma patients were exposed to a
sequence of pure tones at 800 Hz and duration of 75 ms (standard tones), interlaced with
30 ms long deviant tones. During the stimulation protocol, as the regularity in presentation
is broken, and a new stimulus is presented, the brain produces an error signal. Comparing
the EEG signal of a standard versus a deviant sound reveals a significant difference in
the ERP. The error signal calculated as the difference between the response to standard
and deviant stimulus is called mismatch negativity (MMN), peaking at around 100-250 ms
after stimulus onset (Tivadar et al., 2021), see Figure 1.4 for a mean MMN over a group
of healthy participants.

The MMN can also be detected in the absence of attention (Hari and Puce, 2017), which
makes the deviance paradigm ideal for studying different levels of consciousness. It has
been shown that the MMN response exists in sleep (Nir et al., 2015), anesthesia (Nourski
et al., 2018), and coma (Fischer et al., 1999). (An et al., 2021) also demonstrated that the
MMN response was present for different types of deviant stimuli and that the topography
of MMN responses differed depending on the acoustic feature.

1.2.3.2 Outcome prediction based on mismatch negativity

Responses to auditory stimulations and especially the MMN of a deviance paradigm can
be used to assess the integrity of neural functions in coma (Kane et al., 2000; Daltrozzo
et al., 2007; Morlet and Fischer, 2014). Among the first to use the MMN as a predictor
of the outcome of coma was (Kane et al., 1993) and (Fischer et al., 1999). The later
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Figure 1.4: Mean auditory response to standard (continuous line) and deviant (dotted
line) across a group of 19 healthy participants. Mean MMN in blue with the standard
error as the shaded area, dark blue shows a significant difference between standard and
deviant responses. Adapted from (Iyer et al., 2017), published under a “CC BY 4.0 DEED
Attribution 4.0 International” licence.

study evaluated a cohort of patients several days after the onset of coma. Patients that
showed a N100 response to auditory stimulation were then analyzed for an MMN response.
The authors found a high positive predictive value of 91% for predicting awakening, the
overall accuracy, however, was relatively low. One major drawback of this study is the
exclusion of patients without a N100, leaving around a third of patients without a prognosis.
The results of (Fischer et al., 1999) were confirmed in many studies, such as (Naccache
et al., 2005; Luauté et al., 2005; Fischer et al., 2006), showing the high positive predictive
power of the MMN for patients in a comatose state (Kane et al., 2000; Daltrozzo et al.,
2007; Morlet and Fischer, 2014). A limitation of these studies is the focus on single
electrodes, a univariate EEG analysis. This leaves these studies at a disadvantage over
more recent, multivariate studies, which integrate information from multiple EEG channels
simultaneously. Additionally, these analyses focused on the later stages of coma, usually
multiple days up to months after the onset of coma. (Fischer et al., 2010) also showed that
very few patients in a vegetative state, showed an MMN response, months after the onset
of coma.

However, as clinical standards are not evaluating the EEG in response to standardized
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auditory stimuli (Rossetti et al., 2016), the deviance paradigm might introduce additional
information that is not yet contained within currently used clinical markers. Predictors
based on a deviance paradigm might introduce complementary information for patients
that are currently in a ’grey zone’. This is an advantage over the previously introduced
deep learning based models. These techniques only use resting state EEG activity, which
is already well integrated into the clinical practice, as the same data is used for standard
clinical markers.

1.2.3.3 Machine learning for outcome prediction of standardized auditory
stimulation

To overcome the disadvantage of the above mentioned analysis focusing on single electrodes,
several studies applied multivariate decoding algorithms to analyze EEG data of comatose
patients stimulated with an auditory deviance paradigm (Tzovara et al., 2013, 2016; Juan
et al., 2016; Pfeiffer et al., 2017, 2018). These studies have focused on training machine
learning algorithms on discriminating standard and deviant sounds presented to patients
in a deviant paradigm. The first study (Tzovara et al., 2013) showed that the decoding
performance of data collected within the first 24 hours after the onset of coma was high for
survivors and non survivors. The performance was not predictive for patients’ outcome.
However, an increase in decoding performance from the first to the second day of coma
was predictive of outcome with an accuracy of 70% and a positive predictive value of 100%
on a validation dataset of 18 patients. Patients in this study were treated exclusively with
therapeutic hypothermia at 33 °C within the first 24 hours. However, they reached normal
body temperature again on the second day of recordings. These results were confirmed
in (Tzovara et al., 2016) on a bigger cohort of 94 patients reaching a positive predictive
value of 82% and an overall accuracy of 63%. For survivors, the difference in AUC score
of performance between day one and two correlated to the CPC at three months as well
as cognitive scores (Juan et al., 2016). These results indicate that for survivors of coma
auditory processing during the early stages of coma provides information about the later
functional status after awakening. The results of (Tzovara et al., 2013) were also validated
for a cohort of 84 patients treated with controlled normothermia, however, with a lower
positive predictive value (Pfeiffer et al., 2017). While these studies focused on multivariate
EEG analysis and present a standardized stimulation protocol, they require recordings on
two consecutive days.

1.2.3.4 Neural synchrony and neural complexity in coma

The previous paragraph introduced multiple studies using machine learning to predict the
outcome of coma. These studies mainly used the multivariate EEG response to sounds,
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as recorded across electrodes on the scalp, after minimal preprocessing. However, an
alternative approach is to model specific features of EEG signals in coma and use those for
predicting outcome. The field of consciousness research hypothesizes that the information
content of neural activity may reflect levels of consciousness (Casali et al., 2013; Tononi
et al., 2016). The information content of EEG signals can be measured via neural synchrony
or neural complexity. This is why the concepts of neural synchrony and neural complexity
can give insight into the properties of the auditory responses and the apparent levels of
consciousness (Alnes et al., 2021). Similar to the deviance paradigm mentioned above,
these concepts can be used to distinguish patients’ conscious state. Neural synchrony is
lower for patients with disorders of consciousness (Carrasco-Gómez et al., 2021a; Binder
et al., 2017; Lechinger et al., 2016) and is predictive of the outcome of comatose patients,
as survivors show lower neural synchrony compared to non survivors (Carrasco-Gómez
et al., 2021a; Zubler et al., 2017). Previous studies have shown that neural complexity was
reduced during anesthesia (Sarasso et al., 2015) or sleep (Miskovic et al., 2018).

Neural synchrony can be quantified with the phase-locking value (PLV) (Lachaux et al.,
1999), which calculates the Hilbert transform of a signal and extracts the phase lag between
pairs of electrodes. (Alnes et al., 2021) investigated the PLV of comatose patients to
discover differences in levels of the PLV between survivors versus non survivors of the coma
in their response to standardized auditory stimulations. This study calculated the PLV in
the alpha frequency band (8-12 Hz), as it had been previously linked to the outcome of
coma in patients (Kustermann et al., 2019). The authors of (Alnes et al., 2021) calculated
one PLV value per patient, showing that this value was predictive of outcome. They
reached a PPV of 0.87 and an accuracy of 0.85 for a cohort of 67 patients treated with
therapeutic hypothermia. Survival was predicted with a PLV of higher than 0.69. The
study also calculated the PLV of 13 health controls during rest and showed that their
PLV was at similar levels between survivors and control participants. This showed that
the neural synchrony of surviving comatose patients was more similar to fully conscious
healthy controls than non surviving comatose patients.

Neural complexity is described in the literature with the aid of measures of complexity or
entropy (Alnes et al., 2021; Sarasso et al., 2015; Miskovic et al., 2018). (Alnes et al., 2021)
used Lempel-Ziv (LZ) complexity (Lempel and Ziv, 1976) to investigate the difference lev-
els of neural complexity in comatose patients. Lempel-Ziv complexity was calculated on
a binarized version of the EEG signal by identifying the number of unique sub-sequences.
Comparing the LZ values of survivors and non survivors (Alnes et al., 2021) found no
link between LZ complexity and outcome in comatose patients treated with therapeutic
hypothermia. They showed that comatose patients had significantly lower complexity com-
pared to healthy controls. This effect was driven by survivors, as a post hoc test revealed
a significant difference between controls and survivors but not between non survivors and
controls. In summary, the neural complexity of auditory responses was not linked to the
outcome of coma. Nevertheless, it revealed differences between comatose patients and

18



healthy controls, suggesting that it might be related to levels of consciousness.

In summary, this chapter introduced post-anoxic coma, the importance of outcome predic-
tion, and gave an overview of the available literature. Outcome prediction from coma is a
tedious task requiring clinical expertise. There have been previous attempts to automate
the process with machine or deep learning (Tzovara et al., 2013, 2016; Pfeiffer et al., 2017;
Jonas et al., 2019; Tjepkema-Cloostermans et al., 2019; Zheng et al., 2021). However,
previous literature has the drawback that the presented models rely on EEG data in the
absence of any stimulation and are therefore limited to the same information available in
standard evaluations of clinical EEG that are currently performed in the clinics (Jonas
et al., 2019; Tjepkema-Cloostermans et al., 2019; Zheng et al., 2021). Other studies that
use EEG signals in response to standardized auditory stimulation, therefore integrating
complementary information to the clinical practice, either require recordings on two con-
secutive days (Tzovara et al., 2013, 2016; Pfeiffer et al., 2018) or base the analysis on
pre-selected features (Alnes et al., 2021). In chapter 3 of my thesis, I present a pipeline
using minimally processed auditory EEG responses of comatose patients to predict their
outcome with deep learning models. This work uses EEG data in response to standardized
auditory stimulations, providing a novel way to assess the integrity of neural functions in
coma. The proposed pipeline is also evaluated on a subgroup of patients currently without
a clear prognosis, showing the importance of studying functions of the auditory pathway
in patients with decreased levels of consciousness. In a second step, in order to gain insight
into which parts of EEG signals are mostly contributing to the network’s decisions, the net-
work’s prediction was linked to electrophysiological features quantifying neural synchrony
and complexity and established clinical markers.

1.3 Sleep-wake disorders

This section introduces sleep-wake disorders, linked to a second clinical application of my
thesis, where an unsupervised clustering algorithm is used to disentangle the full landscape
of sleep-wake disorders.

There is a great variety of sleep-wake disorders (SWDs) with a collection of different
symptoms and causes. Around a third of the population is affected by sleep problems at
least once in their life (Kerkhof, 2017). Sleep-wake disorders can greatly disrupt patients’
schedules and affect their quality of life (Edinger et al., 2004; Gersh, 2004). Sleep problems
usually stem from two different types of symptoms: daytime sleepiness or experiencing
trouble falling asleep at night. These symptoms are intermixed, as a person that has
trouble falling asleep is also prone to experience daytime sleepiness. Multiple SWDs can
therefore cause similar symptoms. Additionally, patients might not always be aware of
all their symptoms. For example, someone that snores might not know that they do so,
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and very similarly they might not realize that they have incidents of interrupted breathing
throughout the night, which would indicate sleep apnea. However, without this information
diagnosis might be very challenging. A formal diagnosis, done by physicians, might require
overnight surveillance of these patients. Furthermore, multiple SWDs can, on the one
hand, occur simultaneously (Cappuccio et al., 2010). For example, 28% of patients with
narcolepsy also have obstructive sleep apnea (Pataka et al., 2012). On the other hand,
SWDs co-occur with other non sleep-wake-related disorders, such as psychiatric disorders,
diabetes, or cardinal disorders. All of these factors influence one another and can make a
diagnosis challenging. SWDs also vary in their severity. As an example, excessive daytime
sleepiness, indicating hypersomnia can be caused by self-inflicted sleep deprivation. But
the same symptoms of daytime sleepiness could also be caused by narcolepsy type 1, which
is a severe disorder, which might in fact be an autoimmune disease (Mahlios et al., 2013;
Barateau et al., 2017).

In summary, the landscape of sleep-wake disorders is very heterogeneous, as they are
challenging to diagnose, greatly effect a patient’s quality of life, and are quite prevalent in
the population. The following sections of this chapter first introduce essential tests used by
clinicians for the diagnosis of SWDs, followed by the introduction of the most important
SWDs that were studied in the context of this thesis.

1.3.1 Clinical evaluations and variables

Sleep physicians have access to several different tests for the diagnosis of SWDs. Some of
these are extensive clinical tests, such as the overnight polysomnography recording, but
also include self-evaluations of the patients based on questionnaires. The main tests and
evaluations used in this thesis are described below.

1.3.1.1 Clinical tests

The main clinical tests to diagnose SWDs are the overnight polysomnography and multiple
sleep latency tests. Other examinations are for example the maintenance of wakefulness
test (MWT) or lab evaluations, such as the measurement of the number of hypocretin
neurons of the hypothalamus, which is a precise diagnostic criterion for narcolepsy type 1
(Sakurai et al., 1998).

Polysomnography (PSG)
One of the key clinical tools for studying sleep-wake disorders is an overnight polysomnog-
raphy (PSG) recording. It is a fundamental test, as many measures for sleep assessment
and diagnostic markers are extracted from it. Many of the extracted markers are related
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Figure 1.5: Electroencephalography (EEG), Electromyography (EMG), Electrooculogra-
phy (EOG) signals during the sleep stages wake, NREM 1, NREM 2, NREM 3, and REM.
These signals are used for sleep staging. Adapted from (Zhang et al., 2014), published
under a “CC BY 3.0 DEED Attribution 3.0 Unported” licence.

to the different sleep stages, for example, how much time is spent in rapid eye movement
(REM) or non-rapid eye movement (NREM) sleep. The overnight recording is therefore
first sleep staged by a clinician in order to extract these markers. For the test, patients
spend their night at the hospital sleeping, while their electroencephalography (EEG), elec-
tromyography (EMG), electrooculography (EOG), electrocardiogram is being recorded. In
addition, respiratory airflow and effort as well as pulse oximetry are measured and used
to identify respiratory-related disorders, such as obstructive sleep apnea. As a first step of
evaluation of the PSG recording, the night is scored into the different sleep stages, wake,
NREM 1, NREM 2, NREM 3, and REM, with the aid of the collected EEG, EMG, and
EOG data (Figure 1.5). Out of the full night PSG recording, many markers can be ex-
tracted, like the total amount of sleep, percentage of REM sleep, apnea-hypopnea index
(counting the number of episodes of partial or complete blockage of the upper airway), etc.
These markers are then used to diagnose sleep-wake disorders by a clinician.

Multiple sleep latency test (MSLT)
The multiple sleep latency test (MSLT) is used to test daytime sleepiness and requires
patients to lie down. They then try to fall asleep during the day for 20 minutes at a
time, while their EEG, EMG, and EOG are measured. The test is repeated five times
and many measures used to diagnose SWDs are extracted. For example, the mean sleep
latency i.e. the average time it took a patient to fall asleep, or the mean REM latency, i.e.
the average time it took for a patient to reach REM the first time, are measured with this
test (Carskadon and Dement, 1982).
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1.3.1.2 Self evaluations

Most sleep-wake disorders do not have objective diagnostic biomarkers. However, clini-
cians’ evaluations for sleep-wake disorders are still based on questionnaires, as they give
additional insight. There are some disorders, such as parasomnias or restless leg syndrome,
which rely almost exclusively on patients’ self-reports (ICSD-3, 2014). Additionally, ques-
tions related to the daily lives of patients are very important for a diagnosis. A standard
evaluation is the Epworth Sleepiness Scale (ESS), measuring daytime sleepiness, for ex-
ample, how likely someone is to fall asleep during activities, such as talking or riding a
car during the day (Johns, 1991). Other questions are related to the subjective amount of
sleep patients had during overnight recordings or the subjective feeling of having a burning
or tingling sensation in one’s legs, for the diagnosis of restless leg syndrome.

1.3.2 Types of sleep-wake disorders

According to the international classification of sleep disorders third edition (ICSD-3, 2014)
there are more than 80 sleep-wake disorders. There are six classes of disorders, each
containing multiple subclasses. The most important classes of disorders, that are relevant
for this thesis, are introduced below, each with their most prevalent subclasses.

1.3.2.1 Central disorders of hypersomnolence (CDH)

Excessive daytime sleepiness for at least three months is the main diagnostic criteria for
central disorders of hypersomnolence (CDHs) (ICSD-3, 2014). This can be measured via
the ESS (Section 1.3.1.2). As a more objective measure of sleepiness is the mean sleep
latency of the MSLT (Section 1.3.1.1, MSLT). An mean sleep latency of below 5 minutes is
considered an indication of sleepiness and above 10 minutes for normal alertness (ICSD-3,
2014). The most severe subtypes of CDHs are narcolepsy type 1, narcolepsy type 2, and
idiopathic hypersomnia. The most important clinical measures for the distinction between
these subtypes are the mean sleep latency and the number of sleep onset REM periods.
Sleep onset REM periods are episodes of REM sleep within 15 minutes of falling asleep.
As a comparison, the mean latency to a period of REM sleep in the healthy population is
109 ± 65 minutes (Singh et al., 2006).

There are other subtypes of CDHs, such as hypersomnia due to a medical disorder, hy-
persomnia due to a medication or substance, hypersomnia associated with a psychiatric
disorder. (ICSD-3, 2014).
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Narcolepsy type 1 (NT1)
Narcolepsy type 1 (NT1), formerly called narcolepsy with cataplexy, is the most severe
sub-disorder of CDHs. (Mahlios et al., 2013; Barateau et al., 2017) even suggested that
NT1 might be an autoimmune disease. Cataplexy describes the symptom of complete
or partial loss of muscle tone without losing consciousness, usually triggered by positive
emotions and laughter. A diagnosis of NT1 can be made if a patient reports excessive
daytime sleepiness, cataplexy, and mean sleep latency less than eight minutes and at least
two sleep onset REM periods (ICSD-3, 2014).

With the discovery of the sleep/wake regulating hypocretin neurons located in the hy-
pothalamus and their link to narcolepsy, a second criterion for the diagnosis of NT1 was
introduced (Mignot et al., 2002). Patients with low levels of hypocretin neurons and reports
of excessive daytime sleepiness can be diagnosed with NT1 (ICSD-3, 2014). Hypocretin
neurons are located in the hypothalamus and are used for regulating sleep/wake states,
by producing the neuropeptide orexin (Sakurai et al., 1998). Around 90% to 95% of NT1
patients have low levels of hypocretin neurons (Mignot et al., 2002; Luca et al., 2013).

Narcolepsy type 2 (NT2)
Narcolepsy type 2 (NT2), formerly called narcolepsy without cataplexy, has very similar
diagnostic criteria to NT1 (excessive daytime sleepiness, mean sleep latency, sleep on-
set REM periods), however, patients with NT2 can not show cataplexy or low levels of
hypocretin neurons (ICSD-3, 2014). NT2 is hypothesized to be a heterogeneous condition
and there currently exists no clear biomarker for an unambiguous diagnosis, similar to the
hypocretin deficiency for NT1 (Baumann et al., 2014; Fronczek et al., 2020).

Idiopathic hypersomnia (IH)
Idiopathic hypersomnia (IH) can be challenging to distinguish from NT2 (Trotti et al.,
2013; Lopez et al., 2017). The criteria for IH differs from NT2 regarding only the number
of sleep onset REM periods, which for NT2 is lower than 2 and for IH strictly higher
than 2. Similar to NT2, IH is a very heterogeneous condition and currently, there is
no pathophysiological explanation for its origin (Lammers et al., 2020; Fronczek et al.,
2020).

Challenges with diagnostic of central disorders of hypersomnia
Diagnosing CDHs can be challenging. The differentiation between NT1 and NT2 is quite
clear, as NT1 patients either express cataplexy or have a low number of hypocretin neurons
in the hypothalamus (Mignot et al., 2002). However, the rest of the diagnostic criteria are
identical. The lab evaluation for levels of hypocretin neurons is not always conducted
and was only added as a diagnostic criterion in 2014 (ICSD-3, 2014). Therefore patients
that don’t express cataplexy are often diagnosed with NT2. However, it has been shown
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that up to 24% of NT1 patients with low levels of hypocretin neurons do not express
cataplexy (Mignot et al., 2002; Andlauer et al., 2012). (Baumann et al., 2014; Fronczek
et al., 2020) also highlight that some patients with low or intermediate hypocretin levels
but not cataplexy at their first evaluation would develop it many years later. This evidence
points towards misclassifications of NT2 patients in the initial absence of cataplexy.

The differentiation between NT2 and IH is even more challenging. The distinction between
these two disorders is based on the results of the MSLT, specifically the number of sleep
onset REM periods, but it has been shown that the MSLT has a very poor agreement
between multiple evaluations (Trotti et al., 2013; Lopez et al., 2017). The former study
evaluated a cohort of CDHs patients with two MSLT testings. The re-testing confirmed
the diagnosis for only 47% of CDHs patients, more precisely for 33% NT2 patients and 57%
of IH patients (Trotti et al., 2013). (Lopez et al., 2017) performed a similar study in 2017.
For 81% of NT1 patients, the diagnosis was confirmed. For the non-cataplectic disorders
of central hypersomnolence, the diagnosis was confirmed in 39% of patients. 47% of NT2
patients were rediagnosed with NT2, however for 47% of NT2 patients, a diagnosis with a
CDH was not confirmed. For IH the percentage of reclassification was lower, at 20% (Lopez
et al., 2017). While these studies showed relatively high stability of the diagnosis of NT1,
the retest stability for non-cataplectic disorders of central hypersomnolence was below 50%.
These studies were of great importance for showing the low test-retest reliability of the
MSLT.

(Fronczek et al., 2020) have shown that many of the measures, such as sleep paralysis,
hallucinations, and disrupted night sleep, for patients with NT2 lie between values found
in NT1 and IH. Therefore some opinions have emerged that NT2 might not exist as a
distinct sleep-wake disorder, but only at the border between NT1 and IH. Multiple studies,
therefore, call for a redefinition of NT2 and IH on a spectrum (Baumann et al., 2014;
Fronczek et al., 2020) and for new useful biomarkers for the distinction of NT2 and IH
(Baumann et al., 2014; Lammers et al., 2020).

In conclusion, this paragraph highlights the challenges with the diagnostic criteria for
CDHs. There have been multiple suggestions for redefinition of NT1, NT2 and IH (Bau-
mann et al., 2014; Fronczek et al., 2020; Lammers et al., 2020) and calls for new biomarkers
(Baumann et al., 2014; Lammers et al., 2020; Dietmann et al., 2021).

1.3.2.2 Sleep-related breathing disorders (SBD)

The category of sleep-related breathing disorders (SBDs) spans a great variety of disorders.
The most common is obstructive sleep apnea (OSA), affecting around 2-4% of the popu-
lation (Young et al., 2002), followed by central sleep apnea (CSA), which can be found in
0.9% of the general population (Donovan and Kapur, 2016). Breathing disorders describe
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events of loss of breathing during sleep leading to potential awakenings. Patients often
do not realize their loss of breath and might not remember the awakening that followed.
However, patients generally feel more tired and sleepy during the day (ICSD-3, 2014). OSA
and CSA have different pathologies. OSA is caused by an obstruction of the upper airways,
which results in patients temporarily receiving too little air. In contrast, CSA is caused
by a dysfunction of the central ventilatory control centers, as they fail to initiate ventila-
tory efforts. Obstructive or central respiratory events are scored in the PSG and patients
need to have at least five events per hour (Apnea-Hypopnea Index) for a diagnosis of OSA
or CSA respectively (ICSD-3, 2014). The apnea-hypopnea index describes an objective
biomarker that can be used to diagnose OSA and CSA reliably. However, the computation
of this marker requires the scoring of the overnight PSG by a physician.

1.3.2.3 Insomnia

Patients with insomnia suffer from difficulties in initiating and maintaining sleep. They,
therefore, have shorter sleep duration and worse sleep quality, despite good opportunities
for sleep. Insomnia is diagnosed mainly based on self-reported markers related to ini-
tiating and maintaining sleep, as well as daytime impairments such as fatigue or mood
disturbances. Another key criterion for the diagnosis of insomnia is that another disorder
should not better explain the reported symptoms (ICSD-3, 2014; Edinger et al., 2004).
This suggests that insomnia may be difficult to discriminate from other disorders because
its symptoms co-occur in many other sleep-wake disorders (Edinger, 2011).

1.3.2.4 Parasomnias and sleep-related movement disorders

Parasomnias are described as unpleasant physical experiences, such as sleepwalking or sleep
terrors. For example, events of parasomnia can entail incomplete awakenings, or move-
ments during REM sleep. Clinicians base the diagnosis of Parasomnia on questionnaires.
The evaluated questions are related to dreams, or vocalizations (ICSD-3, 2014).

Simple, stereotypical, and repeated movements that disturb both sleep onset and sleep are
some of the criteria for diagnosing sleep-related movement disorders. The only exception is
restless leg syndrome (RLS), as the diagnostic criteria differ slightly. RLS patients experi-
ence uncomfortable sensations (such as tingling or burning) in the legs that only decrease
when moving the legs. For diagnosing RLS, clinicians rely mostly on questionnaires, asking
for a tingling or burning sensation in the legs (ICSD-3, 2014).

Parasomnias and movement disorders both express movements during the night, however,
the ones observed in parasomnias are more complex and with purpose. In an overnight PSG
recording, both disorders would show movements and differentiation based on objective
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markers, such as the periodic limb movement (PLMS) index, might present a challenge.
Additionally, both disorders rely heavily on questionnaires for their diagnosis and do not
have objective diagnostic biomarkers.

In summary, the full landscape of SWDs is extremely heterogeneous and entangled. There
are multiple problems with the current diagnostic criteria and potential difficulties with
diagnostics. For central disorders of hypersomnolence, the poor retest reliability of the
MSLT and diagnosis of NT2 versus IH have been mentioned (Trotti et al., 2013; Lopez et al.,
2017). Therefore, multiple studies call for new biomarkers (Lopez et al., 2017; Trotti et al.,
2013; Baumann et al., 2014; Lammers et al., 2020) or reevaluations of current diagnostic
criteria (Baumann et al., 2014; Fronczek et al., 2020; Lammers et al., 2020) within central
disorders of hypersomnolence. These limitations are not restricted to CDHs, as biomarkers
exist for only a few other disorders. For example, insomnia or sleep-related movement
disorders don’t have precise biomarkers. Additionally, there are several disorders that
heavily rely on self-reported metrics, which are not always reliable, such as parasomnias
or restless leg syndrome.

1.3.3 Clustering

Within the heterogeneous and entangled landscape of SWDs the question arises of whether
the currently collected diagnostic markers can disentangle the full landscape of SWDs, es-
pecially since only very few SWDs have objective biomarkers. Additionally, for prevalent
and heterogeneous sleep-wake disorders, such as insomnia or OSA, an open question re-
mains if potential subtypes could be identified, that would characterize patient groups
better.

One possible way to address these questions is with unsupervised machine learning tech-
niques, such as clustering, developed in the field of computer vision. Unsupervised cluster-
ing is a technique used to discover subgroups of data points with the closest distance in a
high dimensional space (Duda et al., 2001). For SWDs this technique can be used to iden-
tify new subgroups of patients that share the biggest similarity among the collected clinical
markers. This information can then assist in redefining certain SWDs, based on currently
used markers. Clustering has been previously used in SWDs, for example in CDHs (Šonka
et al., 2015; Cook et al., 2019; Gool et al., 2022), insomnia (McCloskey et al., 2019 11;
Miller et al., 2016; Kao et al., 2021) or OSA (Joosten et al., 2011; Bailly et al., 2016; An
et al., 2019; Venkatnarayan et al., 2022). However, there have been no previous attempts
at clustering the full landscape of sleep-wake disorders.
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1.3.3.1 Technical aspects of clustering

There are many different hyperparameters, that need to be considered when building a
clustering pipeline. This section covers some of these parameters, with a specific focus on
retrospective clinical datasets. First, the type of clustering algorithm used is important.
The field of computer vision has proposed many different clustering algorithms, for ex-
ample, hierarchical or centroid-based algorithms (Duda et al., 2001). Second, a distance
metric between data points needs to be defined. Exemplar metrics are, the Euclidean or L1

distance (Duda et al., 2001). Last, the number of clusters the algorithm should find must
be pre-defined or post hoc determined. For centroid-based clusterings the number of clus-
ters is pre-selected. Compared to hierarchical clusterings where a threshold above which
clusters are no longer merged is selected. Post selections are usually based on some quality
metrics such as explained variance, inter or intra-cluster distance, and for example the
elbow method. In all of these cases, the number of clusters, distance threshold, or the used
quality metric is a hyperparameter of the clustering pipeline. All of the above-mentioned
choices can impact the results.

Applying clustering algorithms developed for computer vision to retrospective clinical data
is non trivial. Clinical datasets are oftentimes incomplete, as either patients did not perform
all tests, or retrospective data was not properly digitized. There are three options for
dealing with missing data for clustering.

First, one can focus on a subset of patients and markers where all data is available. This
however may majorly reduce the number of patients available and is not ideal when machine
learning algorithms are used, as the risk of overfitting is increased.

Second, there is the possibility to select a distance metric that can handle missing values
when comparing data points. One such example is Gower’s distance (Gower, 1971), which
ignores any dimension where one of the data points is missing and is otherwise equivalent
to the L1 metric. Such a metric has the limitation, that data points that don’t have many
values in the same dimension are spatially quite close with respect to this metric since
only a few entries overall are considered for this distance, compared to two data points
with many values given. This could be a disadvantage for clinical datasets where specific
tests are only performed if clinicians already suspect one type of disorder and patients
with entirely different disorders don’t have many values in overlapping dimensions. For
example, variables related to cataplexy in NT1 are usually only collected for patients
with a disorder of hypersomnia but not for patients with parasomnia. Clinicians are less
likely to ask patients with a CDH about night terrors, an essential question for diagnosing
parasomnias. Therefore NT1 and parasomnia patients could have a small distance between
them, even though their phenotype is completely different.

The third option is to use an imputation technique, for example, replacing missing values
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with the mean or median of the dataset. There are also machine learning algorithm-based
algorithms for imputation, such as Random Forest (Stekhoven and Bühlmann, 2011) or K
Nearest Neighbour (Bishop, 2006). The drawback of this option is that markers with only
a few values given are not reliable after imputation.

In summary, many different choices need to be made in selecting a clustering pipeline. The
decisions are related to the selection of algorithms, metrics, or approaches in dealing with
missing data, which are particularly relevant for clustering retrospective clinical data.

1.3.3.2 Clustering for sleep-wake disorders

Despite the methodological challenges, clustering algorithms have a strong potential to
identify sub-populations within patient cohorts, without an a priori hypothesis. Therefore,
they have been used to address the central open questions in the field of SWDs, namely to
describe sub-cohorts of heterogenous and prevalent sleep-wake disorders. In its majority,
previous literature has used clustering algorithms for identifying unique phenotypes in
CDHs, OSA, or insomnia.

Clustering of central disorders of hypersomnolence

A first attempt in (Šonka et al., 2015) considered a cohort of 96 patients with CDHs, equiv-
alent to what is currently known as NT1, NT2, and IH patients. The analysis was based
on a hierarchical clustering with a euclidean distance based on seven clinical variables.
The authors found three major clusters within CDHs and a minor cluster only containing
two patients with NT2. The study, therefore, concluded that within CDH, three clusters
of sub-disorders exist. The first cluster found, contained patients with NT2 and IH. This
cluster had the highest number of patients with irresistible unwanted naps. A second
cluster had the highest number of patients with great difficulty waking up from naps and
contained almost exclusively IH patients. The third cluster contained only patients with
NT1 and, as expected, had the highest number of patients with cataplexy.

In an attempt to identify subtypes of hypersomnolence disorder (Cook et al., 2019) used
a hierarchical clustering and identified two clusters splitting a cohort of 62 patients into a
more severe and milder sub-type of CDHs. The two clusters were identified based on self-
reported questionnaires, reflecting total sleep time, time in bed, and sleep inertia. This
study suffers however from some major limitations. First, the clustering variables were
all self-reported and not objective markers. Second, the study did not clearly define the
disorders of the patients. It is unclear whether patients with NT2 were included in the
study cohort. And last, the clusters found were never compared to patients’ diagnoses
according to ICSD diagnostic criteria (ICSD-3, 2014).

The studies mentioned above considered relatively small cohorts of CDH patients. As
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both studies used unsupervised machine learning algorithms, it is unclear if the algorithms
overfit their data, and results might not generalize to larger cohorts. A recent study ad-
dressed this limitation by analyzing the European Narcolepsy Network database (Gool
et al., 2022). The study comprised a total of 1078 patients and 97 clinical markers. As
the database had quite some missing values, an agglomerative clustering with a Gower’s
distance was performed, which can manage missing values (Section 1.3.3.1). Four of the
seven identified clusters contained mostly patients with NT1, describing potentially differ-
ent NT1 sub-types. All clusters had a high prevalence for cataplexy, a high number of sleep
onset REM periods, and low levels of hypocretin neurons, characteristic of NT1 (Section
1.3.2.1). Two clusters contained the majority of the patients without cataplexy; these pa-
tients were a mixture of mostly NT2 and IH patients. The difference within these clusters
was primarily reported in the markers of sleep drunkenness and difficulty in awakening,
among others. These two clusters exhibited no cataplexy and higher numbers of hypocretin
neurons compared to the first four clusters, consistent with the diagnostic criteria of NT2
and IH. The last cluster was small and included patients with NT1, NT2, and IH. (Gool
et al., 2022) show with their findings that IH and NT2 still lack precise biomarkers and no
clear clusters were identified for these disorders.

In summary, (Šonka et al., 2015) and (Gool et al., 2022) found clear clusters of NT1 patients
and, in each case, two clusters mixed between patients with NT2 and IH. These studies
showed that existing clinical markers can distinguish NT1 from NT2 and IH. However, they
discovered a clear need for new biomarkers for NT2 and IH or a redefinition of the clinical
criteria. (Šonka et al., 2015) and (Gool et al., 2022) identified some possible markers to
distinguish subgroups of non-cataplectic CDHs. Further studies are required to confirm
markers for subgroups of CDHs.

Clustering of OSA and Insomnia
OSA and insomnia are prevalent and heterogeneous disorders. Quite some studies have
tried to identify subtypes of OSA (Joosten et al., 2011; Bailly et al., 2016; An et al., 2019;
Venkatnarayan et al., 2022) or insomnia (Miller et al., 2016; McCloskey et al., 2019 11;
Kao et al., 2021) with the aid of unsupervised clustering techniques.

(Joosten et al., 2011; Bailly et al., 2016; Venkatnarayan et al., 2022) used different clustering
algorithms (K-Means, hierarchical or feature trees) with cohorts of OSA patients, of various
sizes ranging from 100 to 18263 patients. These studies found different numbers of clusters
(three to six), which were either separated along demographic data (age, BMI, sex) or
disease severity. This suggests that within the heterogeneous disorder of OSA, distinct
subtypes exist. It is, however, still unclear how to best identify subtypes of obstructive
sleep apnea.

(Miller et al., 2016; McCloskey et al., 2019 11; Kao et al., 2021) base their clustering on
overnight recordings and features extracted from the EEG and sleep stages to identify
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insomnia subtypes. The studies identified between two and six clusters that differed pri-
marily on sleep time (total, REM, or NREM sleep) and sex. They used either hierarchical
clusterings or Bayes-Gaussian mixed models (Bishop, 2006). These studies all used features
extracted from an overnight PSG recording. For a diagnosis of insomnia disorder, it is not
necessary to perform a PSG, as the diagnosis is based on questionnaires. However, PSG
could give further insight into insomnia disorder to identify new biomarkers or describe
new subtypes.

1.3.3.3 Clustering of sleep outside of the clinical environment

One attempt to cluster a wide range of sleep patterns considered a big population outside
the clinical environment. (Katori et al., 2022) presented a clustering of 91’765 participants
collected in the UK-Biobank project. The authors analyzed actigraphy data from a cohort
of participants with no record of a SWD. The actigraphy data was used to extract 21
variables, such as mean wake time, mean sleep time, and phase. These variables were then
used to identify a total of 16 clusters with a density-based spatial clustering of applica-
tions with noise clustering (Ester et al., 1996). The authors found clusters of chronotypes
("night owls" and "early birds"), different week-to-weekend cycles, as well as seven clusters
expressing insomnia-like patterns. This study is critical as it shows for the first time the use
of actigraphy data at this scale for analyzing sleep-wake patterns, however, in participants
without reported sleep disorders.

In summary, the above section presented multiple clusterings on a different category of
SWDs at a time. The presented results showed a considerable variation between studies,
in terms of the number of identified clusters, as well as the variables distinguishing the
clusters. The discrepancy in results can emerge from different sources. First, the algorithms
and metrics used varied between studies. Second, different approaches were selected for
dealing with missing data. Both of these components can influence the results greatly,
and for each class of disorders, it remains unknown if other selections of hyperparameters
would replicate the results.

One major omission in the literature is that there are, to date, no attempts to cluster the full
landscape of sleep-wake disorders. It remains, therefore, an open question if the currently
collected clinical markers are sufficient to fundamentally untangle all SWDs. This may
allow for identifying more phenotypes of these disorders. This thesis addresses this omission
in chapter 4, where an unsupervised clustering algorithm is used to disentangle the full
landscape of SWDs. The study focuses on ten different classes of SWDs from the Bernese
Sleep registry and presents an automatic data curation and clustering pipeline.
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1.4 Thesis Contributions

This thesis contributes to the topic of machine and deep learning in the field of neuroscience
and neurology. It is structured around three primary manuscripts, each targeting distinct
facets in this field. The first manuscript, (Aellen et al., 2021), sets the methodological
basis, where it is shown that deep learning can substitute MVPA techniques for EEG
research. In the second paper (Aellen et al., 2023), the strong potential of deep learning
for predicting outcome from coma is presented. A third study (Aellen et al., published)
is using unsupervised machine learning to cluster sleep-wake disorders based on currently
available markers.

1.4.1 CNNs for decoding EEG responses and visualizing trial by
trial changes in discriminant features

MVPA algorithms are often used for the analysis of EEG signals. They can be used
to extract discriminative patterns from EEG in response to external stimulations. How-
ever, most MVPA algorithms are based on simple machine learning classifiers, and most
commonly, are trained on a time-point by time-point basis. They operate under the as-
sumption that discriminant information is time-locked, which is a limitation. However,
neural patterns can be distributed across trials or subjects and may change in latency or
spatial configuration. Therefore using MVPA as an analysis tool on a group level can be
challenging.

Deep learning models can address this challenge by incorporating space and time-unlocked
patterns. However, the use of deep learning for basic research on EEG signals is still
limited, especially as an MVPA method.

In (Aellen et al., 2021) (chapter 2) it is explored if deep learning can be used as an MVPA
technique for decoding EEG signals. To this end, the first hypothesis is that using time
and space-unlocked information from EEG signals and methods from computer vision
can increase classification accuracy. A second hypothesis is that gradient-based feature
visualization tools, i.e. saliency maps, can be used to extract class-specific discriminant
features.

This contribution, published in the Journal of Neuroscience Methods in December 2021,
uses a CNN architecture, which has been developed for image classification (residual neural
network (ResNet50) (He et al., 2016)). The study used two different datasets of EEG data
of healthy participants once exposed to auditory and once to visual stimulations, presented
in a deviance paradigm. In particular, a CNN was trained to discriminate between standard
and deviant trials to validate the presented pipeline in different modalities. To compensate
for the small sizes of the two datasets, three different types of data augmentations were
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used, temporal shift, sub-averaging of single trials, and Gaussian noise. Additionally,
saliency maps (Simonyan et al., 2013) were used to extract class and trial-specific features
and analyzed changes in these features throughout the experiment.

1.4.2 Auditory stimulation and deep learning predict awakening
from coma after cardiac arrest

Outcome prediction is of great importance in post-anoxic coma patients. For clinicians, it
is important in order to optimize patients’ care, and for patients’ families, early assessment
carries great value. Current predictors used within the clinics leave around a third of the
patients without a proper diagnosis. Additionally, most of these predictors exclusively
predict bad outcome and only a few predictors for survival exist.

For this reason, the prediction of the outcome from coma is the focus of (Aellen et al., 2023)
(chapter 3). The prediction is based on EEG signals of patients in response to standardized
auditory stimulations with deep learning models. The hypothesis is that artificial neural
networks can assist in predicting patients’ chances of survival by extracting interpretable
patterns from EEG signals in response to standardized auditory stimulation within the first
24 hours of coma. Furthermore, a second hypothesis is that the presented outcome predic-
tion would be complementary to clinical markers and would improve outcome prognosis
for ’grey zone’ patients.

This contribution, published by Brain in February 2023, uses EEG signals of 134 post-
anoxic coma patients exposed to standardized auditory stimulations. A deep learning
model (Lawhern et al., 2018) is used to predict the outcome of these comatose patients.
Additionally, it is shown that our model reaches high performance on patients without a
clear prognosis, potentially giving additional information for clinical decisions. Last, the
network’s output is compared to interpretable features related to neural synchrony, neural
complexity, and other clinical markers.

1.4.3 Disentangling the complex landscape of sleep-wake disorders
with data-driven phenotyping: A study of the Bernese Cen-
ter

The third part of this thesis focuses on sleep-wake disorders. The landscape of SWDs
is convoluted, as multiple sleep-wake disorders can co-occur in single patients. Addition-
ally, only a few disorders with objective biomarkers exist, namely OSA, CSA, and NT1.
All other disorders rely heavily on subjective questionnaires or clinical tests with poor
retest reliability. Therefore, many studies call for new biomarkers (Baumann et al., 2014;
Lammers et al., 2020; Dietmann et al., 2021), or redefinition of current diagnostic criteria
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(Baumann et al., 2014; Fronczek et al., 2020).

Previous work attempted unsupervised clustering of patients with a specific sleep-wake
disorder to identify markers that would better distinguish sub-classes of these disorders.
One such example is (Gool et al., 2022), focusing on CDHs, where they identified clear
clusters of NT1 patients. However, NT2 and IH patients were intermixed. A similar
approach could be used on the full landscape of SWDs, to address the open question if
current clinical markers are enough to disentangle sleep-wake disorders. Yet the literature
completely lacks such studies on all SWDs.

The third contribution of this thesis (Aellen et al., published) (chapter 4) therefore asks
if unsupervised clustering algorithms would be able to disentangle the current landscape
of sleep-wake disorders based on existing biomarkers. Three different patient cohorts are
analyzed. First, this work focuses on a cohort of patients with CDHs to test the hypothesis
that NT1 would be distinct, but NT2 and IH would be intermixed. A second cohort
contained patients with all SWDs and the hypothesis that patients with OSA or CSA
and patients with NT1 would be most distinct, as these disorders have clear objective
biomarkers, was tested. By contrast, for all other SWDs, the hypothesis was that it would
be more challenging to disentangle them based on currently available markers. The last
cohort that was analyzed contained only patients with a single SWD.

The manuscript describing this work was, at the time of writing this thesis under review.
As working with retrospective data is challenging, a pipeline for data selection, curation,
and analysis, based on an unsupervised clustering algorithm was developed and applied to
different cohorts of SWDs. The analysis was done on the Bernese Sleep Registry, a database
of SWD patients collected over the past 16 years at the Inselspital, the University Hospital
of Bern. The entire cohort contained a total of 6’958 patients and more than 300 possible
markers.
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Attribution 4.0 International” licence.

Background: Deep learning has revolutionized the field of computer vision, where con-
volutional neural networks (CNNs) extract complex patterns of information from large
datasets. The use of deep networks in neuroscience is mainly focused to neuroimaging or
brain computer interface -BCI- applications. In electroencephalography (EEG) research,
multivariate pattern analysis (MVPA) mainly relies on linear algorithms, which require a
homogeneous dataset and assume that discriminant features appear at consistent latencies
and electrodes across trials. However, neural responses may shift in time or space during
an experiment, resulting in under-estimation of discriminant features. Here, we aimed at
using CNNs to classify EEG responses to external stimuli, by taking advantage of time-
and space- unlocked neural activity, and at examining how discriminant features change
over the course of an experiment, on a trial by trial basis.

New method: We present a novel pipeline, consisting of data augmentation, CNN training,
and feature visualization techniques, fine-tuned for MVPA on EEG data.

Results: Our pipeline provides high classification performance and generalizes to new data-
sets. Additionally, we show that the features identified by the CNN for classification are
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CHAPTER 2. CCNS FOR EEG AND FEATURE VISUALIZATIONS

electrophysiologically interpretable and can be reconstructed at the single-trial level to
study trial-by-trial evolution of class-specific discriminant activity.

Comparison with existing techniques: The developed pipeline was compared to commonly
used MVPA algorithms like logistic regression and support vector machines, as well as to
shallow and deep convolutional neural networks. Our approach yielded significantly higher
classification performance than existing MVPA techniques (p = 0.006) and comparable
results to other CNNs for EEG data.

Conclusion: In summary, we present a novel deep learning pipeline for MVPA of EEG
data, that can extract trial-by-trial discriminative activity in a data-driven way.

2.1 Introduction

Multivariate pattern analysis (MVPA) is commonly used in the field of neuroscience to
extract discriminative patterns of neural responses to external stimuli (Haynes and Rees,
2006). Although initially developed for functional magnetic resonance imaging (fMRI),
MVPA techniques have been adapted for the field of magneto- and electro-encephalography
(M/EEG) (Grootswagers et al., 2017). These are most commonly based on linear classifiers,
which are applied on sensor-level topographic data, either aggregated across time (Tzovara
et al., 2012) or on a time-point by time-point basis (King and Dehaene, 2014). This latter
approach is most commonly implemented by training and testing one classifier at a given
time-point within a trial (Castegnetti et al., 2020; Demarchi et al., 2019) and identifying
time-points for which classification is above chance levels. However, this approach suffers
from several drawbacks, as it only allows detecting a fixed time-period of discriminant
activity for all experimental conditions and trials. Most MVPA approaches are based on
single-trial information, and are thought to be more sensitive than ’classical’ event-related
potential (ERP) analyses. However, training and testing a classifier at single time-points
makes the assumption that discriminant information appears at the same latency and
electrode locations across trials, in a time- and space- locked way.

In the past few years, the field of computer vision has gained a tremendous momentum
with the introduction of deep learning algorithms (Goodfellow et al., 2016). Deep neu-
ral networks, typically relying on convolutional operations (convolutional neural networks
-CNNs-) are commonly used to classify different types of images, ranging from everyday
objects (He et al., 2016), to challenging medical images (Suzuki, 2017). Because the kernels
of the convolutional layers share weights for the whole image, CNNs have the advantage
that they are able to detect space unlocked patterns, a property called translational equiv-
ariance (Goodfellow et al., 2016) (Section 9.2). The position of the discriminant pattern
across observations is therefore irrelevant, which often results in CNNs outperforming ‘tra-
ditional’ machine learning algorithms.

36



CNNs have been increasingly applied to new fields. In the field of EEG research, deep learn-
ing algorithms have been introduced for clinical applications such as detection of epileptic
seizures (Cho and Jang, 2020; Burrello et al., 2020), automating sleep scoring (Fiorillo
et al., 2019), or predicting outcome of coma patients (Jonas et al., 2019). Applications in
basic research mainly focus on brain-computer-interfacess, oftentimes on paradigms based
on motor imagery (Schirrmeister et al., 2017; Zhang et al., 2019) and (Roy et al., 2019) for
a review on deep learning and EEG. Apart from BCI applications, deep learning techniques
for basic EEG research such as MVPA have been introduced but are not widely used in
basic research yet. Deep neural networks predominantly profit from extracting features
from minimally processed data, yet several algorithms for EEG are based on hand crafted
features, such as classification of time frequency (Ghosh et al., 2018; An et al., 2014), or
frequency transforms of EEG data within different frequency bands (Kuanar et al., 2018;
Bashivan et al., 2016; Tan et al., 2018) or differential entropy (Wang et al., 2018). While
these hand crafted features often times have a physiological meaning, such as representing
the energy spectrum in a given frequency band, they require making strong assumptions
about the underlying task, are not easily translatable across experimental setups and might
not fully exploit the features which are most discriminant across experimental conditions.
Other deep learning algorithms for EEG use the raw EEG or a minimally processed signal
(Schirrmeister et al., 2017; Lawhern et al., 2018; Tang et al., 2016; Nurse et al., 2016;
Hajinoroozi et al., 2017), allowing the network to fine-tune its parameters and identify
the most discriminant features in the data, by maximizing separability between conditions
of interest. The learnt features here usually have not a physiological meaning and their
interpretation is oftentimes very complex.

One important aspect common to all MVPA approaches, for basic research and also for
clinical or BCI applications, is that of obtaining interpretable features that have an elec-
trophysiological meaning (Haufe et al., 2014). Existing techniques for interpreting results
of decoding approaches for M/EEG data provide information about sensor-locked activ-
ity, such as the weights or activations of single electrodes or sensors (Haufe et al., 2014).
These techniques provide information about the sensors that mostly contribute to an ac-
curate classification, but are not informative about which of the experimental conditions
are driving this classification. Other techniques for feature extraction consist of separating
the EEG signal in subcomponents that can be then used to visualize condition-specific
patterns, like common spatial patterns (CSP) (Koles et al., 1990), but have the limitation
of poor temporal resolution, and of poor generalization over multiple participants (Lotte,
2014).

In the case of CNNs, feature interpretability is its own subfield of research. One possibility
for interpreting features is visualizing which dimensions of the input data are contributing
to the final prediction of the network or what information the weights of the trained kernels
contain (Zeiler and Fergus, 2013). This approach has the drawback that the extracted
features are not trial nor condition specific. By contrast, gradient based methods, such as

37



CHAPTER 2. CCNS FOR EEG AND FEATURE VISUALIZATIONS

saliency maps, can detect discriminant patterns of activity in each individual data sample
(Simonyan et al., 2013).

Here, we introduce a novel approach for decoding EEG responses to external stimuli based
on CNNs. We present an MVPA pipeline, relying on a deep CNN that extracts time- and
space- unlocked patterns of EEG activity; can be generalized to different datasets with
minimal assumptions; and has interpretable features in terms of spatio-temporal clusters
that drive an accurate classification. We explore this pipeline using two different datasets:
first, a dataset consisting of EEG responses to Repeated (pure tones) and Novel (natu-
ralistic) sounds, with clear and sustained differences in EEG responses. Second, we used
a more challenging dataset, consisting of EEG responses to Repeated and Novel images,
whose presentation was mixed across participants, resulting in more subtle condition dif-
ferences. Our goal is to use this pipeline in order to extract in a data-driven way trial by
trial spatio-temporal patterns of discriminant electrophysiological responses, and explore
how these change over the course of an experiment.

2.2 Materials and methods

2.2.1 Data

We used two different EEG datasets to (a) build our pipeline, and (b) evaluate whether it
generalizes across experimental settings. The first dataset (termed ’Auditory’) was used
to develop the presented algorithm and fine tune its individual steps. The second dataset
(termed ’Visual’) was in turn used to examine whether the developed pipeline can also
be used on new data and experimental conditions. Both datasets are openly available
(Cavanagh et al., 2018; van Peer et al., 2017).

2.2.1.1 Auditory dataset

The first dataset was an auditory oddball paradigm, consisting of repeated presentations
of Standard, Target and Novel sounds. The Standard and Target sounds were sinusoidals
at different frequencies, while the Novel ones were naturalistic sounds, varying with each
presentation. Here, we considered the EEG data of 17 participants from the control group
of this dataset, disregarding participants with persistent artifacts or noise in their record-
ings. For simplicity, we focused on a 2-class classification problem, and considered trials
were participants were presented with either a Standard or Novel sound (Figure 2.1 a and
b for mean responses across participants, and Figure A.1 for a topographic representation).
The data was recorded with 64 electrodes in a standard 10/20 configuration at a sampling
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Figure 2.1: Mean evoked responses for the auditory (top) and visual (bottom) dataset,
represented as time by electrodes. Panels a and c show the mean of all Repeated trials
and panels b and d the mean of all Novel trials. The y-axis displays the recorded EEG
channels, grouped in regions of interest for illustration purposes.

frequency of 500 Hz, initially referenced to the CPz electrode. Four temporal electrodes
were removed, as in the original publication of the data (Cavanagh et al., 2018), and the
remaining electrodes were re-referenced to a common average reference. Additionally eye
blinks were removed with independent component analysis and single trials were extracted
on a time window of 0.6 s (�0.1 to 0.5 s relative to stimuli onset). We additionally fil-
tered the data between 0.1 and 20 Hz. This first dataset contained a mean of 129.5 ± 2.7
Standard (mean ± standard error reported here and in the following) and 28.5 ± 1 Novel
trials per participant.

2.2.1.2 Visual dataset

The second dataset was a visual oddball, consisting of a repeated presentation of different
sets of images. Similar as in the auditory dataset, we considered two classes of Familiar
and Novel images (Figure 2.1 c and d for mean responses across participants, and Figure
A.1 for a topographic representation). We extracted data from 20 participants in total,
disregarding participants with prominent artifacts or noise in their recordings. EEG data
were recorded at 512 Hz (later down-sampled to 256 Hz) with 64 electrodes in a standard
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10/20 montage, referenced to an active common mode sense. EEG data were filtered
between 0.1 and 30 Hz and re-referenced to a common average reference. Eye blinks and
movement were removed according to (Gratton et al., 1983). Single trials were extracted on
a time window of 1.5 s (0 � 1.5 s relative to stimuli onset). For the visual dataset we did not
include any baseline, as the data that were publicly released were already epoched, without
any baseline (van Peer et al., 2017). We additionally inspected single trials visually for
artifacts. Noisy trials containing eye blinks or muscle activity were rejected. This resulted
in 506 ± 140 Familiar trials and 146 ± 40 Novel trials per participant.

In the following, for reasons of consistency, we refer to the two classes of both datasets as
Repeated (replacing Standard and Familiar from the first and second dataset respectively)
and Novel. We represented the EEG data as a 2D signal throughout most of the rest of
the paper, where the first dimension were the channels and the second the time (Figure
2.1).

2.2.1.3 Train, validation and test sets

Each dataset (Auditory and Visual) was split into a train, validation and test set in a
10-fold procedure. We used these splits to train the neural network 10 times, in a cross
validation way. The validation set was used for optimizing the network’s hyperparameters
and identifying the best fold. The test set was left aside until the very end, and was never
used for tuning the neural network or its hyperparameters. The test set was only used to
evaluate, in an unbiased way, the network’s performance. The available data were split
into 81% train, 9% validation and 10% test trials. For the auditory dataset this resulted
in 2176 trials for the train, 242 for the validation and 269 for the test dataset. As for the
visual dataset there were 10570 trials in the train, 1306 in the validation and 1175 in the
test set.

2.2.2 Network architecture

We built our MVPA pipeline around a residual neural network with 50 layers (ResNet50)
(He et al., 2016) (Figure 2.2, red box on the left side). This network consists of a convolu-
tional layer, batch normalization, rectified linear unit (ReLu) activation and a MaxPooling
layer, followed by four segments of 3/4/6/4 convolutional blocks each. Each convolutional
block has three convolutional layers followed by a batch normalization and ReLu activa-
tion layer. After the last batch normalization layer, the original input to the convolutional
block is added to the output from the batch normalization layer. This residual skip con-
nection is the main novelty of the ResNet50 architectures compared to most convolutional
neural networks. The skip connections allow for deeper networks, which can extract more
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Figure 2.2: Schematic representation of the architecture of the neural network. The main
network has four sections of each 3/4/6/4 convolutional blocks. Each convolutional block
then contains three convolutional layers. We added a fully connected and dropout layer
on top of the ResNet50 architecture. The network outputs either 0 or 1, for the labels
Repeated or Novel.

complex structures from the input data. For the first convolutional block of all the four
segments there is an additional convolutional and batch normalization layer on the skip
connection due to otherwise mismatched dimensions. All further technical information,
such as kernel sizes and padding information can be found in (He et al., 2016). In addition
to the standard architecture of ResNet50, we additionally included a fully connected layer
with 128 nodes and a dropout layer (with 50% probability), to further restrict overfitting.
EEG trials, represented as (Channels) × (Time) were given as input to the network. The
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Figure 2.3: Pipeline for data augmentation and training. The pipeline starts with selection
of samples in the current batch (left panel), proceeds with data augmentation (central
panel) and last inputs the trials into the network for training.

network’s output was a probability value per trial, ranging between zero and one, describ-
ing the probability of this trial to belong to each of the two classes (the Repeated class was
assigned the label 0).

2.2.3 Data augmentation

Data augmentation techniques are commonly used in the field of computer vision, to ar-
tificially increase the size of an existing dataset and avoid overfitting (see (Shorten and
Khoshgoftaar, 2019) for an overview of data augmentations used in computer vision).
These techniques essentially distort parts of the input data in a minor but meaningful
way before training a network. For example, in the field of computer vision, commonly
used data augmentation techniques consist of flipping an input image horizontally, which
is ecologically valid, as it is possible to observe object rotations in nature. In the case of
EEG data, which are time series, flipping the time dimension would not make sense.

Here, taking into account the nature of EEG, we augmented the available trials in three
different ways: (a) time shifts; (b) Gaussian noise and (c) sub-averaging single trials (Fig-
ure 2.3). First, in order to account for inter-individual differences in the timing of EEG
responses, the available single trials were shifted in time with a random interval of up to
5 time-points in either the positive or negative direction. Second, to account for different
levels of noise across participants, we additionally augmented the data by adding Gaussian
noise, with a mean of zero and a random standard deviation of 0.1, 0.2 or 0.3 per trial.
Third, considering the noisy nature of single-trial scalp EEG responses, we averaged the
input data over multiple trials. More specifically, per trial we chose a random number
nk (k 2 (1, b)) (where b is the batch size) from a triangular distribution (centered around
1) between 1 and 21 (which corresponds to 1/3 of the trials with the same labels in the
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current batch). For each trial we then chose nk � 1 samples from that batch with the same
labels and took the mean over the original and the additional trials. This last technique
of averaging single trials is commonly used in classification of EEG responses, in order to
improve signal-to-noise ratio (Tzovara et al., 2012).

2.2.4 Optimization and training

In the two datasets used here, the number of trials in the two classes was imbalanced,
with a ratio of Repeated to Novel trials of roughly 4–1. To account for this imbalance,
we over-sampled the underrepresented (Novel) class during training, by drawing an equal
number (b/2) of trials from two pots containing all trials from the training set of each of
the two classes.

In the training pipeline, a batch of size b of data, containing (b/2) trials from each condition
went through the data augmentation step before training. To account for the imbalance
during validation and test, we measured the area under the Receiver Operator Charac-
teristic curve (AUC) (Macmillan and Creelman, 2004), which consists of the true positive
versus false positive rate with respect to multiple thresholds. The network was optimized
with an Adaptive Moment Estimation (Adam) optimizer, using the standard parameters
proposed in its original implementation (Kingma and Ba, 2014), to minimize the binary
cross-entropy loss (Eq. 2.1) between the real labels y of the data and the network’s pre-
dictions ŷ.

L = �(y log(ŷ) + (1� y) log (1� ŷ)) (2.1)

During training we employed early stopping, so that if the validation loss would not further
decrease within ten training epochs the training would stop (Goodfellow et al., 2016)
(Section 7.8). The network was trained for maximally 50 epochs. As a final step, we
retained the network with the smallest validation loss. In the Results Section 2.3.1 we
report the mean train, validation and test AUC score, accuracy and binary cross-entropy
loss at that best epoch for all trained networks. The network layers were initialised with
imagenet weights (Fchollet, 2016) and the batch size b was chosen to be of 64 samples,
because of GPU size limitations. We used the python library tensorflow (2.1.0) with cuda
(10.1.168), cudnn (5.1.5) and python (3.6.8). The full training pipeline with the two classes,
data augmentation and the CNN is illustrated in Figure 2.3.
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2.2.5 Estimation of network performance

To evaluate the network’s performance, we computed chance levels in a data-driven way,
through random permutations. We randomly shuffled the labels of the training dataset
50 times. For each random shuffle we retrained the networks in the 10-folds of the cross-
validation, resulting in 500 ’random’ networks. Similar as for the networks trained on
true labels, we retained the test scores at the epochs of smallest validation loss. We then
used these ’random’ networks to classify trials from the Test and Validation dataset. Each
of the permutations resulted in one chance level classification performance. The actual
performance of the network, trained with true labels, was compared to the distribution of
AUC values obtained with random permutations with a Wilcoxon signed-rank test. Due
to the heavy computational cost of training CNNs, and due to the overwhelmingly low
chance-level classification results that we obtained for the first dataset when permuting
the true labels, we only computed chance levels via random permutations for the first
dataset. For the second dataset (Visual) we compared instead the performance of the
CNN with a ’classical’ MVPA approach (see Section 2.2.8.1).

2.2.6 Discriminant features

To visualize features from the EEG data that mostly contribute to the network’s output,
we used a gradient-based technique termed saliency maps (Simonyan et al., 2013). This
technique consists of backpropagating the input label of a given trial through the network,
to obtain the gradient, i.e. a value per time-point and electrode marking the strength of
the contribution of that input point to the decision of the network. For a given input I0,
output class c and a score function Sc(I0) (here binary cross entropy loss), the gradient w
of Sc with respect to an input I at the point I0 is given as

w =
@Sc

@I

????
I0

. (2.2)

The absolute value of w then gives the saliency map. To calculate saliency maps (in the
following called activation maps), we used the implementation from (Kotikalapudi and
contributors, 2017). For each fold of the 10-fold cross validation, we trained four networks,
resulting in a total of 40 networks. This follows feature visualization approaches that
are commonly used in the biomedical field, where physiological data are more noisy and
complex compared to natural images (Fauw et al., 2018). Typically, multiple networks
are trained per fold and their outputs are averaged to obtain stable features that are
consistently identified by all networks (Fauw et al., 2018; Mehrer et al., 2020). Here, we
calculated activation maps for each of the 40 networks separately, and then averaged the
mean of the obtained maps. This resulted in one activation map per input data point,
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which were either average ERPs for the two experimental conditions (Section 2.3.4) or
single trial ERPs (Section 2.3.6).

2.2.7 Trial by trial representation of discriminant features

As activation maps can be computed at the single-trial level, they can be used to study
changes in trial-by-trial neural responses throughout an experiment. Instead of considering
all single-trial EEG responses, as in most ERP or MVPA analyses, with single-trial activa-
tion maps it is possible to retain the temporal order of trials and compare their evolution
from the first, the second, up to the last presentation of the stimuli. Such an approach
could allow to assess for instance effects of learning, where neural responses to a given
stimulus change from one trial to the next as a function of presentation.

Here, to explore the potential of single-trial feature extraction, as an exemplar test case,
we extracted a sequence of single-trials keeping the order of exposure of the participants
to the stimuli of each experimental condition. We then averaged single-trial responses over
participants for each consecutive stimulus presentation, and calculated the activation maps
for each of these responses. This resulted in a sequence of activation maps, which reflect
patterns of discriminant EEG activity across consecutive presentations of the experimental
stimuli. To quantify changes in activation maps over the course of the experiment, at every
trial and time-point we summed up the values of activation maps over all electrodes (Figure
A.4 in the Appendix), resulting in one value per trial and time-point. We then fitted a
linear regression at every time-point to test whether the overall discriminant EEG activity
changed significantly from zero as a function of trial repetitions throughout the experiment.
To correct for multiple comparisons across time, 1000 cluster-based permutations were
used (Maris and Oostenveld, 2007). With this analysis we identified time-points with a
significant change in the activation of the network over the course of the experiment.

As a control, we performed the same analysis on the EEG data. Instead of the activation
maps we used EEG activity at every time-point recorded across electrodes, and tested
whether there were any latencies where changes in EEG responses during the experiment
were significantly different from zero as a function of trial repetitions.

2.2.8 Comparison with existing techniques

2.2.8.1 Comparison to logistic regression and support vector machines

The performance of the CNN was compared to two baseline algorithms, using exemplar
MVPA techniques. For this comparison, we chose logistic regression and support vector
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machine (SVM) (with ’rbf’ kernel), as they are commonly used in the field of M/EEG
research (Tomioka et al., 2006; Castegnetti et al., 2020; Philiastides et al., 2010). For
this comparison, we kept the same splits of train/test/validation and the same cross-
validation procedure as for training and testing the CNN. To estimate the hyperparameters
of the logistic regression, we pooled all observations from the training set together, and
optimized the parameters of penalty (l1 or l2 norm) and inverse regularizer (0.01–100,
with logarithmic spacing). The optimized parameters were then used to train and test
one classifier for every time-point, resulting in one classification score per time-point. This
resulted in one time course of training and test AUC values averaged over the 10-fold cross-
validation. For SVM, we use the same approach for optimizing the hyperparameters gamma
(‘scale’ or ‘auto’) and regularization parameter (0.01–100 with logarithmic spacing). To
compare the performance of the logistic regression and SVM with the CNN, we retained
the best performance of these two algorithms, at the point of the maximum validation
AUC score, and contrasted this with the overall performance of the CNN. Same as for
the CNN, chance levels for logistic regression were evaluated by shuffling the labels of
the training dataset, and by retraining the classifier of each time-point 50 times. The
performance of the real classifier was compared with the distribution of the performance
of chance classifiers using Wilcoxon signed-rank tests and was cluster-based corrected for
multiple comparisons over time (Maris and Oostenveld, 2007).

2.2.8.2 Comparison with other CNN architectures

We also compared the performance of the ResNet50-based CNN to two other CNNs that are
commonly used for decoding EEG signals (Zhang et al., 2019; Ghosh et al., 2018; Williams
et al., 2020; Jonas et al., 2019). We used a Shallow and Deep CNN, first introduced in
(Schirrmeister et al., 2017). These consist of 2 and 5 convolutional layers, for the Shallow
and Deep networks respectively, with additional batch normalization, activation, pooling
and dropout layers in between. They don’t have any residual skip connections and are
therefore shallower than the 50 layered ResNet50. For a fair comparison across all CNN
architectures (ResNet50, Shallow and Deep networks), we always used the same training
and data augmentation pipeline as described in Section 2.2.4.

Additionally, we evaluated the effect of some of the choices made in the training pipeline
introduced here in classification performance (A.2.1, A.2.2, A.2.3). More specifically, we
compared a CNN trained with filtered versus. with unfiltered data, a CNN where the
underrepresented class was oversampled to a CNN where a weighted binary crossentropy
loss was used, and lastly a CNN where we omitted the fully connected layer with 128
nodes before the dropout layer. Details for these control analyses can be found in the
Appendix.
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Figure 2.4: Training performance of the CNN on the two datasets. In each plot, the
bold line illustrates the mean AUC (panels a and b) or binary cross-entropy loss (panels
c and d) over the 40 trained networks and the shaded area the standard error. Blue lines
correspond to the scores of the train and red lines to the scores of the validation set,
respectively. Panels a and b show the results for the auditory dataset and panels c and d
for the visual dataset.

2.3 Results

2.3.1 Training and classification performance of the CNN pipeline

First, we trained CNNs to classify EEG responses to Repeated versus Novel stimuli, us-
ing the training, validation and test folds as described in Section 2.2.1. For the auditory
dataset, decoding performance, measured through the AUC, increased for both train and
validation sets already within the first 10 epochs of training, and reached a plateau approx-
imately from epoch 20 on (Figure 2.4, panel a). At the same time, the binary cross-entropy
loss decreased and reached a plateau already after the first 10 epochs of training (Figure
2.4 panel c). We report an AUC score of 0.89 ± 0.04 on the train, 0.75 ± 0.04 on the valida-
tion and 0.72 ± 0.04 on the test set (see Table 2.1). On average across folds, these scores
were reached on epoch 28.7 ± 13.7. The high classification performance in the test set
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Table 2.1: Results of training the Shallow, Deep convolutional neural network and the
ResNet50 for both datasets. We report the binary cross-entropy loss, the AUC score and
the accuracy for the train, validation and test sets. The reported results correspond to the
mean scores ± standard error at the epoch with the lowest binary cross-entropy loss on
the validation set.

Binary cross-entropy loss AUC-score Accuracy

Train Validation Test Train Validation Test Train Validation Test

Auditory dataset

ResNet 0.26±0.08 0.43±0.05 1.16±2.33 0.89±0.04 0.75±0.04 0.72±0.04 0.82±0.12 0.79±0.11 0.77±0.10

Shallow Net 0.38±0.01 0.37±0.03 0.44±0.04 0.83±0.01 0.78±0.04 0.75±0.03 0.86±0.01 0.85±0.02 0.82±0.02

Deep Net 0.39±0.03 0.379±0.03 0.47±0.04 0.83±0.01 0.77±0.03 0.73±0.03 0.85±0.01 0.85±0.02 0.82±0.03

Visual dataset

ResNet 0.40±0.06 0.54±0.03 0.61±0.06 2.82±0.03 0.69±0.02 0.67±0.04 0.76±0.04 0.75±0.03 0.75±0.04

Shallow Net 0.52±0.01 0.48±0.01 0.52±0.04 0.74±0.01 0.67±0.03 0.68±0.02 0.79±0.02 0.78±0.01 0.78±0.02

Deep Net 0.54±0.02 0.49±0.01 0.58±0.06 0.73±0.01 0.63±0.02 0.68±0.01 0.76±0.02 0.76±0.02 0.76±0.02

suggests that the trained networks could extract discriminant features of EEG responses
to Repeated versus Novel sounds, and generalize to new, previously unseen trials.

As a next step, we evaluated whether the training pipeline also generalized to a different
dataset and modality. The network training for the visual dataset proceeded in a very
similar way as for the auditory. The AUC and the binary cross-entropy loss reached a
plateau at around epoch 20 (Figure 2.4, panels b and d). The maximum AUC score was
0.82 ± 0.03 on the train, 0.69 ± 0.02 on the validation and 0.67 ± 0.04 on the test set (see
Table 2.1), and corresponded to epoch 17.1 ± 10.4. This result suggests that the training
pipeline, even though developed for the auditory dataset, can be applied to a different
dataset.

2.3.2 Comparison of the network performance to chance levels

The network’s performance was contrasted to chance levels, computed by re-training the
CNN on data with randomly shuffled labels (Figure 2.5). During training, the AUC score
in the training set slightly increased with training. However, the AUC in the validation
set remained around the baseline values of 0.5 (Figure 2.5, panel a). A similar tendency
was observed for the binary cross-entropy loss, which decreased over the first few epochs
of training, but remained around 0.69 (log(2), corresponding to theoretical chance levels)
for all validation epochs (Figure 2.5, panel b). Importantly, networks trained on real data
achieved a consistently higher AUC compared to networks trained on data with shuffled
labels, across all folds of the cross-validation (Figure 2.5, panel c) (Wilcoxon signed-rank
test, p = 1.2⇥ 10�83).
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Figure 2.5: Comparison of the CNN classification performance with chance level results of
the shuffled CNNs on the auditory dataset. The bold lines illustrate the mean AUC score
(panel a) or loss (panel b) over the networks trained with random permutations, and the
shaded area the standard error. The blue line shows the scores of the train and the red
line the scores of the validation set. Panel c shows the comparison of true and chance level
classification performance on the test set. For each fold we show the mean performance of
the real network (magenta) versus the distribution of the performance of the 500 shuffled
networks (green violin plots).

2.3.3 Comparison with existing techniques

2.3.3.1 Logistic regression and support vector machine

To compare the results obtained with the CNN with existing techniques, we trained linear
and non linear ’classical’ MVPA algorithms to discriminate Repeated versus Novel stimuli
in both datasets. For every time-point, we trained and tested classifiers based on logistic
regression (linear classifier), and SVM with ’rbf’ kernel (for a non linear classifier), which
resulted in a time course of AUC values, computed on a train and test set (Figure 2.6 panel
a for the auditory and b for the visual datasets).
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Figure 2.6: Classification performance for a logistic regression classifier trained and tested
at every time-point separately. We report the AUC scores of the train (blue) and test
set (red), averaged over 10-folds of cross-validation, and the scores of the test set, in the
case where the classifier was trained on shuffled data (green). Bold lines show the mean
scores over the 10-fold validation and the faded colored regions show the standard error.
Horizontal gray lines show the time-periods where classification was significantly above
chance levels in the two datasets.

Using logistic regression in the auditory dataset, the classification score of the test set was
around 0.5 during the 0.1 s before stimulus onset (Figure 2.6 panel a �0.1 to 0.0 s), and
increased after the stimulus onset, reaching a maximum AUC score of 0.63 ± 0.01 on the
test set, across folds, at 0.323 ± 0.01 s post-stimulus onset.

In the visual dataset, there was no baseline in the available data (van Peer et al., 2017).
Decoding performance started to increase around 0.1 s post-stimulus onset (Figure 2.6
panel b). The maximal decoding performance on the test set was 0.62 ± 0.01, and was
reached at 0.70 ± 0.10 s post stimulus onset.

Chance levels, estimated through random permutations, were on average 0.5 throughout
the entire trial interval (Figure 2.6, panels a and b, green lines) for both datasets. Decoding
performance was significantly above chance levels from 0.032 to 0.5 s post stimulus onset
for the auditory, and from 0.0 to 1.5 s post stimulus onset for the visual datasets (Figure
2.6, panels a and b, marked in gray lines).

We also trained and tested a SVM, with the same procedure as for logistic regression. The
maximum AUC score reached on the test set was on average 0.58 ± 0.01 at 0.352 ± 0.02 s
post-stimulus onset for the auditory and 0.60 ± 0.004 at 0.59 ± 0.06 s post-stimulus onset
for the visual dataset.

Next, we contrasted the performance of the CNN with the two baseline MVPA algo-
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Figure 2.7: Comparison of the performance of logistic regression versus CNN versus SVM
for the auditory dataset (panel a) and comparison of logistic regression versus CNN versus
SVM for the visual dataset (panel b). Each dot corresponds to the test sets of one of the
10 folds of the cross validation. For the CNN we report the mean AUC score over the 4
trained networks per fold.

rithms. For this comparison, we contrasted the maximum classification performance ob-
tained across time with logistic regression and SVM, to the overall performance obtained
with the CNN. This approach is rather conservative, and might penalize the CNN. Never-
theless, in each of the 10 folds of the cross validation, the CNN provided higher classification
performance than both the logistic regression and the SVM (Figure 2.7). For both the au-
ditory and visual datasets, the AUC of the CNN was significantly higher than the AUC of
logistic regression (Wilcoxon signed-rank test, p = 0.006 for both datasets, corrected for
multiple comparisons), and than the AUC of SVM (Wilcoxon signed-rank test, p = 0.006
for both datasets, corrected for multiple comparisons, Figure 2.7).

2.3.3.2 Comparing different CNN architectures

Additionally, we compared the ResNet50-based pipeline that we developed to other existing
CNNs that have been previously used on EEG data, including Shallow and Deep CNNs.
The AUC score obtained on the test set with the Shallow CNN was 0.75 ± 0.03 for the
auditory and 0.68 ± 0.02 for the visual dataset. The Deep CNN resulted in an AUC of 0.73
± 0.03 and 0.68 ± 0.01 for the auditory and visual datasets, respectively (Table 2.1 and
Figure 2.8). There was no significant difference in AUC values for ResNet50 versus Shallow,
ResNet50 versus Deep, or Shallow versus Deep networks (Wilcoxon signed-rank test, p >
0.08, corrected for multiple comparisons). These results suggest that the developed pipeline
can classify EEG data under different network architectures.

Last, we evaluated the robustness of the developed pipeline under slight modifications

51



CHAPTER 2. CCNS FOR EEG AND FEATURE VISUALIZATIONS

Figure 2.8: Comparison of the performance of the Shallow, Deep convolutional neural net-
works and ResNet50. The difference in performance was not significant for all comparisons
after correcting for multiple comparisons (Wilcoxon signed-rank test, p > 0.08, corrected
for multiple comparisons).

in the pipeline architecture or input data (Appendix A.2). Notably, the classification
performance remained at similar levels for filtered and unfiltered data (A.2.1), or when
omitting the final fully connected layer with 128 nodes before the dropout layer of the
CNN (A.2.3). Oversampling of the underrepresented class yielded a higher classification
performance than using a weighted binary crossentropy loss (A.2.2).

2.3.4 Extraction of discriminant features

After establishing that the networks can accurately classify Repeated from Novel stimuli,
we next visualized the discriminant features that were driving this classification. Figure
2.9 shows the activation maps of the mean EEG responses to Repeated and Novel auditory
(panels a and b) and visual (panels c and d) stimuli (Figure 2.1). In the representation of
activation maps, stronger colors denote that a given electrode and time interval were more
relevant in the network’s output than lighter ones. For the auditory dataset (Figure 2.9,
panels a and b), almost all of the non zero activations appeared after stimulus onset. The
highest activation values occurred at different latencies for each experimental condition,
ranging from 0.2 to 0.3 s for the Repeated and from 0.3 to 0.5 s for the Novel trials. For
the visual dataset (Figure 2.9, panels c and d), the two experimental conditions (Repeated
and Novel) had a more similar distribution of activations. Most of the non-zero activa-
tions for the visual dataset occurred between 0.25 and 0.7 s, at similar latencies for both
experimental conditions.
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Figure 2.9: The activation maps of the mean trials of the auditory (top) and visual (bottom)
dataset for Repeated (panels a and c) and Novel (panels b and d) trials.

2.3.5 Topographic representation of discriminant features

As an alternative representation, the activations of the CNN were additionally visualized
as topographic maps, by reassigning the electrodes to their original location on the scalp.
Figure 2.10 shows the activation maps for each dataset and condition as a topographic
map, to give a more interpretable visualization of the networks’ features. For reasons of
consistency, Figure 2.10 provides similar latencies for both datasets. Each topographic
map displayed the sum of activations in steps of 0.1 s, as described above the map (Figure
2.10). This topographic representation revealed that the discriminant information for the
Repeated auditory condition started appearing at 0.2 � 0.3 s post stimulus onset, mainly
at fronto-occipital electrodes (Figure 2.10, panel a). By contrast, for the Novel auditory
condition, discriminant information was more strongly appearing at centro-parietal elec-
trodes, between 0.3 and 0.4 s post-stimulus onset (Figure 2.10, panel b), matching closely
the actual topographic maps of the data (Figure A.1). For the visual dataset, activations
were stronger at similar latencies for Repeated and Novel conditions, starting mainly after
0.2 s post-stimulus onset, and occurring predominantely at central and occipital electrodes
(Figure 2.10, panels c and d), closely following the topographic maps of the average data
(Figure A.1).
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Figure 2.10: Activation maps from Figure 2.9 represented as topographic maps, across
datasets and experimental conditions. For reasons of consistency, the topographic acti-
vation maps are displayed at the subset of commonly available latencies across the two
datasets (i.e. 0 � 0.5 s post-stimulus onset). Every map corresponds to the sum of acti-
vations over intervals of 0.1 s.

2.3.6 Trial by trial changes in discriminant features

As the features of activation maps can be computed at the single-trial level, we performed
an exploratory analysis, evaluating trial by trial changes in the activation maps through-
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Figure 2.11: Linear regression results quantifying trial by trial changes in the activation
maps (panels a and c) and the raw data (panels b and d). The plotted lines correspond
to the t-values testing whether the slope of a linear regression was significantly different
from zero, for Repeated (orange) and Novel (green) stimuli. Horizontal lines show periods
of significant difference. Panels c and d show trial by trial activations (panel c) or EEG
responses (panel d) and regression fit, for the time-point (0.206 s) with the minimal p-value
(0.002) for the Repeated condition.

out the experiment. Figure 2.11 illustrates the time-course of a linear regression analysis,
quantifying trial by trial changes on the activation maps (panel a). The slope of the linear
regression was significantly different from zero from 0.106 to 0.272 s for the Repeated condi-
tion (p < 0.05, corrected with cluster-based permutations) (Figure 2.11, orange horizontal
line). For the Novel condition, there was no period of significant change in the slope of
the linear regression throughout the experiment (Figure 2.11, green line).

The same analysis was performed on the EEG data (Section 2.2.7). For the EEG data,
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the slope of the linear regression was close to zero for both conditions throughout the
entire temporal interval (Figure 2.11 panel b), and did not have any periods of significant
difference. As an illustration, the trial by trial activations extracted with activation maps
and with the raw EEG data at the point of maximum regression (0.206 s post stimulus
onset), are displayed in Figure 2.11, panels c and d respectively.

2.4 Discussion

We presented a novel MVPA pipeline for decoding single trial EEG responses to exter-
nal stimuli and used this pipeline to extract discriminant features at the single trial level.
We showed, in two different datasets, that the developed pipeline significantly outper-
formed commonly used existing MVPA techniques, and that it could detect class-specific
discriminant features that are readily interpretable. Our approach resulted in an accurate
decoding performance, demonstrated in several ways: (a) generalization of classification
to data that the network has not seen during training (test set), (b) generalization of the
training pipeline to a different dataset (visual dataset), (c) significantly better classifica-
tion performance for the original data versus data with shuffled labels, (d) significantly
higher classification performance for the network compared to exemplar baseline machine
learning algorithms, and (e) comparable decoding performance to existing CNN-based algo-
rithms for EEG data. Additionally, we used feature visualization techniques to characterise
the electrodes and time-periods of EEG responses that mostly contribute to an accurate
classification. Although several multivariate decoding techniques allow the extraction of
discriminant features (Tzovara et al., 2012; Grootswagers et al., 2017), these are typically
identified at an across trial level and are shared across experimental conditions. By con-
trast, our approach allows recovering class- and trial- specific discriminant features, which
are informative of the distinct contributions of different experimental conditions to the
final classification.

2.4.1 CNNs for MVPA on EEG data

MVPA algorithms have been used to extract patterns of discriminant activity at the single
trial level (Lemm et al., 2011; Haufe et al., 2014). The vast majority of these algorithms
require a homogeneous dataset as they assume that the discriminant EEG responses ap-
pear at consistent latencies and electrode locations across trials (Grootswagers et al., 2017).
However, often the discriminant information can be found at different temporal and spatial
points over a group of participants or it may shift in time or space over the course of an ex-
periment. The rather conservative approach of most multivariate decoding techniques can
result in under-estimation of discriminant features, therefore limiting their interpretabil-
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ity. As CNNs convolve the entire input signal with multiple kernels per layer, they can
extract patterns of neural activity which are time- and space- unlocked. Here, we chose a
ResNet5050 architecture, which is well known for its breakthrough performance in image
classification in computer vision (He et al., 2016). The depth of the network allows it to
learn features and find structure in bigger patches of the input data than more shallow
convolutional networks (Zeiler and Fergus, 2013). Even though the network was originally
developed for classifying images, here we adapted it for the specific case of EEG data.

One main concern of implementing deep learning algorithms for the field of EEG research
is that of overfitting the data (Williams et al., 2020). Deep learning architectures typically
comprise of hundreds to thousands of hyperparameters, which are prone to overfitting
(Srivastava et al., 2014). Data augmentation techniques have been widely used in the
field of computer vision (Shorten and Khoshgoftaar, 2019) to overcome this problem. This
is a major concern for MVPA, as due to the nature of EEG recordings, it is practically
impossible to collect the amounts of data that are often available in computer vision.
Here, we overcame this limitation by using data augmentation techniques, which artificially
augment the available EEG data and at the same time add variance to them, which makes
the network less prone to overfitting to the available data samples. We could exclude
that the trained networks were overfitted by showing that they generalize to new data
(validation and test datasets). By contrast, the networks trained on randomly shuffled
labels did not generalize to test and validation datasets.

The neural networks were trained for a maximum of 50 epochs (Figure 2.4) and the training
performance reached a plateau around epoch 15 with a mean score of 0.89 and 0.82 for
the auditory and visual datasets respectively. The lower classification performance for the
visual dataset was likely due to the nature of the visual event-related potential that resulted
in subtle differences between the two experimental conditions (van Peer et al., 2017). The
Repeated and Novel visual stimuli were counter-balanced across participants, and therefore
resulted in similar visual features at the average level, where the only difference would be
a very subtle difference of the effect of repetition (see also Figure 2.1). By contrast, in the
auditory dataset (Cavanagh et al., 2018), Repeated and Novel sounds were always the same
across participants and had very different acoustic characteristics (pure tones vs natural
sounds). Therefore, for the auditory dataset, EEG responses were well distinct (Figure
2.1), which resulted in a high classification performance.

When randomly shuffling the labels of the data to estimate a data-driven distribution of
chance, the network accuracy could not overcome 0.7 on average for the train data and
remained at 0.5 for the test set (Figure 2.7). Taken together, these results suggest that the
network was able to learn class-specific features at an above-chance level without overfitting
the data.
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2.4.2 Comparison with existing techniques

Deep learning techniques have been introduced in the field of EEG research since a few
years, but existing techniques predominantly focus on clinical or brain-computer-interfaces
applications (Roy et al., 2019). Although deep learning techniques for basic EEG re-
search exist (Kuanar et al., 2018; Bashivan et al., 2016; Wang et al., 2018), these are still
at a validation stage, and are seldom used to answer basic research questions. Here, we
aimed at examining how deep learning architectures perform in classification tasks that are
commonly faced in basic neuroscience, i.e. decoding differences between experimental con-
ditions, and evaluating the stability of decoding features over the course of an experiment.
Indeed, the techniques that are readily available for classifying EEG data oftentimes give
little to no emphasis on feature interpretability, but rather focus on classification perfor-
mance (Williams et al., 2020). Although optimizing classification performance is certainly
beneficial in basic research, clinical and BCI applications of MVPA algorithms can also
profit from interpretable features. Importantly, our approach gave comparable results to
other CNN-based architectures for classifying EEG data, based on a Shallow and Deep
CNN (Schirrmeister et al., 2017).

Previous studies examining features of CNNs have extracted spectral EEG features (Schirr-
meister et al., 2017), which do not contain temporal information, but are collapsed over
time and trials. Such an approach is particularly suited for the field of brain-computer-
interfaces, where emphasis is given on classification performance, but it is limited for
MVPA applications, where emphasis is given on identifying spatial and temporal features
that drive an accurate classification (Grootswagers et al., 2017). Other attempts to extract
class-specific features based on gradient methods have either reported features at an average
level (Farahat et al., 2019; Vahid et al., 2020), or for exemplar trials (Lawhern et al., 2018),
without examining how these generalize over time, or how representative they are of the
entire dataset. In Figure 2.9 we also show the features on an average level, but additionally
we examined how these change over the course of an experiment. (Farahat et al., 2019)
and (Lawhern et al., 2018) both explore the features in the context of BCI and (Vahid
et al., 2020) and (Lawhern et al., 2018) impose to the used network to start by temporal
convolutions followed by spatial ones. Here, instead we consider the EEG data as a spatio-
temporal continuum, as it is commonly done in the field of EEG research (Maris and
Oostenveld, 2007).

2.4.3 Extraction of class-specific discriminant features

In computer vision, there is a dedicated research area focusing on visualizing which features
of the input data are learned by a neural network. Some commonly used techniques consist
of visualizing the kernels of the network (which provide only general features for the entire
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dataset that was used for training), or of gradient-based methods, which backpropagate
the input signal through the network (which can reveal class-specific features for each
data-point). In neuroscience, there have recently been some studies focusing on feature
interpretability (Ghosh et al., 2018; Lawhern et al., 2018; Schirrmeister et al., 2017; Zubarev
et al., 2019). Here, we visualize discriminant features with a gradient-based method. The
mean activation maps across participants (Figs. 2.9 and 2.10) showed similar spatio-
temporal patterns of differential activity as the mean event-related potentials (Figs. 2.1
and A.1).

The advantage of the presented pipeline for MVPA applications is that it allows to iden-
tify discriminant features at the single class level. Most existing univariate or multivariate
analysis techniques can only identify condition differences, and are agnostic to which ex-
perimental condition is driving these differences. Other approaches, like common spatial
patterns (CSP), allow the extraction of class specific patterns of EEG activity. However,
the CSP components are calculated over a time window and therefore have a poor tem-
poral resolution. Additionally, CSP have the limitation of poor generalization over new
participants (Reuderink and Poel, 2008).

With our approach, in the auditory dataset, the strongest activation values were most
prominent around 0.2 s post-stimulus onset for the Repeated condition and at later laten-
cies, after 0.3 s post-stimulus onset for the Novel condition (Figure 2.9 panels a and b).
This difference in discriminant intervals for the two conditions is justified by the nature of
the auditory stimuli, as Repeated sounds were pure tones with a sharp onset time, while
Novel sounds were naturalistic sounds, which typically have a slower onset, and thus are
expected to evoke an EEG response at later latencies (Cavanagh et al., 2018). This infor-
mation cannot be revealed by existing MVPA techniques, which can only identify at which
latency multiple conditions differ. Indeed, our analysis on the same data with an exemplar
MVPA approach showed that classification was significantly higher than chance starting
after 0.1 s post-stimulus onset, with a prominent peak after 0.3 s (Figure 2.6). However, it
is impossible to infer which of the two conditions drives this sustained differential activity.
For the visual dataset, the peak in discriminant activity between Repeated and Novel stim-
uli appeared at latencies which were qualitatively similar between the two experimental
conditions (Figure 2.9 panels c and d). Indeed, in this dataset, the Novel and Repeated
stimuli were all naturalistic images, and were counterbalanced across participants, there-
fore resulting in similar sensory responses (van Peer et al., 2014). In accordance to previous
reports using this dataset, we found that the most prominent differences occurred after
0.1 s post-stimulus onset, and were sustained mostly up to 0.75 s, but also throughout the
trial (Figure 2.9 panels c and d). Importantly, when visualized in the form of topographic
maps, the discriminant features that were identified through the CNNs match previous
reports of this dataset, showing that topographic differences in response to novelty are
mainly localized in frontal electrodes (van Peer et al., 2014). For the auditory dataset,
the most prominent discriminant features at the topographic level were captured between
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0.3 and 0.4 s post-stimulus onset for the Novel condition (Figure 2.10). This latency and
electrode locations are in accordance with previous reports of this dataset and could reflect
a P3a component in response to novelty (Cavanagh et al., 2018).

To highlight the importance of studying discriminant features, we show that activation
maps significantly change over the course of the experiment (subsection 2.2.7, Figure 2.11).
The positive t-values suggest that there was an increase in network activations over the
course of the experiment, consistently observed between 0.106 and 0.272 s, suggesting
that EEG responses at this latency activate neurons of the CNN more in later trials of
the experiment compared to earlier ones. This could not have been caused by a global
change in the strength of neural activity itself as our control analyses on raw EEG data
did not find any significant trial by trial changes. Instead, our findings suggest that this
increase might be caused by changes in the activation patterns in response to Repeated
stimuli, which become more distinct across conditions as the experiment unfolds. This
interpretation is further supported by the fact that activations increase over the course of
the experiment, as participants are increasingly exposed to the presented stimuli, and the
two classes (Repeated versus Novel) start acquiring a more distinct neural representation.
Indeed, the observed latency for changes in activation maps is in accordance to the latency
of a typical N100 response to auditory stimuli, which is known to habituate with Repeated
stimuli presentations (Rentzsch et al., 2008).

Studying changes of discriminant features can be relevant not only for basic EEG research,
but also for BCI or clinical applications. In BCI applications it is highly relevant to
investigate feature interpretability and how these features may manifest or change over
long experimental sessions, as this may be relevant to participants’ capacity to control
an external device (Friedrich et al., 2013). Similarly, studying feature interpretability in
clinical applications is particularly important, in order to advance our understanding of
which features may underlie algorithmic decisions, which in turn can contribute in gaining
novel insights into neurological disorders.

2.4.4 Future directions and limitations

Currently, in the field of EEG research there is a lack of data-driven approaches that can
provide information about trial-by-trial changes in EEG responses to external stimuli. Pre-
vious studies investigating, for example, learning of new sensory rules, have defined a priori
a specific electrode locations and latencies of a response of interest and have examined how
these change across trials (Lieder et al., 2013). Here, we refer to an alternative approach,
that is ’data-driven’ in the sense that features are identified automatically from the data,
via means of maximizing discrimination between conditions of interest (i.e. supervised
learning), as opposed to a hand-crafted feature selection that relies on a priori hypotheses
(Haynes and Rees, 2006). Although the latter approach has been widely used in the lit-
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erature of basic EEG research, it assumes that the response of interest stays at the same
electrode location and latency across all trials, which in cases of changing processes, may
not be true. Here, we propose a data-driven approach for identifying discriminant patterns
of activity at the single-trial level and show that it is more sensitive than considering raw
EEG activity (Figure 2.11). Future studies can apply this approach in experiments involv-
ing learning in order to couple changes in discriminant EEG activity with participants’
behavior and test learning theories.

One main limitation in the extraction of discriminant features is that they only reveal
changes in network activations, but not the cause of these changes. Future experiments
could evaluate changes of the network activation within spatial clusters (as identified in
Figure A.3), possibly combining those with inverse solutions (He et al., 2006), in order to
evaluate the contribution of specific brain regions in significant network activation changes
over the course of an experiment (Ieracitano et al., 2021).

Another future direction of research is that of choosing a network architecture. Here, we
chose ResNet5050 as an exemplar residual CNN, which has been widely tested in the field of
computer vision (He et al., 2016) and biomedical data analysis (Guo and Yang, 2018). This
choice is meant as a proof of principle, that demonstrates the feasibility of applying CNNs
on MVPA applications for EEG data. Indeed, when changing the network architecture
with other CNNs that have been developed for EEG research, classification performance
remained at similar levels. Future studies can test different network implementations,
to optimize the architecture and range of parameters for specific experimental setups.
Additionally, here we chose to focus on a binary classification problem, for reasons of
simplicity. Our present pipeline, as well as future attempts, could be easily expanded for
multiple classes.

2.5 Conclusion

In summary, we used deep learning techniques to develop a novel MVPA pipeline for
EEG data. We showed, in two different datasets, that our pipeline can accurately classify
single-trial EEG responses, outperforming existing MVPA approaches, and performing at
comparable levels with other deep learning approaches for EEG. Moreover, the neural
networks can detect class specific information and discriminant features at the single trial
level, a direction that can be used in the future to test theories of learning in a data driven
way.
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Assessing the integrity of neural functions in coma after cardiac arrest remains an open
challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physi-
ological signals, which is prone to subjectivity and leaves a considerable number of patients
in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG responses to au-
ditory stimuli can provide a window into neural functions in coma and information about
patients’ chances of awakening. However, responses to standardized auditory stimulation
are far from being used in a clinical routine due to heterogeneous and cumbersome pro-
tocols. Here, we hypothesize that convolutional neural networks can assist in extracting
interpretable patterns of EEG responses to auditory stimuli during the first day of coma
that are predictive of patients’ chances of awakening and survival at 3 months. We used
convolutional neural networks (CNNs) to model single-trial EEG responses to auditory
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stimuli in the first day of coma, under standardized sedation and targeted temperature
management, in a multicentre and multiprotocol patient cohort and predict outcome at 3
months. The use of CNNs resulted in a positive predictive power for predicting awakening
of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ±
0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia,
respectively. These results also persisted in a subset of patients that were in a clinical ‘grey
zone’. The network’s confidence in predicting outcome was based on interpretable features:
it strongly correlated to the neural synchrony and complexity of EEG responses and was
modulated by independent clinical evaluations, such as the EEG reactivity, background
burst-suppression or motor responses. Our results highlight the strong potential of inter-
pretable deep learning algorithms in combination with auditory stimulation to improve
prognostication of coma outcome.

3.1 Introduction

Most survivors of cardiac arrest are initially in a coma. Outcome prognostication has
become an integral part of post-resuscitation care (Rossetti et al., 2016; Perkins et al.,
2021). Currently used outcome prediction techniques mainly rely on expert multi-modal
assessments of clinical variables and physiological signals (Rossetti et al., 2016) like elec-
troencephalography (EEG), which is routinely used to evaluate the integrity of neural
functions at the patients’ bedside. EEG evaluations consist of visual assessments which
can be time consuming and prone to subjectivity (Westhall et al., 2015). In addition,
current clinical markers for outcome prognostication are unable to provide a clear prog-
nosis for a considerable proportion of patients, classifying them as indeterminate, or part
of a ‘gray-zone’ (Perkins et al., 2021), and highlighting a clear need for developing novel
markers of outcome.

A putative marker for assessing the integrity of neural functions in coma patients are EEG
responses to auditory stimulation (Fischer et al., 2004; Daltrozzo et al., 2007; Morlet and
Fischer, 2014; Liu et al., 2021). Auditory event-related potentials (ERPs) have been pre-
viously linked to chances of awakening from coma (Fischer et al., 2004; Daltrozzo et al.,
2007; Morlet and Fischer, 2014; Liu et al., 2021), but standardized ERPs, assessed in a
quantitative way, are not routinely used for outcome prognosis (Nolan et al., 2021). Typi-
cally, auditory ERPs are evaluated by averaging hundreds of EEG responses to the same
standardized auditory stimuli, and extracting aggregate characteristics, like the presence
or absence of characteristic ERP deflections, like the N100 (Fischer et al., 1999, 2008),
their amplitude or latency (Fischer et al., 1999), or differential responses to sequences of
standard and deviant sounds (Fischer et al., 1999; Kane et al., 1993; Naccache et al., 2005;
Luauté et al., 2005). These approaches have the disadvantage that the features used to
predict coma outcome are selected a priori at an average ERP level, overlooking the rich-
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ness of EEG responses, and neglecting potentially important characteristics, thus likely
leading to unreliable prognosis.

More recent attempts to explore the prognostic value of auditory stimulation consist of
modeling single-trial EEG responses to sounds, with the use of machine learning techniques
to extract patient-specific EEG patterns that quantify auditory discrimination (Tzovara
et al., 2013, 2016). The progression of auditory discrimination from first to second day of
coma is informative of patients’ chances of awakening (Tzovara et al., 2016; Pfeiffer et al.,
2017, 2018). Moreover, the neural synchrony across voltage measurements of auditory EEG
responses in the first day of coma is also predictive of awakening, further corroborating the
early prognostic value of auditory ERPs (Alnes et al., 2021). However, despite clear links
between auditory processing in coma and patients’ outcome, shown over multiple studies
and approaches, standardized auditory stimulation is currently not used in the clinical
routine as a prognostic marker. A major limitation for this discrepancy is that existing
studies report findings either in small patient cohorts with highly curated features (i.e.
average EEG responses over pre-defined time windows and specific electrodes) and limited
predictive power (Morlet and Fischer, 2014; Liu et al., 2021; Fischer et al., 1999; Naccache
et al., 2005; Luauté et al., 2005), or require two EEG recordings over two consecutive
days (Tzovara et al., 2013, 2016; Pfeiffer et al., 2017, 2018). In order to fully exploit the
multidimensional ERP features and their relevance to coma outcome, there is a critical need
for assessing EEG responses to auditory stimulation in a more robust and straightforward
way.

In recent years, advances in the field of machine learning have given rise to powerful tools for
modeling brain signals (Craik et al., 2019; Roy et al., 2019). Convolutional neural networks
(CNNs) are particularly promising in extracting in a data-driven way rich features of EEG
data, and have been shown to outperform traditional techniques (Craik et al., 2019; Roy
et al., 2019; Lawhern et al., 2018; Aellen et al., 2021). Despite their huge potential, the use
of CNNs in acute neuro-critical prognostication remains limited. One challenge in using
CNNs in medical applications is that it is difficult to trace which features of the EEG data
are relevant for the decisions that CNNs are making (Aellen et al., 2021). The very few
studies that have used CNNs to predict outcome from coma rely on the same continuous
EEG recordings of resting state activity that are used in the clinics via visual evaluations
(Tjepkema-Cloostermans et al., 2019; Jonas et al., 2019; Zheng et al., 2021; Altıntop et al.,
2022), and these networks have shown a remarkable precision in discriminating patients
who later survive from those who do not. It remains unknown whether CNNs can be
applied on EEG responses to standardized auditory stimuli to assist in outcome prognosis,
and to provide additional insights for those patients for whom existing clinical assessments
do not result in a conclusive prognostication.

Here, we made the hypothesis that CNNs would be able to extract patterns of EEG re-
sponses to standardized auditory stimuli that relate to patients’ chances of awakening
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from coma and survival at three months. We additionally hypothesized that the out-
come prediction of CNNs would be complementary to currently used clinical variables for
prognostication, and would have the potential to improve prognosis for patients with in-
determinate prognosis. Last, we performed exploratory analyses to identify which features
of the EEG data are relevant for the outcome prediction provided by the CNNs. We ex-
tracted measures of confidence of the network’s decisions, and linked those to (a) clinical
variables currently used for outcome prognosis (Westhall et al., 2016), and (b) features of
EEG responses to sounds that quantify neural synchrony, which have been recently shown
to be informative of patients’ outcome (Rossetti et al., 2016; Alnes et al., 2021; Westhall
et al., 2016). To this aim, we analyzed EEG responses to auditory stimulation during the
first day of coma, recorded in a multi-center and multi-protocol cohort of coma patients
following cardiac arrest at four different hospitals (Nielsen et al., 2013).

3.2 Materials and methods

3.2.1 Patients and procedure

We recorded data from a cohort of 145 comatose patients following cardiac arrest (33
female, 63.3 ± 1.2 years old, mean ± standard error)), admitted to the intensive care units
of the University Hospitals Lausanne (121 patients), Bern (18 patients), Sion (4 patients),
and Fribourg (2 patients) between December 2009 and April 2017. Patients have been
previously described in (Pfeiffer et al., 2017, 2018; Alnes et al., 2021). Informed written
consent was obtained prior to EEG recordings from a family member, legal representative,
or treating clinician not involved in this study. The ethical committees of the Cantons of
Bern, Fribourg, Valais and Vaud, Switzerland approved the experimental protocol.

Upon admission to the hospital, patients were in an acute coma, i.e. a score of less
than 6 on the Glasgow Coma Scale and treated with targeted temperature management
for 24 hours; 79 patients were treated with targeted temperature management at 33°C
(therapeutic hypothermia; HT) and 55 patients at 36°C (normothermia; NT). Controlled
temperature treatment was based on ice packs or intravenous ice-cold fluids together with
a feedback controlled cooling device (Arctic Sun System, Medivance, Louisville or Ther-
mogard XP; ZOLL Medical, Zug, Switzerland), for 24 hours after cardiac arrest and was
subsequently removed. Propofol (2–3 mg/kg/h), Midazolam (0.1 mg/kg/h) and Fentanyl
(1.5 lg/kg/h) were administered for analgesia and sedation, while Vecuronium, Rocuro-
nium, or Atracurium for controlling shivering.

Decisions to withdraw clinical care were based on a multidisciplinary approach (Rossetti
et al., 2016). Namely, care was withdrawn if two or more of the following criteria were
present at 72 hours or more, after sedation weaning (Rossetti et al., 2010; Tsetsou et al.,
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2018): unreactive background EEG; epileptiform EEG and/or myoclonous that was re-
sistant to treatment; incomplete return of brainstem reflexes; bilateral absence of N20
in somatosensory evoked potential; the concomitant presence of major hypoxic/ischemic
lesions in structural magnetic resonance imaging and neuron-specific enolase levels more
than twice above 75 µgl were additionally considered (Nolan et al., 2015). Importantly, all
clinical decisions were blinded to the output of the neural networks.

Patients’ outcome was defined at three months after cardiac arrest via a semi-structured
phone interview via the Cerebral Performance Category (CPC) (Booth et al., 2004). A
CPC of 1 indicates full recovery; of 2 return of consciousness with moderate disability; a
CPC of 3 consciousness with severe disability; while a CPC of 4 coma or persistent vegeta-
tive state, and a CPC of 5 death. For our analyses we considered patients with CPC 1–3
at 3 months after coma onset as Survivors (N=79). Patients with a CPC of 5 were con-
sidered as patients with poor outcome (Non Survivors, N = 55). In our cohort, no patient
was classified with a CPC of 4, possibly due to the clinical practice in the participating
hospitals, where the decision to withdraw life sustaining treatment for patients who fail to
regain consciousness is regularly reassessed even after the acute phase.

In accordance with previous investigations focusing on prediction of outcome in coma
patients following cardiac arrest (Pfeiffer et al., 2018), we did not analyze patients that
regained consciousness during their stay at the hospital but later died, for example because
of other comorbidities. This resulted in the exclusion of 11 patients, resulting in a cohort
of 134 patients in total.

3.2.2 Auditory stimulation protocol

EEG recordings were conducted at the patients’ bedside, within 24 hours after cardiac
arrest while all patients were in a comatose state. Patients were presented with a series of
pure tones as previously described (Tzovara et al., 2016; Pfeiffer et al., 2017, 2018). Tones
consisted of 16-bit stereo sounds, sampled at 44.1 kHz, with a 10 ms linear amplitude
envelope applied at stimulus onset and offset to avoid clicks. Between each sound, there
was a 700 ms interstimulus interval. Standard sounds were presented in 70% of the trials
and had a pitch of 1000 Hz and duration of 100 ms. Deviant sounds differed from the
standards in duration (150 ms), interaural time difference (left ear leading with 700 µs),
or pitch (1200 Hz). Stimuli were presented in a pseudo-randomized order, in a way that
at least one standard sound was presented between two deviant stimuli. The auditory
stimulation protocol consisted in total of 1500 tones, split into three blocks, each lasting
⇠7 min. Similar to a previous study investigating neural properties of auditory processing
in coma (Alnes et al., 2021), in the present study we focused on responses to standard
and duration deviant sounds, as they have been previously shown to be highly informative
of coma outcome (Tzovara et al., 2016; Alnes et al., 2021). A detailed evaluation of the
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predictive value of all EEG responses to all sound types is provided in the Appendix,
Section B.4.

3.2.3 Recording setup and preprocessing

As the data of this study was multi-center and multi-protocol, EEG was recorded at the
patient’s bedside with 19 or 62 electrodes, depending on the original study design (Tzovara
et al., 2016; Pfeiffer et al., 2017, 2018; Alnes et al., 2021), positioned according to the
international 10-20 system. The data were collected with a sampling frequency of either
1000 or 1200 Hz. For consistency, data recorded with 1200 Hz were down-sampled to
1000 Hz and data recorded with 62 electrodes were reduced to the overlapping set of 19
electrodes. Across all channels the impedance was kept below 10 k⌦. The online reference
for the electrodes was set as Fpz and in the course of preprocessing they were re-referenced
to a common average reference. Epochs were extracted from 50 ms before stimulus onset
to 500 ms after. Artifacts were rejected with a criterion of ± 100 µV on all electrodes.
Noisy electrodes were interpolated using three dimensional splines (Perrin et al., 1987).
After re-referencing, the data were filtered from 0.1 to 40 Hz, and in a control analysis, to
ensure that our findings are not driven by muscle activity, from 0.1 to 20 Hz. Additionally,
the EEG epochs were visually inspected and noisy epochs were manually removed. After
preprocessing, we obtained 347.22 ± 9.23 trials (mean ± standard error) per patient,
204.76 ± 8.66 in response to standard sounds and 142.46 ± 1.42 in response to duration
deviants.

3.2.4 Training of CNN

For training the neural network we adopted a 10-fold cross validation procedure, i.e. we
split the patients ten times into three different sets of train, validation and test patients,
in a way that data from each patient was included in only one of the three sets. The
train set had 60% of patients (80 patients), the validation set 20% (27 patients) and the
test set 20% (27 patients). The single trials of all patients from the train set were used
to train the neural networks and the trials from the validation set were used to evaluate
any hyperparameters (e.g. learning rate, early stopping, etc.). The test set was used
only after training and optimizing the network, for an objective evaluation of the model’s
performance on unseen patients.

We trained a convolutional neural network called EEGNet (Lawhern et al., 2018) to predict
patients’ outcomes, which has been designed specifically for EEG data. The overall network
size is moderate, giving smaller training times while still achieving robust results. The
original network architecture was changed slightly for the purpose of our study. First,
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Figure 3.1: Schematic description of the deep learning algorithm for predicting outcome
from coma. Auditory stimulation and EEG recordings are performed on the first day of
coma, shortly after a cardiac arrest. Single-trial EEG responses are then given as input
to a convolutional neural network, which classifies them as belonging to a survivor versus
non survivor. The average of all single-trial predictions provides the network’s confidence
of predicting survival. Survival is defined at three months via the CPC score.

according to the recommendations as in the original study (Lawhern et al., 2018) the
filter length of the first convolutional layer was changed to 512, instead of the original
64. Consequently, the number of temporal, spatial and pointwise filters were increased to
16, 4 and 64 respectively, while the activation function was set to ReLu. These changes
were made as preliminary analysis on a small subset of patients showed a more stable
training.

For optimizing the model we used the binary cross-entropy loss function and the Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2014), with a learning rate of 5⇥ 10�6, all
other parameters were unchanged from the default suggestions. We trained the network
for a maximum of 100 epochs, but employed early stopping after 30 epochs if the validation
loss of two consecutive epochs was smaller than a threshold, as it is standard practice in
the field (Prechelt, 1998). To evaluate the network performance we additionally used the
area under the Receiver Operator Characteristic curve (AUC) (Macmillan and Creelman,
2004).

3.2.5 Outcome prediction based on network’s output

As the neural network was trained on single-trial EEG responses to sounds (Figure 3.1),
it classified single-trial EEG responses as belonging to a survivor versus non survivor. To
link the network’s output to coma outcome at the single patient level, for each patient we
computed the mean classification performance across all trials, which we term “confidence
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of predicting survival”. The confidence score ranged between zero and one and indicated
the confidence of the model’s prediction of coma outcome, as the mean label that the model
assigned across single-trial EEG responses to sounds of a given patient. If that score was
above 0.5, then a patient was classified as a survivor, while below 0.5 as a non survivor, as
per convention based on a sigmoid function (Figure 3.1).

For evaluating the network’s performance, for all metrics we report mean ± standard error
values obtained across the 10-folds of cross validation. We additionally plot the network’s
output in relation to patients’ outcome for the best model, defined as the one with the
highest AUC score of the validation set. The reported final results remain objective, as
they concern the test set of patients which was not used to train, optimize, or select the best
model. We additionally evaluated the positive predictive value (PPV) and negative pre-
dictive v (NPV), as the ratio of correctly predicted survivors among all predicted survivors
(PPV), or correctly predicted non survivors among all predicted non survivors (negative
predictive v (NPV)).

3.2.6 Outcome prediction in patients with indeterminate prognosis

To assess the additional utility of our method for current clinical practice, we evaluated the
network’s predictions for a subset of coma patients whose outcome prognosis was inconclu-
sive based on existing clinical tests. Based on previous literature and recommendations,
we considered the motor response, EEG reactivity, EEG continuity and brainstem reflexes
(Rossetti et al., 2016; Perkins et al., 2021). If the above-mentioned variables showed a
discrepancy (e.g., present motor response and brainstem reflexes, but a discontinuous and
irritative EEG), a patient was defined as being in a ‘gray zone’. For this definition, we did
not include patients where only brainstem reflex was present and all other variables pre-
dicted a negative outcome, due to the low positive predictive power of brainstem reflex for
good outcome (Rossetti et al., 2016). This resulted in 48 patients fulfilling the criteria for
a clinical ‘gray zone’ (32 survivors, 16 non survivors). Due to their relatively low number,
for this analysis we merged patients from train, validation and test sets, and examined the
overall distribution of the outcome prediction resulting from the CNN. In the Appendix in
the Section (B.1) we show two additional analyses on patients in an uncertain state. The
first one was done on a test set containing only patients belonging to the ‘gray zone’ and
for the second network all ‘gray zone’ patients were part of the test set.
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3.2.7 Exploring links between network’s output and electrophysi-
ological features of EEG responses

To explore the features of EEG responses related to the network’s decisions, we explored
(a) measures of neural synchrony and complexity, previously shown to relate to patients’
outcome and presence of consciousness, respectively (Alnes et al., 2021) and (b) well estab-
lished clinical variables currently used for outcome prognosis (Rossetti et al., 2016; Perkins
et al., 2021).

We first computed the phase-locking value (PLV), which quantifies the synchrony of EEG
responses to auditory stimuli (Lachaux et al., 1999). The PLV was computed for electrode
pairs in the alpha range, which has been recently shown to be predictive of patients’ out-
come in two different cohorts of patients undergoing therapeutic hypothermia (Alnes et al.,
2021). Here, we calculated the mean PLV per patient across electrode pairs, applying the
same procedure as previously reported, based on a subset of patients included in the present
study (Alnes et al., 2021). The neural complexity was quantified via the Lempel-Ziv (LZ)
complexity, which measures the number of unique patterns present in a signal (Lempel and
Ziv, 1976). Both PLV and LZ were calculated on single-trial EEG responses, similar to the
neural network, to capture trial-by-trial characteristics of EEG responses to the auditory
stimuli. Here, we expanded the analysis that was recently reported for both measures,
on a larger patient cohort. Our goal on the one hand was to link these measures to the
network’s output (via Pearson correlation coefficient, pcorr < 0.01, Bonferoni corrected),
and on the other, to validate these measures in patients treated with targeted temperature
management at 36°C, as they were previously only reported for patients treated at 33°C.
We excluded 2 patients that were part of a previous study (Alnes et al., 2021), because
they awoke in the hospital but subsequently died before the CPC assessment at 3 months
(see Patients and procedure).

Second, we compared predictions of the network in subgroups of patients defined accord-
ing to the following binary markers: presence of brainstem reflexes (pupil and corneal
reflexes present), presence of motor response (motor GCS � 4), reactive EEG background
(change in amplitude and/or frequency after stimulus, judged visually), discontinuous or
suppressed EEG background (Hirsch et al., 2021) and irritative EEG (presence of elec-
trographic seizures or status epilepticus, sporadic epileptiform discharges, spiky or sharp
periodic discharges or rhythmic spike waves), using Mann-Withney tests (pcorr < 0.01),
and Bonferroni correction for multiple comparisons. We additionally explored correlations
between the network’s confidence and time to return of spontaneous circulation (ROSC),
with a Pearson correlation coefficient, as well as links between confidence and hospital site,
or CPC at three months with Kruskal-Wallis H-tests.
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Table 3.1: Prediction of outcome of the trained neural networks. We report the mean ±
standard error over all ten trained folds, as well as the performance of the best fold. We
report the AUC, PPV and NPV, with respect to survival, of the train, validation and test
sets, for all patients and separately the sub-cohorts of patients treated with hypothermia
and normothermia. The performance of the best fold is also visualized in (Figure 3.2)

AUC-score PPV-score NPV-score

Train Validation Test Train Validation Test Train Validation Test

Mean over 10-folds

All 0.81±0.00 0.75±0.03 0.70±0.04 0.90±0.01 0.85±0.02 0.83±0.03 0.70±0.01 0.66±0.04 0.57±0.04

Hypothermia 0.81±0.01 0.72±0.04 0.69±0.05 0.92±0.02 0.86±0.02 0.83±0.04 0.65±0.02 0.56±0.08 0.53±0.05

Normothermia 0.80±0.01 0.72±0.05 0.70±0.05 0.87±0.01 0.71±0.10 0.81±0.06 0.70±0.02 0.66±0.06 0.57±0.05

Best fold

All 0.79 0.83 0.83 0.86 0.83 0.92 0.71 0.89 0.71

Hypothermia 0.72 0.93 0.91 0.82 0.90 1.00 0.60 1.00 0.67

Normothermia 0.88 0.68 0.73 0.93 0.75 0.75 0.83 0.67 0.75

3.3 Results

3.3.1 Outcome of coma patients

Out of the 134 patients analyzed, 79 (59 %) survived, where survival was defined as CPC 1
(46 patients), 2 (22 patients) and 3 (11 patients) at three months. 55 out of 134 patients (41
%) had a poor outcome, corresponding to a CPC of 5, and no patient was in a vegetative
state (CPC of 4).

3.3.2 Prediction of outcome based on the neural network

The neural networks trained to discriminate auditory EEG responses of patients that later
survived from those who did not reach a mean AUC score of 0.81 ± 0.00 on the train, 0.75
± 0.03 on the validation and 0.70 ± 0.04 on the test sets (Figure 3.2, Table 3.1). On the
test set we obtained a PPV of 0.83 ± 0.03 and a NPV of 0.57 ± 0.04 (Table 3.1). For
patients treated with targeted temperature management at 33°C, the average PPV was
0.83 ± 0.04 and for those treated at 36°C 0.81 ± 0.06. The difference in PPV over the two
treatments over the ten folds was not significant (p = 0.67, Wilcoxon signed rank test),
implying that the networks performed at similar levels for patients treated with targeted
temperature management at 33 and 36°C. The AUC scores were also replicated with a
control analysis where the neural networks were trained with EEG data filtered between
0.1 and 20 Hz, resulting in a mean AUC score of 0.74 ± 0.03, PPV of 0.86 ± 0.02 and
NPV of 0.62 ± 0.03 on the test set.
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Figure 3.2: Prediction of outcome based on the convolutional neural network. Confidence
scores were computed for each patient by averaging the network’s outcome prediction
for all single-trial EEG responses to sounds of a given patient. A patient was predicted
to be a survivor if the confidence score was above 0.5, otherwise a non-survivor. Data
from patients of the train set (empty circles) were used to train the network, while data
from patients in the validation set (shaded circles) were used to evaluate hyperparameters.
The predictive value of the network was evaluated on a separate test set of patients (full
circles), whose data were never used to train or optimize the network. For each of the
sets, we split patients into HT (hypothermia, targeted temperature management at 33°C)
and NT (normothermia, patients with targeted temperature management at 36°C). For
the numerical performance scores see Table 3.1.

We next focused on one single fold of the cross-validation, and evaluated the confidence
scores assigned by the network to individual patients (Figure 3.2), as our goal was to
investigate the neural properties of EEG signals that may mediate the network’s outcome
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Figure 3.3: Confidence of sur-
vival assigned by the network
for patients with uncertain out-
come prognosis based on exist-
ing outcome predictors. Confi-
dence scores for patients in this
subset followed the distribution
of confidence scores in the en-
tire patient cohort (Figure 3.2).
The empty circles show patients
in the train set, hatched circles
patients in the validation and
full circles patients in the test
set. The green circles represent
survivors and the orange ones
non survivors.

prediction. In the validation and test sets, we obtained a sensitivity of 84% for survivors
and a specificity of 82% for non survivors. Out of all the patients classified as survivors
in the train set (N = 42 patients), 36 awoke from coma, resulting in a PPV of 86%, while
in the validation/test sets 27 out of 31 patients that were predicted as survivors awoke,
resulting in a PPV of 87%. These results were largely similar for patients treated with
different temperature treatments (Figure 3.2 HT, NT and Table 3.1).

3.3.3 Outcome prediction for patients in a ‘gray zone’

We next focused on patients who, from a clinical viewpoint, were part of a ‘gray zone’,
i.e. cases where currently used outcome predictors indicated indeterminate outcome. 48
patients fulfilled these criteria (N = 32 survivors and N = 16 non survivors, Figure 3.3).
The distribution of confidence values assigned by the network in this subset of patients
followed the distribution of the full cohort (Figure 3.2 and 3.3). For this subset of patients
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we obtained a PPV of 0.86, NPV of 0.60 and AUC score of 0.75, based on the CNN.
These scores were at similar levels as the ones obtained with the full cohort, suggesting
that although this group of patients had indeterminate prognosis based on existing clinical
tests, they were not ‘peculiar’ cases for the neural network.

3.3.4 Investigating the interpretability of the neural network’s
outcome prediction

We next evaluated the electrophysiological properties of EEG signals that the network’s
output may be reflecting while providing a prediction about patients’ outcome. We first
evaluated the PLV of EEG responses to sounds, previously shown to be predictive of
patients’ outcome when treated with hypothermia (Alnes et al., 2021). Here, we first
replicated these results for patients in normothermia. The mean PLV for survivors treated
with hypothermia was 0.75 ± 0.01 and for survivors treated with normothermia 0.72 ±
0.02. For non survivors, we found a mean PLV of 0.55 ± 0.02 and 0.57 ± 0.03 for patients
treated with hypothermia and normothermia, respectively. When statistically tested, we
found a significant main effect of outcome on PLV (F = 101.68; pcorr < 0.01), while nor
the main effect of temperature treatment (F = 4.07; pcorr = 0.046), neither the outcome
by temperature interaction were significant (F = 2.17; p = 0.14). Next, we explored the
predictive power of the PLV in patients treated with normothermia, as done previously for
the subset of patients treated with hypothermia (partially overlapping with those included
in our previous study (Alnes et al., 2021)). For patients in hypothermia, the PLV provided
a PPV of 0.85 and NPV of 0.83, as previously reported (Alnes et al., 2021). For patients in
normothermia, the PLV resulted in a PPV of 0.77 and NPV of 0.80, (Figure 3.4A).

Importantly, the confidence of survival assigned by the network to each patient, strongly
correlated with the mean PLV across electrodes (r = 0.76; pcorr < 0.01) (Figure 3.4B). This
correlation was not trivially driven by the fact that both measures predict outcome, as it
remained significant when tested for survivors (r = 0.49; pcorr < 0.01) and non survivors
(r = 0.65; pcorr < 0.01) separately.

Next, we computed the Lempel-Ziv complexity of EEG responses to sounds, which by itself
has been shown to not be predictive of outcome when only including patients treated at
33°C (Alnes et al., 2021). We confirmed this previous finding for patients of the present
study who were treated at 36°C, whose distribution of LZ values was similar to the distri-
bution of LZ values for patients in treated at 33°C (Figure 3.4C).

Interestingly, although LZ complexity by itself was not predictive of outcome, it showed
a significant negative correlation with the network’s confidence (r = �0.57; pcorr < 0.01;
Figure 3.4D), so that the higher the network’s confidence in predicting survival, the lower
the complexity of EEG responses to sounds. A strong correlation between network’s con-
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Figure 3.4: Investigating the interpretability of the neural network’s output. (A) phase-
locking value (PLV) for survivors (left) and non-survivors (right). The horizontal line
corresponds to a threshold in PLV of 0.69, identified and already evaluated in a subset of
patients (gray circles), previously reported in (Alnes et al., 2021). The previously reported
distribution of PLV values was replicated in a new cohort, predominantly treated with
NT. (B) Correlation of network confidence to PLV. The network’s confidence of survival
was strongly correlated to the average PLV (Pearson’s r = 0.76; Pcorr < 0.01). Exemplar
EEG responses to sounds have been plotted for two survivors and two non-survivors, one
correctly and one incorrectly classified based on the neural network. (C) LZ complexity of
auditory ERPs for each patient. As previously reported in a subset of patients (Alnes et al.,
2021), LZ complexity was not informative of patients’ outcome. (D) Correlation between
LZ complexity and the network’s confidence of survival for the entire patient cohort (r
= �0.53; Pcorr < 0.01). The correlation values are also plotted separately for survivors
(bottom plot) and non-survivors (top plot). The highlighted circles with borders mark the
patients whose exemplar EEG responses are shown in B.
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Figure 3.5: Links between network’s confidence in predicting survival and clinical variables
currently used for outcome prognosis. The network’s confidence scores were statistically
compared for patients with and without: (A) Brainstem Reflex (pcorr < 0.01), (B) Motor
response (pcorr < 0.01), (C) Reactive EEG (pcorr < 0.01), (D) Discontinuous EEG (pcorr
< 0.01) and (E) Irritative EEG (pcorr < 0.01). (F) Correlation of the network’s confidence
of survival and time to return of spontaneous circulation (ROSC, r = �0.13; p = 0.12).
(G) Absence of link between hospital sites and the network’s confidence scores (H = 3.48;
p = 0.32). (H) Differences in the network’s confidence scores across CPC outcomes. The
main effect of CPC was significant when considering all outcomes (CPC 1,2,3,5) (H =
61.90; pcorr < 0.01), but not within the group of survivors (CPC 1�3, H = 4.36; p = 0.11).

fidence and EEG complexity was also observed for survivors (r = �0.48; pcorr < 0.01)
and non survivors (r = �0.76; pcorr < 0.01) separately. PLV and LZ complexity were also
negatively correlated, albeit with a weaker correlation than each of these measures did
with the confidence of the neural network (Pearson’s r = �0.39; pcorr < 0.01).

Overall, these results suggest that the network assigned higher confidence scores for awaken-
ing for patients with high PLV and low complexity, or in other words, with stronger neural
synchrony and temporal structure in their EEG responses. Exemplar EEG traces of these
responses for a correctly classified survivor, and a misclassified non-survivor show rather

77



CHAPTER 3. PREDICTING AWAKENING FROM COMA

smooth EEG responses to the sounds, compared to exemplar traces of a correctly classified
non survivor and misclassified survivor, where the EEG responses are more ‘stochastic’
(Figure 3.4B).

3.3.5 Comparison with clinical variables

Lastly, we compared the confidence of the network’s prediction with clinical variables
currently used for outcome prognosis. We found a significant difference (pcorr < 0.01; Mann-
Withney U-test) in the network’s confidence values between patients with and without
presence of brainstem reflex, motor response, reactive EEG background, discontinuous
or suppressed EEG background and irritative EEG (Figure 3.5A to E). Patients with
brainstem reflexes, motor responses, or reactive EEG, all of which are considered indicators
of good outcome had significantly higher confidence scores compared to patients without
(Figure 3.5A-C). The opposite was observed for patients with discontinuous or irritative
EEG, which are considered indicators of poor outcome (Figure 3.5D and E). Interestingly,
EEG reactivity, which has a prognostic value for good outcome (Westhall et al., 2016),
provided similar levels of predicting awakening as the neural network (PPV = 0.88). It is
worth noting however, that the prognostic performance of EEG reactivity is likely biased,
as this score is used in the clinical interventions to influence outcome.

Last, the network’s confidence did not correlate with ROSC (r = �0.13; p = 0.12, Figure
3.5F), while no significant difference was found in confidence scores across the four hospital
sites (Kruskal-Wallis, H = 3.48; p = 0.32, Figure 3.5G). As expected based on the outcome
prediction results, there was a main effect of CPC on network’s confidence when testing
for CPC 1�5 (Kruskal-Wallis, H = 61.91; pcorr < 0.01) (Figure 3.5H). However, there
was no significant difference of confidence within the group survivors, for CPC 1, 2 and 3
(Kruskal-Wallis, H = 4.35; p = 0.11).

3.4 Discussion

We studied the prognostic value of EEG responses to auditory stimulation, combined with
deep learning in predicting coma outcome after cardiac arrest. We showed that convo-
lutional neural networks are powerful in extracting single-trial information from auditory
ERPs on the first day of coma, and at predicting survival three months later, with a pos-
itive predictive power of 0.83 ± 0.03, negative predictive power of 0.57 ± 0.04 and an
overall AUC of 0.70 ± 0.04. These results were not available to clinicians treating the pa-
tients, and did not influence patients’ outcome. Predicting patients’ chances of awakening
was at similar levels for patients receiving targeted temperature management at 33 and
36°C. The performance of the neural network was separately evaluated on patients in a
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“gray-zone”, where clinical variables gave inconclusive results, reaching a positive predic-
tive value of 0.86, suggesting that it might have the potential to assist in prognostication
in these currently indeterminate cases. Lastly, we showed that the confidence scores of
the neural network in predicting survival were strongly correlated to the phase locking
and complexity of auditory EEG responses to the auditory stimuli, so that patients that
were confidently characterized as survivors had high synchrony and low complexity in their
neural responses.

3.4.1 Auditory stimulation for predicting outcome from coma

The main novelty and advantages of our approach of combining auditory stimulation with
deep learning to predict coma outcome are threefold: (a) it is semi-automatic, based
on a single EEG recording performed within 24h after cardiac arrest, and, if confirmed
in another dataset, can objectively be used to assist in predicting patients’ chances of
awakening from coma; (b) it relies on the auditory pathway which is currently not actively
used in the clinical routine for outcome prediction, and can therefore provide additional
clinical insights for patients in a ‘gray zone’, whose outcome is indeterminate based on
existing techniques; (c) the output of the neural network is not a simple binary prediction
of outcome, but it exploits a continuum of confidence values, which are then directly linked
and strongly correlated to interpretable features of EEG responses.

Our work follows a large body of literature showing links between neural responses to
auditory stimulation in comatose or unresponsive patients and patients’ outcome (Fischer
et al., 2004; Daltrozzo et al., 2007; Morlet and Fischer, 2014; Liu et al., 2021). Standard-
ized auditory stimulation in particular has been proposed to be informative of patients’
chances of awakening (Fischer et al., 1999, 2008; Kane et al., 1993; Naccache et al., 2005;
Luauté et al., 2005). However, to date it is not regularly used in the clinical routine, as the
majority of existing techniques are not robust enough, rendering a clinical implementation
challenging (Tzovara et al., 2016; Pfeiffer et al., 2017, 2018). Here, we overcame this chal-
lenge by focusing on one single EEG recording of 20 min, and analyzed EEG responses to
auditory stimulation with convolutional neural networks. These networks have the strong
advantage that they can detect discriminative patterns even in heterogeneous datasets,
with minimal a priori assumptions and preprocessing (Craik et al., 2019; Roy et al., 2019;
Aellen et al., 2021; Tjepkema-Cloostermans et al., 2019; Jonas et al., 2019; Altıntop et al.,
2022). Importantly, all steps of the presented method are automatic, apart from visual
inspection of the data and manual rejection of artifacts, which were done to ensure high
quality data. Future studies can investigate whether this step can also be automated and
replaced with existing algorithms for EEG data cleaning (Jiang et al., 2019).
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3.4.2 Neural networks assisting prognostication of coma outcome

Neural networks have been used in several fields showing an astonishing potential to au-
tomate and improve prognostication of various neurological disorders (Craik et al., 2019;
Roy et al., 2019) but their use in neuro-critical care and coma outcome prognosis remains
limited. The few existing studies using neural networks to predict coma outcome are
based on EEG recordings in the absence of external stimulation. These have shown a
remarkable performance (AUC = 0.89 (Jonas et al., 2019); AUC at 24h = 0.88 (Tjepkema-
Cloostermans et al., 2019); best AUC at 24 h = 0.89 (Zheng et al., 2021)), in predicting
awakening. In our study, we obtained a mean AUC score of 0.70 ± 0.04 and of 0.83 for the
best fold (Table 3.1), and a mean PPV of 0.83 ± 0.03 and 0.92 for the best fold (Table 3.1).
The AUC values we obtained are slightly lower than previous studies. However, it is worth
noting that our study relies on a complementary piece of information to what is currently
used in the clinical routine, that is standardized auditory stimulation. Our approach is
therefore predictive of awakening, and not of overall outcome, compared to previous stud-
ies using neural networks, based on resting state EEG. Therefore suggesting that the most
informative measure is the PPV, which is comparable to the AUC scores reported in the
literature. As such, we could show that neural networks have the potential to provide
concrete diagnostic information for patients in a clinical ‘gray zone’, for whom currently
available clinical tests are inconclusive. Future studies, with larger patient cohorts can
evaluate the clinical applicability of these networks, and confirm these results.

One main limitation of our approach, and also of most previous studies (with few exceptions
like (Juan et al., 2016)), is that we only predict a binary outcome of survival versus non
survival. Survivors are defined as patients with a CPC 1�3, which corresponds to varying
levels of autonomy and quality of life (Booth et al., 2004; Juan et al., 2018). Although
a CPC of 1�2 generally represents a satisfactory quality of life, a CPC of 3 can be a
heterogeneous class. Because we trained the network to specifically discriminate between
patients with CPC 1�3 versus patients with a CPC of 5 (death), we could not find a
more fine-grained link between the network’s output and the state of survival at 3 months.
Future studies, expanding on larger patient cohorts, could use the CPC score already
during training the network to evaluate whether auditory responses in the acute coma
phase can be informative not only of survival, but also of its quality.

3.4.3 Electrophysiological features contributing to the network’s
confidence in outcome prediction

One major concern for the use of neural networks in a clinical environment is that of
interpretability, i.e. tracing features in the data that were important for decisions made
by a network. Here, we addressed this concern by showing that the output of the neural
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networks was strongly correlated to features of their EEG activity like the phase locking,
previously shown to reflect coma severity (Alnes et al., 2021; Zubler et al., 2017; Carrasco-
Gómez et al., 2021b) and also to clinical evaluations (Westhall et al., 2016; Rossetti et al.,
2017). The phase locking of EEG responses to sounds, recently shown to be predictive
of patients’ chances of awakening from coma (Alnes et al., 2021), was strongly correlated
to the networks’ confidence in predicting survival, such that the higher the phase locking,
the stronger the network’s confidence. Crucially, this link was observed not only across
survivors and non survivors which might be considered trivial as both measures predict
outcome, but also within the group of survivors and non survivors separately. This suggests
that the decisions made by the neural network for assessing the confidence of survival are
strongly linked to the strength of neural synchrony across EEG electrodes. Importantly,
not only did we observe a strong correlation between PLV and network’s output, but we
also replicated previous findings about the predictive value of PLV (Alnes et al., 2021) in a
new patient cohort, treated with targeted temperature management at 36°C (NT).

The advantage of using convolutional neural networks over hand crafted and pre-selected
features, such as the PLV, is that the network automatically extracts multivariate features
of the ERP response, which are most discriminant between patient outcomes. This ap-
proach is fully data-driven, and the input signal is minimally pre-processed, as opposed
to computing the PLV, where one needs to have strong a priori assumptions about the
electrode-pairs, frequency bands, and specific measure to be used (see SI of (Alnes et al.,
2021)).

More surprisingly, we also observed a strong negative correlation between the network’s
confidence of predicting survival and the complexity of EEG responses to sounds. Neural
complexity per se, at the single-patient level, was not predictive of patients’ outcome.
This finding has been previously reported for patients treated with targeted temperature
management at 33°C (Alnes et al., 2021), and here we replicated it for patients treated at
36°C. Neural complexity can be considered a proxy to neuronal noise, of how structured
EEG responses are across time (Luppi et al., 2019). Interestingly, here we found that the
higher the network’s confidence for a patient to survive the coma, the lower the complexity
of the patients’ EEG responses to auditory stimulation. This effect was particularly strong
for non survivors. This finding suggests that although complexity per se is not informative
of coma outcome, the network is extracting some features in EEG responses that relate to
the levels of neuronal noise or structure in the EEG signal, which are in turn informative
of coma outcome.

Finally, we also found significantly higher confidence in the network’s predictions of survival
assigned to patients that have intact brainstem reflexes, motor responses, and reactive
EEG, compared to those who do not (Figure 3.5A-C). All these features are considered to
be markers of preserved neural functioning, and to indicate good outcome (Rossetti et al.,
2016). Interestingly, when focusing on reactive EEG, which has a prognostic value for
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good outcome (Westhall et al., 2016), we found that it provided similar levels of predicting
awakening as the neural network (PPV = 0.88). Notably, unlike the EEG reactivity, the
neural network was not used to inform clinical decisions about these patients. By contrast,
the network’s confidence of survival was significantly lower for patients with discontinuous
EEG and irritative EEG than patients without (Figure 3.5D and E), which are considered
signs of poor outcome (Westhall et al., 2016).

In summary, the strong links between the network’s output and clinical or electrophysio-
logical features across patients strengthen the view that (a) the neural network’s decisions
are based on clinically relevant features and (b) can provide similar levels of performance
as currently used techniques (Westhall et al., 2016), but with higher level of automation
and objectivity (Caroyer et al., 2021) and minimal preprocessing in the EEG data.

3.5 Conclusion

In summary, we show, for the first time, the strong potential of standardized auditory
stimulation in combination with deep learning to predict awakening from coma. Our
approach provides an objective and semi-automatic way to quantify a patient’s chances of
awakening and surviving at 3 months, already from the first few hours after coma onset.
For two different patient cohorts, treated with controlled temperature management at
33 and 36°C, and recorded across four different hospitals, the neural network provides a
high positive predictive value of awakening, of 0.83 ± 0.04 and 0.81 ± 0.06 respectively.
This finding was also confirmed for a sub-group of patients whose outcome prognosis was
indeterminate with currently used diagnostic criteria. Importantly, we could show strong
links between the output of the neural network and electrophysiological characteristics
of the EEG responses to sounds reflecting neural synchrony and complexity, which have
been previously associated with the presence of consciousness from a theoretical point of
view. Our work calls for a more systematic use of standardized auditory stimulation in
the clinical routine, in combination with state-of-the-art deep learning algorithms, to assist
and improve early prognostication of coma outcome.
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Background and Objective: The diagnosis of sleep-wake disorders (SWDs) is challenging
because of the existence of only few accurate biomarkers, the frequent co-existence of
multiple SWDs and/or comorbidities. The aim of this study was to assess in a large
cohort of well characterized SWDs patients the potential of a data-driven approach in the
identification of single SWD.

Methods: The data set analyzed contained 6’958 patients from the Bernese Sleep registry
and a total of 300 variables/biomarkers including questionnaires, results of polysomnogra-
phy/vigilance tests, and final clinical diagnoses. A pipeline, based on unsupervised machine
learning, was created to extract and cluster the clinical data. Our analysis was performed
on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort
of SWDs spanning and a clean cohort without coexisting SWDs.

Results: A first analysis focused on the cohort of patients with CDHs and revealed four
patient clusters: two clusters for narcolepsy type 1 but not for narcolepsy type 2 or idio-
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pathic hypersomnia. In the full cohort of SWDs nine clusters were found: four contained
patients with obstructive and central sleep apnea, one with NT1 and four with intermixed
SWDs. In the cohort of patients without coexisting SWDs an additional cluster of patients
with chronic insomnia was identified.

Discussion: This study confirms the existence of clear clusters of NT1 in CDHs, but mainly
intermixed groups in the full spectrum of SWDs, with the exception of sleep apneas and
NT1. New biomarkers are needed for a better phenotyping and diagnosis of SWDs.

4.1 Introduction

Sleep-wake disorders (SWDs) are a significant and growing public health concern: they
affect over one third of the human population (Kerkhof, 2017) and severely reduce life
quality and life expectancy. Patients with SWDs are at higher risk for cardiometabolic,
brain and mental disease as well as accidents (Grandner, 2017). Yet, despite these major
implications the diagnosis of SWDs is challenging due to the rarity of specific disease
markers, the coexistence of multiple SWDs and frequent comorbidities (Cappuccio et al.,
2010).

In central disorders of hypersomnolence (CDHs) narcolepsy type 1 (NT1) is associated
with reliable biomarkers such as cataplexy and a hypocretin deficiency, the other CDHs
(including narcolepsy type 2 (NT2) and idiopathic hypersomnia (IH)) lack selective and
specific disease markers (ICSD-3, 2014; Trotti et al., 2013; Cairns et al., 2019; Zhang et al.,
2022).

Similarly, the need for new biomarkers and better phenotypical characterization of sleep
apnea (Zinchuk and Yaggi, 2020) and parasomnias (Erickson and Vaughn, 2019), has been
seen as necessary for personalized management of these SWDs. Overall, a large body
of literature suggests that existing diagnostic criteria for SWDs may be insufficient to
categorize large groups of SWDs patients (Grandner, 2017; Lammers et al., 2020; Dietmann
et al., 2021).

Machine learning algorithms can assist in identifying groups of patients that share common
clinical characteristics, based on large amounts of clinical data collected in routine clinical
examinations, moving towards a data-driven identification of SWD phenotypes. Unsuper-
vised learning algorithms have already been used on data of patients with CDHs (Šonka
et al., 2015; Cook et al., 2019; Gool et al., 2022). A recent study has shown that clustering
algorithms can easily identify patients with NT1, and additional clusters of patients with
or without sleep drunkenness, that had been formally diagnosed with NT2 and IH (Gool
et al., 2022). Other attempts to cluster patients with SWDs have focused on heterogeneous
disorders, such as obstructive sleep apnea (OSA) or insomnias to identify distinct subtypes
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(Bailly et al., 2016; Venkatnarayan et al., 2022; Joosten et al., 2011; An et al., 2019).

Considering the lack of studies covering the full spectrum of SWDs, the aim of this study is
to evaluate the extent to which individual SWD can be disentangled on the basis of existing
biomarkers. To this aim, we focused on the Bernese Sleep Registry, a comprehensive
database of patients with sleep disorders collected over the past 16 years at the Sleep
Wake Epilepsy Center of Inselspital, the University Hospital of Bern, Switzerland. As a
proof of concept, we first focused on a cohort of patients with CDHs. We hypothesized that
based on clinical markers, we would be able to identify clear clusters of patients with NT1,
mainly characterized by the presence of cataplexy, and mixed clusters for patients with IH
and NT2, replicating previous findings (Gool et al., 2022). On the full spectrum of SWDs,
we made the hypothesis that patients with obstructive or central sleep apnea, and patients
with NT1 would be mostly distinct, because of the existence of multiple clear diagnostic
markers. By contrast, we hypothesized that distinguishing other SWDs like insomnias or
parasomnias would be more challenging based on existing clinical markers.

4.2 Materials and methods

4.2.1 Study population

The cohort of studied patients was evaluated in the multidisciplinary sleep-wake laboratory
of the Inselspital, University Hospital of Bern between 2000 and 2016. Patients’ evaluation
typically included a clinical assessment, standardized questionnaires (including the Bernese
Sleep Questionnaire, composed of 150 questions) and when needed ancillary tests such as
a full night polysomnography (PSG), multiple sleep latency test (MSLT), maintenance of
wakefulness test (MWT), actigraphy or others. Data from the different sources and cover-
ing the longitudinal follow-up of patients were consolidated in a REDCap database hosted
at the Clinical Trials Unit Bern (Bern Sleep Registry). The cohort contained more than
300 possible markers per patient and a total of 6’958 patients. For the current analysis,
the first sleep laboratory (baseline) visit was analyzed. Based on the clinical diagnoses,
reports and markers, patient diagnoses were retrospectively re-classified by two indepen-
dent sleep specialists (Bargiotas et al., 2019) according to the International classification
of sleep disorders, 3rd edition (ICSD-3, 2014). Main demographics and main diagnoses are
summarized in Table 4.1. Up to five different SWDs were made per patient (Appendix,
Figure C.2).

Standard protocol approvals, registrations, and patient consents
The use of the patient data presented in this study was approved by the local ethics com-
mittee (Kantonale Ethikkommission Bern (KEK) Nr. 2022-00415). Patients gave written
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consent for the use of their data in scientific studies (General Consent). In order to cover
our patient database since 2000, the data of the “SNS project” (Kantonale Ethikkommis-
sion Bern, Nr. 2016-00409), which was ethically approved shortly after the introduction of
the General Consent, were included even in cases where no General Consent was available,
according to HRO[a], Art. 9, as described in detail in the ethics protocol Nr. 2022-
00415.

Table 4.1: Number of patients per diagnosis and main demographics, referring to the
cohort included in the present study prior to downsampling OSA patients (corresponding
to Figure 4.1B middle panel)

Diagnosis Female sex (%) Age (year) BMI Waist-Hip ratio

Insomnia (N = 469) 0.48 48.5 ± 14.0 26.9 ± 5.8 0.90 ± 0.08

Missing: 8 Missing: 0 Missing: 11 Missing: 117

Obstructive Sleep Apnea (N = 2’834) 0.19 53.0 ± 12.7 30.3 ± 6.1 0.95 ± 0.09

Missing: 60 Missing: 3 Missing: 60 Missing: 688

Central Sleep Apnea (N = 303) 0.12 57.4 ± 14.0 29.8 ± 5.4 0.96 ± 0.11

Missing: 1 Missing: 0 Missing: 6 Missing: 56

Other Sleep Related Breathing Disorders (N = 27) 0.44 45.2 ± 17.7 30.3 ± 10.0 0.94 ± 0.10

Missing: 0 Missing: 0 Missing: 1 Missing: 3

Narcolepsy Type I (N = 54) 0.41 36.4 ±17.5 26.3 ± 5.2 0.90 ± 0.08

Missing: 0 Missing: 0 Missing: 0 Missing: 19

Narcolepsy Type II & Idiopathic Hypersomnia (N = 42) 0.52 26.8 ± 11.8 23.8 ± 3.8 0.85 ± 0.07

Missing: 0 Missing: 0 Missing: 1 Missing: 11

Other Central Disorders of Hypersomnolence (N = 204) 0.50 35.5 ± 13.5 25.2 ± 4.4 0.88 ± 0.11

Missing: 1 Missing: 0 Missing: 4 Missing: 26

Parasomnias (N = 144) 0.35 47.1 ± 19.9 24.9 ± 4.9 0.89 ± 0.07

Missing: 0 Missing: 0 Missing: 3 Missing: 35

Sleep-Related Movement Disorders (N = 211) 0.46 50.6 ± 15.7 26.8 ± 4.9 0.88 ± 0.09

Missing: 3 Missing: 0 Missing: 5 Missing: 77

Isolated Symptoms and Normal Variants (N = 166) 0.27 52.9 ± 14.4 27.9 ± 6.1 0.92 ± 0.09

Missing: 7 Missing: 0 Missing: 3 Missing: 60

4.2.2 Processing pipeline

The processing pipeline involved six steps, of data collection and marker extraction, data
curation, selection of good quality markers and patients, normalization of data, imputation
of missing values (Epsilon-machine, 2022) and clustering, (Figure 4.1), which are described
in full detail in Appendix C.
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Figure 4.1: (A) Processing Pipeline, starting from data acquisition, curation and selection
of markers and patients with high quality data. The selected variables were then normalized
and missing entries were imputed. The final step was an unsupervised clustering algorithm.
(B) Data selection process, describing the sample size of the entire Bern Sleep Registry
and each of the three cohorts included in the main analyses, across different steps of the
processing pipeline.

4.2.3 Patient cohorts

Three patient cohorts were analyzed, (a) a cohort of patients with CDHs, (b) a cohort of
patients covering the full spectrum of SWDs, and (c) a cohort of well-characterised patients
with one single SWD. For each of these cohorts, the patient selection started from the Bern
Sleep Registry from scratch (Figure 4.1B, left panel).

4.2.3.1 CDH cohort

For this cohort, we used a set of 22 markers selected among the available markers, based
on clinical expertise (ICSD-3, 2014). This first cohort included a total of 141 patients, out
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Table 4.2: Number of patients for the three cohorts. The last line for each cohort (Total
number of patients in the cohort) refers to the total number of patients used for the
clustering, so after the “feature and patient” selection steps of the pipeline (Figure 4.1B).

Cohort Diagnosis # Patients

CDH Cohort

Narcolepsy Type 1 (NT1) 78

Narcolepsy Type 2 (NT2) 19

Idiopathic Hypersomnia (IH) 44

Full Cohort of SWD

Insomnia (Insomnia) 469

Obstructive Sleep Apnea (OSA) 469

Central Sleep Apnea (CSA) 303

Other Sleep Related Breathing Disorders (Other SBD) 27

Narcolepsy Type I (NT1) 54

Narcolepsy Type II & Idiopathic Hypersomnia (NT2&IH) 42

Other Central Disorders of Hypersomnolence (Other CDH) 204

Parasomnias (Parasomnia) 144

Sleep-Related Movement Disorders (Movement Disorders ) 211

Isolated Symptoms and Normal Variants (Isolated Symptoms) 166

Full Cohort of SWD with well characterized patients with a single SWD

Long-Term Insomnia (Insomnia) 211

Obstructive Sleep Apnea (OSA) 290

Central Sleep Apnea (CSA) 168

Narcolepsy Type I (NT1) 23

NREM-Related Parasomnias (Parasomnia) 42

Restless-Leg Syndrome (Movement Disorders ) 58

of which 78 suffered from NT1, 19 from NT2 and 44 from IH (see Table 4.2).

4.2.3.2 Full cohort of SWDs

Second, the analysis was expanded to the full spectrum of SWDs, namely on the following
diagnosis and sub diagnosis: insomnia, obstructive sleep apnea (OSA), central sleep apnea
(CSA), other sleep-related breathing disorders (a grouping of all other sleep-related breath-
ing disorders not stated explicitly here; Other SBD), narcolepsy type 1 (NT1), narcolepsy
type 2 and idiopathic hypersomnia (NT2&IH), other central disorders of hypersomnolence
(a grouping for all other CDHs not stated explicitly here; Other CDH), parasomnias,
sleep-related movement disorders, isolated symptoms and normal variants.

This led to a selection of 36 markers in a data driven way (Appendix, Section C.1), while
15 additional markers were added based on clinical importance, resulting in a dataset of
51 markers in total (Appendix, Section C.3.2) and a total of 4’454 patients. As the vast
majority of patients in this dataset were diagnosed with OSA (N = 2’834 patients out of
4’454), these patients were downsampled to 469 patients, the same number as the second
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largest group of patients, with a primary diagnosis of insomnia. This step was necessary as
otherwise all clusters are dominated by patients with OSA (Appendix, Section C.6.1). This
resulted in a cohort containing 2’089 patients (Table 4.2, for an overview of the distribution
of the diagnoses, and Figure 4.2 for an overview of which secondary SWD patients in this
cohort were diagnosed with).

4.2.3.3 Full cohort of SWDs with well characterized patients with a sin-
gle SWD

Because the full cohort of patients with SWDs had high levels of coexisting SWDs (Figure
4.2), we selected a control cohort, consisting of well characterized patients, where only
those with a primary and no secondary diagnosis were included, and where certain SWDs
were divided into subcategories. For example, for insomnia only chronic insomnia patients
were considered. See Appendix, Section C.2 for a description of disorders used for this
analysis. For the well-characterized sub-cohort, we used the same clinical markers as for
the full cohort. However, because of a decreased number of patients compared to the full
cohort, 4 markers were not available for a sufficiently large number of patients and were thus
excluded. Questions from the custom questionnaire (Bern sleep questionnaire, including
questions that are used to differentiate parasomnias from restless leg syndrome (RLS))
were not consistently digitized, and were therefore excluded from our analysis (Appendix,
Section C.8). This left a dataset of 47 markers and 792 patients (Table 4.2).

4.2.4 Clustering

For our main analysis, we used a K-Means clustering algorithm implemented in the python
package sklearn (Virtanen et al., 2020) with euclidean distance. The clustering was cal-
culated for multiple numbers of cluster centers, for each of which five different metrics
were evaluated. The final number of clusters was selected based on the explained variance,
similar to previous publications (Salmanpour et al., 2022; Hassan et al., 2021) (Appendix,
Section C.7). Because K-means clustering is sensitive to its initialization, we also repeated
the clustering with multiple initializations, all of which showed similar results as the ones
presented here.

4.2.4.1 Control analysis

We additionally performed a comprehensive set of control analyses to ensure that our
results hold across multiple implementations of the K-Means algorithm, with agglomerative
clustering and across multiple clinical control analyses, where markers used for diagnosis of
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Figure 4.2: Primary and secondary sleep-wake diagnosis in 2’089 selected patients from
the Bernese Center (2000-2016). The confusion matrix shows on the y-axis the primary
and on the x-axis the secondary SWD, if present, illustrating the complicated landscape of
SWDs (Figure C.2 for tertiary - quinary diagnoses). The number of patients with OSA was
downsampled from 2’834 to 469 (see Figure 4.1) while only patients with the diagnosis on
the y-axis specified were included in this visualization. The diagnosis “Isolated Symptoms”
contains some isolated symptoms and normal variants, such as: “Excessive fragmentary
myoclonus,” “Hynagogic foot tremor and Alma”, “Hypnic jerks” and ”PLMS” (see Appendix,
Section C.4.1).

disorders were excluded and the number of OSA patients was not downsampled (Appendix,
Sections C.5 and C.6).
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4.2.4.2 Feature extraction

To assess how the available markers were distributed across diagnoses and patient clusters,
we visualized them in the form of a barcode, calculated similar to (Gool et al., 2022). In
particular, patients were split according to their primary diagnosis, or according to their
assigned cluster, and the distribution of each marker was calculated for each available
diagnosis or cluster. Resulting values were normalized with respect to 10’000 random
draws of the same number of patients per diagnosis or cluster. The plotted features, in the
form of a barcode, show the deviation of the actual mean computed from the data, with
respect to the randomly generated distribution, in measures of standard deviations.

4.3 Results

4.3.1 CDH cohort

For the cohort of CDHs, we extracted the available clinical markers across patients in the
form of a barcode (Figure 4.3A). In accordance with the existing diagnostic criteria, we
found an over-representation of the marker cataplexy in patients with NT1 compared to
NT2 and IH. The marker mean REM latency (of the MSLT) on the other hand had a high
value for IH, but not for any of the narcolepsy diagnosis (Figure 4.3A).

Next, we performed a clustering analysis to group together patients with similar markers
in a data-driven way. The clustering analysis revealed four clusters, with the first two
containing almost exclusively patients diagnosed with NT1 (Figure 4.3C, first cluster: 100%
NT1 patients, and the second cluster 93% of NT1 patients). A third cluster contained a
majority of patients with IH, and the fourth a mixture mainly between NT2 and IH (Figure
4.3C).

The barcodes with the distribution of each marker for the different clusters revealed that
the discriminating markers between clusters 1 and 2 and clusters 3 and 4 were the high
prevalence of cataplexy, which is a diagnostic criterion for NT1 (ICSD-3, 2014), and the
presence of naps. Clusters 1 and 2 were characterized by short mean REM latency and
low prevalence for sleep drunkenness. Clusters 1 and 2 were separated from one another
mainly due to the presence of hallucinations, sleep paralysis, the ratio of men/women
among others. Cluster 3 was separated from cluster 4 mostly by sex, but weaker differences
were also found for REM latency, mean REM latency and naps. These results suggest that
our approach was able to discriminate, in a data driven way, NT1 patients from patients
with NT2 and IH, confirming previous reports based on different cohorts (Gool et al.,
2022).
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Figure 4.3: Characterisation and clustering for the Hypersomnolence cohort: (A) Bar-
code plot prior to clustering, where patients are split according to their primary diagnosis.
Marker names that are written in gray indicate a low number of a given value before im-
putation, and therefore should be interpreted cautiously. (B) Barcode plot where patients
are split according to the identified clusters, showing the distribution of the markers per
cluster. (C) Identified patient clusters, highlighting the distribution of primary diagnoses
within each cluster (percentages) and the total number of patients per cluster.

4.3.2 Full cohort of SWDs

After establishing that our clustering and marker selection pipeline reproduced previously
reported findings (Gool et al., 2022) we proceeded with a larger patient cohort, includ-
ing the full spectrum of SWDs. Patients with insomnia had the highest value of percent
wakefulness after sleep onset, low sleep efficiency among others, consistent with their clin-
ical phenotype (Figure 4.4A). Patients with OSA and CSA showed high values of apnea-
hypopnea index, apnea index, hypopnea index, apnea-hypopnea duration, maximum apnea
duration, desaturation index, age, BMI, and waist-hip ratio compared to other disorders.
For other SBD we found the highest values of duration O2 desaturation < 90% (min) and
O2 < 80% (min) and lowest values of O2% mean and O2% minimum. All CDHs contained
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Figure 4.4: Clustering for the full cohort of SWDs: (A) Barcode plot where patients are
split according to their primary diagnosis. Marker names that are written in gray indicate
a low number of a given value before imputation, and therefore should be interpreted
cautiously. (B) Barcode plot for the identified clusters, showing the distribution of the
markers per cluster. (C) Clustering results, highlighting the identified 9 clusters for the
full cohort. For each cluster we display the distribution of primary disorders of the patients
assigned to it in percentage, as well as the total number of patients in the cluster.

young patients, with high ESS, estimated sleep time and total sleep time. Parasomnias
showed relatively high values of fatigue (fatigue severity scale (FSS)) and, as expected,
movement disorders showed the highest PLMS index.

For the full cohort clustering, we found a total of nine clusters, which were ordered accord-
ing to the prevalence of OSA: three clusters (clusters 1, 2 and 3, Figure 4.4C) contained
more than 60% of patients with either OSA or CSA. Only clusters 1 and 2 contained a
relatively well-defined cohort, with at least one third of patients having the same primary
diagnosis, namely OSA. The next three clusters (clusters 4, 5 and 6, Figure 4.4C) showed
a mixed distribution of different disorders. Clusters 7 and 8 contained slightly more than a
third of patients with a primary diagnosis of insomnia. The remaining two thirds of cluster
7 were mixed, while cluster 8 contained 28% of other CDHs patients. Cluster 9 contained
78% of patients with NT1, and contained almost all NT1 patients that were part of our
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cohort, making it a clear cluster of NT1 (Figure 4.4C).

We next evaluated the most prevalent markers for each cluster (Figure 4.4B). The first
three clusters, primarily containing patients with OSA and CSA, had as expected higher
values for markers related to breathing which are associated with OSA and CSA (ICSD-3,
2014). Cluster 1 showed the highest BMI, hip-waist ratio, obesity frequency, and oxygen
desaturation index. Clusters 1 and 2 showed a high prevalence of diabetes and cardiac
comorbidities compared to cluster 3. Cluster 3 showed a distinct pattern with short sleep
time and low sleep efficiency as compared to the first two clusters, pointing to sleep-
disordered with insomnia-like symptoms. Cluster 4 was characterized by a high prevalence
of women with high sleep latency, overweight-associated comorbidities, and inconspicuous
classical breathing disorder markers. Cluster 5 showed a high prevalence of young men with
long sleep time and efficiency without any comorbidities in terms of psychiatric, pulmonary
or cardiac disorders, without narcolepsy-specific markers, and normal values for markers
related to apnea. Patients assigned in clusters 6 and 8 had particularly high prevalence
of psychiatric disorders, with a main difference of high prevalence of men in cluster 6 as
compared to women in cluster 8. Similar to cluster 8, cluster 7 showed a high prevalence of
women, in combination with a low hip-waist ratio and an exceptionally high fatigue (FSS
score). Last, cluster 9, which predominantly contained patients with NT1, showed extreme
values in all markers expected for patients with NT1. In summary, for the full cohort we
could obtain some well characterized patient groups, primarily consisting of patients with
breathing-related sleep disorders and NT1, but for the remaining disorders no clear clusters
could be identified.

4.3.3 Full cohort of SWDs with well characterized patients with
a single SWD

We next evaluated whether the lack of clearly defined clusters for a great number of SWDs
was due to the high prevalence of secondary diagnoses. To this aim, we focused on a
subset of the full cohort of SWDs, which only contained patients with one single well-
defined primary diagnosis.

In this cohort, the first four clusters (Clusters 1,2,3 and 4; Figure 4.5B) contained predom-
inantly patients diagnosed with OSA and CSA. Clusters 5 and 6 were rather mixed, both
with more than a third of OSA patients, and 30% and 25% insomnia patients, respectively.
Clusters 7 and 9 were both clusters of insomnia and cluster 8 contained 65% of patients
diagnosed with NT1. RLS and NREM-related parasomnias both were mostly represented
in clusters 6 and 9. The barcodes for this well-defined cohort (Figure 4.5A) showed that
clusters 2 and 3 contained the highest values for markers related to breathing disorders.
Clusters 1 and 4 showed less extreme, but still high values for these markers. Clusters 4
and 5 contained most of the OSA and CSA patients with diabetes and/or cardinal comor-
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Figure 4.5: Clustering for the full cohort of SWDs, as the cohort is similar to the full cohort
presented in Figure 4.4, the barcode for the diagnoses is not shown: (A) Barcode plot for
the identified clusters, showing the distribution of the markers per cluster. Marker names
that are written in gray indicate a low number of a given value before imputation, and
therefore should be interpreted cautiously. (B) Distribution of identified disorders within
the obtained clusters.

bidities. Cluster 6 mainly contained young men with normal values for markers related
to apnea and without non-sleep related comorbidities, such as psychiatric, pulmonary or
cardiac disorders. In cluster 7 we found mostly women with high values for psychiatric
disorders and high FSS. Cluster 8 showed a typical marker pattern of patients with NT1.
Cluster 9 contained mostly women, with low BMI and high FSS values.
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4.4 Discussion

We show, for the first time, a data-driven phenotyping of patients covering the full spectrum
of SWDs. In a cohort of CDHs we identified two clear clusters of patients with NT1 and two
mixed clusters with NT2 and IH patients, mirroring previous findings on different patients
(Gool et al., 2022). In the cohort covering the full spectrum of SWDs, we obtained clear
clusters for patients with breathing disorders (OSA/CSA) and NT1, while in a sub-cohort
of patients with a single diagnosis, clusters with patients with insomnia could also be
identified. All other SWDs were rather intermixed, highlighting, for the first time in a
data-driven way, the lack of objective, digitized markers for diagnosing the full spectrum
of SWDs that represents the clinical reality. These results were confirmed in multiple of
control analyses.

4.4.1 Data-driven phenotyping in the CDH cohort

In the CDH cohort, we confirmed our hypothesis that NT1 was well distinct from NT2
and IH. Notably, two of the four identified clusters contained nearly exclusively NT1 pa-
tients. The two non-NT1 clusters were distinct from the NT1 clusters with respect to
well known NT1 markers and the presence of sleep drunkenness, a marker of idiopathic
hypersomnolence (Trotti et al., 2013; Kretzschmar et al., 2016). A recent study showed
similar results (Gool et al., 2022), performing an unsupervised clustering on a different
cohort of patients with CDHs. This study included a much larger number of patients,
likely reflecting higher variability, and found seven clusters, four of which were clusters of
NT1. This first part of our analyses confirmed these previous findings, corroborating the
need for new markers for re-classifying CDHs (Dietmann et al., 2021). The accordance
with previous results validated our analysis pipeline, which we additionally applied in the
full cohort of SWDs.

4.4.2 Redefining the landscape of SWD

In the full spectrum of SWDs, we confirmed our hypothesis that some disorders, like OSA,
CSA, or NT1, were separated in distinct clusters. Indeed, these disorders are characterized
by relatively clear clinical criteria and therefore have distinct markers, such as multiple
breathing-related markers the apnea-hypopnea index for the case of OSA/CSA, or cata-
plexy in the case of NT1 (ICSD-3, 2014).

By contrast, for other SWDs like e.g. parasomnia and RLS, our clustering algorithm was
unable to identify distinct clusters based on currently available markers. Although these
disorders have very distinct symptoms (ICSD-3, 2014), they do not have specific markers
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differentiating them from other SWDs. Thus, in the clinical setting, for example RLS
can be reliably discriminated from parasomnias on the basis of questionnaires Appendix,
Section C.8). The occurrence of insomnia in all clusters supports the notion that insomnia
is often diagnosed in the presence of other SWDs (Edinger, 2011). Our results thus sug-
gest that the available clinical markers can distinguish certain SWDs, but fail for others,
highlighting the complexity of the full spectrum of SWDs.

4.4.3 Stability of clustering

By performing multiple control analysis we confirmed our main results, that patients with
OSA/CSA and NT2 were well distinct, however the remaining SWDs were intermixed.
None of the additional analysis was able to clearly distinguish the full spectrum SWDs,
indicating that our results were not solely driven by the selected pipeline.

These results suggest that the clusters we found adequately represent the landscape of
SWDs, based on available clinical markers. Indeed, in the clinical practice misdiagnoses
are very common for several of the clinical tests (Baumann et al., 2014; Fronczek et al.,
2020; Lammers et al., 2020), and test-retest reliability is surprisingly low (Trotti et al.,
2013; Lopez et al., 2017). Here, we confirm the low reliability in diagnosing SWDs (a)
by showing high comorbidities in the existing diagnoses, and (b) by showing that robust
machine learning techniques failed to distinguish all SWDs based on digitized markers, call-
ing for additional markers (Dietmann et al., 2021) and possible re-definitions of diagnostic
criteria.

4.4.4 Limitations

Even though we have performed numerous control analyses to ensure stability of clustering
results, we cannot exclude the possibility that an alternative pipeline may better capture
the true distribution of the data. However, our clustering pipeline was able to reproduce
previously reported results (Gool et al., 2022) on a different group of patients, and all of
our control analyses validated our main results. This leads us to believe that the identified
patient clusters are reliable.

One limitation for the full spectrum of SWDs is that the diagnosis of some of these dis-
orders is based on self-reports which are collected in the form of questionnaires. In our
cohort, these were collected on paper and their digitization could not always be reliably
performed. We therefore did not include some of this clinically relevant information. For
example, including questionnaires about self-reported symptoms might have improved the
discrimination of RLS from parasomnias (Appendix, Section C.8). Future studies can
address this limitation with the collection of prospective datasets, employing digitized
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questionnaires.

As a last limitation, in the present study we had to exclude patients with circadian-sleep-
wake disorders, as there were not enough patients with high quality data available. Fu-
ture studies should replicate our findings on bigger cohorts in terms of markers and pa-
tients.
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5 Discussion

My Ph.D. project aimed at analyzing neurological data for clinical applications and was
split into three different parts. The goal of the first part was to analyze EEG signals in
order to answer a methodological question if as a proof of concept deep learning could be
used as an MVPA pipeline. The second part was a clinical application to predict outcome
of coma with deep learning models based on EEG data. The last part focused on a second
clinical application to analyze sleep-wake disorders with unsupervised clustering algorithms
to disentangle the full landscape of SWDs. In the following chapter I will discuss each of
the projects separately, as well as three general topics, namely deep learning for EEG
signals, pre-selected features versus data-driven approaches for classification, and artificial
intelligence for medical applications.

5.1 CNNs for decoding EEG responses and visualizing
trial by trial changes in discriminant features

5.1.1 Summary

Deep learning has been increasingly used in neuroscience in the last few years as an analysis
tool for EEG signals. However, most studies using artificial neural networks on EEG
focus on BCI applications, seizure detection, sleep staging, or similar. It remains an open
question if artificial neural networks could be used as an MVPA algorithm for research
purposes. Currently used MVPA algorithms are mostly based on classical machine learning
algorithms, such as logistic regression or support vector machines, but EEG signals are high
dimensional and complex. The currently used MVPA algorithms are not powerful enough
to capture patterns of neural activity accurately, especially at the group level. Additionally,
these methods make the assumption that responses are located at the same latencies across
trials, an assumption that is only met in very homogeneous datasets. Data collection for
research is expensive and time-consuming, which results in datasets with a limited number
of participants and trials. The field of deep learning has multiple solutions for dealing with
small datasets, but they need to be translated into the new context of EEG signals.

In the first part of my thesis (Aellen et al., 2021), I showed that deep learning could
be used as an MVPA algorithm by presenting a complete analysis pipeline suggesting
appropriate data augmentation techniques for EEG signals. To detect which parts of
the EEG signal contributed predominately to the network’s decision, saliency maps, a
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gradient-based technique was used. This allowed for the extraction of class and trial-
specific information. I showed that the extracted features were meaningful, as the features
mirrored the EEG data on the group level per experimental condition (Figures 2.1 & 2.9,
Chapter 2). Additionally, the class and trial-specific information were used to show an
exemplar analysis technique for the evolution of the network activation over the course of
the experiment, which can be used to test theories of learning. This work presented a novel
pipeline based on a convolutional neural network for analyzing EEG data showing great
potential to be used as an MVPA for research purposes. The developed pipeline contained
data augmentation, network training, and feature visualization techniques.

5.1.2 Deep learning for basic EEG research

Artificial neural networks have been previously applied to analyze EEG data (Roy et al.,
2019; Craik et al., 2019). Most applications of deep learning models focus on clinical ap-
plications, such as sleep staging (Fiorillo et al., 2019; Vallat and Walker, 2021; Stephansen
et al., 2018), outcome prediction of coma (Jonas et al., 2019; Aellen et al., 2023) or detec-
tion of seizures (Burrello et al., 2020; Cho and Jang, 2020).
Although deep learning has been used for basic research (Kuanar et al., 2018; Bashivan
et al., 2016; Wang et al., 2018), the applications remain limited and these techniques are
not standardly used today. The pipeline developed in this work focused on common tasks
in basic neuroscience, such as decoding the difference between experimental conditions and
the extraction of stable features on a single trial level. The performance scores that the
presented pipeline reached were comparable to previously proposed network architectures
(Shallow and Deep neural network by (Schirrmeister et al., 2017), Figure 2.8). The network
architecture that was selected had initially been proposed for the classification of images
(He et al., 2016) and did not explicitly exploit the temporal dimensionality of the data.
Previous literature on deep learning and EEG (Schirrmeister et al., 2017; Lawhern et al.,
2018; Kuanar et al., 2018; Bashivan et al., 2016; Wang et al., 2018) has suggested architec-
tures that considered the temporal dimension before the spatial one, thus giving greater
importance to temporal patterns in the data. Here however the EEG data was studied as
a spatial-temporal continuum, as it is commonly done in the field of EEG research (Maris
and Oostenveld, 2007).

The extraction of EEG features from convolutional neural networks has been explored pre-
viously. For example, (Schirrmeister et al., 2017) computed spectral EEG features, based
on their trained networks. However, their results did not contain temporal information, as
they were collapsed over trials and time. Other studies reported gradient-based methods,
however, they presented the features on an average level (Farahat et al., 2019; Vahid et al.,
2020) or on exemplar trials (Lawhern et al., 2018) only. Compared to these studies the
work presented in this thesis also analyzed a generalization of features over time and how

100



they were represented over the full dataset.

5.1.3 Limitations

The main limitation of this work is the small number of hyperparameters that were ex-
plored. Only minimal variations of the network architecture were tested (Appendix, Section
A.2.3). Additionally, I investigated the use of unfiltered versus filtered EEG data and used
the proposed pipeline to oversample the underrepresented class versus a weighted binary
cross-entropy loss. However, there would have been many more hyperparameters to ex-
plore. For example, the network architecture was initially developed for the classification of
images in the field of computer vision in 2016 (He et al., 2016). There are more recent and
more powerful architectures that could improve decoding performance. The used model
also did not explicitly take into account the temporal dimension of the EEG data, which
could be exploited with an RNN (Delvigne et al., 2022), LSTM (Bashivan et al., 2016;
Kuanar et al., 2018; Zheng et al., 2021) architecture or a CNN model developed for EEG,
such as EEGNet (Lawhern et al., 2018). Another hyperparameter that was under-explored
was the feature extraction method, as a Grad-CAM algorithm (Selvaraju et al., 2017) could
have also been used.

A second limitation of the study is the limited number of participants available. A big-
ger number of participants adds more variation in the EEG data and, therefore, neural
patterns captured by the algorithm. The trained model would thus generalize better to
new participants. I overcame this limitation by employing data augmentation techniques.
However, the question remains whether their added value is as good as a more extensive
dataset with more natural variation.

5.1.4 Future directions in deep learning for EEG signals

One of the biggest questions emerging from this study is exploring different network archi-
tectures, feature extraction techniques, and how the architecture influences the extracted
features. Previous literature in computer vision (Zeiler and Fergus, 2013) has shown that
features visualized with the aid of the kernels of convolutional layers are dependent on the
used layer. Features visualized from higher layers show more coarse patterns associated
with high-level features compared to kernels from lower layers that show high-level and
detailed features (Zeiler and Fergus, 2013). The depth of the architecture, therefore, in-
fluences the extracted features. Additionally, the features extracted with gradient-based
extraction techniques, such as saliency maps (Simonyan et al., 2013) or Grad-CAM (Sel-
varaju et al., 2019) depend on the algorithms. The features calculated in this work were
gradient-based and the used extraction technique could thus influence the features.
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Additionally, the depth of the artificial neural network could influence the resolution of the
saliency maps. Similarly, the shape of kernels could influence patterns of the discriminant
features. Yet it remains unexplored how the network architecture or feature extraction
technique could influence the extracted features for EEG signals.

In a different direction, considering deep learning as an MVPA technique for EEG analysis,
an open question remains if these models could be suited for source reconstruction. A
major advantage of MVPA algorithms is that the weights of a trained classifier can be
used for source localization to reveal which region differed between two conditions, e.g.,
stimuli related to animate versus inanimate objects (van de Nieuwenhuijzen et al., 2013).
Also unexplored is whether discriminant features extracted from a trained deep neural
network could be used to infer sources of activation with the aid of source localization.
Additionally, such an algorithm could be used to analyze changes in sources throughout
the experiment.

5.2 Auditory stimulation and deep learning predict
awakening from coma after cardiac arrest

5.2.1 Summary

Outcome prediction for post-cardiac arrest patients in a comatose state is essential for
clinicians to optimize patient care as well as the close family of the patient. Currently
used clinical markers have the limitation that they leave up to a third of patients without
a clear prognosis, and most of these markers are sensitive to predict non survival (Rossetti
et al., 2016). Only a few clinical markers with high positive predictive power for survival
exist.

The second part of my thesis used a dataset of EEG recordings of coma patients that were
exposed to standardized auditory stimulations presented in a deviance paradigm, which has
been shown previously (Fischer et al., 1999) to be predictive of positive outcome. Brain re-
sponses to standardized auditory stimulations are not currently used in the clinical routine
and could provide additional insight for patients without a clear prognosis. The cohort of
patients in this work was recorded in four different hospitals in Switzerland and under two
different temperature treatments. The selected network architecture (EEGNet (Lawhern
et al., 2018)), explicitly exploits the temporal dimension of the EEG data and reached a
high performance in predicting survival. I also analyzed the EEG of patients without a
clear prognosis and found for this cohort high positive predictive power. The network’s
performance was however slightly lower than the full cohort’s performance. Additionally,
to gain insight into the network’s decision, the output of the network, measuring its con-
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fidence in predicting survival, was compared to measures related to neural synchrony and
complexity, showing a correlation for both. Neural synchrony was positively correlated
with the network’s confidence in predicting survival, thus patients with high neural syn-
chrony were predicted by the network be to more likely to survive. The neural complexity
values of patients were negatively correlated with the network’s output, i.e. patients with
high complexity in their auditory EEG responses were predicted by the network to be less
likely to survive. This indicates that the network extracted information related to these
measures. For the first time ever this work has shown that artificial neural networks can
be used for coma outcome prediction based on EEG data in response to standardized au-
ditory stimulations. Additionally, my pipeline showed good performance on a subcohort
of patients without a clear prognosis, based on current clinical markers.

5.2.2 Predicting coma outcome with deep learning

Previous literature has explored the use of convolutional neural networks for the predic-
tion of outcome from coma (Jonas et al., 2019; Tjepkema-Cloostermans et al., 2019; Zheng
et al., 2021). However, the use of such algorithms is far from being used as standard tools
within clinical practices. This is because of lacking trust in these algorithms and because
a standard implementation is not straightforward. (Jonas et al., 2019) and (Tjepkema-
Cloostermans et al., 2019) base their prediction pipeline on intervals of EEG recordings
without epileptic activity. The selection of such a recording interval requires manual
work performed by a clinician. Nevertheless, these studies show impressive scores for
predicting outcome (AUC = 0.89 (Jonas et al., 2019) AUC at 24 hours = 0.88 (Tjepkema-
Cloostermans et al., 2019), best AUC at 15 hours = 0.89 (Zheng et al., 2021)). This thesis
showed a mean AUC score of 0.70 ± 0.04 and 0.83 for the best fold, and a mean PPV
of 0.83 ± 0.03 and 0.92 for the best fold. These performances are slightly lower than the
current literature. However, the presented pipeline integrates complementary information
to current clinical markers and thus great performance for patients in a ’grey zone’.

5.2.3 Electrophysiological features for comatose patients and net-
works confidence

In chapter 3 a strong correlation between the network’s confidence in predicting survival
and the PLV values of comatose patients was found. A high PLV was correlated with the
network’s confidence in predicting survival. These results could be considered trivial, as
the PLV, as well as the network, predict outcome of coma. However, this correlation was
also found for survivors and non survivors separately. This suggests that the network’s
output and therefore learned features are strongly connected to the PLV.
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Similarly, a correlation between the network’s confidence in predicting survival and the
LZ complexity was found, even though this measure alone was shown not to be predictive
of outcome of comatose patients. Also for this measure, a separate correlation between
survivors and non survivors and the network’s confidence could be observed.

The CNN automatically extracted features from the EEG data of the comatose patients
related to the neural complexity and neural synchrony. This leaves the network with an
advantage over had-crafted and interpretable features, as this extraction was fully data-
driven, without an initial hypothesis about the data.

(Alnes et al., 2021) showed that the Lempel-Ziv complexity was significantly different
between comatose patients and healthy controls. This effect was driven by survivors.
Non survivors, however, did not show a significant difference from controls with respect
to the LZ values. Some patients even had complexity values at the same level as awake
controls. These results were confirmed in chapter 3, also with patients that were treated
with therapeutic normothermia. The complexity values of survivors and non survivors did
not show a significant difference between the two temperature treatments. Therefore a
subgroup of non survivors had high values of complexity, similar to the awake controls.
These results are contradictory to current literature, which found lower values of LZ for
decreased levels of consciousness (Luppi et al., 2019; Miskovic et al., 2018). The relatively
high complexity values that can be observed in Aellen et al. (2023) and chapter 3 of this
thesis may be driven by the fact that all patients were recorded within the first 24 hours
of coma. During this time, a patient’s EEG and metabolism undergo drastic changes. It
is, however, unclear if this effect would hold in later stages of coma and how the LZ values
would change on a second day, and if they could then be predictive of the outcome.

5.2.4 Limitations

In my work, I only performed limited hyperparameter or network architecture tuning. The
used architecture was relatively shallow, with only three convolutional layers (Lawhern
et al., 2018). It was selected because of the only 19 available EEG channels in some of
the recordings. The hyperparameter tuning that was performed for this work was limited
to a subset of the cohort. It remains unexplored if a deeper network architecture would
increase the performance or result in overfitting.

My study predicts outcome from coma as survivors (CPC 1-3) versus non survivors (CPC
5), compared to other deep learning based studies that predict favorable (CPC 1-2) versus
unfavorable (CPC 3-5) outcome (Jonas et al., 2019; Tjepkema-Cloostermans et al., 2019;
Zheng et al., 2021). (Juan et al., 2016) showed that the CPC correlated with the measures
of outcome found in (Tzovara et al., 2013), where the outcome prediction was based on
machine learning techniques. No significant difference in the network’s predicted score of
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confidence of survival and the CPC of patients was found for the subgroup of survivors.
But it remains unknown if an artificial neural network could distinguish the varying levels
of CPC. Such a prediction of the CPC, could provide information not just about awakening,
but also on the quality of life patients have after three months.

The cohort of patient data analysed in this work was collected over many years, and some of
the data collected more than ten years ago were recorded with only 19 electrodes. Current
research usually uses more channels, and 19 channels are considered a relatively limited
number. Although I obtained a high performance in predicting awakening, I cannot exclude
that higher dimensional data might capture more details in neural responses and improve
classification performance further.

5.2.5 Future directions for deep networks in outcome prediction of
coma

From a methodological standpoint, this work did not explore many different hyperparam-
eters and network architectures. Future studies could therefore explore deeper and more
complex architectures to evaluate if a trained model’s generalization would improve.

The prediction of outcome of patients for this work was based on a deviance protocol of
standardized auditory stimulations, with a duration of around 20 minutes. The relatively
long recording time and the large amount of data collected for the train set are of great
value to capture the variation within the signals. It however remains unexplored how
much data the prediction pipeline requires for an accurate prediction of patients’ outcome
in the test set. (Gómez-Tapia et al., 2022) found that for fingerprinting based on EEG
signals, i.e., identifying an individual based on their EEG signal, up to three seconds of
recording data is enough. An open question, that future studies could explore is how
many auditory stimulations and thus how long recordings per patient are required for an
accurate prediction of outcome with the prediction pipeline presented in this thesis. A
reduced recording length could be of value for a possible use of such a model in a clinical
setting.

The sound stimulations were presented as a deviance paradigm with three different deviant
sounds, as previous studies have shown the relevance of deviance paradigms for predicting
coma outcome (Fischer et al., 1999; Kane et al., 1993; Naccache et al., 2005; Luauté et al.,
2005). However, analyzing deviance responses was not the main focus of the study. A
supplemental analysis showed that the network’s confidence of survival did not depend on
the type of auditory stimulation (Appendix, Section B.4). (An et al., 2021) were able to
differentiate the neural response to different types of deviant sounds in wake participants.
Previous work in comatose patients (Tzovara et al., 2013, 2016) trained MVPA classifiers
to differentiate standard and one deviant sound and was able to do so on a patient by

105



CHAPTER 5. DISCUSSION

patient level. Future studies could thus explore with deep learning models if, on a group
level in comatose patients, the different sound types could be disentangled based on the
EEG responses. This possibility to distinguish different types of deviant sounds could be
related to survival, and potentially improve outcome prognosis.

Previous studies on outcome prediction of coma with deep learning reported contradictory
results on the optimal time after the onset of coma for outcome prediction. (Zheng et al.,
2021) reported that the best outcome prediction can be expected at 66 hours, compared
to (Tjepkema-Cloostermans et al., 2019) which reported 12 hours. EEG data from a later
recording of the cohort used in this study could be analyzed with the use of deep learning, to
explore the optimal latency for predicting survival, to reinforce one of these results.

5.3 Disentangling the complex landscape of sleep-wake
disorders with data-driven phenotyping: A study of
the Bernese Center

5.3.1 Summary

The landscape of sleep-wake disorders is complex, as different SWDs can co-occur within
one patient. Additionally, not many disorders have objective diagnostic biomarkers. Al-
ready within central disorders of hypersomnolence, the different disorders are convoluted
because the distinction between narcolepsy type 2 and idiopathic hypersomnia is based on
a clinical test with poor retest reliability (Trotti et al., 2013; Lopez et al., 2017).

In an attempt to disentangle the full landscape of SWDs, in the third part of this thesis, a
data processing pipeline based on an unsupervised clustering algorithm was built. My first
results focus on CDHs, where I confirm previous results that NT1 is clearly distinguishable
but not NT2 and IH. On the full cohort of SWDs, I found for the sleep-related breathing
disorders (OSA and CSA) and NT1 clear clusters; all other disorders were intermixed. As
a third analysis, I only considered patients with a well-defined, single SWD and found
additional clusters of insomnia. These results were also confirmed with multiple control
analyses. My findings support the need for new markers on the full landscape of SWDs.
This work showed for the first time an unsupervised clustering on the full landscape of
sleep-wake disorders and that currently collected clinical markers were not able to fully
discriminate the full landscape of SWDs, with the exception of OSA, CSA and NT1.
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5.3.2 Unsupervised clustering can assist in phenotyping patients with
SWDs

Previous attempts to find distinct clusters within CDHs have revealed different results
(Gool et al., 2022; Šonka et al., 2015). Both of these studies found clear clusters of NT1,
highlighting that this disorder has clear biomarkers. For NT2 and IH however, the literature
found intermixed results. (Gool et al., 2022) identified two clusters of NT2 and IH, that
were most distinct in variables related to sleep drunkenness and awakenings. (Šonka et al.,
2015) found unwanted naps and awakenings from naps as the biggest difference between
clusters of NT2 and IH. In the third part of this thesis, the difference in clusters between
NT2 and IH was mainly driven by patients’ sex, REM latency, mean REM latency, and the
number of naps. Additionally, for NT1 clear distinct clusters were identified, confirming
previous findings.

For the first time ever this work used an unsupervised clustering algorithm on the full cohort
of sleep-wake disorders and found clear clusters of disorders with clear biomarkers, such as
OSA, CSA and NT1. However, no clear clusters were found for RLS or parasomnias, even
though they have clearly distinct symptoms. Additionally, the results were consistent with
previous literature, showing that insomnia was rather intermixed with other disorders
(Edinger, 2011), and could only be distinguished when a clean cohort was considered,
containing only patients with single SWDs.

5.3.3 Limitations

I performed numerous control analyses and tested different clustering algorithms, metrics,
imputation techniques, and other steps of the pipeline. On the one hand, I proved the
stability of my clustering, showing that most choices of hyperparameters resulted in similar
clusters. On the other hand, I showed that no other choices of hyperparameters would
reveal clearer clusters of SWDs. This implies that my choices of hyperparameters were
justified. However, it is always possible that other unexplored clustering algorithms or
metrics exist that can identify additional pathologies within the landscape of SWDs.

Another drawback of this study is the data collection step, as much of the data based
on questionnaires was collected on paper and only later digitized. This could lead to
possible errors and loss of data. A lot of the questionnaire data was excluded because only
insufficient good-quality data was available. Similarly, not all sleep-wake disorders have the
same frequency of occurrence in the population (Ohayon, 2011). The maximum possible
number of patients was included here, to represent all SWDs. This, however, lead to an
imbalance in the data and potentially introduced bias. This was addressed in the case
of OSA patients that made up almost two third of the original cohort, by downsampling
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patients with this disorder. Because of the very low number of available samples, circadian
sleep-wake disorders were excluded altogether.

5.3.4 Future directions for phenotyping of SWDs with artificial
intelligence

In this study, it was impossible to disentangle the full landscape of sleep-wake disorders
based on the available and currently used markers. Many of the markers used in the
clustering were extracted from the overnight PSG or MSLT recording. This raises the
question if possible new markers could be extracted from these recordings for disorders
that do not have clear biomarkers, such as restless leg syndrome. (Gholami et al., 2022)
were able to distinguish sleep-related breathing disorders from healthy controls, by using
EEG channels from the overnight PSG recording, extracting features, and training machine
learning algorithms. A future project could therefore attempt to classify all sleep-wake
disorders from the raw data of the PSG with deep learning models. In such an attempt, it
would be possible to consider different sources, for example EEG, EMG, EOG. With such
rich data and deep learning models, a better distinction of SWDs could be possible. Deep
learning models could extract macro or micro patterns from PSG recordings, related for
example to sleep stages or power spectra that could best distinguish different SWDs.

A different approach could focus on patients’ treatments instead of their diagnosed disor-
ders. In CDHs, recommendations of treatment depend on the symptoms shown by patients
and not their diagnosis (Khan and Trotti, 2015). Therefore patients with different disor-
ders might get the same treatments. It could be meaningful for future studies to focus
on treatments, especially successful treatments, instead of patients’ diagnoses. However,
this information is rarely collected and would require longitudinal data collection. Future
studies could therefore gather reports about treatments and the impact of medication for
prospective cohort studies.

Wearable devices and home monitoring have become increasingly used in research and for
clinical purposes (Schmidt et al., 2021; Dietmann et al., 2021; Katori et al., 2022; Ancona
et al., 2022). The diagnosis of IH now takes into consideration actigraphy data collected
over two weeks (ICSD-3, 2014). The use of actigraphy data provides several advantages,
such as that patients are in their own homes and beds during recording (Katori et al.,
2022). Additionally, it also allows for the collection of data over multiple weeks. Future
studies, recording and analyzing actigraphy data could make diagnosis more precise, as
the results of the clinical tests would not only depend on a single night when patients are
in an unfamiliar environment.
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5.4 Deep learning for EEG signals in neuroscience

The literature presents a number of studies using deep learning to analyze EEG signals,
in order to automate and simplify the diagnosis of neurological disorders or for BCI ap-
plications (Roy et al., 2019; Craik et al., 2019; Zhang et al., 2019; Lawhern et al., 2018;
Schirrmeister et al., 2017; Jonas et al., 2019; Fiorillo et al., 2019; Stephansen et al., 2018;
Cho and Jang, 2020; Burrello et al., 2020; Aellen et al., 2021, 2023; Heilmeyer et al., 2018).
This literature explores many different applications, network architectures, and data rep-
resentations. Previous work on deep learning and EEG signals are therefore very diverse.
However, these applications or analysis methods are not yet established within clinics or
research practices. There are numerous problems that need to be addressed before these
methods can be applied in neurological practices or neuroscience. One such problem is
the limited quantity of available EEG recordings. This can be addressed with solutions,
such as data augmentations, that were discussed above, in regards to the contribution of
chapter 2. This section covers two additional problems for using deep learning techniques
for EEG signals.

5.4.1 Architectures of deep learning models on EEG data

Previous literature has introduced many new network architectures that can be applied to
EEG signals. The two contributions on deep learning and EEG data in this thesis ((Aellen
et al., 2021), in chapter 2 and (Aellen et al., 2023), in chapter 3) have the limitation that
not many architectures and hyperparameters were explored. Most publications introduce a
novel network architecture for a specific clinical problem, and there are rarely any ablation
studies showing why the choice of parameters was optimal. Other publications introducing
a new architecture for general use, such as (Lawhern et al., 2018), compare their network on
a few datasets with different architectures. Another example is (Schirrmeister et al., 2017),
who performed hyperparameter tuning on the proposed architecture, e.g., with/without
dropout, batch normalization, etc. (Heilmeyer et al., 2018) tested four different network
architectures over six different BCI datasets on single patient learning and single folds,
comparing training scores across a total of 100 subjects. However, to this day there exists
no large-scale testing of many different architectures and multiple datasets, spanning many
different applications of EEG data. Such a study could for example span different datasets
from BCI, seizure predictions, sleep staging, prognostication of coma, and basic research.
Chapter 2 of this thesis addressed such a research direction on a very small scale. Three
different network architectures were tested on two different datasets from the field of basic
research, showing no significant difference between performances over 10 folds (Figure 2.8,
in chapter 2). Future work could expand this investigation on more architectures, features,
and datasets from different modalities, such as sleep-scoring, BCI, outcome prediction from
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coma, and EEG research datasets.

5.4.2 Variance of deep neural network performance for EEG sig-
nals

This thesis included two chapters exploring deep learning for EEG signals. Chapter 2,
showed three different network architectures (ResNet5050 (He et al., 2016), a shallow and
deep convolutional network (Schirrmeister et al., 2017)), that were each trained and tested
on two different datasets, one based on auditory and the other on visual stimulations. The
AUC scores for all network architectures and datasets were spread around ten percentage
points, over all the 10 folds trained. A similar spread of AUC scores could be observed for
predicting outcome from coma in chapter 3. These examples, taken together, spanned four
different network architectures and three different datasets, each showing that AUC scores
can have a spread of around 10 percentage points around the mean values, trained over 10
folds. These big differences in the performance of the same network over different folds are
typical for the literature on EEG and deep learning and can be observed in many other
studies (Schirrmeister et al., 2017; Heilmeyer et al., 2018). These big differences in per-
formance and their implications for clinical or basic research, are currently underexplored
and ignored in the field of EEG research based on artificial neural networks.

One hypothesis is that these spreads could depend on the architecture. For example,
one could expect that smaller architectures might be more stable overall. This would be
an advantage for the potential implementation of deep learning applications in a clinical
setting. An alternative hypothesis is related to the data, as some folds contain by nature
a lot more noisy data, and independently of the architecture their generalization to the
test set will be poorer. These questions need to be addressed before such algorithms could
be implemented within the clinics, otherwise, the performance of such a model would
substantially depend on the selected fold. Even a selection based on the best performance
on the validation or test sets introduces a bias toward that specific test population, which
may happen to contain samples that are not representative of the entire dataset. One way
to address this limitation is to train multiple networks on the same folds. For example, in
chapter 2 each fold was trained four times, totaling 40 trained networks. The reported AUC
scores per fold were then shown as a mean over the performances of these four networks.
A similar technique has been used in medical imaging, to analyze stable features (Fauw
et al., 2018), but it has not been thoroughly explored yet for EEG research. This leaves
the open question of how many different networks would need to be trained for stable
performances.
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5.5 Data-driven versus feature based algorithms for
neural signals

The two chapters (2, 3) that trained deep learning models on EEG signals were based on
minimally preprocessed data. However, the use of data-driven versus feature-based models
is still an ongoing discussion. EEG data is high dimensional, and the raw data can be rather
hard to interpret. Therefore often, some frequency transform or entropy measures are cal-
culated from the raw EEG signals, before using classifiers (Kuanar et al., 2018; Bashivan
et al., 2016; Tan et al., 2018; Wang et al., 2018). Using pre-selected features has the ad-
vantage that a suitable, trained classifier is interpretable, as one can extract its weights
and infer the most essential features for its classification decisions. Feature-based models
are beneficial for simpler machine learning techniques with less optimizable parameters.
However, a thorough feature selection greatly restricts the power of more sophisticated
classification models, such as deep artificial neural networks. Using pre-selected features
to train a neural network can limit the network’s capacity to infer the most discriminative
patterns in the data. Deep artificial neural networks can approximate any function (Zhou,
2020). Therefore if a feature such as a frequency transform would have the biggest differ-
ence between conditions, a deep enough neural network could approximate this calculation.
This approach allows for a data-driven extraction of features and decoding of EEG signals.
However, a limitation of such an approach is that the model becomes intransparent, and
learning features are not directly extractable. Algorithms such as saliency maps (Simonyan
et al., 2013) can help visualize important patterns in the input data. However, the infor-
mation extracted might be harder to interpret than features from classifiers trained with
pre-selected features.

5.6 Artificial intelligence for neurological signals

Artificial intelligence has a vast potential to aid clinicians in their diagnosis and assessments
of EEG signals and to save costs by optimizing care. However, the use of methods based
on artificial intelligence in the field of EEG signals is still limited. This is not because of
a lack of studies exploring different clinical applications of using artificial intelligence for
EEG (Fiorillo et al., 2019; Cho and Jang, 2020; Burrello et al., 2020; Jonas et al., 2019;
Aellen et al., 2023). Yet, before clinicians can use these methods daily, several obstacles
must be solved. Additionally, efforts must be made to evaluate and reduce bias in the
proposed models.
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5.6.1 From Research to clinical applications

There are a great number of publications on artificial intelligence for clinical applications,
from sleep-staging (Fiorillo et al., 2019; Vallat and Walker, 2021; Stephansen et al., 2018)
to seizure detection (Cho and Jang, 2020; Burrello et al., 2020) or prognosis of coma
outcome (Tzovara et al., 2013; Jonas et al., 2019; Aellen et al., 2023). Some studies are
based on simpler machine learning models and others on very sophisticated deep learning
architectures. However, these techniques are not integrated into the clinics, and they still
have to address multiple challenges. The reasons are manifold, among others, one point is
lacking trust that these methods perform as promised.

This is also highlighted in (Yu et al., 2020), where the authors compare the performance
of deep learning models trained on detecting lung cancers for a public challenge. While
the models showed promising performances on a public data set, to demonstrate the lack
of generalization, this study evaluated the models on an independent test set, that was
not published. The performances on the test set were disappointing, as some models even
performed at chance level. Additionally, the authors correlated the performance of the
public and private sets and found no significant correlation. A better performance on the
public data thus did not indicate a better performance on the private set. This challenge
provided a training set of 1397 patients, which is not considered small. However, for most
clinical applications, there are no public datasets even of this size available, except for
tasks like sleep staging or seizure detection that are explored more frequently (Fiorillo
et al., 2019; Burrello et al., 2020; Cho and Jang, 2020). The availability of substantial
medical datasets is limited, which represents an important drawback for implementing
artificial intelligence-based algorithms in clinics. First, because of patient confidentiality,
the data is rarely published. Second, collecting and labeling medical data can be costly and
time-consuming, as it requires clinical expertise. Therefore, medical applications based on
artificial intelligence have limited data and may poorly generalize to new data collected
from different hospitals. The open science community is growing and increasingly more
clinical data is published online, even though the process is slow, there is more awareness.
However, it remains still unexplored how to best apply a previously trained model within
a given hospital. One hypothesis is that fine-tuning on a local subset of patient data could
improve the performance of pre-trained models.

5.6.2 Bias in artificial intelligence and healthcare

An additional problem for automated algorithms is bias. Before models based on artificial
intelligence can be used in a clinical setting, it is essential to identify and reduce sources
of bias. In a collaboration that I did during my Ph.D., we identified three primary sources
of bias for artificial intelligence and big data in healthcare (Norori et al., 2021). First, we
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present data-driven bias, which describes the bias found within the used dataset. Most of
the publicly available neuroscience datasets were collected within a scientific setting and,
therefore, often contain a bias toward a western, educated, industrialized, rich, and demo-
cratic population (Henrich et al., 2010). As demographic information is often not included
in publicly released EEG data, these forms of bias are challenging to detect. Second, we
identified algorithmic biases, for example, unbalanced datasets, non-appropriate evaluation
metrics, or incorrect estimations of chance levels. The third source of bias is of human
nature and can be very hard to detect as it might be very subtle and emerge from old
societal sources (Norori et al., 2021). To bring artificial intelligence to clinical applications
there is a strong need to first ensure that biases are eliminated. A recent study showed that
correctly trained artificial neural networks would not necessarily suffer from bias and gen-
eralize well across subcohorts with different demographic information (Davatzikos, 2023).
An additional solution might be the use of data augmentations techniques, such as those
presented in chapter 2. These techniques allow to address biasses, as they can generate
additional samples of under-represented populations and allow for the integration of more
synthetic data points.

5.7 Conclusion

This thesis contributes to the field of artificial intelligence for neurology and clinical appli-
cations.

I first presented a methodological proof of concept that deep learning for EEG signals can
be implemented as an MVPA algorithm for research purposes. Additionally, an exemplar
feature extraction algorithm was presented and an application of trial-by-trial learning
over the course of the experiment that could be used to test theories of learning was
introduced.

In the second part of my thesis, I focused on post-cardiac arrest patients in a comatose
state, deep learning, and EEG responses to sounds showing great potential in predicting
survival, especially in a cohort of patients that, according to current clinical markers,
are without a precise diagnosis. Further, the network’s confidence in predicting survival
was correlated to physiological properties of EEG signals, that have been linked to the
integrity of auditory functions in coma. Specifically, the output of the network was strongly
correlated with neural synchrony and neural complexity EEG responses to standardized
auditory stimulations.

In the last contribution, I developed an unsupervised clustering pipeline based on clini-
cal variables that was applied to patients with sleep-wake disorders. For some disorders,
namely obstructive sleep apnea, central sleep apnea, and narcolepsy type 1 clear clusters
were identified. However, it was not possible to disentangle other disorders, such as para-
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CHAPTER 5. DISCUSSION

somnia or restless leg syndrome, based on the currently collected clinical markers. This
work highlights that the markers currently collected are not sufficient to extract clusters
of sleep-wake disorders in a data-driven way and calls for further studies to identify new
biomarkers.
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APPENDIX A. CCNS FOR EEG AND FEATURE VISUALIZATIONS

A.1 Data in topographic representation

In Figure A.1 we show the mean EEG data in a topographic map representation.

Figure A.1: The mean EEG data (Figure 2.1) for both conditions and both datasets as
topographic maps.
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A.2 Comparison of different settings

This section covers some comparison between different training options and justifies some
of the choices that were made during for the training pipeline.

A.2.1 Training on filtered versus. unfiltered data

We evaluated whether filtering the EEG data would affect the network performance. In our
main analyses, EEG data of the auditory dataset were filtered between 1 and 20 Hz. Here,
we re-trained the CNNs without filtering the EEG data. Figure A.2, panel a and Table
A.1 show the classification performance and loss over 10-folds of the auditory dataset, for
filtered and unfiltered data. The network’s performance was similar for filtered (0.70 ±
0.05) versus unfiltered (0.70 ± 0.04) data. However, when filtering the data, the network
was slightly faster to converge, and needed to be trained on average for 28 ± 16 epochs
until early stopping, while the network trained on unfiltered data needed to be trained for
33 ± 13 epochs.

Table A.1: Comparison of Binary cross-entropy loss, AUC-score and Accuracy for the
training with filtered and unfiltered data over a 10-fold cross validation.

Binary cross-entropy loss AUC-score Accuracy

Train Validation Test Train Validation Test Train Validation Test

Auditory dataset

Filtered Data 0.26±0.08 0.43±0.05 1.16±2.33 0.89±0.04 0.75±0.04 0.72±0.04 0.82±0.12 0.79±0.11 0.77±0.10

Unfiltered Data 0.27±0.06 0.59±0.09 0.42±0.03 0.89±0.02 0.73±0.06 0.70±0.04 0.79±0.07 0.77±0.07 0.75±0.07

A.2.2 Training on oversampling versus training with weighted bi-
nary crossentropy loss

Because the datasets used in the present study are imbalanced, with a ratio of approx-
imately 4:1 for Repeated :Novel trials, for our main analyses we oversampled the under-
represented class (Novel). Moreover, we evaluated whether the weighted binary cross en-
tropy loss could also account for the imbalanced data. To this aim, we re-trained the CNNs
for the auditory dataset without over-sampling the Novel class, but using the weighted bi-
nary cross entropy loss function. The AUC score on the test dataset was significantly higher
when oversampling the Novel class (0.72 ± 0.04), compared to when using the weighted
binary cross entropy loss (0.62 ± 0.08) (Wilcoxon test, p = 0.002) (Figure A.2, panel b
and Table A.2).
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Figure A.2: 10-fold cross validation comparison between test AUC-scores of a training a)
of filtered versus unfiltered, b) with oversampling versus a training with weighted binary
crossentropy and c) of a training with and without the fully connected 128 node layer after
the ResNet5050 architecture on the auditory dataset

A.2.3 Training of the ResNet architecture with and without a fully
connected layer

The architecture of trained networks followed a typical ResNet5050 architecture, with the
addition of a dense and a dropout layer (see 2.2.2). We tested the effects of adding a fully
connected layer before the dropout layer by re-training the CNNs for the auditory dataset
with and without the fully connected 128 nodes layer before the dropout layer. Training
with the fully connected layer resulted in an AUC of 0.77 ± 0.10, while training without
resulted in an AUC of 0.79 ± 0.02 (Figure A.1, panel c and Table A.3). The difference in
classification performance with and without the fully connected layer across the 10-folds
of cross validation was not significant (p = 0.05, with a Wilcoxon signed-rank test).
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Table A.2: Comparison of Binary cross-entropy loss, AUC-score and Accuracy for the
training with over sampled data and weighted binary crossentropy loss over a 10-fold cross
validation.

Binary cross-entropy loss AUC-score Accuracy

Train Validation Test Train Validation Test Train Validation Test

Auditory dataset

Oversampled

Data
0.26±0.08 0.43±0.05 1.16±2.33 0.89±0.04 0.75±0.04 0.72±0.04 0.82±0.12 0.79±0.11 0.77±0.10

Weighted

Binary

Corssentropy

Loss

0.35±0.16 0.51±0.08
6990.3±

20968.9
0.69±0.14 0.63±0.10 0.62±0.08 0.81±0.03 0.79±0.05 0.77±0.06

Table A.3: Comparison of Binary cross-entropy loss, AUC-score and Accuracy for the
training with over sampled data and weighted binary crossentropy loss over a 10-fold cross
validation.

Binary cross-entropy loss AUC-score Accuracy

Train Validation Test Train Validation Test Train Validation Test

Auditory dataset

With Fully

Connected Layer
0.26±0.08 0.43±0.05 1.16±2.33 0.89±0.04 0.75±0.04 0.72±0.04 0.82±0.12 0.79±0.11 0.77±0.10

Without Fully

Connected Layer
0.40±0.07 0.46±0.03 0.88±0.62 0.83±0.03 0.76±0.04 0.73±0.03 0.85±0.03 0.81±0.02 0.79±0.02

A.3 Data representation

EEG data were represented as a 2D signal, consisting of channels by time (Figure 2.1).
As the channel order of presentation is arbitrary, we homogenized the representation of
EEG data by re-ordering the EEG channels with a k-means clustering algorithm. For each
dataset, we considered the single-trials of both conditions together and clustered the data
dimension (time-points ⇤ trials) ⇥ electrodes into six clusters of brain regions with similar
activity throughout the experiment. The clusters were then used to reorder the electrodes
and get a better representation of the data. In Figure A.3 in the Appendix we show the
clusters for both datasets. The total number of clusters was set to six a priori, as the
clustering was not an essential step for our analyses, but rather a way to improve data
visualization. Figure A.3 shows on panel a the clusters for the auditory and on panel b
the clusters for the visual dataset.
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Figure A.3: The clusters of electrodes for both datasets, which were used for improving
the visualization of input EEG data seen in Figure 2.1.

A.4 Illustration of trial by trial representation of dis-
criminant features

Figure A.4: For every participant and both stimuli we build a sequence in order of which
the stimuli was presented to the participants. We take the mean over all participants and
calculate the activation maps. Then for every time-point (here 0.2 s) separately we sum
up the salient activation and build the sequence seen on the right. We test if the slope of
a linear regression through the resulting points is significantly different from zero.
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B.1 Evaluation of outcome prediction results for patients
in a ‘gray zone’

In the results presented in the main manuscript we imitate as closely as possible a ‘real life’
situation where a CNN would be used in a clinical practice. One could envision training
the network with all available data, and then using it to predict outcome in new patients,
as they arrive in the intensive care unit, without setting explicit ratios of determinate vs.
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APPENDIX B. PREDICTING AWAKENING FROM COMA

Figure B.1: Confidence of sur-
vival assigned by the network
for patients in the test set for
the median network. Confi-
dence scores of survival for the
test set, for a network, where
the test set only contained pa-
tients in an uncertain state.

‘gray zone’ patients in the train or test sets. The main manuscript reports aggregate results
across train/validation/test sets (Figure 3.3), as the distribution of the confidence scores
of the network can still be informative about whether ‘gray zone’ patients are perceived as
particular cases or outliers by the network. Here, we perform control analyses to evaluate
systematically the generalizability of the network on ‘gray zone’ patients:

1. First, instead of randomly splitting patients to train/test/validation, we now cu-
rate this split, so that some of the ‘gray zone’ patients will be part of the 10-fold
train/validation datasets, and a fixed (but high) number of ‘gray zone’ patients will
be part of the test set.

2. Second, we trained one network using exclusively patients with determinate outcomes
for train/validation, and kept all ‘gray zone’ patients as our test set, to evaluate
generalization of results.
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B.2 Training neural networks with a curated patient
split resulting in a test set containing only ‘gray
zone’ patients

Here, we trained a neural network where the test set only contained patients from the ‘gray
zone’. 27 ‘gray zone’ patients were randomly selected for the test set, and the remaining
21 ‘gray zone’ patients were randomly split between the train and validation sets. This
resulted in a train set of 80 patients, a validation set of 27 patients and a test set of 27,
exclusively ‘gray zone’ patients. This split was repeated in a cross validation, and contained
the same patient numbers per set as the network that is reported in the main text. With
this approach, on the test set of ‘gray zone’ patients, we obtained an AUC score of 0.64
± 0.01, a PPV of 0.86 ± 0.02 and NPV of 0.43 ± 0.01 (Table B.1 and Figure B.1 for
the median fold). These results are very close to the values obtained with the networks
presented originally (AUC: 0.70 ± 0.04, PPV: 0.83 ± 0.03 and NPV: 0.57 ± 0.04), and
suggest an unbiased and robust outcome prediction on ‘gray zone’ patients, which were
previously unseen by the network.

Table B.1: Scores reached on the networks, where the test set contained only patients in an
uncertain state. First, we report the mean ± standard error over all ten trained folds, as
well as the performance of the median fold. We also report the AUC, PPV and NPV, with
respect to survival, of the train, validation and test sets, for all patients and separately for
the sub-cohorts of patients treated with hypothermia and normothermia.

AUC-score PPV-score NPV-score

Train Validation Test Train Validation Test Train Validation Test

Mean over 10 folds

All 0.81±0.01 0.77±0.02 0.64±0.01 0.90±0.01 0.90±0.03 0.86±0.02 0.71±0.01 0.67±0.03 0.43±0.01

Hypothermia 0.83±0.01 0.78±0.03 0.60±0.03 0.93±0.01 0.93±0.03 0.79±0.04 0.67±0.02 0.63±0.03 0.41±0.01

Normothermia 0.77±0.02 0.74±0.04 0.72±0.02 0.82±0.03 0.71±0.11 0.96±0.03 0.71±0.02 0.67±0.04 0.43±0.04

Best fold

All 0.82 0.77 0.61 0.94 1.00 0.86 0.70 0.63 0.40

Hypothermia 0.83 0.75 0.51 0.96 1.00 0.67 0.62 0.62 0.36

Normothermia 0.79 0.80 0.79 0.91 1.00 1.00 0.76 0.67 0.50

B.3 Training of neural networks with all ‘gray zone’ pa-
tients in the test set

Second, we trained one network, where the test set contained all patients in the ‘gray
zone’ (N=48) and the train and validation set contained the rest of the patients (N=86).
In this case, we obtained an AUC score of 0.67, PPV of 0.85 and NPV of 0.46 on the
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Figure B.2: Confidence of sur-
vival assigned by the network
for patients in the test set i.e.
all patients in the ‘gray zone’.
Confidence scores of survival for
the test set, i.e. all patients in
an uncertain state.

test set. The PPV and AUC are lower than the ones obtained with curating the splits
of train/validation/test sets, but are well in line with the main results of our manuscript,
that our approach is primarily sensitive to predicting survival.

One important caveat of this second approach is that we now have a smaller train set of only
64 patients, compared to the original 80 patients, which can result in less accurate training
of the network and therefore less strong outcome prediction. Importantly, this new network
was trained without any of the ‘gray zone’ patients and therefore performs, as expected,
worse than a network which was trained with at least some ‘gray zone’ patients.

For this approach we trained one neural network, with a train set of 64 patients, validation
set of 22 patients and test set of 48 patients. We reached the following scores:
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Table B.2: Scores reached on the network, where all patients with an uncertain outcome
were assigned to the test set. As here only one fold was trained we report the AUC, PPV
and NPV scores for the train, validation and test sets.

AUC-score PPV-score NPV-score

Train Validation Test Train Validation Test Train Validation Test

0.85 0.82 0.67 0.93 0.83 0.85 0.77 0.80 0.46

B.4 Network performance on different types of audi-
tory stimulations

For all the analysis in the main manuscript we only considered data where patients were
exposed to standard or duration deviant sounds. However, for the original paradigm data
was also recorded for location and pitch deviant sounds. Here we evaluated the performance
of the neural networks on different types of auditory stimulations. We found in our dataset
the following number of trials per patient and stimulation type:

Table B.3: Mean number of trials per patient and per stimulation type. The mean ±
standard error number of trials for each patient in the dataset.

Standard Duration Location Pitch

204.76±8.66 142.46±1.42 141.84±1.48 141.40±1.48

For all patients in the test we separately test the performance of the network on trials
where patients were exposed to standard and duration deviant sounds. And extended
the analysis to the previously unseen location and pitch deviant sounds. We found the
following performances per stimulation type:

Table B.4: Mean AUC score per stimulation type. The mean ± standard error of the AUC
scores per type of auditory stimulation for all patients in the test set. The neural network
was only trained on the first two sounds (standard and duration) , the second set of sounds
(location and pitch) were only used for this analysis.

Standard Duration Location Pitch

0.698±0.035 0.701±0.035 0.702±0.037 0.709±0.038
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Figure B.3: Comparison of per-
formance per stimulation type.
Each dot shows the AUC score
of one network on the test set.
We show the scores for all ten
folds, corresponding folds con-
nected with a gray line.

Figure B.4: Exemplar distribu-
tion of the predictions per trial
for one patient. The network
predicts per single trial a value
between 0 (non survivor) and 1
(survivor). Here a distribution
of these predictions are shown
for an exemplar patient, cor-
rectly predicted by the network
as a survivor.
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data-driven phenotyping: A study of the Bernese Center.

C.1 Processing pipeline

The first step in our processing pipeline includes data collection and marker extraction
(Figure 4.1). The extracted markers were in a second step curated. Evident mistakes
during manual data collection, such as having letters in fields requiring numbers, were
corrected by setting these data as missing. The third step involved selecting good quality
markers in a data driven way, such that no more than 50% of the values of a given marker
across all patients were missing. Moreover, markers were excluded if more than 90% of
the patients had the same value for this marker, as this would indicate that the marker
was only collected for a subset of the patients and a standard (null) value was kept for
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the rest. As an example, patients that indicated the presence of cataplexy were asked if it
manifested in the head, chin, etc. For patients that did not report cataplexy, the questions
for the body parts were each set to “No”/zero. To this set of markers with high data quality,
a set of clinically relevant markers was added (Appendix, Section C.3.2).

All markers were corrected to match meaningful ranges, such as a reported age less than
zero and values out of range were set to missing (a list of all ranges is reported in: Appendix,
Sections C.3.1 and C.3.2). After this correction patients with more than 1/3 of markers
missing were excluded from further analyses. The fourth step of the pipeline involved
normalizing all markers to the interval [0,1], as it is common practice prior to using machine
learning algorithms. In a fifth step, all missing values were imputed using a Random Forest
imputation (Epsilon-machine, 2022). The final step of the pipeline was an unsupervised
clustering.

For each of the selected cohorts, the selection of patients was restarted from the full Bern
Sleep Registry from the top (Figure 4.1B, left panel). This approach was chosen over
pre-selecting one single cohort and then breaking it down to sub-cohorts, to maximize the
number of patients that could be included in each of the analyses, as the desired markers
for each sub-cohort were slightly different, and were chosen for each cohort considering
clinical relevance and markers with non missing values. Patient selection for these cohorts
is illustrated in Figure 4.1B.

C.2 Description of disorders in full cohort of SWD with
well characterized patients with a single SWD

The full cohort of SWDs contained a lot of patients with heterogeneous disorders, such
as insomnia, containing patients with chronic insomnia, short term insomnia and other
insomnia disorders. In the control analysis of well characterized patients with single SWD
we focused on single sub-diagnoses. For insomnia, we selected “chronic insomnia disor-
der”, for parasomnia “NREM-related parasomnia” and for movement disorders “restless
leg syndrome”. The groups “other sleep-related breathing disorder”, “narcolepsy type 2 &
idiopathic hypersomnia” and “other central disorders of hypersomnolence” were excluded,
because of either limited number of patients (N <50), or because of comorbidities with
other non-SWDs, such as psychiatric disorders or medication. Patients with “isolated
symptoms and normal variants” were also excluded, as they only describe single symptoms
or variants.
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C.3 Markers

C.3.1 Markers for clustering CDH

Table C.1 describes all markers used for clustering for CDHs, as well as the ranges used
for correcting these markers. The ranges were used to correct for errors (e.g. age less
than 0 years old), which might have occurred while entering retrospective values into the
database. If values were out of range they were set to ‘missing’. For the hypersomnolence
cohort, the included markers were selected based on clinical expertise.

Table C.1: Markers used for the clustering of the hypersomnolence cohort and valid interval.

Clinical Markers Min Max
Age 0 100
Gender (F = 2) 1 2
Waist-Hip Ratio 0.17 4.75
ESS 0 24
Total Sleep Time 0 850
Sleep Latency 0 300
REM Latency 0 610
Sleep Efficiency 0 100
Awake Index 0 100
Stage Transitions 0 500
Sleep Cycles 0 15
Apnea-Hypopnea Index 0 200
Desaturation Index 0 200
Heart Rate 0 200
PLMS Index 0 260
Mean REM Latency 0 35
Cataplexies 0 1
Naps 0 1
Sleep Paralysis 0 1
Hallucination 0 1
Sleep Drunkenness 0 1

C.3.2 Markers for clustering sleep disorders in the full cohort

Table C.2 highlights all markers used for clustering the full cohort of SWDs. For each
marker we provide the min-max range used for correcting possible mistakes while entering
the retrospective data into the database (e.g. age <0) and whether the marker was included
because of clinical criteria (i.e. relevance for diagnosing a specific SWD), or because of
data-driven criteria (i.e. presence in more than 50% of patients and no more than 90% of
patients with identical values). If any of the available values were out of range they were
set to missing.
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Table C.2: Clinical markers used for clustering the full cohort of SWDs, their minimal and
maximal values and the selection type (either data-driven, clinical or both).

Clinical Markers Min Max Selection Type
Age 0 100 data-driven & clinical
Gender (F = 2) 1 2 data-driven & clinical
Race 1 5 data-driven & clinical
BMI 10 60 data-driven & clinical
Waist-Hip Ratio 0.17 4.75 data-driven & clinical
ESS 0 24 data-driven & clinical
FSS 0 9 clinical
Estimated Sleep Time 0 100 clinical
Total Sleep Time 0 850 data-driven & clinical
Sleep Latency 0 300 data-driven & clinical
REM Latency 0 610 data-driven & clinical
Sleep Efficiency 0 100 clinical
Awake Index 0 100 data-driven & clinical
Stage Transitions 0 500 data-driven & clinical
Sleep Cycles 0 15 data-driven & clinical
% Movement (30s epochs) 0 100 data-driven
% Wake 0 100 data-driven & clinical
% Stage 1 0 100 data-driven
% Stage 2 0 100 data-driven
% Stage 3 0 100 data-driven
% Stage 4 0 100 data-driven
% REM 0 100 data-driven
Apnea-Hypopnea Index 0 200 data-driven & clinical
Apnea Index 0 120 data-driven & clinical
Hypopnea Index 0 150 data-driven & clinical
Apnea-Hypopnea Duration 0 200 clinical
Mean Apnea Duration 0 100 data-driven
Maximum Apnea Duration 0 300 data-driven & clinical
Duration O2 < 90% (min) 0 600 data-driven & clinical
O2 < 80% (min) 0 600 data-driven
O2% Mean 0 100 data-driven
O2% Minimum 0 100 data-driven
Desaturation Index 0 200 data-driven & clinical
Heart Rate 0 200 data-driven & clinical
Movement Index 0 1200 data-driven & clinical
Periodic Movements 0 500 data-driven & clinical
PLMS Index 0 260 data-driven & clinical
Mean REM Latency 0 35 clinical
Cataplexies 0 1 clinical
Naps 0 1 clinical
Sleep Paralysis 0 1 clinical
Hallucination 0 1 clinical
Sleep Drunkenness 0 1 clinical
Headache 0 1 clinical
Psychiatric Disorders 0 1 data-driven & clinical
Adipositas 0 1 data-driven & clinical
Diabetes Mellitus 0 1 clinical
Cardial Comorbidities 0 1 data-driven & clinical
Pulmonary Comorbidities 0 1 clinical
Stroke/Intracerebral Hemorrhage 0 1 clinical
Neurodegenerative Disease 0 1 clinical

C.4 Clinical diagnosis of patients

C.4.1 Sub-diagnosis for the full cohort

Some of the diagnoses that were included in the full cohort of SWDs were a combination
of multiple subcategories. For example, “insomnia” may include “chronic insomnia disor-
der”, “short-term insomnia disorder” and “other insomnia disorder”. Figure C.1 shows the
breakdown of these sub-diagnoses (in shaded colors) and their prevalence within the main
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diagnosis (one circle per main diagnosis).

Figure C.1: Distribution of sub-diagnoses within the full cohort. Each main diagnosis is
depicted in a separate circle, while the colored shades highlight the sub-diagnoses that
were grouped together in our main analyses (Figure 4.2 and 4.4.)
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C.4.2 Tertiary, quaternary and quinary diagnosis

Each patient could be diagnosed with up to five different SWDs. The main text Section
Figure 4.2 shows the distribution of the secondary diagnosis for patients of the full cohort,
in the form of a confusion matrix. Figure C.2 additionally displays confusion matrices for
the tertiary, quaternary and quinary diagnoses (panels A-C).

Figure C.2: Primary versus Tertiary (A), Quaternary (B) and Quinary (C) diagnosis for
the full cohort of SWDs used in the main text.
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C.5 Technical control analysis for the full cohort of
sleep disorders

As our main clustering analysis includes multiple steps and choices (i.e. clustering algo-
rithm, imputation technique, distance metric, marker selection), we provide a multitude
of technical control analyses. With these analyses we examine whether alternative choices
of analysis metrics or steps would better disentangle the SWDs compared to the pipeline
that we present in the main text. Table C.3 shows a summary of the technical controls
that were performed, with the first column indicating the subsection where a given control
analysis can be found.

Table C.3: Summary of technical controls that were performed for the full spectrum of
SWDs, and information about the section of the main manuscript where these controls
relate to.

Control Analysis Imputation Clustering Algorithm Metric Marker selection

Section C.5.1 Random Forest Agglomerative Euclidean combined

Section C.5.2 Random Forest Agglomerative Gower’s combined

Section C.5.3 None Agglomerative Gower’s combined

Section C.5.4 Mean KMeans Euclidean combined

Section C.5.5 Median KMeans Euclidean combined

Section C.5.6 Random Forest KMeans Euclidean data-driven

Section C.5.7 Random Forest KMeans Euclidean clinical
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C.5.1 Agglomerative clustering with euclidean distance

This subsection covers the clustering of the same cohort used for the main manuscript,
but done with an agglomerative clustering (implemented by scipy (Virtanen et al., 2020))
and with euclidean distance, same as for the clustering described in the main text (Section
4.3.2). Similar to the main text, which used k-means, with agglomerative clustering we
obtained three OSA and CSA clusters (1, 2 & 3), where however the second cluster only
contained 21 patients. Cluster 6 was dominated by insomnia patients, but only contained
12 patients. Two NT1 clusters were identified (clusters 8 & 9), where the second only
contained 7 patients total. The rest of the clusters were rather mixed, with cluster 5 and
7 containing the vast majority of patients, with 825 and 591 patients respectively.

Figure C.3: (A) Barcode and (B) clusters of the agglomerative clustering with euclidean
distance on the same cohort selected for the main text.
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C.5.2 Agglomerative clustering with Gower’s distance

Here also an agglomerative clustering was performed on the original cohort, but with a
Gower’s distance (Gower, 1971) instead of euclidean. Because all values were imputed,
the Gowers distance was equivalent to an L1 metric. This control analysis showed similar
clusters as the one in Figure C.3 which also relied on an agglomerative algorithm. Also
in this analysis, there were some clusters with very few patients (2, 3, 5, 8 & 9), and one
cluster with surprisingly large amounts of patients (4). There were two OSA and CSA (1
& 2), two insomnia (3 & 6) and two NT1 (8 & 9) clusters. The remaining clusters were
mixed.

Figure C.4: (A) Barcode and (B) clusters of the agglomerative clustering with Gowers
distance on the same cohort selected for the main text.
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C.5.3 Agglomerative clustering with Gower’s distance and no data
imputation

This subsection covers the results of the control analysis where the 5’th step of the pipeline
(Figure 4.1) was skipped and no data imputation was performed. An agglomerative clus-
tering with Gower’s distance was used for this control analysis. When calculating the
distance between two patients any dimension with missing values was ignored and only
markers where both patients had a value given were considered. This clustering identified
two OSA & CSA (1 & 2) and one insomnia (9) cluster. One cluster (2) contained only
a few patients and one cluster contained more than 800 patients (5). No cluster of NT1
patients was detected.

Figure C.5: (A) Barcode and (B) clusters of the agglomerative clustering with Gowers
distance on a cohort, selected the same as for the main text, but no data was imputed.
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C.5.4 KMeans clustering with euclidean distance and data imputa-
tion with mean

Here the cohort was selected in the same way as for the main text, but the Random Forest
data imputation in the fifth step of our pipeline (Figure 4.1) was replaced, by imputing
missing values with the mean value per marker. This clustering found one OSA cluster (1),
and four clusters with many OSA and CSA patients (2,3,4 & 5), but no single diagnosis
reached one third in any of these clusters. Clusters 8 and 9 contained a big amount of
patients suffering from insomnia. No cluster with NT1 patients was detected.

Figure C.6: (A) Barcode and (B) clusters of a clustering on a cohort, selected the same as
for the main text, but any missing data was imputed with the mean value per marker.

155



APPENDIX C. CLUSTERING OF SLEEP-WAKE DISORDERS

C.5.5 KMeans clustering with euclidean distance and data imputa-
tion with median

For this subsection the cohort selection was based on the same parameters as the one for
the main text. However in the 5’th step of the pipeline (Figure 4.1) the imputation was
replaced by a median imputation per marker. This clustering found three OSA clusters
(1, 2 & 3), where the last also contained many CSA patients. Cluster 4 also contained
many CSA and OSA patients. 8 was identified as an insomnia cluster and 9 as a NT1
cluster.

Figure C.7: (A) Barcode and (B) clusters of a clustering on a cohort, selected the same as
for the main text, but any missing data was imputed with the median value per marker.
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C.5.6 KMeans clustering with euclidean distance and only data-
driven marker selection

Here we selected a slightly different sub-cohort of patients, using data-driven marker se-
lection. This was based on markers that had no more than 50% of values missing across
all patients and no more than 90% of the values were the same. The cohort contained
36 markers and 2’090 patients The clustering identified two OSA (1 & 2), and one CSA
cluster (3), also containing many OSA patients and one OSA and CSA cluster (4), but no
single diagnosis reached one third of the patients. Cluster 9 contained more than a third
of patients diagnosed with insomnia. No cluster of NT1 patients was found.

Figure C.8: (A) Barcode and (B) clusters of a clustering on a cohort, where marker selection
was only based on a data-driven approach.
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C.5.7 KMeans clustering with euclidean distance and data marker
selection only clinical

For this subsection the clustering was performed on a cohort where marker selection was
based solely on clinical expertise. For this control analysis we worked with 2’136 patients
and 41 markers. The clustering found two OSA (1 & 2) and one CSA cluster (3) also
containing many OSA patients. There were quite a lot of clusters (4, 6, 7 & 8) with many
insomnia patients, but not reaching the threshold of one third of patients. Cluster 9 was
found to be a NT1 cluster.

Figure C.9: (A) Barcode and (B) clusters of a clustering on a cohort, where marker selection
was only based on clinical expertise.
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C.6 Clinical control analysis for full cohort of sleep
disorders

Next to the technical controls, focussing on hyperparameters related to the selected algo-
rithms, we also performed four clinical controls, exploring questions arising from a clinical
focus. Table C.4 shows all clinical controls, indicating the subsection covering the re-
sults found for a clustering with nine clusters, the same number as selected in the main
manuscript.

Table C.4: All clinical controls and information in which section the results can be found

Control Analysis Description

Section C.6.1 Not downsampling obstructive sleep apnea patients

Section C.6.2 Control analysis for narcolepsy type 1 and CDH diagnosis (removing clinical measures cataplexy and REM
latency)

Section C.6.3 Control analysis for obstructive sleep apnea diagnosis (removing clinical measure apnea-hypopnea index)

Section C.6.4 Control analysis for PLMS diagnosis (removing clinical measure PLMS Index)
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C.6.1 Not downsampling OSA patients

Because patients with OSA make up more than 60% of patients of the full cohort (2’834
out of 4’454 patients), for our main analysis, we downsampled them, because they would
otherwise over-dominate every cluster. Here, in a control analysis, the OSA patients were
not downsampled and the cohort contained 4’454 patients, out of which 2’834 were diag-
nosed with OSA. As expected, the clustering found that all nine clusters consisted of more
than one third of OSA patients, showing the need to downsample this cohort.

Figure C.10: (A) Barcode and (B) clusters of a clustering on a cohort, where all OSA
patients were included.
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C.6.2 Control analysis for NT1 and CDH diagnosis

As an additional clinical control, we excluded all markers that were formally used by
clinicians to diagnose NT1, NT2&IH and Other CDH. In particular, we excluded the
markers cataplexy and REM latency. Similar to our main findings, this clustering found
one OSA and CSA cluster (1) and one OSA cluster (2). Clusters 7 & 8 were identified
as clusters of insomnia. As expected, when excluding the markers cataplexy and REM
latency, no cluster of NT1 was found, highlighting the importance of these clinical criteria
in diagnosing NT1.

Figure C.11: (A) Barcode and (B) clusters of a clustering on a cohort, where markers used
for the diagnosis of NT1, NT2&IH and Other CDH were excluded.
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C.6.3 Control analysis for OSA diagnosis

Similar to C.6.2, as an additional clinical control, we excluded the apnea-hypopnea index,
which is used to diagnose OSA. Despite this exclusion, our clustering was still able to
identify clear clusters of OSA (1, 2 & 3), where the first one also contained CSA. These
were predominantly identified via markers related to respiratory functions in sleep, such
as apnea index, desaturation index, or O2 levels. Cluster 9 was identified as a cluster of
insomnia.

Figure C.12: (A) Barcode and (B) clusters of a clustering on a cohort, where markers used
for the diagnosis of OSA were excluded.
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C.6.4 Control analysis for PLMS diagnosis

As a final clinical control, we excluded the marker PLMS index, which is typically used to
diagnose PLMS. This clustering found one OSA and CSA cluster (1) and two OSA clusters
(2 & 3). Cluster 8 was identified as a cluster of insomnia. As in our main analysis, no clear
movement disorder cluster was identified.

Figure C.13: (A) Barcode and (B) clusters of a clustering on a cohort, where markers used
for the diagnosis of PLMS were excluded.
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C.7 Selection of number of clusters

This section shows the explained variance and difference in explained variance for the
hypersomnolence and full cohort mentioned in the main text of the manuscript. The final
number of clusters was selected where the explained variance showed a plateau, i.e. the in
including another cluster would improve the clustering only slightly. We confirmed that
the remaining metrics were in accordance. For all further analysis in the main text (the
well defined cohort) as well as the control analysis in this appendix the same number of
clusters as for the full cohort were chosen, as a direct comparison.

Figure C.14: R2 distance or explained variance for the clusters of the hypersomnolence
cohort (A) explained variance per cluster (B) difference in explained variance per cluster.
The clustering showed a slight plateau going from 4 to 5 clusters.
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Figure C.15: R2 distance or explained variance for the clusters of the full cohort of sleep
disorders (A) explained variance per cluster (B) difference in explained variance per cluster.
The clustering showed a plateau going from 9 to 10 clusters.
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C.8 Restless leg syndrome versus parasomnia

The analyses in the main text were not able to distinguish clear clusters for neither restless
leg syndrome (RLS) nor parasomnia. These two disorders have clear and distinct symp-
toms, and their distinction is based on self reported questionnaires. For the present study
these questionnaires were only available in a digitized format for five parasomnia and four
RLS patients. Because of the extremely low sample size, we did not include them as vari-
ables in the main analysis. Here, we plot the responses to these questionnaires by sleep
disorder, to highlight that they do indeed differentiate the two diagnoses (Figure C.16).
The two questionnaires are:

b_43: “How often do you have a burning, biting or smarting or tingling sensation in the
legs , which forces you to move or rub your legs?”

b_85d: “Are there people in your family that have/had these sleep problems: restless, biting
or itchy legs?“

Figure C.16: Answers of patients with parasomnia and RLS for the questions b_43 and
b_85d of the Bern Sleep Database.
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