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Chapter 1

Introduction

For more than half a century, Satellite Laser Ranging (SLR) has been an essential mea-
suring technique of geodesy, which is defined by Helmert in 1880 as the science of the
measurement and mapping of the Earth’s surface. Since SLR measures the round-trip
time-of-flight of ultra-short laser pulses emitted by a terrestrial ground station and re-
flected by an artificial Earth orbiter, e.g., a satellite, it can only be performed when the
satellite is visible from the ground station. In order to improve the coverage of the satel-
lite orbit with SLR measurements, a global network of ground stations has been formed
and is constantly being further developed (Pearlman et al. 2019).
Moreover, geodetic SLR satellites, i.e., spheres covered with retro-reflectors and having
a low area-to-mass ratio, were designed to reduce the non-gravitational perturbations
and are therefore well suited for long-term studies.
Before the SLR data are processed, the full-rate data may be compressed, which is al-
lowed due to correlations between observations, into a smaller set of so-called SLR Nor-
mal Points (NP)s. This compression is today performed on-site at the SLR ground sta-
tions. Then, the high accuracy of the NPs allows a reliable determination of, e.g., geocen-
ter coordinate motion, SLR station coordinates and velocities, polar motion or Length-
Of-Day (LOD). Even though dedicated gravimetry satellite missions were designed to
observe the time-variable Earth’s gravity field, the determination of the very low-degree
Spherical Harmonic (SH) geopotential coefficients (here: up to degree and order 6) still
relies on SLR observations.
However, to describe all the changes of the system Earth, a stable terrestrial reference
frame is inevitable. The realization of such a reference frame is based on four different
geodetic techniques, where SLR data is essential for the definition of the origin and the
scale of the frame, e.g., Altamimi et al. (2016).

In the last years, there has been an on-going development at the ground SLR stations
from laser systems with repetition rates of few Hz towards kHz (Pearlman et al. 2019).
This results in a large amount of full-rate SLR observations and may lead to different
satellite signature effects, such that the compression strategies should be adapted.More-
over, since 2021 most of the SLR stations provide not only NPs but also full-rate data,
which allows to homogenize the compression process for all stations.
In this work, on the one hand, data compression processes are analyzed by quantifying
the information loss based on simulated SLR data. On the other hand, two different NP
generators and their impact on SLR data processing are studied.
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1. Introduction

It is planned that for further realizations of terrestrial reference frames the SLR contri-
bution should be extended from only using SLR data of LAGEOS-1/2 to also include
LARES SLR data. Therefore, in this work an optimized orbit parametrization of LARES
and its contribution to a multi-satellite SLR combination of LAGEOS-1/2 is studied.
Moreover, the necessary adaption of the orbit parametrizations for a reliable estimation
of the low-degree SH geopotential coefficients is discussed.

Finally, to exploit the full potential of SLR, e.g., to reduce correlations between parame-
ters of interest or to extend the parameter space, multi-satellite SLR combinations with
geodetic Low Earth Orbiter (LEO), e.g., Stella or Starlette, are generated.

This work was initiated in the framework of the SPACE TIE project, which has the main
objective of determining a long-term stable reference frame by unifying all ”three pil-
lars” of Geodesy, i.e., the changes in the Earth’s shape, rotation and gravity field (Rum-
mel 2000), based on the two satellite geodetic techniques of Global Navigation Satellite
Systems (GNSS) and SLR by using co-location sites in space.

This work is arranged by the following chapters:

Chapter 2, Satellite Laser Ranging, introduces the observation principle of SLR and the
corresponding space and ground segments.

Chapter 3, Fundamentals of Satellite Geodesy, gives an overview of the satellite orbit
modeling and the underlying mathematical principles, i.e., least-squares
adjustment, variance component estimation and the contribution analysis.

Chapter 4, SLR Data Processing and Validation at AIUB, presents the SLR data process-
ing and the methodology to validate the quality of the estimated parame-
ters of interest.

Chapter 5, SLRNormal Point Generation and Analysis, describes the SLR data compres-
sion strategies and validates its quality and impact on the results of SLR
data analysis.

Chapter 6, Optimization of the Geodetic and Orbit Parametrization Based on LAGEOS-
1/2 SLR Data, focuses on optimized geodetic and orbital parametrizations
based only on LAGEOS-1/2 SLR data, analyzes the impact of different
Earth’s gravity field background models.

Chapter 7, Multi-Satellite SLR Combinations, deals with combinations of SLR data to
several geodetic satellites onNEQ-level, illustrates differentweightingmeth-
ods, e.g., variance component estimation or Helmert’s simple estimator,
discusses correlations between parameters and the extension of the pa-
rameter space.

Chapter 8, Summary, Conclusions and Outlook, recapitulates the main results and con-
clusions of this work and gives an outlook for further studies.
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Chapter 2

Satellite Laser Ranging

This chapter introduces the satellite geodetic technique of SLR, which determines the
distance between a ground station and a satellite by measuring the round-trip time-
of-flight of ultra-short laser pulses (see Sec. 2.1). Beacon Explorer-B, launched in 1964,
was the first successful satellite mission, where the satellite was equipped with retro-
reflectors and therefore suitable for SLR observations. Actually, the predecessor satel-
lite mission, Beacon Explorer-A, was already designed for SLR observations, however
shortly after the launch a malfunction caused a crash and thus no observations were
ever taken (Williams 2023). Nevertheless, in 1965, the NASA’s Goddard Space Flight
Center (GSFC) in Greenbelt, Maryland, was first to successfully detect reflected laser
pulses from Beacon Explorer-B (Plotkin et al. 1965). Afterwards, further satellites were
equipped with retro-reflectors, e.g., Beacon Explorer-C, GEOS-1 or Diademe-D1C, and
new dedicated spacecraft were designed for SLR, e.g., LAGEOS-1/2, Etalon-1/2, Star-
lette, Stella or LARES/LARES-2 (see Sec. 2.2). This group of spherical satellites are char-
acterized by small area-to-mass ratios, such that the non-gravitational perturbing forces
are minimized and therefore the orbit modeling is simplified.

In order to track these satellites on a regular basis and to ensure a good coverage of the
orbits, SLR stations were gradually set up all over the world. Since the SLR stations are
normally designed andmaintained by different national organizations, they differ in the
incorporated technology, e.g., laser or timing systems (see Sec. 2.3). At the same time,
the International Laser Ranging Service (ILRS, Pearlman et al. 2002) was established to
coordinate the SLR network, to collect and provide laser ranging data and to specify
guidelines for data handling and processing, e.g., on how to generate NP (see Sec. 5.1).
Furthermore, the ILRS does SLR analysis to generate geodetic products (see Sec. 2.4).

Nevertheless, there are also other space geodetic techniques, e.g., Very Long Baseline In-
terferometry (VLBI), Doppler Orbitography and Radiopositioning Integrated by Satel-
lite (DORIS) and GNSS. Each technique has its advantages and disadvantages and is
therefore able to determine different parameters (see Table 2.1). Hence, e.g., for the re-
alization of a stable reference frame (see Sec. 3.1), different geodetic techniques have to
be combined (Rothacher 2003).
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2. Satellite Laser Ranging

Table 2.1: Space geodetic techniques and the corresponding parameters, which can be
estimated (adapted from Rothacher 2003).

Parameter SLR VLBI DORIS GNSS

Nutation x
Polar motion x x x x
UT1 x
Length of day (LOD) x x x x
Station coordinates x x x x
Geocenter coordinates x x x
Gravity field x x x

2.1 Observation Principle

SLR is a geodetic technique measuring mainly the two-way time-of-flight Δ𝑡 of ultra-
short laser pulses emitted from a ground station to a satellite, which is ideally equipped
with retro-reflectors, and reflected back to the ground station. Nevertheless, SLR can
also be used as a one-way measurement technique, where the SLR station measures the
emission time of the ultra-short laser pulses and the on-board receiver telescope on the
satellite measures the time of reception. The emission and the receiving times are then
measured by different clocks, hence, they first have to be synchronized before the time-
of-flight and therefore the distance 𝑅 between the SLR station and the satellite can be
determined (Mao et al. 2017). Since the mean signal flux is proportional to 𝑅−4 (Degnan
1993), the one-way measurement technique enables to perform laser ranging to artifi-
cial objects in the interplanetary space. Therefore, e.g., the Lunar Reconnaissance Or-
biter (LRO, Chin et al. 2007), a National Aeronautics and Space Administration (NASA)
mission with the main goal to produce accurate maps of the Moon to identify future
landing sites, was designed to perform one-way laser ranging (Zuber et al. 2010). The
NP collected from different SLR stations, e.g., GO1L in Greenbelt, Maryland US, or the
Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald (SwissOGS,
Schildknecht et al. 2015), over five years from2009 to 2014 have a precision of 15-30mm
and are used in combinationwith S-band data for precise orbit determination of the LRO
(Mao et al. 2017).

In this work, only the two-way SLR measurements are further used an analyzed. The
two-way time-of-flight Δ𝑡 can also be expressed by the distances between the station
and the satellite at different time epochs (see Fig. 2.1). Neglecting atmospheric delays
and station biases, this yields

Δ𝑡 = Δ𝑡1 + Δ𝑡2 =
1
𝑐 (|rs(𝑡) − rstat(𝑡 − Δ𝑡1)| + |rs(𝑡) − rstat(𝑡 + Δ𝑡2)|) , (2.1)
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with

𝑡 ∶ reflection time of the laser pulses at the satellite,
Δ𝑡1 ∶ time-of-flight of laser pulses emitted from the ground station to the satellite,
Δ𝑡2 ∶ time-of-flight of laser pulses reflected at the satellite to the ground station,
rs(𝑡) ∶ position of the satellite at time 𝑡,

rstat(𝑡) ∶ position of the ground station at time 𝑡,
𝑐 ∶ speed of light.

With a Taylor series expansion and the assumption that Δ𝑡1 ≈ Δ𝑡2 ≈ 1
2Δ𝑡, the time-of-

flight Δ𝑡 can be approximated when neglecting higher order terms as

Δ𝑡 ≈ 2
𝑐 (|rs(𝑡) − rstat(𝑡)|) . (2.2)

Then, the measured distance 𝑑 between the ground station and the satellite at the re-
flection time of the laser pulses at the satellite follows from the observation equation
(Seeber 2003)

𝑑 = Δ𝑡
2 𝑐 + Δ𝑑sta + Δ𝑑sig + Δ𝑑sat + Δ𝑑rel + 𝜂 (2.3)

with

Δ𝑡 ∶ time-of-flight,
𝑐 ∶ speed of light,

Δ𝑑sta ∶ station related corrections,
Δ𝑑sig ∶ signal propagation corrections,

Δ𝑑sat ∶ satellite related corrections,
Δ𝑑rel ∶ relativistic corrections,

𝜂 ∶ unmodeled residual effects.

r𝑠(𝑡)
r𝑠𝑡𝑎𝑡(𝑡 − Δ𝑡1)

r𝑠𝑡𝑎𝑡(𝑡 + Δ𝑡2)

|r𝑠(𝑡) − r𝑠𝑡𝑎𝑡(𝑡 −Δ𝑡1)|

|r𝑠(𝑡) − r𝑠𝑡𝑎𝑡(𝑡 +Δ𝑡2)|

satellite

Earth Earth rotation

Figure 2.1: Observation principle of SLR.
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2. Satellite Laser Ranging

Station related correctionsΔ𝑑sta aremeasurement errors of deviceswithin themeasuring
system, e.g., timing systems or detectors. In addition, the stations have to take into ac-
count the system delays caused by cables, the equipment to direct the laser beamwithin
the internal system and the laser path (Degnan 1985). For this purpose, they measure
with the laser system the distance to a calibration target, which is located within the
dome or at an external building (Degnan 1985). Hence, the difference to the geometri-
cal light path corresponds to the system delay. Figure 2.2 (left) shows calibration mea-
surements performed at the SwissOGS, where the two-way system delay is −23.72m.
The not normal distribution of the data is characterized by the convolution of the target
response function and the system noise (Otsubo et al. 2015), especially from the detec-
tor, i.e., the Compensated Single-Photon Avalanche Diode (C-SPAD) (see Sec. 2.3). The
large system delay is mainly caused by the length of the laser path in the internal system
(Lauber, pers. communication, 2023). Most essential is that this value does not change
as long as nothing is modified in the laser system. Otherwise, the laser system is not
reliable. All station related corrections should ideally be applied already at the level of
data pre-processing at the SLR stations.

The Earth’s atmosphere, through which the short laser pulses are propagating from the
ground station to the satellite and back to the station, has different properties at dif-
ferent altitudes. Hence, the atmosphere is divided according to the signal propagation
velocity (resp. the refractivity) into the troposphere and stratosphere, which cover the
layers from the Earth’s surface to the altitude of 60km, consisting of neutral gas and the
ionosphere, i.e., the layer from the altitude of 60km to 1500km, consisting of gas with
charged particles (Torge and Müller 2012). However, the propagation of an optical sig-
nal, e.g., laser pulses with a wavelength of 532nm, is only affected by the troposphere
(Seeber 2003). Since the refractivity along the propagation path cannot be directly mea-
sured, models describing the gradient of the refractivity at different heights have been
developed by, e.g., Marini andMurray (1973) orMendes and Pavlis (2004). Thesemodels
analytically describe the correction in zenith direction Δ𝑧 and provide a mapping func-
tion𝑚(90° − 𝑧) for the projection at the zenith angle 𝑧 of the satellite. Therefore, the sig-
nal propagation corrections can be expressed as Δ𝑑sig = Δ𝑧 ⋅𝑚(𝐸). The functions depend
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Figure 2.2: Calibration measurements (left) of the laser system (right) at the SwissOGS
SLR station to determine the system delay on March 22, 2022.
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only on the temperature, the relative humidity and the pressure of the air at the ground
station. For the SwissOGS the tropospheric corrections for the given environmental con-
ditions, i.e., 920mbar pressure, 20 °C and a relative humidity of 80%, range from about
25m for an elevation of 4 ° to 2m in zenith direction (see Fig. 2.3, left). The differences
between the tropospheric models Mendes-Pavlis and Marini-Murray are most signifi-
cant for low elevation angles. In the case of the SwissOGS, satellites are tracked to a
minimal elevation angle of 10 ° for LEO, 15 ° for Medium Earth Orbiter (MEO) and 20 °
for High Earth Orbiter (HEO).

The satellite related corrections Δ𝑑sat are due to the fact that reflection points of laser
pulses do not coincide with the center-of-mass of the satellite, the trajectory of which
is modelled in the orbit determination. In the beginning of the SLR era, the correc-
tion distance between the reflection point of laser pulses and the actual center-of-mass
was empirically determined by pre-launch analyses for each satellite, e.g., 251mm for
LAGEOS-2 (Minott et al. 1993). With increasing ranging accuracy, it became apparent
that the distribution of the returned signal and, therefore, the corresponding center-
of-mass correction depends on the laser ranging system (Appleby 1993, Kirchner and
Koidl 1993), e.g., width of laser pulses, laser ranging regime (single- or multi-photon),
screeningmethod and type of detector. For instance, systems ranging on amulti-photon
level tend to measure shorter distances than systems ranging in a single-photon regime
when using a single-photon detector (Otsubo and Appleby 2003). Consequently, many
studies, e.g., Otsubo et al. (1999), Otsubo and Appleby (2003), Otsubo et al. (2015) or
Rodríguez et al. (2019) have been carried out to determine system-dependent center-
of-mass corrections for spherical geodetic satellite. However, these corrections are not
constant in time for SLR stations, because the laser ranging systems are frequently up-
dated and/or improved (see Fig. 2.3, right).
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Figure 2.3: Tropospheric correction (left) depending on the elevation of the observations
taken at SwissOGS in Zimmerwald. Center-of-mass corrections (right) for LAGEOS-1
for a selected list of stations observing with a wavelength of 532nm (extracted from the
ILRS SLR data handling file¹).

¹https://ilrs.dgfi.tum.de/fileadmin/data_handling/ILRS_Data_Handling_File.snx
(Accessed: 22/12/2022)
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The theory of general relativity implies that the speed of light of laser pulses along their
paths changes according to the strength of the gravity field potential. These time delays
are also known as the Shapiro effect (Shapiro 1964). Since laser pulses, emitted by a SLR
ground station, are travelling within the Earth’s gravity field, the Shapiro effect needs
to be taken into account as relativistic correction Δ𝑑rel.

2.2 Satellites Equipped with Laser Reflectors

Satellite laser ranging can be applied if the satellite is ideally equipped with retro-
reflectors. A distinction is made between active and passive satellites. Active satellites
are also carrying electronic elements, e.g., sensors, receivers or computers, and there-
fore have a limited lifetime. In contrary, the passive satellites have no electronic devices
on board and can be used as targets for a long time span (Seeber 2003). Geodetic re-
search based on SLR is mainly based on spherical satellites with a small area-to-mass
ratio such that the non-gravitational disturbing forces, e.g., air drag or solar radiation
pressure, can be minimized and precisely modeled. In the following, a selection of pas-
sive spherical satellites, which are used in this work, is presented in more detail. These
are: LAGEOS-1/2, Etalon-1/2, Stella, Starlette, Ajisai and LARES/LARES-2. They differ
in the composition and the size (see Fig. 2.5) but also in orbital characteristics, e.g., alti-
tude (see Fig. 2.4), inclination and period (see Table 2.2). The technical specifications of
the satellites are mainly adopted from the ILRS website².

For the SLR processing, the satellites are separated into the following groups

A : LAGEOS-1/2

B : Etalon-1/2

C : LARES
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Figure 2.4: Time span of SLR tracking of geodetic SLR satellites at different altitudes
(adopted from the ILRS website²).

²https://ilrs.gsfc.nasa.gov/ (Accessed: 22/12/2022)
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2.2 Satellites Equipped with Laser Reflectors

D : Starlette

E : Stella

F : LARES-2

2.2.1 LAGEOS-1/2

The space mission of LAGEOS-1 (LAser GEOdynamic Satellite) was elaborated by the
NASA. The satellite was launched onMay 1976 and at that time it was the first spacecraft
dedicated exclusively to SLR. LAGEOS-1 was designed to have a stable orbit with a long
lifetime, such that it can serve as a reference point in inertial space. Therefore, the dis-
tance measurements between station and satellite can be used to determine the station
position with respect to the Earth’s center-of-mass (Fitzmaurice et al. 1977). The main
purpose was and still is to measure the Earth’s tectonic plate motion, the Earth Rotation
Parameters (ERP)s and geocenter coordinates (see e.g., Christodoulidis et al. 1985, Smith
et al. (1990, 1985) andPavlis 1999). LAGEOS-1 is a passive spherical satellitewith a brass
cube core covered with two aluminum alloy caps. The surface is equipped with 426 Cor-
ner Cube Reflectors (CCR) to ensure that any incident optical signal is reflected back to
the direction of origin (Minott 1974). 422 of the total 426 CCR are made of fused silica
to reflect signals in the visible and near infrared spectrum. The other 4 CCR consist of
germanium and are therefore well suited for themiddle infrared spectrum. This enables
research in the non-gravitational thermal thrust effect due to the asymmetric reflectiv-
ity of the satellite’s hemisphere (Lucchesi 2003b). The thermal thrust of LAGEOS-1/2 is
mainly caused by the Yarkovsky effect, the solar Yarkovsky-Schach effect and the asym-
metric reflectivity and causes a decay of the semi-major axis of LAGEOS-1/2 (Lucchesi
et al. 2020). The Yarkovsky effect is generated by the satellite absorbing infrared radi-
ation of the Earth and re-emitting it in an anisotropic pattern and therefore causing a
perturbation force (Rubincam 1987, 1988). Furthermore, the Yarkovsky-Schach effect is
related to the anisotropic emission of absorbed solar radiation (Lucchesi et al. 2003).
LAGEOS-1 weighs 407kg with a diameter of 60 cm. The orbit has a perigee altitude
of 5860km and an inclination of 109.8 °. LAGEOS-2, the successor of LAGEOS-1, is a
collaborative mission between NASA and the Italian Space Agency (ASI) launched in
October 1992. Its design is very similar to LAGEOS-1, however, the orbital properties
are different, i.e., perigee altitude of 5620km and inclination of 52.6 °. At these high al-
titudes, the satellite orbits are influenced only marginally by the air drag or the higher-
order of the time-variable Earth’s gravity field, which simplifies the orbit modeling.

2.2.2 Etalon-1/2

Etalon-1 and Etalon-2 are two Russian space missions launched on January, resp. May,
1989. Themain purposewas to support theRussians global navigation systemGLONASS
by investigating the satellite orbit dynamics and to improve the Earth’s gravity field
models. These satellites are also used for geodetic research, i.e., to improve station coor-
dinates, ERPs and to determine the gravitational constant GM (Dick et al. 1993). Even
the official ILRS products are including Etalon observations. Both satellites were iden-
tically manufactured. The spherical satellite is made of metal and the surface is covered
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2. Satellite Laser Ranging

with 2140 fused-quartz and 6 germanium CCR³. The orbit specifications of both Etalon
satellites are comparable with GLONASS satellites, i.e., a perigee altitude of 19 120km
and an inclination of 64.9 ° resp. 65.5 °.

2.2.3 Starlette, Stella

Starlette (Satellite de Taille Adaptée avec Réflecteurs Laser pour les Etudes de la Terre)
and Stella were identically designed and launched in 1975 resp. 1993 by the Centre
National d’Etudes Spatiales (CNES). The main purpose of these space missions was the
determination and modeling of the solid Earth tides (Williamson andMarsh 1985). Fur-
thermore, several studies, e.g., Sośnica et al. (2014) or Bloßfeld et al. (2018), investigated
the contribution of Starlette and Stella to the estimation of geodetic parameters of the
global reference frame and the SH geopotential coefficients.
To minimize the area-to-mass ratio, the core of the satellites are made of depleted Ura-
nium 238 alloy and the surfaces are formed as an icosahedron with 20 triangular planes.
The planes are made of aluminum and cover three retro-reflectors. Hence, the spherical
satellites have a mass of 47kg with a diameter of 24 cm. Starlette has an eccentric orbit
(eccentricity of 0.02) with a perigee altitude of 812km and 48.8 ° inclination. Stella is a
sun-synchronous satellite with a circular orbit and a perigee altitude of 804km.

2.2.4 Ajisai

Ajisai (also known as Experimental Geodetic Satellite EGS) was launched on August
1986 by todays known Japan Aerospace Exploration Agency (JAXA). The main goal was
to test JAXA’s two-stage launch vehicle and to determine the precise positioning of iso-
lated Japanese Islands⁴. Despite of this, Sośnica et al. (2014) found that the contribution
of Ajisai SLR observations to multi-satellite SLR solutions is significant and improves
geodetic parameters, e.g., station coordinates or ERPs. Therefore, Sośnica et al. (2014)
claims to use multi-satellite SLR combinations of LAGEOS-1, Starlette and Ajisai for the
SLR contribution to realizations of further terrestrial reference frames.
The satellite is spherical with a hollow interior and a shell made of glass-fiber-reinforced
plastics. The surface is covered by 1436 uncoated fused silica CCR for laser ranging and
318mirrors for optical observations to measure Ajisai’s spin rate (Sasaki and Hashimoto
1987). With a weight of 685kg and a diameter of 215 cm the area-to-mass ratio of the
satellite is not optimal and the orbit modeling becomes more sophisticated (Sasaki and
Hashimoto 1987). The satellite orbit has a perigee altitude of 1490km and 50 ° inclina-
tion.

2.2.5 LARES/LARES-2

LARES (LAser RElativity Satellite), launched on February 2012, is a satellite mission
of the ASI. The main goal of this mission is to accurately measure the frame dragging
effect, also known as the Lense-Thirring effect (Lense and Thirring 1918), predicted by
the theory of General Relativity (Ciufolini et al. 2016). Thereby, the rotation of the Earth

³https://space.skyrocket.de/doc_sdat/etalon.htm (Accessed: 08/08/2022)
⁴https://global.jaxa.jp/projects/sat/egs/ (Accessed: 24/02/2023)
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drags the axis of a local inertial reference frame, e.g., a satellite, orbiting the Earth (Ciu-
folini et al. 1996). In analogy, it causes a very small precession of the orbital plane, i.e., a
nodal shift, of a satellite in the Earth’s gravity field. Consequently, LARES experiences a
nodal precession of around 118mas/a (Ciufolini et al. 2016) due to the Lense-Thirring
effect. In comparison, the nodal shift of LARES caused by the oblateness of the Earth is
about -2.029 820 73 ⋅109mas/a (Iorio 2010).
LARES can also be used for geodetic research, e.g., to decorrelate low-degree gravity
field coefficients or to improve the ITRF. Therefore, it was planned that the ILRS con-
tribution to ITRF2020 and thus the official ILRS products, i.e., the station coordinates
and the Earth rotation parameters, should be generated with LAGEOS-1/2, Etalon-1/2
together with LARES (Altamimi et al. 2018). However, this proposal was not realized
due to delays at the ILRS analysis centers. Consequently, the contribution of the ILRS
to the ITRF2020 is still only based on LAGEOS-1/2 and Etalon-1/2 SLR data.

It is a passive spherical satellite made of very dense tungsten alloy and therefore, with a
weight of 387kg and a diameter of only 36 cm, it is the densest known object in the solar
system (Ciufolini et al. 2011a). Additionally, it was formed from a single piece to enable
heat exchange, which reduces the thermal thrust perturbation acting on the satellite.
The 92 uncoated CCR for performing SLR measurements cover 26% of the total area
(Paolozzi et al. 2015). LARES is placed in an almost circular orbit at 1450km altitude
and 69.5 ° inclination.
LARES-2 was launched on July 2022 by the ASI. However, it was placed in an orbit with
a perigee altitude of 5896km, comparable to the LAGEOS satellites (see Fig. 2.4), and
70.16 ° inclination. It is made of a nickel alloy and is covered with 303 uncoated CCR.
With a weight of 297.5kg and a diameter of 42 cm, LARES-2 has a smaller area-to-mass
ratio than the LAGEOS satellites such that the orbit modeling may be simplified. The
first analysis of LARES-2 SLR observations are shown in Section 7.3.

Table 2.2: Technical data of spherical SLR satellites (adopted from the ILRS website²).

Satellite launch diameter weight area-to-mass altitude inclination period
[yr] [cm] [kg] [10⁻⁴ m²/kg] [km] [°] [min]

LAGEOS-1 1976 60.0 407.0 6.9475 5860 109.8 225
LAGEOS-2 1992 60.0 405.4 6.9748 5620 52.6 223
Etalon-1 1989 129.4 1415.0 9.2940 19 120 64.9 676
Etalon-2 1989 129.4 1415.0 9.2940 19 120 65.5 675
Starlette 1975 24.0 47.5 9.5240 812 48.8 104
Stella 1993 24.0 48.0 9.4248 804 98.6 101
Ajisai 1986 215.0 685.0 53.0 1490 50.0 116
LARES 2012 36.4 386.8 2.6903 1450 69.5 115
LARES-2 2022 42.4 297.5 4.7461 5896 70.2 225
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(a) LAGEOS-1/2 (Photo credit: ASI) (b) Etalon-1/2 (ILRS website²)

(c) AJISAI (Photo credit: JAXA)
(d) Starlette/Stella (Photo credit:
CNES)

(e) LARES/LARES-2 (Photo credit:
ESA)

Figure 2.5: Spherical satellites used for SLR.
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2.3 SLR Ground Stations

Figure 2.6 shows the most important components of an SLR ground station, which are a
generator of the laser pulses, a signal transmitter, a receiver telescope, a photo-detector
of the satellite signal pulses and a time-of-flight measurement device (Seeber 2003).
Nevertheless, there are also SLR systems, where the transmitter and the receiver are as-
sembled in the same telescope, e.g., at the SwissOGS in Zimmerwald.

In the beginning of the era of SLR, the stations used a ruby laser with Q-switch to gen-
erate laser pulses with a pulse width of 10-40ns (Degnan 1985). The pulse width is
strongly correlated with the accuracy of the range measurement (Seeber 2003), e.g.,
a pulse width of 10ns causes a ranging error of 1.5m. Consequently, other laser sys-
tems were developed, e.g., mode-locked Nd:YAG lasers, generating much shorter pulse
width of 0.04-0.2ns at awavelength of 532nmand a 10Hz repetition rate (Degnan 1985,
Wilkinson et al. 2019).
Nowadays, however, many SLR stations, e.g., in Graz (Kirchner and Koidl 2004), Her-
stmonceux or Kunming, are operating with lasers providing high-repetition rates of 1-
1000kHz. This allows to reduce the power pulse energy without decreasing the number
of returned photons (Hampf et al. 2019). The high density of data points resulting from
a kHz system improves the precision of the Normal Points (Hampf et al. 2019). In addi-
tion, it is possible to identify the different retro-reflectors of a satellite by analyzing the
full-rate range residuals (Kirchner and Koidl 2004).

After the laser has generated the laser pulses, they are passed through the signal trans-
mitter towards the observed satellite. Further, the backscattered signal from the satellite
is received by the telescope and is collected by a photo-detector, which can either be a
Photomultiplier Tube (PMT), a Microchannel-plate Multiplier (MCP, Degnan 1985) or a
Single-Photon Avalanche Diode (SPAD). Their task is to absorb an incident photon and
convert it into an electrical signal, which stops the time-of-flight measurement device.
The SPAD detectors are outstanding for their fast rise time of the avalanche to provide
good epoch timing. Nevertheless, they are noisier, since different return energies change
the detection time and, therefore, causing errors in the range measurements. This is the
so-called time-walk effect, which cannot be avoided because it is difficult to perform

time-of-flight
measurement

Detector

Laser

Receiver telescope

Transmitter

Satellite

Figure 2.6: General structure of a SLR ground station.
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SLR with holding a constant return pulse energy level. However, with the so-called C-
SPAD, which is an improved version of the SPAD, the time-walk can be reduced from
200ps to less than 10ps (Kirchner and Koidl 1999).

The time-of-flight measurement device is triggered by the signal transmitter when a
laser pulse is emitted. Themeasurement is stopped, if the backscattered signal is recorded
by the photo-detector. This time measurement device is either an interval counter or an
event timer. The interval counter measures directly the runtime of laser pulses, while
the event timer calculates the runtime by measuring the transmitting and the receiving
time epoch of the laser pulses. The latter has the advantage that it does not have to wait
for the return signal before sending the next one. Therefore, the event timer enables SLR
measurements with a high-repetition rate.

2.4 Role of the International Laser Ranging Service

The ILRS was established in 1998 and is an official service of the International Associa-
tion of Geodesy (IAG) (Pearlman et al. 2002). It collects and provides satellite and lunar
laser ranging data and generates own products. In addition, the ILRS sets and develops
new standards regarding, e.g., the formation of the normal points (see Sec. 5.1), to ensure
a high consistency between the products. The so-called analysis centers are generating
on a daily or weekly basis the official ILRS products, e.g., ILRS station coordinates and
velocities or Earth Rotation Parameters. Therefore, the ILRS contributes to the mainte-
nance of an accurate ITRF (Altamimi et al. 2011, 2016). At the time of writing, the ILRS
network consists of 45 active SLR stations (see Fig. 2.7).
Additionally, Table 2.3 gives further information about the SLR stations. Most of the sta-
tions are located on the northern hemisphere, especially in Europe and Southeast Asia.

24. August 2022

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  

active ILRS stations

Figure 2.7: ILRS network from August 24, 2022 (adopted from the ILRS website⁵).

⁵https://ilrs.gsfc.nasa.gov/network/stations/index.html (Accessed: 24/08/2022)
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Within the ILRS, CODE is a so-called associated analysis center. In this framework, it
is validating the quality of the CODE orbit products of GNSS satellites equipped with
SLR retro-reflectors. The Astronomical Institute of the University of Bern (AIUB) also
generates orbit predictions for GNSS satellites to support their tracking by SLR stations.
With the SwissOGS in Zimmerwald, the AIUB also contributes to the ILRS network
with one of the most productive stations worldwide. In addition, the AIUB collaborates
with the Federal Agency for Cartography and Geodesy (BKG) in Frankfurt, Germany, to
generate products for the International Laser Ranging Service (ILRS) and to serve as a
backup in the frame of the analysis center activities at BKG.
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Table 2.3: Information about SLR stations from the ILRS network (adopted from the
ILRS website²).

Short station-nr. Abbreviation Location

1824 GLSL Golosiiv, Ukraine
1868 KOML Komsomolsk-na-Amure, Russia
1873 SIML Simeiz, Ukraine
1874 MDVS Mendeleevo 2, Russia
1879 ALTL Altay, Russia
1884 RIGL Riga, Latvia
1886 ARKL Arkhyz, Russia
1887 BAIL Baikonur, Kazakhstan
1888 SVEL Svetloe, Russia
1889 ZELL Zelenchukskya, Russia
1890/1891 BADL/IRKL Badary/Irkutsk, Russia
1893 KTZL Katzively, Ukraine
7045 APOL Apache Point, NM
7090 YARL Yarragadee, Australia
7105 GODL Greenbelt, Maryland
7110 MONL Monument Peak, California
7119 HA4T Haleakala, Hawaii
7124 THTL Tahiti, French Polynesia
7237 CHAL Changchun, China
7249 BEIL Beijing, China
7358 GMSL Tanegashima, Japan
7394 SEJL Sejong City, Republic of Korea
7396 JFNL Wuhan, China
7403 AREL Arequipa, Peru
7406 SJUL San Juan, Argentina
7407 BRAL Brasilia, Brazil
7501/7503 HARL/HRTL Hartebeesthoek, South Africa
7701 IZ1L Izaña (Tenerife), Spain
7810 ZIML Zimmerwald, Switzerland
7811 BORL Borowiec, Poland
7819 KUN2 Kunming, China
7821 SHA2 Shanghai, China
7824 SFEL San Fernando, Spain
7825 STL3 Mt Stromlo, Australia
7827 SOSW Wettzell, Germany
7838 SISL Simosato, Japan
7839 GRZL Graz, Austria
7840 HERL Herstmonceux, United Kingdom
7841 POT3 Potsdam, Germany
7845 GRSM Grasse, France
7941 MATM Matera, Italy
8834 WETL Wettzell, Germany
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Chapter 3

Fundamentals of Satellite Geodesy

This chapter introduces satellite orbit modeling and the underlying mathematical prin-
ciples. First of all, coordinate reference frames, whether determining a position in space
or on Earth, have to be defined (see Sec. 3.1). In addition, ERPs are defined in order to
transform one reference frame to the other.
In Section 3.2, the concept of satellite orbit modeling is described. The starting point is
a simple two-body problem of the satellite and the Earth. However, in order to better
represent the real situation, the problem has to be adjusted by introducing additional
perturbations, e.g., the Earth’s static and time-variable gravitational field, tides, gravita-
tional effects of other bodies of the solar system, solar radiation pressure or relativistic
corrections (see Sec. 3.2.2).

Furthermore, the model parameters can be improved based on a set of observations us-
ing least-squares adjustment (see Sec. 3.3). In this process, the parameters can also be
constrained, pre-eliminated or stacked. If different sets of observations, e.g., different
geodetic techniques or different observed satellites, are to be combined, the method of
Variance Component Estimation (VCE) can be used (see Sec. 3.4). In addition, a so-called
contribution analysis can be performed to determine the contribution of each set of ob-
servations to the improved model parameters (see Sec. 3.5).

In Section 3.6, the method of the long-arc computation, which is regularly used in the
Bernese GNSS Software (BSW, Dach et al. 2015), is introduced and modified to also co-
estimating Earth’s gravity field coefficients. It allows to combine daily satellite arcs into
a longer arc, e.g., 7-day arcs, by transforming the initial osculating elements of each day
into one set of osculating elements referring to the beginning of the corresponding arc
and asking for continuous and differentiable orbits at the day boundaries.
In this thesis, the long-arc computation is applied to study the optimal orbit parametriza-
tion of satellites with lower orbital altitudes, e.g., LARES with an altitude of 1400km
(see Sec. 7.1.2).
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3. Fundamentals of Satellite Geodesy

3.1 Reference Systems and Frames

In order to describe positions of objects in inertial space, e.g., artificial satellites or the
Moon, or on the Earth, e.g., SLR stations, reference systems have to be defined. De-
pending on the need, the systems are fixed in space or rotating, e.g., according to the
Earth rotation. The realization of a reference system, called reference frame, is based
on measuring coordinates, e.g., of objects (mainly quasars) with a negligible proper mo-
tion outside our galaxy or sites on the surface of the Earth, with different geodetic space
techniques (Seeber 2003).
The International Earth Rotation and Reference Systems Service (IERS, Petit and Luzum
2010) defines the International Celestial Reference System (ICRS) as well as the Inter-
national Terrestrial Reference System (ITRS) and realizes the corresponding frames. It
also provides and maintains the ERPs to transform coordinates of one reference frame
into the other.

3.1.1 International Celestial Reference System and Frame

The International Celestial Reference System (ICRS, Petit and Luzum 2010) is a fixed
and non-rotating reference system used for the orientation in space. In 1991, the Inter-
national Astronomical Union (IAU) recommended to define the ICRS with the following
characteristics (Petit and Luzum 2010)

• The origin of the system is located in the barycenter of the solar system.

• The principle plane is located at the mean equator of J2000.0.

• One axis points to the equinox of J2000.0.

The realization of the ICRS is the International Celestial Reference Frame (ICRF) and is
based on VLBI estimates of equatorial coordinates of more than 200 extragalactic radio
sources (Charlot et al. 2020).

3.1.2 International Terrestrial Reference System and Frame

The International Terrestrial Reference System (ITRS, Petit andLuzum2010) is an Earth-
fixed right-handed orthogonal reference system primarily used to describe station posi-
tions. A stable realization of the ITRS, the so-called International Terrestrial Reference
Frame (ITRF) is important to understand the dynamics of the Earth and for precise orbit
determination of satellites. The construction of the ITRF is based on four space geodetic
techniques, i.e., VLBI, DORIS, GNSS and SLR. First, long-term solutions per technique
are generated and then they are combined together with local ties at colocation sites
and, since ITRF2005, global ties for ERPs (Altamimi and Collilieux 2009, Altamimi et
al. (2007, 2016), Seitz et al. 2012).
All SLR analyses in this work are related to the ITRS realization called ITRF2014, which
is defined by the following specifications (Altamimi et al. 2016)

• At the epoch 2010.0, the translation and translation rates between the origin of the
ITRF2014 and the mean origin received from SLR observations are zero.
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• At the epoch 2010.0, the scale factor and scale factor rates between the ITRF2014
and the average of the scale factor and scale factor rates received from VLBI and
SLR observations are zero.

• At the epoch 2010.0, the rotation parameters and the rotation rates between the
ITRF2014 and the ITRF2008 are zero.

This ITRF is also characterized by the fact that for stations annual and semi-annual
terms were estimated and that Post-Seismic Deformation (PSD) models were applied
(Altamimi et al. 2016). The latest realization of the ITRS is the ITRF2020 (Altamimi et
al. 2018).

3.1.3 Earth Rotation Parameters

Station coordinates are normally represented in the ITRF, whereas the satellite positions
are conventionally given in an ICRF. To compute the distance between the station po-
sition and the position of the satellite, both positions have to be expressed in the same
reference frame. Therefore, coordinates expressed in the ITRF have to be transformed
into the ICRF, or vice versa, by using a set of three parameters, the so-called Earth Ro-
tation Parameters, together with a precession-nutation model (see Fig. 3.1). The ERPs
are represented by two pole coordinates of the polar motion (𝑥p and 𝑦p) and the time
difference UT1-UTC (also referred as Δ𝑈𝑇). A position vector rICRF in the ICRF is then
transformed into the ITRF according to the following equation (Seeber 2003)

rITRF = R2(−𝑥p)R1(−𝑦p)R3(Θ)NPrICRF (3.1)

with

rICRF : position vector expressed in ICRF,
rITRF : position vector expressed in ITRF,
R𝑥(𝑦) : rotation matrix around the axis 𝑥 with a rotation angle of 𝑦,
𝑥p, 𝑦p : polar motion,

Θ : Greenwich apparent sideral time,
N : rotation matrix for nutation,
P : rotation matrix for precession.

The nutation and precession motion of the Earth’s rotation axis is caused by the gravi-
tational forces (torques) of the Moon and the Sun acting on the equatorial bulge of the
Earth and can be modelled based on a precession-nutation theory, e.g., IAU 2006 (Petit
and Luzum 2010, Mathews et al. 2002). Hence, the resulting reference system, i.e., the
Celestial Intermediate Pole (CIP), is defined by the true equator and equinox of date
(Seeber 2003). The transformation from the CIP to the ITRF is performed by using the
ERPs. First, the matrix R3(Θ) translates the non-rotating CIP into an Earth-fixed rotat-
ing system, where the rotation angle Θ is the Greenwich apparent sidereal time and is
related to the ERP Δ𝑈𝑇 (Aoki et al. 1981). Finally, the polar motion which describes the
movement of the Earth’s rotation axis w.r.t. the Earth’s crust is taken into account by
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Figure 3.1: Transformation from the ICRF through the CIP to the ITRF.

the rotation matrices R2(−𝑥p) and R1(−𝑦p). The spectral analysis shows that the polar
motion is mainly a superposition of an annual and a strong 14-months, i.e., Chandler
period/wobble (Chandler 1891), signal (e.g., Beutler et al. 2005).
Figure 3.2 shows the ERP series IERS-14-C04, which is an IERS product based on a
multi-technique combination at observation level (Bizouard et al. 2019). The positions
of the rotational pole can vary by 0.4′′ (resp. 12m on the Earth’s crust). The time differ-
ence Δ𝑈𝑇 series shows several discontinuities due to the introduction of leap seconds
in UTC. They are used to adjust the coordinated universal time UTC to the actual Earth
rotation UT1. Therefore, the absolute value of Δ𝑈𝑇 has to be smaller than 0.9 s, other-
wise, the IERS will add a leap second. In our SLR processing this ERP series is used as a
priori information and reference series for comparisons.
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Figure 3.2: Polar motion (left) and time difference Δ𝑈𝑇 (right) from the reference series
IERS-14-C04 for the years 1982-2021 (Bizouard et al. 2019).
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3.2 Satellite Orbit and Background Force Modeling

3.2 Satellite Orbit and Background Force Modeling

This section explains how the position, resp., velocity of an Earth orbiting satellite can be
determined at any time 𝑡. First, a two-body problem between the Earth and the satellite
is described by the Keplerian motion. Afterwards, some of the most important orbit
perturbations are introduced.

3.2.1 Two-Body Problem

In the simplest case, where only the gravitational force of the Earth is present, themotion
of an artificial satellite orbiting the Earth is (Seeber 2003)

̈r(𝑡) = − 𝐺𝑀
|r(𝑡)|3 r(𝑡), (3.2)

where r describes the position of the satellite w.r.t. the Earth, which is described as a
point mass. Additionally, the relation between the mass of the satellite 𝑚 and the Earth
𝑀 is 𝑚 << 𝑀 , i.e., the mass of the satellite may be neglected, and 𝐺 is the gravity con-
stant. Eq. 3.2 is a second-order differential equation and has six integration constants,
often represented by the six Keplerian orbital elements (𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑢0) as described in
Figure 3.3. The semi-major axis 𝑎 and the numerical eccentricity 𝑒 describe the size and
shape of the orbit. Whereas, the orbit inclination 𝑖 and the right ascension of ascending
node Ω define the orientation of the orbital plane in space. The orientation of the orbit
in the orbital plane is given by the argument of perigee𝜔. Last, the argument of latitude
𝑢(𝑡0) = 𝑢0 may be used to describe the position of the satellite on the orbit at time 𝑡0.
Instead of the six Keplerian orbital elements, it is possible to specify the following two
solution vectors, i.e., the position resp. velocity vectors at time 𝑡0,

r(𝑡0) = r(𝑡0; 𝑎, 𝑒, 𝑖, Ω,𝜔, 𝑢0),
̇r(𝑡0) = ̇r(𝑡0; 𝑎, 𝑒, 𝑖, Ω,𝜔, 𝑢0).

(3.3)

𝑎 : semi-major axis
𝑒 : numerical eccentricity
𝑖 : orbit inclination
Ω : right ascension of ascending node
𝜔 : argument of perigee

𝑢(𝑡0) : argument of latitude at time 𝑡0 y axis

z axis

x axis

𝑢

̇r
r

Ω

𝑖𝜔

Figure 3.3: Six Keplerian orbital elements of an Earth orbiter in an inertial reference
frame, where the x-axis points towards the vernal equinox, the y-axis is perpendicular
to the x-axis in the Earth’s equatorial plane, z-axis is normal to the equatorial plane and
the origin is located in the geocenter.
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3.2.2 Orbit Perturbations

In general, however, the orbit of a satellite orbiting the Earth is not only influenced by
the gravitational attraction of the Earth, but also by additional forces called perturbation
accelerations. They can be gravitational accelerations, e.g., attraction of the Sun orMoon,
or non-gravitational accelerations, e.g., atmospheric air drag or solar radiation pressure.
In addition, the Earth is no longer considered as a point mass and is instead represented
by a volume integral.
Therefore, the equation of motion is the sum of the gravitational attraction of the Earth
based on a volume integral and additional perturbing forces (Beutler et al. 2005a)

̈r = −𝐺𝑀
𝑉E

𝜌Er
r − rE

|r − rE|3
𝑑𝑉E + fp

∶= ftotal(𝑡; r, ̇r, r1, ..., r𝑛, 𝑝1, ..., 𝑝𝑑),
(3.4)

with the initial conditions given by Eqs. 3.3 and

fp : perturbing forces, i.e., gravitational forces of third bodies

and non-gravitational forces,
r : geocentric position vector of the satellite,
rE : geocentric position vector of a volume element of the Earth,
r𝑖 : geocentric position vector of the third body (with 𝑖 ∈ {1, ..., 𝑛}),

𝜌Er : relative density function of the Earth,
𝑉E : total volume of the Earth,
𝑝𝑖 : dynamic parameters (with 𝑖 ∈ {1, ..., 𝑑}).

The perturbing forces can be described in different reference frames, e.g., ITRF or co-
rotating orbital frame. The latter system is defined by the three axes in radial direction
𝑅 (radial), normal to 𝑅 in the instantaneous orbital plane 𝑆 (along-track) and normal to
the orbital plane 𝑊 (cross-track) having the origin in the center-of-mass of the satellite
(Beutler et al. 2005a).
In the following sections, the acting forces on a satellite orbiting the Earth are explained
in more detail.

a) Earth’s Gravity Field

The Earth’s gravitational acceleration ̈rGR is invariant to rotations, i.e., ∇∇∇ × ̈rGR = 0, and
can therefore be represented as a gradient of the gravitational potential 𝑉

̈rGR = ∇∇∇𝑉. (3.5)

Since, the gravitational potential 𝑉 outside the Earth is a solution of the Laplace’s dif-
ferential equation of second order

Δ𝑉 = 0, (3.6)
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3.2 Satellite Orbit and Background Force Modeling

it can be represented by harmonic functions in an Earth-fixed frame using the system
of spherical coordinates, i.e., radial distance 𝑟, longitude 𝜆 and colatitude 𝜃,

𝑉(𝑟, 𝜆, 𝜃) = 𝐺𝑀
𝑟

∞


𝑛=0

⒧𝑎E𝑟 ⒭
𝑛 𝑛


𝑚=0

𝐶̄𝑛𝑚 cos(𝑚𝜆) + ̄𝑆𝑛𝑚 sin(𝑚𝜆) ̄𝑃𝑛𝑚(cos𝜃), (3.7)

where 𝐶̄𝑛𝑚, ̄𝑆𝑛𝑚 and ̄𝑃𝑛𝑚 are the fully normalized Earth’s spherical harmonic coefficients
of degree 𝑛 and order 𝑚, resp., the normalized Legendre functions (Torge and Müller
2012, Petit and Luzum 2010). The relation between the nominal and the normalized
values is given by the following factor (Petit and Luzum 2010)

𝑁𝑛𝑚 ∶= (𝑛 − 𝑚)!(2𝑛 + 1)(2 − 𝛿0𝑚)
(𝑛 + 𝑚)! where 𝛿0𝑚 =

⎧⎪⎨⎪⎩
1 for 𝑚 = 0
0 for 𝑚 ≠ 0

(3.8)

such that

𝐶𝑛𝑚 = 𝑁𝑛𝑚𝐶̄𝑛𝑚, 𝑆𝑛𝑚 = 𝑁𝑛𝑚 ̄𝑆𝑛𝑚, and ̄𝑃𝑛𝑚 = 𝑁𝑛𝑚𝑃𝑛𝑚. (3.9)

The spherical harmonic coefficients 𝐶̄𝑛𝑚 and ̄𝑆𝑛𝑚 may represent a subset of the dynamic
parameters 𝑝𝑖 in Eq. 3.3. Further, 𝑎E defines the equatorial radius of the Earth and 𝐺𝑀
is the gravitational constant multiplied by the mass of the Earth.
The Earth’s gravity field models are providing a 𝐺𝑀 , 𝑎E and a set of spherical harmonic
coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 (often fully normalized) up to a certain maximum degree and
order (d/o). If the spherical harmonic coefficients are independent on the time 𝑡, it is
called a static gravity field model, otherwise, it is a time-variable gravity field model
with 𝐶𝑛𝑚(𝑡) and 𝑆𝑛𝑚(𝑡).

In this thesis, three different gravity field models were used and compared. One is a
static gravity field model GGM05S (Ries et al. 2016). The others are time-variable grav-
ity field model, one following the ILRS requirements and is based on GGM05S, where
the zonal spherical harmonic coefficients fromd/o 2 to d/o 6 and𝐶21/𝑆21 of GGM05S are
corrected or replaced depending on the time. The second is a product from theCombina-
tion Service for Time-variable Gravity Fields (COST-G, Jäggi et al. 2020), wheremonthly
gravity fields of the Gravity Recovery And Climate Experiment Follow-on (GRACE-
FO, Landerer et al. 2020) satellite mission of different analysis centers of COST-G are
combined using VCE (Meyer et al. 2020). Since the GRACE/GRACE-FO will cover the
Earth only after 30 days, the computed global gravity field is impacted by short periodic
signals that cannot be resolved. Additionally, the gravimetry satellite missions cannot
distinguish between mass changes above, beyond or at the Earth’s surface. Therefore,
the German Research Centre for Geosciences (GFZ) provides GRACE Atmosphere and
Ocean De-Aliasing Level-1B (AOD1B) products for signal separation in the gravity field
estimation (Dobslaw et al. 2017).
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3. Fundamentals of Satellite Geodesy

b) Tides and Pole Tides

The gravitational attraction on the Earth caused by the Sun and the Moon results in a
deformation of the solid Earth’s crust, the oceans and the atmosphere. These responses
are called solid Earth tides, ocean and atmospheric tides. The pole tides describe de-
formations of the solid Earth and the oceans due to changes in the centrifugal forces
induced by the polar motion (see Sec. 3.1.3).
Hence, the Earth’s gravitational potential is changed and therefore, the accelerations
acting on the satellites have to be adjusted. In the BSW, these tides are modeled as vari-
ations in the Earth’s gravitational spherical harmonic coefficients according to the IERS
2010 conventions (Petit and Luzum 2010). A detailed description of these implementa-
tions in the BSW can be found in Lasser et al. (2020).

c) Gravitational Effects of third bodies (Sun, Moon and Planets)

The solar system consists of multiple celestial bodies besides the Earth, which depend-
ing on their mass and distance can perturb the satellite orbits significantly. These are
mainly the Sun, the Moon, and three planets, i.e., Jupiter, Venus and Mars. Therefore,
these perturbations ̈rNB are described by 3-body problems, where the celestial bodies
are treated as point masses, and are modelled as (Beutler et al. 2005a)

̈rNB = −𝐺
𝑛


𝑗=1

𝑚𝑗 ⒧
r − rE

|r − rE|3
+

r𝑗
|r𝑗|3

⒭ . (3.10)

𝐺𝑚𝑗 , i.e., the gravitational constant multiplied by the mass, and the geocenter position
vector r𝑗 of the 𝑗-th third body are computed in this work by using the DE405 (Standish
1998) development ephemeris provided by the Jet Propulsion Laboratory (JPL).

d) Atmospheric Drag

For orbit determination of LEOs accelerations caused by the atmospheric drag have to
be taken into account. The accelerations due to the atmospheric drag is (Montenbruck
et al. 2002)

̈rAD = −12𝐶D
𝐴
𝑚𝜌(𝑡)|v|2 v

|v| (3.11)

with

𝐶D ∶ drag coefficient of the satellite (see Table 3.1),
𝐴
𝑚 ∶ area-to-mass ratio of the satellite,

v ∶ velocity vector of the satellite expressed in the Earth-fixed system,
𝜌(𝑡) ∶ time dependent atmospheric density.

The atmospheric density of the Earth 𝜌(𝑡) is modeled using the NRLMSISE-00 empir-
ical atmospheric model (Picone et al. 2002). It depends on the height, the observation
time, the geographic position, the solar (represented by the solar radio flux at 10.7 cm,
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Table 3.1: Area-to-mass ratio, drag (𝐶D) and radiation pressure coefficients (𝐶R) for dif-
ferent spherical satellites (according to the satellite information file in the BSW).

Satellites 𝐴
𝑚 [10−4m2/kg] 𝐶D 𝐶R

LAGEOS-1/2 6.9 0 1.130
Etalon-1/2 9.3 0 1.200
Starlette 9.6 2.37 1.134
Stella 9.4 2.37 1.134
Ajisai 58.0 2.80 1.030
LARES 2.7 2.60 1.070
LARES-2 4.7 2.60 1.070

𝐹10.7) and geomagnetic activities (represented by eight 3-hourly planetary equivalent
amplitudes 𝐴p). In the BSW, the latter two may either correspond to standard values,
i.e., 𝐹10.7 = 120 and 𝐴p = 15, or to actual measured data⁶. In this thesis, the air drag
model is only applied to the satellites with an orbital altitude lower than 2000km.

e) Direct and Indirect Solar Radiation Pressure

The Sun constantly emits photons, where each photon carries an energy of 𝐸 = ℎ𝜈, where
ℎ is the Planck constant and 𝜈 the frequency of the photon. Hence, the total energy com-
ing from the sun flowing through a surface (1m2) within a second at a distance of 1AU
is described by the solar constant 𝑆.
Then, the radiation pressure is the momentum, which is transferred per time of the pho-
tons to an absorbing and/or reflecting surface in a radiation field (Beutler et al. 2005b).
The change in momentum of the surface is equivalent to an acceleration.
Consequently, a satellite orbiting the Earth is directly affected by this radiation pres-
sure of the Sun. The acceleration caused by the direct Solar Radiation Pressure (SRP) is
(Beutler et al. 2005b)

̈rSRP = 𝐶R

2
𝐴
𝑚

𝑆
𝑐

r − rS
|r − rS|3

AU2 (3.12)

with

𝐶R ∶ radiation pressure coefficient of the satellite,
𝑆 ∶ solar constant,
𝑐 ∶ speed of light,
𝐴
𝑚 ∶ area-to-mass ratio of the satellite,

rS ∶ geocentric position of the Sun,
r ∶ geocentric position of the satellite,

AU ∶ astronomical unit.

⁶http://celestrak.org/SpaceData/SW-Last5Years.txt (Accessed: 05/06/2023)
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It is assumed that the satellite is axially symmetrical w.r.t. the Sun (which is true for
the spherical satellites) and that the surface of the satellite is normal to the direction of
the Sun (Montenbruck et al. 2002). Furthermore, the radiation pressure coefficient 𝐶R
depends on the reflectivity of the satellite’s surface (see Table 3.1).

Besides the direct solar radiation pressure, also the indirect solar radiation pressure
(ERP) caused by the Earth has to be taken into account in the orbit modeling (Seeber
2003). It is differentiated between the optical and the infrared radiation pressure (Mon-
tenbruck et al. 2002). The optical radiation pressure is the reflection and scatter of the
direct radiation pressure on the Earth. Therefore, it is only emitted on the daylight side
of the Earth with a magnitude depending on the Earth’s surface or weather conditions,
which is described by the albedo factor 𝑎. Furthermore, the infrared radiation pressure
is the emission of the absorbed direct radiation pressure of the Earth and is character-
ized by the emissivity factor 𝜖. In that case, the perturbing acceleration acting on the
satellite (see Fig. 3.4) is a sum of different Earth areas 𝑑𝐴 (Montenbruck et al. 2002)

̈rERP = 𝐶R𝑆
𝑐𝜋

𝐴
𝑚

𝑁


𝑗=1

⒧𝜈𝑗𝑎𝑗 cos⒧𝜃𝑖,S
𝑗 ⒭ + 1

4𝜖𝑗⒭ 𝑑𝐴𝑗 cos⒧𝜃𝑖,sat
𝑗 ⒭

r − r𝑗
|r − r𝑗|3

(3.13)

where

𝑑𝐴𝑗 ∶ small area of the Earth,
𝜈𝑗 ∶ shadow function for 𝑑𝐴𝑗 (𝜈𝑗 ∈ [0, 1]),
𝑎𝑗 ∶ albedo reflectivity factor of 𝑑𝐴𝑗 ,
𝜖𝑗 ∶ albedo emissivity of 𝑑𝐴𝑗 ,
r ∶ geocentric position of the satellite,
r𝑗 ∶ geocentric position of the area 𝑑𝐴𝑗 on the Earth,

𝜃𝑖,S
𝑗 ∶ angle between r𝑗 and rS,

𝜃𝑖,sat
𝑗 ∶ angle between r𝑗 and r.

Earth

Satellite

r

Sunr𝑆

𝑑𝐴𝑗
r𝑗

̈r𝐸𝑅𝑃𝑗
̈r𝑆𝑅𝑃

𝜃𝑖,𝑆
𝑗

𝜃𝑖,𝑠𝑎𝑡
𝑗

Figure 3.4: Direct (SRP) and indirect radiation pressure (ERP𝑗 from Earth area 𝑑𝐴𝑗) act-
ing on an Earth orbiter.

26



3.2 Satellite Orbit and Background Force Modeling

The shadow function 𝜈𝑗 is used to decide if an Earth area 𝑑𝐴𝑗 is on the daylight side of the
Earth or in the Earth’s shadow. The albedo reflectivity and emissivity factors strongly
depend on the month of the year, but they are, however, rather stable over the years
(Mao et al. 2021). Therefore, monthly albedo factors generated by averaging several
year-specific monthly albedo factors from the Earth given in a 2.5 °×2.5 °-grid, obtained
from the Clouds and Earth’s Radiant Energy System (CERES,Wielicki et al. 1996) NASA
project (ES-4) data set, are used for the orbit determination in the SLR processing using
the BSW.

f) Relativistic Corrections

The theory of General Relativity formulated by Einstein (Einstein 1915) implies that
gravity causes a curvature of the space-time and that the Newtonian law of gravity is
only a first approximation. Therefore, the motion of a satellite orbiting in gravitational
fields of the Earth or Sun have to be adapted by relativistic corrections, which are ex-
plained in detail in Combrinck (2013).
The main correction of around 10 −9m/s2 is due to the motion of a satellite through the
curved space-time caused by the gravity of the Earth. Since Schwarzschild was first to
find a solution for such amotion, i.e., a motion of amassless point in a gravitational field
of a non-rotation, static and spherical symmetric body (Schwarzschild 1916), this effect
is known as the Schwarzschild correction.
Furthermore, the Earth’s motion through the gravitational field of the Sun causes a pre-
cession, also called de Sitter precession (de Sitter 1916), of the orbital pole of a satellite.
Then, Lense and Thirring (Lense and Thirring 1918) described an additional perturba-
tion of objects, e.g., satellites, moving within a gravitational field caused by a rotating
mass source, e.g., the Earth.
Consequently, the perturbation ̈rREL of an Earth orbiter caused by the Schwarzschild,
de Sitter and Lense-Thirring corrections predicted by the General Relativity Theory is
(Petit and Luzum 2010)

̈rREL =

𝑆𝑐ℎ𝑤𝑎𝑟𝑧𝑠𝑐ℎ𝑖𝑙𝑑
𝐺𝑀E

𝑐2|r|3 ⒧2(𝛽 + 𝛾)𝐺𝑀E

|r| − 𝛾 ̇r ⋅ ̇r r + 2(1 + 𝛾)(r ⋅ ̇r) ̇r⒭

+ (1 + 𝛾) 𝐺𝑀E

𝑐2|r|3 ⒧
3
|r|2 (r × ̇r)(r ⋅ J) + ( ̇r × J)⒭


𝐿𝑒𝑛𝑠𝑒−𝑇ℎ𝑖𝑟𝑟𝑖𝑛𝑔

− ⒧(1 + 2𝛾) 𝐺𝑀S

𝑐2|R|3 ⒧Ṙ × R⒭ × ̇r⒭


𝑑𝑒𝑆𝑖𝑡𝑡𝑒𝑟

,
(3.14)

with

𝛽, 𝛾 ∶ parameterized post-Newtonian parameters, equal to 1 in General Relativity,
𝑀E,𝑀S ∶ mass of the Earth and Sun, respectively,,

R ∶ position of the satellite w.r.t. the Sun,
J ∶ Earth’s angular momentum per unit mass with |J| ≈ 9.8 ⋅108m2/s.

The de Sitter and Lense-Thirring corrections are around 10 −11m/s2 and therefore much
smaller than the Schwarzschild correction. Nevertheless, the improved accuracy of the
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SLR measurements during the last years enables to measure the relativistic corrections,
which agree with the postulation of the General Relativity Theory, e.g., Lucchesi (2003),
Ciufolini and Pavlis (2004) or Ciufolini et al. (1996,1998, 2011, 2016).

g) Empirical Corrections

Since the background force modeling used in the BSW, for the orbit determination is
not perfect, empirical accelerations may be estimated in addition. The empirical accel-
eration ̈rEMP given in the co-rotating orbital frame is characterized by nine unknown
dynamic orbit parameters consisting of three constant accelerations (𝑅0, 𝑆0,𝑊0), three
once-per-revolution cosine accelerations (𝑅C, 𝑆C,𝑊C) and three once-per-revolution sine
accelerations (𝑅S, 𝑆S,𝑊S) depending on the satellite’s argument of latitude 𝑢 (Beutler et
al. 2005b)

̈rEMP =
⎛⎜⎜⎜⎜⎜⎜⎝

𝑅0
𝑆0
𝑊0

⎞⎟⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎜⎝

𝑅C
𝑆C
𝑊C

⎞⎟⎟⎟⎟⎟⎟⎠
cos(𝑢) +

⎛⎜⎜⎜⎜⎜⎜⎝

𝑅S
𝑆S
𝑊S

⎞⎟⎟⎟⎟⎟⎟⎠
sin(𝑢). (3.15)

Since themeasurements of the SLR geodetic technique aremost sensitive in radial direc-
tion and have a precision of some millimeters up to few centimeters (Combrinck 2010),
the empirical accelerations in this direction (𝑅0, 𝑅C, 𝑅S) are not solved for and are there-
fore set to zero.
To absorb further mis-modelings, especially in the air drag, the BSW allows to apply ad-
ditional pseudo-stochastic pulses (Beutler et al. 2005a), which are instantaneous velocity
changes in radial, along-track or cross-track (given in the co-rotating orbital frame) at
specific times (Beutler et al. 1994).
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3.3 Parameter EstimationBased onLeast-SquaresAdjust-
ment

To improve some of the model parameters mentioned in the previous section, a least-
squares adjustment based on a set of observations is performed. However, first a func-
tional model has to be defined, which describes the relation between the model param-
eters and the observations. Occasionally, some of the model parameters should be con-
strained, pre-eliminated or stacked. This section is mainly based on Dach et al. (2015)
and Koch (2007).

3.3.1 Functional and Statistical Model

A functional modelℱℱℱ describes a relation between 𝑛 observations l’ (𝑛 × 1-vector) and
𝑢 unknown parameters x (𝑢 × 1-vector)

l’ = ℱℱℱ(x). (3.16)

If the number of observations 𝑛 is larger than the number of parameters 𝑢, this relation
cannot be strictly fulfilled in the presence of observation noise until a residual vector v
(𝑛 × 1 -vector) is added. Hence, the observation equation is

l’ + v = ℱℱℱ(x̂), (3.17)

where x̂ (𝑢 × 1 -vector) contains the estimated parameters.
The functional model is often not linear and therefore the observation equation has to
be linearized by a first-order Taylor series expansion around a priori parameters x0 (𝑢×1
-vector)

l’ + v = ℱℱℱ(x0) +A ⋅ Δx̂ (3.18)

with the first-design matrix

A =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝐹1
𝜕𝑥1 ... 𝜕𝐹1

𝜕𝑥𝑢
⋮ ⋮
𝜕𝐹𝑛
𝜕𝑥1 ... 𝜕𝐹𝑛

𝜕𝑥𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠(x=x0)

and the estimated parameter correction Δx̂, such that the improved parameters can be
eventually expressed as x̂ = x0 + Δx̂.
Rearranging the observation equation leads to the error equation

v = A ⋅ Δx̂ − (l’ −ℱℱℱ(x0)) = A ⋅ Δx̂ − l, (3.19)

where l corresponds to the ”observed minus computed” (O-C)-term.
The statistical model describes the statistical behaviour of the observations, i.e., it re-
flects the precision of each observation as well as the correlation between different ob-
servations, and is given by the covariancematrixKll, which allows to compute theweight
matrix Pll according to

Pll = 𝜎2
0K

−1
ll , (3.20)
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where 𝜎0 is the a priori variance of the unit weight. If the observations are uncorrelated,
the weight matrix is reduced to a diagonal matrix with the diagonal elements Pll[𝑖,𝑖] =

𝜎2
0
𝜎2
𝑖
,

where 𝜎2
𝑖 is the variance of the 𝑖-th observation.

3.3.2 Least-Squares Adjustment

If 𝑛 > 𝑢 Eq. 3.19 represent an over determined system. To get one plausible solution
out of the infinite number of solutions, the method of least-squares adjustment is used.
It requests to minimize the square sum of the weighted residuals, i.e., min. = v𝑇Pllv. It
leads to the Normal Equation (NEQ) system

NΔx̂ = b (3.21)

with N = A𝑇PllA and b = A𝑇Plll. The improvements of the estimated parameters are

Δx̂ = (A𝑇PllA)−1A
𝑇Plll = N−1b (3.22)

and the estimated parameters become ̂x̄ = x0 + Δx̂.
If the degree of freedom 𝑛 − 𝑢 > 0, the a posteriori variance of the unit weight 𝑚0, i.e.,
the unbiased estimator of 𝜎0, is

𝑚2
0 = v𝑇Pllv

𝑛 − 𝑢 . (3.23)

With a Gaussian error propagation, the covariance matrix of the estimated parameters
can be written as

Kxx = [(A𝑇PllA)−1A
𝑇Pll]Kll[(A

𝑇PllA)−1A
𝑇Pll]𝑇 = 𝑚2

0(A
𝑇PllA)−1 = 𝑚2

0N
−1, (3.24)

where the diagonal element𝐾xx[𝑖,𝑖] = 𝜎2
𝑖 represents the variance of the parameter no. 𝑖 and

the off-diagonal element 𝐾xx[𝑖,𝑗] = 𝜎𝑖𝑗 represents the covariance between the parameters
𝑖 and 𝑗.
Furthermore, the correlation between two estimated parameter 𝑖 and 𝑗 is

𝜌𝑖𝑗 =
𝜎𝑖𝑗
𝜎𝑖𝜎𝑗

. (3.25)

3.3.3 Constraining Parameters

Sometimes observations are not sensitive to all of the parameters of the functionalmodel
or the parameters are co-linear, such that the NEQ systems become singular. Therefore,
additional information about the parameters has to be introduced in the NEQ systems
by so called pseudo-observations. This approach is described in detail in Brockmann
(1997) and for the sake of completeness, it is briefly summarized here.

The error equation of additional pseudo-observations c is

vc = C ⋅ Δx̂ − c, (3.26)
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where

vc ∶ residual vector (𝑟 × 1-vector),
C ∶ (𝑟 × 𝑢-matrix),
c ∶ vector with known constants, i.e., pseudo-observations (𝑟 × 1-vector).

Hence, the error equations, Eq. 3.19 and 3.26, can be assembled to

⒧ v
vc
⒭ = ⒧A

C
⒭Δx̂ − ⒧l

c
⒭ (3.27)

and the corresponding NEQ system is

(A𝑇PllA + C𝑇PccC)Δx̂ = A𝑇Plll + C𝑇Pccc
(Nll +Ncc)Δx̂ = bl + bc

(3.28)

with the weight matrix of the pseudo-observations

Pcc = 𝜎2
0K

−1
cc . (3.29)

These weights, which are also called constraints, determine how good the pseudo- ob-
servations have to be fulfilled.

a) Absolute Constraints

If a parameter x𝑖 is constrained to its a priori value or to any value, e.g., to zero, it is
called an absolute constraint.
For the constraining of x𝑖 to the a priori value x0𝑖 with an a priori standard deviation
𝜎𝑎𝑏𝑠, the following pseudo-observations are used

C with 𝐶[𝑖,𝑗] =
⎧⎪⎨⎪⎩
1, if 𝑗 = 𝑖
0, otherwise

c = 0

Pcc with 𝑃cc[𝑛,𝑚] =
⎧⎪⎪⎨⎪⎪⎩

𝜎2
0

𝜎2
𝑎𝑏𝑠
, if 𝑛 = 𝑚 = 𝑖

0, otherwise

(3.30)

and the NEQ system is

(A𝑇PllA + C𝑇PccC)Δx̂ = A𝑇Plll (3.31)

with

(A𝑇PllA + C𝑇PccC)[𝑛,𝑚] =
⎧⎪⎪⎨⎪⎪⎩

(A𝑇PllA)[𝑖,𝑖] + 𝜎2
0

𝜎2
𝑎𝑏𝑠
, if 𝑛 = 𝑚 = 𝑖

(A𝑇PllA)[𝑛,𝑚], otherwise.
(3.32)
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Similarly, the parameter x𝑖 can be constrained to zero using the Eq. 3.32, in which case
only the vector with the constants has to be adapted

c with 𝑐𝑗 =
⎧⎪⎨⎪⎩
−𝑥0𝑖 , if 𝑗 = 𝑖
0, otherwise.

(3.33)

In this work, the parameter estimation was performed with applying constraints on

• pseudo-stochastic pulses in along- and cross-track with 𝜎abs = 10 −7m/s and
10 −3m/s, respectively,

• geocenter coordinates with 𝜎abs = 1m,

• range biases with 𝜎abs = 1m,

• X- and Y-pole with 𝜎abs = 30mas,

• LOD with 𝜎abs = 2ms/day.

b) Minimum Constraint Conditions

The Helmert transformation consists of translations (Δ𝑋,Δ𝑌,Δ𝑍), small rotations (with
rotation angles: 𝛼, 𝛽, 𝛾) and a scaling factor 𝜇 (Helmert 1893).

The Helmert transformation of the a priori station coordinates 𝑋0,𝑖, 𝑌0,𝑖 and 𝑍0,𝑖 is

⎛⎜⎜⎜⎜⎜⎜⎝

𝑋̄𝑖
𝑌̄𝑖
𝑍̄𝑖

⎞⎟⎟⎟⎟⎟⎟⎠
=∶X̂𝑖

=
⎛⎜⎜⎜⎜⎜⎜⎝

𝑋0,𝑖
𝑌0,𝑖
𝑍0,𝑖

⎞⎟⎟⎟⎟⎟⎟⎠
=∶X0𝑖

+
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −𝑍𝑖 𝑌𝑖 𝑋𝑖
0 1 0 𝑍𝑖 0 −𝑋𝑖 𝑌𝑖
0 0 1 −𝑌𝑖 𝑋𝑖 0 𝑍𝑖

⎞⎟⎟⎟⎟⎟⎟⎠
=∶C𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ𝑋
Δ𝑌
Δ𝑍
𝛼
𝛽
𝛾
𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=∶p

(3.34)

and in the matrix notation and for all stations simultaneously

X̄ = X0 + Cp. (3.35)

Then the error equation is

v𝑐 = Cp − ⒧X̄ − X0⒭
=∶c

(3.36)

and with the least-squares adjustment the estimation of the Helmert parameters is

p̂ = ⒧C𝑇C⒭
−1

C𝑇c. (3.37)
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Since the improvement of the Helmert transformations is constrained to zero

p̂ = 0 (3.38)

the NEQ system is

(A𝑇PllA + C𝑇C)x̂ = A𝑇Plll. (3.39)

3.3.4 Pre-Elimination of Parameters

The dimension of the NEQ systems can be reduced by pre-eliminating parameters with-
out losing any information (Dach et al. 2015). The unknown parameters x can be sub-
divided into two vectors x1 (𝑢1 × 1 -vector) and x2 (𝑢2 × 1 -vector)

x = ⒧x1
x2
⒭ , (3.40)

where 𝑢1 + 𝑢2 = 𝑢. Assume that the 𝑢2 parameters in x2 are to be pre-eliminated. The
NEQs can be written as

⒧N11 N𝑇
21

N21 N22
⒭ ⒧x1

x2
⒭ = ⒧b1

b2
⒭ (3.41)

and rearranged such that the NEQ is only explicitly depending on the parameters x1

(N11 −N𝑇
21N

−1
22N21)x1 = b1 −N𝑇

21N
−1
22b2. (3.42)

Nevertheless, the effect of the pre-eliminated parameters on other parameters is still
taken correctly into account.

3.3.5 Stacking of Parameters

Assume that there are two observation equation systems, which are independent of each
other

l1 + v1 = A1x1, (3.43)
l2 + v2 = A2x2. (3.44)

The parameters in x1 and x2 can be divided into parameters which are common (xco =
xl1co = xl2co) and parameters which are specific to the observation l1 and l2

x1 = ⒧x
l1
1

xl1co
⒭ with

⎛⎜⎜⎜⎜⎝

Nl1
11 Nl1

1co

⒧Nl1
1co⒭

𝑇
Nl1

coco

⎞⎟⎟⎟⎟⎠
⒧x

l1
1

xl1co
⒭ = ⒧b

l1
1

bl1
co
⒭ (3.45)

and

x2 = ⒧x
l2
2

xl2co
⒭ with

⎛⎜⎜⎜⎜⎝

Nl2
22 Nl2

2co

⒧Nl2
2co⒭

𝑇
Nl2

coco

⎞⎟⎟⎟⎟⎠
⒧x

l2
2

xl2co
⒭ = ⒧b

l2
2

bl2
co
⒭ . (3.46)
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The superposition of these two NEQs is then

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nl1
11 Nl1

1co 0

⒧Nl1
1co⒭

𝑇
Nl1

coco +Nl2
coco ⒧Nl2

2co⒭
𝑇

0 Nl2
2co Nl2

22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xl11
xco
xl22

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎝

bl1
1

bl1
co + bl2

co

bl2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.47)

3.4 Variance Component Estimation

The parameter estimation is often based on sets of observations provided by different
geodetic techniques or to different satellites. They can differ in their size, i.e., number
of observations, their sensitivity to a parameter or their stochastic behavior. Therefore,
a combination of observation sets allows that a weakness of one observation type may
be partially compensated by the strength of another.

In the case of VCE, the individual NEQ systems of each observation set are combined
with the incorporation of their stochastic models. In the following, the approach of non-
negative block-wise VCE (Förstner 1979) is briefly explained, mainly based on Böck-
mann et al. (2010).

Consider 𝑛 individual NEQ systems (see Eq. 3.21)

N𝑖Δx̂𝑖 = b𝑖 𝑖 ∈ {1, ..., 𝑛} (3.48)

which stem from independent sets of observations (with 𝑛𝑖 the number of observations).
The 𝑛 individual NEQs can be iteratively combined into one, where all common param-
eters are stacked (see Sec. 3.3.5)

N(𝑗)
coΔx̂

(𝑗)
co = b(𝑗)

co (3.49)

with

N(𝑗)
co =

𝑛


𝑖=1

𝜎2
0

𝜎̂2(𝑗)
𝑖

N𝑖 and b(𝑗)
co =

𝑛


𝑖=1

𝜎2
0

𝜎̂2(𝑗)
𝑖

b𝑖, (3.50)

where 𝑗 denotes the iteration step. The ratio of 𝜎2
0

𝜎̂2(𝑗)
𝑖

defines an appropriate weight for

each NEQ system 𝑖 for iteration 𝑗.
The initial value 𝜎̂2(0)

𝑖 may, e.g., correspond to the a priori variances of unit weight 𝜎2
0 .

For all further iteration steps, the variance factor 𝜎̂2(𝑗+1)
𝑖 , computedwith the VCEmethod

following (Förstner 1979), reads as

𝜎̂2(𝑗+1)
𝑖 = Ω(𝑗)

𝑖

𝑟(𝑗)𝑖
(3.51)

with the weighted sum of the residuals squared Ω(𝑗)
𝑖 of each individual NEQ based on
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the estimated parameter corrections of the combination Δx̂(𝑗)co

Ω(𝑗)
𝑖 = Δx̂(𝑗)

𝑇

co N𝑖Δx̂
(𝑗)
co − 2Δx̂(𝑗)

𝑇

co b𝑖 + l𝑇𝑖 P𝑖l𝑖 (3.52)

and the redundancy factor

𝑟(𝑗)𝑖 = 𝑛𝑖 −
𝜎2
0

𝜎̂2(𝑗)
𝑖

tr(N𝑖N
(𝑗)−1
co ). (3.53)

Eqs. 3.49 - 3.53 are repeated until convergence is reached.

In this work, VCE is used to combine SLR observations to different geodetic satellites
provided by different SLR stations. Moreover, to derive optimal weights of pseudo-
observations and consequently to determinewhether additional pseudo-stochastic pulses
in the LAGEOS-1/2 orbit parametrization may improve the solution. These methods of
VCE are following the implementations described in Lasser (2022).

3.4.1 Satellite-Specific VCE

The combination of SLR observations to several geodetic satellites may reduce correla-
tions between parameters of interest or enable an enlargement of the parameter space.
While SLR observations to high-orbiting satellites, e.g., LAGEOS-1/2, are essential for
the datum definition or the determination of the ERPs and the location of the geocenter,
the contribution of satellites orbiting the Earth on a lower altitude allows to reliably es-
timate low-degree SH gravity field coefficients. However, since their stochastic models
differ due to satellite properties, e.g., area-to-mass ratio, diameter or the altitude, a VCE
method can be applied to determine a proper weighting of the satellite-specific SLR ob-
servations.

Taking into account a combination of SLR observations to three different geodetic satel-
lites (S1, S2 and S3) using VCE (Eqs. 3.51-3.53) yields the following normal equation
matrix

N(𝑗)
co = 𝜎2

0

𝜎̂2(𝑗)
S1

NS1 +
𝜎2
0

𝜎̂2(𝑗)
S2

NS2 +
𝜎2
0

𝜎̂2(𝑗)
S3

NS3 (3.54)

with the three associated individual normal equation systems

N𝑖Δx̂𝑖 = b𝑖 𝑖 ∈ {S1, S2, S3}. (3.55)

In this work, the iterative determination of the variance factors is initialized with the
following values

𝜎̂2(0)
S1 = 𝜎̂2(0)

S2 = 𝜎̂2(0)
S3 = 𝜎2

0 (3.56)

and stops after ten iterations. That this number of iterations is sufficient to ensure con-
vergence of the VCE procedure, can be shown based on LAGEOS-1/2 and LARES SLR
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combinations, which are discussed in detail in Section 7.1.4. In this case, the improve-
ment of the weights for LAGEOS-1/2 and LARES are smaller than 1 × 10−3, which does
not significantly affect the estimation of the parameters, after the 7-th, resp., 8-th iter-
ation (see Fig. 3.5). Depending on the weekly SLR combination, however, convergence
can be achieved more rapidly.
Since besides the VCE also the so-called Helmert’s ”simple” estimator (Helmert 1907)
is used to determine satellite-specific weights, their relation is briefly shown.
Assume that two satellite groups, i.e., S1 and S2, with the following NEQ systems

A𝑇
S1PS1AS1Δx̂ = A𝑇

S1PS1lS1 and A𝑇
S2PS2AS2Δx̂ = A𝑇

S2PS2lS2 (3.57)

shall be combined on NEQ-level to a multi-satellite SLR solution by the means of VCE

N𝑐𝑜Δx̂𝑐𝑜 = b𝑐𝑜, (3.58)

with the variance factors

𝜎̂2
S1 =

l𝑇S1PS1lS1 + Δx̂𝑇𝑐𝑜A
𝑇
S1PS1(AS1Δx̂𝑐𝑜 − 2lS1)

𝑛S1 − 𝜎2
0

𝜎2
S1,0

𝑡𝑟(NS1N
−1
𝑐𝑜 )

,

𝜎̂2
S2 =

l𝑇S2PS2lS2 + Δx̂𝑇𝑐𝑜A
𝑇
S2PS2(AS2Δx̂𝑐𝑜 − 2lS2)

𝑛S2 − 𝜎2
0

𝜎2
S2,0

𝑡𝑟(NS2N
−1
𝑐𝑜 )

.
(3.59)

Then, the weighting ratio 𝜌𝑉𝐶𝐸
S1,S2 w.r.t. S1 resulting from the VCE reads as

𝜌𝑉𝐶𝐸
S1,S2 =

𝜎̂2
S1

𝜎̂2
S2
. (3.60)

Both variance factors depend on the same solution vector (Δx̂𝑐𝑜) and the redundancy
factors (see Eq. 3.53) account for the correlations between the common parameters in
Δx̂S1 and Δx̂S2. If the two satellite groups do not feature any common parameters and
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Figure 3.5: Improvement of the estimated weights per iteration step from VCE for
LAGEOS-1/2 (left) and LARES (right) resulting from weekly LAGEOS-1/2 and LARES
SLR combinations for the year 2015.
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3.4 Variance Component Estimation

𝜎2
S1,0 = 𝜎2

S2,0 = 𝜎2
0 , the variance factors are identical to the a posteriori variance of unit

weight 𝑚0 (see Eq. 3.23) of each single-satellite solution

𝑚2
0,S1 =

l𝑇S1PS1lS1 + Δx̂𝑇S1A
𝑇
S1PS1(AS1Δx̂S1 − 2lS1)

𝑛S1 − 𝑢S1
= l𝑇S1PS1lS1 − Δx̂𝑇S1A

𝑇
S1PS1lS1

𝑛S1 − 𝑢S1

𝑚2
0,S2 =

l𝑇S2PS2lS2 + Δx̂𝑇S2A
𝑇
S2PS2(AS2Δx̂S2 − 2lS2)

𝑛S2 − 𝑢S2
= l𝑇S2PS2lS2 − Δx̂𝑇S2A

𝑇
S2PS2lS2

𝑛S2 − 𝑢S2
.

(3.61)

On the contrary, Helmert’s simple estimator makes use of the squared RMS of observa-
tion residuals from the single-satellite SLR solutions (Bähr et al. 2007)

𝑅𝑀𝑆
2
S1 =

l𝑇S1PS1lS1 − Δx̂𝑇S1A
𝑇
S1PS1lS1

𝑛S1
and 𝑅𝑀𝑆

2
S2 =

l𝑇S2PS2lS2 − Δx̂𝑇S2A
𝑇
S2PS2lS2

𝑛S2
, (3.62)

with the weighting ratio w.r.t. S1

𝜌𝑅𝑀𝑆
S1,S2 =

𝑅𝑀𝑆
2
S1

𝑅𝑀𝑆
2
S2

. (3.63)

Note that for 𝑛 >> 𝑢, the weighting ratios from VCE and from Helmert’s simple estima-
tor coincide if the two satellite groups do not have any common parameters.
Furthermore, the RMS of observation residuals depend on different solution vectors
(Δx̂S1 and Δx̂S2). Moreover, 𝑅𝑀𝑆

2
𝐴 is a special case of 𝑚2

0,S1, where the outliers are re-
jected and the influence of the parameters is not taken into account (𝑢S1 = 0). This also
applies for the satellite group 𝑆2.
As a result, the VCE with only one solution vector (Δx̂𝑐𝑜) holds a higher consistency of
the weights than the RMS-based approach, where the weights are determined with two
different solution vectors (Δx̂S1 and Δx̂S2). Additionally, Welsch (1978) found that the
Helmert’s simple estimator is biased and therefore should only be used to get a rough
idea of the weighting scheme.

3.4.2 Station-Specific VCE

Since the quality of the SLR observations does not only depend on the satellite but also
strongly on the SLR station equipment, e.g., laser system or repetition rate, VCE can be
used to perform a station-specific weighting. The underlying assumption is that SLR
stations are treated as independent.
For this purpose, NEQs are set up per each station ST𝑖 (for 𝑖 ∈ {1, ..., 𝑛})

NST𝑖Δx̂ST𝑖 = bST𝑖 𝑖 ∈ {1, ..., 𝑛} (3.64)

and the combined normal equation matrix based on 𝑛 stations at the iteration step 𝑗
follows with

N(𝑗)
co =

𝑛


𝑖=1

𝜎2
0

𝜎̂2(𝑗)
ST𝑖

NST𝑖 , (3.65)
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where the initial values 𝜎̂2(0)
ST𝑖

are set to 𝜎2
0 in analogy to Eq. 3.56 and VCE is performed

according to Eqs. 3.51 - 3.53.

3.4.3 VCE for the Estimation of Stochastic Model for Stochastic Pa-
rameters

The extension of the parameter space by stochastic pulses enables to partially absorb
orbit mis-modelings (see Sec. 3.2.2) but may simultaneously exhibit the drawback of
intercepting real signal. Therefore, the stochastic pulses have to be constrained reason-
ably, i.e., the task is to find a proper a priori stochasticmodel, which can be accomplished
with VCE. This approach is thoroughly described in Lasser (2022) and here, for the sake
of completeness, only briefly introduced.

The parameter constraints, e.g., of stochastic pulses in 𝑅, 𝑆 and 𝑊, can be introduced
by additional normal equation systems Nst.pl (see Eq. 3.28) and the extended (now con-
strained) NEQ becomes

(N +Nst.pl,𝑅 +Nst.pl,𝑆 +Nst.pl,𝑊)Δx̂ = b. (3.66)

Consequently, the interpretation ofNst.pl,𝑖 (for 𝑖 ∈ {𝑅, 𝑆,𝑊}) as additional individual sets
of observations allows to apply VCE. The normal equation matrix then reads as

N(𝑗)
co = N + 𝜎2

0

𝜎̂2(𝑗)
𝑅

Nst.pl,𝑅 + 𝜎2
0

𝜎̂2(𝑗)
𝑆

Nst.pl,𝑆 +
𝜎2
0

𝜎̂2(𝑗)
𝑊

Nst.pl,𝑊 (3.67)

with the unknown variance factors 𝜎̂2(𝑗)
𝑅 , 𝜎̂2(𝑗)

𝑆 and 𝜎̂2(𝑗)
𝑊 .

A large variance factor 𝜎̂2
𝑖 (for 𝑖 ∈ {𝑅, 𝑆,𝑊}) indicates a small weight for the NEQ Nst.pl,𝑖,

such that the a priori constraints are strongly reduced and the corresponding parame-
ters, i.e., pseudo-stochastic pulses in 𝑖, can become large.
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3.5 Contribution Analysis

Since in combinations of 𝑛 individual NEQ systems (see Eq. 3.48) common parameters
are stacked, their estimation depend on a subset of 𝑛 NEQ systems. The contribution of
each individual NEQ system to the estimation of a parameter can be measured by the
Contribution Analysis (CA).

Assuming that 𝑛 individual NEQ systems are combined as

N =
𝑛


𝑖=1

N𝑖 =
𝑛


𝑖=1

A𝑇
𝑖 Pll,𝑖A𝑖 (3.68)

where NEQ systems can additionally be weighted.
If N is invertible, the following must be true

NN−1 =
⎛⎜⎜⎜⎜⎝

𝑛


𝑖=1

N𝑖
⎞⎟⎟⎟⎟⎠
N−1 = 1. (3.69)

The contribution matrices are defined as (Sneeuw 2000)

R𝑖 ∶= N𝑖N
−1 for 𝑖 ∈ {1, ..., 𝑛}, (3.70)

where the diagonal elements represent the corresponding contribution numbers. Hence,
the contribution of the 𝑖-th observation set (with the 𝑖-th NEQ) to the 𝑗-th parameter is

𝑅𝑖[𝑗,𝑗] =
1
𝜎2
0

𝑢


𝑘=1

𝑁𝑖[𝑗,𝑘]𝐾xx[𝑘,𝑗] , (3.71)

with the covariance matrix Kxx (see Eq. 3.24).
If N𝑖 is a diagonal matrix which is the case for pseudo-observations, i.e., constraints on
pseudo-stochastic pulses, the above expression simplifies to

𝑅𝑖[𝑗,𝑗] =
𝜎2
𝑗

𝜎2
𝑖,𝑗
, (3.72)

with the variances 𝜎𝑗 and 𝜎𝑖,𝑗 related to N and the individual NEQ system N𝑖, respec-
tively. It follows that 0 ≤ 𝑅𝑖[𝑗,𝑗] ≤ 1 for all 𝑖 ∈ {1, ..., 𝑛} and 𝑗 ∈ {1, ..., 𝑢}.

Furthermore, the CA can also be performed on combinations of differently weighted
NEQ systems.
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3.6 Long-Arc Computation

In this section, the formalism of long-arcs based on NEQ systems of short arcs intro-
duced by Beutler et al. (1996) is explained. This computation method is operationally
used in the GNSS processing (e.g., Lutz et al. 2016) at the Center for Orbit Determina-
tion in Europe (CODE, Dach et al. 2009).

Assume that for each day 𝑖 ∈ {1, 2, ..., 𝑛} the following normal equation system (see Sec.
3.3) can be set up

N𝑖Δx̂𝑖 = b𝑖 (3.73)

The estimated parameters ̂x̄𝑖 for day 𝑖, are the sum of the a priori values x0,𝑖 and the
corrections Δx̂𝑖, may consist of, e.g., osculating orbital elements 𝐸𝑘,𝑖 (with 𝑘 ∈ {1, ..., 6})
referring to 𝑡𝑖, the beginning of day 𝑖, and dynamic parameters 𝑝𝑘,𝑖 (with 𝑘 ∈ {1, ..., 𝑑})
(see Eq. 3.4). The dynamic orbit parameters 𝑞𝑘,𝑖 (with 𝑘 ∈ {1, ..., 𝑚𝑞}, where 𝑚𝑞 < 𝑑) and
the gravity field parameters 𝑔𝑘,𝑖 (with 𝑘 ∈ {1, ..., 𝑚𝑔 }, where𝑚𝑔 ≤ 𝑑 −𝑚𝑞) each are subsets
of the dynamic parameters 𝑝𝑘,𝑖.
The long-arc approach requests continuity and differentiability at the day boundaries
(for day 𝑖 and 𝑖 + 1)

r𝑖(𝑡𝑖+1) = r𝑖+1(𝑡𝑖+1),
̇r𝑖(𝑡𝑖+1) = ̇r𝑖+1(𝑡𝑖+1),

(3.74)

where 𝑡𝑖+1 represents the end of day 𝑖 and the beginning of day 𝑖 + 1, respectively.
If only one set of gravity field parameters shall be computed for the entire long-arc, the
following equation holds

𝑔𝑘,𝑖 = 𝑔𝑘,𝑖+1 for 𝑘 ∈ {1, 2, 3, ..., 𝑚𝑔 }
and 𝑖 ∈ {1, ..., 𝑛 − 1}.

(3.75)

Based on this parametrization, the orbit can be developed into a Taylor series around
the a priori orbit (r0,𝑖, ̇r0,𝑖) and linearized by only using a first-order Taylor expansion

r0,𝑖+
6


𝑘=1

𝜕r0,𝑖
𝜕𝐸𝑘,𝑖

Δ𝐸𝑘,𝑖 +
𝑚𝑞


𝑘=1

𝜕r0,𝑖
𝜕𝑞𝑘,𝑖

Δ𝑞𝑘,𝑖 +
𝑚𝑔


𝑘=1

𝜕r0,𝑖
𝜕𝑔𝑘,𝑖

Δ𝑔𝑘,𝑖 =

r0,𝑖+1 +
6


𝑘=1

𝜕r0,𝑖+1
𝜕𝐸𝑘,𝑖+1

Δ𝐸𝑘,𝑖+1 +
𝑚𝑞


𝑘=1

𝜕r0,𝑖+1
𝜕𝑞𝑘,𝑖+1

Δ𝑞𝑘,𝑖+1 +
𝑚𝑔


𝑘=1

𝜕r0,𝑖+1
𝜕𝑔𝑘,𝑖+1

Δ𝑔𝑘,𝑖+1

̇r0,𝑖+
6


𝑘=1

𝜕 ̇r0,𝑖
𝜕𝐸𝑘,𝑖

Δ𝐸𝑘,𝑖 +
𝑚𝑞


𝑘=1

𝜕 ̇r0,𝑖
𝜕𝑞𝑘,𝑖

Δ𝑞𝑘,𝑖 +
𝑚𝑔


𝑘=1

𝜕 ̇r0,𝑖
𝜕𝑔𝑘,𝑖

Δ𝑔𝑘,𝑖 =

̇r0,𝑖+1 +
6


𝑘=1

𝜕 ̇r0,𝑖+1
𝜕𝐸𝑘,𝑖+1

Δ𝐸𝑘,𝑖+1 +
𝑚𝑞


𝑘=1

𝜕 ̇r0,𝑖+1
𝜕𝑞𝑘,𝑖+1

Δ𝑞𝑘,𝑖+1 +
𝑚𝑔


𝑘=1

𝜕 ̇r0,𝑖+1
𝜕𝑔𝑘,𝑖+1

Δ𝑔𝑘,𝑖+1

(3.76)

and
𝑔0,𝑘,𝑖 + Δ𝑔𝑘,𝑖 = 𝑔0,𝑘,𝑖+1 + Δ𝑔𝑘,𝑖+1, (3.77)
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where 𝑔0,𝑘,𝑖 are the a priori gravity field coefficients for day 𝑖.
Then, Eqs. 3.76 can be written as

x0,𝑖 +H𝑖ΔE𝑖 +Q𝑖Δq𝑖 +G𝑖Δg𝑖 = x0,𝑖+1 +H𝑖+1ΔE𝑖+1 +Q𝑖+1Δq𝑖+1 +G𝑖+1Δg𝑖+1 (3.78)

with

x0,𝑖 = ⒧r0,𝑖̇r0,𝑖
⒭ ,

H𝑖 = ⒧ 𝜕x0,𝑖𝜕𝐸1,𝑖 ... 𝜕x0,𝑖
𝜕𝐸6,𝑖 ⒭ ,

Q𝑖 = ⒧𝜕x0,𝑖𝜕𝑞1,𝑖 ... 𝜕x0,𝑖
𝜕𝑞𝑚𝑞,𝑖

⒭ ,

G𝑖 = ⒧𝜕x0,𝑖𝜕𝑔1,𝑖 ... 𝜕x0,𝑖
𝜕𝑔𝑚𝑔 ,𝑖

⒭ .

(3.79)

The transformation of the osculating orbital parameters from day 𝑖 + 1 to day 𝑖 is

ΔE𝑖+1 =H−1
𝑖+1(x0,𝑖 − x0,𝑖+1) +H−1

𝑖+1H𝑖ΔE𝑖

+H−1
𝑖+1(Q𝑖Δq𝑖 −Q𝑖+1Δq𝑖+1)

+H−1
𝑖+1(G𝑖 −G𝑖+1)Δg𝑖 +H−1

𝑖+1G𝑖+1(g0,𝑖+1 − g0,𝑖)
(3.80)

and the recursive transformation is (see Appendix A)

ΔE𝑖+1 =H−1
𝑖+1H1ΔE1 +H−1

𝑖+1(G1 −G𝑖+1)Δg1 +H−1
𝑖+1 ⒧Q1Δq1 −Q𝑖+1Δq𝑖+1⒭

+H−1
𝑖+1 x0,1 − x0,𝑖+1 +G𝑖+1 ⒧g0,𝑖+1 − g0,1⒭ .

(3.81)

In addition, the corresponding recursive transformation of the gravity field parameters
is

Δg𝑖+1 = Δg1 + (g0,1 − g0,𝑖+1). (3.82)

Hence, with the transformations in Eq. 3.81 and 3.82 the parameters Δx̂𝑖 for days 𝑖 ∈
{2, 3, ..., 𝑛} can be expressed in the form

Δx̂𝑖 = B𝑖 ⋅ Δx̂1 + C𝑖. (3.83)
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Chapter 4

SLR Data Processing and Validation at
AIUB

In this work, SLR data (Noll 2010) provided by the ILRS are processed with the BSW.
The SLR data analysis in the BSWwas developed in collaboration with the BKG (Thaller
et al. 2008) and are maintained by the AIUB.

The SLR data processing is separated in two steps. First, the SLR data are screened to
eliminate large outliers (see Sec. 4.1). Afterwards, satellite-specific NEQs are set-up on
the basis of the remaining SLR data.
Satellite orbits are characterized within the BSW by six initial osculating orbital ele-
ments (see Sec. 3.2) referring to the beginning of the arc and up to nine dynamic orbit
parameters (Beutler et al. 2005a). A satellite arc over several days is either determined
by one set of those orbit parameters (in this work named true-arc), or by stacking daily
arcs with continuity and differentiability conditions at the day boundaries (called long-
arc, Beutler et al. 1996). However, the orbit modeling with empirical parameters must
be adapted depending on the satellite and the set of parameters. This is detailed in Sec-
tion 4.2.
The satellite orbits together with station coordinates, range biases for selected stations
as recommended by the ILRS, and the global geodetic parameters of interest, i.e., ERPs,
geocenter coordinates and SH geopotential coefficients, are estimated in a least-squares
adjustment, either using a single NEQ system or by combining several NEQ systems (see
Sec. 4.3).
The quality of the different SLR combinations are validated by comparing all estimated
parameters with internal and external quality metrics (see Sec. 4.4).

4.1 SLR Data Screening

The outlier detection is performed in the BSWon the level of observation residuals using
the following two rejection criteria:

Criterion 1: All observation residuals of a station per satellite are rejected, if the RMS
of the residuals w.r.t. the mean offset of the residual time series per satel-
lite exceeds the pre-defined maximum overall value 𝜎max.
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4. SLR Data Processing and Validation at AIUB

Criterion 2: An observation residual is rejected if it exceeds the pre-defined absolute
maximum 𝑟𝑒𝑠max.

In this work, the SLR data screening is realized in two steps, similar to the operational
SLR processing at AIUB and BKG.
The first step (see Fig. 4.1) is a rough screening, where the residual statistics of given
SLR data for each satellite group are generated by using a priori satellite orbits (see Sec.
4.2) and applying all background models without estimating any parameters, e.g., ERPs
are fixed to IERS-14-C04 reference series and the station coordinates to the positions
given by the SLRF2014. Then, the station with the largest RMS of the residual time se-
ries per satellite is selected and checked for the rejection criteria with 𝜎max = 125mm for
LAGEOS-1/2, 200mmfor LARES/LARES-2/Ajisai and 250mmfor Stella/Starlette/Etalon-
1/Etalon-2 and ranging iteratively from 𝑟𝑒𝑠max = 10m to 1m. Furthermore, only stations
with more than 𝑜min = 9 observations per 7-day arc for LAGEOS-1/2 (resp. 𝑜min = 2 for

Start

SLR data

resmax ∈ {10, 7, 5, 3, 2, 1} [m]

i = 1

i ≤ 6

Residual statistics

Take station with
largest RMS

RMS > σmax

Mark all residuals of
this station/satellite

Mark all residuals of sta-
tion/satellite > resmax(i)

Mark all residuals of stations hav-
ing less than omin observations

Remove the marked observations from SLR data

Reduced SLR datai = i + 1

End
no

yes

yes

no

Figure 4.1: Schematic illustration of the first SLR data screening step.

44



4.1 SLR Data Screening

LEOs) are considered.
With the remaining SLR data, the second screening step is performed (see Fig. 4.2). Now,
the observation residuals result from a first solution where orbit parameters, i.e., six
osculating and five empirical orbit parameters, station coordinates and ERPs are co-
estimated in a least-squares adjustment. Then, again the station with the largest RMS
of the residual time series per satellite is selected and checked for the rejection criteria

Figure 4.2: Schematic illustration of the second SLR data screening step.
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Table 4.1: Maximum overall value 𝜎max, absolute maximum 𝑟𝑒𝑠max and the minimum
number of observations 𝑜min used for the data screening of different satellite groups.

Satellite Screening Step 1 Screening Step 2
𝜎max 𝑟𝑒𝑠max 𝑜min 𝜎max 𝑟𝑒𝑠lim 𝑜min
[mm] [m] [mm] [m]

LAGEOS-1/2 125 {10, 7, 5, 3, 2, 1} 10 62.5 0.05 10
Etalon-1/2 250 {10, 7, 5, 3, 2, 1} 1 62.5 0.1 1
LARES/LARES-2 200 {10, 7, 5, 3, 2, 1} 1 62.5 0.07 3
Stella/Starlette 250 {10, 7, 5, 3, 2, 1} 5 62.5 0.07 3
Ajisai 200 {10, 7, 5, 3, 2, 1} 1 62.5 0.07 3

with 𝜎max = 62.5mm and 𝑟𝑒𝑠max = 0.9m. Furthermore, only stations providing 𝑜min = 9
of LAGEOS-1/2 (resp. 𝑜min = 2 of LEO) observations per arc are further used. This is
repeated until no further rejections are requested. Afterwards, if not more than 20 it-
erations were performed, the editing mode is changed such that the rejection criteria
are applied on all observation residuals, where 𝑟𝑒𝑠max ranging iteratively from 0.9m to
0.05m for LAGEOS-1/2 (resp. to 0.07m for LEOs and to 0.1m for Etalon-1/2). Table 4.1
summarizes the parameter settings of 𝜎max, 𝑟𝑒𝑠max and 𝑜min for the two screening steps
for each satellite group.

Applying the SLR data screening, an average of 2% of the data are rejected for LAGEOS-
1/2 and LARES for the years 2015-2020. For the geodetic SLR satellites with the highest
altitudes, i.e., Etalon-1/2, an average of 7% (resp. 8% for Etalon-2) of the data are re-
moved. While for the SLR LEOs Starlette, Stella and Ajisai 12%, 30%, resp., 40% of the
data are rejected by the screening.
Although the percentage of rejected data varies depending on the satellite, the mean
number of used observations per weekly SLR combination for LAGEOS-1/2, Starlette
and even Ajisai are comparable with around 1400 observations (see Fig. 4.3). Except for
Etalon-1/2 and Stella, themean numbers of observations are always between 1100-1500.
The small observation numbers of Etalon-1/2, i.e., more than ten times lower than, e.g.,
for LAGEOS-1, can be explained, on one hand, by the small number of SLR stations pro-
viding Etalon-1/2 observations. On average only ten different SLR stations deliver data
to Etalon-1/2 per week, while in case of LAGEOS-1 or LAGEOS-2 on average more than
20 different SLR stations contribute. On the other hand, Etalon-1/2 have a revolution
time of almost twelve hours (see Table 2.2) and are, therefore, at most twice a day in the
field of view of a SLR ground station. Instead of observing the same pass over a long
time span, the observation priority is given to the low-flying satellites⁷.
The mean satellite observation number of Stella with 530 is also significantly lower than
for the comparable Starlette satellite with 1480, even though they have almost the same
orbit altitude and the same tracking priority. Furthermore, the mean number of SLR sta-
tions observing Stella or Starlette differs only by three stations. The visibility of LEOs

⁷https://ilrs.gsfc.nasa.gov/missions/mission_operations/priorities/index.html
(Accessed: 23/02/2023)
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Figure 4.3: Number of SLR observations to eight geodetic satellites used for the weekly
SLR processing for the years 2015-2020.

strongly depends on the orbit inclination (Otsubo et al. 2016). Starlette with an incli-
nation of around 50 ° cannot be observed from the polar regions. In contrary to Stella,
whose inclination is about 98 ° and is therefore more often observable from the po-
lar regions than from the lower latitudes. Since most of the SLR stations are located in
the lower latitudes between 50 °N/S, the small observation number of Stella may be ex-
plained with the bad satellite visibility (Otsubo et al. 2016).

Having a closer look on the data contribution of each individual station to SLR solutions
during the time period 2015-2020 reveals that the most productive station is Yarragadee
(7090) located in Australia (see Fig. 4.4). The 15 most productive stations deliver 80%
of the used data volume, of which the first four stations (Yarragadee, SwissOGS, Mt.
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Figure 4.5: Spectral analysis of weekly LAGEOS-1/2 SLR observation numbers taken by
stations on the northern, resp., southern hemisphere for the years 2015-2020.

Stromlo, Greenbelt) account for already 40%.
Furthermore, almost 70% of the satellite observations are taken by SLR stations located
on the northern hemisphere. However, this is to be expected because of the geographi-
cal distribution of the SLR stations (see Sec. 2.4). A spectral analysis of the observation
numbers to LAGEOS-1/2 by hemisphere (see Fig. 4.5) exhibits that the northern hemi-
sphere shows a strong semi-annual and annual signal. It is reasonable to assume that
the stations on the northern hemisphere observe less during their winter and summer
months, while the number of observations provided by the southern hemisphere has a
higher stability over time.

4.2 Orbit Parametrization and Modeling

In general, 7-day true-arcs are represented by the six initial osculating orbital elements
and five dynamical orbit parameters, i.e., a constant acceleration 𝑆0 in along-track (𝑆)
andOnce-Per-Revolution (OPR) sine and cosine accelerations (𝑆𝑆 resp. 𝑆𝐶) in along-track
and in cross-track (𝑊𝑆 resp. 𝑊𝐶). Dynamic orbit parameters in radial direction (𝑅) are
not set-up since SLR measurements are most sensitive in 𝑅 and the information should
be preserved to the extend possible. In the BSW, the dynamic orbit parameters are in-
troduced to mainly absorb the mis-modeling of the solar radiation pressure (Dach et al.
2015).
Since LEOs experience a more variable orbit environment, e.g., a higher density of the
atmosphere and feature an increased sensitivity to the SH geopotential coefficients,
an improved or extended background force modeling and a more sophisticated orbit
parametrization are needed than for the higher Earth orbiting satellites, e.g., LAGEOS-
1/2 and Etalon-1/2. Therefore, the air drag is additionally modeled with NRLMSISE-00
(Picone et al. 2002) and different a priori gravity field models are validated (see Sec.
7.2.1). Table 4.2 lists all the background models used for the SLR data processing.
The a priori orbits are generated by fitting a set of predicted satellite positions, dis-
tributed by the NASA’s Archive of Space Geodesy Data (Noll 2010), in an orbit deter-
mination process, where the six osculating and five dynamic orbit parameters are esti-
mated.
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Table 4.2: A priori background models used for the SLR data processing.

Models Description

Reference frame SLRF2014⁸
Earth rotation param-
eters

IERS-14-C04⁹ (Bizouard et al. 2019)

Nutation model IAU2000 (Mathews et al. 2002)
Subdaily pole model DESAI (Desai and Sibois 2016)
Earth’s gravity field GGM05S: d/o 90 (Ries et al. 2016)
Tides Solid Earth tides (Petit and Luzum 2010)

Ocean tides: FES2014b: d/o 30 (Lyard et al. 2021)
+ admittances
Atmospheric tides (Dobslaw et al. 2017)

Pole tides Solid Earth pole tides (Petit and Luzum 2010)
Ocean pole tides

Loading corrections Ocean tidal loading (Lyard et al. 2021)
Atmospheric tidal loading (Ray and Ponte 2003)

De-aliasing products Atmosphere + Ocean RL06: d/o 30 (Dobslaw et al. 2017)
Third body DE405 (Standish 1998)
attractions
Air drag NRLMSISE-00 (Picone et al. 2002)
Direct solar radiation
pressure

with radiation pressure coefficient
𝐶R= 1.13

Earth radiation pres-
sure

albedo reflectivity and emissivity (see Sec. 3.2e))

Relativistic Schwarzschild (Petit and Luzum 2010)
corrections Lense-Thirring

deSitter

Furthermore, orbits can be computed as 7-day long-arcs with daily dynamic orbit pa-
rameters (see Sec. 3.6) or by additionally introducing pseudo-stochastic pulses, which
may partially absorb possible air drag mis-modeling. Analyses indicated that an orbit
parametrization with 2 pseudo-stochastic pulses in 𝑆 per day are sufficient for LARES
(see Sec. 7.1.1), while the other LEOs require twelve pseudo-stochastic pulses per day
(see Sec. 7.2.1).

Nevertheless, these orbit parametrizations have to be further adapted, if the estimated
parameter space contains low-degree SH geopotential coefficients because OPR-W ac-
celerations are strongly correlated with 𝐶20 (Jäggi et al. 2012, Bloßfeld et al. 2014) and
OPR-S with 𝐶30 (see Sec. 7.1.3). Consequently, SH geopotential coefficients can only
be estimated reliably if the OPR-W and OPR-S accelerations are not set-up for specific

⁸https://cddis.nasa.gov/archive/slr/products/resource/SLRF2014_POS+VEL_2030.0_200325.snx
(Accessed: 22/12/2022)
⁹https://hpiers.obspm.fr/eoppc/eop/eopc04/ (Accessed: 22/12/2022)
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satellites, in particular for the geodetic LEOs.

4.3 Geodetic Parametrization

Depending on the definition of the set of parameters, a single geodetic techniquemaynot
be able to estimate all parameters and the corresponding NEQ system becomes singular.
Therefore, particular parameters must be be constrained or even fixed (see Sec. 3.3.3).
In the case of a standard SLR combination, the following set of parameters is estimated:

• orbit parameters (osculating and dynamic orbital parameters, pseudo-stochastic
pulses),

• station coordinates,

• geocenter coordinates,

• range biases and

• ERPs.

In the standard processing, constraints have to be applied to the station coordinates (see
Sec. 4.3.1) and ERPs (see Sec. 4.3.2) to provide a non-degenerate NEQ system.

4.3.1 Datum Definition

Instead of fixing particular stations to their a priori coordinates, it is more physical to
use Minimum Constraint (MC) conditions on a subset of stations (see Sec. 3.3.3). To be
able to co-estimate ERPs and geocenter coordinates, No-Net-Rotation (NNR) and No-
Net-Translation (NNT) conditions have to be applied. For this, the three rotation angles
and the three translations of the Helmert transformation are constrained to zero and the
mean rotation and translation of the subset of core stations are kept to zero.
The stations in the subset are characterized by featuring stable station coordinates. The
ILRS provides a list of such core stations¹⁰, but the list can be verified by using a Helmert
transformation approach (see Sec. 6.6) as well.

4.3.2 Earth Rotation Parameters

The ERPs consist of the polar motion (𝑥p,𝑦p) and the universal time 𝑈𝑇1. The offset of
𝑈𝑇1 w.r.t. 𝑈𝑇𝐶 at time 𝑡 is

Δ𝑈𝑇(𝑡) = 𝑈𝑇1(𝑡) − 𝑈𝑇𝐶(𝑡) (4.1)

and Length of Day (LOD) reads as

LOD(𝑡) = −⒧Δ𝑈𝑇(𝑡 + 1𝑑𝑎𝑦) − Δ𝑈𝑇(𝑡)⒭/𝑑𝑎𝑦. (4.2)

¹⁰https://ilrs.dgfi.tum.de/fileadmin/data_handling/ILRS_Data_Handling_File.snx
(Accessed: 22/12/2022)
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In the BSW, the ERPs can be parametrized using a PieceWise-Constant (PWC) or a
PieceWise-Linear (PWL) model (see Fig. 4.6). For the PWC parametrization, constant
offsets at noon w.r.t. the a priori values are estimated on a daily basis for the polar mo-
tion. The daily drift is, however, taken over from the a priori models. Δ𝑈𝑇 (see Eq. 4.1)
are fixed to the a priori model, e.g., IERS-14-C04 reference series, at the beginning of
each day and only LOD is estimated on a daily basis. The PWL parametrization is based
on polygons, i.e., piecewise-linear functions between the vertices at the beginning of
each day. Therefore, the estimated polar motion as well as Δ𝑈𝑇 are referring to the ver-
tices of the polygon. However, SLR as well as the other satellite geodetic techniques are
only able to estimate LOD but not the offset Δ𝑈𝑇 due to correlations with the satellite’s
ascending node (Rothacher et al. 1999). Hence, one per 7-day arc of the dailyΔ𝑈𝑇 values
has to be fixed to the a priori model to remove this singularity.
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Figure 4.6: Piecewise-constant (top) or piecewise-linear (bottom) parametrization of the
ERPs (adapted from Thaller 2008).
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4.4 Methodology of SLR Solution Analysis

In this section, the general approach to validate the quality of the weekly SLR solutions
is presented. For this purpose, the time series of estimated parameters from several SLR
solutions are compared with internal and external quality metrics. Additionally, an out-
lier detection on the time series of the comparison ensures that the statistical conclusions
are reliable.

4.4.1 Earth Rotation Parameters

In this work, the daily estimated ERPs of weekly SLR solutions are compared to the
reference series IERS-14-C04 (see Sec. 3.1.3). For the PWC parametrization of the ERPs,
Δ𝑈𝑇 is fixed for each day and for the PWL parametrization only the 4th offset of Δ𝑈𝑇
is fixed to the a priori value at 0h epoch. To incorporate also the estimated drift of Δ𝑈𝑇
in the validation, the parameter estimates are linearly interpolated between the nearest
two 0h epochs to the 12h epoch. Additionally, a linear interpolation ofΔ𝑈𝑇 is performed
on the reduced UT1R-UTC values, which take short periodic corrections (up to 35 days)
due to tidal deformation to the Earth’s rotation into account (Petit and Luzum 2010).
Furthermore, an outlier detection with a rejection level of 2.5𝜎, where 𝜎 is the expected
standard deviation, is applied on the time series of the variations of the daily estimated
ERPs of several weekly SLR solutions w.r.t. the reference series. Hence, the quality of the
estimated time series of the ERPs 𝑐, i.e., X-Pole, Y-Pole and Δ𝑈𝑇, can be determined by
the mean of the time series and the Weighted Root Mean Square (WRMS)

WRMS𝑐 =

⎷

1
∑𝑛

𝑖=1
1
𝜎2
𝑐,𝑖

𝑛


𝑖=1

1
𝜎2
𝑐,𝑖

⋅ 𝑥2𝑐,𝑖, for 𝑐 ∈ {X-Pole, Y-Pole, Δ𝑈𝑇} (4.3)

with

𝑛 ∶ total number of daily estimates from several weekly solutions,
𝑥𝑐,𝑖 ∶ variation of the i-th estimate w.r.t. the reference series for parameter

c with 𝑖 ∈ {1, ..., 𝑛},
𝜎𝑐,𝑖 ∶ formal error of the parameter c for the i-th estimated value.

4.4.2 Station Coordinates

The weekly estimated station coordinates of the core stations are compared to the corre-
sponding reference station coordinates from SLRF2014 after estimating seven parame-
ters of a Helmert transformation (see Eq. 3.34). Further, the RMS of the residuals in each
component 𝑐 ∈ {X, Y, Z} is calculated. The time series of the RMS, composed of several
weekly solutions, is reduced by an outlier detection with a rejection level of 2.5𝜎 in each
component. Afterwards, the Weighted Mean (WMEAN) of RMS for the component 𝑐 is

WMEAN(𝑅𝑀𝑆𝑐) =
1

∑𝑛
𝑖=1 𝑛sta,𝑖

𝑛


𝑖=1

𝑛sta,𝑖 ⋅ 𝑅𝑀𝑆𝑐,𝑖 for 𝑐 ∈ {X, Y, Z} (4.4)
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with

𝑛 ∶ number of weekly solutions,
𝑅𝑀𝑆𝑐,𝑖 ∶ RMS of the component c for the i-th weekly solution with 𝑖 ∈ {1, ..., 𝑛},

𝑛sta,𝑖 ∶ number of core stations used to form 𝑅𝑀𝑆𝑐,𝑖.

4.4.3 Spherical Harmonic Geopotential Coefficients

Theweekly estimated SH geopotential coefficients are comparedwith external reference
series provided by the Center of Space Research, University of Texas at Austin (CSR,
Cheng et al. 2011) and COST-G (Jäggi et al. 2020).
The Center of Space Research, University of Texas at Austin (CSR) reference series con-
sists of monthly estimates up to degree/order 5 and 𝐶61/𝑆61 determined with SLR ob-
servations to five geodetic satellites. It is preferred over the well-known reference series
TN-14 having a data gap in 2018 (Loomis et al. 2020) of NASAGSFC, since this reference
series covers all years from 2002 to 2021. For the matching time spans, the two series
are nearly identical.
On the contrary, the COST-G products are based on observations collected by the dedi-
cated GRACE/GRACE-FO satellite gravity missions.

The Earth’s gravity field models depend on geophysical constants 𝐺𝑀 and Earth radius
𝑎E. The SH geopotential coefficients 𝐶𝑛𝑚,𝑖/𝑆𝑛𝑚,𝑖 of the system 𝑖 using the constants 𝐺𝑀𝑖
and 𝑎E,𝑖 can be transformed into a system 𝑗 with 𝐺𝑀𝑗 and 𝑎E,𝑗 by

𝐶𝑛𝑚,𝑗 =
𝐺𝑀𝑖
𝐺𝑀𝑗

⒧
𝑎E,𝑖
𝑎E,𝑗

⒭
𝑛

𝐶𝑛𝑚,𝑖 and 𝑆𝑛𝑚,𝑗 =
𝐺𝑀𝑖
𝐺𝑀𝑗

⒧
𝑎E,𝑖
𝑎E,𝑗

⒭
𝑛

𝑆𝑛𝑚,𝑖. (4.5)

The geopotential is a sum of the time-dependent and time-independent tidal potentials
of external bodies, e.g., Moon or Sun, and the Earth. If, however, the time-dependent
tidal potentials are neglected, such that only a permanent deformation of the Earth re-
mains, it is called a mean-tide model (Petit and Luzum 2010). If the time-independent
potentials of the external bodies are deducted from themean-tide, the resulting tide sys-
tem is called zero-tide. On the contrary, the tide-free geopotential describes the mean-
tide reduced by the time-independent tidal potentials. Hence, the SH geopotential co-
efficient 𝐶20 can be formulated in different tide systems, i.e., in the zero-tide system 𝐶zt

20
or in the tide-free system 𝐶tf

20. According to Petit and Luzum (2010) the transformation
between the zero-tide and tide-free system is given by

𝐶zt
20 = 𝐶tf

20 − 4.1736 ⋅ 10−9. (4.6)

In this work, all SH geopotential coefficients are given in the zero-tide system with the
geophysical constants 𝐺𝑀 = 3.986 004 415 ⋅1014m3/s2 and 𝑎E = 6.378 136 3 ⋅106m.

In addition to the comparison of the time series, the corresponding amplitude spectra,
computed by a Fourier-Transformation, are analyzed as well.
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Chapter 5

SLR Normal Point Generation and
Analysis

SLR stations collect a large amount of SLR full-rate data, especially due to the trend
towards laser systems with high repetition rates, i.e., ≥1kHz. At the time of writing,
ten SLR stations, mainly located in Asian countries and Central Europe, have already
installed a kHz laser system¹¹.
SLR full-rate data are strongly correlated, and thus, contain redundant information (See-
ber 2003), they can be reasonably compressed into a much smaller number of represen-
tative observations, so-called Normal Points (NPs). However, it must be ensured that
after the data reduction, the essential information of the full-rate data still remains.
The ILRS provided in 1997 the Herstmonceux NP algorithm, which contains a method of
SLR full-rate data screening and the generation of NPs (see Sec. 5.1).
In Section 5.2, a simulation study is performed to investigate whether signal informa-
tion and stochastic properties are lost through the NP generation process or if there are
possible optimizations of the procedure (see Sec. 5.2).

At the time of writing, it is common that SLR stations generate their NPs on-site and
provide them through the ILRS data centers to the analysis centers. Most of the SLR sta-
tions adapted the general approach, i.e., the Herstmonceux NP algorithm of the ILRS,
to improve the quality of their NPs. Consequently, slightly different NP generation pro-
cedures may introduce systematic errors in the SLR analysis.
In 2018, the ILRS has requested all SLR stations to also provide SLR full-rate data (Noll
and Pearlman 2018), to enable the analysis centers to generate the NPs of each SLR sta-
tion in a consistent way. Therefore, a SLR NP generator, named NORMPT, is imple-
mented in a development version of the BSW (see Sec. 5.3). This program allows to
use different trend functions, e.g., polynomial functions or adjusted orbit trajectories
(see Sec. 5.3.2), and screening methods, e.g., RMS-based or leading-edge filters (see Sec.
5.3.3), to form NPs.

Most of the full-rate data files provided by the ILRS are already reduced such that only
data are included, which were used by the station to form their NPs. This prevents a
correct screening with the program NORMPT. Therefore, only the full-rate data from

¹¹https://ilrs.gsfc.nasa.gov/network/index.html (Accessed: 24/08/2022)
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the SwissOGS are used at the moment in this work to generate NPs. Since the ILRS has
requested the SLR stations that their submitted full-rate data should also contain data
outside the screening level, e.g., ±5𝜎 (Carabajal, pers. communication, 2023), it will be
possible to generate NPs from other SLR stations in the future.
The impact and the quality of these newly derived NPs can be immediately verified in
subsequent space geodetic analyses (see Sec. 5.4). To this end, no further station infor-
mation, e.g., the number of SLR full-rate data compressed into a NP or their RMS, is yet
used in the SLR processing at AIUB.

5.1 Herstmonceux Normal Point Algorithm of the ILRS

The Herstmonceux NP algorithm provided by the ILRS consists of two parts, namely
the SLR data screening and the NP generation¹².

Part 1: SLR data screening

1.a) Generate Prediction Residuals 𝑃𝑅 = 𝑂 − 𝐶 (Observed-Computed).

1.b) Find a trend function 𝑓 (fitted to signal data) to minimize the remaining trends
in 𝑃𝑅.

1.c) Compute Fit Residuals 𝐹𝑅 = 𝑃𝑅 − 𝑓(𝑃𝑅) of signal data.

1.d) Calculate the RMS of the 𝐹𝑅s (RMS𝐹𝑅) and find signal data, where the corre-
sponding 𝐹𝑅s are larger than the rejection level of 𝑛⋅RMS with 𝑛 = 3.0 for multi-
photon and 𝑛 = 2.5 for single-photon systems, respectively.

1.e) Reject the data found in 1.d) and go back to 1.b).

The SLR data screening (see Part 1) is performed to classify the full-rate data in noise,
i.e., falsely induced signals in the detector due to background radiations (Degnan 1993),
and the actual signal of the observed satellite. For this purpose, prediction residuals
𝑃𝑅s, which are the differences between observed and computed distances between the
ground station and the satellite, are generated (see Fig. 5.2, top). The observed distances
are calculated according to Eq. 2.3. The computed distances are the differences between
the a priori station coordinates and satellite positions given by the SLRF2014 reference
frame and the a priori orbit (see Sec. 4.2), respectively.
Since 𝑃𝑅s may still feature a trend, a function 𝑓 is fitted to the signal (see Fig. 5.2, mid-
dle) and the fit residuals 𝐹𝑅s are formed. If the 𝐹𝑅s are fully detrended, they are sup-
posed to represent the random error of the observations. Consequently, all data within
a certain rejection level of 𝑛⋅RMS𝐹𝑅, with a pre-defined scaling factor 𝑛 and the RMS of
𝐹𝑅s, are considered as signal (see Fig. 5.2, bottom). They are then again used to build
the trend function in 1.b). These steps are repeated until no further full-rate data are
recognized as signal (see Fig. 5.1).

¹²https://ilrs.gsfc.nasa.gov/data_and_products/data/npt/npt_algorithm.html
(Accessed: 24/08/2022)
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5.1 Herstmonceux Normal Point Algorithm of the ILRS

Observations (O) Computations (C)

Compute Prediction Residuals PR = O-C

Classify all PR data in noise and signal

Fit a trend function 𝑓 to PRs, which belong to the signal

Compute Fit Residuals FR = PR-f(PR)

Data screening based on FRs (classify the data in noise and signal)

Changes in the noise
or signal data sets

End

no

yes

Figure 5.1: Schematic illustration of the SLR data screening (Part 1).

Part 2: SLR NP generation

2.a) Subdivide the day containing 𝐹𝑅s of signal data into fixed bins (called bins) start-
ing at 0h UTC. The interval length depends on the altitude of the satellite (see
Table 5.1).

2.b) Compute the mean value 𝐹𝑅𝑖 and the mean epoch 𝑡𝑖 of all 𝐹𝑅s in the bin 𝑖.

2.c) Find the observation 𝑂𝑖 with its fit residual 𝐹𝑅𝑖, whose observation epoch 𝑡𝑖 is
nearest to the mean epoch 𝑡𝑖 in the bin 𝑖.

2.d) The NP for bin 𝑖 is then 𝑁𝑃𝑖 = 𝑂𝑖 − 𝐹𝑅𝑖 + 𝐹𝑅𝑖.

The remaining signal data are further compressed into the NP data. For the NP gener-
ation process of the ILRS (see Part 2), each satellite pass is divided into fixed bins. The
mean of the fit residuals 𝐹𝑅𝑖 within each bin 𝑖 𝐹𝑅𝑖 is calculated, which ideally represents
the random error of the bin. Consequently, the NP𝑖 of the bin 𝑖 corresponds to the ob-
servation 𝑂𝑖, with the observation epoch 𝑡𝑖 closest to the mean epoch of the bin 𝑖, which
is reduced to the mean of the random error of the bin 𝑖 (see Fig 5.3)

𝑁𝑃𝑖 = 𝑂𝑖 − 𝐹𝑅𝑖 + 𝐹𝑅𝑖. (5.1)

This ILRS NP algorithm has standardized the procedures of SLR data screening and NP
generation.However, NPs are individually generated by each SLR station,where the data
processing is adapted to perform it in a best possible way. Consequently, a consistent NP
generation cannot be guaranteed.
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Figure 5.2: Prediction residuals 𝑃𝑅s (top), i.e., observed-computed, fitted trend function
𝑓(𝑃𝑅) (middle) and the corresponding fit residuals 𝐹𝑅s (bottom) with a 2.5⋅RMS rejec-
tion criteria to separate signal from noise of a LAGEOS-1 pass observed by SwissOGS
on September 12, 2019.

Figure 5.3: 𝐹𝑅s corresponding to the signal with 𝐹𝑅𝑖 and 𝐹𝑅𝑖 − 𝐹𝑅𝑖 for each bin 𝑖 of a
LAGEOS-1 pass observed by SwissOGS on September 12, 2019.
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Table 5.1: NP bin size recommendations from the ILRS website¹³.

Altitude [km] Bin size [s] Satellites

<550 5 GRACE, GRACE-FO
550-800 15 Sentinel-3

800-2000 30 Starlette, Stella, Ajisai, LARES
2000-5000 60
5000-8000 120 LAGEOS-1/2, LARES-2

8000-15000 180
>15000 300 Etalon-1/2, GNSS

5.2 Simulation Study on SLR Data Compression

This simulation study aims to give further insights into the full-rate data compression
and its justification. For this purpose, SLR full-rate data are simulated by noisy fit resid-
uals along a known polynomial function of degree 2, representing a satellite pass ob-
served from the Earth. These data are compressed into a few NPs according to the NP
algorithmdescribed in Section 5.1. The reduced data set of NPs is then used to determine
a polynomial function of degree 2 based on a least-squares adjustment. A comparison
with the known polynomial function then indicates the quality of the performed data
reduction. The better the two functions coincide, the less information is lost during the
data compression.
Moreover, this simulation study enables to compare different trend functions and NP
bin sizes as a function of the observation time span.
However, due to the strong simplification of the problem it cannot be expected that con-
clusions may directly be transferred to the real SLR data compression at different SLR
stations without further investigations.

5.2.1 Simulation Approach

For the sake of simplicity, a SLR full-rate data set of a typical LAGEOS-1 pass observed
by the SwissOGS over 40 minutes is simulated. The SLR full-rate data 𝑜(𝑡) are rep-
resented by a superposition of a known polynomial function of degree 2, 𝑃2(𝑡), and
a measurement- and background-noise function 𝑛(𝑡). The computed orbit 𝑐(𝑡) is rep-
resented by the same known polynomial 𝑃2(𝑡) but superposed with a trend function
𝑡𝑟(𝑡) accounting for orbit mis-modelings. To summarize, the simulated observations and
computations can be expressed as

𝑜(𝑡) = 𝑃2(𝑡) + 𝑛(𝑡) and
𝑐(𝑡) = 𝑃2(𝑡) + 𝑡𝑟(𝑡).

(5.2)

The measurement- and background-noise and the trend functions are empirically de-
termined based on a typical observation of a LAGEOS-1 pass observed by the SwissOGS

¹³https://ilrs.gsfc.nasa.gov/data_and_products/data/npt/index.html (Accessed: 22/12/2022)
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on September 12, 2019.
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Figure 5.5: Cumulative distribution function 𝐹𝑐 (left) of the 𝐹𝑅s (shown in the Fig.
5.4, right) and the simulation of the measurement- and background noise function 𝑛(𝑡)
(right).

during night. The trend function 𝑡𝑟(𝑡) is set to 𝑓(𝑃𝑅) (see Fig. 5.4, left) and the noise 𝑛(𝑡)
is modeled according to the probability density function of the 𝐹𝑅s (see Fig. 5.4, right).
The latter is realized by evaluating the inverse cumulative distribution function 𝐹−1

𝑐 of
the 𝐹𝑅s (see Fig. 5.5, left) for random uniform variables 𝑟𝑢(𝑡) ∈ [0, 1] (see Fig. 5.5, right)

𝑛(𝑡) = 𝐹−1
𝑐 (𝑟𝑢(𝑡)). (5.3)

Using the generated 𝑃𝑅 as 𝑜(𝑡) − 𝑐(𝑡), the NP algorithm (see Sec. 5.1) can be applied on
the simulated observed 𝑜(𝑡) and computed 𝑐(𝑡) values. The resulting NPs are used to
estimate a polynomial ̂𝑃2(𝑡) of degree 2, which is supposed to represent 𝑃2(𝑡) based on
least-squares adjustment. The quality of the NPs is validated by comparing the RMS of
the differences between the polynomials ̂𝑃2(𝑡) and 𝑃2(𝑡).

5.2.2 Observation Time Span

SLR measurements can only be performed to one satellite at the time. SLR station oper-
ators will switch between several satellites based on the visibility and the priority list.
Therefore, the assumption of observing an entire satellite pass would be unrealistic.
Consequently, to better reflect the reality, the simulated full-rate data are reduced by
inserting several data gaps with different time spans, such that the actual observation
time span 𝑡𝑜𝑏𝑠 w.r.t. the total time span of 40 minutes is between 10% and 100%.
A consistency test first analyzes whether the true parabola 𝑃2(𝑡) can be reconstructed by
the newly generated NPs for different observation time spans 𝑡𝑜𝑏𝑠. First, full-rate data
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Figure 5.6: RMS of the orbit differences for a trend function as a polynomial of degree 3
for different observation time spans with a bin length of 2 minutes.

over 40 minutes are simulated. Afterwards, 1000 samples of prediction residuals using
different observation time spans are generated. The bin size of the NP generation is set
to 120 seconds, which is the current ILRS standard for LAGEOS-1.
In this setup, the mean RMS of the orbit differences becomes 2.6mm, where the scatter
increases with the reduction of the observation time span (see Fig. 5.6). The fact that a
shorter observation time span may have either a positive or negative impact on the orbit
reconstruction is related to the distribution of the introduced data gaps.

5.2.3 Bin Size of the Normal Points

The NP bin sizes shown in Table 5.1 were specified in 1997, when the SLR stations
were operating laser systems with repetition rates between 5-10 Hz. Nowadays, the SLR
stations move towards laser systems with higher repetition rate, e.g., 1-2 kHz. Conse-
quently, the amount of data becomes larger and the same NP precision can be already
achieved within smaller observation time span. Therefore, the tracking time of a satel-
lite can be reduced without loss of precision and in addition, the SLR stations are able
to track more satellites during the same time span.
This simulation compares the RMS of orbit differences from solutions with different
lengths of the NP bin sizes, e.g., 120s, 90s, 60s or 30s. Fig. 5.7 shows the differences in
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Figure 5.7: RMS of the orbit differences for different observation time spans using several
bin sizes.
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the RMS of orbit differences for several NP bin sizes w.r.t. the basic bin size of 120s. A
NP bin size of 90s reduces the RMS of orbit differences only by about 4.7 × 10−3mm
compared to a NP bin size of 120s. Smaller NP bin sizes reduce the RMS slightly more
by 1.4 × 10−2mm to 1.8 × 10−2mm. This analysis would suggest to use a shorter NP bin
size than 120s for LAGEOS observations. However, in this simulation shorter bin sizes
will directly lead to more NP data, which will not generally be the case for real SLR ob-
servations. Since the additional gained time will be used to track other satellites.

This simulation studymay be a motivation for further investigations, e.g., about the dis-
tribution over the satellite orbit of the collected NP data and its impact on the parameter
estimation.

5.3 SLR Data Screening and Normal Point Generation at
AIUB

In order to perform the SLR full-rate to NP data compression in addition to their pro-
cessing at AIUB, a new program called NORMPT was developed and incorporated into
a development version of the BSW. It mainly follows the ILRS NP algorithm with few
adjustments and extensions in the steps 1.b) and 1.d). In the first iteration step of the
SLR data screening it is already essential to roughly discriminate between signal and
noise, to generate a meaningful trend function 𝑓 (see Sec. 5.3.1). The detrending of the
𝑃𝑅s is either based on a polynomial or an adjusted orbit trajectory (see Sec. 5.3.2). Fi-
nally, a RMS-based filter or the leading edge method can be used to obtain the signal
(see Sec. 5.3.3).

5.3.1 Initialization of the Signal

To reduce the remaining trend in 𝑃𝑅s, the trend function in step 1.b) has to be fitted to
the signal. However, the location of the signal is not known in the first iteration and is
therefore roughly determined by a histogram analysis.
The 𝑃𝑅s of a satellite pass are divided into pre-defined time intervals 𝛿𝑡 and bins 𝛿𝑏 (see
Fig. 5.8). This lattice structure forms the basis for the histogram analysis, where per time
interval a histogram with the bin size 𝛿𝑏 is validated. The size of these two parameters
mainly depends on the repetition rate of the laser system of the ground station and the
quality of the computed orbit. A smaller repetition rate has the consequence of less data
collected per time, and therefore, a longer time interval 𝛿𝑡 is needed for the histogram
analysis. However, the 𝑃𝑅s within a 𝛿𝑡 should not feature a trend.
In the next step, the mean values (called grid points), i.e., the mean observation time
span and the mean of the 𝑃𝑅s, are calculated for each histogram for the bin with the
most data points (see Fig. 5.8). Finally, a polynomial function of degree 2 is fitted to the
grid points and only the data within a fixed pre-defined distance 𝛿𝑑 to the fit function
are interpreted as signal.
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Figure 5.8: Initialization of the signal by fitting a polynomial through the densest bins
determined by histogram analysis per time interval 𝛿𝑡 = 1𝑚𝑖𝑛 and bin 𝛿𝑏 = 0.02𝑚 of a
LAGEOS-1 pass observed by the SwissOGS on September 12, 2019.

5.3.2 Detrending of Systematics in the Prediction Residuals

Before the screening is finally applied, the remaining systematic errors in the 𝑃𝑅s have to
be reduced. Therefore, a so-called trend function is generated and the corresponding fit
residuals 𝐹𝑅 = 𝑃𝑅−𝑓(𝑃𝑅) are calculated. The trend function can either be an empirically
determined polynomial or an adjusted orbit trajectory.

a) Polynomial Function

A least-squares adjustment of polynomials to 𝑃𝑅s is characterized by its mathematical
simplicity. However, such a trend function does not contain any physical modeling of
the underlying orbit problem.
The degree of polynomials should be kept as low as possible, otherwise, high frequency
oscillations are introduced when fitting the residuals (see Fig. 5.9). In addition, polyno-
mials have the disadvantage that the data boundaries are more affected by errors of the
parameter estimation process.
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Figure 5.9: Detrending of 𝑃𝑅s, of a LAGEOS-1 pass observed by the SwissOGS, by fitting
polynomials of degree 3 (left) and 8 (right) to the corresponding signal.

b) Adjusted Orbit Trajectory

In contrary to the detrending with polynomial functions, the adjusted orbit trajectory
relies on physical principles, e.g., the use of physical models for satellite motion. The
prediction residuals are minimized by estimating the a priori orbit parameters, i.e., six
Keplerian orbit parameters, based on least-squares adjustment.

A distance 𝑑 between a SLR station (stat) and a satellite (sat) at time 𝑡 can be expressed
either as 𝑑𝑜(𝑡)with the range equation (see Eq. 2.3) based on the measured time-of-flight
Δ𝑡, or as 𝑑𝑐(𝑡) = |rstat(𝑡) − rsat(𝑡)|, the computed difference of the geocentric station and
satellite position. In the latter case, the error equation (see Eq. 3.19) reads as

v = AΔx̂ − ̄l =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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𝜕𝑖
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𝜕𝑢0

. .

. .

. .
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𝜕𝑖
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𝜕𝑑𝑐(𝑡𝑛)
𝜕𝑢0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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,

where the design matrix becomes

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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=
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the six osculating orbital parameters cannot be determined by SLR data from only
one satellite pass, they are constrained with an a priori sigma of 20m for semi-major
axis 𝑎, 10−6 for eccentricity 𝑒, 0.1′′ for inclination 𝑖, 1.0′′ for the right ascension of the as-
cending nodeΩ, 10′′ for the argument of perigee𝜔 and 5′′ for the argument of latitude 𝑢0.

5.3.3 Screening Techniques for SLR Normal Point Generation

The profile of the 𝐹𝑅s histogram is a convolution of the target response function 𝑇𝑅(𝑥)
and the system noise 𝑆𝑁(𝑥) (Otsubo et al. 2015). Since the laser pulses are reflected at
the satellite on different retro-reflectors, which have slightly different distances to the
ground station, the received laser pulses become broader. This specific signature of the
received laser pulse depends on the properties of the satellite and corresponds to the
target response function (Otsubo et al. 2015). The main source of the system noise at
the SwissOGS is the C-SPAD detector, which is causing an asymmetric distribution of
the signal with a long tail, which can be clearly seen in the 𝐹𝑅s of the LAGEOS-1 pass
observed by the SwissOGS shown in Figure 5.10.

Consequently, the distribution of the 𝐹𝑅s strongly depends on the laser system, e.g.,
the detector, and the ranging scheme, i.e., single- or multi-photon. If the distribution is
near-Gaussian, the RMS-based filter can be used as the screening method. However, if
the assumption is no longer valid, the Leading-Edge screening method (Kirchner and
Koidl 2004) may be a good alternative. There, the focus is placed only on the front of the
distribution, which is less affected by the system noise, e.g., the long tail.

a) RMS-Based Filter

The RMS-based filter is in accordance with the data screening defined in the NP al-
gorithm of the ILRS (see Sec. 5.1). First, a polynomial 𝑓𝑛(𝑃𝑅) of degree 𝑛 is fitted us-
ing least-squares adjustment to the flagged input data 𝑃𝑅s from the first initialization
(see Sec. 5.3.1). For near-Gaussian distributed data sets, the RMS of the fit residuals
𝐹𝑅 = 𝑃𝑅−𝑓𝑛(𝑃𝑅)multiplied by a factor 𝑖 is used as a clipping criterion. Therefore, all ob-
servations, where the corresponding fit residual iswithin the interval [−𝑖⋅𝑅𝑀𝑆, +𝑖⋅𝑅𝑀𝑆],
are flagged. With the new set of flagged data, the same procedure is repeated until no
data are marked or the 20th iteration step is reached. Finally, the flagged data are used
to generate the NPs. Figure 5.10 shows the flagged fit residuals from the last iteration
step of a LAGEOS-1 pass observed from the SwissOGS.
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Figure 5.10: SLR data screening based on the fit residuals 𝐹𝑅s with a 2.5⋅RMS rejection
criteria to separate signal from noise of a LAGEOS-1 pass observed by the SwissOGS on
September 12, 2019.

b) Leading-Edge Filter

The Leading-Edge (LE) filter method does not require the distribution of the data to be
Gaussian. To obtain a histogram, the data are smoothed using a polynomial fit function.
Then, each data point 𝑟𝑒𝑠𝑖 is represented by a Gaussian function

𝐾𝑖(𝑥) =
1

√2𝜋
𝑒−

1
2 (

𝑥−𝑟𝑒𝑠𝑖
ℎ )2 (5.4)

where ℎ is the bandwidth. The sum of all 𝑛 Gaussian functions forms the Kernel Density
Estimator (KDE)

̂𝑝(𝑥) ∶= 1
𝑛ℎ

𝑛


𝑖=1

𝐾𝑖(𝑥) =
1

√2𝜋𝑛ℎ

𝑛


𝑖=1

𝑒−
1
2 (

𝑥−𝑟𝑒𝑠𝑖
ℎ )2 . (5.5)

Since only the front of the histogram if of interest, the maximum of the KDE is deter-
mined and the front part is mirrored to the other side. With the Nelder-Mead algorithm
(Nelder and Mead 1965, O’Neill 1971) a best Gaussian fit to the remaining histogram is
performed. The LEHM (Leading-Edge of Half Maximum) is defined as the front point
with the half maximum. From the LEHM, a fixed clipping is applied such that all the ob-
servations within this range are marked as signal (see Fig. 5.11). The process is iterated
until no new observation is marked.
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Figure 5.11: SLR data screening based on the fit residuals 𝐹𝑅s with a Leading-Edge fil-
ter using a lower and upper clipping level of −50ps and 120ps of a LAGEOS-1 pass
observed by the SwissOGS on September 12, 2019.

5.4 Analysis of Normal Points from the SwissOGS

In this section, LAGEOS-1/2 SLR full-rate data provided by the SwissOGS for four
months, from July to October 2019, are used to form the corresponding NPs with the
new generator NORMPT. To study the impact of different screening methods, number
of observations or bin sizes, the newly formed NPs of the SwissOGS are processed to-
gether with LAGEOS-1/2 NPs provided by other SLR stations. The LAGEOS-1/2 satel-
lite orbits are determined in 7-day arcs, where geodetic parameters, i.e., ERPs, station
and geocenter coordinates, and range biases for selected stations are co-estimated (see
Table 6.1). Since the a priori range biases and center-of-mass corrections of SwissOGS
in the data-handling file referring to the standard NPs of SwissOGS, they have to be re-
estimated for the investigations with NORMPT.

5.4.1 Comparison of Different Trend Functions and Screening
Methods

The LAGEOS-1/2 NPs of SwissOGS are generated using the trend function

• adjusted orbit trajectories (AO),

and two screening methods

• RMS-based filter with a rejection level of ±2.5 ⋅ RMS (RMS),

• Leading-Edge filter with a rejection level of [−50ps, +120ps] (LEHM).

This leads to the following twoNP generations: AO-RMS andAO-LEHM,where the solu-
tion AO-RMS is most comparable with the NP generationmethod used at the SwissOGS.
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Figure 5.12: Mean number of NPs used for weekly LAGEOS-1/2 SLR combinations and
the mean contribution of the SwissOGS.

The SwissOGS contributes on average with 367 and at least with 176 LAGEOS-1/2 SLR
data to the weekly solution. Therefore, the percentage of LAGEOS-1/2 SLR NP data of
SwissOGS only ranges from 6.0% to 24.7% of the total data volume (see Fig. 5.12) such
that the impact of the SwissOGS SLR data to the parameter estimation is per se limited.
Furthermore, it should also be noted that the number of SLRNPdata from the SwissOGS
varies for a weekly solution by up to 24 data points, depending on the NP generation al-
gorithm. Consequently, the number of used NPs from SwissOGS differ between the two
solutions AO-RMS and AO-LEHM only by 1.2% on average and by amaximum of 7.6%.

Although the percentage of newly generated SLR NP data is small, notable differences
in some of the estimated geodetic parameters occur when using different NP versions.
When comparing the estimated ERP corrections w.r.t. the IERS-14-C04 series, it is no-
ticeable that the polar motion is more sensitive to the used screening method in x-
direction than in y-direction (see Table 5.2). The bias of the X-pole changes by almost
5µas and only by 0.3µas for the Y-pole. While for the solution AO-LEHM the bias of
the polar motion slightly increases, the bias of UT1-UTC decreases to 4µs. However,
the WRMS of the estimated ERP corrections are comparable between the two different
solutions.
The weighted mean RMS of the Helmert transformation of the station coordinates does
not noticeably change for different screening methods (see Table 5.2).
In Figure 5.13 the additionally estimated range biases of LAGEOS-1/2 for SwissOGS are
compared. Regardless of the NP generation, it is consistently found that range biases
between 1.2 cm to 1.4 cm must be applied for the SwissOGS. Even for the NP genera-
tion AO-RMS, which is comparable to the original NP generation at the SwissOGS, on
which the computation of the applied a priori center-of-mass corrections (0.2447m for
LAGEOS-1 and 0.2439m for LAGEOS-2, extracted from data handling file) was based.
This may indicate a revision of the center-of-mass corrections for the SwissOGS. How-
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5.4 Analysis of Normal Points from the SwissOGS

Table 5.2: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series and the
weighted mean RMS of the Helmert transformation of the station coordinates w.r.t.
SLRF2014 resulting from LAGEOS-1/2 SLR combinations, where the NPs of the Swiss-
OGS are differently generated, from mid-July to mid-October in 2019.

Sol-ID X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] Weighted mean RMS of
Bias WRMS Bias WRMS Bias WRMS Helmert transf. [mm]

North East Up

AO-RMS 82.1 152.4 50.4 106.1 7.2 68.0 6.8 4.1 14.4
AO-LEHM 87.0 153.9 50.7 107.7 4.0 68.9 6.8 4.1 14.4

Differences [%]

RMS vs LEHM 6.0 1.0 0.6 1.5 −44.4 1.3

ever, a final conclusion would require a comprehensive analysis of longer time series.
The observation residuals of LAGEOS-1/2 NPs from SwissOGS are comparable with an
RMS of 7.37mm and 7.49mm for the two different screening methods are compara-
ble (see Fig. 5.14). Nevertheless, the scatter of NPs from individual satellite passes, e.g.,
begin of July or mid-August, can vary noticeably between AO-RMS and AO-LEHM.
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Figure 5.14: Observation residuals of LAGEOS-1/2 of the SwissOGS resulting from
LAGEOS-1/2 SLR combinations, where the NPs of the SwissOGS are differently gen-
erated, from mid-July to mid-October in 2019.

5.4.2 Number of Observations

A weekly LAGEOS-1/2 SLR combination between July and October 2019 is based on an
average of 2711 SLR observations and 134 parameters of interest. Due to this limited
number of SLR observations and the low degree of freedom (see Sec. 3.3.2), the estima-
tion and the statistical statements of the SLR processing can become less reliable.
The possible reduction of the NP bin size will allow to track more satellites during the
same time span but may lead to fewer NP data per satellite.
In order to study the influence of the SLR observation number on the estimated param-
eters, the data volume of SLR NPs of SwissOGS are reduced by 10% and 50% while
using an adjusted orbit trajectory and RMS-based screening method.

Except for UT1-UTC, all estimated ERPs differ only by less than 1.7% when the data
volume of SwissOGS is reduced by 10% (see Table 5.3). If only half of the SwissOGS
NPs are used for the weekly SLR processing, the polar motion is degraded in x-direction
and slightly improved in y-direction, respectively. In all cases, the offset of UT1-UTC is
reduced by almost more than 4µs, when the data volume is reduced.

The RMS of the observation residuals of LAGEOS-1/2 only from SwissOGS are within
0.2mm, regardless of whether 100% or only 50% of the SwissOGS NP data are used
(see Table 5.3).

Finally, it should be noted that random SLR observations of SwissOGSwere deleted over
the whole observed time span, i.e., from July to October 2019, for the data reduction.
There are no restrictions on the deleted number of observations per satellite pass nor
per day. Hence to make sure that a data reduction of 10% can really be represented by
the generated solution (AO-RMS 90), further studies need to be conducted. The main
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5.4 Analysis of Normal Points from the SwissOGS

Table 5.3: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2 SLR combinations, where the NP data volume of the SwissOGS is
reduced, from mid-July to mid-October in 2019.

Sol-ID and data vol. X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] RMS of obs. res.
of SwissOGS [%] Bias WRMS Bias WRMS Bias WRMS SwissOGS [mm]

AO-RMS 100 82.1 152.4 50.4 106.1 7.2 68.0 7.37
AO-RMS 90 83.5 152.7 50.6 106.9 3.4 68.4 7.38
AO-RMS 50 85.8 154.2 49.0 105.3 2.0 69.1 7.57

Differences [%]

AO-RMS 100 vs 90 1.7 0.2 0.4 0.8 −52.8 0.6
AO-RMS 100 vs 50 4.5 1.2 −2.8 −0.8 −72.2 1.6

objective would be to analyze the impact of NPs taken at different times at a day, e.g.,
midnight or noon, or during the satellite pass or high/low elevation angle. Furthermore,
it could be studied if it is more useful to provide several NPs of one satellite pass or less
NPs per pass but for several satellite fly-bys per day.

5.4.3 Bin Size for NP Generation

Since the SwissOGS is using a 100Hz laser system, a reduction of the length of the bin
size can be considered. Therefore, additional NPs are generated by using an adjusted
orbit trajectory with a RMS-based screening method and NP bin sizes of 90 s and 30 s.
Consequently, with shorter bin sizes but the same full-rate data, the number of NPs in-
creases automatically (see Fig. 5.15).
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Figure 5.15: Number of LAGEOS-1/2 NPs provided by the SwissOGS per weekly SLR
combination when using NP bin sizes of 120s, 90s and 30s.
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5. SLR Normal Point Generation and Analysis

Table 5.4: Estimated ERP corrections w.r.t. the IERS-14-C04 series resulting from
LAGEOS-1/2 SLR combinations, where the bin size of the NP generation of the Swiss-
OGS full-rate data is reduced, from mid-July to mid-October in 2019.

Sol-ID and bin X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] RMS of obs. res.
size [s] Bias WRMS Bias WRMS Bias WRMS SwissOGS [mm]

AO-RMS 120 82.1 152.4 50.4 106.1 7.2 68.0 7.37
AO-RMS 90 81.5 151.4 53.2 107.9 7.8 67.9 7.22
AO-RMS 30 76.7 151.9 51.4 118.1 11.2 68.7 6.93

Differences [%]

AO-RMS 120 vs 90 −0.7 −0.7 5.6 1.7 8.3 −0.1
AO-RMS 120 vs 30 −6.6 −0.3 2.0 11.3 55.6 1.0

Therefore, it is again quite challenging to decide whether observed changes in the esti-
mated parameters are due to the different number of observations or the applied NP bin
size. Nevertheless, the comparison of the ERPs shows that the X-pole slightly improves,
while the bias and WRMS of Y-pole and UT1-UTC degrade (see Table 5.4). This is in
contrast to the RMS of LAGEOS-1/2 observation residuals of the SwissOGS, which can
be improved by reducing the length of the bin size (see Table 5.4).

Although the differences in the estimated parameters are not significant, these results
indicate that a homogeneous NP generation of all SLR stations may have an impact on
the estimates of SLR processing.
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Chapter 6

Optimization of Geodetic and Orbit
Parametrization Based on LAGEOS-1/2
SLR Data

This chapter focuses on the analysis and optimization of the orbit and geodetic parametriza-
tion based on LAGEOS-1/2 (satellite group A) SLR combinations. The basic parame-
ters characterizing the LAGEOS-1/2 SLR combinations are listed in Table 6.1. If the
parametrization is adapted, it is explicitly mentioned in the corresponding section.

In Section 6.1 the impact of the ERP parametrization, i.e., as PWC or PWL functions, is
studied. The correlations between the ERPs, especially UT1-UTC, and the OPR-W accel-
erations are discussed in Section 6.2. Since the OPR-W accelerations and the low-degree
SH geopotential coefficient 𝐶20 are strongly correlated (see Sec. 6.3), the impact of dif-
ferent a priori gravity field models is analyzed as well.

Table 6.1: Basic parametrization for LAGEOS-1/2 SLR combinations.

Parameters LAGEOS-1/2 (A)

Osculating elements
𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0
1 set per 7 days

Dynamic orbit parameters
𝑆0, 𝑆𝑆, 𝑆𝐶, 𝑊𝑆, 𝑊𝐶 (Sec. 6.2)
1 set per 7 days

Pseudo-stochastic pulses none (Sec. 6.4)

Station coordinates
1 set per 7 days

(Sec. 6.6)
NNR/NNT minimal constraints

Geocenter coordinates 1 set per 7 days

Range biases
1 set per 7 days
selected stations

ERPs
daily

(Sec. 6.1)
piecewise linear (PWL)
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6. Optimization of Geodetic and Orbit Parametrization Based on LAGEOS-1/2 SLR Data

Afterwards, in Section 6.4, VCE is used to determine whether pseudo-stochastic pulses
in along-track and cross-track are required for the satellite orbit modeling of LAGEOS-
1/2. Finally, the realization of a proper datum definition is studied (see Sec. 6.6). The
latter is essential to perform reliable parameter estimations but challenging, since the
geographical distribution of the SLR station network is inhomogeneous.

This chapter forms the foundation for further multi-satellite SLR combinations, which
are discussed in detail in Chapter 7.

6.1 ERP Parametrization

The estimated ERP corrections w.r.t. the IERS-14-C04 reference series can be repre-
sented by PWC or PWL functions (see Sec. 4.3.2). The main difference is that the PWL
parametrization ensures continuity at day boundaries, which is therefore more physical,
in contrary to the PWC function.
To study the impact of these two ERP parametrizations, weekly LAGEOS-1/2 SLR com-
binations based on 7-day true-arcs (see Sec. 4.2) are performed for the year 2015. The
quality of SLR combinations is determined by comparing the estimated ERP corrections
w.r.t. the IERS-14-C04 reference series and by the mean RMS of observation residuals.
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Figure 6.1: Time series of estimated ERP corrections w.r.t. the IERS-14-C04 reference
series of SLR combinations of LAGEOS-1/2 data for the year 2015. The ERPs are either
represented by PWC or PWL functions.
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6.2 Correlations Between UT1-UTC, Longitude of the Ascending Node and OPR-W Sine
Accelerations

Table 6.2: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series of SLR com-
binations of LAGEOS-1/2 data for the year 2015. The ERPs are either represented by
PWC or PWL functions.

Model Mean RMS X-pole [𝜇as] Y-pole [𝜇as] UT1-UTC [𝜇s]
for ERPs obs. res. [mm] Bias WRMS Bias WRMS Bias WRMS

PWC 9.64±1.82 73.7 142.3 75.9 126.2 4.5 11.7
PWL 9.28±1.51 60.3 127.9 69.6 114.0 −0.1 61.8

The PWL model for the ERPs improves the WRMS of the polar motion w.r.t. the refer-
ence series by 10% (see Table 6.2). The biases of the polar motion in x- and y-direction
are also reduced by 13µas and 6µas, respectively. In contrast, the WRMS of UT1-UTC
increases significantly by 81% compared with the estimates, where the PWC model is
applied. This is to be expected, since for the PWC parametrization all daily UT1-UTC
values are fixed to the a priori values, while in the PWL case only one UT1-UTC value at
the 4-th day of a weekly SLR combination is fixed (see Sec. 4.3.2). Therefore, UT1-UTC
is more loosely constrained and follows a sawtooth function (see Fig. 6.1). These large
variations in UT1-UTC result from the high correlations with the ascending nodeΩ and
the OPR-W accelerations (Rothacher et al. 1999), which are further described in Section
6.2.
The mean RMS of observation residuals of the PWL model can be reduced on the sub-
millimeter level.

Since the PWL parametrization of ERPs is more physical due to the enforced continuity
at day boundaries, and moreover, improves the polar motion and slightly reduces the
mean RMS of observation residuals, it is used as the standard parametrization of ERPs
for all further SLR combinations. The sawtooth behaviour of UT1-UTC is mitigated by
neglecting OPR-W accelerations in the orbit modeling (see Sec. 6.2).

6.2 Correlations Between UT1-UTC, Longitude of the As-
cending Node and OPR-W Sine Accelerations

The mean correlation matrix of LAGEOS-1/2 SLR combinations (see Fig. 6.2), charac-
terized by the parameters listed in Table 6.1, where ERPs are parametrized as PWL for
the year 2015, features strong correlations, especially between UT1-UTC, 𝑎,Ω and OPR-
W sine acceleration (𝑊𝑆), which were already discussed in Rothacher et al. (1999) and
Bloßfeld et al. (2014).

Rothacher et al. (1999) explained the correlation between the first derivative of UT1-
UTC, i.e., the drift of UT1-UTC, and the Keplerian elements as

𝜕
𝜕𝑡 (𝑈𝑇1 − 𝑈𝑇𝐶) = −Ω̇ + cos(𝑖) ⋅ ̇𝑢0

𝜌
(6.1)
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Figure 6.2:Mean correlationmatrix of the six osculating orbital parameters, the dynamic
orbit parameters and the ERPs of LAGEOS-1/2 SLR combinations for the year 2015.

with the ratio of universal time to sidereal time 𝜌 ≈ 1.0027379.
The main effects causing a secular perturbation in the Keplerian elements, especially
in Ω, are the empirical accelerations estimated in cross-track direction, the SH geopo-
tential coefficient 𝐶20 (see Sec. 6.3), and relativistic effects (Bloßfeld et al. 2014). The
changes in the argument of latitude ̇𝑢0 is mainly affected by changes in the semi-major
axis 𝑎 (Bloßfeld et al. 2014).

In the following, the impact of the OPR-W accelerations on the estimates of UT1-UTC
is analyzed. The perturbation ofΩ caused by the cross-track terms (𝑊) follows from the
Gaussian perturbation equations (Beutler et al. 2005a) and reads as

Ω̇ = 𝑟 ⋅ sin(𝑢)
𝑛𝑎2√1 − 𝑒2 sin(𝑖)

(𝑊0 +𝑊𝑆 sin(𝑢) + 𝑊𝐶 cos(𝑢)) (6.2)

Table 6.3: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series and the
mean RMS of the observation residuals of LAGEOS-1/2 resulting from SLR combina-
tions based on LAGEOS-1/2 data, when the ERPs are PWL parametrized with (w/) and
without (w/o) estimating OPR-W accelerations for the year 2015.

OPR-W Mean RMS X-pole [𝜇as] Y-pole [𝜇as] UT1-UTC [𝜇s]
acc. obs. res. [mm] Bias WRMS Bias WRMS Bias WRMS

w/ 9.28±1.51 60.3 127.9 69.6 114.0 −0.1 61.8
w/o 14.20±2.73 48.7 191.5 80.1 175.8 −7.4 23.8
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6.2 Correlations Between UT1-UTC, Longitude of the Ascending Node and OPR-W Sine
Accelerations
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Figure 6.3: Estimated OPR-W sine accelerations (left) of LAGEOS-1 and the induced
perturbations of the ascending nodeΩ (right) of LAGEOS-1 (see Eq. 6.4) from LAGEOS-
1/2 SLR combinations for the year 2015.

with the satellite’s mean motion

𝑛 = 𝐺𝑀
𝑎3 . (6.3)

Since only the periodic dynamic orbit parameters OPR-W sine (𝑊𝑆) and cosine (𝑊𝐶)
accelerations are estimated, Eq. 6.2 can be rearranged to

Ω̇ = 𝑟 ⋅ 𝑊𝑆

2𝑛𝑎2√1 − 𝑒2 sin(𝑖)
+ 𝑟 (𝑊𝐶 sin(2𝑢) − 𝑊𝑆 cos(2𝑢))

2𝑛𝑎2√1 − 𝑒2 sin(𝑖)
, (6.4)

where the first term describes a drift in the ascending node and the second term in-
duces periodic variations when integrating Eq. 6.4. For the simultaneous estimation of
the mean ascending node only the first term is relevant. For instance, estimated OPR-W
sine accelerations of LAGEOS-1 (see Fig. 6.3, left) induce perturbations in the ascending
node up to 1ms/day (see Fig. 6.3, right).
If OPR-W accelerations are not set up, the WRMS w.r.t. the IERS-14-C04 reference se-
ries of UT1-UTC can be reduced by more than 50% (see Table 6.3). On the contrary, the
polar motion is significantly degraded by about 60µas in each direction. The mean RMS
of observation residuals increases significantly by 5mm (see Fig. 6.4).
In conclusion, if the orbit parametrization of LAGEOS-1/2 is realized without OPR-W
accelerations, all estimated parameters, except for UT1-UTC, are harmed. Therefore, to
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Figure 6.4: Mean RMS of the observation residuals of LAGEOS-1/2 with (w/) or without
(w/o) estimating OPR-W accelerations for the year 2015.
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reduce themis-modeling in cross-track, either the backgroundmodel, e.g., time-variable
a priori gravity field model, needs to be replaced by a better model or the set of param-
eters may be extended, e.g., with the SH geopotential coefficient 𝐶20 (see Sec. 6.3).
Furthermore, pseudo-stochastic pulses in cross-track can partially replace the OPR-W
accelerations without causing correlations with SH geopotential coefficients and im-
proving the other geodetic parameters, e.g., ERPs or station coordinates. This is dis-
cussed in Section 7.1.3.

6.3 A Priori Gravity Field Models and Co-Estimation of
SH Geopotential Coefficient 𝐶20

If the SH geopotential coefficients are not estimated in the SLR processing, they are
kept fixed to the a priori values given by the pre-defined background model. Hence,
any error in the a priori background model leads to systematic errors in the estimates of
the parameters. In the following, three different a priori gravity field models and their
impact on SLR combinations are analyzed

• GGM05S the standard product provided by the CSR (Tapley et al. 2013): A static
gravity field model with SH geopotential coefficients up to degree 180 based on 10
years of Gravity Recovery And Climate Experiment (GRACE) data. The coefficient
𝐶20 is replaced by an analysis of SLR measurements. Furthermore, 𝐶21 and 𝑆21 are
computed according to Eq. 6.5.

• Time-variable ILRS: A time-variable gravity field based on the static gravity field
model GGM05S, where 𝐶20 is corrected, while the tesseral coefficients 𝐶21/𝑆21 and
the zonal SH geopotential coefficients from degree 3 up to 6 are replaced by values
determined and provided by the ILRS (Pavlis, pers. communication, 2021). The
temporal resolution of the corrections and replacements is one week.

• Combination Service for Time-variable Gravity Fields (COST-G): A Fitted Signal
Model (FSM) derived frommonthly gravity field models, combined frommonthly
solutions of various analysis centers of COST-G, where the solutions are based
on the data of the GRACE and GRACE Follow-On (GRACE-FO) satellite missions
(Meyer et al. 2020). The coefficients of the COST-G FSM are modeled by an offset,
a drift, as well as by annual and bi-annual periodic functions.
The low-degree gravity field coefficients, especially the zonal harmonic coeffi-
cient 𝐶20 and 𝐶30 in case of GRACE-FO, are better determined by SLR (Cheng and
Ries 2017, Loomis et al. 2020). Therefore, 𝐶20 is replaced by a SLR and GRACE/
GRACE-FO combination on NEQ level provided by the GFZ (König et al. 2019). In
addition, as long as nothing else is mentioned,𝐶21 and 𝑆21 are computed according
to Eq. 6.5.

Since 𝐶21 and 𝑆21 describe by definition the position of the Earth’s figure axis, they can
be expressed as (Lambeck 1971)

𝐶21(𝑡) = √3 ̄𝑥p(𝑡)𝐶20 − ̄𝑥p(𝑡)𝐶22 + ̄𝑦p(𝑡)𝑆22,
𝑆21(𝑡) = −√3 ̄𝑦p(𝑡)𝐶20 − ̄𝑦p(𝑡)𝐶22 − ̄𝑥p(𝑡)𝑆22,

(6.5)
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Figure 6.5: Time series of the SH geopotential coefficient 𝐶20 (zero-tide) given by the
three analyzed a priori gravity field models for the year 2015.

with the mean pole coordinates ̄𝑥p(𝑡) and ̄𝑦p(𝑡) according to Petit and Luzum (2010).
All SLR combinations presented in this work use a priori gravity field models up to d/o
90 for the orbit determination of the satellites.

The comparison of the time series of the SH geopotential coefficients 𝐶20, shown in Fig-
ure 6.5, leads to the assumption that in the gravity field estimation procedure of the
ILRS the background model for the atmosphere and ocean de-aliasing (AOD) was ne-
glected. Hence, 𝐶20 provided by the ILRS will additionally contain the mass variability
due to the atmosphere and oceans. In contrary to the SH geopotential coefficients of the
COST-G, where in the gravity field estimation the AOD products were used.
Since in the SLR processing performed in this work AOD corrections are introduced
separately, they are applied twice for the corrected and replaced SH geopotential coef-
ficients of the time-variable gravity field model from the ILRS. Nevertheless, it is better
to add AOD corrections than to ignore them altogether.

The SH geopotential coefficient 𝐶20 represents the oblateness of the Earth. The equato-
rial bulge induces a rotation of the angular momentum vector of a satellite Earth orbiter
(Seeber 2003). Therefore, the orbital plane of the satellite rotates and the ascending node
is precessing. Furthermore, a non-polar satellite orbit is perturbed in cross-track by the
gravitational force of the equatorial bulge. Hence, 𝐶20 is strongly correlated with the
OPR-W sine accelerations (Jäggi et al. 2012). Perturbing accelerations acting on a satel-
lite caused by variations of 𝐶20 (Δ𝐶20) read as

⎛⎜⎜⎜⎜⎜⎜⎝

𝑅′

𝑆′

𝑊′

⎞⎟⎟⎟⎟⎟⎟⎠𝐶20

= 𝐺𝑀𝑎2Δ𝐶20
3
2
1
𝑟4

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 3
2 sin

2(𝑖) + 3
2 sin

2(𝑖) cos(2𝑢)
sin2(𝑖) sin(2𝑢)
sin(2𝑖) sin(𝑢)

⎞⎟⎟⎟⎟⎟⎟⎠
. (6.6)

The impact of different a priori gravity field models and of different parametrizations,
e.g., with orwithoutOPR-Waccelerations or𝐶20, onweekly SLR combinations of LAGEOS-
1/2 are studied for the year 2015. The quality of the SLR combinations are analyzed by
comparing the estimates of parameters, e.g., ERPs, station coordinates, 𝐶20 and obser-
vation residuals.

When OPR-W accelerations are estimated and SH geopotential coefficients are fixed to
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the corresponding a priori values, the COST-G model improves the polar motion w.r.t.
the time-variable ILRS model by more than 5% (see Table 6.4). On the contrary, the
WRMS and the bias of UT1-UTC are degraded by 28% and 83%, respectively.

The absence of the OPR-W accelerations causes the geodetic parameters to partially
absorb mis-modelings. Hence, the WRMS of the polar motion increases by more than
60µas. Nevertheless, for this parametrization, the COST-G model shows the smallest
biases in all ERPs. In addition, it also reduces the WRMS of all ERPs, except for the
polar motion in x-direction. Since, however, the correlation between OPR-W sine accel-
erations and UT1-UTC are significantly reduced, UT1-UTC can be better determined.
Hence, the WRMS of UT1-UTC is reduced by more than 50%.
If OPR-W accelerations are neglected, the estimation of 𝐶20 improves all ERPs, except
for the bias of the polar motion in y-direction, independent of the a priori gravity field
model. Moreover, the estimated ERPs are comparable, such that the bias and WRMS
of the polar motion are within 15µas and 7µas, respectively. However, the level of the
WRMS of the polar motion, where the OPR-W accelerations are estimated, cannot be
achieved as long as no additional pseudo-stochastic pulses in cross-track are applied
(see Sec. 7.1.3).

The comparison of the weighted mean RMS of the Helmert transformation of the es-
timated station coordinates w.r.t. the SLRF2014 reference is not an independent qual-
ity control and has to be interpreted carefully. The station positions and velocities in
SLRF2014 are computed based on LAGEOS-1/2 SLR data, where the orbits are param-
etrized by the six osculating and five dynamic orbit parameters. Therefore, it is to be
expected that changing the parametrization and/or the SLR data set, i.e., include SLR
data to other geodetic satellites than LAGEOS-1/2, may increase the mean RMS of the
Helmert transformations. However, the SLRF2014 is the only reliable reference for SLR
station coordinates and is therefore used for the station coordinate validation.

Table 6.4: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series using only
LAGEOS-1/2 data with different a priori gravity field models and with or without esti-
mating OPR-W accelerations for the year 2015.

Grav. OPR-W SH geop. X-pole [𝜇as] Y-pole [𝜇as] UT1-UTC [𝜇s]
model acc. coeff. Bias WRMS Bias WRMS Bias WRMS

Static w/ w/o 83.3 135.2 66.6 107.6 −3.8 70.6
ILRS w/ w/o 60.3 127.9 69.6 114.0 −0.1 61.8
COST-G w/ w/o 59.7 119.7 65.6 108.0 −8.4 79.0
Static w/o w/o 76.7 237.6 63.6 228.5 −10.0 30.2
ILRS w/o w/o 48.7 191.5 80.1 175.8 −7.4 23.8
COST-G w/o w/o 48.7 194.2 60.7 165.2 −6.7 23.3
Static w/o w/ 𝐶20 55.8 159.8 72.2 138.5 −5.2 24.3
ILRS w/o w/ 𝐶20 42.2 155.2 81.9 139.7 −4.5 24.7
COST-G w/o w/ 𝐶20 41.3 153.0 72.8 140.0 −3.9 22.2
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In this case, the comparison of the weightedmean RMS of theHelmert transformation of
the estimated station coordinates shows that when OPR-W accelerations are estimated
the values are almost identical for each a priori gravity field model (see Table 6.5). In
general, the omission of the OPR-W accelerations increases the weighted mean RMS in
each component (see Fig. 6.6, left). SLR combinations using a static gravity field model
suffer most, such that the North and East components are degraded by more than 85%
and the Up component by 35%, respectively. However, the estimation of 𝐶20 is again
able to reduce the RMS of the Helmert transformation of station coordinates in all di-
rections to the same level, independent of the applied a priori gravity field model (see
Fig. 6.6, right).

Without estimating OPR-W accelerations, the RMS of the observation residuals of both
LAGEOS satellites becomes larger (see Table 6.5). Already, the estimation of
𝐶20 reduces the RMS bymore than 3mm. Independent of the a priori gravity fieldmodel,
the RMS of observation residuals is around 10.8mm, while the COST-G model induces
the smallest scattering.

Finally, Figure 6.7 shows the time series of estimated SH geopotential coefficient 𝐶20. As
already mentioned, the estimates of 𝐶20, where the OPR-W accelerations are estimated,
are not reliable. All other solutions show a small offset w.r.t. the CSR reference series.
Nevertheless, they follow the same trend and feature only small variations. The time se-
ries of 𝐶20 estimated based on the static and the time-variable ILRS a priori gravity field
models are almost identical. Only the solution with the COST-G model has a slightly
different behaviour at some time periods, where it is shifted towards the CSR reference
series. This is probably caused by strong correlationswith the higher zonal SH geopoten-
tial coefficients, i.e., 𝐶40 and 𝐶60, which are fixed to the a priori gravity field coefficients.
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Figure 6.6: Weightedmean RMS of Helmert transformations of station coordinates w.r.t.
SLRF2014 of SLR combinations based on LAGEOS-1/2 data, without using OPR-W ac-
celerations for the orbit parametrization and fixing the SH geopotential coefficients to
a priori values from different gravity field models (left) or when instead of the OPR-W
accelerations 𝐶20 is estimated using different a priori gravity field models (right) for the
year 2015.
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Table 6.5: Mean RMS of observation residuals of LAGEOS-1/2 and the weighted mean
RMS of Helmert transformations of station coordinates w.r.t. SLRF2014 in North, East
and Up resulting from SLR combinations based on LAGEOS-1/2 data using different a
priori gravity field models and when neglecting or estimating OPR-W accelerations for
the year 2015.

Grav. OPR-W SH geop. Mean RMS Weighted mean RMS of
model acc. coeff. obs. res. [mm] Helmert transformation [mm]

North East Up

Static w/ w/o 9.44±1.90 4.9 4.1 8.3
ILRS w/ w/o 9.28±1.51 4.9 4.2 8.3
COST-G w/ w/o 9.39±1.93 4.9 4.1 8.3
Static w/o w/o 18.4 ±3.64 9.9 7.7 11.3
ILRS w/o w/o 14.2 ±2.73 6.9 5.7 9.9
COST-G w/o w/o 14.2 ±3.66 7.1 5.9 9.7
Static w/o w/ 𝐶20 10.8 ±2.32 5.5 4.5 8.8
ILRS w/o w/ 𝐶20 10.8 ±2.24 5.6 4.5 8.9
COST-G w/o w/ 𝐶20 10.6 ±2.06 5.6 4.5 8.8

Therefore, the estimates of 𝐶20 also absorb signals which are related to the other zonal
SH geopotential coefficients. Since these higher degree coefficients are different for the
COST-G model compared with the static and the time-variable ILRS gravity field, it can
only be seen in the estimates of 𝐶20 where the COST-G model is applied.

In summary, when the a priori gravity field coefficients are fixed, the estimated param-
eters, e.g., ERPs or station coordinates, change depending on the a priori gravity field
model. In this case, the performance of the COST-Gmodel is comparable with the time-
variable ILRS model. If 𝐶20 is estimated instead of OPR-W accelerations , the estimates
of the ERPs and station coordinates are almost independent of the used a priori gravity
field model. However, since only a limited number of gravity field coefficients, i.e., only
𝐶20, are estimated, the correlations between the zonal SH geopotential coefficients can
induce a bias in the estimates of 𝐶20.
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Figure 6.7: Time series of estimated SHgeopotential coefficient𝐶20 for SLR combinations
of LAGEOS-1/2 without estimating OPR-W accelerations and using different a priori
gravity field models for the year 2015.
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6.4 Orbit ParametrizationWith Pseudo-Stochastic Pulses

Both LAGEOS-1/2 satellites are orbiting the Earth at relatively high altitudes (see Table
2.2) and, therefore, have very stable orbits, e.g., the mean semi-major axis of LAGEOS-
1 and LAGEOS-2 feature a decay of only 20.3 cm/a, resp., 23.9 cm/a during the time
period from 1994 to 2011 (Sośnica 2015). The decay can mainly be explained by the
Yarkovsky and Yarkovsky-Schach effect (Rubincam 1988, Lucchesi et al. 2003).
Due to this high stability of the LAGEOS-1/2 orbits, it is so far assumed that no addi-
tional pseudo-stochastic pulses in 𝑆 or𝑊 directions are needed in the orbit parametriza-
tion (see Table 6.1) to significantly improve the estimation of the parameters. However,
the technique of VCE enables the determination of appropriate constraints of pseudo-
stochastic pulses (see Sec. 3.4.3). Therefore, weekly SLR NEQs based on LAGEOS-1/2
observations with twice per day pseudo-stochastic pulses in 𝑆 and 𝑊 are generated.
Moreover, for each week two NEQs containing only the parameter constraints for the
pseudo-stochastic pulses in 𝑆 and 𝑊 are formed. Hence, the following three SLR solu-
tions are validated:

• LAGEOS-1/2 without estimating any pseudo-stochastic pulses.

• LAGEOS-1/2 with estimating twice per day pseudo-stochastic pulses in 𝑆 and 𝑊
without applying any constraints.

• LAGEOS-1/2 with estimating twice per day pseudo-stochastic pulses in 𝑆 and 𝑊,
where the applied constraints on the pseudo-stochastic pulses are estimated with
VCE.

The comparison of the estimated pseudo-stochastic pulses for LAGEOS-1 and LAGEOS-
2 with or without applying constraints in S, resp., W shows that VCE assigns constraints
on the pseudo-stochastic pulses (see Fig. 6.8). Consequently, outliers are mitigated and
the pseudo-stochastic pulses in 𝑆 are significantly smaller than in𝑊 with 0.39µm/s and
7.34µm/s, respectively, for LAGEOS-1. The strength of the constraints can also be char-
acterized by the estimated weights of NEQs containing only the parameter constraints
of pseudo-stochastic pulses (see Fig. 6.9). The weights for the constraints in 𝑆 are larger
than in𝑊 by a mean factor of 102. This implies that the previous orbit parametrization
with six osculating orbit parameters and five dynamic orbit parameters, i.e., constant ac-
celeration in 𝑆, OPR sine and cosine accelerations in 𝑆 and 𝑊, features more modeling
deficiencies in 𝑊 than in 𝑆. However, this may be a result of missing constant accelera-
tions in 𝑊.

If pseudo-stochastic pulses for LAGEOS-1/2 are estimated without applying any con-
straints, the WRMS of the polar motion increases by more than 5% in x-direction and
24% in y-direction, respectively (see Table 6.6). If, however, constraints according to
VCE are applied, the WRMS of the polar motion can be reduced by more than 9µas. On
the contrary, the bias of the X-pole increases by 15%, while UT1-UTC does not change
significantly for different orbit parametrizations.
The weighted mean RMS of Helmert transformations of station coordinates are im-
provedmost by estimating pseudo-stochastic pulses and applying constraints according
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Figure 6.8: Estimated pseudo-stochastic pulses twice per day in 𝑆 and𝑊 for LAGEOS-1
(top) and LAGEOS-2 (bottom) with or without applying constraints derived by VCE of
LAGEOS-1/2 SLR combinations in the year 2015.
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Table 6.6: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series and the
mean RMS of the observation residuals of LAGEOS-1/2 when pseudo-stochastic pulses
twice per day in 𝑆 and𝑊 for LAGEOS-1/2 are set up and the constraints are derived by
VCE of LAGEOS-1/2 SLR combinations for the year 2015.

Stoch. pulses X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] Mean RMS of obs.
in 𝑆/𝑊 Bias WRMS Bias WRMS Bias WRMS residuals [mm]
applied constr. LAGEOS-1 LAGEOS-2

w/o 60.4 128.0 69.6 114.0 1.1 60.4 9.29 ±1.62 9.09 ±1.57
w/ none 59.9 135.0 79.0 141.8 −1.4 57.1 8.43 ±1.62 8.27 ±1.63
w/ VCE 69.0 125.9 80.3 128.9 1.2 59.0 8.37 ±1.58 8.26 ±1.66

to VCE (see Fig. 6.10). The RMS is reduced by 0.4mm in the horizontal plane and 0.2mm
in Up.
With the estimation of the pseudo-stochastic pulses, the mean RMS of the observation
residuals can be reduced by 9% (see Table 6.6). However, this is to be expected because
the additionally estimated parameters, i.e., pseudo-stochastic pulses, enable to compen-
sate for mis-modelings.

The orbits are analyzed by comparing the improved 7-day true-arc solutions with the
predicted orbit from the previous weekly SLR combination (see Fig. 6.11).
If pseudo-stochastic pulses are omitted, the orbit position differences in 𝑆 are in most
cases the smallest. Furthermore, constraints on pseudo-stochastic pulses estimated by
VCE can to a certain extent prevent the orbit position differences from diverging in time.
Nevertheless, the long-term orbit stability is impaired when pseudo-stochastic pulses
for LAGEOS-1/2 are set-up.
Furthermore, the additional number of parameters increases by 26 per satellite. Con-
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Figure 6.11: Position differences in theℛ-systembetween estimated and predicted 7-day
orbits of LAGEOS-1 resulting from LAGEOS-1/2 SLR combinations when no additional
pseudo-stochastic pulses are estimated (blue) or when pseudo-stochastic pulses twice
per day for LAGEOS-1/2 are set up free (red) orwith constraints derived byVCE (yellow)
for the year 2015.

sequently, the degree of freedom used in a least-squares adjustment is reduced and the
accuracy and reliability of the statistical analysis is reduced. In all further SLR combina-
tions, as a consequence, the orbits of LAGEOS-1/2 are parametrized without applying
any pseudo-stochastic pulses.

6.5 VCEWeights per SLR Station

In the SLR processing at AIUB each NP is equally weighted. Hence, no further station
information, e.g., number of SLR full-rate data compressed into a NP or the bin RMS of
these full-rate data, is used. As mentioned in Section 4, only the outliers of the NP data
are eliminated.
Due to the diversity of SLR stations, e.g., laser systems or photo-detectors (see Sec. 2.1),
the measurement performance of each station can be different. Consequently, each NP
or at least the contribution of each SLR station should ideally be weighted according to
their quality.

In the following, the influence of a station- and satellite-specific weighting derived by
VCE (see Sec. 3.4.2) in SLR combinations based on LAGEOS-1/2 data, is studied. For
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6.5 VCE Weights per SLR Station

this purpose, NEQ systems based on weekly observations provided by one individual
SLR station to one specific satellite, i.e., LAGEOS-1 and LAGEOS-2, are generated. The
number of NEQ systems of a weekly LAGEOS-1/2 SLR solution is then the sum of the
number of stations providing NP data to LAGEOS-1 and the number of stations provid-
ing NP data to LAGEOS-2. Since not every SLR station observes both satellites, it might
contribute with only one NEQ system.

The quality of a station- and satellite-specific weighting scheme is validated by analyz-
ing the determined weights and by comparing the estimated geodetic parameters, i.e.,
ERPs and station coordinates, for the year 2015.
The (unnormalized)meanweights per station and satellite, i.e., LAGEOS-1 andLAGEOS-
2, over the year 2015 are summarized in Figure 6.12. The highest mean weights get
LAGEOS-1 data provided by the SLR stations in Graz, Austria (7839) with 5.57 and in
Tahiti, French Polynesia (7124) with 5.52, respectively. However, their weights for the
LAGEOS-2 observations are at least 40% smaller with 2.66 and 3.19. With a mean of
4.14 receives the SLR station in Grasse, France (7845) the highest weight over all sta-
tions observing LAGEOS-2. However, the received mean weights cannot be related to
the mean number of provided observations.
Furthermore, 15 different SLR stations get a mean weight below 1. Three of them are
located in China (7821, 7249, 7237), seven are located in Russia (1891, 1890, 1889, 1888,
1886, 1874, 1868), four in Eastern Europe (1893, 1887, 1873, 1824) and only one station
in Western Europe (7824). Consequently, these stations have only a marginal impact on
SLR combinations.

To get a better understanding of station- and satellite-specific VCE, the derived weights
are compared with the corresponding observation residuals for LAGEOS-1 data pro-
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Figure 6.12: Mean weights per stations for LAGEOS-1 and LAGEOS-2 from the VCE of
LAGEOS-1/2 SLR combinations for the year 2015.
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6. Optimization of Geodetic and Orbit Parametrization Based on LAGEOS-1/2 SLR Data

vided by SwissOGS for the year 2015 (see Fig. 6.13). For some of the weekly SLR combi-
nations, e.g., at the begin or end of September, the RMS of the observation residuals is
larger, but also the inverse of the corresponding weight increases. Hence, VCE ensures
that the influence of observations with large residuals is reduced. However, if a station
has a temporary performance problem during the week, such that some of the obser-
vation residuals become larger, the whole weekly contribution of this station is down
weighted, even if it also provides good observations. Consequently, it might be benefi-
cial in the future to weight the contribution of SLR stations per day or even per each
individual observed pass of a satellite.
However, not all weights can be explained by theRMSof the observation residuals. There
are also other factors, e.g., the temporal distribution over the satellite passes, or the si-
multaneous performance of the other SLR stations.

The comparison of the estimated geodetic parameters reveals that the station- and satel-
lite specific VCE reduces the bias of the X-pole by 14%, while theWRMS of the Y-pole is
decreased by 6.6µas (see Table 6.7). Only the bias andWRMS of UT1-UTC are increased
by 14% and 1.4µs, respectively.
The weighted mean RMS of the Helmert transformation of station coordinates are com-
parable, except for the up component, which is slightly increased by 2% when the sta-
tion and satellites are weighted individually (see Table 6.7).

In conclusion, station-specific weighting derived by VCE can be used for SLR combi-
nations, although their impact on the estimated geodetic parameters is limited. Since
the weights reflect the quality of the NPs provided by each station, this method could
possibly be used in the procedure of the SLR NP data screening.
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Figure 6.13: Comparison of the observation residuals (blue) and the weekly RMS (red)
of LAGEOS-1/2 data provided by SwissOGS with the estimated station-specific weights
derived by VCE (yellow) for the SwissOGS.
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6.6 Datum Definition

Table 6.7: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series and
the weighted mean RMS of the Helmert transformation of station coordinates w.r.t.
SLRF2014 resulting from LAGEOS-1/2 SLR combinations with or without using the
station- and satellite-specific VCE for the year 2015.

Stat./Sat.- X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] Weighted mean RMS of
specific Bias WRMS Bias WRMS Bias WRMS Helmert transf. [mm]
VCE North East Up

w/o 61.4 129.5 69.6 114.1 −0.1 61.8 4.9 4.2 8.3
w/ 52.8 129.5 69.6 107.7 −1.5 59.7 4.9 4.2 8.5

6.6 Datum Definition

As discussed in Section 4.3.1, depending on the set of parameters, the application of
constraints on particular parameters, e.g., station coordinates, is essential to prevent
NEQ systems from becoming singular. For this reason, the datum definition is realized
by applying MC conditions, i.e., NNR and NNT, on a subset of SLR stations (here also
called core stations).
Coulot et al. (2010) and Zajdel et al. (2019) showed that the choice of core stations used
for the datum definition has an impact on the stability of ERP time series. Further stud-
ies, e.g., Otsubo et al. (2016), illustrated that also the geographical distribution of SLR
stations influences the estimation of geodetic parameters. It is therefore important to
perform a stable datum definition in the SLR processing.

In order to study the influence of the datum realization on the co-estimated geodetic
parameters, weekly LAGEOS-1/2 SLR combinations using different sets of core stations
are analyzed for the years 2015-2020. Since, however, only an average of 24 and at least
13 SLR stations provided LAGEOS-1/2 data, the number of possible core stations and

Years 2015-2020

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  
SLR stations providing LAGEOS data
Core stations recommended by ILRS

Figure 6.14: Geographical distribution of SLR stations providing LAGEOS-1/2 data dur-
ing the time span 2015-2020.
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6. Optimization of Geodetic and Orbit Parametrization Based on LAGEOS-1/2 SLR Data

their geographical distribution is inhomogeneous and may change on a weekly basis.
The list of core stations can either be pre-defined and fixed or iteratively determined
with the use of Helmert transformations. The latter method is very similar to the ap-
proach used in Zajdel et al. (2019) and is illustrated in Figure 6.15. First, an a priori list
of core stations is defined containing either

• core stations recommended by the ILRS (ILRS) (see Fig. 6.14),

• SLR stations with a station number higher than 7000 (7000) (motivated by the
weights derived by VCE, see Fig. 6.12) or

• all SLR stations (ALL).

Then, the weekly SLR combinations are processed, whereas NNR/NNT MC conditions
are applied on the core stations of the pre-defined list. The estimated station coordinates
are then compared with the corresponding station coordinates given by the ITRF using
a Helmert transformation. If the largest residual in North, East or Up exceeds a pre-
defined threshold, e.g., 25mm, the corresponding SLR station is rejected from the list.
Afterwards, the adjusted list of core stations is used again for the parameter estimation.
This process is repeated until all residuals of the core station coordinates are lower than
the threshold. It ensures that only stations with a high station coordinate stability are
used for the datum definition.

In the following, the datum definition within the parameter estimation is realized by
using three different pre-defined lists of core stations, i.e., ILRS, 7000 or ALL, and

List of core stations

Solution

Station coordinates

Helmert transformation

Station with largest RMS RMS > threshold End

Reject this station

List of new core stations

No

Yes

Figure 6.15: Schematic illustration of the Helmert approach to determine the list of core
stations, which should be used for the datum definition.
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6.6 Datum Definition

by applying the Helmert transformation approach with three different thresholds, i.e.,
10mm, 25mm and 50mm. For simplicity, the SLR combinations are abbreviated by the
name of the used pre-defined list of core stations and if the Helmert transformation ap-
proach is used (-T) and the corresponding threshold, e.g., ILRS-T25.
The quality of the SLR combinations are analyzed by comparing the list of used core
stations and the geodetic parameters, i.e., ERPs, station and geocenter coordinates.
The percentage occurrence of SLR stations as core stations reveals that except for the
stations 7237 (Changchun, China) and 7403 (Arequipa, Peru), the Helmert transforma-
tion approach using a threshold of 25mm rejects almost no core stations recommended
by the ILRS (see Fig. 6.16). The time series of the Helmert transformations of the SLR
stations 7237 and 7403, shown in Figure 6.17, confirms the weak stability of the station
coordinates, especially in comparison with the very stable station 7090 in Yarragadee,
Australia. While station 7403 has a large scatter in all three directions and contributes
on an irregular basis, station 7237 features an annual signal in the Up component.
Consequently, as a precautionary measure, these two stations may not be considered as
core stations.
Furthermore, the solution ALL-T25 makes use of 25 other stations for the datum defini-
tion, which are not recommended by the ILRS. However, only eleven of them are used
in more than 20% of all weekly SLR combinations.
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Figure 6.16: Occurrence as SLR core station in the years 2015-2020 for the solutions
ILRS (blue) and ALL-T25 (orange).
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Figure 6.17: Time series of the Helmert transformation from the estimated station co-
ordinates w.r.t. SLRF2014 in North, East and Up for the SLR stations 7237 (blue), 7403
(orange) and 7090 (yellow) for the years 2015-2020. The datum definition is realized by
using the ILRS core station list without the Helmert approach.

The comparison of estimated polar motion corrections w.r.t. the IERS-14-C04 reference
series shows that the bias and WRMS in x-direction are significantly larger than in the
corresponding y-direction regardless of the datum realization (see Table 6.8). E.g., for
the ILRS solution, the bias and WRMS between the X- and Y-pole differ by 63% and
17%. This is a consequence of the inhomogeneous geographical distribution of the SLR
core stations. The SLR station clustering in Europe enhances a better determination of
the meridian plane passing through Greenwich and improves the estimation of polar
motions in y-direction, which coincide with the 90 °W meridian.
The systematic shift of the polar motion w.r.t. the reference series can be reduced when
the geographical distribution is improved by using more stations for the datum defi-
nition (compare solutions ILRS, 7000 and ALL in Table 6.8). If, in contrast to the pre-
defined core stations of the ILRS, all stations are used for the realization of the datum
definition, the bias of polar motions in x- and y-direction is reduced by 42% and 92%,
respectively.

Since the rejection level of the iterative Helmert transformation with a threshold of
10mm is smaller than the observation accuracy of station coordinates, the quality of the
estimated polar motion is degraded. The bias of the polar motion in x- and y-direction is
significantly increased by 43µas and 69µas when the pre-defined core station list ALL
is used and the threshold is reduced from 25mm to 10mm. The low threshold leads to
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6.6 Datum Definition

Table 6.8: Mean estimated scale of the Helmert transformation w.r.t. the SLRF2014 and
the estimated ERP corrections w.r.t. IERS-14-C04 series from LAGEOS-1/2 SLR combi-
nations using different datum definitions for the years 2015-2020.

Sol-ID List of core Apply Threshold Scale X-pole [𝜇𝑎𝑠] Y-pole [𝜇𝑎𝑠]
stations Helmert [𝑚𝑚] [ppb] Bias WRMS Bias WRMS

ILRS ILRS No - −0.091 85.6 142.1 31.9 118.1
ILRS-T50 ILRS Yes 50 −0.067 84.1 140.9 28.9 116.2
ILRS-T25 ILRS Yes 25 0.098 101.6 151.4 38.3 115.9
ILRS-T10 ILRS Yes 10 0.325 114.6 159.9 80.7 135.1
7000 7000 No - −0.385 50.2 141.6 11.0 135.4
7000-T50 7000 Yes 50 −0.297 47.3 140.3 22.1 133.3
7000-T25 7000 Yes 25 −0.140 56.8 133.7 24.4 120.7
7000-T10 7000 Yes 10 0.276 106.4 152.5 77.6 138.1
ALL ALL No - −0.164 49.7 153.1 2.4 138.3
ALL-T50 ALL Yes 50 −0.148 53.6 146.2 13.1 133.2
ALL-T25 ALL Yes 25 −0.034 69.7 141.9 2.6 121.1
ALL-T10 ALL Yes 10 0.292 113.0 157.1 71.8 134.3

a significant reduction of the number of core stations used for the datum definition. For
this reason, only the SLR combinations using Helmert transformations with a threshold
of 25mm or 50mm are further discussed.
In the case of the pre-defined ILRS core station list, the bias and WRMS of polar mo-
tions can be slightly improved by using the Helmert transformations with a threshold of
50mm (see Table 6.8). Although this threshold is very loose, it prevents that especially
the station 7403 is rejected for the datum definition. The contribution of this station
to the datum definition is small because it rarely tracked LAGEOS-1/2 during the time
period of 2015-2020, such that it occurs only in 15% of the SLR combinations. If the
threshold is set to 25mm, also the station 7237 is rejected in many cases. Since this sta-
tion provides LAGEOS-1/2 data for 92% of the weekly SLR combinations, the bias and
the WRMS of the polar motion increase by at least 34% and 13%, respectively. It is the
only station located in the Northeast that is present in the pre-defined ILRS core station
list.
Since the a priori list of ILRS core stations is already strongly reduced, i.e., on average
10 stations are used for datum definition, a small threshold reduces the number of core
stations evenmore, such that the realization of a proper datum definition is not possible
anymore.
Using the list of core stations 7000 or ALLwithout the Helmert transformation increases
the WRMS of the polar motion, where the bias simultaneously decreases w.r.t. the ILRS
based solution. A medium threshold of 25mm improves the WRMS of the polar motion
the most. A looser threshold may cause also unstable stations to be used for the datum
definition, which reduces the quality of the polar motion estimation.

The scale of the frame corresponds to the estimated scaling factor of the Helmert trans-
formation w.r.t. the a priori reference frame SLRF2014 and is a measure of consistency
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Figure 6.18: Time series of the estimated scales from the Helmert transformation w.r.t.
the a priori reference frame SLRF2014.

with the reference. Already earlier studies, e.g. Angermann and Müller (2009) or Zajdel
et al. (2019), showed an impact of the SLR station network, which is used to realize the
datum definition, on the estimation of the scale. This can be confirmed by the results
given in Table 6.8.
The difference between the mean scales derived by using different datum definitions,
where the Helmert transformation with a threshold of 10mm is excluded, is 0.48ppb.
Moreover, the range of the estimated scales is almost three times smaller than the scale
offset between SLR and VLBI solutions in the ITRF2014 reference frame (Altamimi et al.
2016).
The time series of the estimated scales show in general an increasing variation with time
(see Fig. 6.18). However, this is to be expected, since the quality of the reference frame
SLRF2014 decreases after 2015. Furthermore, if the datum definition is realized without
station 7237 in Changchun, China, the offset of the scale differs by 0.30ppb.

Station 7237 is very productive and therefore strongly contributes to LAGEOS-1/2 SLR
combinations. To further study the impact of this station also the geocenter coordinates
are analyzed (see Fig. 6.19). The comparison is made between LAGEOS-1/2 SLR com-
binations when the datum is realized based on the ILRS core stations with or without
station 7237. Therefore, an offset, a drift, annual and bi-annual amplitudes are estimated
by least-squares fit to the time series of the geocenter coordinates. The offset in x- and
y-direction differ by at least 1mm and even changes the sign (see Table 6.9), while the
offset in z-direction is −2.18mm and therefore almost 2mm larger than without the use
of station 7237. The drift of the geocenter coordinates are in each direction minor and
comparable between the two solutions. The annual signals are not strongly affected by
the use of station 7237 as a core station. In contrast, the bi-annual amplitude increases
in 𝑌 and reduces in 𝑍 by more than 0.4mm.

In conclusion, the Helmert transformation approach can stabilize the estimates of SLR
combinations, especially the ERPs. The inhomogeneous geographical distribution of the
core stations has a noticeable influence on the scale and the geocenter coordinates. Since
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Figure 6.19: Estimated geocenter coordinates with and without the station Changchun
in China (7237) used as a core station for the years 2015-2020.

SLR is the only technique to determine the geocenter coordinates, which are further used
to realize the origin of ITRFs, further investigations on the impact of core station on the
geocenter determination should be conducted.
The study of a proper realization of a datum definition was performed towards the end
of the thesis, all further SLR combinations use a datum definition based on the ILRS
core station list without using the Helmert transformations. However, for future SLR
analyses, it is recommended to use the Helmert transformation approach for a proper
datum definition.
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Table 6.9: Offset, drift, annual and bi-annual amplitudes of the fitting functions to the
estimated geocenter coordinates in 𝑋, 𝑌 and 𝑍 during the years 2015-2020. The esti-
mates of the geocenter coordinates are from LAGEOS-1/2 SLR combinations with or
without using the station in Changchun, China (7237) for the datum definition.

Fit of geocenter w/ 7237 w/o 7237
coordinates

Offset in X [𝑚𝑚] 0.528 ± 0.363 -0.453 ± 0.338
Drift in X [𝑚𝑚/𝑑𝑎𝑦] 0.002 ± 0.011 0.001 ± 0.010
Annual ampl. in X [𝑚𝑚] 3.050 ± 0.436 3.162 ± 0.406
Bi-annual ampl. in X [𝑚𝑚] 0.794 ± 0.439 0.739 ± 0.409
Offset in Y [𝑚𝑚] -0.594 ± 0.363 0.833 ± 0.327
Drift in Y [𝑚𝑚/𝑑𝑎𝑦] -0.001 ± 0.011 0.000 ± 0.001
Annual ampl. in Y [𝑚𝑚] 2.631 ± 0.428 2.671 ± 0.386
Bi-annual ampl. in Y [𝑚𝑚] 0.111 ± 0.430 0.531 ± 0.388
Offset in Z [𝑚𝑚] -2.180 ± 0.416 -0.479 ± 0.395
Drift in Z [𝑚𝑚/𝑑𝑎𝑦] 0.001 ± 0.013 0.001 ± 0.012
Annual ampl. in Z [𝑚𝑚] 4.215 ± 0.494 4.444 ± 0.469
Bi-annual ampl. in Z [𝑚𝑚] 0.720 ± 0.497 0.292 ± 0.472
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Chapter 7

Multi-Satellite SLR Combinations

Combinations of SLR observations to different geodetic satellites have advantages, e.g.,
to better determine geodetic parameters, to extend the parameter space or to mitigate
correlations between sought-after parameters.With the assumption that satellite-specific
observations are uncorrelated, combinations can be performed on NEQ-level, where
each NEQ can be weighted individually.

Initially, it was planned that the ILRS contribution to the realization of a stable ITRF2020
(Altamimi et al. 2018) is extended, so that not only SLR observations to LAGEOS-1/2
and Etalon-1/2 but also to LARES are used. This was, however, delayed but will proba-
bly be an objective for realizations of further ITRFs.
Therefore, Section 7.1 focuses only on the optimization of the orbit parametrization and
background forcemodeling of LARES in order to improve the estimation of sought-after
parameters in LAGEOS-1/2 and LARES SLR combinations. Etalon-1/2 data are inten-
tionally excluded, since VCE provides an average weight of 0.04 for Etalon-1/2 data in
SLR combinations with LAGEOS-1/2 data (weighted with 1). Hence, the contribution of
Etalon-1/2 SLR data is minor.
Furthermore, the full strength of SLR LARES data, i.e., the stronger sensitivity to the
Earth’s gravity field, is revealed by extending the parametrization with co-estimating
low-degree SH geopotential coefficients.
Since the quality of SLR observations to different geodetic satellites can vary, e.g., due to
satellite size and material properties or orbit altitude, the weighting scheme of satellite-
specific NEQs is essential. Therefore, different weighting methods, i.e., VCE (Förstner
1979) andHelmert’s simple estimator (Helmert 1907), based onLAGEOS-1/2 andLARES
SLR combinations are compared.

In Section 7.2, multi-satellite SLR combinations based on LAGEOS-1/2, LARES and
Stella/Starlette are analyzed. With an altitude of around 800km, Stella and Starlette
are currently among the lowest-flying geodetic satellites. The more variable environ-
ment requests a more detailed background force modeling, e.g., a priori gravity field
and air drag model, and an extended orbit parametrization.
Afterwards, the contribution of additional Stella and Starlette SLR data to estimated
geodetic parameters, especially to SH geopotential coefficients, is validated.
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Finally, in Section 7.3, the first collected SLR data to LARES-2, which was launched in
mid of 2022, are analyzed in multi-satellite SLR combinations with LAGEOS-1/2 and
LARES. Since the altitude of LARES-2 is comparable with the one of the LAGEOS-1/2
satellites, their orbit parametrization is also used for LARES-2. Since there are no studies
on the center-of-mass corrections for LARES-2 at this early stage of the mission, range
biases of LARES-2 are estimated for all SLR stations.

7.1 Impact of LARESSLRData toMulti-Satellite SLRCom-
binations

First, the orbit of LARES is parametrized in analogy to the orbit parametrization used
for LAGEOS-1/2 (see Table 7.1), butwith estimating additional pseudo-stochastic pulses
in along-track to partially absorb mis-modelings that may occur due to the more vari-
able environment (see Sec. 7.1.1). Furthermore, the impact of the redefined background
models, e.g., air drag and a priori gravity field, are validated. Apart from the pseudo-
stochastic pulses, the mis-modelings may also be absorbed by daily dynamic orbit pa-
rameters provided by the long-arc computation (see Sec. 7.1.2).
Section 7.1.3 shows how the additional SLR data to LARES enables an extension of

Table 7.1: Basic parametrization of LAGEOS-1/2 and LARES SLR combinations.

Parameters LAGEOS (A) LARES (C)

Osculating elements
𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0
1 set per 7 days

Dynamic orbit
parameters

𝑆0, 𝑆𝑆, 𝑆𝐶, 𝑊𝑆, 𝑊𝐶

(Sec. 7.1.2)
1 set per 7 days

1 set per 7 days
(7d true-arc)
1 set per day
(7d long-arc)

Pseudo-stochastic
pulses

none
twice per day

(Sec. 7.1.1)along-track (𝑆)
cross-track (𝑊)

Station coordinates
1 set per 7 days
NNR/NNT minimal constraints

Geocenter coordinates 1 set per 7 days

Range biases
1 set per 7 days
selected stations all stations

ERPs
daily
piecewise linear (PWL)

SH geopotential coeff.
1 set per 7 days

(sec. 7.1.3)
up to d/o 4
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the parameter space with low-degree SH geopotential coefficients, but only if the or-
bit parametrization is adapted accordingly.
Hence, the orbit parametrizations are adapted by reducing the five empirical orbit pa-
rameters

a: by neglecting OPR-W accelerations for satellite groups A/C/D/E,

b: by neglecting OPR-S accelerations for satellite groups C/D/E,

c: by neglecting OPR-S accelerations for satellite group A,

or introducing additional pseudo-stochastic pulses

d: 2 per day in S/W for satellite group C and 12 per day in S/W for satellite groups
D/E.

All LAGEOS-1/2 and LARES SLR combinations are generated by using fixed weights
of 1 for LAGEOS-1/2 and 0.45 for LARES data, respectively. They are determined by
comparing the squared RMS of observation residuals from single-satellite solutions ac-
cording to Helmert’s simple estimator (see Sec. 7.1.4). Nevertheless, there are also other
weighting methods, e.g., VCE, providing a high consistency, so their impact on com-
bined LAGEOS-1/2 and LARES SLR solutions will be analyzed as well (see Sec. 7.1.4).

7.1.1 Orbit Modeling and Parametrization of LARES

Compared to LAGEOS-1/2 satellites, LARES is orbiting the Earth at a much lower al-
titude, i.e., 1400km, where the background force modeling of the time-variable upper
atmosphere density and the Earth’s gravity field may have to be taken into account and
the orbit parametrization may become more demanding.

The total mass density of the atmosphere at that height is still very low and therefore the
air drag modeling with NRLMSISE-00 (Picone et al. 2002) based on the standard values
or the actually measured data for 𝐹10.7 and 𝐴p (see Sec. 3.2.2) does not significantly
influence the determination of the a priori orbit (see Sec. 4.2). The comparison (without
estimating Helmert transformation parameters) of orbit positions determined with or
without applying an air drag model shows an RMS difference in 𝑆 of only 9mm (see
Fig. 7.1). In 𝑅 and𝑊 directions, position differences are on sub-millimeter level or even
zero.
Consequently, the differences in the estimates of the geodetic parameters, e.g., station
coordinates, ERPs and geocenter coordinates, of LAGEOS-1/2 and LARES SLR combi-
nations with different air drag models, are neglectable and not further discussed.
Nonetheless, for all further SLR combinations the air drag is modeled with the actually
measured data for the orbit determination of LARES.

In contrast to the air drag modeling, the background force modeling of the Earth’s grav-
ity field strongly affects the orbit determination of LARES. When using the ILRS or the
COST-G time-variable gravity field model (see Sec. 6.3), the RMS of orbit position dif-
ferences in 𝑅, 𝑆 and 𝑊 are 9mm, 46mm and 7mm, respectively (see Fig. 7.1).
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Figure 7.1: Orbit position differences of LARES satellite in theℛ-systemwith or without
applying an air dragmodel (red) and when two different gravity fieldmodels (blue), i.e.,
time-variable models provided by the ILRS or COST-G, are applied for the year 2015.

Consequently, the choice of the a priori gravity field model, e.g., ILRS or COST-G time-
variable gravity field product and replacing 𝐶21/𝑆21, has a major impact on the esti-
mated geodetic parameters and the observation residuals of LAGEOS-1/2 and LARES
SLR combinations performed for the years 2015-2020.
While in LAGEOS-1/2 SLR combinations, discussed in Section 6.3, the bias of the polar
motion is reduced by less than 6% (see Table 6.5), with LARES it is changed by more
than 140% with a sign change when using the COST-G a priori gravity field model and
replacing 𝐶21/𝑆21 (see Table 7.2). The WRMS of the X-pole increases by 6%, while the
WRMS of the Y-pole is reduced by 19% w.r.t. the use of the time-variable ILRS gravity
field. In addition, the estimates of UT1-UTC are also improved, such that the bias is re-
duced by 37% and the WRMS by 14%, respectively. The majority of the changes can be
explained by the replacement of the SH geopotential coefficients 𝐶21/𝑆21.
Figure 7.2 shows that the weighted mean RMS of the Helmert transformation of station
coordinates for SLR combinations using the COST-G product can be reduced especially
in the horizontal direction, i.e., 1.1mm in North and 0.6mm in East. While the impact
of the a priori gravity field model on the Helmert transformation of station coordinates
from LAGEOS-1/2 combinations is neglectable (see Table 6.5).
Furthermore, if the a priori gravity field is modeled according to the COST-G product,
the mean RMS of the observation residuals are reduced by 2.0mm to 15.7mm andwhen
𝐶21/𝑆21 are replaced to 14.9mm (see Fig. 7.3).
Consequently, when using the COST-G gravity field model as a priori, 𝐶21/𝑆21 should
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Table 7.2: Estimated ERP correctionsw.r.t. the IERS-14-C04 reference series of LAGEOS-
1/2 and LARES SLR combinations using different a priori gravity field models and ap-
plying pseudo-stochastic pulses two or twelve per day in 𝑆 for LARES for the years 2015-
2020.

Sat. Stoch.pl. Grav. Replace X-pole [𝜇as] Y-pole [𝜇as] UT1-UTC [𝜇s]
in S for C model 𝐶21/𝑆21 Bias WRMS Bias WRMS Bias WRMS

A+C 2/day ILRS no −86.8 166.5 38.3 146.1 −16.3 87.0
A+C 2/day COST-G no −74.8 148.7 60.4 136.8 −8.9 79.1
A+C 2/day COST-G yes 126.6 177.3 −16.0 117.6 −10.2 75.2
A+C 12/day ILRS no −31.0 134.7 34.1 131.0 −11.6 78.9

be replaced according to Eq. 6.5.

Finally, when using the time-variable ILRS gravity field and setting up twelve (approx.
one per orbit revolution) instead of two pseudo-stochastic pulses in along-track on a
daily basis for LARES, ERPs and the RMS of the Helmert transformation of station co-
ordinates are improved (see Table 7.2 and Fig. 7.2).
More detailed, the WRMS of the polar motion can be improved by 19% in x-direction
and 10% in y-direction, respectively. The bias is reducedmainly in x-direction by 55.8µas.
In addition, the bias and the WRMS of UT1-UTC is improved by 29% and 10%, respec-
tively. The RMS of the Helmert transformation of station coordinates is improved only
marginally in the horizontal plane by 0.4mm in North and 0.2mm in East, respectively.
The mean RMS of the observation residuals can be reduced by 1.4mm.
However, most of the estimated geodetic parameters are still inferior to the estimates
of SLR combinations using the COST-G gravity field with only two pseudo-stochastic
pulses per day in along-track for LARES. Therefore, a reliable a priori gravity fieldmodel
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Figure 7.3: RMS of LARES observation residuals resulting from LAGEOS-1/2 and
LARES SLR combinations using different a priori gravity field models and applying
pseudo-stochastic pulses two or twelve per day in 𝑆 for LARES for the years 2015-2020.

can diminish the necessity of more than two additional pseudo-stochastic pulses. This is
also preferable, since the physical interpretation of the pseudo-stochastic pulses is very
difficult or even impossible.

7.1.2 Orbit Parametrization of LARES Using Long-arc Approach

The long-arc computation allows combining daily arcs into a 7-day arc by transforming
the initial osculating elements of the daily NEQs into one set of osculating elements
referring to the beginning of a 7-day arc (see Sec. 3.6). In contrary, the dynamic orbit
parameters can be kept on a daily basis and may account for modeling deficiencies.
In the following, 7-day arcs of LARES are realized for the years 2015-2020 by using two
different orbit modeling approaches:

• 7d true-arc: one set of initial osculating orbital elements and one set of dynamic
orbit parameters are estimated for 7 days (in analogy to the orbit parametrization
of LAGEOS).

• 7d long-arc: one set of initial osculating orbital elements and daily dynamic orbit
parameters are estimated for 7 days.

The air drag is modeled using the empirical atmospheric model NRLMSISE-00 (Picone
et al. 2002) based on actually observed data and the a priori gravity field model is based
on the time-variable ILRS product.

The quality of the long-arc approach is validated by comparing ERPs and the Helmert
transformation of station coordinates, to the results of the true-arc approach. At the
time of writing, the reconstruction of the orbit with the daily estimated dynamic orbit
parameters, especially when SH geopotential coefficients are co-estimated, was not yet
feasible, and therefore, it was not possible to compute observation residuals.
The comparison of the estimated ERPs (see Table 7.3) shows that including LARES and
using the true-arc parametrization increases the WRMS of the X-pole and Y-pole w.r.t.
the LAGEOS-1/2 solution by 17%, resp., 23%. The bias of the X-pole differs by 172µas
and even the sign changes. In contrast to the Y-pole, which is only shifted by 6µas. This
displacement of the X- and Y-pole can be partially explained by the unbalanced inclina-
tions of the satellite orbits, i.e., retrograde (LAGEOS-1) or prograde (LAGEOS-2, LARES)
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Table 7.3: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2 and LARES SLR combinations when using the 7d true- or long-arc
orbit modeling approaches for LARES for the years 2015-2020.

Sat. Arc for C X-pole [𝜇as] Y-pole [𝜇as] UT1-UTC [𝜇s]
Bias WRMS Bias WRMS Bias WRMS

A 85.6 142.1 31.9 118.1 −1.7 64.3
A+C true −86.8 166.5 38.3 146.1 −16.3 87.0
A+C long −55.1 136.1 39.0 133.6 −9.7 84.5

motion, which introduce a systematic bias. This phenomenon can be confirmed by an
experiment of LAGEOS-1/2 SLR solutions, where different weights were assigned to
LAGEOS-1 and -2 to enforce an imbalance. Table 7.4 shows that the higher weighting of
LAGEOS-2, which corresponds to the inclusion of LARES, reduces the X-pole by 197%
and the Y-pole only by 16%. In contrary, if the impact of LAGEOS-1 is increased by
setting a weight of ten, the X- and Y-pole are shifted, as expected, in the other direction
than before.

Furthermore, with the long-arc orbit parametrization for LARES, theWRMS of the polar
motion decreases w.r.t. the true-arc parametrization. The X-pole can be estimated most
precisely, while the Y-pole can only be improved compared with the true-arc LARES
parametrization, but not with the LAGEOS-1/2 SLR combination.

Table 7.4: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2 SLR combinations, where LAGEOS-1 and LAGEOS-2 are differently
weighted, for the year 2015.

Sat. Weights for X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s]
LAGEOS-1/2 Bias WRMS Bias WRMS Bias WRMS

A 1/10 0.3 136.5 58.2 147.8 −4.3 87.4
A 1/1 60.4 128.0 69.9 114.0 1.1 60.4
A 10/1 115.5 175.5 83.4 134.9 −7.0 73.8
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Figure 7.4: Estimated UT1-UTC corrections w.r.t. the IERS-14-C04 series resulting
from LAGEOS-1/2 SLR combinations, where LAGEOS-1 and LAGEOS-2 are differently
weighted, for the year 2015.
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the 7d true- or long-arc orbit modeling approaches for LARES for the years 2015-2020.

The increased bias and WRMS of UT1-UTC, when LARES is included, can again be ex-
plained by the unbalanced inclinations of the orbits, which enlarges the saw tooth be-
haviour of the time series of UT1-UTC (see Fig. 7.4).

In general, if LARES contributes to SLR combinations, the RMS of the Helmert trans-
formation of station coordinates w.r.t. SLRF2014 increases (see Fig. 7.5). This is to be
expected, since the SLRF2014 is only based on LAGEOS-1/2 SLR data. Nevertheless, if
daily dynamic orbit parameters are used for LARES, the RMS is reduced in North by
0.6mm, in East by 0.4mm and in Up by 0.1mmw.r.t. the true-arc orbit parametrization
of LARES.

The analysis of the estimated geodetic parameters implies that the orbit of LARES should
be represented by a long-arc. This is, however, not surprising, since the 7d long-arc ap-
proach makes use of 30 more parameters, i.e., daily dynamic orbit parameters, which
are then able to account for further mis-modelings.

7.1.3 Contribution of LARES SLR Data to Co-Estimated SH Geopo-
tential Coefficients

The lower orbital altitude of LARES and therefore its increased sensitivity to the Earth’s
gravity field improves the estimates of the low-degree SH geopotential coefficients in
multi-satellite SLR combinations (Bloßfeld et al. 2018). However, the extension of the
parametrization, e.g., with low-degree SH geopotential coefficients, leads to new corre-
lations between parameters and may thus prevent reliable estimations of parameters.
The analysis of the mean correlation matrix of the year 2015 confirms the results of
Bloßfeld et al. (2018), that SH geopotential coefficients, especially the even zonal SH co-
efficients 𝐶20 and 𝐶40, as well as the OPR-S cosine accelerations 𝑆𝐶 and 𝐶30 are strongly
correlated (see Fig. 7.6).
The correlation between the SH geopotential coefficients and the gained sensitivity to
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𝐶40 lead to the fact that instead of only 𝐶20 also higher SH geopotential coefficients have
to be co-estimated. Otherwise, 𝐶20 cannot be reliably estimated (see Fig. 7.7, top), since
it will also partially absorb the signal of 𝐶40. Therefore, the SH geopotential coefficients
need to be co-estimated up to d/o 4.

As already pointed out in Section 6.3, a reliable co-estimation of 𝐶20 is only feasible
if the OPR-W accelerations are neglected. Analogously, this applies for the estimation
of 𝐶30, which is only reasonable if the strong correlations with OPR-S accelerations are
diminished.
Similar to the perturbing accelerations acting on a satellite caused by the variation of
𝐶20 (see Eq. 6.6), they can also be derived for variations of 𝐶30 (Δ𝐶30) (see Appendix B)

⎛⎜⎜⎜⎜⎜⎜⎝

𝑅′

𝑆′

𝑊′

⎞⎟⎟⎟⎟⎟⎟⎠𝐶30

= 𝐺𝑀𝑎3Δ𝐶30
5
2
1
𝑟5

⎛⎜⎜⎜⎜⎜⎜⎝

12
5 sin(𝑖) sin(𝑢) − 4 sin3(𝑖) sin3(𝑢)

3
4 sin

3(𝑖) cos(𝑢) − 3
4 sin

3(𝑖) cos(2𝑢) − 3
5 sin(𝑖) cos(𝑢)

3
2 sin

2(𝑖) cos(𝑖)(1 − cos(2𝑢)) − 3
5 cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠
. (7.1)

Although the correlations between 𝐶30 and the OPR-S cosine accelerations of LAGEOS-
1/2 and LARES are almost equally strong (see Fig. 7.6), it is sufficient to not set up only
the OPR-S accelerations of LARES for estimating a reliable 𝐶30 (see Fig. 7.8). This can be
explained by performing a CA, where the contribution of LAGEOS-1/2 to determine𝐶30
is on average 2.5 times smaller than for LARES, such that the impact of the correlations
with OPR-S accelerations of LAGEOS-1/2 is limited.

Figure 7.6:Mean correlationmatrix of LAGEOS-1/2 andLARES SLR combinationswhen
co-estimating SH geopotential coefficients for the year 2015.
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The importance of the OPR-S accelerations of LAGEOS-1/2 becomes obvious when an-
alyzing other geodetic parameters, e.g., ERPs, station coordinates and 𝐶20.
Without the use of OPR-S accelerations for LARES, the WRMS of the polar motion in-
creases by 5% (see Table 7.5). If additionally the OPR-S accelerations of LAGEOS-1/2
are canceled, the WRMS of the polar motion increases by more than 50% and 80% in
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Table 7.5: Estimated ERP correctionsw.r.t. the IERS-14-C04 reference series of LAGEOS-
1/2 and LARES SLR combinations using different orbit parametrizations for the years
2015-2020.

Sat. Est. SH Arc X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s]
geo. coeff. for C Bias WRMS Bias WRMS Bias WRMS

A - 7d true 85.6 142.1 31.9 118.1 −1.7 64.3
A+C: 𝑎 4/4 7d true 76.0 200.6 10.2 160.3 1.0 25.5
A+C: 𝑎 + 𝑏 4/4 7d true 73.1 209.8 14.0 167.2 0.3 25.2
A+C: 𝑎 + 𝑏 + 𝑐 4/4 7d true 64.5 304.5 −1.2 292.0 2.9 28.9
A+C: 𝑎 + 𝑏 + 𝑑 4/4 7d true 60.0 136.9 19.9 125.2 0.4 22.6

A+C: 𝑎 + 𝑏 4/4 7d long 73.7 203.1 14.0 160.6 0.5 23.1

x- and y-direction, respectively. However, the corresponding bias can be reduced by at
least 10µas.
The weighted mean RMS of the Helmert transformation of station coordinates also in-
creases without the use of OPR-S accelerations for LAGEOS-1/2 to 10.4mm in the hor-
izontal plane and to 14.8mm for the Up component, respectively (see Fig. 7.9).
The time series of 𝐶20 are almost identical, independent of using OPR-S accelerations
for LAGEOS-1/2 (see Fig. 7.7, top). However, the formal error of 𝐶20 increases (see Fig.
7.7, middle) and the spectra features a new strong signal at 227.5days (see Fig. 7.7, bot-
tom), which may correspond to the draconitic year of LAGEOS-2, i.e., 222days (Sośnica
2015), if OPR-S accelerations for LAGEOS-1/2 are neglected.

The reduction of the orbit parameters for LARES to six initial Keplerian elements and
only one dynamic orbit parameter in along-track (𝑆0) diminishes the usefulness of the
long-arc approach tremendously. The difference between the true- and long-arc orbit
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parametrization remains only in weekly, resp., daily constant accelerations in along-
track. Consequently, theWRMS of the polarmotion andUT1-UTC improve only slightly
by around 4% and 8%, respectively (see Table 7.5). The RMS of theHelmert transforma-
tion of station coordinates differ only by 0.2mmw.r.t. the true-arc orbit parametrization
(see Fig. 7.9).

The redefinition of the orbit parametrization of LARES, i.e., the exclusion of the OPR-S
and OPR-W accelerations, and the additional estimation of the SH geopotential coef-
ficients up to d/o 4 cause a general degradation of the polar motion and the station
coordinates when comparing to LAGEOS-1/2 SLR combinations, where no SH geopo-
tential coefficients are estimated. Only if pseudo-stochastic pulses two per day in S and
especially in W are set-up for the orbit parametrization of LARES, the quality of the es-
timated geodetic parameters is improving again. Then, a comparison with LAGEOS-1/2
SLR combination, which is capable of properly estimating the polar motion and the sta-
tion coordinates, reveals onlyminor discrepancies.While theWRMS of the polarmotion
is only slightly changed by 3.7% and −6%, the bias of the polar motion is improved by
25.6µas and 12µas in x- and y-direction, respectively (see Table 7.5).
The RMS of the Helmert transformation of station coordinates are slightly higher with
0.1mm in each direction of the horizontal plane and 0.4mm in Up, for the LAGEOS-1/2
and LARES SLR combination, when additional pseudo-stochastic pulses are applied,
than for the LAGEOS-1/2 SLR combination (see Fig. 7.9).

In conclusion, the orbit parameterization of LAGEOS-1/2 and LARESmust be adjusted,
i.e., by only applying three dynamic orbit parameters (𝑆0,𝑆𝑆 and 𝑆𝐶) for LAGEOS-1/2
and only one dynamic orbit parameter 𝑆0 for LARES, to estimate reliable low-degree
SH geopotential coefficients. In order to still partially absorb background force mod-
eling deficiencies, pseudo-stochastic pulses, which are not strongly correlated with SH
geopotential coefficients, in along- and cross-track can be applied. This allows to esti-
mate reliable SH geopotential coefficients together with ERPs and station coordinates.

7.1.4 Satellite Specific Weights and Their Impact on Combined
LAGEOS-1/2 and LARES SLR Combinations

Multi-satellite SLR combinations are generated by combining single satellite-specific
NEQs, where a proper weighting for each different satellite group according to their
data quality is essential. It can be derived, e.g., by using VCE or Helmert’s ”simple” es-
timator (see Sec. 3.4.1).

As it can be seen in Figure 7.10 (left), the mean RMS of observation residuals for LARES-
only solutions are significantly larger than for a LAGEOS-only solution and the weights
are more scattered, if the station and geocenter coordinates are estimated (compare Fig.
7.10 left and right). This indicates that LARES-only solutions cannot provide reliable
station and geocenter coordinates. In this case, the ratio of the mean squared RMS of
observation residuals 𝜌𝑅𝑀𝑆

𝐴,𝐶 over the years 2015-2020 becomes 0.11. Hence, in a multi-
satellite SLR combination, the impact of the LAGEOS-1/2 data would be weighted al-
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geocenter coordinates (right) for the years 2015-2020.
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and geocenter coordinates for the years 2015-2020.

most 10 times higher than of the LARES data.
Furthermore, the parametrization is adapted by fixing the station and geocenter coordi-
nates to the a priori station coordinates of the SLRF2014 and to the origin, respectively.
However, since the quality of the reference frame ITRF2014 decreases after 2015, the
RMS of observation residuals, especially for the LAGEOS-only solution, are continu-
ously increasing in time (see Fig. 7.10, right). The mean RMS of LAGEOS-1/2 observa-
tion residuals increases by 3mm, while for the LARES-only solution it is improved by
7mm. Consequently, the ratio of the mean squared RMS of observation residuals 𝜌𝑅𝑀𝑆

𝐴,𝐶
over the years 2015-2020 is therefore more balanced with 0.45.

After determining the satellite specific weights, they are introduced as fixed a priori
weights for the LAGEOS-1/2 and LARES combination on NEQ-level. Such a satellite
combination often enables an extension of the parameter space, e.g., by additionally es-
timating SH Earth’s gravity field coefficients up to d/o 4 (see Sec. 7.1.3). In this case, the
parametrization used for the determination of the weights differs from the parametriza-
tion used in the multi-satellite solution.
On the contrary, the weighting and satellite combination on NEQ-level performed by
VCE are always based on the same parametrization and therefore ensures a consistency
between observations and estimated parameters. In addition, the weights from the VCE
are not constant, since they are estimated on a weekly basis (see Fig. 7.11). Compared to
the RMS-based weighting ratio, the VCE obtains larger ratio by a factor of 2.3 when co-
estimating station and geocenter coordinates, resp., 1.3 when the station and geocenter
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Table 7.6: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2 and LARES SLR combinations when using fixed weights per satellite
group or VCE for the years 2015-2020.

Sat. Weights X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s]
(A/C) Bias WRMS Bias WRMS Bias WRMS

A 1/- 85.6 142.1 31.9 118.1 −1.7 64.3
A+C 1/0.11 23.2 114.2 34.6 117.9 −5.2 69.3
A+C 1/0.45 −86.8 166.5 38.3 146.1 −16.3 87.0
A+C VCE −12.2 125.0 33.6 122.2 −9.2 76.1

coordinates are fixed.

The impact of the satellite specific weighting methods is studied by comparing the re-
sults in terms of ERPs, the RMS of theHelmert transformation of station coordinates and
the RMS of the observation residuals, of LAGEOS-1/2 and LARES SLR combinations
using the parametrization of Table 7.1, where the station and geocenter coordinates are
estimated. Therefore, the following three weighting methods are compared:

• constant weights of 1 for LAGEOS-1/2 and 0.11 for LARES (derived by the RMS-
based weighting method, when the station and geocenter coordinates are esti-
mated),

• constant weights of 1 for LAGEOS-1/2 and 0.45 for LARES (derived by the RMS-
based weighting method, when the station and geocenter coordinates are fixed),

• weekly weights for LAGEOS-1/2 and LARES derived by the VCE.

The additional SLR data from LARES improves the polar motion in x-direction, but
only if LARES is weighted with 0.11 or based on the VCE. The bias is reduced by more
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sulting from LAGEOS-1/2 and LARES SLR combinations when using fixed weights per
satellite group or VCE for the years 2015-2020.

than 62µas and the WRMS by at least 12%. On the contrary, the Y-pole shows much
smaller changes in the bias and WRMS. Furthermore, the worse UT1-UTC value can
be explained by a strong correlation with the estimated OPR-W acceleration of LARES
(see Sec. 6.2). In general, it can be observed that the results from the SLR combinations
derived with the VCE are always between the SLR combinations, where a fixed weight
of 0.11 or 0.45, respectively, for LARES is used. This is to be expected, since the mean
weight for LARES from the VCE is 0.25. Consequently, this behavior can also be seen
on the RMS of the Helmert transformation of station coordinates in North, East and Up.
The higher LARES is weighted, the worse the RMS becomes (see Fig. 7.12).
Moreover, a higher weight for LARES observations implies that the least-squares ad-
justment follows the LARES observations closer, and therefore, observation residuals of
LARES are improved. Figure 7.13 shows the RMS of observation residuals of LAGEOS-
1/2 and LARES. The higher the weights of LARES, the better its RMS of observation
residuals, while this value becomes larger for LAGEOS-1/2.

7.2 Multi-Satellite SLRCombinationsWithGeodetic LEO
Satellites

After the detailed study of LAGEOS-1/2 and LARES SLR combinations, SLR observa-
tions to geodetic LEO satellites, i.e., Starlette (D) and Stella (E), are now included. These
additional satellites are orbiting the Earth on an even lower altitude than LARES (see
Table 2.2) and therefore the background force modeling, e.g., air drag and the a priori
gravity field, have to be refined (see Sec. 7.2.1).

The lower altitudes of the additional SLR satellites further enlarge the sensitivity to SH
geopotential coefficients (see Sec. 7.2.2). It will increase the degree and order of reliably
estimated SH geopotential coefficients and will improve their quality.
The multi-satellite SLR combinations are based on the parametrization listed in Table
7.7, unless otherwise mentioned in the text.
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Table 7.7: Basic parametrization of multi-satellite SLR combinations based on LAGEOS-
1/2, LARES and Starlette/Stella data.

Parameters LAGEOS-1/2 LARES Starlette/Stella
(A) (C) (D/E)

Osculating elements
𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0
1 set per 7 days

Dynamic orbit
parameters

1 set per 7 days
𝑆0, 𝑆𝑆, 𝑆𝐶 𝑆0

Pseudo-Stochastic
pulses

none
twice per day twelve per day
along-track (𝑆) along-track (𝑆)
cross-track (𝑊) cross-track (𝑊)

Station coordinates
1 set per 7 days
NNR/NNT minimal constraints

Geocenter coordinates 1 set per 7 days

Range biases
1 set per 7 days
selected stations all stations

ERPs
daily
piecewise linear (PWL)

SH geopotential coeff.
1 set per 7 days
up to d/o 5 + 𝐶61 + 𝑆61

7.2.1 Orbit Parametrization andModeling ofGeodetic SLRLEOSatel-
lites

The differences of the satellite position of Starlette when the air drag is neglected or
when it is taken into account by applying the air drag backgroundmodel NRLMSISE-00
(Picone et al. 2002) based on actually measured data are much more pronounced than
for LARES. While the orbit position differences for LARES are on the sub-millimeter
level in 𝑅, less than 2 cm in 𝑆 and even zero in 𝑊 (see Fig. 7.1), they are significantly
larger for Starlette (see Fig. 7.14) with an RMS of 6mm in 𝑅, 27 cm in 𝑆 and on the
sub-millimeter level in 𝑊, respectively. The fact that the orbit positions in 𝑆 show the
largest impact can be readily explained by the fact that the air drag acts anti-parallel to
the (Earth-fixed) velocity direction of the satellite (see Eq. 3.11).

The impact of the air drag modeling and the extension of the orbit parametrization with
pseudo-stochastic pulses in 𝑆 for Starlette is studied by comparing the estimated param-
eters of SLR multi-satellite combinations with LAGEOS-1/2 and LARES using VCE. In
a first approach, the SH geopotential coefficients are fixed to the a priori values of the
time-variable ILRS gravity field model, while five dynamic orbit parameters are set-up
for each satellite.
The estimates of the geodetic paramters, i.e., ERPs and Helmert transformation of sta-
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Figure 7.14: Orbit position differences for Starlette in the ℛ-system with or without
using the air drag model (red) and when two different gravity field models (blue), i.e.,
time-variable model provided by the ILRS or COST-G, are applied for the year 2015.

tion coordinates, are almost independent of the air drag modeling of Starlette. The
discrepancies in the bias and WRMS of the ERPs are smaller or equal to 1µas for the
polar motion and 1µs for UT1-UTC, respectively (see Table 7.8). If additional pseudo-
stochastic pulses are applied for Starlette, the WRMS of the polar motion increases by
7.0% and 2.7% in x- and y-direction, respectively. In contrary to UT1-UTC, where the
WRMS is reduced by 8.4%. While the bias of the X-pole is more than doubled, the bias
of the Y-pole is slightly reduced by 8µas.
The weighted RMS of the Helmert transformation of station coordinates w.r.t. SLRF2014

Table 7.8: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series for SLR
multi-satellite combinations of LAGEOS-1/2, LARES and Starlette data, when the air
drag is neglected or modeled for Starlette for the year 2015-2020.

Sat. Air drag St. pl. in S X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s]
for D Bias WRMS Bias WRMS Bias WRMS

A+C+D w/o - 11.9 124.5 39.1 127.9 −9.6 77.6
A+C+D w/ - 11.3 125.4 40.0 126.9 −8.6 76.7
A+C+D w/o 12/day 24.6 133.2 31.2 131.4 −8.2 71.1
A+C+D w/ 12/day 24.6 133.2 30.9 131.2 −8.5 71.1
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Figure 7.15: The observed 10.7 cm Solar Flux corrected for variations in the Earth-Sun
distance for the years 2015-2020¹⁴.
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Figure 7.16: Estimated constant accelerations in 𝑆 for Starlette, when the air drag is ne-
glected (blue) ormodeled (orange), in case of SLR combinations of LAGEOS-1/2, LARES
and Starlette for the years 2015-2020.

agree also within 0.1mm for each direction and are therefore not shown here.

The contribution of SLR observations to Starlette is limited, which is a consequence of
the small weights that are assigned by VCE to Starlette (see Fig. 7.17). Although the
mean weight of Starlette slightly increases when an air drag model is applied, it is al-
most 3 and 20 times smaller than for LARES and LAGEOS-1/2, respectively. Only the
use of pseudo-stochastic pulses for Starlette can increase the weights by almost a factor
of ten.
Furthermore, the time series of the weights from VCE of Starlette, when no pseudo-
stochastic pulses are used, feature a linear trend (see Fig. 7.17). In 2015, themeanweights
are 0.022 and 0.024 without andwith an air dragmodeling. In contrary to the year 2019,
where the mean weights are 0.11 and 0.097, respectively. The temporal variations of the
solar flux (see Fig. 7.15), which has a strong effect on the air density and therefore on
the strength of the air drag, reveal that the weights from VCE for Starlette are smaller
when the solar activity is high and vice versa. This is an indication that there are still
problems in the air drag modeling or a priori gravity model.
Nevertheless, the benefit of air drag modeling with NRLMSISE-00 for Starlette is clearly
visible in the estimated constant acceleration in 𝑆 (see Fig. 7.16), which can be strongly
reduced.
The additional use of pseudo-stochastic pulses in along-track, which are constrained

¹⁴https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-en.php
(Accessed: 28/03/2023)
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Figure 7.17: Weekly weights for Starlette derived by VCE resulting from LAGEOS-1/2,
LARES and Starlette SLR combinations when the air drag is neglected or modeled for
Starlette for the years 2015-2020.

with 𝜎 = 10 −6m/s, for the orbit parametrization of Starlette increases the mean weight
from VCE to 0.5 (see Fig. 7.17). This indicates that the air drag modeling for Starlette
is not sufficient and, therefore, causes modeling deficiencies in along-track, which can
be partially absorbed by pseudo-stochastic pulses. Hence, Starlette can only contribute
reasonably to the estimation of the geodetic parameters if pseudo-stochastic pulses in
along-track are set-up (see Table 7.8).

Furthermore, the weights derived by VCE (see Fig. 7.17) reveal that the SLR observa-
tions of Starlette better fit to the background modeling, when the time-variable gravity
field model of COST-G with replacing 𝐶21/𝑆21 is used instead of the gravity field model
provided by the ILRS.

7.2.2 Contribution of LEO SLR Data to Co-Estimated SH Geopoten-
tial Coefficients

As shown in Section 7.1.3, combinations of LAGEOS-1/2 and LARES SLR observations
already enable to co-estimate low-degree SH geopotential coefficients. The inclusion of
further SLR data to LEOs, i.e., Starlette and Stella, may strengthen the sensitivity to SH
geopotential coefficients and may reduce correlations between sought-after parameters.
Hence, the parametrization is further extended to co-estimate SH geopotential coeffi-
cients up to d/o 5 and 𝐶61/𝑆61 and is therefore more comparable to the reference series
of CSR.

The time series of estimated zonal SH geopotential coefficients (see Fig. 7.18) show that
the extension to also co-estimate d/o 5 and 𝐶61/𝑆61 is only reasonable if Starlette and
Stella SLR data are used in the SLR processing. Furthermore, the annual signal of 𝐶20
and especially𝐶30 is damped (see Fig. 7.19) and their time series better coincide with the
reference series of CSR. The gained sensitivity to 𝐶50 allows a reliable estimation of this
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Figure 7.18: Time series of estimated zonal SH geopotential coefficients𝐶20,𝐶30,𝐶40 and
𝐶50 resulting from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations when
using different parametrizations for the years 2015-2020.
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Figure 7.19: Amplitudes from the spectral analysis for 𝐶20 (top) and 𝐶30 (bottom) re-
sulting from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations when using
different parametrizations for the years 2015-2020.

parameter and may therefore attenuate the signal in the strongly correlated coefficient
𝐶30.
In conclusion, the estimation of SH geopotential coefficients is further improved with
the inclusion of Starlette and Stella.

The comparison of the ERPs shows much smaller differences between the LAGEOS-1/2
and LARES SLR combinations when SH geopotential coefficients of d/o 5 and 𝐶61/𝑆61
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Table 7.9: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations when using different
parametrizations for the years 2015-2020.

Sat. Est. SH X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s]
geo. coeff. Bias WRMS Bias WRMS Bias WRMS

A - 85.6 142.1 31.9 118.1 −1.7 64.3
A+C: 𝑎 + 𝑏 + 𝑑 4/4 61.2 140.1 16.3 128.8 0.1 22.8
A+C: 𝑎 + 𝑏 + 𝑑 5/5 + 𝐶/𝑆61 67.8 142.9 21.7 129.1 0.1 22.5
A+C+D+E: 𝑎 + 𝑏 5/5 + 𝐶/𝑆61 69.9 158.1 20.7 140.7 1.8 25.0
A+C+D+E: 𝑎 + 𝑏 + 𝑑 5/5 + 𝐶/𝑆61 76.0 147.5 15.0 128.6 0.9 22.3

are co-estimated instead of fixing them to the a priori values (see Table 7.9). The WRMS
of the ERPs increases by less than 2%, while the bias of the polar motion enlarges by
6.6µas and 5.4µas in x- and y-direction, respectively.
The benefit of additional pseudo-stochastic pulses of low-flying satellites, i.e., LARES,
Starlette and Stella, in along- and cross-track for LAGEOS-1/2, LARES, Starlette and
Stella SLR combinations is reflected in the reduction of the WRMS of the ERPs about
7% to 11%. While the bias of the X-pole increases by 6.1µas, the bias of the Y-pole and
UT1-UTC is reduced by 5.7µas and 0.9µs, respectively.
The weighted mean of the Helmert transformation of station coordinates agrees within
0.1mm in North, 0.6mm in East and 0.4mm in Up (see Fig. 7.20).

Figure 7.21 shows the weights for each satellite group derived by VCE for LAGEOS-1/2,
LARES, Starlette and Stella combinations, i.e., A+C+D+E: a+b+d solutions. The mean
weights for the years 2015-2020 are 1.2 for LAGEOS-1/2, 1.1 for LARES, 1.8 for Star-
lette and 0.5 for Stella. In contrary to the weights in Fig. 7.17, where Starlette is weighted
more than three times less. Hence, the additional estimation of the SH geopotential coef-
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Figure 7.20:Weightedmean RMS of Helmert transformation of station coordinates w.r.t.
SLRF2014 resulting from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations
using different parametrizations for the years 2015-2020.
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Figure 7.21: Weekly weights for LAGEOS-1/2 (blue), LARES (orange), Starlette (yellow)
and Stella (violet) derived by VCE resulting from LAGEOS-1/2, LARES, Starlette and
Stella SLR combinations when SH geopotential coefficients up to d/o 5 and 𝐶61/𝑆61 are
co-estimated for the years 2015-2020.

ficients leads to a better agreement between the Starlette observations and the estimated
modeling parameters.

Further insights into the use of each satellite group for the parameter estimation may
be provided by the contribution analysis on ERPs, geocenter coordinates and SH geopo-
tential coefficients.
The estimation of the polar motion is mainly based on LAGEOS-1/2 and LARES SLR
data, which have contributions of 0.7 and 0.2, respectively (see Fig. 7.22). In contrary to
UT1-UTC, which is almost only determined by LAGEOS-1/2. While the contribution of
Starlette is at least 0.05 on the polar motion, the contribution of Stella is insignificant
and can therefore be neglectable for all ERPs.
The estimation of the geocenter coordinates in x- and y-directions is again mainly based
on LAGEOS-1/2 and LARES with contributions of 0.75 and 0.14, respectively (see Fig.
7.23). In z-direction, the contribution of Starlette is increased to 0.3 at the expense of
the LAGEOS-1/2 contribution part.
The satellite specific contribution to the estimation of the SH geopotential coefficients
are averaged over the years 2015-2020 and shown in Figure 7.24. It can be clearly seen
that the estimation of 𝐶20, 𝐶21 and 𝑆21 almost only rely on LAGEOS-1/2.
LARES contributes noticeably to all sectorial and zonal SH geopotential coefficients 𝐶30,
𝐶40 and 𝐶50. It has the largest contribution to a subset of degree 4 terms, which are 𝐶40,
𝐶41 and 𝑆41. Starlette, however, essentially contributes to the tesseral SH geopotential
coefficients. Stella is again almost neglectable for the estimation of the low-degree SH
geopotential coefficients. It only starts to slightly contribute to the highest estimated
terms 𝐶61 and 𝑆61.
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Figure 7.22: Contribution of each satellite group to the estimation of ERPs from
LAGEOS-1/2, LARES, Starlette and Stella SLR combinationswhen estimating SH geopo-
tential coefficients up to d/o 5 and 𝐶61/𝑆61, i.e., solution A+C+D+E: a+b+d (d/o 5 +
𝐶/𝑆61).
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Figure 7.23: Contribution of each satellite group to the estimation of geocenter coordi-
nates from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations when estimat-
ing SH geopotential coefficients up to d/o 5 and 𝐶61/𝑆61, i.e., solution A+C+D+E: a+b+d
(d/o 5 + 𝐶/𝑆61).
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Figure 7.24: Mean contribution of each satellite group to the estimation of SH geopoten-
tial coefficients from LAGEOS-1/2, LARES, Starlette and Stella SLR combinations when
estimating SH geopotential coefficients up to d/o 5 and𝐶61/𝑆61, i.e., solution A+C+D+E:
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7.3 First Analysis of LARES-2 SLR Data

The LARES-2 satellite mission was launched on July 13, 2022, and the SLR station in
Graz, Austria, received the first signals nine days later (see Sec. 2.2). Afterwards, an in-
creasing number of SLR stations started to track LARES-2, such that the SLR LARES-2
NP data used for weekly SLR processing frommid-July tomid-November, 2022, are pro-
vided by 19 different SLR stations (see Fig. 7.25, left). The amount of processed LARES-2
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Figure 7.25: Number of NP SLR data to LARES-2 per SLR station (left) and per weekly
SLR combination (right) with LAGEOS-1/2 and LARES used for the SLR analysis be-
tween mid-July until mid-November, 2022.
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combinations from mid-July to mid-November, 2022.

NPs almost reaches the level of LAGEOS-2 observations (see Fig. 7.25, right).

LARES-2 has a comparable orbit altitude as the LAGEOS-1/2 satellites (see Table 2.2),
and consequently, in a first step, the same orbit parametrization can be adopted (see
Table 7.1). Since, at the time of writing, the system-dependent center-of-mass correction
and range bias of LARES-2 for each individual SLR station are not yet determined as for
LAGEOS-1/2 (Otsubo and Appleby 2003), range biases are additionally estimated for
all SLR stations.
Furthermore, the static a priori Earth’s gravity field model GGM05S (see Table 4.2) is
replaced by the time-variable gravity field model provided by the COST-G (Peter et al.
2022) in order to reduce the mis-modeling especially for LARES.

The contribution of LARES-2 SLR data is studied by validating SLR combinations based
on LAGEOS-1/2 and LARES/LARES-2 using VCE.
The weekly estimated weights for LARES-2 are on average 3.24 times higher than for the
well performing LAGEOS-1/2 satellites, while LARES is only weighted less than 50%
of LAGEOS-1/2 (see Fig. 7.26). Therefore, the VCE indicates that LARES-2 SLR observa-
tions fit even better to the estimated model parameters than LAGEOS-1/2 observations.
This can be expected, due to the small area-to-mass ratio of LARES-2 (see Table 2.2) and
the rather high orbit altitude.
Nevertheless, the inclusion of LARES-2 data does not significantly change the bias and
the WRMS of the polar motion in x-direction (see Table 7.10). However, the bias of the

Table 7.10: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series and
the weighted mean RMS of the Helmert transformation of station coordinates w.r.t.
SLRF2014 resulting from LAGEOS-1/2, LARES and LARES-2 SLR combinations from
mid-July to mid-November, 2022.

Sat. X-pole [𝜇as] Y-pole[𝜇as] UT1-UTC [𝜇s] RMS of Helmert [mm]
Bias WRMS Bias WRMS Bias WRMS North East Up

A+D 152.2 198.5 11.7 154.6 −9.5 69.4 7.3 4.8 17.3
A+D+F 158.2 198.5 32.0 140.6 −5.1 76.0 7.4 4.9 17.1
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Figure 7.27: Estimated ERP corrections w.r.t. the IERS-14-C04 reference series resulting
from LAGEOS-1/2, LARES and/or LARES-2 SLR combinations from mid-July to mid-
November, 2022.

Y-pole is more than doubled, while the WRMS can be reduced by 14µas. The slightly
increased WRMS in UT1-UTC can be explained by the unbalanced inclinations of the
satellite orbits, i.e., retrograde (LAGEOS-1) or prograde (LAGEOS-2, LARES, LARES-2)
motion. Since LARES-2 receives a high weight from the VCE, the ascending nodes are
systematically shifted to the benefit of the satellites with a retrograde motion. Hence,
through the correlation between the ascending nodes and UT1-UTC (see Eq. 6.1) also
the estimation of UT1-UTC is affected and, therefore, the saw tooth behaviour of the
time series of UT1-UTC becomes slightly more distinctive (see Fig. 7.27). This can be
confirmed by the experiment of LAGEOS-1/2 SLR combinations (see Sec. 7.1.2), where
an imbalance with different weights for LAGEOS-1, resp. LAGEOS-2 is enforced (see
Fig. 7.4).
The weighted mean RMS of the Helmert transformation of station coordinates w.r.t.
SLRF2014 increases only by 0.1mm in the horizontal plane and 0.2mm in up direction,
if LARES-2 data are included (see Table 7.10).

The estimated range biases for LARES-2 for each individual SLR station are mainly be-
tween −18 cm and −17 cm (see Fig. 7.28). These large range biases are caused by the
center-of-mass corrections, which are so far not applied. Except for the SLR stations
7819, 7821, 7838 and 7841, the standard deviations of the range biases are smaller than
5mm.
Furthermore, in Figure 7.29 the RMS of the observation residuals per satellite group,
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Figure 7.29: RMS of LAGEOS-1/2 (blue), LARES (yellow) and LARES-2 (violet) obser-
vation residuals resulting from LAGEOS-1/2, LARES and LARES-2 SLR combinations
from mid-July to mid-November, 2022.

i.e., LAGEOS-1/2, LARES and LARES-2, is compared. The mean RMS of the observa-
tion residuals from LARES-2 is 1.5 times smaller than for LAGEOS-1/2. On the con-
trary, LARES observation residuals are the largest with a mean RMS almost twice that
of LAGEOS-1/2. However, this is to be expected, since LARES has a lower altitude (see
Table 2.2) and thus the orbit modeling becomes more challenging.
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Chapter 8

Summary, Conclusions and Outlook

SLR is a well established geodetic technique with its observations covering over more
than half a century and currently reaching a measurement accuracy of a few millime-
ters (Pearlman et al. 2019). It has an indispensable contribution to the determination of
geodetic parameters, e.g., the geocenter and station coordinates, which are essential for
realizations of long-term stable terrestrial reference frames. As a result, the origin and
the scale of the previous ITRF depend solely on SLR and the combination of SLR and
VLBI, respectively (Altamimi et al. 2018). Further on, even though nowadays dedicated
satellite gravimetry missions such as GRACE/GRACE-FO are available for the determi-
nation of the Earth’s time-variable gravity field, some of the low-degree SH geopotential
coefficients can still be better determined by SLR.
This thesis is devoted to the improvement of the SLR data generation and processing
based on the BSW at the AIUB, in order to further strengthen the SLR contribution to
geodetic products.

A simulation of a simplified SLR data compression of full-rate data to NPs leads to the
conclusion that the quality of the reconstructed orbit of a 40min satellite pass depends
on the actual observation time span. If the observation time span is less than 60% of the
full pass the reconstructed orbit may show larger differences to the original one. Hence,
through the data compression some information about the orbit is lost. Furthermore,
it also reveals that shorter NP bin sizes may improve the quality of the data compres-
sion slightly. However, a shorter NP bin size will also lead to more NP data, which may
also have an impact. Nevertheless, due to its strong simplification of the problem, these
results will not directly hold for the real SLR data compression without further investi-
gations.
Nonetheless, this simulation motivates further studies, e.g., about the impact of the SLR
data distribution over a satellite fly-by (observing the satellite at the beginning and/or at
the end of a fly-by), on the quality of the estimated parameters resulting from SLR pro-
cessing. Consequently, the performance of SLR stations without weakening the quality
of the estimated parameters might be improved.

To perform a SLR data compression at the AIUB, a NP generator was implemented
into a development version of the BSW. It allows to generate NPs from full-rate data
(given in CRD-format) provided by any SLR station. Additionally, different trend func-
tions (polynomials or adjusted orbit trajectories) and screening methods (RMS-based
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and Leading-Edge) can be selected and directly be validated by performing a SLR pro-
cessing to estimate geodetic parameters. Already from the first results, where only NPs
from SwissOGS are formed with the new NP generator, differences occur in the esti-
mates of the geodetic parameters from LAGEOS-1/2 SLR combinations. Although these
differences are not yet significant, they indicate a potential impact of a homogeneous
generation of SLR NPs from all stations on the parameter estimation.

The analysis of the geodetic parametrization based on LAGEOS-1/2 SLR combinations
suggests to represent the ERPs by piece-wise linear functions. This guarantees conti-
nuity at day boundaries, and thus, describes the temporal evolution of the ERPs in a
more physical way. However, this degrades UT1-UTC, where saw-tooth behaviour is in-
duced, due to the emerging strong correlation with the satellite’s ascending node and
consequently with OPR-W accelerations. Therefore, SLR combinations, where the polar
motion and UT1-UTC are differently parametrized by piece-wise linear and piece-wise
constant functions, respectively, are to be analyzed.
Furthermore, it is investigated that the set of selected core stations used for the datum
definition has a significant impact on the estimates of the geodetic parameters, e.g., ERPs
and geocenter coordinates. The Helmert approach of core station selection ensures that
only stable SLR stations are used and, therefore, prevents the usage of pre-defined sets
of core stations.

The lower a satellite is orbiting the Earth, the more demanding the orbit modeling, e.g.,
air drag and the Earth’s gravity field, becomes. While the air drag modeling is not used
for LAGEOS-1/2 and has only a marginal impact on LARES orbits, it is essential but
not sufficient for Starlette. It is able to reduce the magnitude of co-estimated constant
dynamic orbit parameters but increasedweights derived byVCEwhen applying pseudo-
stochastic pulses twelve times a day in along-track indicate remaining modeling defi-
ciencies.
The comparison of the performance of different a priori time-variable gravity fieldmod-
els provided by the ILRS andCOST-G confirms the high quality of the COST-G products,
since the majority of the estimated geodetic parameters are improved and the RMS of
the observation residuals for LARES and Starlette are reduced.

In this work, it is demonstrated that in the SLR data processing VCE can be used to ap-
ply appropriate constraints on pseudo-stochastic pulses, to take the NP data for each
station according to their quality into account or to provide reasonable station-specific
weights when performing multi-satellite SLR combinations.
It may further allow to study the optimal orbit and geodetic parametrizations by intro-
ducing appropriate constraints on dynamic orbit parameters or on correlated SH geopo-
tential coefficients. The idea of the station-specific weighting may be used in the proce-
dure of the SLR data screening. Since the performance and therefore the quality of the
NPs may vary over time, the weights should be estimated per station and per satellite
pass.

Due to correlations, low-degree SH geopotential coefficients, e.g., 𝐶20 and 𝐶30, can only
be reliably estimated if the dynamic orbit parameters OPR-W for all satellites and OPR-
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S for the low-flying satellites are neglected. The contribution analysis identified that the
zonal and tesseral coefficients of degree 2 are mainly determined based on LAGEOS-1/2
SLR observations, while 𝐶40, 𝐶41 and 𝑆41 rely on LARES SLR data. Additionally, LARES
also strongly contributes to the determination of the sectorial coefficients and Starlette
becomes important for the remaining tesseral coefficients and for degree 6 terms.
Furthermore, the multi-satellite SLR combinations can still be extended by including
further geodetic satellites, e.g., Ajisai (Sośnica et al. 2014) or LARES-2.

Finally, the outstanding performance of LARES-2 is shown, which may offer the oppor-
tunity to improve the SLR contribution to further ITRF realizations.
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Appendix A

Long-Arc Computations

For day 𝑖 ∈ {1, 2, ..., 𝑛} we denote

𝐸𝑘,𝑖 ∶ osculating orbital elements (with 𝑘 ∈ {1, ..., 6}),
𝑝𝑘,𝑖 ∶ dynamic parameters (with 𝑘 ∈ {1, ..., 𝑑}),

where the dynamic parameters are divided into two groups

𝑞𝑘,𝑖 ∶ dynamic orbit parameters (with 𝑘 ∈ {1, ..., 𝑚𝑞}, where 𝑚𝑞 < 𝑑),
𝑔𝑘,𝑖 ∶ gravity field parameters (with 𝑘 ∈ {1, ..., 𝑚𝑔 }, where 𝑚𝑔 ≤ 𝑑 − 𝑚𝑞).

Asking for continuity and differentiability at the day boundaries of the daily arcs (for
day 𝑖 and 𝑖 + 1) and a first-order Taylor series expansion lead to

ΔE𝑖+1 =H−1
𝑖+1(x0,𝑖 − x0,𝑖+1) +H−1

𝑖+1H𝑖ΔE𝑖

+H−1
𝑖+1(Q𝑖Δq𝑖 −Q𝑖+1Δq𝑖+1)

+H−1
𝑖+1(G𝑖 −G𝑖+1)Δg𝑖 +H−1

𝑖+1G𝑖+1(g0,𝑖+1 − g0,𝑖)
(A.1)

and if only one set of gravity field parameters shall be computed for the entire long-arc,
the following equation holds

Δg𝑖+1 = Δg𝑖 + ⒧g0,𝑖 − g0,𝑖+1⒭ (A.2)

with

x0,𝑖 = ⒧r0,𝑖̇r0,𝑖
⒭ ,

H𝑖 = ⒧ 𝜕x0,𝑖𝜕𝐸1,𝑖 ... 𝜕x0,𝑖
𝜕𝐸6,𝑖 ⒭ ,

Q𝑖 = ⒧𝜕x0,𝑖𝜕𝑞1,𝑖 ... 𝜕x0,𝑖
𝜕𝑞𝑚𝑞,𝑖

⒭ ,

G𝑖 = ⒧𝜕x0,𝑖𝜕𝑔1,𝑖 ... 𝜕x0,𝑖
𝜕𝑔𝑚𝑔 ,𝑖

⒭ .

(A.3)
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𝑖 = 1:

ΔE2 =H−1
2 (x0,1 − x0,2) +H−1

2 H1ΔE1

+H−1
2 (Q1Δq1 −Q2Δq2)

+H−1
2 (G1 −G2)Δg1 +H−1

2 G2(g0,2 − g0,1)

Δg2 =Δg1 + ⒧g0,1 − g0,2⒭

(A.4)

𝑖 = 2:

ΔE3 =H−1
3 (x0,2 − x0,3) +H−1

3 H2ΔE2

+H−1
3 (Q2Δq2 −Q3Δq3)

+H−1
3 (G2 −G3)Δg2 +H−1

3 G3(g0,3 − g0,2)

Δg3 =Δg2 + ⒧g0,2 − g0,3⒭

(A.5)

Inserting Eq. A.4 in Eq. A.5 yields

ΔE3 =H−1
3 (x0,2 − x0,3) +H−1

3 H2H−1
2 (x0,1 − x0,2) +H−1

2 H1ΔE1

+H−1
2 (Q1Δq1 −Q2Δq2)

+H−1
2 (G1 −G2)Δg1 +H−1

2 G2(g0,2 − g0,1)
+H−1

3 (Q2Δq2 −Q3Δq3)
+H−1

3 (G2 −G3) Δg1 + ⒧g0,1 − g0,2⒭ +H−1
3 G3(g0,3 − g0,2)

=H−1
3 (x0,2 − x0,3) +H−1

3 (x0,1 − x0,2) +H−1
3 H1ΔE1

+H−1
3 (Q1Δq1 −Q2Δq2)

+H−1
3 (G1 −G2)Δg1 +H−1

3 G2(g0,2 − g0,1)
+H−1

3 (Q2Δq2 −Q3Δq3)
+H−1

3 (G2 −G3) Δg1 + ⒧g0,1 − g0,2⒭ +H−1
3 G3(g0,3 − g0,2)

=H−1
3 (x0,1 − x0,3) +H−1

3 H1ΔE1

+H−1
3 (Q1Δq1 −Q3Δq3)

+H−1
3 (G1 −G3)Δg1 +H−1

3 G3(g0,3 − g0,1)

Δg3 =Δg2 + ⒧g0,2 − g0,3⒭

=Δg1 + ⒧g0,1 − g0,2⒭ + ⒧g0,2 − g0,3⒭

=Δg1 + ⒧g0,1 − g0,3⒭

(A.6)
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𝑖 = 3:

ΔE4 =H−1
4 (x0,3 − x0,4) +H−1

4 H3ΔE3 (A.7)

+H−1
4 (Q3Δq3 −Q4Δq4)

+H−1
4 (G3 −G4)Δg3 +H−1

4 G4(g0,4 − g0,3)
ΔE4 =H−1

4 (x0,3 − x0,4) +H−1
4 H3H−1

3 (x0,1 − x0,3) +H−1
3 H1ΔE1

+H−1
3 (Q1Δq1 −Q3Δq3)

+H−1
3 (G1 −G3)Δg1 +H−1

3 G3(g0,3 − g0,1)
+H−1

4 (Q3Δq3 −Q4Δq4)
+H−1

4 (G3 −G4) Δg1 + ⒧g0,1 − g0,3⒭ +H−1
4 G4(g0,4 − g0,3)

=H−1
4 (x0,3 − x0,4) +H−1

4 (x0,1 − x0,3) +H−1
4 H1ΔE1

+H−1
4 (Q1Δq1 −Q3Δq3)

+H−1
4 (G1 −G3)Δg1 +H−1

4 G3(g0,3 − g0,1)
+H−1

4 (Q3Δq3 −Q4Δq4)
+H−1

4 (G3 −G4) Δg1 + ⒧g0,1 − g0,3⒭ +H−1
4 G4(g0,4 − g0,3)

=H−1
4 (x0,1 − x0,4) +H−1

4 H1ΔE1

+H−1
4 (Q1Δq1 −Q4Δq4)

+H−1
4 (G1 −G4)Δg1 +H−1

4 G4(g0,4 − g0,1)

Δg4 =Δg1 + ⒧g0,1 − g0,3⒭ + ⒧g0,3 − g0,4⒭

=Δg1 + ⒧g0,1 − g0,4⒭

Hence, the recursive transformations from day 𝑖 + 1 to day 𝑖 can be expressed as

ΔE𝑖+1 =H−1
𝑖+1(x0,1 − x0,𝑖+1) +H−1

𝑖+1H1ΔE1

+H−1
𝑖+1(Q1Δq1 −Q𝑖+1Δq𝑖+1)

+H−1
𝑖+1(G1 −G𝑖+1)Δg1 +H−1

𝑖+1G𝑖+1(g0,𝑖+1 − g0,1)

Δg𝑖+1 =Δg1 + ⒧g0,1 − g0,𝑖+1⒭

(A.8)
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Appendix B

Accelerations, Expressed in the
co-rotating Orbital Frame, Acting on a
Satellite Due to Spherical Harmonic
Geopotential Coefficients 𝐶20 and 𝐶30

The gravity field potential in spherical harmonic expansion in the Earth-fixed frame us-
ing the system of spherical coordinates, i.e., radial distance 𝑟, longitude 𝜆 and colatitude
𝜃, is given by

𝑉(𝑟, 𝜆, 𝜃) = 𝐺𝑀
𝑟

∞


𝑖=0

⒧𝑎E𝑟 ⒭
𝑖 𝑖


𝑘=0

𝑃𝑖𝑘(cos𝜃) {𝐶𝑖𝑘 cos(𝑘𝜆) + 𝑆𝑖𝑘 sin(𝑘𝜆)} (B.1)

with the associated Legendre functions

𝑃𝑖𝑘(𝑥) = (1 − 𝑥2)
𝑘
2
𝑑𝑘

𝑑𝑥𝑘
{𝑃𝑖(𝑥)} ,

𝑃𝑖0(𝑥) = 𝑃𝑖(𝑥) =
1
2𝑖𝑖!

𝑑𝑖

𝑑𝑥𝑖 (𝑥
2 − 1)𝑖 ,

(B.2)

where 𝑃𝑖 are the Legendre polynoms of degree 𝑖 and the Earth’s spherical harmonic co-
efficients 𝐶𝑖𝑘, 𝑆𝑖𝑘 of degree 𝑖 and order 𝑘. Further, 𝑎E defines the equatorial radius of the
Earth and 𝐺𝑀 is the gravitational constant multiplied by the mass of the Earth.
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B. Accelerations, Expressed in the co-rotating Orbital Frame, Acting on a Satellite Due to
Spherical Harmonic Geopotential Coefficients 𝐶20 and 𝐶30

The first terms of the gravity field potential are

𝑉(𝑟, 𝜆, 𝜙) = 𝐺𝑀
𝑟 (1 + ⒧𝑎E𝑟 ⒭

1
𝑃10(cos𝜃) {𝐶10 cos(0) + 𝑆10 sin(0)}

+ ⒧𝑎E𝑟 ⒭
1
𝑃11(cos𝜃) {𝐶11 cos(𝜆) + 𝑆11 sin(𝜆)}

+ ⒧𝑎E𝑟 ⒭
2
𝑃20(cos𝜃) {𝐶20 cos(0) + 𝑆20 sin(0)}

+ ⒧𝑎E𝑟 ⒭
2
𝑃21(cos𝜃) {𝐶21 cos(𝜆) + 𝑆21 sin(𝜆)}

+ ⒧𝑎E𝑟 ⒭
2
𝑃22(cos𝜃) {𝐶22 cos(2𝜆) + 𝑆22 sin(2𝜆)}

+ ⒧𝑎E𝑟 ⒭
3
𝑃30(cos𝜃) {𝐶30 cos(0) + 𝑆30 sin(0)}) + ...

(B.3)

The Legendre polynoms for the term 𝐶20 and 𝐶30 are

𝑃20(cos𝜃) =
1

222!
𝑑2

𝑑𝑥2 (𝑥
2 − 1)2

(𝑥=cos𝜃)

= 1
222!

𝑑
𝑑𝑥 2(𝑥2 − 1)2𝑥

(𝑥=cos𝜃)

= 1
2! (𝑥

2 − 1) + 2𝑥2
(𝑥=cos𝜃)

= 1
2 3 cos2 𝜃 − 1

𝑃30(cos𝜃) =
1

233!
𝑑3

𝑑𝑥3 (𝑥
2 − 1)3

(𝑥=cos𝜃)

= 1
233!

𝑑2

𝑑𝑥2 3(𝑥
2 − 1)22𝑥

(𝑥=cos𝜃)

= 1
222!

𝑑
𝑑𝑥 (𝑥2 − 1)2 + 2(𝑥2 − 1)2𝑥2

(𝑥=cos𝜃)

= 1
222! 2(𝑥

2 − 1)2𝑥 + 4 ⋅ 2𝑥3 + 4(𝑥2 − 1)2𝑥
(𝑥=cos𝜃)

= 1
2! (𝑥

2 − 1)𝑥 + 2𝑥3 + (𝑥2 − 1)2𝑥
(𝑥=cos𝜃)

= 1
2! 𝑥

3 − 𝑥 + 2𝑥3 + 2𝑥3 − 2𝑥
(𝑥=cos𝜃)

= 1
2 5 cos3 𝜃 − 3 cos𝜃 .

(B.4)

To change the reference frame to the co-rotating orbital frame, the rotation matrix R =
R3(𝑢)R1(𝑖)R3(Ω) has be used as

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
= 𝑟R−1

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
(B.5)
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B.1 Acceleration Due to 𝐶20

with

R =
⎛⎜⎜⎜⎜⎜⎜⎝

cos(𝑢) sin(𝑢) 0
− sin(𝑢) cos(𝑢) 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 cos(𝑖) sin(𝑖)
0 − sin(𝑖) cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

cos(Ω) sin(Ω) 0
− sin(Ω) cos(Ω) 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
(B.6)

=
⎛⎜⎜⎜⎜⎜⎜⎝

cos(𝑢) sin(𝑢) 0
− sin(𝑢) cos(𝑢) 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

cos(Ω) sin(Ω) 0
− sin(Ω) cos(𝑖) cos(𝑖) cos(Ω) sin(𝑖)
sin(𝑖) sin(Ω) − sin(𝑖) cos(Ω) cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎜⎜⎝

cos(𝑢) cos(Ω) − sin(𝑢) sin(Ω) cos(𝑖) cos(𝑢) sin(Ω) + sin(𝑢) cos(𝑖) cos(Ω) sin(𝑢) sin(𝑖)
− sin(𝑢) cos(Ω) − cos(𝑢) sin(Ω) cos(𝑖) − sin(𝑢) sin(Ω) + cos(𝑢) cos(𝑖) cos(Ω) cos(𝑢) sin(𝑖)

sin(𝑖) sin(Ω) − sin(𝑖) cos(Ω) cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠
.

B.1 Acceleration Due to 𝐶20

The gravity field potential term containing 𝐶20 reads as

𝑉(𝑟, 𝜆, 𝜃)𝐶20 =
𝐺𝑀
𝑟 ⒧𝑎E𝑟 ⒭

2 1
2 3 cos2 𝜃 − 1𝐶20. (B.7)

Now, take the gradient of the gravity field potential (with 𝑟3 = 𝑟 cos𝜃)

∇∇∇𝑉(𝑟, 𝜆, 𝜃)𝐶20 = ∇∇∇ 𝐺𝑀𝑎2E𝐶20 ⒧
1
𝑟 ⒭

3
32

𝑟23
𝑟2 − 1

2
. (B.8)

With

∇∇∇ ⒧ 1𝑟3 ⒭ = −3r 1𝑟5 (B.9)

∇∇∇⒧𝑟
2
3
𝑟5 ⒭ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5𝑟23 𝑟1
𝑟7

−5𝑟23 𝑟2
𝑟7

2𝑟3𝑟5−5𝑟33 𝑟3
𝑟10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −5𝑟23

𝑟7
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎜⎝

0
0
2𝑟3
𝑟5

⎞⎟⎟⎟⎟⎟⎟⎠
(B.10)

it follows that

̈r𝐶20 = ∇∇∇𝑉(𝑟, 𝜆, 𝜃)𝐶20 =𝐺𝑀𝑎2E𝐶20 
3
2
𝑟23
𝑟2 − 1

2

=𝐺𝑀𝑎2E𝐶20

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3
2
−5𝑟23
𝑟7

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
+ 3
2

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
2𝑟3
𝑟5

⎞⎟⎟⎟⎟⎟⎟⎠
+ 3
2
1
𝑟5

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟1(1 − 5 𝑟23
𝑟2 )

𝑟2(1 − 5 𝑟23
𝑟2 )

𝑟3(3 − 5 𝑟23
𝑟2 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.11)
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B. Accelerations, Expressed in the co-rotating Orbital Frame, Acting on a Satellite Due to
Spherical Harmonic Geopotential Coefficients 𝐶20 and 𝐶30

In the co-rotating orbital frame (use 𝑟3 = 𝑟 sin(𝑖) sin(𝑢))

⎛⎜⎜⎜⎜⎜⎜⎝

𝑅′

𝑆′

𝑊′

⎞⎟⎟⎟⎟⎟⎟⎠𝐶20

=R ̈r𝐶20 (B.12)

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟5 (1 − 5𝑟

2
3
𝑟2 )RR

−1𝑟
⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
+ 𝐺𝑀𝑎2E𝐶20

3
2
1
𝑟52𝑟3R

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟4 (1 − 5𝑟

2
3
𝑟2 )

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
+ 𝐺𝑀𝑎2E𝐶20

3
2
1
𝑟52𝑟3

⎛⎜⎜⎜⎜⎜⎜⎝

sin(𝑢) sin(𝑖)
cos(𝑢) sin(𝑖)

cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟4

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 5 sin2(𝑖) sin2(𝑢) + 2 sin(𝑢) sin(𝑖) sin(𝑢) sin(𝑖)
2 sin(𝑢) sin(𝑖) cos(𝑢) sin(𝑖)

2 sin(𝑢) sin(𝑖) cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟4

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 3 sin2(𝑖) sin2(𝑢)
2 sin2(𝑖) sin(𝑢) cos(𝑢)
2 sin(𝑢) sin(𝑖) cos(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟4

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 3 sin2(𝑖)1−cos(2𝑢)2
sin2(𝑖) sin(2𝑢)
sin(𝑢) sin(2𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠

=𝐺𝑀𝑎2E𝐶20
3
2
1
𝑟4

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 3
2 sin

2(𝑖) + 3
2 sin

2(𝑖) cos(2𝑢)
sin2(𝑖) sin(2𝑢)
sin(2𝑖) sin(𝑢)

⎞⎟⎟⎟⎟⎟⎟⎠

B.2 Acceleration Due to 𝐶30

The gravity field potential term containing 𝐶30 reads as

𝑉(𝑟, 𝜆, 𝜃)𝐶30 =
𝐺𝑀
𝑟 ⒧𝑎E𝑟 ⒭

3 1
2 5 cos3 𝜃 − 3 cos𝜃𝐶30 (B.13)

Now, take the gradient of the gravity field potential (with 𝑟3 = 𝑟 cos𝜃)

∇∇∇𝑉(𝑟, 𝜆, 𝜃)𝐶30 = ∇∇∇ 𝐺𝑀𝑎3E𝐶30 ⒧
1
𝑟 ⒭

4
52

𝑟33
𝑟3 − 3

2
𝑟3
𝑟  .

(B.14)

With

∇∇∇⒧𝑟
3
3
𝑟7 ⒭ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7𝑟33 𝑟1
𝑟9

−7𝑟33 𝑟1
𝑟9

3𝑟23 𝑟7−7𝑟43 𝑟5
𝑟14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −7𝑟33

𝑟9
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
3𝑟23
𝑟7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.15)
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B.2 Acceleration Due to 𝐶30

∇∇∇ ⒧𝑟3𝑟5 ⒭ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

−5𝑟3𝑟1
𝑟7−5𝑟3𝑟2
𝑟7

𝑟5−5𝑟23 𝑟3
𝑟10

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= −5𝑟3

𝑟7
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎜⎝

0
0
1
𝑟5

⎞⎟⎟⎟⎟⎟⎟⎠
(B.16)

it follows that

̈r𝐶30 = ∇∇∇𝑉(𝑟, 𝜆, 𝜃)𝐶30 = 𝐺𝑀𝑎3E𝐶30

⎧⎪⎪⎪⎨⎪⎪⎪⎩

5
2
−7𝑟33
𝑟9

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎟⎟⎟⎠
+ 5
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
3𝑟23
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In the co-rotating orbital frame (use 𝑟3 = 𝑟 sin(𝑖) sin(𝑢))
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