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Abstract

The increasing amount of data available and the rate at which it is be-

ing collected is driving the rapid development of intelligent information

processing and pattern recognition systems. Often the underlying data is

inherently complex, making it difficult to represent it using linear, vectorial

data structures. Graphs offer a versatile alternative for formal data rep-

resentation. Actually, quite a number of graph-based pattern recognition

methods have been proposed, and a considerable part of these methods rely

on graph matching.

This thesis introduces a novel method for encoding specific graph match-

ing information into a meta-graph, termed matching-graph. The basic idea

is to formalize the stable cores of individual classes of graphs – discovered

during intra-class matching. This meta-graph is useful in several applica-

tions ranging from the analysis of inherent patterns, over graph classifi-

cation, to graph augmentation. The benefits of the matching-graphs are

evaluated in three parts.

First, their usefulness in classification scenarios is evaluated in two ap-

proaches. The first approach is a distance-based classifier that focuses on

the matching-graphs during dissimilarity computation. The second ap-

proach uses sets of matching-graphs to embed input graphs into a vector

space. The basic idea is to first generate hundreds of matching-graphs, and

then represent each graph g as a vector that shows the occurrence of, or

the distance to, each matching-graph. In a thorough experimental evalu-

ation on real-world data sets it is empirically confirmed that these novel

approaches are able to improve the classification accuracy of systems that

rely on comparable information as well as state-of-the-art methods.

The second part of the research targets a prevalent challenge in graph-

based pattern recognition, viz. computing the maximum common subgraph

iii
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(MCS). Current exact algorithms compute the MCS with exponential time

complexity. In this second part, it is investigated whether matching-graphs,

computable in polynomial time, provide a suitable approximation for the

MCS. Results show that, for specific graphs, a matching-graph equals the

maximum common edge subgraph, thereby establishing an upper limit to

the size of the maximum common induced subgraph. The experimental

evaluation further confirms that matching-graphs outperform existing al-

gorithms in terms of computation time and classification accuracy.

The third part of this thesis addresses the problem of graph augmenta-

tion. Regardless of the actual representation formalism used, it is inevitable

that supervised pattern recognition algorithms need access to large sets of

labeled training samples. However, in some cases, this requirement cannot

be met because the set of labeled samples is inherently limited. The last

part shows that matching-graphs can be used to augment graph training

sets in order to make the training of a classifier more robust. The bene-

fit of this approach is empirically validated in two different experiments.

First, the augmentation approach is studied on very small graph data sets

in conjunction with a graph kernel classifier, and second, the augmentation

approach is studied on data sets with reasonable size in conjunction with a

graph neural network classifier.
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Introduction 1
A novel graph they did define,
Where matching pairs would
intertwine. The underlying
core, a stable part, the heart of
each graph’s heart.

ChatGPT

Pattern recognition refers to the cognitive process that involves identi-

fying and categorizing data to make sense of the environment. In essence,

pattern recognition is a fundamental human ability, which is part of our

intelligence and survival. We are constantly processing vast amounts of

sensory data and identifying patterns that allow us to make predictions or

informed decisions about the future.

Every individual faces an enormous variety of pattern recognition chal-

lenges on a daily basis. Face recognition is one of the most prominent

examples of human pattern recognition. Every day we distinguish between

countless faces and remember faces we may not have seen for years. Un-

derstanding language is another example of pattern recognition. We ef-

fortlessly decode the symbols and sounds into meaningful sentences, by

recognizing patterns in the arrangement of these symbols. The way we

understand people’s handwriting, despite variations in style, also demon-

strates our ability to recognize patterns in lines and strokes. Navigation is

another manifestation of the human ability to recognize patterns. Whether

we are maneuvering through a city or our own home, we rely on recog-

nizable patterns in the environment to guide us. Our social interactions

also depend on pattern recognition, as we interpret speech patterns, body

language, and facial expressions to understand the emotions and intentions

of others. Even our health awareness benefits from pattern recognition, as

1
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we monitor changes in normal patterns of our bodies, such as appetite and

sleep, to detect potential health problems.

It is obvious that pattern recognition plays a crucial role in our lives,

enabling us to make predictions, solve problems and make informed deci-

sions. It is so seamlessly integrated into our daily experiences that we often

take it for granted.

However, as the amount of available data increases, it becomes increas-

ingly difficult and tedious for humans to analyze and recognize the patterns

that exist. While humans are excellent at recognizing patterns in most ev-

eryday activities, there are cases where the complexity, scale, or subtlety

of the patterns exceed human capabilities. In such cases, automated pat-

tern recognition is crucial. For example, in medical imaging, radiologists

and pathologists have to go through complicated medical images to detect

abnormalities that indicate disease. This is a challenging task due to the

large volume of images and the minute details involved. Similarly, in the fi-

nancial sector, millions of transactions are processed every day. It is almost

impossible to manually detect fraudulent activity in this vast amount of

data. A third example involves the human genome of around three billion

base pairs. It is impossible to manually detect patterns or anomalies in this

vast sequence of base pairs.

In these and many other scenarios, automated pattern recognition sur-

passes the limitations of manual analysis, allowing us to process large

amounts of data by machines. Actually, pattern recognition as a computer

science discipline has become a fundamental part of machine learning and

artificial intelligence, and its importance cannot be overstated. To name

just a few examples, pattern recognition systems are able to solve vari-

ous problems such as the recognition of facial expressions [1], the temporal

sorting of images [2], the enhancing of weakly lighted images [3], situation

recognition [4], or breast cancer detection [5].

Pattern recognition can be roughly divided into two main approaches

with respect to the formal data or pattern representation. Statistical pattern

recognition relies on feature vectors for data representation, while structural

pattern recognition employs strings, trees, or graphs for the same task. At

their core, graphs are a collection of nodes and edges, representing entities

and their connections, respectively. Because graphs can encode more infor-

mation than just an ordered and fixed-size list of real numbers, they offer

a compelling alternative to vectorial approaches. Graph structures have

numerous applications in the real world. For example, in modeling public

transport networks, where each station is modeled with a node and the
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routes between them are modeled by edges [6]. Graphs can also be used

to model electrical circuits, where each node represents a component (such

as a resistor, capacitor, etc.) and the connections between them can be

modeled by edges [7]. Another common example of graph-based represen-

tation is the modeling of social media networks, where the nodes represent

individual users, and the edges model the connections between them [8]. A

further example is handwritten signatures, where the nodes and edges of

a graph can be used to represent individual letters and words [9]. Graphs

can also be used to intuitively model biological structures, such as relation-

ships between genes, where nodes represent genes and the edges represent

the relationship between them [10]. In pattern recognition applications

graphs are also used for a diverse range of tasks [11, 12]. From protein

function/structure prediction [13], over signature verification [14], to the

detection of Alzheimer’s Disease [15].

A key component of structural pattern recognition is graph matching,

which involves finding similarities between two or more graphs. It can

be used to identify and classify patterns within complex data. The field

of graph matching can be divided into three different areas. The first area

focuses on the direct comparison of graphs, e.g. by using graph isomorphism

or related concepts. Second, the area of graph kernels [16], where the

goal is to compute a kernel value for graph pairs to make kernel machines

applicable to graphs. After the great success of the second area, a third area

has emerged, namely graph neural networks [17], which aims to transfer the

power of neural networks to the graph domain.

Over the last four decades, a large number of graph matching, graph

kernel, and graph neural network procedures have been proposed in the

literature [11, 12]. Some commonly used graph matching methods include

approaches based on spectral methods [18–21], relaxation labeling [22–24]

or genetic algorithms [25–27].

Prominent examples of graph kernels include, for instance, the subgraph

kernel [28], the random walk kernel [29], or the shortest path kernel [30].

In the area of graph neural networks, one should mention the graph convo-

lutional neural network [31], the graph attention network [32] or the graph

isomorphism network [33].

For the present thesis, one specific graph matching model plays a pivotal

role, viz. graph edit distance. Graph edit distance [34], introduced about

40 years ago, is still recognized as one of the most flexible and robust graph

matching models available. The graph edit distance is an error-tolerant

dissimilarity measure that is applicable to any kind of graph, without the
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limiting factors of several other graph matching algorithms. Roughly speak-

ing, the graph edit distance calculates the minimum cost that is needed to

transform one graph into another graph using a given set of edit oper-

ations. In contrast to many other distance measures (e.g. graph kernels

or graph neural networks), the graph edit distance offers more information

than merely a dissimilarity score, viz. the information which subparts of the

underlying graphs actually match with each other (known as edit path).

Graph edit distance is a robust method that has applications in all of

the three areas of structural pattern recognition mentioned above. To date,

however, we see no substantial research that exploits the knowledge con-

tained in the edit path as meta-information for reasoning about graphs,

classifying graphs, and/or generating new graphs. The present thesis aims

at bridging this gap. That is, we propose a specific encoding of the match-

ing information derived from the graph edit distance in a novel meta-graph,

called matching-graph. In essence, a matching-graph represents the core of

a pair of graphs. An illustrative example of this concept is shown in Fig-

ure 1.11. The parts highlighted in green represent the core that is eventually

represented in the matching-graph.

(a) g (b) g′

(c) Matching-graph

Fig. 1.1: Two graphs g and g′ and their resulting core, termed matching-

graph.

1Readers who are familiar with the maximum common subgraph might notice a certain
similarity between the matching-graph and the maximum common subgraph. This is

indeed the case and will be discussed in detail in Chapter 5.
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In principle, the proposed procedure first computes the graph edit

distance for several pairs of graphs. Based on the matching found, the

matching-graph is eventually created, which formalizes the corresponding

parts of the two graphs. The information contained by the matching-graph

is able to accurately model the core of a given class, and thus helps to un-

derstand underlying patterns. The overall goal of the present thesis is to

introduce matching-graphs, investigate their benefits by exploring several

possible applications, and verify their usefulness in diverse experiments.

The remainder of this thesis is organized as follows (see Figure 1.2 for a

Introduction
Chapter 1

Graph Based Pattern Recognition
Chapter 2

Graph Edit
Distance
Section 2.3

Graph Data Sets
Chapter 3

Matching-Graphs for Graph
Classification

Chapter 4Creating
Matching-

Graphs
Section 4.3

Matching-Graphs and the
Maximum Common Subgraph

Chapter 5

Matching-Graphs for Graph
Augmentation

Chapter 6

Conclusion and Future Work
Chapter 7

using

using/ extending

using

Fig. 1.2: Overview of the structure of the present thesis. The chapters

highlighted in green mark the main contribution of this thesis.
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graphical overview). First, Chapter 2 provides an overview of the theoret-

ical background as well as existing concepts which are relevant for under-

standing the details of the present contribution. Next, Chapter 3 describes

the data sets used throughout this thesis. In total, 11 different graph data

sets with very different characteristics from several different domains are

presented and discussed. These data sets are used in various experimental

evaluations throughout the thesis. The next three chapters (Chapters 4, 5,

and 6) represent the main contribution of this thesis. Note that the thesis is

structured so that Chapters 4, 5, and 6 are self-contained and understand-

able without having to read the rest of the thesis. In Chapter 4 the concept

of matching-graphs is explained in detail, and it is shown how matching-

graphs can be used for classification. Namely, we introduce two conceptu-

ally different strategies for using the matching-graph to solve classification

problems. First, the matching-graphs are used in a distance-based classifier,

and second, a classifier is built based on a graph embedding that crucially

relies on the matching-graphs. This chapter marks the first part of our

contribution and is based on three preliminary conference papers [35–37]

and one journal paper [38]2. Then, in Chapter 5, the matching-graph is

qualitatively evaluated using an iterative generation procedure and com-

pared to the maximum common subgraph. This is done on a theoretical

level, as well as underlined by an exhaustive experimental evaluation. This

chapter is based on a journal paper [39]. The last part of the contribution of

this thesis is described in Chapter 6, where the matching-graphs are used

for graph augmentation purposes in three different scenarios. First, the

matching-graphs are used to augment very small graph data sets. Second,

the matching-graphs are used to augment graph data sets to be used in

conjunction with graph neural networks. Third, the matching-graphs are

used to build a robust and diverse ensemble classifier. Chapter 6 summa-

rizes and combines three preliminary papers [40–42]. Finally, Chapter 7

draws general conclusions and suggests some worthwhile avenues for future

research activities.

2This work was published

under a Creative Commons license https://creativecommons.org/licenses/by/4.0/,
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=

S0031320322003272&orderBeanReset=true
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In the realm of theory, where
the basics take root, Concepts
dance freely, in harmony, not
mute. They twirl and they leap,
ideas forming a band, Unveiling
truths that practice alone can’t
command.

ChatGPT

This chapter closely follows [43, 44] and provides the necessary theo-

retical background on which the main contribution of this thesis is based

(described in Chapters 4, 5 and 6)1.

The present chapter is structured as follows. First, Section 2.1 pro-

vides a comprehensive overview of the necessary theoretical foundations of

graphs. Second, in Section 2.2 the concept of graph matching is explained

in detail. Finally, in Section 2.3, one graph matching framework, namedly

graph edit distance, and a specific algorithm called BP are explained in de-

tail, as the matching-graphs, which are the main contribution of this thesis,

are based on this concept.

2.1 Basic Definitions on Graphs

The present thesis is based on graph-based pattern representations. The

following definition makes it possible to handle arbitrarily structured graphs

with unconstrained labeling functions.

1It is important to note, however, that this chapter does not describe a contribution of

the author.

7
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Table 2.1: Graph related notations used throughout this thesis.

Expression Explanation

g, g′ Two graphs, when exactly two graphs are relevant.

gi, gj , . . . , gn Two or more graphs, when the indices are relevant,

where i, j, . . . , n ∈ Z

Definition 2.1 (Graph). Let LV and LE be finite or infinite label sets

for nodes and edges, respectively. A graph g is a four-tuple g = (V,E, µ, ν),

where

• V is the finite set of nodes,

• E ⊆ V × V is the set of edges,

• µ : V → LV is the node labeling function, and

• ν : E → LE is the edge labeling function.

The size of a graph g is defined as the number of nodes, i.e. |V |.

In Table 2.1, two notation systems for graphs used throughout the thesis

are defined to give the reader a better understanding. In some algorithms

and applications it is necessary to include empty “nodes” and/or empty

“edges”. Both empty nodes and empty edges are denoted by ε. Edges

are given by pairs of nodes (u, v) ∈ V × V . Commonly, one distinguishes

between directed and undirected edges:

• Directed edges: The direction of the edges (u, v) ∈ E is indicative

and u ∈ V is denoted as source node and v ∈ V as target node.

• Undirected edges: The direction of the edges is not indicative, which

means that the edge (u, v) ∈ E is the same as the reverse edge

(v, u) ∈ E (with identical labels, i.e. ν(u, v) = ν(v, u)). Naturally,

because edges in both directions exist in this case, the direction

of an edge can be ignored, and both directed edges can be accu-

mulated to one undirected edge. A graph with undirected edges is

called an undirected graph.

Two nodes, u and v, connected by an undirected edge (u, v), are defined as

adjacent. If (u, v) ∈ E, v is considered a neighbor of u (and vice versa). The

collection of neighbors for a specific node u is called the neighborhood of v,



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

Graph Based Pattern Recognition 9

represented by N (v). The degree of a node u ∈ V , denoted as deg(u), refers

to the number of nodes adjacent to u (or the number of incident edges of u).

More specifically, the in-degree and out-degree of a node u ∈ V , denoted as

in(u) and out(u), correspond to the number of incoming and outgoing edges

of node u, respectively. In undirected graphs, in(u) = out(u) = deg(u) for

all u ∈ V .

A large variety of specific graph types are included in Definition. 2.1.

The following list outlines some of these special types.

• Labeled graphs: Given that the nodes and/or the edges are labeled,

the graphs are referred to as labeled graphs2. The labels for nodes

as well as edges are given by a set of continuous labels L = Rn or

by a set of categorical labels, which can either be a set of integers

L = {1, 2, 3, . . .} or a set of symbolic labels L = {α, β, γ, . . .}, or a
combination of different alphabets from different domains.

• Unlabeled graphs: These graphs are particular types of graphs in

which every node and edge is assigned the same (empty) label ∅,

symbolized as LV = LE = {∅}. In this context, a graph is usually

represented as g = (V,E), without the labeling functions µ and ν.

• Directed graphs and undirected graphs: These graphs consist of

directed or undirected edges, respectively.

• Connected and disconnected graphs: A graph is connected if all

nodes are connected to each other (directly or indirectly). A graph

that is not connected is called disconnected. A connected component

refers to the largest connected subgraph within a graph. A graph

is only connected if it consists of a single connected component.

• Weighted graphs: For this type of graph, the nodes are unlabeled,

LV = {∅} and the edges contain continuous labels, LE = R.
• Graphs with unique node labels: In these graphs, the labeling is

restricted such that each node contains a unique label. Formally,

for any two nodes u, v ∈ V , if u ̸= v, then µ(u) ̸= µ(v).

• Trees: Trees are connected acyclic graphs, where nodes can be

categorized into children nodes and parent nodes. Every node has

zero or more children nodes and at most one parent node.

• Ordered Graphs: An ordered graph is a directed graph with topo-

logically ordered node sets V . This means that for each directed

edge (u, v) ∈ E, u is sorted before v in V .

2Attributes and attributed graphs are sometimes synonymously used for labels and la-

beled graphs, respectively.
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(a) (b)

0

1

0

1

(c)

(d) (e) (f)

0.1 0.3

0.8

0.7

(g)

A B

C D

(h) (i)

(j)

Fig. 2.1: Different kinds of graphs: (a) unlabeled, (b) labeled nodes, (c)

labeled nodes and labeled edges (edges are labeled with binary numbers),

(d) directed with labeled nodes, (e) directed unlabeled, (f) unconnected (a

graph with two connected components), (g) weighted graph, (h) graph with

unique node labels, (i) tree, (j) ordered graph.

Example 2.1. In Figure 2.1 different kinds of graphs are shown. Different

shades of grey refer to different labels.

The present thesis exclusively uses undirected graphs that are poten-

tially labeled with continuous and/or categorical node and/or edge labels.

For more information on the data sets used, see Chapter 3.

The next relevant concept is the concept of a subgraph.

Definition 2.2 (Subgraph). Let g = (V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′)

be graphs. Graph g′ is a subgraph of g, denoted by g′ ⊆ g, if

(1) V ′ ⊆ V ,

(2) E′ ⊆ E,

(3) µ′(u) = µ(u) and ν′(e) = ν(e) for all u ∈ V ′ and for all e ∈ E′.
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By replacing the second condition (2) by the following condition

(2’) E′ = E ∩ V ′ × V ′,

g′ becomes an induced subgraph of g. That is, g′ is an induced subgraph of

g if the edge set E′ of g′ includes all the edges (u, v) ∈ E of graph g that

connect two nodes u and v actually present in V ′.

Obviously, a subgraph g′ is obtained from a graph g by removing some

nodes and their incident (as well as possibly some additional) edges from g.

For g′ to be an induced subgraph of g, some nodes, including their incident

edges, are removed from g only, i.e. no additional edge removal is allowed.

Example 2.2. Figure 2.2 illustrates an example of a graph g along with two

potential induced subgraphs gi and gj , and two non-induced subgraphs gk
and go. Node labels are indicated with two different colors (grey and white),

while the numbers indicate an arbitrary identifier (this also applies to all

other illustrations in the present thesis). Graphs gi and gj are induced,

because all edges that exist in the original graph g, also exist in Ei and

Ej , respectively. Vice versa, gk as well as go are non-induced, because one

edge, actually present in g, does not exist in Ek and Eo, respectively. As

can be seen from this example, subgraphs (induced and non-induced) might

contain isolated nodes (i.e., nodes without any edges).

0 1

2 3

(a) g
0' 1'

2'

(b) gi

0' 1'

3'

(c) gj

0' 1'

2'

(d) gk

0'

2' 3'

(e) go

Fig. 2.2: A graph g and two induced subgraphs gi and gj as well as two

non-induced subgraphs gk and go.

The edge structure of a graph g = (V,E) with V = {v1, . . . , vn} and

E = {e1, . . . , em} is commonly described using the adjacency matrix A(g).
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Definition 2.3 (Adjacency Matrix). The n×n adjacency matrix A(g)

of a graph g with entries A(i, j) = (aij) (i, j = 1, . . . , n) is defined by

aij =

{
1 if (vi, vj) ∈ E

0 otherwise

The entry aij of the adjacency matrix A(g) is equal to 1 if there is

an edge (vi, vj) connecting the i-th node with the j-th node in g, and 0

otherwise.

In case of labeled edges, instead of only encoding the presence or absence

of an edge, the edge label can be encoded by means of the labeling function

ν : E → LE . Formally, if (vi, vj) ∈ E, then aij = ν((vi, vj))

Example 2.3. The adjacency matrix of the graph in Figure 2.2 (a).

A(g) =


0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0



2.2 Graph Matching

The concept of dissimilarity is an important issue in many domains of

pattern recognition. The process of evaluating the dissimilarity of two

graphs is commonly referred to as graph matching. The overall aim of

graph matching is to find a correspondence between the nodes and edges

of two graphs that satisfies some, more or less, stringent constraints. By

means of a graph matching process similar substructures in one graph are

mapped to similar substructures in the other graph. Through the graph

matching procedure, an associated similarity or dissimilarity score is usually

calculated, which quantifies the distance between two graphs g and g′. This

distance is usually denoted as d(g, g′).

Roughly speaking, there are two categories of graph matching: exact

graph matching and inexact graph matching (also termed error-tolerant

graph matching).

• Exact graph matching is the search for a mapping between the nodes

of two graphs which is edge-preserving, in the sense that if two nodes

in the first graph are linked by an edge, the corresponding nodes in the

second graph must have an edge, too. Several variants of exact graph
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matching exist depending on, for instance, whether this constraint must

hold in both directions of the mapping or not.

• Inexact or error-tolerant graph matching is the process of finding

correspondences between the nodes of two graphs, while taking into

account inconsistencies such as missing, extra, or distorted nodes and

edges, in order to identify similar structures or patterns despite the

presence of noise or variation.

Several methods from both categories are relevant for this thesis and are

discussed in the following sections. In Section 2.2.1, two exact methods are

discussed, namely the concepts of isomorphism and subgraph isomorphism,

which are relevant for the embedding-based classifier used in Chapter 4.

Next, in Section 2.2.2 inexact graph matching and several concrete methods

for this category are explained. Finally, in Section 2.3 the concept of graph

edit distance for inexact matching is explained in detail, upon which the

major contribution of this thesis –the matching-graph– is built.

2.2.1 Exact Graph Matching

The aim of exact graph matching is to determine whether two graphs,

or at least part of them, are identical in terms of structure and labels.

Generally, for the nodes (and also the edges) of a graph there is no unique

order. Thus, for a single graph g = (V,E) with n nodes there are n!

possibilities to arrange the nodes of g. Consequently, for checking two

graphs g and g′ for structural identity, it is not possible to simply compare

their corresponding adjacency matrices A(g) and A(g′). The identity of

two graphs g and g′ is commonly established by defining a function, termed

graph isomorphism [44, 45], mapping g to g′.

Definition 2.4 (Graph Isomorphism). Assume that two graphs g =

(V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′) are given. A graph isomorphism is

a bijective function f : V → V ′ satisfying

(1) µ(u) = µ′(f(u)) for all nodes u ∈ V

(2) for each edge e = (u, v) ∈ E, there exists an edge e′ = (f(u), f(v)) ∈ E′

such that ν(e) = ν′(e′)

(3) for each edge e′ = (u, v) ∈ E′, there exists an edge e =

(f−1(u), f−1(v)) ∈ E such that ν(e) = ν′(e′)

Two graphs g and g′ are called isomorphic if there exists an isomorphism

between them.
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Example 2.4. In Figure 2.3 (a) and (b) two isomorphic graphs are shown.

In this example, the edges are unlabeled and the labels of the nodes are

represented by the colors black and white (the numbers 0, 1, 2... or 0’,

1’, 2’... are random indices to identify the nodes). The corresponding

isomorphism mapping is f : {0 7→ 0′, 1 7→ 1′, 2 7→ 2′, 3 7→ 3′}.

0 1

2 3

(a) g

0'

1'

2'

3'

(b) g′

Fig. 2.3: Two graphs g and g′ that are isomorphic.

Clearly, isomorphic graphs share the same structure and labels. It is

necessary to establish a bijective mapping between each node of the first

graph and each node of the second graph to determine the existence of

graph isomorphism. This mapping must maintain the edge structure and

ensure consistency in node and edge labels.

Formally, if and only if the corresponding labels are the same, this is

µ(u) = µ′(f(u), a specific node u in graph g can be associated with node

f(u) in g′. This also applies to the edges, which means that their labels

should also be the same after mapping, viz. ν((u, v)) = ν′(f(u, v)). Fur-

thermore, if two nodes (u, v) are connected in g, their mapped counterparts

f(u) and f(v) in g′ must also be connected [43].

Unfortunately, no polynomial runtime algorithm is known for the prob-

lem of graph isomorphism [46]. Note that, for the graph isomorphism prob-

lem, there are no indications that this particular problem belongs to P.

Furthermore, graph isomorphism is currently the most prominent decision

problem for which it is not yet proved whether it is P or NP-complete [47].

Moreover, there are strong assumptions that indicate that graph isomor-

phism is not even NP-complete [48], and thus the computational complexity

of any of the available algorithms for graph isomorphism would be expo-

nential in the number of nodes of the two graphs.

However, since the pattern recognition scenarios encountered in prac-

tice are usually different from the worst cases, and the labels of both
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nodes and edges often help to substantially reduce the search time, the

actual computation time can still be manageable. Polynomial algorithms

for graph isomorphism have been developed for special kinds of graphs,

such as trees [49, 50], bounded-valence graphs [51], ordered graphs [52],

planar graphs [53], permutation graphs [54] and graphs with unique node

labels [55, 56].

Subgraph isomorphism, a term closely linked to graph isomorphism,

refers to the equality of subgraphs. Intuitively, subgraph isomorphism aims

at identifying if a given smaller graph can be found exactly within a larger

one. More formally, rather than demanding a complete match as in graph

isomorphism, subgraph isomorphism requires only the existence of an iso-

morphism between a graph g and a subgraph of another graph g′.

Definition 2.5 (Subgraph Isomorphism). Let g = (V,E, µ, ν) and

g′ = (V ′, E′, µ′, ν′) be graphs. An injective function f : V → V ′ from g

to g′ is a subgraph isomorphism if there exists a subgraph g′′ ⊆ g′ such that

f is a graph isomorphism between g and g′′. The subgraph isomorphism is

denoted as g ⊆ g′.

Example 2.5. In Figures 2.4 (a) and (b), an example of a graph g′ that is

subgraph isomorphic to a graph g is shown.

0 1

2 3

(a) g

0' 1'

2'

(b) g′

Fig. 2.4: Graph g′ (b) is subgraph-isomorphic to g (a), meaning that g′ is

isomorphic to a subgraph of g.

Actually, subgraph isomorphism is a harder problem than graph isomor-

phism as one has to check not only whether a permutation of g is identical to

g′, but also has to decide whether g is isomorphic to any of the subgraphs

of g′ with size |V |. In contrast with the problem of graph isomorphism,

subgraph isomorphism is known to be NP-complete.

Common methods for testing graph or subgraph isomorphism are based

on tree search approaches using backtracking, where both breadth-first and

depth-first search procedures can be employed [57, 58]. The core concept

involves iteratively extending a partial node matching that maps nodes
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from two graphs onto each other. This extension continues until either

the edge structure constraint is violated or the node or edge labels become

inconsistent. In either of these situations, a backtracking process is initi-

ated, i.e. the most recent node mappings are reversed until a partial node

matching with a viable alternative expansion is found. Of course, if no

further expansion of the partial node mapping can occur without breaking

the constraints, the algorithm will terminate, indicating that there is no

isomorphism between the two graphs under consideration.

Another important graph matching concept relevant to this thesis is the

maximum common subgraph problem. Intuitively, the maximum common

subgraph MCS(g, g′) between two graphs g and g′ is the largest possible

subgraph of both g and g′. This particular concept is explained in more

detail in Chapter 5, as this chapter is devoted exclusively to the analysis

of the similarity between the maximum common subgraph and the novel

matching-graph.

2.2.2 Inexact (Error-tolerant) Graph Matching

In exact graph matching for two graphs g and g′ to be similar, it is required

that a significant part of the topology together with the corresponding node

and edge labels in g and g′ is identical. The usage of exact graph matching

algorithms can thus be problematic in many real-world scenarios, where

noisy and incomplete data is often present. In these cases, exact graph

matching would be too stringent to handle these imperfections, not allowing

for meaningful matches in the presence of noise.

Example 2.6. Consider the two graphs g and g′ in Figure 2.5 [59] that

both represent the word October – all exact graph matching procedures

discussed so far would fail in terms of finding a high dissimilarity value on

these graphs.

Fig. 2.5: The word October (handwritten), two different times, represented

by two graphs g and g′ (figure stems from [59]).
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Inexact graph matching, also known as approximate or error-tolerant

graph matching, is needed when exact graph matching is too restrictive or

impractical for a given application. Inexact methods offer a certain toler-

ance to errors and allow for some degree of deviation between the graphs

that are compared. Furthermore, inexact graph matching provides us with

the flexibility to define various similarity or distance measures between

graphs, making it adaptable to different requirements, allowing us to in-

corporate domain-specific knowledge or customizing the matching process.

For this reason, a large number of inexact graph matching methods have

been proposed [11, 12].

Error-tolerant graph matching extends the idea of graph isomorphism

in three important ways. First, given two graphs g = (V,E, µ, ν) and

g′ = (V ′, E′, µ′, ν′), it allows the mapping of nodes u ∈ V to nodes

f(u) ∈ V ′ with different labels (µ(u) ̸= µ′(f(u))), which also applies to

edges. Second, it allows for node mappings that may not preserve the edge

structure. Finally, error-tolerant graph matching explicitly allows the dele-

tion of some nodes (and edges) from the first graph and/or the insertion of

nodes (and edges) into the second graph, as opposed to matching all nodes

(and edges) with a bijective function between the graphs involved.

Error-tolerant graph matching algorithms aim to find a mapping f be-

tween two graphs that minimizes the overall cost c(f). Cost c(f) accounts

for node mappings, node deletions, node insertions, edge mappings, edge

deletions, and edge insertions. The challenge of optimizing the cost c(f) for

an error-tolerant graph matching f is known to be NP-hard [43], implying

that the run time to minimize c(f) can be very large even for relatively

small graphs.

Various error-tolerant graph matching algorithms have been proposed in

the literature. In the following paragraphs some commonly used categories

are briefly described.

Spectral methods constitute a first important category for error-tolerant

graph matching [18–21]. These methods are based on the fact that the

eigenvectors and eigenvalues are invariant to node permutations, mean-

ing that if two graphs are structurally isomorphic they will have the same

eigendecomposition [43]. In [19], a hierarchical clustering method is used

for graph matching. The method constructs a mixture model over pos-

sible correspondences and uses the modal eigenvalues and coefficients to

compute cluster correspondence probabilities. In [20], a subspace projec-

tion method is used, where nodes of different graphs are projected into a

common metric space. In this space, correspondences between nodes are
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defined by their edge distributions. In [21], the affinity matrix of a graph is

approximated using the linear combination of Kronecker products between

bases and index matrices, which requires less memory than computing the

whole affinity matrix. Based on this matrix, the eigenvector is computed

for the matching process.

Other approaches are based on relaxation labeling techniques [22–24].

These follow the idea that the graph matching problem is formulated as

a labeling problem, where each node of a graph is assigned a label from a

given set of labels, such that it matches a node of another graph [22]. Each

node of each graph is then represented as a vector of probabilities that states

how suitable a potential label is [43]. In [23], the relaxation framework is

extended using a Bayesian consistency measure. In [24] it is proposed to

use the expectation maximization algorithm [60] to iteratively get the state

of a match between two graphs by estimating a set of assignment variables.

Several inexact graph matching methods based on genetic algo-

rithms [61] have been proposed as well [25–27]. The general idea of these

approaches is to define the matchings as the chromosomes and to use a cor-

responding performance criterion, e.g. fitness function to improve the qual-

ity of the chromosomes. The pool of chromosomes changes iteratively into

so-called generations of chromosomes. To generate a diverse pool of chro-

mosomes, so called mutations, crossovers and reproductions are applied at

each iteration. The algorithm eventually favours promising chromosomes,

i.e. chromosomes with a high fitness value. In [25] the crossover is per-

formed by combining consistent subgraphs. In [26], local search strategies

and an inhibitive selection operator are used to maintain the diversity of

the population. In [27] a roulette wheel selection method is used to select

parents for crossover.

Kernel methods are also widely used in error-tolerant graph match-

ing [62, 63]. These methods aim at implicitly embedding graphs into the

vector space, which in turn enables the use of certain statistical pattern

recognition methods. There are several types of graph kernels available.

The idea of random walk kernels, for instance, is to measure the similarity

between two graphs by the number of random walks that are common in

both graphs [29]. The shortest-path kernel [30] is a type of graph kernel

based on the shortest distance between nodes in a graph. In particular,

shortest-path kernels consider paths between two pairs of nodes in a graph

and use this similarity to compute the kernel value. Another type of kernel

is based on convolution operations, which are able to infer the similarity of

complex objects by looking at the similarity of their simpler parts [64, 65].
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The graphlet kernel [66, 67], for instance, is based on convolution kernels

and works by sampling subgraphs (called graphlets) of fixed size in a graph.

More details on more types of kernels are discussed in Chapter 4, where a

novel graph embedding using matching-graphs is introduced and discussed.

With the surging popularity of neural networks, another type of error-

tolerant graph matching has been proposed, namely graph neural net-

works (GNNs). In [68], for instance, a Hopfield neural network is applied

in order to minimize a given energy criterion used for graph matching. A

similar concept is used in [69] for graph classification. In [70] the idea of

a GNN is introduced that encodes the nodes of a graph into a vector by

aggregating information about the neighborhood of a node using a form

of a neural message passing algorithm. In [31] the Graph Convolutional

Network (GCN) is proposed, which adds a convolution operation for neural

networks. The GCN operation uses a weight matrix to aggregate the rep-

resentations of neighboring nodes based on their connectivity in the graph.

This matrix is learned and shared between all nodes of the graph. In [32]

the Graph Attention Network (GAT) is proposed. GATs leverage self-

attentional layers to attend to nodes and their neighborhood features. The

key idea is that when updating the feature vector of a node, a GAT does

not treat all neighbors equally, but instead assigns weighted attention to

them. This means that the new feature vector for a node is a weighted sum

of the feature vectors of its neighbours, where the weights are determined

by an attention mechanism. In [33] another extension to the GNN model is

introduced, called the graph isomorphism network (GIN). The GIN model

has the same discriminative power as the Weisfeiler-Lehmann graph isomor-

phism test (which is able to check if two graphs are non-isomorphic). In

the GIN model the node aggregation function is learned by using a 1-layer

multi-layer perceptron.

For this thesis, the graph edit distance is the most important paradigm

of inexact graph matching. Hence, this particular concept is explained in

detail in the next Section.

2.3 Graph Edit Distance

This thesis relies on the paradigm of graph edit distance [34, 71] for inexact

graph matching. Graph edit distance aims to offer a metric for quantifying

the dissimilarity between two graphs by determining the minimum number

of edit operations needed to transform one graph into the other.
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Graph edit distance is capable of handling directed and undirected

graphs, as well as labeled and unlabeled ones. When labels are present

on nodes, edges, or both, there is no need to consider any constraints on

the respective label alphabets. Additionally, the graph edit distance can

be adapted and customized for various problem specifications by employing

application-specific cost functions. Consequently, the fundamental concept

of graph edit distance can be regarded as one of the most flexible and

adaptable graph matching models available [71–73].

Formally, given two graphs g and g′, the basic idea of graph edit distance

is to transform the source graph g into the target graph g′ using some edit

operations for both nodes and edges (such as insertions, deletions, and

substitutions). Note that other operations, such as splitting, merging or

edge contracting have been proposed [74–78] (not necessarily in conjunction

with graph edit distance). Splitting nodes means dividing a single node

into two or more nodes, redistributing the edges and labels as required.

Merging nodes, is an operation which combines two nodes into a single node,

updating the corresponding edges and labels as needed. Edge contraction

merges two adjacent nodes into a single node and thus removes the edge

connecting them. These operations are very specialized and can be useful

in certain situations, however they are not considered in the present thesis.

We denote the substitution of two nodes v ∈ V and v′ ∈ V ′ by (v → v′),

the deletion of node v ∈ V by (v → ε), and the insertion of node v′ ∈ V ′

by (ε → v′). For edge edit operations we use a similar notation.

Definition 2.6 (Edit Path). A set {e1, . . . , ek} of k edit operations ei
that transform a source graph g completely into a target graph g′ is called

an edit path λ(g, g′) between g and g′.

Let Υ(g, g′) denote the set of all edit paths transforming g into g′ while c

denotes the cost function that measures the strength c(ei) of edit operation

ei. Clearly, between two similar graphs, there should exist an inexpensive

edit path, representing low cost operations, while for dissimilar graphs an

edit path with high cost is needed. The graph edit distance can now be

defined as follows.

Definition 2.7 (Graph Edit Distance). Let g = (V,E, µ, ν) be the

source and g′ = (V ′, E′, µ′, ν′) the target graph. The graph edit distance

between g and g′ is defined by

dλmin
(g, g′) = min

λ∈Υ(g,g′)

∑
ei∈λ

c(ei) , (2.1)
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Note that the edit operation of the edge structure is distinctly deter-

mined through operations performed specifically on the nodes. That is,

it is sufficient that an edit path λ(g, g′) covers the nodes from V and V ′

only. Thus, we will assume that an edit path λ(g, g′) clearly outlines the

correspondences identified between the nodes of graphs V and V ′, while the

edge edit operations are implicitly provided by these node correspondences.

It is evident that in the set Υ(g, g′), there may be two or more edit paths

with the same minimal cost dλmin
(g, g′). In other words, the minimal-cost

edit path λmin(g, g
′) ∈ Υ(g, g′) is not necessarily unique.

Note that it is also possible that only parts of the full edit path λ(g, g′)

are needed. This partial edit path is defined as τ(g, g′) = {e(1), . . . , e(t)} ⊆
λ(g, g′) with t < k being the required number of edit operations.

Example 2.7. In Figure 2.6 a transformation is illustrated using an edit

path λ(g, g′) between two undirected and labeled graphs g and g′ (the labels

are symbolized by node colors). The edit path is defined by

λ(g, g′) = {(0 → a), (1 → b), (2 → c), (3 → ε), (4 → ε), (ε → d)} .

This particular edit path implies the following edge edit operations

{((0, 1) → (a, b)), ((0, 2) → (a, c)), ((0, 3) → ε), (1, 2) → (b, c)),

((2, 3) → ε), ((3, 4) → ε), (ε → (a, d)), (ε → (c, d))} .

An example of a partial edit path τ(g, g′) is given as well and is defined by

τ(g, g′) = {(0 → a), (1 → b), (2 → c)} .

3→εaaa a

1

0 2

3

0→a

4

a c

d

b
1

2

3

1→b

4

2

3 4

2→c

3 4

b

c

4

b

4→ε c

b

ε→da

b

c

Fig. 2.6: An example of a transformation of graph g into g′ using a complete

edit path λ, as well as a partial edit path τ .



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

22 The Matching-Graph

2.3.1 Cost Functions

The cost of a given edit operation c(ei) is of crucial importance for the

performance of graph edit distance [79]. In some applications, for example,

the label alphabet could be given by the set of all strings of arbitrary size

over a finite set of symbols. In this case, a distance model for strings, as for

instance, the string edit distance [80, 81], could be used to measure the cost

of a substitution. Furthermore, if in a particular case prior knowledge about

the labels is not available, automatic procedures can be used to learn the

cost model from a set of sample graphs [82–84]. In this section, we define

and explain several cost functions that are actually used in this thesis.

In the present thesis we employ graphs with either continuous or cat-

egorical labels or a mix thereof. This distinction is specifically important

when it comes to cost functions, since a suitable cost function depends on

the type of graph that is given. Initially, an abstract cost function can be

defined.

Definition 2.8 (Abstract Cost Function). Given two graphs

g = (V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′), an abstract cost function can be

defined by

c(u → ε) = α× τnode

c((u, v) → ε) = (1− α)× τedge

c(ε → v′) = α× τnode

c(ε → (u′, v′)) = (1− α)× τedge

c(u → u′) = α× S1(u, u
′)

c((u, v) → (u′, v′) = (1− α)× S2((u, v), (u
′, v′))

(2.2)

where u, v ∈ V , u′, v′ ∈ V ′, (u, v) ∈ E, (u′, v′) ∈ E′ and τnode, τedge ∈ R+

are positive constants representing the cost of a deletion/insertion of a node

and edge, respectively3. The weighting parameter α ∈ [0, 1] controls the

relative weight between the node and edge edit operations. The functions S1

and S2 are responsible for calculating the cost of a substitution between two

nodes and two edges, respectively.

In case of unlabeled graphs, S1 and S2 are generally defined to be free

of cost, and the insertion/deletion cost is set to τnode = τedge = 1. In gen-

3Note that for the sake of symmetry, an identical cost for deletions and insertions is

defined here, which could indeed be represented by two different values.
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eral, however, the cost c(e) of a particular edit operation e is defined with

respect to the underlying label alphabets LV and LE . In this case, we usu-

ally differ between continuous and categorical node and edge labels. For

continuous labels, i.e. LV , LE = Rn, a Minkowski distance (e.g. the Eu-

clidean distance) can be employed [43, 80, 85]. The present thesis employs

the Euclidean version of the Minkowski distance for continuously labeled

graphs. That is,

S1(u, u
′) = ||µ(u)− µ′(u′)||2

and

S2((u, v), (u
′, v′)) = ||ν((u, v))− ν′((u′, v′))||2

Observe that if the cost of substituting a node is greater than 2τnode, it

can be effectively replaced by a combination of deleting and inserting the

involved nodes (this principle also applies to edges). This notion aligns with

the fundamental idea that substitutions should be preferred over deletions

and insertions to some extent [43].

In the case of categorical node labels, the label alphabet is defined by a

finite set of n symbolic labels LV/E = {χ1, χ2, . . . , χn}. The present thesis

employs a Dirac function for the substitution cost model, which returns

zero when the involved labels are identical and a non-negative constant

otherwise. Formally, the function S1(u, u
′) for a node substitution is defined

via

S1(u, u
′) =

{
2τnode if µ(u) ̸= µ′(u′)

0 if µ(u) = µ′(u′)

and S2 similarly for edges,

S2((u, v), (u
′, v′)) =

{
2τedge if ν((u, v)) ̸= ν′((u′, v′))

0 if ν((u, v)) = ν′((u′, v′))

2.3.2 Graph Edit Distance Computation

In order to compute the graph edit distance dλmin
(g, g′) usually a tree search

algorithm is employed [86, 87]. A widely used A* based search technique

using some heuristics is employed in [86]. The basic idea of A* based search

methods is to organize the underlying search space as an ordered tree. The

root node of the search tree represents the starting point of the search
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procedure, inner nodes of the search tree correspond to partial solutions,

and leaf nodes represent complete – not necessarily optimal – solutions.

In case of graph edit distance computation inner nodes and leaf nodes

correspond to partial and complete edit paths, respectively. Such a search

tree is dynamically constructed at runtime by iteratively creating successor

nodes linked by edges to the currently considered node in the search tree.

A* is a best-first search algorithm which is complete and admissible, i.e. it

always finds a solution if there is one and never overestimates the cost of

reaching the goal [86].

Unfortunately, computing the exact graph edit distance using the above

mentioned method exhibits exponential growth in relation to the number of

nodes in the involved graphs. Formally, for graphs with m and n nodes we

observe a time complexity of O(mn). This means that calculating the exact

edit distance for large graphs becomes infeasible. In real-world applications,

we can typically calculate the edit distance for graphs containing up to 12

nodes only. In order to counteract this problem and speed up the exact

algorithm, the use of different heuristics is often employed [88].

In recent years several approximate, or suboptimal, algorithms for graph

edit distance have been proposed [11, 12]. These algorithms offer polyno-

mial, rather than exponential, run times. However, in contrast to optimal

error-tolerant graph matching, approximate algorithms do not guarantee

to find the global minimum of the matching cost, but only a local one [11].

Usually, this approximation is not very far from the global one, but there

are no guarantees.

Many of the suboptimal algorithms offer cubic or quadratic time com-

plexity with respect to the number of nodes of the involved graphs. Some

approximations [89, 90] use a variant of the basic A* procedure that is

based on beam search [91]. Instead of expanding all successor nodes in the

search tree, only a fixed number s of nodes to be processed are kept at

all times. Whenever a new partial edit path is added, only the s partial

edit paths τ with the lowest costs g(τ) + h(τ) are kept and the remaining

partial edit paths are removed. This means that not the full search space

is explored, but only those nodes that belong to the most promising partial

matches are expanded. For similar graphs, it is clear that edit operations

of an optimal path have low costs. Therefore, if only the partial edit paths

with lowest costs are considered, we will obtain an edit path that is nearly

optimal, which will result in a suboptimal distance close to the exact dis-

tance. For dissimilar graphs, the suboptimal distance will remain large. In

summary, this method generally does not return the optimal edit path, but
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only a suboptimal one.

In [92], a linear programming method for computing upper and lower

bounds of the edit distance of graphs with unlabeled edges is reported.

In [93, 94], a Bayesian perspective on graph edit distance is adopted, which

builds upon the idea of probabilistic relaxation labeling [95], and iteratively

applies edit operations to improve a maximum a posteriori criterion. The

methods proposed in [96, 97] perform a randomized construction of initial

mappings which is followed by a local search procedure. K-REFINE [98]

is a local search based algorithm. Given one or more initial node maps,

local search based algorithms explore fitly defined neighborhoods to find

improved node maps that induce cheaper edit paths. K-REFINE improves

REFINE [99] by not only considering binary swaps and computing the swap

costs more efficiently.

In this thesis the algorithm BP [85] is employed for graph edit distance

computation. BP is initially introduced as a unique heuristic for the cal-

culation of the optimal graph edit distance based on a rapid assignment of

the nodes [100].

Algorithm BP, introduced in [85], approximates the graph edit dis-

tance computation by reducing the quadratic assignment problem of the

graph edit distance computation to an instance of a linear sum assign-

ment problem (LSAP), which allows a much faster computation, without

excluding graph types. The most prominent algorithms for LSAPs are

Munkres/Hungarian [101, 102] or the algorithm of Volgenant-Jonker [103]

(in the original implementation [85] the Munkres/Hungarian algorithm is

used, however quite a few other algorithms exist [104–106]). The time com-

plexity of the best-performing exact algorithms for LSAPs is cubic in the

size of the problem.

Note that several other approaches exist that also reduce the graph edit

distance problem to an LSAP. In [107] a faster version of the previously

mentioned BP algorithm is proposed, called FBP. To make BP faster, a

restriction on the edit costs is imposed so that the cost of an insertion plus

a deletion of a node has to be lower or equal than the cost of a substitution

of a node. By doing this, it can be ensured that the Munkres/Hungarian

algorithm only needs to explore the first quadrant of the underlying cost

matrix, which is composed of the first n rows and m columns, if we have

two graphs g = (V,E) and g′ = (V ′, E′) with |V | = n and |V ′| = m.

In [108] the Hausdorff distance [109] is adapted for the graph edit dis-

tance. The concept combines the idea of an assignment edit distance, which

aims to identify a correspondence between nodes and their local configura-
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tion, with a more effective pairwise node matching technique. Each node

of one graph is compared to each node of the other graph, similar to com-

paring subsets of a metric space by using the Hausdorff distance. Using the

costs for deletions, insertions and substitutions for both nodes and edges,

an optimal match is determined for each node individually. The resulting

sum of all these costs yields a distance measure that is less than or equal

to the graph edit distance. In [110] a ring based approximate graph edit

distance is proposed, by using rings as a local structure. The rings are

defined as a collection of nodes and edges that have a fixed distance from

the root node.

Most of the currently available solvers for the LSAP require the pair-

wise costs to respect the triangle inequality [43]. In [111] an algorithm is

proposed that does not need to respect the triangle inequality constraints

and relies on the fact that node substitutions whose costs do not respect the

triangle inequality can be factorized into removals and insertions. In [112]

an approach to redefine the cost matrix, such that it always converges by

using the Volgenant-Jonker LSAP algorithm is proposed. The Volgenant-

Jonker algorithm is usually faster than the Munkres/Hungarian algorithm,

but does not always converge using the cost matrices proposed in the BP

or FBP algorithms.

Other approaches try to leverage the power of deep learning to find

an approximation to the graph edit distance. In [113] the Hausdorff edit

distance [108] is learned by means of a triplet loss neural network [114],

while in [115] a deep learning based method is used, which also tries to

recover the edit path.

Actually, any computation method for graph edit distance could be

employed as basis in our framework, as long as it provides us with a valid

edit path between two graphs. That is, the actual algorithm for graph

matching does not crucially impact the rest of the proposed method of this

thesis. We decide to use the graph edit distance algorithm BP throughout

this thesis, since it is a widely used (and somewhat standard) algorithm for

the graph edit distance approximation [100, 116, 117].
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This chapter presents the data sets for subsequent empirical investiga-

tions, offering readers a clear understanding of the data-driven foundation

upon which the contribution of this thesis is built. It provides a comprehen-

sive overview of the characteristics of the data sets. The data sets contain a

diverse range of graph structures and properties that enable the evaluation

of the proposed approaches.

First, in Section 3.1, the data sets consisting of graphs that model chem-

ical compounds are presented. Then, in Section 3.2 the data sets that are

based on protein structure graphs are discussed. Section 3.3 provides an

overview of data sets from various other domains. Section 3.4 gives an

overview of which data sets are employed in which experiment and which

cost functions are used. Furthermore, a visualization of some data sets is

given, to get an idea of how difficult it is to separate the individual classes.

3.1 Chemical Compound Graph Data Sets

Chemical compounds are a good example of data that can be easily rep-

resented as a graph. That is, a molecular composition comprised of atoms

and covalent bonds can be described using a graph in an intuitive and di-

rect manner by representing the atoms as nodes and the covalent bonds as

edges. Nodes can be labeled with the relevant chemical symbols, whereas

edges may be labeled by the valence of the linkage. Given the established

27
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connection between a specific molecular compound’s structure and its activ-

ity, employing a graph-based representation appears to be an appropriate

data description methodology. This section describes the graph data sets

used in this thesis that represent graphs based on chemical compounds.

3.1.1 AIDS

The AIDS data originates from data gathered by the National Cancer In-

stitute (NCI), namely from the AIDS Antiviral Screen Database of Active

Compounds [118]. The graph based data set stems from the IAM graph

repository [119].

Starting 1999, the NCI conveys AIDS antiviral screen tests to discover

chemical compounds that might be capable of inhibiting the HIV virus.

The aim of these screen tests is to measure how strongly the compounds

under consideration are able to protect human cells from infection by the

HIV virus. The experiment is carried out in two stages. In a first ex-

periment, those chemical compounds that are able to provide a protection

from an HIV infection in at least half of the cases are selected for a second

experiment. Chemical compounds that reproducibly provide a full protec-

tion from HIV in this second experiment are labeled confirmed active (CA),

while compounds that are only able to protect cells from infection in at least

50% of the cases are labeled moderately active (MA). All of the remaining

molecules are labeled confirmed inactive (CI). In the present thesis, the

categories CA and CI are used. In Figure 3.1 [43] we can see an example

of two molecules of the classes CA (a) and CI (b).

(a) CA
(b) CI

Fig. 3.1: Examples of molecules of both classes of the AIDS data set (figures

stem from [43]).



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

Graph Data Sets 29

Table 3.1: Summary of some metrics of the AIDS data set.

AIDS

Graphs 2,000

Classes 2 (confirmed active, confirmed inactive)

Avg. |V | 15.7

Avg. |E| 16.2

Max. |V | 95

Max. |E| 103

Node labels 1 (Atom type (categorical)).

Edge labels -

The nodes of the graphs from this data set represent the atoms, and the

edges represent covalent bonds between the nodes. The nodes are labeled

by atom type1. In total the data set contains 2,000 graphs. In Table 3.1,

some key metrics about the AIDS data set and in Figure 3.2 two example

graphs are shown.
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(a) Confirmed active
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(b) Confirmed inactive

Fig. 3.2: Example graph for both classes of the AIDS data set.

1Actually, on the original data set there are other labels, namely, the charge and the
x -and y-coordinates. The edges contain the valence of the linkage. In the present thesis,

we only consider the atom type on the nodes.
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3.1.2 Mutagenicity

The Mutagenicity data stems from the Chemical Carcinogenicity Research

Information System (CCRIS) database, which holds scientifically assessed

test data for approximately 7,000 compounds. The data set was initially

collected by Kazius et al. [120] and the graph based data set stems from

the IAM graph repository [119].

Mutagenicity refers to the capacity of a chemical substance to induce

mutations in DNA [120]. Mutations are changes in the genetic material

(DNA or RNA) that can occur spontaneously or be induced by external

factors. A mutagenic compound’s reactivity with DNA can lead to the

formation of DNA adducts or base deletions, causing significant distortion

in the DNA structure [121]. As a result, mutagenic compounds pose a

toxic threat to humans, and screening drug candidates for mutagenicity is

a regulatory prerequisite for drug approval [120]. This data set contains

molecules that are either mutagenic or not. In Figure 3.3 we can see an

example of a non-mutagenic and a mutagenic molecule [120].

(a) Non-mutagenic (b) Mutagenic

Fig. 3.3: Examples of molecules of both classes of the Mutagenicity data

set (figures stem from [120]).

The nodes of the graphs from this data set represent the atoms, and the

edges represent covalent bonds between the nodes. The nodes are labeled

by atom type. The edges are unlabeled. In total the data set contains 4,337

graphs. In Table 3.2, we present some key metrics about the Mutagenicity

data set and in Figure 3.4 we show two example graphs.
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Table 3.2: Summary of some metrics of the Mutagenicity data set.

Mutagenicity

Graphs 4,337

Classes 2 (mutagenic, non-mutagenic)

Avg. |V | 30.3

Avg. |E| 30.8

Max. |V | 417

Max. |E| 112

Node labels 1 (Atom type (categorical)).

Edge labels -
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(b) Non-mutagenic

Fig. 3.4: Example graph for both classes of the Mutagenicity data set.

3.1.3 NCI1

The NCI1 data originates from anti-cancer screens performed by the NCI

and is derived from the PubChem website [122]. The graph based data set

was initially prepared by Wale and Karypis [123, 124].

The primary goal of the screens is to identify potential anti-cancer com-

pounds, determine their effectiveness against various types of cancer, and

understand the underlying molecular mechanisms. The NCI1 data set mea-

sures molecules that contain activity for growth inhibition of non-small cell

lung cancer and those that do not. As there is more than one screen avail-

able for a specific type of cancer, the screen with the highest number of

compounds tested has been used [123].

The nodes of the graphs from this data set represent the atoms, and the



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

32 The Matching-Graph

Table 3.3: Summary of some metrics of the NCI1 data set.

NCI1

Graphs 4,110

Classes 2 (inhibiting, non-inhibiting)

Avg. |V | 29.87

Avg. |E| 32.3

Max. |V | 111

Max. |E| 238

Node labels 1 (Atom type (categorical)).

Edge labels -

edges represent covalent bonds between the nodes. The nodes are labeled

by atom type. The edges are unlabeled. In total the data set contains 4,110

graphs. In Table 3.3, we present some key metrics about the NCI1 data set

and in Figure 3.5 we show two example graphs.
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Fig. 3.5: Example graph for both classes of the NCI1 data set.

3.1.4 COX-2

The COX-2 data originates from the work of a single research group and

the graph based data set was initially prepared by Sutherland et al. [125].

The COX-2 data set contains cyclooxygenase-2 (COX-2) inhibitors with

or without in-vitro activities against human recombinant enzymes [125].

COX-2 is an enzyme involved in the synthesis of prostanoids, which plays
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a role in various physiological processes, including inflammation, pain, and

fever [126–128]. COX-2 inhibitors are a class of drugs that target the COX-

2 enzyme, reducing the production of pro-inflammatory prostaglandins and

are commonly used as anti-inflammatory, analgesic, and antipyretic medi-

cations [129].

In Figure 3.6 we can see an example of uninhibited COX-2 [130] and an

example of COX-2 in complex with a COX-2 selective inhibitor [126, 131]2.

(a) Uninhibited COX-2 [130] (b) Inhibited COX-2 [126, 131]

Fig. 3.6: Examples of uninhibited COX-2 (a) and COX-2 in complex with

a COX-2 selective inhibitor (b).

The activity is expressed as IC50 values (the concentration required to

inhibit 50% of the enzymes activity) ranging from 1 nanometer to > 100

micrometers [125]. A 314 compound subset of these inhibitors has been

studied and they used pIC50 = 6.5 as the threshold for classifying com-

pounds as active or inactive [132]. The same threshold is used to generate

this data set.

The nodes of the graphs from this data set represent the atoms, and the

edges represent covalent bonds between the nodes. The nodes are labeled

by atom type. The edges are unlabeled. In total the data set contains 467

graphs. In Table 3.4, we present some key metrics about the COX-2 data

set and in Figure 3.7 we show two example graphs.

2The molecular graphics images were produced using the UCSF Chimera package from
the Resource for Biocomputing, Visualization, and Informatics at the University of Cal-

ifornia, San Francisco (https://www.cgl.ucsf.edu/chimera/).
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Table 3.4: Summary of some metrics of the COX-2 data set.

COX-2

Graphs 467

Classes 2 (COX-2 inhibitory activity, No COX-2 inhibitory activity)

Avg. |V | 41.22

Avg. |E| 43.45

Max. |V | 56

Max. |E| 59

Node labels 1 (Atom type (categorical)).

Edge labels -
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Fig. 3.7: Example graph for both classes of the COX-2 data set.

3.1.5 PTC(MR)

The PTC(MR) data stems from the Predictive Toxicology Challenge [133],

a competition organized in the early 2000s to stimulate research in the area

of predictive toxicology. The graph data set PTC(MR) was built by Kriege

and Mutzel [28].

The goal of the challenge is to predict the carcinogenic potential of com-

pounds based on their molecular structure. The specific PTC(MR) chal-

lenge is about predicting whether compounds are carcinogenic to male rats

(MR). The original data is in the form of Simplified molecular-input line-

entry system (SMILES) strings [134] and during the conversion to graphs

explicit hydrogen atoms are removed [28].

The nodes of the graphs from this data set represent the atoms, and the



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

Graph Data Sets 35

Table 3.5: Summary of some metrics of the PTC(MR) data set.

PTC(MR)

Graphs 344

Classes 2 (carcinogenic, non-carcinogenic)

Avg. |V | 14.29

Avg. |E| 14.69

Max. |V | 64

Max. |E| 71

Node labels 1 (Atom Type (categorical)).

Edge labels -

edges represent covalent bonds between the nodes. The nodes are labeled

by atom type3. In total the data set contains 344 graphs. In Table 3.5, we

present some key metrics about the PTC(MR) data set and in Figure 3.8

we show two example graphs.
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Fig. 3.8: Example graph for both classes of the PTC(MR) data set.

3Actually, on the original data set there are other labels. The edges are labeled by the
bond type. In the present thesis, however, we only consider the atom type of the nodes,

the labels on the edges are removed.
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3.2 Protein Graph Data Sets

A protein is a large, complex molecule made up of long chains of smaller

building blocks called amino acids. There are 20 different types of amino

acids that can be combined in various sequences to create a vast array of

proteins. Proteins play an important role in the structure, function, and

regulation of the cells, tissues, and organs within all living organisms [135].

The sequence of amino acids in a protein is determined by the informa-

tion encoded in an organism’s DNA. Once the amino acids are assembled

into a chain, the protein folds into a specific three-dimensional structure,

which is crucial for its proper function. This folding process is primarily

governed by the interactions between the amino acids, including hydrogen

bonding, hydrophobic interactions, and electrostatic forces [136].

Protein secondary structure refers to the local three-dimensional ar-

rangement of amino acids in a protein chain, which is primarily driven by

hydrogen bonding between the peptide backbone atoms. The secondary

structure elements act as the building blocks for the protein’s overall three-

dimensional conformation, known as the tertiary structure [135]. There are

several Secondary Structure Elements (SSEs), namely alpha helices, beta

sheets and beta turns/omega loops [136].

In this section several graph data sets of graphs that represent protein

structures stemming from different applications are presented.

3.2.1 PROTEINS

The PROTEINS data set stems from protein files of the Protein Data

Bank (PDB) [137] and was initially created by Dobson and Doig [138] and

transformed to graphs by Borgwardt et al. [138, 139].

The data set contains graphs that hold information about the chemical

properties, structure and sequence of proteins and is concerned with dis-

tinguishing enzymes from non-enzymes. An enzyme is a specific type of

protein that acts as a biological catalyst, speeding up chemical reactions in

living organisms [140]. While all enzymes are proteins, not all proteins are

enzymes. Enzymes are a subset of proteins that facilitate and regulate bio-

chemical reactions without being consumed or permanently altered in the

process [141]. They work by lowering the activation energy required for a

reaction to occur, thereby increasing the reaction rate. In contrast, proteins

serve a wide range of functions, including structural support, transporta-

tion of molecules, cell signaling, immune response, and others. Enzymes
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are just one of the many functional categories of proteins. In Figure 3.9 we

can see one example of a protein that is an enzyme and one example of a

protein that is not an enzyme (all taken from the PDB) [137, 142–145].

(a) Ligase protein [142, 143] (b) Hydrolitic enzyme [144, 145]

Fig. 3.9: Example of a protein that is a non-enzyme (a) and one that is an

enzyme (b).

The proteins are transformed into undirected graphs (one graph rep-

resenting one protein) with nodes and edges representing their structure,

sequence, and chemical properties [139]. Nodes are labeled with their SSEs

(helix, sheet or turn), according to the Amino Acid Index Database [146].

Furthermore one continuous label, which represents the length of the amino

acid chain of the corresponding node, is also added to the node4. Edges

link nodes that are either neighbors in the amino acid sequence or spatially

adjacent within the protein structure, with each node being connected to

its three closest spatial neighbors [139].

To summarize, the nodes represent the SSEs within the protein, and

the edges represent neighboring SSEs. The nodes are labeled by their SSE,

as well as the length of the corresponding amino acid chain. The edges

contain the type of the edge. In total the data set contains 1,113 graphs.

In Table 3.6, we present some key metrics about the PROTEINS data set

and in Figure 3.10 we show two example graphs.

4Note that there is a version of the data set available, that adds multiple continuous

labels to each node. However this version is not used in the present thesis.
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Table 3.6: Summary of some metrics of the PROTEINS data set.

PROTEINS

Graphs 1,113

Classes 2 (enzyme, non-enzyme)

Avg. |V | 39.06

Avg. |E| 72.82

Max. |V | 620

Max. |E| 1,049

Node labels 2 (SSE (helix, sheet, loop) (categorical)

and amino acid length (continuous)).

Edge labels -

(a) Enzyme (b) Non-enzyme

Fig. 3.10: Example graph for both classes of the PROTEINS data set.

3.2.2 ENZYMES

The ENZYMES data set also stems from proteins of the PDB [137] and is

labeled with the corresponding enzyme class by using the BRENDA enzyme

database [140] and transformed to graphs by Borgwardt et al. [139].

The ENZYMES data set contains graphs that are labeled with EC (En-

zyme Commission) classes. These are a classification system for enzymes

based on the chemical reactions they catalyze. The system was established

by the Enzyme Commission of the International Union of Biochemistry and

Molecular Biology (IUBMB)5. Enzymes are assigned a unique EC number,

5https://iubmb.org/
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which consists of four components separated by periods (e.g., EC 1.1.1.1).

In total there are six classes, namely Oxidoreductases (EC1), Transferases

(EC2), Hydrolases (EC3), Lyases (EC4), Isomerases (EC5), Ligases (EC6).

Two proteins having the same EC number catalyze the same reaction. For

example, proteins from the EC1 class are Oxidoreductases. These enzymes

catalyze oxidation-reduction reactions, where one molecule is oxidized while

another is reduced. They are for example involved in electron transfer pro-

cesses. In Figure 3.11 we can see one example of each EC class (all taken

from the PDB) [137, 147–157].

(a) EC1 [147, 148] (b) EC2 [149, 150] (c) EC3 [151]

(d) EC4 [152, 153] (e) EC5 [154, 155] (f) EC6 [156, 157]

Fig. 3.11: Examples of enzymes of the top level classes EC1, EC2, EC3,

EC4, EC5 and EC6.

The proteins are converted into graphs the same way, as described in

Section 3.2.1, with one difference, viz. more continuous labels, than just the

length of the amino acid chain are added to the node. The first node label

is categorical which represents the SSEs (helix, sheet or turn). In addition

to this, the distance between the central carbon atoms of the first and last
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Table 3.7: Summary of some metrics of the ENZYMES data set.

ENZYMES

Graphs 600

Classes 2 (EC1, EC2, EC3, EC4, EC5, EC6)

Avg. |V | 32.63

Avg. |E| 62.14

Max. |V | 126

Max. |E| 149

Node labels 18 (SSE (helix, sheet, loop) (categorical),

amino acid length, 3d-length, van der Waals volume,

hydrophobicity, polarity, polarizability and the

corresponding 3-bin distributions (continuous)).

Edge labels -

residue is measured in angstroms and added as a label (3d-length). Next,

chemical information like the van der Waals volume [158], hydrophobic-

ity [159], polarity [160] and polarizability [161] of the corresponding SSE

are added. Furthermore, each node is labeled with the total number of

residues with low, medium or high normalized van der Waals volume val-

ues (denoted 3-bin distribution). The same 3-bin distribution is calculated

for hydrophobicity, polarity and polarizability [139]. The edges are labeled

in a similar way as described in 3.2.1.

To summarize, the nodes represent the SSEs within the protein, and the

edges represent neighboring SSEs. The nodes are labeled by their SSE, as

well as amino acid length, 3d-length, van der Waals volume, hydrophobicity,

polarity, polarizability and the corresponding 3-bin distributions. The edges

contain the type of the edge. In total the data set contains 600 graphs. In

Table 3.7, we present some key metrics about the ENZYMES data set and

in Figure 3.12 we show six example graphs.
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(a) EC1 (b) EC2 (c) EC3

(d) EC4 (e) EC5 (f) EC6

Fig. 3.12: Example graph for each of the six classes of the ENZYMES data

set.

3.3 Data Sets From Various Domains

3.3.1 Letter

The Letter data set stems from the IAM graph repository [119]. It contains

graphs that represent artificially distorted letter line drawings of 15 different

letters that consist of straight lines (A, E, F, H, I, K, L, M, N, T, V, W, X,

Y, Z) [62, 119]. In Figure 3.13 we can see examples of manually constructed

letters.

Fig. 3.13: Examples letters (A, E, F, H, I, K, L, M, N, T, V, W, X, Y,

Z) [119, 62].
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Table 3.8: Summary of some metrics of the Letter data set.

Letter

Graphs 2,250

Classes 15 (A,E,F,H,I,K,L,M,N,T,V,W,X,Y,Z)

Avg. |V | 4.67

Avg. |E| 4.50

Max. |V | 9

Max. |E| 9

Node labels 2 (x, y-coordinates (continuous)).

Edge labels -

The letters are transformed into graphs, by representing the end points

of the individual lines as nodes and the lines themselves as edges. The

distortions consist of random removals, insertions, and displacements of the

nodes and their corresponding edges [119]. The distortions are added at low,

medium, and high levels to the letters, yielding three different data sets.

In the present thesis, we use only the data set with the highest distortion

level.

The nodes are labeled with their corresponding x -and y-coordinates.

The edges are unlabeled. In total the data set contains 2,250 graphs. In

Table 3.8, we present some key metrics about the Letter data set and in

Figure 3.14 we show 15 example graphs.

(a) A (b) E (c) F (d) H (e) I (f) K (g) L (h) M

(i) N (j) T (k) V (l) W (m) X (n) Y (o) Z

Fig. 3.14: Example graph for each of the 15 classes of the Letter data set.
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Table 3.9: Summary of some metrics of the IMDB data set.

IMDB

Graphs 1,000

Classes 2 (Action, Romance)

Avg. |V | 19.77

Avg. |E| 96.53

Max. |V | 136

Max. |E| 1,249

Node labels -

Edge labels -

3.3.2 IMDB

The IMDB Binary data (denoted as IMDB in the following) stems from the

Internet Movie Database (IMDB) [162] and the graph data set was created

by Yanardag and Vishwanathan [163].

The IMDB data set is based on collaboration graphs [164] of different

actors or actresses for the action and romance movie genres. Based on

these collaboration graphs, individual ego-networks are derived for different

actors. Ego-networks are graphs centered around a specific actor or actress,

including their direct collaborators [165]. So each graph represents the ego-

network of a specific actor or actress, which is based on the specific movie

genre (action or romance). This results in graphs where the nodes represent

actors or actresses as nodes, and edges are formed if they appear in at least

one movie of the corresponding genre together. It is important to note that

a movie can belong to both genres at the same time, and if that is the

case, the authors of the data set discarded the romance genre, if the movie

already belonged to the action genre [163]. The goal of the data set is to

label each ego-network with the genre it belongs to.

To summarize, nodes represent the actors or actresses, and the edges

represent co-occurrences between them. The nodes and the edges are unla-

beled. In total the data set contains 1,000 graphs. In Table 3.9, we present

some key metrics about the IMDB data set and in Figure 3.15 we show two

example graphs.
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(a) Action (b) Romance

Fig. 3.15: Example graph for both classes of the IMDB data set.

3.3.3 Cuneiform

The Cuneiform data set stems from Kriege et al. [166] and has been gen-

erated using an approach of Fisseler et al. [167].

Cuneiform script was developed by the ancient Sumerians around

3000BC in Mesopotamia (modern-day Iraq) and was used for several thou-

sand years by various cultures in the region, including the Akkadians,

Babylonians, and Assyrians and is one of the oldest writing systems in

the world [168]. The script consists of wedge-shaped marks usually written

on clay tablets using a stylus, hence the name “cuneiform,” which comes

from the Latin word “cuneus”, meaning “wedge” [168]. In Figure 3.16 we

see an example of a Cuneiform tablet from the British Museum [169].

Fig. 3.16: Cuneiform Tablet that dates back to around 3000BC, on display

in the British Museum [169].
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The data set contains graphs that represent 30 different Hittie

Cuneiform signs (tu, ta, ti, nu, na, ni, bu, ba, bi, zu, za, zi, su, sa, si, hu, ha,

hi, du, da, di, ru, ra, ri, ku, ka, ki, lu, la, li), obtained from nine cuneiform

tablets, provided by the Hethitologie-Portal [170]. Each cuneiform sign

consists of tetrahedron shaped markings (wedges). In Figure 3.17 we can

see a visualization of the 30 different signs used in the data set. The signs

consist of visually very distinctive wedge constellations as well as visually

very similar signs.

Fig. 3.17: Model of a Cuneiform tablet, with 30 different Hittie Cuneiform

signs [166].

The resulting graphs represent each wedge of the sign by four nodes,

that are categorically labeled by their point (depth, tail, right, left) as

well as the type of the glyph (vertical, horizontal, “Winkelhaken”) and

continuous labels on the nodes that represent the spatial coordinates of the

wedge [166]. There are two types of edges in the data set. The first edge,

connects the four parts of a wedge together, and the second type of edge are

additional edges, between all pairs of depth nodes. These edges are further

used to compare relative position of wedges, hence they are referred to as

arrangement edges. In the end, the label of an edge indicates whether it is

a wedge connecting edge, or an arrangement edge [166].

In summary, the nodes represent parts of the wedges (four nodes rep-

resent one wedge), and the first type of edge, connects the wedge parts.

The second type of edge is the arrangement edge, which is used to compare

positions of the wedges. The nodes are labeled with their point as well as

the glyph type. The edges state whether it is a wedge connecting edge or

an arrangement edge. In total the data set contains 267 graphs. In Ta-

ble 3.10, we present some key metrics about the Cuneiform data set and in
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Table 3.10: Summary of some metrics of the Cuneiform data set.

Cuneiform

Graphs 467

Classes 30 (tu, ta, ti, nu, na, ni, bu, ba, bi,

zu, za, zi, su, sa, si, hu, ha, hi,

du, da, di, ru, ra, ri, ku, ka, ki, lu, la, li)

Avg. |V | 21.27

Avg. |E| 44.80

Max. |V | 36

Max. |E| 90

Node labels 2 (Point (depth, tail, right, left)

and glyph type (vertical, horizontal, “Winkelhaken”) (both categorical)).

Edge labels 1 (Type (wedge, arrangement)).

Figure 3.18 we show 30 example graphs.

Fig. 3.18: Example graph for each of the 30 classes of the Cuneiform data

set. Starting from the top left tu, ta, ti, nu, na, ni, bu, ba, bi, zu, za, zi,

su, sa, si, hu, ha, hi, du, da, di, ru, ra, ri, ku, ka, ki, lu, la, li.

3.3.4 Synthie

The Synthie data set was built by Morris et al. [171] and contains synthet-

ically created graphs.

The algorithm for the creation of the data set can be roughly described

as follows:
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Table 3.11: Summary of some metrics of the Synthie data set.

Synthie

Graphs 400

Classes 4 (C1(A), C1(B), C2(A), C2(B))

Avg. |V | 95.00

Avg. |E| 172.93

Max. |V | 100

Max. |E| 212

Node labels 15 (Algorithmically generated vector of real-valued numbers (continuous)).

Edge labels -

• Generate two Erdős-Rényi graphs [172, 173], g1 and g2. This model

generates graphs with randomly connected nodes.

• Generate two seed sets S1 and S2 for g1 and g2 respectively of 200

graphs by randomly adding or deleting 25% of the edges of g1 and g2.

Graphs that are connected were obtained by randomly sampling 10 of

the seeds and randomly adding edges in the resulting graphs.

• The two graph classes C1 and C2 are created by randomly selecting

seeds from S1 with p = 0.8 and from S2 with p = 0.2 for C1 and with

the probabilities flipped for C2

• Two sets A and B of real-valued vectors with 15 labels are created by

using the approach described by Guyon [174].

• Both classes C1 and C2 are subdivided into two classes each, by ran-

domly adding labels from A and B onto the nodes (using seeds from

S1 and S2, respectively).

In summary, the nodes and edges are part of algorithmically generated

graphs. The nodes contain 15 real-valued labels, and edges are unlabeled.

In total the data set contains 400 graphs. In Table 3.11, we present some key

metrics about the Synthie data set and in Figure 3.19 we show 4 example

graphs.
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(a) C1(A) (b) C1(B)

(c) C2(A) (d) C2(B)

Fig. 3.19: Example graph for each of the four classes of the Synthie data

set.

3.4 Applications and Cost Functions

The described data sets are used in several experiments throughout this

thesis (especially in Chapters 4, 5 and 6). The version of the data sets that

was finally used is taken from the TUdataset database [175]. Table 3.12

provides an overview over which data set is used in which chapter and for

which method.

The NCI1, COX-2 and PTC(MR) data sets are used for all quantitative

experiments. The usage of these data sets has developed over time with

the several preliminary publications, as they have proven to pose difficult

to classify. In addition, some data sets are used for specific purposes. For

example, the PROTEINS and ENZYMES have been added for the MCS

approximation experiments, because in these experiments specifically data

sets with categorical labels are needed. Furthermore, for the graph augmen-

tation experiments, Cuneiform and Synthie have been added, to specifically

test the augmentation process on data sets with several continuous node
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Table 3.12: Summary of which data sets are used in which chapters, and

by which methods.

Chapter Method Data Sets

4 Distance based classifier AIDS, Mutagenicity, NCI1, IMDB,

COX-2, PTC(MR), Letter

4 Embedding based classifier AIDS, Mutagenicity, NCI1, IMDB,

COX-2, PTC(MR), Letter

5 Qualitative evaluation AIDS, Mutagenicity

5 MCS approximation AIDS, Mutagenicity, NCI1, COX-2,

PTC(MR), PROTEINS, ENZYMES

6 Graph augmentation AIDS, Mutagenicity, NCI1, COX-2,

PTC(MR), Cuneiform, Synthie

6 Ensemble Classifier NCI1, COX-2, PTC(MR), Cuneiform,

Synthie

labels.

As described in Section 2.3.1, there are several cost functions employed

in the present thesis. For the data sets in this thesis, we differ between four

graph types and cost functions.

(1) Graphs with categorical node labels use the Dirac distance for the

substitution cost function S1.

(2) Graphs with continuous node labels use the Euclidean distance for

S1.

(3) Graphs with categorical and continuous node labels use the Eu-

clidean distance for S1. To obtain one vector of continuous labels, the

categorical label is one-hot encoded.

(4) Unlabeled graphs use the abstract cost function with substitutions S1

and S2 being free of cost.

Each cost function requires the parameters τnode, τedge, α as well as a

proper definition the substitution functions S1, S2 for nodes and edges, re-

spectively. Parameter α is optimized in all experiments described in Chap-

ters 4, 5 and 6. Parameters τnode and τedge are always set to 1. In Table 3.13

an overview over the different data sets and the used cost functions is pre-

sented.

Figure 3.20 shows a visualization of three example data sets to give an

idea of how difficult it is to separate the classes of the individual data
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Table 3.13: Summary of the cost functions used for the individual data

sets.

Graph Category Cost Function S1 Data Sets

(1) Categorical Dirac AIDS, Mutagenicity, NCI1, COX-2, PTC(MR)

(2) Continuous Euclidean Letter, Synthie

(3) Categorical Euclidean (One-hot) PROTEINS, ENZYMES, Cuneiform

and continuous

(4) Unlabeled Free of cost IMDB

sets. To this end, the t-distributed stochastic neighbor embedding (T-

SNE) [176, 177] as described in [178] is used. The different classes are

represented by different colors. In Figure 3.20 (a) we can see a visualiza-

tion of the AIDS data set, which is the only data set where the classes

are clearly separable. For the data sets Mutagenicity, NCI1, PROTEINS,

Letter and IMDB the classes are more difficult to separate. Figure 3.20 (b)

shows as an example the PROTEINS data set. The classes of the COX-

2, PTC(MR), ENZYMES, Cuneiform and Synthie data sets are not easily

separable, as shown in Figure 3.20 (c) using the PTC(MR) data set as an

example. In Appendix A a T-SNE visualization can be found for all data

sets.

(a) AIDS (b) PROTEINS (c) PTC(MR)

Fig. 3.20: T-SNE visualization of three data sets of different separabil-

ity. The AIDS data set is easily separable, the PROTEINS data set is of

medium separability and the PTC(MR) classes are difficult to separate.

The individual colors represent the individual classes of the data set.
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Matching-graphs unfold with a
tale of lore. Born of edit
distance, in a dance,
unwrapping insights, through
the embedding’s lens, the
journey of the matching-graph
commences hence.

ChatGPT

4.1 Introduction

In the last four decades a huge number of procedures for graph matching

have been proposed in the literature [11, 12]. Graph matching is typically

used for quantifying graph proximity. As formally already described in

Chapter 2, the Graph edit distance [34], introduced about 40 years ago, is

still recognized as one of the most flexible and robust graph matching mod-

els available. In contrast with many other distance measures (e.g. graph

kernels [16] or graph neural networks [17]), graph edit distance offers more

information than merely a dissimilarity score, viz. the information which

subparts of the underlying graphs actually match with each other (known

as edit path). To date, we see no substantial research that exploits this par-

ticular knowledge as meta-information for reasoning about graphs and/or

classifying graphs.

In this chapter, we will introduce and describe the main novelty of this

thesis, namely the matching-graph. To this end, we propose a specific en-

coding of matching information derived from graph edit distance in the

data structure of the matching-graph. In principle, the proposed procedure

51
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first computes the graph edit distance for several pairs of labeled training

graphs (stemming from the same class). Based on the matching found, a

meta-graph is eventually created, which formalizes the corresponding parts

of the two graphs. The rationale of these matching-graphs is to formalize

the stable cores of specific classes of graphs. It is our hypothesis that the in-

formation captured in the resulting matching-graphs offers the potential to

achieve both a better understanding of the regularities and stable parts of

a given class and ultimately improve the matching quality of unknown pat-

terns (by focusing on these stable cores of the graphs during the matching

process, for instance).

Note that the present chapter is based on three conference pa-

pers [35–37] and one journal paper [179]. In [35] we describe the novel

concept of matching-graphs for the first time and confirm the potential

usefulness of these graphs in some initial experiments. In [36] we extend

our initial idea by iteratively creating sets of matching-graphs on the basis

of already existing matching-graphs. Finally, in [37] we propose to embed

graphs into a vector space with the aid of matching-graphs. In [179] we

combine the proposed methods in an overarching framework, give a more

thorough and detailed description of the individual methods, and substan-

tially extend both the methods and the empirical evaluation.

The remainder of the chapter is organized as follows. Section 4.2 dis-

cusses the related work. In Section 4.3 we describe in detail the first of

two major building blocks of our complete framework (illustrated in Fig-

ure 4.1). In particular, we define how a set M of initial matching-graphs

is built from arbitrary sets of graphs G and introduce two approaches to

post-process the initial matching-graphs. The first approach – described in

Section 4.3.1 – condenses the set of matching-graphs by selecting a useful

set of matching-graphs from the raw set. The second approach – described

in Section 4.3.2 – is somehow complementary to the first approach, since

this method iteratively increases the initial set of matching-graphs. In Sec-

tion 4.4, we describe the second building block of our novel framework,

viz. the classification with matching-graphs. In particular, we introduce

two conceptually different strategies to use the matching-graphs in order to

solve classification problems. The first approach makes use of the matching-

graphs in a distance-based classifier (detailed in Section 4.4.1). The second

classifier is built on a graph embedding that heavily relies on the matching-

graphs (detailed in Section 4.4.2).

As shown in Figure 4.1 we primarily use the matching-graphs selected

with the method described in Section 4.3.1 for the distance-based classi-
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(graph edit distance)

Creating Matching-Graphs
(Section 4.3)

Classification with Matching-Graphs
(Section 4.4)Selecting a Small Set

of Matching-Graphs
(Section 4.3.1)

  

Creating a Large Set
of Distinct 

Matching-Graphs
(Section 4.3.2)

1 if subgraph, 0 else

Distance Based Classification using Matching-Graphs 
(Section 4.4.1)

Graph Embedding using Matching-Graphs 
(Section 4.4.2)

or

Building Block 1 Building Block 2

Graphs stemming from different classes

Sets of matching-graphs
per class

Fig. 4.1: The proposed framework consists of two major building blocks.

The first is about creating matching-graphs (detailed in Section 4.3) and

the second is about using the matching-graphs for classification (detailed

in Section 4.4).

fier. Likewise, the matching-graphs which are iteratively created by means

of the method described in Section 4.3.2 are used for the graph embed-

ding classifier. One could, however, also combine the method described in

Section 4.3.1 with the classification method from Section 4.4.2 and, con-

versely, the method from Section 4.3.2 with the classification method from

Section 4.4.1 (shown with dashed lines in Figure 4.1). Although possible,

we actually follow only those combinations that are connected with drawn

lines (mainly for the sake of conciseness). The background and rationale

for this decision follow in the corresponding subsections.

Eventually, in Section 4.5, we conduct a thorough experimental evalua-

tion of our framework. That is, we empirically confirm that the matching-

graphs are actually significant substructures of their classes and that our

approach is able to improve the classification accuracy of various related

systems. Finally, in Section 4.6, we conclude this chapter and discuss po-

tential ideas for future work.
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4.2 Related Work and Broader Perspective

The concept of matching-graphs actually requires a graph matching proce-

dure – the task of identifying similar substructures in two graphs. We make

use of graph edit distance [34] for this basic task (outlined above). Over the

years, however, several other dissimilarity measures for graphs have been

proposed [11, 12]. They range from Spectral Methods [21], over Graduated

Assignment Algorithms [180], to Expectation Maximization Algorithms and

Continuous Optimization Algorithms [24]. Some of the most prominent

graph matching algorithms are graph kernels. A seminal contribution in

the field are kernels that are based on the analysis of walks or paths in

graphs. These kernels measure the similarity of two graphs by the number

of equal (or at least similar) walks or paths in the underlying graphs [16].

In [13] a second class of kernels for graphs with discrete labels is introduced.

This class of kernels is based on the 1-dimensional Weisfeiler-Lehman, or

color refinement, algorithm. Since this contribution, several extensions and

adaptations of this idea have been proposed [63].

A further prominent class of graph kernels is based on the work on

convolution kernels, which provide a general framework for dealing with

complex objects that consist of simpler parts. In particular, convolution

kernels infer the similarity of two objects from the similarity of their parts

(e.g., nodes, subgraphs, or trees [16]).

Graph embedding approaches can actually also be interpreted as graph

kernels. In [181], for instance, a graph g is represented by a vector that

counts the number of times certain subgraphs occur in g, while the Subgraph

Matching Kernel [28] and Graphlet Kernel [67] both count the number of

matchings between subgraphs of fixed sizes in two graphs. In [182], a graph

is represented based on its dissimilarities to certain prototypes.

Besides the strong dependency of our novel matching-graphs on a spe-

cific graph matching procedure, we also observe a certain similarity of our

novel concept with the idea of Frequent Subgraph Mining (FSM) [183]. FSM

focuses on the identification of frequent subgraphs within a set of graphs.

In particular, in FSM, one aims at extracting all subgraphs from a given

set of graphs that occur more often than a specified threshold. We ob-

serve two main categories in FSM, viz. Apriori-based approaches [184] and

Pattern-growth approaches [185]. The apriori-based methods start with fre-

quent nodes and proceed to grow subgraphs by using a Breadth First Search

strategy. That is, before they continue to find graphs of size k + 1 these

approaches first search for all frequent graphs of size k. Pattern-growth ap-
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proaches, on the other hand, work by using a Depth First Search strategy,

where one graph is extended until all frequent supergraphs of this graph

are found.

4.3 Creating Matching-Graphs

The general idea of matching-graphs – as proposed in [35, 38] – is to extract

information on the matching of pairs of graphs in a new data structure that

in turn encodes the corresponding parts of the two graphs.

Formally, we assume k sets of training graphs Gω1 , . . . , Gωk
stemming

from k different classes ω1, . . . , ωk. We formalize the information on the

matching of two graphs g = (V,E, µ, ν), g′ = (V ′, E′, µ′, ν′) – stemming

from the same class ωl – in a graph denoted by mg×g′ .

Basically, a matching-graph mg×g′ should represent both nodes and

edges of g and g′ that have been matched under the usage of some particular

graph matching algorithm. In our scenario, matching-graphs mg×g′ are

created according to the following procedure.

For all pairs of graphs stemming from the same class ωl, the graph edit

distance is computed by means of algorithm BP [85] (keep in mind, that

any other approximation that yields a valid edit path could be used. For

details see Chapter 2). Hence, we obtain a (sub-optimal) edit path λ(g, g′)

for each pair of graphs g, g′. For each edit path λ(g, g′), two matching-

graphs mg×g′ and mg′×g are built (for the source and the target graph g

and g′, respectively). To this end, all nodes of g and g′ that are actually

substituted in edit path λ(g, g′) are added tomg×g′ andmg′×g, respectively.

Vice versa, all nodes that are deleted in g or inserted in g′ are neither

considered in the two matching-graphs.

In preliminary experiments we observe that isolated nodes might occur

in the resulting matching-graphs. Although many graph matching algo-

rithms can actually handle isolated nodes, we still remove them from our

matching-graphs. The rationale for this heuristic is that we aim at building

small and robust cores of the graphs with nodes that are actually connected

to at least one other node in the formal substructure.

The question remains how to handle the edges of the involved graphs

g, g′ in the resulting matching-graphsmg×g′ andmg′×g. Clearly, if a node is

not included in the matching-graph (since it was either deleted or inserted

in the underlying edit path), the incident edges of this node will not be

included in the resulting matching-graph as well. Edges that connect two
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substituted nodes, however, can be included in the matching-graphs. We

propose two different strategies for edge handling.

(1) No Pruning : If two nodes u, v ∈ V of a source graph g are substituted

with nodes u′, v′ ∈ V ′ in a target graph g′ and there is an edge (u, v) ∈
E available, (u, v) is actually included in the matching-graph mg×g′

regardless whether or not edge (u′, v′) is available in E′. Hence, in this

case no pruning is applied to the edges.

(2) Pruning : We assume the same scenario as above. However, edge (u, v)

is included in the matching-graph mg×g′ if, and only if, there is an edge

(u′, v′) available in E′. Hence, in cases where no corresponding edge

can be found in the other graph, the edge is actually pruned.

Formally, a matching-graph mg×g′ = (Vg×g′ , Eg×g′) is defined as

• Vg×g′ = {v ∈ V : (v → v′) ∈ λ(g, g′) and v′ ∈ V ′}
• Unpruned: Eg×g′ = {E ∩ (Vg×g′ × Vg×g′)}
• Pruned: Eg×g′ = {E ∩ E′ ∩ (Vg×g′ × Vg×g′)}

For the matching-graph mg′×g the definition is similar to mg×g′ , but

the roles of g and g′ have to be exchanged. From a broader perspective,

the novel matching-graphs can be interpreted as a generalization of the

concept of a common subgraph [186]. In its original definition, a common

subgraph of two graphs consists of nodes which occur identically in the

both graphs. In our novel data structure, a node is incorporated whenever

the corresponding node is actually substituted with another node w.r.t. the

found edit path.

Example 4.1. In Figure 4.2 an illustration of the procedure is given for

two graphs of the Letter graph data set (graphs from this data set represent

artificially distorted letter line drawings, and are often used for illustration

purposes [119]). For this example the matching between the source and

target graph results in the edit path λ(g, g′) = {0 → 0, 1 → 1, 2 → 2, 3 →
3, 4 → 4, 5 → ε, ε → 5, ε → 6, ε → 7}. According to this edit path,

the two matching-graphs that are generated without pruning are shown in

Figure 4.2 (b) and (e). By applying edge pruning, we observe that edges

that have no counterpart in the other graph are not included in the resulting

matching-graph (like, for instance, the edges (0, 2) or (0, 4) in the source

and target graphs, respectively). Regardless the strategy actually applied,

we observe a strong denoising effect on the input graphs in this illustrative

example.
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Fig. 4.2: Matching-Graphs with unpruned and pruned edges derived from

source graph g and target graph g′.

The actual definition of the cost function, and in particular the cost

for insertions and deletions of nodes, has a crucial impact on the resulting

matching-graphs. The higher the cost for node deletions/insertions is de-

fined, the more nodes of both graphs are substituted with each other, which

in turn leads to larger matching-graphs in general. This effect is illustrated

in Figure 4.3. We show different matching-graphs derived from two source

graphs (representing the letters A and E). We use different cost values for

node deletions/insertions. By decrementing the deletion/insertion cost we

gradually obtain smaller matching-graphs (with fewer and fewer nodes in

general).

4.3.1 Selecting a Small Set of Matching-Graphs

Let us assume we have a set of training graphs Gωl
available. Furthermore,

we assume that Gωl
contains n graphs representing class ωl. If we create

all possible matching-graphs for all possible combinations of graph pairs

(g, g′) stemming from Gωl
×Gωl

, we end up with a set of matching-graphs

Mωl
of size n(n − 1). Depending on both the actual size of Gωl

and the

specific requirements for Mωl
this quantity might be too large1. In order

1Note that the proposed framework can instantly produce matching-graphs for any pair
of graphs, and is thus not reliant on a specific set or subset of graphs. This, in turn,

makes our system quite fast and flexible (since we only need to consider pairs of graphs
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Fig. 4.3: The smaller the cost for both node deletion and insertion is defined,

the smaller is the resulting matching-graph in general.

to reduce Mωl
to a reasonable size, various graph selection methods can

be used [182]. We propose to reduce Mωl
with the aid of the set median

graph [187], which is defined as

median(S) = argmin
g∈S

∑
g′∈S

d(g, g′) ,

where S is an arbitrary set of graphs. The set median graph is the graph

of S whose sum of distances to all other graphs in S is minimal.

Based on the set median graph we propose two ways to select matching-

graphs. Both approaches take as input an initial set of matching-graphs

Mωl
and a user defined parameter t which corresponds to the number of

matching-graphs desired. The first algorithm, iteratively selects (and even-

tually removes) the set median graph from the set of all available matching-

graphs Mωl
until the required number t of matching-graphs is selected (see

Algorithm 1). That is, we select in total tmatching-graphs that are situated

in, or near, the center of the complete set of matching-graphs.

Second, we propose a spanning based approach. We also start by select-

ing the set median graph. Each additional matching-graph selected is the

graph the furthest away from the already selected matching-graphs. We

repeat this procedure until the required number t of matching-graphs is

selected (see Algorithm 2).

to create a new graph). Moreover, since it is possible to specify in advance how many
graphs of the training set are actually used to create the matching-graphs, scalability is

not a major problem in practical applications.
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Algorithm 1: Center-Selection (Mωl
,t)

1: Initialize M̄ωl
to the empty set {}

2: while |M̄ωl
| < t do

3: m = median(Mωl
)

4: M̄ωl
= M̄ωl

∪ {m}
5: Mωl

= Mωl
\ {m}

6: end while
7: return M̄ωl

Algorithm 2: Spanning-Selection (Mωl
,t)

1: Initialize M̄ωl
to the empty set {}

2: m = median(Mωl
)

3: M̄ωl
= M̄ωl

∪ {m}
4: Mωl

= Mωl
\ {m}

5: while |M̄ωl
| < t do

6: m = argmax
g∈Mωl

min
m∈M̄ωl

d(g,m)

7: M̄ωl
= M̄ωl

∪ {m}
8: Mωl

= Mωl
\ {m}

9: end while
10: return M̄ωl

4.3.2 Creating a Large Set of Distinct Matching-Graphs

The overall aim of the two methods described in the previous subsection

is to reduce the set of matching-graphs to a reasonable size. Depending

on the actual application and requirements it might be beneficial to have

a large set of matching-graphs that are distinct from each other. For this

purpose, we propose an iterative algorithm to produce matching-graphs

out of existing matching-graphs2. Algorithm 3 takes as input k sets of

graphs Gω1 , . . . , Gωk
with graphs from different classes ω1, . . . , ωk, as well

as the number of matching-graphs n that will be kept from one iteration

to another (n is a user defined parameter).

The algorithm iterates over all k sets (classes) of graphs from G ∈ G
(main loop of Algorithm 3, from line 2 to line 14). For each set of graphs

G and for all possible pairs of graphs g, g′ stemming from the current set

G, the initial set of matching-graphs M is produced (line 3 to 6)3. Note

that a matching-graph is only added to M if it does not already exist in

2The method described in the present section is similar to the algorithm proposed

in [36]. In contrast with [36], however, we use a simplification of the algorithm so that
we get more and also distinct graphs.
3We take into account the first matching-graph mg×g′ only. Moreover, due to compu-

tational reasons we stick with the pruned version of the matching-graphs.
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Algorithm 3: Iterative Matching-graph Creation.
input : sets of graphs from k different classes G = {Gω1 , . . . , Gωk

}, the maximum
number n of matching-graphs to keep in each iteration

output: sets of matching-graphs for each of the k different classes
M = {Mω1

, . . . ,Mωk
}

1 Initialize M as the empty set: M = {}
2 foreach set of graphs G ∈ G do
3 Initialize M as the empty set: M = {}
4 foreach pair of graphs g, g′ ∈ G × G with j > i do
5 M = M ∪ {mg′×g,mg×g′}
6 end
7 do
8 M ′ = a subset of n randomly selected graphs of M

9 foreach pair of graphs mi,mj ∈ M ′ × M ′ with j > i do
10 M = M ∪ {mmj×mi

,mmi×mj
}

11 end

12 while M has changed in the last iteration
13 M = M ∪ M

14 end

M , meaning that we do not allow duplicates in M . Eventually, we aim

at iteratively building matching-graphs out of pairs of existing matching-

graphs. The motivation for this procedure is to further reduce the size

of the matching-graphs and to find small core-structures that are often

available in the corresponding graphs. Due to computational limitations,

we randomly select a subset of size n from the current matching-graphs M

(line 8). Based on this selection, the next generation of matching-graphs

is built. This is actually carried out in the second for-loop on lines 9 to 11

where for all pairs of graphs in M ′ two novel matching-graphs are created

and added to M . This process is repeated until no more changes occur

in set M . Finally, set M is compiled as the union of all matching-graphs

individually produced for all available classes.

Example 4.2. In Figure 4.4 we provide a small illustrative example of our

iterative procedure on four graphs from the Letter data set [119] in order to

give the reader an intuition. Subfigures (a) to (d) show the original graphs.

Subfigure (e) shows the resulting matching-graph mgi×gj of graph gi and

gj , whereas Subfigure (f) shows the matching-graph mgo×gk resulting from

graphs go and gk. Finally, in Subfigure (g) we show the matching-graph

resulting from the two matching-graphs of the first iteration. This example

illustrates that the size of the matching-graphs declines from one iteration

to another, in general. The matching-graph in Subfigure 4.4 (g) appears

very small and generic and not specific to the class. Note, however, that

the specificity heavily depends on the node labels.



February 6, 2024 13:3 Dissertation Template - 9in x 6in output

Matching-Graphs for Graph Classification 61

Fig. 4.4: Illustration of the procedure of creating matching-graphs over

multiple iterations.

4.4 Classification with Matching-Graphs

We propose two approaches for using the matching-graphs in a classification

scenario. The first idea is to enhance the accuracy of graph edit distance

by explicitly focusing on matching-graphs (detailed in Section 4.4.1). The

second idea is to use the resulting matching-graphs for graph embedding

(detailed in Section 4.4.2).

4.4.1 Distance-Based Classification Using Matching-Graphs

In our first approach we use the matching-graphs in a distance-based classi-

fication scenario. Let us assume we aim at computing the distance between
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a given test graph g and a training graph g ∈ Gωl
. We define a novel dis-

tance measure dM(·, ·) that combines the following two distances with each

other.

(1) The approximated graph edit distance information dBP(g, g
′) between

the test graph g and the original training graph g′ ∈ Gωl
.

(2) A statistical score S on the basis of all distances between the test

graph g and all matching-graphs m ∈ Mωl
stemming from the set

of matching-graphs of class ωl (the actual class of the corresponding

training graph g′).

Formally, we define the distance dM as a weighted sum of the original edit

distance and the information obtained by means of the meta-matching.

That is,

dM(g, g′) = α · dBP(g, g
′) + (1− α) · S({dBP(g,m) : m ∈ Mωl

}) ,

where α ∈ [0, 1] is a weighting parameter to trade off between the two

dissimilarity scores and function S denotes a descriptive statistical value

computed on the set of distances between the original graph g and the

matching-graphsm ∈ Mωl
(we propose to use the minimum, the maximum,

or the average function for S). Clearly, with α = 1 we obtain the standard

graph edit distance, while α = 0 leads to a distance that relies on the

matching-graphs only.

The set of matching-graphs Mωl
actually used for building dM, is cre-

ated and reduced according to the process described in Section 4.3.1. It

would also be possible to use the large sets of matching-graphs iteratively

created by means of the method described in Section 4.3.2 (it actually turns

out that this produces similar results as the proposed combination). How-

ever, this specific setup is computationally much more demanding – due

to the very large set of matching-graphs – and is therefore not a viable

alternative which is not pursued.

We employ this novel distance model in two classifiers. First, we feed

dM into a k-NN classifier denoted by k-NN(dM). Second, we use the novel

distance as basic similarity kernel κ(g, g′) = −dM(g, g′) in conjunction with

a Support Vector Machine (denoted as SVM(−dM)).

4.4.2 Graph Embedding Using Matching-Graphs

The general idea of the second classification approach is to embed a given

graph into a vector space by means of the matching-graphs. Let g be
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an arbitrary graph stemming from a given set of graphs. Using a large

set M = {m1, . . . ,mN} of N matching-graphs, created according to the

method described in Section 4.3.2. One could also employ the matching-

graph selection described in Section 4.3.1 for this purpose. The rationale

of this selection is, however, to reduce an existing set. For embedding,

on the other hand, we are more interested in generating large sets of dis-

tinct graphs. Therefore, this particular combination seems a bit counter-

intuitive. Moreover, we observe that both combinations – given that the

used sets are actually large enough – achieve quite similar results. Hence,

we only follow one of the two possible combinations.

We embed g in two different ways. Once using subgraph isomorphism

(as proposed in [37, 38]) and once using the graph edit distance.

The first embedding is defined by

φsub(g) = (sub(m1, g), . . . , sub(mN , g)),

where sub(mi, g) = 1, if mi ⊆ g, and 0 else.

That is, for this embedding we employ subgraph isomorphism that pro-

vides us with a binary similarity measure which is 1 or 0 for subgraph-

isomorphic and non-subgraph-isomorphic graphs, respectively. When con-

sidering if a given matching-graph mi is a subgraph of a graph g, it is

necessary to decide whether or not two nodes are equal with respect to

their labels. For nodes with categorical labels this task can be solved in

a straightforward manner. When a node, however, contains continuous la-

bels, this decision process is more subtle. In this particular case one could,

for instance, employ a distance measure for the node labels and eventually

define a threshold to decide whether or not two nodes are similar enough

to be considered as equal.

There are various algorithms available that can be applied to solve the

subgraph isomorphism problem[11, 12]. In the present chapter we employ

the VF2 algorithm [188] which makes use of efficient heuristics to speed up

the search process.

The second embedding is defined by

φged(g) = (dBP(g,m1), . . . , dBP(g,mN ))

In other words we compute the graph edit distance (in our case using the

suboptimal algorithm BP [85]), between the graph g to be embedded and

all matching-graphs in M and then represent g as a vector of the resulting

distances.

Obviously, both graph embeddings produce vectors with a dimension

that is equal to the number of matching-graphs actually available. As the
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iterative method described in Section 4.3.2 might generate thousands of

matching-graphs, the dimension of the resulting feature vectors might be

very large. In cases where the high dimensionality of the data is a problem,

one can apply an arbitrary feature selection method to the resulting graph

embeddings.

These specific graph embeddings are similar in spirit to the frequent sub-

structure approaches [181], the subgraph matching kernel [28], the graphlet

kernel [67], as well as dissimilarity based embeddings [182]. The main differ-

ence of our approach to those methods lies in the creation of the subgraphs

(or prototypes in case of [182]). We employ graph edit distance to create

our novel data structure of matching-graphs. These matching-graphs offer

a natural way of defining significant and large sets of subgraphs that can

readily be used for vector space embeddings.

Likewise to the novel distance dM, also for the graph embedding we em-

ploy two different classifiers. First, we classify the resulting vectors using a

k-NN in conjunction with a vector similarity measure s. For the subgraph

based embedding φsub(g) we use binary similarity measures Dice, Yule,

Tanimoto (Rogers), Jaccard coefficient, as well as Kulczynski-1 and 2. For

the distance-based embedding φged(g) we use the Euclidean, Cosine and

Minkowski dissimilarity. Second, we employ an SVM that operates on the

embedding vectors (using standard kernel functions k for feature vectors

such as the Radial Basis Function (RBF), the Sigmoid kernel, and the Lin-

ear kernel). We denote these approaches as k-NN(sφ(g)) and SVM(κφ(g)),

respectively.

4.5 Experimental Evaluation

4.5.1 Experimental Setup

The main question to be answered in our empirical evaluation is whether

the proposed matching-graphs can be used to improve the classification

accuracies of existing graph matching procedures (that rely on the same

graphs and graph edit distance information as our novel procedure). Hence,

we compare our novel method with two reference classifiers that are often

used in conjunction with graph edit distance.

The first reference system is a k-nearest-neighbor classifier (k-NN) that

directly operates on the distances dBP, denoted as k-NN(dBP) from now

on. The second reference system is a Support Vector Machine, denoted as

SVM(−dBP), that operates on the similarity kernel κ(g, g′) = −dBP(g, g
′).
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Table 4.1: The total number of graphs for each data set as well as the

corresponding number of graphs in the training, validation, and test sets.

Data set Total Training Validation Test

AIDS 2,000 250 250 1,500

Mutagenicity 4,337 1,500 500 2,337

NCI1 4,110 2,465 822 823

COX-2 466 280 93 93

PTC(MR) 344 206 68 70

Letter 2250 750 750 750

IMDB 1,000 600 200 200

We evaluate the novel approaches for graph classification using

matching-graphs on seven data sets (namely AIDS, Mutagenicity, NCI1,

COX-2, PTC(MR), Letter and IMDB) as described in Chapter 3.

4.5.2 Validation of Metaparameters

For the experimental evaluation each data set is split into three predefined

random disjoint sets for training, validation, and testing. Details about

the size of the individual splits can be found in Table 4.1. The matching-

graphs are created on the training set only, whereas the optimization of

the metaparameters is performed with the help of the validation set. The

optimal parameters obtained with the usage of the validation set are then

applied on the test set (without any further modifications).

For algorithm BP, that approximates the graph edit distance, the cost

for node and edge deletions, as well as a weighting parameter β ∈ [0, 1]

that is used to trade-off the relative importance of node and edge edit

costs are often optimized [85, 182]. However, for the sake of simplicity

we employ unit cost of 1.0 for deletions and insertions of both nodes and

edges and optimize the weighting parameter β only (on all data sets). For

data sets where the underlying graphs contain label alphabets Lv with

categorical labels, the cost of non-identical substitutions is set to the cost

of one insertion plus the cost of one deletion (which amounts to 2). For data

sets with continuous node labels, we employ the Euclidean distance as a

cost for substituting the two nodes. For the creation of the matching-graphs

– actually also dependant on the cost model – the same cost parameters

are employed.

For both classification algorithms k-NN(dM) and SVM(−dM) we opti-

mize the weighting parameter α (used in dM), the type of matching-graphs
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(pruned vs. unpruned), the matching-graph selection method (center vs.

spanning), the number t of selected matching-graphs per class, and function

S, that determines whether the minimum, the maximum, or the average is

used to condense the set of distances {dBP(g,m) : m ∈ Mωl
}. In addition,

for the k-NN classifier we optimize the number of neighbors k considered,

while for the SVM classifier parameter C is optimized to trade off between

the size of the margin and the number of misclassified training examples.

The discussion of the validation results and the actual parameter values

can be found in Subsection 4.5.3.

Both classification algorithms k-NN(sφ(g)) and SVM(κφ(g)) rely on

graph embeddings φ(g) that are computed by means of large sets of

matching-graphs. Remember that these sets are created in an iterative

manner. We set the number of matching-graphs considered for the next

iteration to n = 200 on all data sets. The stop criterion of the iterative

process checks whether or not the last iteration resulted in a change of

the currently considered set of matching-graphs and the dimension of the

resulting feature vectors turns out to be very large. Thus, we apply a re-

cursive feature elimination process [189] to the resulting graph embeddings.

In Table 4.2 we show the total number of matching-graphs produced first

and the number of matching-graphs selected. On all data sets substantial

reductions can be observed. For instance, on AIDS, Mutagenicity, COX-2,

PTC(MR), Letter and IMDB about 4 to 5% of the available matching-

graphs are selected, while on NCI1 about 13% of the matching-graphs are

selected. The conclusions we draw from this table are twofold. First, we

note that the iterative procedure can be used to produce almost arbitrarily

large sets of graphs. Second, it appears that only a small fraction of the

matching-graphs are actually needed. Of course, it would be desirable to

produce from the very start only those matching-graphs that will really be

used – with our current solution this is not possible and we thus follow the

well-known paradigm of overproduce and select.

In Figure 4.5 we can see the cross validation accuracy as a function of

the number of features after each step of the recursive feature elimination

process. We use the three data sets AIDS, Mutagenicity, and NCI1 as

examples here, as all the data sets show a similar pattern. It is clearly

visible that if the dimension of the vectors becomes too small, the validation

accuracy drops by a large margin. However, before this significant drop the

accuracy remains relatively stable.

For both approaches k-NN(sφ(g)) and SVM(κφ(g)) we optimize the type

of the embedding (φsub(g) vs. φged(g)) as well as the weighting parameter
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Table 4.2: The number of matching-graphs created for each data set and

the final number of matching-graphs after feature selection is applied.

Data Set Total Selected

AIDS 4,955 199

Mutagenicity 86,752 4,139

NCI1 4,544 618

COX-2 19,704 989

PTC(MR) 3,893 207

Letter 13,514 689

IMDB 43,015 2,141

(a) AIDS (b) Mutagenicity (c) NCI1

Fig. 4.5: Cross validation accuracy as a function of the number of features

during the recursive feature elimination process. The global optimum is

indicated with a small circle.

β ∈ [0, 1] that is used to trade-off the relative importance of node and

edge edit costs. For the k-NN we further optimize the similarity measure

s as well as the number k of neighbors that are considered. For the SVM

we optimize the kernel function and parameter C ∈ [0, 1]. In the case

of an RBF or Sigmoid kernel, parameter γ ∈ [0, 1] is optimized as well.

All optimizations are conducted by means of a grid search. The detailed

validation results can be found in Section 4.5.4.

4.5.3 Validation Results k-NN(dM) and SVM(−dM)

In Tables 4.3 and 4.4 we show the best performing parameters found during

validation for k-NN(dM) and SVM(−dM), respectively. Major findings of

the validation process for the k-NN are as follows (see also Table 4.3) .

On all data sets but NCI1 the parameter α lies between 0.35 and 0.65,

which means that both distance informations are – more or less – equally

important. Moreover, we observe that pruning seems to be beneficial in
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Table 4.3: Optimal parameter values found on the validation sets for the

k-NN(dM) classifier (including the classification accuracy).

Data set β α pruning Selection t S k Accuracy

AIDS 0.90 0.35 pruned center 30 max 7 99.6

Mutagenicity 0.60 0.60 pruned center 10 max 1 76.2

NCI1 0.75 0.90 pruned spanning 3 avg 1 78.5

COX-2 0.40 0.50 pruned center 10 avg 5 84.9

PTC(MR) 0.60 0.30 pruned center 7 max 7 69.1

Letter 0.65 0.60 pruned center 60 max 3 93.2

IMDB 0.40 0.65 unpruned center 65 max 3 75.5

Table 4.4: Optimal parameter values found on the validation sets for the

SVM(−dM) classifier (including the classification accuracy).

Data set β α pruning Selection t S C Accuracy

AIDS 0.60 0.85 pruned spanning 75 min 10−1 100.0

Mutagenicity 0.75 0.65 pruned center 15 max 10−2 73.2

NCI1 0.75 0.95 pruned center 75 max 10−2 67.3

COX-2 0.95 0.90 pruned center 25 max 10−1 82.8

PTC(MR) 0.75 0.90 unpruned spanning 25 min 101 77.9

Letter 0.70 0.90 pruned spanning 75 min 10−2 94.3

IMDB 0.35 0.90 pruned center 65 avg 10−3 70.0

general, and that the optimal selection method is center on all data sets

but NCI1. Finally we can see that the max function performs the best for

distance aggregation in almost all cases.

The optimal parameters for SVM (see Table 4.4) indicate that the ag-

gregated distance is rather less important and that the optimal selection

method is center in most of the cases. Furthermore, the min, together with

the max function, is often used for condensing the set of distances.

4.5.4 Validation Results k-NN(sφ(g)) and SVM(κφ(g))

In Tables 4.5 and 4.6 we show the optimal parameters for k-NN(sφ(g)) and

SVM(κφ(g)). For the k-NN(sφ(g)) (see Table 4.5) the embedding applied is

φsub(g) for all data sets except for Letter. Regarding the similarity measure

s we can not report a clear winner (although Kulczynski-1 or -2 might be

a good choice when in doubt).

The optimal parameters for the SVM (see Table 4.6) indicate that the

best embedding function is on four out of seven data sets the subgraph
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Table 4.5: Optimal parameter values found on the validation sets for the

k-NN(sφ(g)) classifier (including the classification accuracy).

Data set Embedding β s k Accuracy

AIDS φsub N/A Kulczynski-1 5 99.6

Mutagenicity φsub N/A Dice 7 79.2

NCI1 φsub N/A Rogers 5 79.2

COX-2 φsub N/A Yule 5 82.8

PTC(MR) φsub N/A Kulczynski-2 5 72.1

Letter φged 0.70 Cosine 5 91.2

IMDB φsub N/A Kulczynski-2 7 76.0

Table 4.6: Optimal parameter values found on the validation sets for the

SVM(κφ(g)) classifier (including the classification accuracy).

Data set Embedding β Kernel C γ Accuracy

AIDS φsub N/A RBF 10−1 100 99.6

Mutagenicity φsub N/A RBF 102 10−3 82.4

NCI1 φsub N/A RBF 101 10−2 77.4

COX-2 φged 0.40 Linear 10−2 N/A 86.0

PTC(MR) φged 0.05 Linear 5× 10−3 N/A 77.8

Letter φged 0.60 Linear 5× 10−3 N/A 93.1

IMDB φsub N/A RBF 101 10−3 74.5

based function φsub. The best performing kernel function κ is in four out

of seven data sets the RBF kernel, which are notably all based on the φsub

embedding. On the three other data sets that use φged for embedding, the

linear kernel seems to be optimal. The best value of C is either 10 or 100 for

all data sets embedded with the φsub embedding, except for AIDS, where

the optimal value is 0.1. For the φged embedded graphs the optimal values

for C are much smaller (between 0.005 and 0.01). The optimal parameter

γ on the other hand is smaller than 0.01 for all data sets except for AIDS

(where γ = 1 performs the best).

4.5.5 Test Results and Discussion

In Table 4.7 we show the classification accuracies of both reference sys-

tems, viz. k-NN(dBP) and SVM(−dBP), as well as the results of our novel

approaches k-NN(dM), SVM(−dM), k-NN(sφ(g)), and SVM(κφ(g)) that all

rely on matching-graphs.

We observe that our novel approaches k-NN(dM) and SVM(−dM) out-
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Table 4.7: Classification accuracies of two reference systems compared to

our novel approaches. Symbol ◦/◦ indicates a statistically significant im-

provement and •/• indicates a statistically significant deterioration over

the first and second system, respectively (using a Z-test at significance

level α = 0.05). The best result per data set is shown in bold face.

Reference Systems Proposed System

Data Set k-NN(dBP) SVM(−dBP) k-NN(dM) SVM(−dM) k-NN(sφ(g)) SVM(κφ(g))

AIDS 98.6 99.4 99.8 ◦/- 99.7 ◦/- 99.5 ◦/- 99.6 ◦/-

Mutagenicity 72.4 69.1 73.0 -/◦ 70.4 -/◦ 74.8 ◦/◦ 76.3 ◦/◦

NCI1 74.4 68.6 77.6 ◦/◦ 68.8 •/- 76.1 -/◦ 76.7 -/◦

COX-2 76.3 71.3 81.7 ◦/◦ 81.0 -/◦ 80.6 -/◦ 78.5 -/◦

PTC(MR) 55.7 54.3 65.7 ◦/◦ 67.1 ◦/◦ 58.6 -/- 61.4 -/-

Letter 89.9 92.7 91.7 ◦/- 92.5 ◦/- 90.8 ◦/• 93.2 ◦/-

IMDB 60.5 63.5 68.0 ◦/◦ 66.0 ◦/- 59.0 -/- 68.5 ◦/-

perform their respective reference systems on all data sets (except for Let-

ter where the SVM(−dM) approach achieves approximately the same ac-

curacy as SVM(−dBP)). For k-NN(dM) we observe that six out of seven

improvements are statistically significant, while three out of six improve-

ments achieved with SVM(−dM) are satistically significant4.

The classifier k-NN(sφ(g)) achieves higher accuracies than both refer-

ence systems on five out of seven data sets (i.e., 10 improvements in to-

tal). Five of these improvements are statistically significant. The classifier

SVM(κφ(g)) achieves even better accuracies in general. We outperform

both reference systems on all data sets. Seven of the 14 improvements are

statistically significant.

Comparing our novel classifiers with each other, we observe that k-

NN(dM) performs the best in general. That is, it outperforms both refer-

ence systems on all seven data sets, with 11 out of 14 improvements being

statistically significant. Moreover, on three out of seven data sets, this clas-

sifier achieves the overall best classification results (followed by SVM(κφ(g))

that achieves the best result in three out of seven cases, and SVM(−dM)

that performs best for one data set).

4.5.6 Ablation Study, Comparison with State of the Art and

Run Time Analysis

We can state the following as an interim conclusion. Our novel approach

using matching-graphs is clearly beneficial when compared with similar
4The statistical significance is computed via Z-test using a significance level of α = 0.05.
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systems that have no access to the matching-graphs. The aim of the next

evaluations presented in this subsection is threefold. First, we conduct an

ablation study in order to better get to the root of the strength of our novel

framework. Second, we conduct a comparison with three state-of-the-art

methods from the field, and third we perform a run time analysis.

4.5.6.1 Ablation Study

For the embedding approach, we aim to determine whether it is the

matching-graphs themselves, the iterative construction of the sets of

matching-graphs or the selection of certain features that helps the most to

improve the results. To this end, we conduct the following ablation study

using the results of SVM(κφ(g)) (with the subgraph based embedding).

• Without-1 : This is a system which operates without matching-graphs.

That is, this approach uses randomly generated subgraphs, rather than

our matching-graphs, for graph embedding. The random generation of

subgraphs works by randomly removing 30 to 50% of the nodes from

the graphs (and their incident edges). The amount of random graphs

created for each data set corresponds to the number of matching-graphs

actually used for SVM(κφ(g)). This set of random subgraphs is then

used for graph embedding. We repeat the random creation of subgraphs

and classification five times and report the mean and standard deviation

of the accuracy.

• Without-2 : This is a system which refrains from producing the

matching-graphs with an iterative procedure as suggested in Sec-

tion 4.3.2. Instead we use the matching-graphs created after the first

for loop of Algorithm 3 (at line 6).

• Without-3 : This is a system that works without feature selection. It

uses all matching-graphs created during the iterative process.

In Table 4.8 we see thatWithout-1 performs worse compared to all other

approaches on all data sets (except for the PTC(MR) data set, where the

accuracy of Without-3 is even worse). This is a first and quite strong indi-

cation of the usefulness of the matching-graphs. Next, we conclude that the

iterative process on its own is not beneficial, as Without-2 and Without-3

perform almost equally well (except on Mutagenicity and Letter). However,

feature selection applied to the resulting embedding is definitely useful as

our complete system outperforms both Without-2 and Without-3 on all

data sets (except on Letter).
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Table 4.8: Classification accuracies of an approach that uses randomly cre-

ated subgraphs for embedding instead of using matching-graphs (Without-

1), an approach that uses matching-graphs without using the iterative pro-

cess (Without-2), as well as an approach that uses the embedded graphs

without feature selection (Without-3), compared to our novel approach

SVM(κφ(g)).

Data Set Without-1 Without-2 Without-3 SVM(κφ(g))

AIDS 95.5 ± 0.7 99.3 99.2 99.6

Mutagenicity 69.1 ± 1.2 74.3 73.1 76.3

NCI1 70.6 ± 0.6 73.4 73.4 76.7

COX-2 73.1 ± 1.3 77.4 77.7 78.7

PTC(MR) 48.3 ± 1.2 44.3 44.3 67.2

Letter 86.1 ± 1.0 90.5 89.9 90.1

IMDB 60.9 ± 6.1 66.5 65.5 68.5

In summary, the strength of our novel framework also lies in the combi-

nation of the iterative generation with a subsequent feature selection. The

most valuable component of the proposed system is, however, the concept of

matching-graphs themselves (as the comparisons with the reference system

Without-1 clearly show).

4.5.6.2 Comparison with State-of-the-Art

In Table 4.9 we put the best accuracies of our novel framework (denoted

as Ours) in the context with several other kernel based classifiers that

are evaluated with the same experimental setup and data sets as used

in the present chapter. In particular, we compare our method with the

Graphlet kernel [67], Shortest-Path kernel (SP) [30], as well as the Wasser-

stein Weisfeiler-Lehman kernel (WWL) [190]5. On the Mutagenicity and

NCI1 data sets our approach is narrowly outperformed by the WWL kernel

and on the IMDB data set the SP kernel beats our system quite clearly.

However, we can also report that on four out of seven data sets our frame-

work achieves the overall best accuracy when compared with the current

state-of-the-art.

5We compute the reference accuracies using the GraphKernels library [191] for the
Graphlet and Shortest-Path kernel. For the WWL kernel we use the implementation

provided in [190].
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Table 4.9: Comparison of the classification accuracies of our novel frame-

work with three state-of-the art kernel based approaches, viz. Graphlet,

Shortest-Path (SP) and Wasserstein Weisfeiler-Lehman (WWL). The best

accuracy per data set is shown in bold face. A dash (-) as entry indicates

that the experiment timed out or that we do not get a reasonable result.

Data Set Graphlet [67] SP [30] WWL [190] Ours

AIDS 98.5 99.4 99.5 99.8

Mutagenicity 55.5 - 77.0 76.3

NCI1 64.1 73.0 79.3 77.6

COX-2 77.4 49.5 77.4 81.7

PTC(MR) 55.7 55.7 54.3 67.1

Letter 30.1 - 41.1 93.2

IMDB 58.0 73.0 71.0 68.5

Table 4.10: Run time comparison of the time needed to calculate the base-

line matrix −dBP, as well as the time needed to calculate our novel matrix

−dM and the times needed to create the subgraph embedding φsub(g) and

graph edit distance-based embedding φged(g) for one graph. Time in Sec-

onds.

Distance-Based Classifiers Embedding-Based Classifiers

Data Set −dBP −dM φsub(g) φged(g)

AIDS 9 15 54 ∼ 0

Mutagenicity 224 240 3020 6

NCI1 552 601 633 1

COX-2 10 15 820 3

PTC(MR) 2 3 41 ∼ 0

Letter 41 63 3 1

IMDB 19 22 996 3

4.5.6.3 Run Time Discussion

Of course the main downside of the proposed framework is the additional

run time that comes from the increased computational demands.

For the following discussion on the run times, we distinguish between

classification systems that rely on distances and systems that are based on

embeddings. For the first category we identify the following two computa-

tions whose run times are of interest.

• Run time to compute the complete distance matrix using the original

graph edit distance dBP by means of algorithm BP. This can be taken
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as a reference run time for relative comparison with the following op-

eration.

• Run time to compute the complete distance matrix using the enhanced

graph edit distance dM using the matching-graphs.

For the second category, we are most interested in the run time for graph

embedding as this is the bottleneck of our framework. In particular, we

report the run times for one embedding using either the subgraph approach

φsub(g) or the graph edit distance-based approach φged(g).

In Table 4.10 we show the four discussed run times of both categories

in seconds. When comparing the run times for the computation of the

novel distance matrix dM with the original distance computation dBP, only

marginal differences can be observed. If we take into account that, for

example, the k-NN that uses dM outperforms k-NN(dBP) on all seven data

sets (six times with statistical significance), then this small overhead in run

time is more than justified.

For the run times of the second category, weighing is more important

than in the first category discussed above. For instance, it is obvious that

the subgraph based embedding is significantly slower than the distance-

based embedding. On the other hand, we have seen that subgraph based

embedding basically performs slightly better than the distance-based em-

bedding. It is not necessarily clear whether this rather small difference in

accuracy can justify the large discrepancy in the run times. Note, however,

that graph embedding can be parallelized with special hardware infrastruc-

ture, which in turn can dramatically reduce the high run time, if necessary.

4.6 Conclusion and Future Work

In the present chapter, we introduce and research a novel data structure

called matching-graph, which can be pre-computed on training graphs. Our

general goal is to leverage the power of graph edit distance to build a novel

graph representation that formalizes the matching parts found between two

graphs. This formalization can be interpreted as stable part, or core, of two

graphs. We propose to build matching-graphs on the basis of the edit path

between two graphs. Formally, a matching-graph of two graphs consists of

the nodes substituted under a given cost model in a graph edit distance

computation. We compute matching-graphs between all pairs of graphs

stemming from the same class. Eventually, we define two complementary

approaches that first, condense the initial set of matching-graphs to the
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most influential ones, and second, iteratively enlarges the set of matching-

graphs by recursively building novel matching-graphs out of already created

matching-graphs. The benefit of these matching-graphs is that they can be

utilized to improve the classification accuracy of various classifiers. The

drawback is – of course – the increased computation time.

To show the usefulness of matching-graphs we propose two classification

approaches. The first system employs a weighted distance of the original

graph edit distance and an aggregated distance to sets of matching-graphs.

The second approach uses the matching-graphs to build vector represen-

tations of the underlying graphs. To this end, we embed our graphs in

an N -dimensional vector space such that the i-th entry of the resulting

vector represents either the distance to the corresponding matching-graph

or whether the corresponding matching-graph occurs as a subgraph in the

graph to be embedded.

By means of a thorough experimental evaluation on diverse graph data

sets covering a wide spectrum of applications, we empirically confirm that

classification systems that (in part) rely on the novel matching-graphs sig-

nificantly outperform their counterparts that have no access to this specific

information.

In a thorough ablation study, we are also able to clearly underline the

value of the novel matching-graphs. Last but not least, with a compari-

son with three state-of-the-art methods, we empirically confirm that our

framework is able to set new benchmarks on several data sets.

The proposed matching-graphs have – besides the ability of improving

the classification accuracy in a graph-based classification scenario – another

interesting benefit. They can automatically reveal significant patterns in

large sets of graphs. In particular, it turns out that matching-graphs often

represent crucial patterns that actually constitute a certain class of pat-

terns. For instance, for the mutagen class of the Mutagenicity data set we

autonomically identified both patterns NO2 and NH2 in many matching-

graphs. Both compounds are well known to be mutagenic [192]. This is

especially interesting as the matching-graphs are automatically created on

the basis of the edit path between training graphs without any domain

knowledge. This idea is further explored in Chapter 5. Besides this idea,

we identify several potential future research activities. First, rather than

the approximation algorithm BP, one could employ any other graph edit

distance computation. We believe that using more expensive algorithms for

the computation of the edit distance could lead to other (perhaps larger?)

matching-graphs. Second, the novel matching-graphs might actually be
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used as a sparse representation of any input data. Hence, our framework

could potentially be used as a novel and quite fast way for dictionary learn-

ing in the graph domain. Last but not least, we feel that the concept of

matching-graphs might also be beneficial for regression problems (e.g. one

could employ the matching-graphs in conjunction with a nearest-neighbor

regression, which depends on a large number of training data).
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5.1 Introduction

In various pattern recognition frameworks, it is crucial to find similarities

between pairs of entities. In the case of graph-based pattern recognition,

this process is called graph matching. Over the last four decades, numer-

ous graph matching procedures have been proposed in the literature [11],

ranging from graph edit distance [193], graph kernels [194], to graph neural

networks [195]. A fundamental aspect of graph matching is the ability to

find common substructures in graphs, which can provide insight into shared

patterns and relationships between different entities.

The matching-graph (as already described in Chapter 4), follows the

idea of formalizing the stable core of pairs of graphs. In particular, the

information of the so-called edit path between two graphs is exploited in

order to derive matching-graphs. An edit path gives us the information

which subparts of the corresponding graphs are matched with each other

by means of graph edit distance [34]. In order to optimize the matching-

graphs to discover relevant substructures we refine their quality by using

an iterative process that selects the best matching-graphs of each itera-

77
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tion, creating new matching-graphs from these parent graphs. Our first

hypothesis is therefore, that matching-graphs are able to find relevant sub-

structures in their correct class and thus provide insights into the question

which graph substructures actually make up a class of patterns.

Our approach is similar in spirit to approaches from graph transaction

based Frequent Subgraph Mining (FSM) [183]. This field also focuses on the

identification of frequent subgraphs within a set of graphs (extract all sub-

graphs that occur more often than a specified threshold). We observe two

main categories in FSM, viz. Apriori-based approaches and Pattern-growth

approaches [183]. The apriori-based methods proceed to grow subgraphs

by using a Breadth First Search (BFS) strategy. Before they continue to

graphs of size k+1 it first searches for all frequent graphs of size k. Pattern-

growth approaches, on the other hand, work by using a Depth First Search

(DFS) strategy, where one graph is extended until all frequent supergrahs

of this graphs are found.

As it is our hypothesis that the matching-graphs are able to find common

substructures in graphs, it naturally raises the question of their connection

to the maximum common subgraph (MCS). The MCS of two graphs can be

interpreted as the intersection of the considered graphs. Hence, the larger

the MCS is, the more similar the two graphs are. The MCS problem is

known to be NP-complete [196], which means that current exact algorithms

for the computation of the MCS have exponential time complexity [197].

This fact often renders the time required to compute an exact MCS unac-

ceptable, especially for graphs with a large number of nodes. Approximate

solutions aim at finding a graph that is reasonably close to the exact MCS

within a much shorter time frame. However, there is generally no guarantee

that the solution found by these procedures is actually similar to the MCS

in terms of both size and composition.

There are several algorithms available that approximate the solution to

the MCS problem. In [198], for instance, an algorithm that selects common

features between two graphs using bit strings, which in turn allow faster

traversals of a graph, is used. In [199] an approximation based on a discrete

time quantum walk is introduced. A third approach tries to approximate

the problem of MCS computation by using a build-up algorithm [200]. Note

that this approach – as well as some others – are designed for specific

types of graphs only (e.g., graphs that represent chemical structures). It

is well known that graph edit distance and the concept of MCS are closely

related with each other [201]. Hence, our second hypothesis is that the

novel matching-graphs also relate to the concept of MCS.
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In summary, the main contribution of the present chapter is to demon-

strate the effectiveness of matching-graphs in identifying relevant substruc-

tures within individual graph classes, as well as their relation to the MCS.

Note that the present chapter is based on a preliminary conference pa-

per [36] and a journal paper [39].

The remainder of the present chapter is organized as follows. In Sec-

tion 5.2, we explain which version of the matching-graph is used in this

chapter and how we use it to iteratively find relevant substructures. Fur-

ther, in Section 5.3, we conduct both a quantitative and qualitative ex-

perimental evaluation. In order to do this, we measure the frequencies

of the found matching-graphs in their correct class and we visualize and

inspect the most frequent subgraphs which in turn enables novel insights

into the question which graph substructures actually make up a class of

patterns. Next, in Section 5.4, we provide important definitions used in

the remainder of the chapter. In Section 5.5, we explore the relation of the

matching-graphs to the MCS and how we can use matching-graphs to ap-

proximate the MCS. Eventually, in Section 5.6, we conduct an experimental

evaluation in order to verify the potential benefits of our novel approach.

In particular, we compare the run time of the proposed MCS approxima-

tion with both exact and existing approximation algorithms. Further, we

feed the new approximation into MCS based distance measures and observe

whether and how this changes the accuracy of a distance-based classifier.

Finally, in Section 5.7, we conclude the chapter and discuss some future

research directions.

5.2 Matching-Graphs

Major contribution of the present chapter is that we explore the feasibility

of matching-graphs to produce relevant substructures of pairs of graphs.

This section summarizes the version of the matching-graph that is relevant

for this chapter, in order to make the chapter self contained. The concept

of matching-graphs is thoroughly explained in Section 4.3.

Formally, we assume two graphs g = (V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′).

First, the graph edit distance dBP(g, g
′) between g and g′ is computed by

means of algorithm BP. Hence, a (potentially suboptimal) edit path λ(g, g′)

is obtained. For this edit path λ(g, g′), two matching-graphs mg×g′ and

mg′×g can now be built. To this end, all nodes of g and g′ that are actually

substituted in edit path λ(g, g′) are added tomg×g′ andmg′×g, respectively.
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Vice versa, all nodes that are deleted in g or inserted in g′ are not considered

in neither of the two matching-graphs.

In this chapter we make use of the pruned version of the matching-

graphs (as described in Section 4.3), as this version always produces sub-

graphs of both original graphs. If a node is not included in the matching-

graph (since it is either deleted or inserted), the incident edges of this node

are not included in the resulting matching-graph. Edges that connect two

substituted nodes are included in the matching-graphs under the following

condition. Assume that two nodes u, v ∈ V of g are substituted with nodes

u′, v′ ∈ V ′ in g′ and there is an edge (u, v) ∈ E. In this case, (u, v) is

included in the matching-graph mg×g′ if, and only if, edge (u′, v′) is also

available in E′.

Formally, matching-graph mg×g′ = (Vg×g′ , Eg×g′ , µ, ν) is defined as

• Vg×g′ = {v ∈ V : (v → v′) ∈ λ(g, g′) and v′ ∈ V ′}
• Eg×g′ = {E ∩ E′ ∩ (Vg×g′ × Vg×g′)}
• µ, ν as defined for graph g.

For the matching-graph mg′×g the definition is similar to mg×g′ , but

the roles of g and g′ have to be exchanged.

In Figure 5.1 we show two graphs g and g′, a possible edit path λ(g, g′) =

{0 → 0, 1 → 1, 2 → 2, 3 → 3, ε → 4}, as well as one of the resulting

matching-graphs mg×g′ .

40 1

2 3

0 1

2 3

(a) Two graphs, g and g′, and a possible edit path λ.

0 1

2 3

(b) mg×g′

Fig. 5.1: Two graphs g and g′, a possible edit path λ and the resulting

matching-graph mg×g′ .

5.2.1 Iterative Building of Matching-Graphs

Our first hypothesis is, that the matching-graphs are able to find relevant

substructures in a given class of graphs. In this section we describe how we
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use the matching-graph in conjunction with an iterative process, in order

to produce a subset of the highest quality matching-graphs.

Using the described procedure for creating matching-graphs out of two

input graphs, we now propose an algorithm that iteratively creates sets

of matching-graphs out of existing sets of matching-graphs. The proposed

procedure is formalized in Algorithm 4.

Algorithm 4: Algorithm for iterative matching-graph creation.
input : sets of graphs from k different classes G = {Gω1

, . . . , Gωk
}, number of

matching-graphs c
output: sets of matching-graphs for each of the k different classes

M = {Mω1
, . . . ,Mωk

}

1 Initialize M as the empty set: M = {}
2 foreach set of graphs G ∈ G do
3 Initialize M as the empty set: M = {}
4 foreach pair of graphs gi, gj ∈ G × G with j > i do
5 M = M ∪ {mgj×gi

,mgi×gj
}

6 end
7 reduce M to the c matching-graphs with highest quality q
8 do
9 foreach pair of graphs mi,mj ∈ M × M with j > i do

10 M = M ∪ {mmj×mi
,mmi×mj

}
11 end
12 reduce M to the c matching-graphs with highest quality q

13 while M has changed in the last iteration
14 M = M ∪ M

15 end

The input of the algorithm is a set G that contains several sets of graphs

{Gω1 , . . . , Gωk
} each representing members of a certain class ωk. Addition-

ally, the number of matching-graphs per class is fixed to a user-defined value

c. The output is a set M which consists of k different sets Mω1
, . . . ,Mωk

each containing c matching-graphs that represent one of the given classes.

First M is initialized to the empty set. The algorithm then actually

starts on line 2 by iterating over each set of graphs G ∈ G. For each of

these sets the corresponding result M is initialized as the empty set.

As seen on line 4 to 6, before beginning the main iterative process,

we first loop through all possible combinations of graphs gi, gj ∈ G × G,

where j > i. From one edit path λ(gi, gj) two matching-graphs are inferred,

viz. mgi×gj and mgj×gi , where gi and gj is the source and target graph,

respectively (line 5). Hence, this process yields n(n− 1) matching-graphs,

where n is the number of graphs in the current set G1.

1Note that edit path λ(gi, gj) is not necessarily the same as λ(gj , gi) and thus, it could
actually happen that the resulting matching-graphs stemming from these edit paths also

differ. Yet, due to computational reasons we omit the computations of the edit paths
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On line 7 we proceed to select the c graphs from M with the high-

est quality q by calculating the relative frequency of occurrence in their

own class with respect to the occurrence in other classes. Formally, for a

matching-graph m ∈ M derived from graphs stemming from class ωl, we

verify for all graphs g ∈ Gωl
whether or not m is a subgraph of g and

store the number of positive matches in f1. Likewise, we count all graphs

g′ ∈ Gωi , where ωi ̸= ωl, that contain m as subgraph and store this number

in f2.

Clearly, the higher f1 and simultaneously the lower f2 for a given

matching-graph m, the better the quality of m. With f2 = max(1, f2) (in

order to avoid divisions by zero), we formalize the quality q of a matching-

graph m by means of

q(m) =
f1
f2

. (5.1)

Given this initial set M of matching-graphs, the whole process is even-

tually repeated (lines 9 to 12). Yet, instead of creating the matching-graphs

from the training set G, we produce matching-graphs from pairs of existing

matching-graphs. This process is repeated as long as the c graphs in M

have altered in the last iteration (line 13). Once the algorithm terminates,

we obtain k sets of c matching-graphs for each class which are stored in M.

5.3 Experimental Evaluation

For the first experimental evaluation, the main question is, whether or not

our novel procedure is able to create more representative matching-graphs

by using a quality measurement between the iterations. In order to answer

this question, we count the occurrences of the matching-graphs found in a

given test set (via subgraph isomorphism verification from graph-tool2 that

is based on the VF2 algorithm [58]). That is, we create the matching-graphs

using the aforementioned algorithm, on the training sets and then count the

actual occurences of the created graphs as subgraphs in the corresponding

test sets. The proposed approach is evaluated on two different data sets

(namely AIDS and Mutagenicity (MUTA)) as described in Chapter 3.

The single parameter of our algorithm – namely, the number of

matching-graphs being generated – is set to c = 15 in our experiments

for the sake of convenience.

and matching-graphs in both directions and assume two matching-graphs per graph pair.
2https://graph-tool.skewed.de
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Table 5.1: Development of the average number of nodes from the top

matching-graphs between the first and last iteration.

# iterations
Avg. # nodes

first iteration

Avg. # nodes

last iteration

M
U
T
A nonmutagen 2 17.9 18.1

mutagen 2 14.4 14.3

A
ID

S inactive 4 6.6 5.5

active 3 14.5 12.1

5.3.1 Test Results and Discussion

First, we aim at researching whether or not the quality of the matching-

graphs actually improves from iteration to iteration. To this end, we plot

the qualities (according to Equation 5.1) of the top c matching-graphs from

the first to the last iteration (see Figure 5.2). It is clearly observable that the

quality of the matching-graphs increases by each iteration. For instance, for

the AIDS data set and class active the initial matching-graphs offer quality

values between 20 and 38, while the qualities of the final matching-graphs

are between 39 and 45, which means that the final matching-graphs occur

about 39 to 45 times more often in their own class than in the other class.

One could assume that this increase is mainly due to the fact that

the matching-graphs become smaller from iteration to iteration (and are

therefore found more often in the correct class). In fact, we observe only

a marginal reduction of the average graph size (if any). This can be seen

in Table 5.1 where we show the number of iterations per data set and class

as well as the average number of nodes of the matching-graphs in the first

and last iteration.

Next, we analyze the absolute frequencies of the resulting matching-

graphs in the correct and false classes (see Figure 5.3). It can be clearly

observed that the resulting matching-graphs occur siginficantly more of-

ten in their correct classes than in the wrong class for the AIDS active,

Mutagenicity mutagen and nonmutagen classes.

In particular for AIDS active (Figure 5.3 (a)) we can report exciting

results, where most of the matching-graphs occur in about 80% of the test

graphs of the correct class, and only about 1% in the other class. However,

for the AIDS inactive (Figure 5.3 (b)), the resulting matching-graphs do

not seem to be representative.

Finally, we conduct a qualitative evaluation. In Figure 5.4 we visualize
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Fig. 5.2: Evolution of the relative frequencies of which a matching-graph

occurs in the correct and incorrect class during the iterations.

the three matching-graphs with the best quality (according to Equation 5.1)

of each class for both data sets. Interestingly, as seen in Figure 5.4 (a), the

matching-graphs for the AIDS active class consist of carbon atoms only (in

very specific combinations, that seems to be exclusive for this class). The

matching-graphs of the inactive class on the other hand consist of chains of

various atoms, that seem to be less common overall and not very specific

to the inactive class (as seen in the quantitative analysis in Figure 5.3).

In Figure 5.4 (b) we show the top matching-graphs for the Mutagenic-

ity data set. One of the major differences is, that for the mutagen class

the matching-graphs found often contain carbon rings or partial carbon

rings, whereas in the nonmutagen class we find much more hydrogen atoms.

Also very interesting to see is that the second sample of the Mutagen class

in Figure 5.4 (b) contains a NO2 compound, which is well known to be

mutagenic[202]. Overall the NO2 compound occurs in 5 out of the 15

matching-graphs. This is especially interesting as the matching-graphs are

automatically created on the basis of the edit path between training and

matching-graphs without any further knowledge.
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Fig. 5.3: Percentage of frequency of the final c matching-graphs in the test

set. Bars in light gray show the frequency in the correct class while the

darker bars show the frequency in the incorrect class.
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Fig. 5.4: The three matching-graphs with the best quality for the AIDS

data set (a) and the Mutagenicity data set (b).

5.4 Maximum Common Subgraph

In this section, we provide some basic definitions and explanations of con-

cepts used in the remainder of this chapter (as an addition to the concepts

already introduced and discussed in Chapter 2), namely the maximum com-

mon subgraph (MCS).
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Let g = (V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′) be graphs, a graph

CS(g, g′) = (Vcs, Ecs, µcs, νcs) is called a common subgraph of g and g′

if CS(g, g′) is actually a subgraph of both g and g′. The largest com-

mon subgraph CS(g, g′) with respect to the cardinality of the node set

|V | is referred to as a maximum common subgraph of g and g′ (denoted

by MCS(g, g′) from now on). In general, the MCS(g, g′) needs not to be

unique, i.e., there might be more than one MCS of identical size for two

given graphs g and g′.

We now revisit the distinction between induced and non-induced sub-

graphs. Depending on the definition actually employed, we either have a

maximum common induced subgraph (MCIS) or a maximum common edge

subgraph (MCES). In the former case (MCIS) we require that the resulting

MCS is an induced subgraph to both graphs g and g′ and in the latter case

(MCES) the resulting MCS is not necessarily induced to both graphs g and

g′. By definition, the size of the MCES is always greater than, or equal to,

the size of the MCIS.

In Figure 5.5 we show an example of two graphs g and g′ as well as their

resulting MCIS(g, g′) and MCES(g, g′). It is clearly visible that MCIS(g, g′)

is an induced subgraph to both graphs g and g′, while MCES(g, g′) is

actually a non-induced subgraph of g (due to the missing edge (0, 1)).

Another important distinction, that is often made in MCS algorithms,

is whether or not the resulting MCS of two graphs must be connected. In

the former case the MCS consists of one single connected component only,

while in the latter case the MCS is also allowed to consist of more than

one connected component. Note that this distinction is independent of the

MCS definition actually employed (i.e., MCIS or MCES).

40 1

2 3

0 1

2 3

1

2 3

0 1

2 3

Fig. 5.5: Two graphs g and g′ and the maximum common node in-

duced subgraph, MCIS(g, g′), and the maximum common edge subgraph

MCES(g, g′).
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5.5 Relation Between MCS and Matching-Graphs

After providing empirical evidence that the pruned version of the matching-

graphs indeed produces relevant subgraphs of the originals, we now explore

whether or not it is possible to extend the definition of the matching-graph

to fit the definition of the maximum common subgraph (MCS). For more

than two decades it is known that graph edit distance computation is equiv-

alent to the MCS problem when used with the following set of cost func-

tions [203].

• c(u → u′) =

{
0 , if µ(u) = µ′(u′)

∞ otherwise

}
∀u ∈ V and u′ ∈ V ′

• c(u → ε) = c(ε → u′) = 1,∀u, u′ ∈ V, V ′

• c((u, v) → (u′, v′)) =

{
0 , if ν((u, v)) = ν′((u′, v′))

∞ otherwise

}
∀(u, v) ∈ E and

(u′, v′) ∈ E′

• c((u, v) → ε) = c(ε → (u′, v′)) = 0,∀(u, v) ∈ E and (u′v′) ∈ E′

This set of costs, in combination with exact graph edit distance enforces

a structural integrity of the graph, because substitutions of unequally la-

beled nodes and edges are forbidden (by making them cost ∞). In other

words, only equally labeled nodes and edges are substituted with zero cost,

while both node insertions and deletions have the same unit cost. Hence,

dλmin(g, g
′) counts the number of nodes that need to be deleted and inserted

in g and g′, respectively. It follows that the number of nodes of MCS(g, g′)

can be computed via

|MCS(g, g′)| = |V |+ |V ′| − dλmin(g, g
′)

2
(5.2)

This procedure does not necessarily assume that the underlying MCS is

an induced subgraph of both graphs g and g′ (due to the zero cost of edge

deletion and insertion). That is, we are actually referring to the concept of

MCES.

Putting together the definition of a subgraph, the definition of a

matching-graph, and the above defined cost model, it becomes clear that

the proposed matching-graphs can be seen as a generalization of the con-

cept of a common subgraph. A common subgraph of two graphs consists of

nodes which occur identically in both graphs. In a matching-graph, how-

ever, a node is incorporated whenever the corresponding node is actually
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substituted with another node – and these substitutions can, in general,

also occur on nodes with unequal labels.

In the present section we compute the matching-graphs defined in Sec-

tion 5.2 by means of the cost model proposed in [203]. Note, that in case

only identical substitutions are allowed (i.e., (u → u′) is only possible if

µ(u) = µ′(u′)) the two resulting matching-graphs are indeed identical, i.e.,

mg×g′ = mg′×g. That is, because the nodes of the resulting matching-

graphs only reflect substitutions with zero cost. This is, by definition, ac-

tually be the case in our scenario and thus, we only consider one matching-

graph mg×g′ per edit path in the following.

This means, that if one would employ an exact graph edit distance al-

gorithm for the computation of the matching-graphs, one would obtain

matching-graphs that are equal to the MCS (or more precisely to the

MCES) of the underlying graphs. Such an approach would, however, be

questionable, as it does not solve the general efficiency problems of MCS

computation.

Thus, in the present chapter we switch to the approximation BP, which

always yields a complete and admissible edit path in polynomial time that

can be used to create the matching-graphs. This is actually a crucial advan-

tage of the algorithm BP compared to other fast graph matching methods

which either provide an invalid edit path or no edit path at all.

Remember that algorithm BP potentially delivers a suboptimal edit

path with a higher cost than the optimal edit path. In conjunction with the

cost model defined above this means that the suboptimal edit path found by

BP must not necessarily contain all node substitutions actually possible.

Hence, the size of the matching-graph obtained is (in the general case)

smaller than, or equal to, the size of the MCES as defined in Equation 5.2.

However, by restricting both the cost model (as defined above) and

the graphs so that they have labeled nodes and unlabeled edges only, the

distance dBP is equal to the exact edit distance dλmin
. Hence, for this special

type of graphs, the size of the novel matching-graphs is actually equal to

the size of the exact MCES. Moreover, as the size of the MCES builds an

upper bound of the size of the MCIS, we can conclude that in this special

case the size of the matching-graphs also builds an upper bound of the

MCIS.

Moreover, due to the suboptimal nature of the underlying algorithm

BP, the procedure can also lead to matching-graphs that consist of more

than one connected component, even when the optimal MCS would consist

of one connected component only.
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Fig. 5.6: Two graphs g, g′ and a possible edit path λ(g, g′), with the corre-

sponding matching-graph mg×g′ and the optimal MCS.

In Figure 5.6 we show an example of this phenomenon. We show two

graphs g and g′, a possible edit path λ(g, g′) = {0 → a, 1 → c, 2 → b, 3 →
d, 4 → ε, ε → e} as well as the resulting matching-graph mg×g′ and the

MCS(g, g′). With the cost model described above, the cost of this edit

path is equal to 2 (one node deletion and one node insertion). Obviously,

by taking the global edge structure into account, an optimal edit path would

carry out the substitutions (1 → b) and (2 → c), rather than (1 → c) and

(2 → b), respectively. Although the number of nodes in mg×g′ is equal to

the number of nodes in the MCS, we observe that mg×g′ is disconnected,

whereas the MCS consists of a single connected component.

For very similar reasons, we might obtain isolated nodes in our

matching-graphs. In the original implementation [35, 38] the isolated nodes

are always removed. However, in the present application of MCS approxi-

mation it is not entirely evident whether or not these isolated nodes should

be removed from the resulting matching-graphs. If we leave isolated nodes,

we might obtain matching-graphs whose sizes are closer to the sizes of the

MCES. On the other hand, by deleting isolated nodes one obtains subgraphs

that are better connected and thus possibly better reflect the structural

similarity of the graphs.

For the remainder of this chapter we denote the MCS approximated

by means of matching-graphs by MCSmg(L) and MCSmg(D) depending on

whether isolated nodes are left or deleted, respectively.
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Table 5.2: The total number of graphs and classes per data set, as well as

the average number of nodes and edges per graph.

Data set Graphs Classes ∅|V | ∅|E|

AIDS 2,000 2 15.69 16.20

Mutagenicity 4,337 2 30.32 30.77

NCI1 4,110 2 29.87 32.30

COX-2 467 2 41.22 43.45

PTC(MR) 344 2 14.29 14.69

PROTEINS 1,113 2 39.06 72.82

ENZYMES 600 6 32.63 62.14

5.6 Experimental Evaluation

The overall aim of the experimental evaluation is to research whether or

not matching-graphs can be used as an approximation for the MCS of two

graphs. In order to answer this question, we compare the matching-graphs

to an exact MCS algorithm (described in Section 5.6.1), as well as to an

existing MCS approximation (described in Section 5.6.2).

We evaluate the proposed approach on seven data sets (namely AIDS,

Mutagenicity, NCI1, COX-2, PTC(MR), PROTEINS and ENZYMES) as

described in Chapter 3. Some basic characteristics of the data sets such as

the number of graphs, the number of classes, as well as the average number

of nodes and edges, are shown in Table 5.2.

5.6.1 Comparison with Exact MCS Computation

First, we compare our novel approximation MCSmg(·)(g, g
′) based on

matching-graphs with the widely used MCSplit algorithm [197], that pro-

duces exact solutions MCSe(g, g
′). Note that the MCSplit algorithm creates

– in contrast to our novel approach – induced maximum common subgraphs

(which are potentially disconnected). Moreover, we can expect that the size

of MCSmg(L) is – on the tested data sets with unlabeled edges – equal to the

size of the MCES. Thus, our novel approximation builds an upper bound

to the size of the true MCIS.

Due to the exponential time complexity of MCSplit and in order to make

the experiment feasible, we randomly select a subset of n = 50 graphs per

data set. Next we build all possible pairs, which results in n(n−1)
2 = 1, 225

pairs of graphs, for which the MCS is computed.

For practical reasons, we set a timeout of 1,000 seconds per computation.
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On all data sets except ENZYMES, where about 55% of all computations

lead to a timeout, the vast majority of MCS computations can be carried

out without timeout. That is, on PROTEINS more than 85% and on the

remaining data sets about 95% to 99.9% of all exact MCS computations

can actually be conducted.

In Table 5.3 we show the average run time per MCS computation in

seconds. On all data sets it is clearly visible that the exact computation

to obtain MCSe(g, g
′) is by multiple orders of magnitude slower than the

computation of the approximation MCSmg(·)(g, g
′). On average over all

data sets, the exact computation takes about 110 seconds per graph pair –

our novel approximation needs for the same procedure only 0.05 seconds.

The most significant difference can be observed on the PROTEINS data

set, where our approximation is about 4,900 times faster than MCSplit.

Next, we compare the sizes of the MCS obtained by MCSplit and the

matching-graphs. As a size comparison metric, we compute the error E

produced by approximation MCSmg(·)(g, g
′) w.r.t. the exact computation

MCSe(g, g
′). Formally, the error E is defined as

E =
||MCSe(g, g

′)| − |MCSmg(·)(g, g
′)||

|MCSe(g, g′)|
(5.3)

A value of E = 0 means that the created approximation MCSmg(·)(g, g
′)

has equal size as the exact solution, and the maximum error of E = 1

means, that the approximation MCSmg(·)(g, g
′) refers to an empty graph.

In Table 5.3, we observe that the average error E varies quite strongly

depending on the actual data set. Moreover, the error also depends on

whether or not isolated nodes are removed from the matching-graphs. On

five out of seven data sets the error observed with MCSmg(L), is – in part

substantially – lower than the error obtained by using MCSmg(D). Actually,

the deletion of isolated nodes leads to a lower error on the PROTEINS and

ENZYMES data sets only. Also the average error measured across all data

sets is significantly lower when using MCSmg(L) instead of MCSmg(D).

In Figure 5.7 we show a qualitative comparison of the sizes of MCSe
and the sizes of MCSmg(L) and MCSmg(D) on the PTC(MR) data set (we

observe similar plots on the other data sets). Each dot in the scatterplot

represents a pair of graphs g, g′ and for each of these pairs, we show on the

x-axis the size of the exact MCSe(g, g
′) and on the y-axis the size of the

approximate MCSmg(·)(g, g
′). A dot on the diagonal line indicates that the

size of our novel approximation is equal to the size of the exact result. Dots

above the diagonal indicate that MCSmg(·)(g, g
′) is larger than MCSe(g, g

′),
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Table 5.3: A comparison of the MCSplit algorithm (MCSe) with our ap-

proximations MCSmg(·) based on matching-graphs in terms of the aver-

age run time per MCS computation in seconds, and the average error E.

We distinguish between matching-graphs with and without isolated nodes

MCSmg(L) and MCSmg(D), respectively. Bold values indicate lower errors.

Time (s) Average Error E

Data Set MCSe MCSmg(·) MCSmg(L) MCSmg(D)

AIDS 51.85 0.03 0.21 0.49

Mutagenicity 61.3 0.06 0.17 0.62

NCI1 108.12 0.05 0.15 0.67

COX-2 21.11 0.08 0.09 0.35

PTC(MR) 1.17 0.01 0.15 0.21

PROTEINS 147.44 0.03 0.29 0.28

ENZYMES 379.97 0.08 0.35 0.21

Mean 110.14± 128.96 0.05± 0.03 0.20± 0.09 0.40± 0.19

and likewise, each dot below the diagonal refers to a pair of graphs (g, g′)

with MCSmg(·)(g, g
′) < MCSe(g, g

′).

As expected, we observe that the size of matching-graphs with isolated

nodes is always larger than, or equal to, the size of the true MCS. When

removing the isolated nodes from the matching-graphs, we observe both

over- and underestimations of the actual size of the exact MCS. These

underestimations of the actual size of the MCIS are reflected in the larger

errors observed for MCSmg(D) in Table 5.3.

5.6.2 Classification with MCS Based Dissimilarities

In this section, we evaluate the approximaton MCSmg(·) in the context of

a classification scenario. We employ three dissimilarity metrics, namely

dUGU [203], dWGU [204] and dMCS [201] in combination with a k-nearest

neighbour classifier (k-NN). The k-NN is particularly well suited for our

purposes, as it directly operates on distance metrics without further train-

ing. All of the dissimilarity metrics are inverse proportional to the size

of the MCS of the two graphs. This means that the larger the MCS, the

smaller the dissimilarity and vice versa. Formally, given two graphs g and

g′ and their corresponding MCS(g, g′), the metrics are defined as follows

dUGU(g, g
′) = |g|+ |g′| − 2|MCS(g, g′)| (5.4)
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Fig. 5.7: Comparisons of the size of the exact MCSe (x-axis) and the size

of the approximated MCSmg(·) (y-axis). We show both solutions, with and

without isolated nodes.

dWGU(g, g
′) = 1− |MCS(g, g′)|

|g|+ |g′| − |MCS(g, g′)|
(5.5)

dMCS(g, g
′) = 1− |MCS(g, g′)|

max{|g|, |g′|}
(5.6)

Due to their high computational complexity, exact MCS algorithms are

not applicable for this evaluation. Therefore, we switch to a state of the

art approximation algorithm stemming from the chemistry development kit

(CDK) [198]. We denote this reference approximation algorithm with CDK

and the resulting subgraph as MCSCDK.

For this evaluation, we define a random 3:1:1 split for each data set for

training, validation, and testing, respectively. Actually, only two param-

eters are tuned on the validation sets. First, for the computation of the

MCSmg(·)(g, g
′), we validate whether or not the isolated nodes are deleted.

Second, for the k-NN classifier we optimize the number of neighbors k con-

sidered (k ∈ {1, 3, 5, 7}).
In Table 5.4 we show the classification accuracies achieved on the test

sets. For each metric, the bold number indicates whether the reference

system that operates on MCSCDK or our novel system based on MCSmg(·)
performs better.

For the metric dUGU we observe that our system outperforms the refer-

ence system on all data sets but PTC(MR). Two of these six improvements
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Table 5.4: Classification accuracies of three metrics (dUGU [203], dWGU [204]

and dMCS [201]) that are based on the size of the MCS. For the reference

system we use an approximation MCSCDK [198] and compare it with our

matching-graphs MCSmg(·). Symbol ◦ indicates a statistically significant

improvement over the reference system (using a Z-test at significance level

α = 0.05). The bold number indicates the better performance for the

corresponding metric.

k-NN(dUGU) k-NN(dWGU) k-NN(dMCS)

Data Set MCSCDK MCSmg(·) MCSCDK MCSmg(·) MCSCDK MCSmg(·)

AIDS 94.0 100.0 ◦ 96.0 100.0 ◦ 98.0 100.0 ◦

Mutagenicity 68.4 72.4 ◦ 70.2 70.2 72.7 72.0

NCI1 63.7 67.3 72.3 69.9 71.0 69.0

COX-2 78.5 80.7 78.5 82.8 ◦ 78.5 79.6

PTC(MR) 57.1 55.7 47.6 48.6 50.0 48.6

PROTEINS 69.2 71.4 71.4 70.6 71.9 80.4 ◦

ENZYMES 20.8 22.5 19.2 21.7 15.8 20.0

Table 5.5: A comparison of the run times on all data sets, of the reference

approximation MCSCDK compared to our matching-graphs MCSmg(·).

Time (s)

Data Set MCSCDK MCSmg(·) Gain (%)

AIDS 5,621 1,434 292%

Mutagenicity 100,024 29,397 240%

NCI1 37,445 21,793 72%

COX-2 1,149 586 96%

PTC(MR) 209 56 273%

PROTEINS 71,455 4,628 1444%

ENZYMES 7,109 940 656%

are statistically significant. For dWGU our system outperforms the refer-

ence system on four data sets (twice with statistical significance). Using

the same metric our approach performs equally well as MCSCDK on Mu-

tagenicity and only worse on NCI1 and PROTEINS (yet not statistically

significant). For the last metric, dMCS, we observe four improvements and

three deteriorations when compared to the reference system. Two of these

improvements, but none of the deteriorations, are statistically significant.

Overall, we can report 14 improvements (6 being statistically significant) for

all three metrics using the MCS approximation based on matching-graphs

compared to the reference approximation CDK.

Finally, in Table 5.5, we compare the total run times to create both

MCS approximations MCSCDK and MCSmg(·) for all data sets. It is clearly
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visible that the proposed approximation is substantially faster than the

algorithm CDK on all data sets. The improvement of the run time is the

lowest on the NCI1 data set, where a gain in the run time of about 72% is

observed. On the PROTEINS data set, on the other hand, where the gain

in run time is about 1, 444%, we observe the largest speed-up.

5.7 Conclusion and Future Work

In various pattern recognition frameworks, it is crucial to find similarities

between pairs of entities. It is especially interesting to discover relevant

substructures in a given class of graphs, in order to understand which graph

substructures actually make up a class of patterns. In this chapter we

explore the viability of matching-graphs for discovering substructures in

general as well as the relation of matching-graphs to the well known concept

of maximum common subgraph (MCS).

In order to do this, we perform two separate evaluations. First, we

advance the creation of matching-graphs by means of an iterative algo-

rithm. That is, starting with an initial set of matching-graphs, novel sets

of matching-graphs are iteratively created through further matchings of

matching-graphs. Furthermore, we select the matching-graphs of the high-

est quality after each iteration, in order to generate a set of matching-graphs

that are as small as possible ”cores” that represent a certain class.

In an experimental evaluation on two graph data sets, we empirically

confirm that our novel approach is able to produce matching-graphs that

accurately represent significant and frequent substructures of a given class.

Moreover, through a qualitative evaluation we confirm that our novel pro-

cedure offers high potential for detecting novel and relevant substructures

in sets of graphs. To the best of our knowledge this is the first time that a

graph matching algorithm is employed for this specific task.

Second, we propose a specific version of the matching-graphs, in order

to compare them to the problem of finding the MCS of two graphs, which

is of great interest in several fields of pattern recognition, such as bioin-

formatics or chemoinformatics. Due to the exponential time complexity

of exact solutions for the MCS problem, we focus on researching approx-

imations that can deliver reasonably close results in a shorter time. We

introduce matching-graphs as an approximate solution for the MCS prob-

lem, which represent a generalization of the MCS concept and can be used

to approximate the MCS by means of suboptimal graph matchings.
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The second experimental evaluation on seven graph data sets shows that

matching-graphs generally outperform a state-of-the-art MCS approxima-

tion in terms of both classification accuracy and computation time. We also

present an iterative algorithm for creating matching-graphs, which demon-

strates the potential for detecting novel and relevant substructures in sets of

graphs. This is the first time that a graph matching algorithm is employed

for this specific task.

Several rewarding avenues for future work include evaluating different

graph edit distance approximations for producing other matching-graphs

and thus potentially more relevant substructures or better MCS approx-

imations. Additionally, future work should involve adapting the process

of creating matching-graphs to better fit the MCS problem and exploring

the applicability of our novel approximation in the case of graphs with la-

beled edges. Furthermore, we plan to compare our method with well-known

graph mining algorithms, and integrate the improved matching-graphs into

a classification scheme, such as a distance-based classifier or a subgraph-

kernel.
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With matching-graphs in hand,
augmentation takes a stand.
From small data sets to
ensemble delight, it’s a
graphically enhancing sight.

ChatGPT

6.1 Introduction

In 1985, Robert Mercer made his famous comment “There is no data like

more data” [205] – Some researchers even go one step further by argu-

ing that having more data is more important than developing better algo-

rithms [206]. At least one can agree that labeled training data is one of the

most pivotal prerequisites for the development and evaluation of supervised

pattern recognition and machine learning algorithms. This is particularly

true for deep learning methods [207, 208], which typically perform better

the more examples of a given phenomenon a network is exposed to.

However, in real-world applications, we often face the limitation of avail-

able training data for various reasons. Some of these reasons include data

scarcity or access restrictions, such as in domains with rare diseases or

events, where occurrences of phenomena of interest are naturally rare, mak-

ing it difficult to collect enough training data [209–211], or in domains such

as the defence sector, where data access is restricted for security reasons.

Another factor is the cost of data collection, as acquiring a large amount of

high quality labeled data can be expensive, time consuming and resource

intensive [212–214]. Data privacy and security concerns also come into play,

97
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with privacy regulations such as GDPR1 potentially limiting the amount

of data available for training, especially when dealing with sensitive in-

formation such as medical records or personally identifiable information.

Finally, imbalanced data presents another challenge, as real-world data is

often imbalanced with some classes having far fewer instances than others.

This results in a limited amount of training data for minority classes, and

leads to poor performance on those classes when using standard machine

learning algorithms [215–217].

Data augmentation techniques are a significant help with this prob-

lem. These techniques increase the amount of data by adding modified

copies of the already existing entities to the training set. In the fields of

computer vision [218–222] and natural language processing [223–227], for

instance, data augmentation is widely used. However, the vast majority

of these augmentation algorithms are mainly suitable for statistical data

(e.g. feature vectors). Due to the structural nature of graphs, there are

comparatively few approaches to graph augmentation.

Main contribution of the present chapter is that we introduce and re-

search a novel and systematic way of increasing the amount of training data

in graph-based pattern recognition scenarios. The basic idea is to compute

matching-graphs for any pair of training graphs available. By additionally

slightly randomizing the whole process of creating the matching-graphs,

the amount of training data can hereby be increased to virtually any size.

This allows for the creation of more diverse matching-graphs that extend

beyond being mere subgraphs of the original graphs. Our first hypothesis

is that this novel method provides a natural way to create realistic and rel-

evant graphs that are actually useful during training of pattern recognition

algorithms.

The proposed process of creating matching-graphs in order to enlarge

training sets is similar in spirit to existing graph augmentation approaches.

However most of these approaches augment the graphs by altering edge

information only [228–231]. Moreover, these approaches often rely on a

single sample of a graph. In our approach, however, we generate new

graphs based on the information captured in the edit path resulting from

matching pairs of graphs. The graphs generated this way include both

edge and node modifications. In [232], an adaptation of the Mixup algo-

rithm [233] for graphs is proposed, which is quite similar to our method.

In addition, there are several neural network based approaches that are

1https://gdpr.eu/
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somewhat similar to our proposal but do not have the main goal of im-

proving graph classification. Several approaches attempt, for instance, to

leverage the power of Variational Auto-Encoders (VAEs) [234] for graph

generation [235–237]. Last but not least, the success of Generative Adver-

sarial Networks (GANs) [238] for image generation led to an adaptation for

graph generation as well [239–241].

It is clear that data augmentation plays a crucial role in improving

the performance of classification systems (especially for methodologies like

Graph Neural Networks (GNNs) [17], which are highly dependent on the

availability of data) by expanding and diversifying the available training

data. Ensemble learning [242–244] is another methodology which poten-

tially profits from data augmentation. Ensemble classifiers consist of mul-

tiple base classifiers, each trained on a different subset of the training data

or using different learning algorithms. By combining the predictions of

these individual classifiers, ensemble methods can often achieve better per-

formance than any single classifier alone. A key factor in the success of

ensemble classifiers is the diversity of the individual models, which can be

achieved through data augmentation [245].

Therefore, our second hypothesis is that the large amount of possi-

ble matching-graphs in conjunction with an ensemble ensures the diversity

of the individual classifiers and finally allows to build a robust ensemble.

When a large and diverse data set is available, ensemble classifiers can take

full advantage of data augmentation techniques to create multiple, as dis-

tinct as possible, subsets of the training data. These subsets can then be

used to train individual base classifiers, ensuring that each model learns

from a unique perspective of the data. This diversity in the training data

helps to reduce overfitting and improve generalization, as the ensemble clas-

sifier effectively captures a more comprehensive view of the underlying data

distribution. Note that the present chapter is based on three preliminary

papers [40–42].

The remainder of the chapter is organized as follows. In Section 6.2,

some necessary definitions and concepts are provided. Next, in Section 6.3,

we introduce a novel adapted version of the matching-graph, that is based

on only a partial edit path. We also show how we can use them to augment

a given training set. In Section 6.4 we conduct an exhaustive experimental

evaluation to provide empirical evidence that our approach of generating

additional training samples is able to improve the classification accuracy

of existing classification systems. In Section 6.5 we explore how our novel

augmentation method can be applied to the generation of robust and diverse
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ensembles. Finally in Section 6.6, we conclude the chapter and discuss some

ideas for future work.

6.2 Basic Definitions

In this section, we provide some basic definitions and explanations of con-

cepts used in this chapter, namely Graph Neural Networks (GNNs) [17].

GNNs provide a framework to use deep learning on graph structured

data. The general goal of GNNs is to learn a vector hv or hg to represent

each node v ∈ V of a given graph or the complete graph g, respectively.

That is, we obtain an embedding of either single nodes or complete graphs in

a vector space. Based on this embedding, the individual nodes or the entire

graph can then be classified. In our work, we focus on graph classification

only.

In order to learn the graph embedding, we first need to learn the em-

bedding of each node. In order to achieve this goal, GNNs usually follow

a neighborhood aggregation strategy. That is, GNNs use a form of neural

message passing in which messages are exchanged between the nodes of a

graph [246]. The general idea is to iteratively update the representation

of a node by aggregating the representation of its neighbors. During the

i-th message-passing iteration, a hidden embedding h
(i)
v that corresponds

to each node v ∈ V is updated according to the aggregated information

from its neighborhood. Formally, this can be achieved by two differentiable

functions.

• m
(i)
N (v) = AGGREGATE(i)({h(i)

u : u ∈ N (v)}
• h

(i+1)
v = UPDATE(i)(h

(i)
v ,m

(i)
N (v))

where m
(i)
N (v) is the ”message” that is aggregated from the neighborhood

N (v) of node v, and N (v) refers to the set of nodes adjacent to v. The

feature vector representation of node v at the i-th iteration is h
(i)
v , and the

initial representation h
(0)
v is set to the vector µ(v) containing the original

labels of v.

After N iterations of the message passing mechanism, this process pro-

duces node embeddings h
(N)
v for each node v ∈ V . To get the embedding

hg for the complete graph, so-called graph pooling is necessary. Graph

pooling combines the individual local node embeddings to one global em-

bedding. That is, the pooling function maps the set of n node embeddings

{h(N)
v1 , . . . , h

(N)
vn } to the graph embedding hg. The pooling function can sim-
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ply be a sum (or mean) of the node embeddings, or a more sophisticated

function [247].

In the present chapter, we employ three different GNN architectures

that are all based on the above mentioned concepts. The first architecture,

denoted as GCN from now on, contains three Graph Convolutional Lay-

ers [31]. A GCN layer takes the node feature matrix and the adjacency

matrix as inputs and performs a localized convolution-like operation on the

graph. A graph convolutional layer computes the new feature representa-

tion for each node by aggregating the features of its neighbors, typically

using a weighted sum. The aggregation is followed by a transformation

using a learnable weight matrix and an activation function. The second

system is the Graph Isomorphism Network, denoted as GIN, introduced

by Xu et al. [33]. GIN is a graph neural network architecture inspired by

the Weisfeiler-Lehman graph isomorphism test [13], and is designed to cap-

ture graph structure more effectively than other GNN models. GIN layers

aggregate neighbor features using a sum-based aggregation function, with

an additional learnable ”epsilon” parameter controlling the importance of

a node’s own features. The third architecture is the GraphSAGE network

introduced by Hamilton et al. [248]. GraphSAGE is an inductive learning

method for graph-structured data, capable of generating embeddings for

previously unseen nodes or subgraphs.

All three algorithms are implemented using Pytorch Geometric and for

GIN and GraphSAGE we use the implementations of [249]2. For the final

graph classification, we add a dropout layer to all three architectures and

feed the graph embedding into a fully connected layer.

6.3 Augment Training Sets by Means of Matching-Graphs

Major contribution of the present chapter is that we propose an approach

to increase the size of a given training set. The motivation for this increase

comes from the fact that with more and diverse training data, one can

usually train more robust classifiers. The proposed method for training set

augmentation is based on matching-graphs.

Matching-graphs are built by extracting information on the matching of

pairs of graphs and by formalizing and encoding this information in a data

structure. Matching-graphs can be interpreted as denoised core structures

of the underlying graphs. The idea of matching-graphs initially emerged

2https://github.com/diningphil/gnn-comparison
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in [35] where they are employed for improving the overall quality of graph

edit distance. The matching-graphs used in this chapter are adapted for

graph set augmentation and are created in a slightly different way as orig-

inally proposed. The concept of matching-graphs is thoroughly explained

in Chapter 4. This chapter extends and adapts the initial concept of a

matching-graph for the purpose of graph augmentation.

Formally, we assume k sets of training graphs Gω1 , . . . , Gωk
stemming

from k different classes ω1, . . . , ωk. For all pairs of graphs stemming from

the same class ωl, the graph edit distance is computed by means of al-

gorithm BP [85]. Hence, we obtain a (sub-optimal) edit path λ(g, g′) =

{e1, . . . , es} for each pair of graphs g = (V,E) and g′ = (V ′, E′) ∈ Gωl
×Gωl

.

Each edit operation ei ∈ λ(g, g′) can either be a substitution, a deletion or

an insertion of a node including the corresponding edge edit operation.

Based on the edit path λ(g, g′) two matching-graphs mg×g′ and mg′×g

can now be built (one based on the source graph g and one based on the

target graph g′). In order to create both mg×g′ and mg′×g, we initially

define mg×g′ = g and mg′×g = g′. Then, we select a certain percentage

p1 ∈ [0, 1]3 of all s edit operations available in λ(g, g′). Hence, we obtain

a partial edit path τ(g, g′) = {e1, . . . , et} ⊆ λ(g, g′) with t = ⌊p1 · s⌋ edit

operations only. Next, each edit operation ei ∈ τ(g, g′) is applied on graphs

mg×g′ or mg′×g according to the following rules.

Case 1. If ei refers to a substitution (v → v′), it is applied on both graphs

mg×g′ and mg′×g. More precisely, the labels of the matching nodes

v ∈ V and v′ ∈ V ′, are exchanged in both mg×g′ and mg′×g. Note

that this operation shows no effect when the two labels of the involved

nodes are identical.

Case 2. If ei refers to a deletion (v → ε), ei is applied on mg×g′ only, meaning

that v ∈ V is deleted in mg×g′ .

Case 3. If ei refers to an insertion (ε → v′), ei is applied on mg′×g only. This

means that the node v′ ∈ V ′ that is inserted according to the edit

operation, is deleted in mg′×g instead.

The rationale for the third rule is as follows. When inserting a node v′ ∈
V ′, it is not necessarily clear how v′ should be connected to the remaining

parts of the current graph (since it is possible that not all necessary edit

operations have been carried out or have not been selected at all). By

3We use here the expression p1 (with subscript 1), because later in the paper we will

introduce a second probability p2.
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deleting the node v′ ∈ V ′ in mg′×g rather than inserting it in in mg×g′ we

can avoid this problem quite easily.

Both matching-graphs represent intermediate graphs between the two

underlying training graphs. If p1 is set to 1.0, all edit operations from the

complete edit path λ(g, g′) are considered during the matching-graph cre-

ation. Note, however, that according to our rules, deletions and insertions

are uniquely applied on the source or the target graph, respectively. Hence,

in this particular parameter setting we obtain two matching-graphs that

are subgraphs from the original graphs. With parameter values p1 < 1.0,

however, we obtain matching-graphs in which possibly some of the nodes

are either deleted from g or g′ and some other nodes are potentially altered

according to their labeling (due to the applied substitutions).

Note that one can extract several partial edit paths τ(g, g′) from one

edit path λ(g, g′) using different values of p1. This in turn results in several

matching-graphs based on the same edit path. In theory, one can create as

many matching-graphs as edit operations are available in λ(g, g′).
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Fig. 6.1: An example of a complete edit path λ, a partial edit path τ , and

the resulting matching-graphs mg×g′ and mg′×g.

Example 6.1. Figure 6.1 shows a visual example of the graph edit distance

between two graphs g and g′ and two possible resulting matching-graphs

mg×g′ and mg′×g. The corresponding edit path is λ = {(0 → a), (1 →
ε), (ε → b), (2 → c), (3 → ε), (4 → d)}. The possible matching-graphs

mg×g′ and mg′×g, are created with p1 = 0.5, resulting in the partial edit
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path τ(g, g′) = {(0 → a), (1 → ε), (ε → b)}, that consists of t = 3 edit

operations. In this example it is clearly visible, that neither mg×g′ nor

mg′×g is a subgraph of g or g′, respectively.

Note that the proposed process can lead to isolated nodes (as observed,

for example, in the second last graph in Figure 6.1). Based on the reasoning

that we want to create graphs with nodes that are actually connected, we

remove disconnected nodes from the matching-graphs whenever they occur.

Based on the process of creating two matching-graphs for pairs of

graphs, we can now define an algorithm to augment a given training set with

additional graphs. Algorithm 5 takes k sets of training graphs Gω1 , . . . , Gωk

stemming from k different classes ω1, . . . , ωk as input. The two for loops

accomplish the following. For all pairs of graphs g, g′ stemming from the

same class ωi, two matching-graphs mg×g′ and mg′×g are built and added

to the corresponding set of graphs (labeled with Gωi
). Assuming n train-

ing graphs per class Gωi this results in k · n(n − 1) matching-graphs in

total, which are directly used to augment the corresponding training sets

Gω1 , . . . , Gωk
.

In Algorithm 5, the probability p1 ∈ [0, 1] used for the creation of the

matching-graphs (see Line 5), is redefined for each iteration. This can be

achieved, for example, by choosing p1 randomly in each iteration. However,

the probability p1 can also be set to a fixed value for all iterations. In

addition to this, inside the second for loop, just before the definition of

p1, a further for loop could be defined, such that even more than one

matching-graph could be created for each pair of graphs.

Algorithm 5: Graph Augmentation Algorithm
input : sets of graphs from k different classes G = {Gω1

, . . . , Gωk
}

output: same sets augmented by matching-graphs

1 foreach set Gωi
∈ G do

2 M = {}
3 foreach pair of graphs g, g′ ∈ Gωi

× Gωi
do

4 Compute λ(g, g′) = {e1, . . . , es}
5 Define p1 in [0, 1]
6 Define τ by selecting ⌊p1 · s⌋ edit operations from λ
7 Build both matching-graphs mg×g′ and mg′×g according to τ

8 M = M ∪ {mg×g′ ,mg′×g}
9 end

10 Gωi
= Gωi

∪ M

11 end
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6.4 Experimental Evaluation: Augmenting Training Sets

The overall aim of the following experimental evaluation is to answer the

question, whether or not matching-graphs can be beneficially employed as a

technique for automatically augmenting training sets of graphs. To this end,

we perform two separate experimental evaluations. First, in Section 6.4.1,

we use the proposed technique to augment very small training sets of graphs

and verify whether this helps to substantially increase the accuracy of a

classification algorithm. Second, in Section 6.4.2, we research whether or

not matching-graphs can be used to make the training of graph neural

networks more robust.

6.4.1 Augment Small Training Sets

For the first experiment (as described in [40]), we artificially decrease the

size of all data sets. This is achieved by randomly selecting 10 training

graphs per class for each data set. In order to avoid overly simple or very

difficult data sets (that might be created by random chance), we repeat the

random process of creating small data sets 20 times. The same accounts

for training set augmentation by means of our matching-graphs which is

also repeated 20 times.

As basic classification system a Support Vector Machine (SVM) that

exclusively operates on a similarity kernel κ(g, g′) = −dBP(g, g
′) is used [62].

Note that any other data-driven classifier could be used in our evaluation

as well. However, we feel that the SVM is particularly suitable for our

evaluation because of its pure and direct use of the underlying distance

information.

The primary reference system is trained on the reduced training data,

denoted as SVMR(−dBP). Our novel approach, denoted as SVMR+(−dBP)

is trained on the same training samples of the reduced sets but uses also

the created matching-graphs. For the sake of completeness we also compare

our novel framework with a secondary reference system, viz. an SVM that

has access to the full training sets of graphs (before the artificial reduction

is carried out), denoted as SVMF (−dBP).

The evaluation is performed on four data sets (namely Mutagenicity,

NCI1, COX-2 and PTC(MR)) as described in Chapter 3.

6.4.1.1 Validation of Metaparameters

In Table 6.1 an overview of all parameters that are optimized is presented.

For algorithm BP, that approximates the graph edit distance, the cost for
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Table 6.1: Description of all parameters and the evaluated values.

Parameter Description Evaluated Values

β Scales node and edge costs for graph edit distance {0.05, 0.10, . . . , 0.95}

p1 Relative amount of edit operations selected λ {0.25, 0.50, 0.75, 1.0}

C Weighting parameter of the SVM

{10−4, 5 · 10−4, 10−3,

5 · 10−3, 10−2, 5 · 10−2,

10−1, 5 · 10−1, 100,

101, 102}

node and edge deletions, as well as a weighting parameter β ∈ [0, 1] that

is used to trade-off the relative importance of node and edge edit costs are

often optimized [85, 182]. However, for the sake of simplicity we employ

unit cost of 1.0 for deletions and insertions of both nodes and edges and

optimize the weighting parameter β only (on all data sets).

For the creation of the matching-graphs – actually also dependant on

the cost model – the same weighting parameter is independently optimized.

Additionally, we optimize the probability p1 (Algorithm 5, Line 5) of the

edit path operations that are used for the matching-graph creation (the

optimal value p1 is then fixed for all iterations of the loop on Line 3 in

Algorithm 5). For the SVM classifier itself, parameter C is optimized to

trade off between the size of the margin and the number of misclassified

training examples.

6.4.1.2 Test Results and Discussion

In Figure 6.2 we show the reference accuracies of SVMR(−dBP) as well as

the accuracies of the proposed system SVMR+(−dBP) as bar charts for all

20 random iterations on all four data sets. The iterations are ordered from

the worst to the best performing reference accuracy.

On the NCI1 and COX-2 data sets we observe that the SVM that relies

on the matching-graphs performs better than, or at least equal as, the

reference systems in all iterations. On the other two data sets Mutagenicity

and PTC(MR) our system outperforms the reference system in 19 out of

20 iterations. In general, we report substantial improvements over the

respective baselines for almost all iterations and data sets.

There is a tendency that the improvement is particularly large in iter-

ations where the reference system performs poorly (most likely due to an
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unfortunate random selection of training samples which in turn might lead

to overfitting). This is visible on all the data sets, but it is particularly

well observable on the COX-2 and PTC(MR) data sets. For example on

the COX-2 data set, we outperform the reference system by about 30 per-

centage points during the first two iterations (from 47.3% to 77.4% and

from 51.6% to 82.8%, respectively). On PTC(MR) we see a similar pat-

tern for the first three iterations, where our system increases the accuracy

with about 20 percentage points (from 41.4% to 62.8%, from 41.4% to 60%

and from 47.1% to 70%). This emphasizes the usefulness of the systematic

augmentation by means of matching-graphs, especially when small sets of

rather poor training samples are available only.
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Fig. 6.2: Classification accuracies of all 20 iterations of the reference sys-

tem (bright bars) compared to our novel system that additionally uses the

matching-graphs for training (dark bars).

In Table 6.2 we compare the classification accuracy of our novel system

with both reference systems in tabular form. To this end, we aggregate

the results of the 20 iterations and show the mean classification accuracies
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Table 6.2: Classification accuracies of two reference systems (SVMR(−dBP)

and SVMF (−dBP)) and our novel system SVMR+(−dBP). Symbols x /

y indicate a statistically significant improvement and x / y indicate

a statistically significant deterioration in x, y of the 20 iterations when

compared with the first and second reference system, respectively (using a

Z-test at significance level α = 0.05).

Reference Systems Ours

Data Set SVMR(−dBP) SVMF (−dBP) SVMR+(−dBP)

Mutagenicity 61.8 ± 3.5 69.1 64.3 ± 2.4 13 / 19

NCI1 62.0 ± 3.8 68.6 64.5 ± 2.4 8 / 17

COX-2 65.2 ± 7.8 71.3 75.6 ± 4.3 11 / 3

PTC(MR) 53.1 ± 6.3 54.3 64.6 ± 3.4 8 / 5

(including the standard deviation). We observe that the mean classification

accuracy of our approach is better than the first reference system on all data

sets. On NCI1 our system outperforms the reference system in all iterations

(as seen in Figure 6.2). Eight of the 20 improvements are statistically

significant4. Eight out of 19, 11 out of 20, and 13 out of 19 improvements

are statistically significant on the other data sets, respectively.

On Mutagenicity and NCI1 the novel system does not reach the clas-

sification accuracy of the second reference system SVMF (−dBP) that has

access to the full training data. Most of the deteriorations are statistically

significant. However, we have to keep in mind that it was not our main goal

to improve a classifier that has access to the original training set, but to

show that our approach is able to substantially improve a system that has

access to a small data set only. From this point of view, it is remarkable

that for the other two data sets, our novel approach outperforms the sec-

ond reference system on average. We observe a substantial improvement of

about 5 and 10 percentage points on COX-2 and PTC(MR), respectively.

In Table 6.2 it is also visible that the novel system becomes more robust,

as the standard deviation is smaller for each data set for SVMR+(−dBP)

compared to SVMR(−dBP).

4The statistical significance is computed via Z-test using a significance level of α = 0.05.
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6.4.2 Graph Augmentation for Neural Networks

The overall aim of the next experimental evaluation (as initially described

in [41]) is to verify whether augmented sets help to make neural network

based classifiers more robust. In order to answer this question, we evalu-

ate the three GNN architectures, described in Section 6.2, with and with-

out data augmentation. That is, the reference models are trained on the

full original training sets (denoted by GCNF , GINF , and GraphSAGEF ),

whereas our novel models are trained with matching-graphs added to the

training sets (denoted as GCNF+, GINF+, and GraphSAGEF+).

In order to counteract uncontrolled randomness of neural network ini-

tializations, each experiment is repeated five times and the average accuracy

is finally reported (we use the same seeds for both the reference approach

and the augmented approach).

The evaluation is performed on six data sets (namely Mutagenicity,

NCI1, COX-2, PTC(MR), Cuneiform and Synthie) as described in Chap-

ter 3.

6.4.2.1 Validation of Metaparameters

For each iteration of the experiment, the corresponding data set is split

into a random training, validation, and test set, with a 3:1:1 split. As we

primarily aim at comparing three different network architectures, once with

the default training set and once with an augmented training set, we do not

separately tune the hyper parameters. Instead, we use the parametrization

proposed in [249]. The optimizer used is Adam with a learning rate of

0.001, and we use the Cross Entropy as loss function for all three models.

All Models are trained for 200 epochs (except for Mutagenicity and

NCI1, where we train for 50 epochs only, due to computational limitations

arising from the large number of graphs in these data sets). The models that

perform the best on the validation sets are finally applied to the test sets.

In this experiment, for each matching-graph that is created, the probability

p1 (Algorithm 5, Line 5) is randomly chosen in the interval [0.1, 0.9].

6.4.2.2 Test Results and Discussion

In Table 6.3 we compare the mean classification accuracies of the three ref-

erence models with the augmented models using matching-graphs (obtained

in five iterations).

Overall we observe that the augmentation process generally works well
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Table 6.3: Classification accuracies of three models (GCNF , GINF and

GraphSAGEF ), compared to the same three models with augmented train-

ing sets (GCNF+, GINF+ and GraphSAGEF+). Symbols x or x in-

dicate a statistically significant improvement or deterioration in x of the

five iterations when compared with the respective reference system (using

a Z-test at significance level α = 0.05).

Data Set GCNF GCNF+ GINF GINF+ GraphSAGEF GraphSAGEF+

Mutagenicity 79.1 ± 0.7 81.7 ± 1.1 3 80.2 ± 0.9 81.2 ± 0.3 1 77.6 ± 1.1 77.6 ± 0.7 2

NCI1 68.1 ± 1.8 71.8 ± 0.7 5 74.0 ± 1.7 76.3 ± 0.8 3 72.8 ± 0.4 73.1 ± 1.4 1

COX-2 68.1 ± 4.0 70.9 ± 4.0 1 73.4 ± 6.0 69.8 ± 1.2 2 68.8 ± 3.0 74.3 ± 3.0 3

PTC(MR) 58.9 ± 7.1 64.0 ± 2.6 1 62.0 ± 6.4 65.1 ± 1.6 1 64.7 ± 4.5 62.0 ± 5.5 x

Cuneiform 62.7 ± 3.4 85.6 ± 1.3 5 74.0 ± 4.1 82.9 ± 2.3 4 49.3 ± 6.4 69.3 ± 5.3 5

Synthie 73.9 ± 5.3 99.8 ± 0.5 5 75.1 ± 6.1 95.9± 1.9 5 48.0 ± 6.9 68.3 ± 2.3 5

for all three GNN architectures. Using the simple GNN, the augmented ap-

proach outperforms the corresponding reference system on all data sets and

all iterations. In total 20 out of the 30 improvements are statistically sig-

nificant5. On the two data sets Cuneiform and Synthie, the improvements

observed are quite impressive, with an increase of ≈23 and ≈26 percent-

age points, respectively. Using the augmented training sets in conjunction

with the GINF model, we obtain a higher mean accuracy compared to the

reference system on five out of six data sets.

In total the augmented model GINF+ statistically significantly out-

performs the reference system GINF in 14 out of 30 iterations. Using

GraphSAGEF trained on the augmented sets, we outperform the reference

system on five out of six data sets according to the mean accuracy. While

on the Mutagenicity and PTC(MR) data sets no statistically significant im-

provement can be observed, for Cuneiform and Synthie our fitted models

work particularly well, with 5 statistically significant improvements. Fi-

nally, it can also be seen that the standard deviation of the accuracies for

each data set is almost always smaller for the augmented approach. Hence,

we can conclude that our system becomes in general more robust and stable

when compared with the reference system.

In Figure 6.3 we show – as an example on the Cuneiform data set – the

reference accuracies as well as the accuracies of our approach as bar charts

for all five iterations (in light and dark gray, respectively). The iterations

5The statistical significance is computed via Z-test using a significance level of α = 0.05.
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are ordered from the worst to the best performing reference accuracy. We

can clearly see that our approach outperforms the reference systems for all

iterations on all models.
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Fig. 6.3: Classification accuracies of the five iterations on the Cuneiform

data set using three different models (light bars) compared to our system

that is based on the same models, but augments the training set with

matching-graphs (dark bars).

Regarding the results in Table 6.3, we also observe that the standard

deviation of the accuracies is almost always smaller for the augmented ap-

proach (on all data sets). Hence, we can conclude that our system becomes

in general more robust and stable when compared with the reference sys-

tem.

Overall, we observe that the augmentation leads to the least improve-

ments on the GINF model, followed by GraphSAGEF and finally GCNF

with the largest improvements. The differences of the accuracies on the

GCNF model is the most striking, suggesting that the augmentation ap-

proach with matching-graphs helps to bridge the gap when no sophisticated

network architecture is available or applicable.

6.5 Building an Ensemble with Matching-Graphs

After providing evidence of the graph augmentation capabilities of the

matching-graphs in the previous section, we now explore the use of

matching-graphs to create an ensemble classifier. Ensemble methods aim

at combining several individual classifiers into one system. That is, an en-

semble weighs the opinions of its individual members and combines their

results to get the final decision [245]. Various ensemble methods have been

proposed in the literature (e.g. Boosting [250] or Bagging [251]).

In the present Section, we propose to use matching-graphs in order to
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build a bagging ensemble for graph classification. Thereby, the ensemble

consists of multiple GNN classifiers that are trained on random subsets

of the training data. The main contribution is to substantially increase

the diversity of the bagging ensemble by means of matching-graphs. It is

accepted that ensemble learning methods perform the best when a large

diversity of the individual classifiers is given [245].

To this end, we propose to further optimize the augmentation method

presented in Section 6.3 to generate even more diverse matching-graphs.

These novel matching-graphs provide a natural way to create realistic, di-

verse and relevant graphs of a specific class. It is our main hypothesis that

the large amount of possible matching-graphs in conjunction with a bag-

ging procedure ensures the diversity of the individual classifiers and finally

allows to build a robust ensemble.

First, in Section 6.5.1, we propose a novel version of the matching-graph

that allows for even more diverse graphs, by allowing for the insertion of

additional nodes. Second, in Section 6.5.2, we explain the process of using

the matching-graphs in order to build a bagging ensemble. Finally, in

Section 6.5.3, we research whether or not these improved matching-graphs

can be used to build a robust and diverse bagging ensemble.

6.5.1 Matching-Graphs for Ensemble Learning

In Section 6.3, we proposed an adapted version of a matching-graph that

represents a mixed version of both original graphs, without being just a sub-

graph. However, this definition is still not optimal for the present purposes,

since the resulting matching-graphs are always smaller than, or equal to,

the original graphs. Hence, we now propose a further altered definition for

matching-graphs more suited for the present context of increasing ensemble

diversity.

Given a pair of graphs g = (V,E, µ, ν) and g′ = (V ′, E′, µ′, ν′) we

follow the process described in Section 6.3 to build two matching-graphs

mg×g′ and mg′×g based on the partial edit path τ(g, g′) = {e(1), . . . , e(t)} ⊆
λ(g, g′) with t = ⌊p1 · s⌋ edit operations, where t < s is the amount of ran-

domly selected edit operations from λ(g, g′) based on a certain probability

p1 ∈ [0, 1]. Next, each edit operation ei ∈ τ(g, g′) is applied on graphs

mg×g′ and mg′×g according to the following three rules.

Case 1. ei is a substitution (v → v′): The labels of the matching nodes v ∈
V and v′ ∈ V ′ are exchanged in both mg×g′ and mg′×g. Note that
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this operation shows no effect, if the labels of the involved nodes are

identical (i.e. µ(v) = µ′(v′)).

Case 2. ei is a deletion (v → ε): Node v ∈ V

– is deleted in mg×g′ .

– is inserted in mg′×g.

As we only execute parts of the edit path, it is possible that the

adjacent nodes of v are not yet processed, which means that we do

not know the edge structure of v inmg′×g. In this case, we perform

a look-ahead to include edges from v to the corresponding nodes

in mg′×g. Formally, for all node substitutions (u → v′) ∈ λ(g, g′),

where node u ∈ V is adjacent to node v ∈ V , we insert an edge

between the inserted node v and node v′ in mg′×g.

Case 3. ei is an insertion (ε → v′): Node v′ ∈ V ′

– is deleted in mg′×g.

– is inserted in mg×g′ (using a similar look-ahead technique as de-

fined for Case 2).

The basic rationale to apply these rules is that we aim at creating

matching-graphs that are indeed related to the underlying graphs, but also

substantially differ to them in significant ways. This is achieved by allow-

ing both insertions of nodes and swapping of node labels. Note here the

difference to the initial rules described in Section 6.3 where no insertions

are allowed.

Clearly, if p1 is set to 1.0, τ(g, g′) is equal to λ(g, g′), and thus all edit

operations from the complete edit path are executed during the matching-

graph creation. In this case, mg′×g would be equal to the source graph g

and mg×g′ would be equal to the target graph g′. For probabilities p1 < 1,

however, we obtain matching-graphs that are more diverse and particularly

different from simple subgraphs (due to relabelled nodes and potential in-

sertions). That is, when all edit operations of τ(g, g′) are applied, both

matching-graphs represent somehow intermediate graphs between g and g′.

Example 6.2. Figure 6.4 shows a visual example of an edit path λ(g, g′)

between two graphs g and g′ and two possible resulting matching-graphs

mg×g′ and mg′×g. Both matching-graphs are created with the partial edit

path that consists of t = 3 edit operations. In this example, it is clearly

visible that neither mg×g′ nor mg′×g is a subgraph of g or g′, respectively.

Furthermore, the effects of the look-ahead technique is visible. More specif-

ically, between the inserted node b ∈ V ′ and node 3 ∈ V an edge is inserted,
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even though the substitution (3 → c) is not yet carried out.

Note that the proposed process can still lead to isolated nodes (despite

look-ahead technique), that are deleted in the final matching-graph.
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Fig. 6.4: An example of a complete edit path λ(g, g′), a partial edit path

τ , and the resulting matching-graphs mg×g′ and mg′×g.

6.5.2 Building a Bagging Ensemble Using Matching-

Graphs

Using the process of creating matching-graphs for any pair of graphs, we

can augment a given training set with virtually any number of additional

graphs. In order to do this, we conduct the basic steps formalized in Algo-

rithm 5. The algorithm takes k sets of training graphs Gω1
, . . . , Gωk

stem-

ming from k different classes ω1, . . . , ωk, and builds two matching-graphs

mg×g′ and mg′×g for each possible graph pair g, g′ ∈ Gωi
×Gωi

. Note that

for this version of the matching-graph, the probability p1 ∈ [0.1, 0.9] used

for the creation of the matching-graphs is randomly defined for each pair

of graphs g, g′ (Algorithm 5, Line 5). Assuming n training graphs per class

ωi this algorithm results in n(n − 1) matching-graphs, which are directly

used to augment the corresponding training set Gωi
. Hence, rather than n

graphs, we now have access to n(n− 1) + n = n2 graphs per class ωi.

Based on the augmented sets, a bagging ensemble E = {c1, . . . , cm} with
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m classifiers can now be built. Each classifier ci ∈ E is trained only on a

subset of all training graphs. To this end, each classifier ci of the ensemble E
is trained on ⌊p2×n2⌋ randomly selected graphs from Gωi , where p2 ∈ [0, 1]

is a predefined probability and n2 is the number of graphs available in Gωi

(i.e., we assume that Gωi is augmented to size |Gωi | = n2).

As base classifiers ci ∈ E , we use GNNs, which are – due to their inherent

randomness – viable ensemble members. For this experiment we employ a

model based on the GCN architecture [31], as described in Section 6.2. The

individual model trained on the full training set is denoted as GCN F . For

the final graph classification, we add a dropout layer and feed the graph

embedding into a fully connected layer. The outputs of the individual

classifiers are then aggregated into one single decision by means of majority

voting.

6.5.3 Experimental evaluation

This experimental evaluation is conducted on five data sets (namely NCI1,

COX-2, PTC(MR), Cuneiform and Synthie) described in Chapter 3. Each

data set is split into a training and test set according to a 4:1 split.

The novel ensemble (denoted as GCN-e+) uses the augmented training

set and is built as described in Section 6.5.2. We set p2 to 0.3 and we limit

the amount of selected graphs to 100′000 per class. For each ensemble we

create 100 classifiers, which are trained for 200 epochs (except for the NCI1

data set, where we build 50 classifiers, trained for 50 epochs only, due to

computational problems arising from the large number of graphs in this

data set).

For all base classifiers (viz. GCNs) we use the Adam optimizer with an

initial learning rate of 0.01, together with a CosineAnnealingLR scheduler.

Furthermore, we use the Cross Entropy loss function. The batch size is

set to 64. For the implementation of the ensemble we use the ensemble-

pytorch library6 which we adapted to seamlessly work with PyTorch Geo-

metric [252]7.

Figure 6.5 shows by means of box-plots the training accuracies of all

individual classifiers available in the ensembles for all data sets. The dia-

monds above and below the boxes mark the 10% best and worst classifiers

w.r.t. the accuracy. The training accuracy of the final ensemble is marked

with a red cross. We observe that the diversity of the classifiers is the

6https://ensemble-pytorch.readthedocs.io
7https://pytorch-geometric.readthedocs.io
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Fig. 6.5: Training accuracies of all individual classifiers of the ensemble for

all data sets shown with a box-plot. The training accuracy of the ensemble

is marked with a red cross.

largest for NCI1, PTC(MR), and Cuneiform. It is also clearly visible that

for all data sets the training accuracy of the complete ensemble is better

than the accuracy of the best individual member. This is already a clear

indication for the usefulness of the defined ensemble.

6.5.3.1 Reference Systems

The overall aim of the present experimental evaluation is to answer the

question, whether or not matching-graphs can be beneficially employed to

build robust classifier ensembles. In order to answer this research question,

we use three reference systems for comparisons with our novel approach

GCN-e+.

• Reference system 1 (denoted by GCNF ): This reference system is

trained on the full training set to obtain a baseline for the classification

accuracy. In order to counteract uncontrolled randomness during ini-

tialization, each experiment that uses this reference system is repeated

five times and the average accuracy is finally reported.

We also perform an ablation study in order to empirically verify that

the superiority of the proposed method is indeed based on the matching-

graphs. To this end, we compare our novel ensemble GCN-e+ with two

additional reference systems.
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• Reference system 2 (denoted by GCN-e): This reference system is vir-

tually the same as our novel ensemble but has only access to the original

training data without matching-graphs.

• Reference system 3 (denoted by SINGL-e+): This reference system

refers to the best individual classifier of the novel augmented ensemble.

A comparison with reference system 2 allows us to better assess whether

the matching-graphs, or the ensemble by itself, is the important element

of the whole process. A comparison with reference system 3 allows us to

assess whether the ensemble outperforms the randomly generated members

of the system – in other words, whether the ensemble actually also makes

a difference.

6.5.3.2 Test Results and Discussion

In Table 6.4 we compare the novel ensemble GCN-e+ with the first reference

system (a single GCN trained on the full training set). Remember that we

run the GCN reference system five times to counteract randomness during

initialization. This is why we report here the mean accuracies (± standard

deviation).

We observe that GCN-e+ outperforms the reference system GCN in 18

out of 25 cases with statistical significance8. On the NCI1 data set, even

though we observe an improvement in all five iterations, only four of them

are statistically significant. On the COX-2 data set we get an improvement

in four out of five iterations (two of them are actually statistically signifi-

cant). On the PTC(MR) data set, we outperform the reference system in

each iteration, however only two of the improvements are statistically signif-

icant. On Cuneiform and Synthie all of the improvements are statistically

significant (10 out of 10 cases).

Next, in Table 6.5 we compare the novel ensemble with the other two

reference systems (for the sake of an ablation study). First, we observe that

the best single classifier of each ensemble (reference system 3) outperforms

the baseline ensemble (reference system 2) on all data sets. This is a clear

indication of the usefulness of the matching-graphs. Even more important,

the proposed ensemble GCN-e+ outperforms the second reference ensemble

GCN-e on all data sets. These improvements are statistically significant on

four out of five data sets. This is a strong indication that the matching-

graphs are the important factor in improving the classification accuracy,

8The statistical significance is computed via Z-test at significance level α = 0.05.
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Table 6.4: Average classification accuracy of reference system 1 (GCNF )

compared to our novel ensemble (GCN-e+). Symbol x indicates a sta-

tistically significant improvement in x out of the five comparisons (using a

Z-test at significance level α = 0.05). Marked in bold is the best accuracy

per data set.

Ref. System 1 Ours

Data set GCNF GCN-e+

NCI1 70.5 ± 1.0 74.0 4

COX-2 70.4 ± 11.1 78.7 2

PTC(MR) 62.3 ± 4.5 68.6 2

Cuneiform 40.3 ± 20.5 96.7 5

Synthie 76.8 ± 7.5 97.5 5

Table 6.5: Classification accuracy of the ensemble without matching-graphs

GCN-e, the individually best classifier SINGL-e+ and our ensemble with

matching-graphs GCN-e+. Symbols ◦/◦ indicate a statistically significant

improvement over the second/third reference system using a Z-test at sig-

nificance level α = 0.05). Marked in bold is the best accuracy per data set.

Ref. System 2 Ref. System 3 Ours

Data set GCN-e SINGL-e+ GCN-e+

NCI1 70.7 74.8 74.0 ◦/-

COX-2 73.4 77.6 78.5 -/-

PTC(MR) 61.4 62.9 68.6 ◦/◦

Cuneiform 68.3 93.3 96.7 ◦/-

Synthie 64.2 93.8 97.5 ◦/-

rather than primarily the ensemble itself. However, when comparing our

ensemble with the third reference system, it is also obvious that the en-

semble still makes an important contribution – only on NCI1 is the best

individual classifier better than the ensemble.

6.6 Conclusion

Access to sufficient training data is important and crucial but unfortunately

not always given – so in real world applications one sometimes has to man-

age with very little labeled data. One possible solution to this problem is

to systematically augment the data sets with artificial training data. The
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process of augmentation is not only interesting in situations where little

training data is available, but particularly for systems that crucially depend

on large training sets (like, for instance, neural network based classifiers).

In case of statistical data representations, quite an amount of methods

is available for the task of data augmentation. Due to the complex nature

of graphs, however, research on graph augmentation lags behind that of

its statistical counterparts. In this work, we focus on augmenting (small)

training sets of graphs. The goal of this augmentation process is to make

graph-based pattern recognition more robust and ultimately improve the

downstream training of classification algorithms. The novelty of the present

approach is that we use so-called matching-graphs for the augmentation

process.

Matching-graphs, which can be pre-computed by means of (sub-optimal)

graph edit distance computations, formalize the matching between two

graphs. Thereby, they actually define a novel graph that encodes an in-

termediate representation of two given graphs. In the present approach, we

systematically produce matching-graphs for each pair of training graphs

and are thus able to substantially increase even very small sets of training

graphs.

In this chapter we evaluate the novel procedure in two specific situa-

tions. First, as described in Section 6.3 and 6.4, we research the effects

of the novel augmentation process. In order to do this, we start with the

evaluation of very small graph sets. By means of an experimental evalu-

ation on artificially reduced graph data sets, we empirically confirm that

our novel approach is able to significantly outperform a classifier that has

access to the small training set only. Moreover, in some particular cases

we can even report that our novel approach is able to outperform a system

that has access to the original set of training graphs. Next, we evaluate

the novel approach of augmenting the training data in an experiment with

three different GNN models. In this scenario, we assume the full data (i.e.,

we do not artificially reduce the training data). This experiment is partic-

ularly interesting because it is known that GNNs can be sensitive to the

size of the training set. We empirically confirm that our novel approach is

able to improve all three GNN architectures in general. The vast majority

of the observed improvements is statistically significant.

In the second scenario, as described in Section 6.5, we focus on building

an ensemble of classifiers via bagging. One of the main problems in building

an ensemble is that large and diverse data sets are needed. We propose to

use the augmentation technique based on matching-graphs in order to build
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a robust and diverse ensemble. By means of an experimental evaluation, we

empirically confirm that our novel approach significantly outperforms three

related reference systems, viz. a single GNN classifier, a bagging ensemble

trained on the original training set, as well as the best individual classifier

stemming from the novel ensemble. Hence, we conclude that matching-

graphs provide a versatile way to generate large sets of additional graphs

in order to build a diverse and robust ensemble.

For future work we see several rewarding avenues that can be pursued.

First, one can explore whether other heuristics can be used in order to make

the matching-graphs even more diverse. Second, it would be interesting to

see if the matching-graphs can be used in conjunction with other GNNs

(e.g. Triplet loss networks or others). Third, the augmentation capabilities

for node classification problems, as well as for regression problems could be

investigated. Furthermore in terms of ensembles, other ensemble modalities

(rather than bagging), as well as other aggregation techniques to combine

the results could be explored (rather than majority voting).
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As conclusion draws near, the
path becomes clear. Through
the journey of graphs, we did
steer, ending this thesis with
cheer.

ChatGPT

Pattern recognition is an important field of research. It can be divided

into statistical and structural pattern recognition. Statistical pattern recog-

nition relies on data that is in the form of feature vectors, while structural

pattern recognition can make use of more versatile representations, such

as graphs, for instance. A graph is a data structure that consists of nodes

that are, in turn, connected by edges. The nodes and edges can contain ad-

ditional characteristics called labels. Compared to feature vectors, graphs

provide a powerful alternative that is able to also capture the structure

of an object, which is actually crucial in diverse applications. This is the

case, for example, when molecular structures or social networks have to be

formally represented.

It is often necessary to compare pairs of graphs in order to recognize

an underlying pattern. This process is commonly referred to as graph

matching. More specifically, graph matching is the process of evaluating

the dissimilarity between two graphs. Traditionally, this is done by finding

a correspondence between similar substructures of the two graphs that are

matched. The matching process usually yields a dissimilarity or similarity

score that indicates the proximity of the two graphs.

Roughly speaking, there are two types of graph matching available.

Namely, exact and inexact graph matching. Exact graph matching algo-

rithms require the graphs being compared to have strict correspondences

121
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between them or their subparts, in order for a matching to be successful.

However, since data in the real world is usually error-prone and far from

perfect, the resulting graphs are often imprecise and contain noise. This

makes exact matching methods infeasible in real-world applications as two

real-world graphs representing the same class of objects cannot be expected

to be completely identical in a large part of their structure.

Inexact (or error-tolerant) graph matching is a versatile alternative to

exact graph matching, as these algorithms are robust to noise and offer an

inherent error tolerance. In recent years, a large number of error-tolerant

graph matching methods have been proposed. Some of these methods are,

however, only applicable to specific types of graphs. Graph edit distance is

one of the most commonly used and well-established inexact graph match-

ing methods available. The main advantage of graph edit distance is its

flexibility, as it is able to process all types of graphs. It follows the idea of

transforming one graph into another, given a set of edit operations. Each

of these operations is assigned a certain cost, and the cheapest possible

way to transform one graph into another is then called the edit distance.

The greater this distance, the more dissimilar the graphs are. Furthermore,

graph edit distance provides more than merely a dissimilarity score, as it

also provides us with a so-called edit path. An edit path contains the set

of edit operations used to transform one graph into another graph.

The edit path provides crucial information about the similarity of two

graphs. The aim of this thesis is to extract and encode this particular infor-

mation to generate a meta-graph, called the matching-graph. This graph

can be used for reasoning about graphs, classifying graphs, and generating

new graphs. The basic procedure of the present thesis is as follows. First,

it computes the graph edit distance between several pairs of graphs. Based

on the resulting matchings, the matching-graphs are generated, formalizing

the stable parts of the underlying graph pairs.

This thesis evaluates the matching-graphs in three different scenarios.

In the first scenario (see Chapter 4), the concept is thoroughly evaluated

for classification using two different strategies. The first strategy is to use

the matching-graphs in a distance-based classifier. In the second strategy,

the matching-graphs are used to build a graph embedding which is then

used for classification. The evaluation is carried out through various exper-

iments on several graph data sets. The results show that the classification

systems based on the matching-graphs significantly outperform the refer-

ence systems and are able to match or outperform several state-of-the-art

classifiers.
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In the second scenario (see Chapter 5), the matching-graphs are evalu-

ated regarding their quality and compared in detail to the maximum com-

mon subgraph. In a qualitative experimental evaluation, we show that the

matching-graphs are able to reveal significant and frequent substructures of

a given class and have a high potential for detecting novel and relevant sub-

structures in sets of graphs. Furthermore, a special version of the matching-

graph is constructed and compared to the maximum common subgraph. It

is shown that this version can be used to efficiently approximate the max-

imum common subgraph. In an experimental evaluation on several graph

data sets we empirically confirm the benefit of this approximation method.

In the last scenario (see Chapter 6), the matching-graphs are used for

the purpose of graph augmentation. This is because in the graph domain

there is often a lack of data. Furthermore, with the advent of graph neural

networks, the availability of large data sets becomes even more important.

To perform the augmentation task, we propose an adapted version of the

matching-graphs, which is able to generate different but still similar graphs,

based on graph pairs. This process is evaluated in three different experi-

ments, where we first apply the method to very small graph data sets. Then

the method is applied to full graph data sets to obtain large and diverse

data sets for use with graph neural networks. Finally, the augmentation

method is used to build a robust bagging classification ensemble. In all

three experiments, we can empirically confirm that the matching-graphs

can indeed be used to augment graph data sets to produce more robust

classifiers.

In order to summarize all of the evaluations conducted, Table 7.1 gives

a complete overview of all classification experiments performed throughout

this thesis. The dash (−) indicates that the experiment has not been per-

formed on the corresponding data set. The experiments termed Distance-

Based Classifiers and Embedding-Based Classifiers stem from Chapter 4.

The MCS Dissimilarity Classifiers originate from Chapter 5. Finally, the

Augmentation Classifiers as well as the Ensemble Classifiers are presented

in Chapter 6. As one of the main goals of matching-graphs is to improve

(any) existing classification approach by using matching-graphs in addition

to an original graph, the following table only summarizes our approaches

with the most comparable reference system, based on the same classifier as

a basis (e.g. k-NN, SVM or a specific GNN architecture).

In the 76 experiments performed, our approach outperforms the most

comparable baseline 66 times in total. For the distance-based classifiers,

the improvement is statistically significant in 9 out of 14 cases and for the
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embedding-based classifiers in 6 out of 14 cases. The classifiers based on the

MCS dissimilarity metrics are able to outperform the reference system with

statistical significance in 6 out of 21 cases. The augmentation approaches

are statistically significant in a total of 89 out of 170 iterations and the

ensemble classifiers in 18 out of 25 iterations. In terms of absolute accuracy,

we can see that there is no clear winner among all systems. However, it

is very evident that the matching-graphs almost always help to improve a

given baseline classifier.

Overall, the novel concept of a matching-graph turns out to be a useful

tool in several graph-based pattern recognition scenarios. Yet, there are

several things that could be explored and/or optimized in future work.

First, it could be explored how different graph edit distance approximation

algorithms affect the quality of the matching-graphs. Furthermore, due to

the great flexibility of the matching-graphs, the optimization possibilities

are almost endless. For example, it could be explored how different cost

functions affect the quality of the matching-graphs. Each of the experiments

can also be explored further. For example, matching-graphs could be used

in conjunction with different modalities of graph neural networks, such as

triplet loss networks, or with different ensemble methods besides bagging.

Furthermore, matching-graphs could potentially be applied to the task of

node classification, or regression problems, as well as to tasks like dictionary

learning and drug discovery.
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Appendix A

TSNE Visualizations

(a) AIDS (b) Mutagenicity (c) NCI1 (d) COX-2

(e) PTC(MR) (f) PROTEINS (g) ENZYMES (h) LetterIMDB-BINARY
T-SNE Visualization

(i) IMDB (j) Cuneiform (k) Synthie

Fig. A.1: T-SNE visualization of all data sets. The individual colors repre-

sent the individual classes of the data set.
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[110] David B. Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun.
Ring based approximation of graph edit distance. In Xiao Bai, Edwin R.
Hancock, Tin Kam Ho, Richard C. Wilson, Battista Biggio, and Anto-
nio Robles-Kelly, editors, Structural, Syntactic, and Statistical Pattern
Recognition - Joint IAPR International Workshop, S+SSPR 2018, Beijing,
China, August 17-19, 2018, Proceedings, volume 11004 of Lecture Notes in
Computer Science, pages 293–303. Springer, 2018.
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