
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
4
9
7
9

|

d
o
w
n
l
o
a
d
e
d
:

3
.
7
.
2
0
2
5

Graduate School for Cellular and Biomedical Sciences
University of Bern

Deep Learning in

Neuronal and Neuromorphic Systems

PhD Thesis submitted by
Laura Magdalena Kriener

for the degree of
PhD in Neuroscience

Supervisor
Dr. Mihai A. Petrovici

Department of Physiology
Faculty of Medicine
University of Bern

Supervisor
Prof. Dr. Walter Senn

Department of Physiology
Faculty of Medicine
University of Bern

Co-Advisor
Prof. Dr. Giacomo Indiveri

Institute of Neuroinformatics
ETH Zurich and University of Zurich

This work, except the contents of chapter 5, is licensed under a Creative Commons
Attribution 4.0 International License:
https://creativecommons.org/licenses/by/4.0

Chapter 5 contains the article Fast and energy-efficient neuromorphic deep learning
with first-spike times which was published in the journal Nature machine intelli-
gence under exclusive licence to Springer Nature Limited 2021 which includes the
permission to reproduce the article in the author’s thesis.

https://creativecommons.org/licenses/by/4.0

i

Accepted by the Faculty of Medicine, the Faculty of Science and the Vetsu-
isse Faculty of the University of Bern at the request of the Graduate School
for Cellular and Biomedical Sciences

Bern, Dean of the Faculty of Medicine

Bern, Dean of the Faculty of Science

Bern, Dean of the Vetsuisse Faculty Bern

ii

iii

Abstract

The ever-increasing compute and energy requirements in the field of deep learning
have caused a rising interest in the development of novel, more energy-efficient computing
paradigms to support the advancement of artificial intelligence systems. Neuromorphic
architectures are promising candidates, as they aim to mimic the functional mechanisms,
and thereby inherit the efficiency, of their archetype: the brain. However, even though
neuromorphics and deep learning are, at their roots, inspired by the brain, they are not
directly compatible with each other. In this thesis, we aim at bridging this gap by realizing
error backpropagation, the central algorithm behind deep learning, on neuromorphic
platforms.
We start by introducing the Yin-Yang classification dataset, a tool for neuromorphic and
algorithmic prototyping, as a prerequisite for the other work presented. This novel dataset
is designed to not require excessive hardware or computing resources to be solved. At the
same time, it is challenging enough to be useful for debugging and testing by revealing po-
tential algorithmic or implementation flaws. We then explore two different approaches of
implementing error backpropagation on neuromorphic systems. Our first solution provides
an exact algorithm for error backpropagation on the first spike times of leaky integrate-and-
fire neurons, one of the most common neuron models implemented in neuromorphic chips.
The neuromorphic feasibility is demonstrated by the deployment on the BrainScaleS-2 chip
and yields competitive results both with respect to task performance as well as efficiency.
The second approach is based on a biologically plausible variant of error backpropagation
realized by a dendritc microcircuit model. We assess this model with respect to its practical
feasibility, extend it to improve learning performance and address the obstacles for neu-
romorphic implementation: We introduce the Latent Equilibrium mechanism to solve the
relaxation problem introduced by slow neuron dynamics. Our Phaseless Alignment Learn-
ing method allows us to learn feedback weights in the network and thus avoid the weight
transport problem. And finally, we explore two methods to port the rate-based model onto
an event-based neuromorphic system.
The presented work showcases two ways of uniting the powerful and flexible learning
mechanisms of deep learning with energy-efficient neuromorphic systems, thus illustrat-
ing the potential of a convergence of artificial intelligence and neuromorphic engineering
research.

iv

Contents

1 Introduction 1

2 Background 5
2.1 Biological neurons and synapses . 5

2.1.1 Neurons . 5
2.1.2 Synapses . 8

2.2 Computational models of neurons and synapses 10
2.2.1 Spiking neuron models . 10
2.2.2 Rate-based neuron models . 12
2.2.3 Multi-compartment neuron models 13
2.2.4 Synapse models . 14

2.3 Neuromorphic engineering . 18
2.3.1 Variety of neuromorphic platforms 19
2.3.2 Mixed-signal neuromorphic platforms 21

2.4 Deep learning . 25
2.4.1 Artificial neural networks . 25
2.4.2 Error backpropagation . 26
2.4.3 Biological plausibility . 27

3 Hypothesis and Aim 31

4 Result I: A proper test case for prototyping 35
4.1 Introduction . 36
4.2 Dataset . 37
4.3 Training results . 40
4.4 Input encoding . 42

4.4.1 Spatio-temporal input encoding . 42
4.4.2 Rate-based input encoding . 43

5 Result II: Exact error backpropagation with LIF neurons 45
5.1 Introduction . 46
5.2 Results . 50

v

vi CONTENTS

5.2.1 Simulations . 53
5.2.2 Fast neuromorphic classification . 56
5.2.3 Robustness of time-to-first-spike learning 60

5.3 Discussion . 63
5.4 Methods . 65
5.5 Supplementary Information . 75

6 Result III: Towards dendritic microcircuits on neuromorphic hardware 87
6.1 Introduction . 87
6.2 Biologically plausible error backpropagation in dendritic microcircuits . . . 88

6.2.1 Summary of network-, neuron- and plasticity model 89
6.2.2 Approximation of the error backpropagation algorithm 94
6.2.3 Neuromorphic implementability and known drawbacks 95

6.3 Latent equilibrium: A unified learning theory for arbitrarily fast computa-
tion with arbitrarily slow neurons . 96
6.3.1 Article and author contribution . 96
6.3.2 Summary . 96

6.4 Learning efficient backprojections across cortical hierarchies in real time . 103
6.4.1 Introduction . 104
6.4.2 Results . 106
6.4.3 Discussion . 117
6.4.4 Methods . 119
6.4.5 Supplementary Information A: Additional information on PAL . . . 125
6.4.6 Supplementary Information B: Simulation of PAL 133

6.5 Event-based communication in dendritic microcircuits 137
6.5.1 Point neuron microcircuits . 137
6.5.2 Event-based approximation of rates 147

7 Discussion and Outlook 153
7.1 The Yin-Yang dataset . 154
7.2 Error backpropagation with first-spike times of LIF neurons 155

7.2.1 Future work . 156
7.3 Towards dendritic microcircuits on neuromorphic hardware 160

7.3.1 Future work . 163
7.4 Conclusions . 166

Appendices 169

A Error Backpropagation in ANNs and Microcircuits 171
A.1 Derivations for ANNs . 171
A.2 Error backpropagation in dendritic microcircuits 173

CONTENTS vii

A.2.1 Hidden layers . 173
A.2.2 Top layer . 174
A.2.3 Multiple hidden layers . 176

A.3 Error backpropagation in point neuron microcircuits 177
A.3.1 Nudging via synaptic connections 178
A.3.2 Correspondence to propagation mechanisms in original microcircuit 179

B Parameter tables 181
B.1 Background . 181
B.2 Point neuron Microcircuits . 182
B.3 Event-based Microcircuits . 185

List of Figures 186

List of Tables 188

Acronyms 189

Bibliography 191

Acknowledgments 214

viii CONTENTS

Chapter 1

Introduction

The last decade’s tremendous progress in a variety of areas of artificial intelligence was
mainly carried by the advances in the field of deep learning. The impact of deep learning
onmachine intelligence was first felt in computer vision (Krizhevsky et al., 2014) and spread
from there to language processing and generation (Brown et al., 2020; OpenAI, 2022a),
games of strategical planning (Silver et al., 2017; Vinyals et al., 2019) and photorealistic
image generation (Ramesh et al., 2022; OpenAI, 2022b).
This rapid progress came at a cost: Along with their capabilities of performing ever more
difficult tasks, the neural network models’ complexity and their demand on computational
resources have grown accordingly (Thompson et al., 2020; Schwartz et al., 2020). So far, the
advancements in chip fabrication and parallelization technologies were able to provide in-
creasingly powerful and efficient computing hardware (Leiserson et al., 2020). Moore’s law,
for example, famously predicts that the transistor density on chips increases exponentially
with every new chip generation (Moore et al., 1965). However, as transistor dimensions are
approaching the size of single atoms, the continuation of that trend is uncertain (Leiserson
et al., 2020). Meanwhile, the energy efficiency and speed gains that formerly accompanied
higher transistor densities have already tapered off (Bohr, 2007). On top of this, even if the
exponential growth could be sustained by new fabrication technologies, the growing com-
putational demands of deep learning have already outpaced it (Schwartz et al., 2020). Cur-
rently, this is compensated by an increased focus on parallelization techniques and highly
specialized hardware systems (Thompson et al., 2020), but those results in an energy con-
sumption that grows in accordance with the required compute. If the model complexity
and sizes keep up their growth trend, this parallelization approach will neither be sufficient
nor sustainable (Thompson et al., 2020; Schwartz et al., 2020).
In light of this, interest in alternative, more efficient computing paradigms is growing. Orig-
inally, the structure of deep neural networks was inspired by the brain. It therefore only
seems natural to — once again — consult this archetype for efficient ways to compute with
neural networks, especially since we know that the total power consumption of the brain

1

2 CHAPTER 1. INTRODUCTION

is around only 20W (Sokoloff, 1960). This is orders of magnitude below what current state-
of-the-art deep learning models typically consume (Economist, 2016; Deepmind, 2020).
The field of neuromorphic engineering aims at building computing hardware that is in-
spired by the structure and functional principles of the brain and thereby hopes to inherit
the efficient mechanisms of its biological archetype (Furber, 2016). While the resulting neu-
romorphic platforms are quite diverse (Schuman et al., 2017), they typically have in com-
mon that computation is distributed across many small and relatively simple compute units
(neurons) that are interconnected (via synapses) to form a network (Furber, 2016). The effi-
ciency of neuromorphic systems is often rooted in two fundamental concepts, in-memory
computing and event-based communication:
The neural network on a neuromorphic system serves as both the processing unit that op-
erates on input and the memory of the system, which determines and parameterizes the
computation itself. This is in accordance with the information processing in the brain,
where memories and “computing algorithms” are stored in the same neural structure that
is also performing the actual “computation” on the sensory data. It is however in stark
contrast to the classical von-Neumann computing paradigm, which separates the comput-
ing architecture into a memory and a processing block (Von Neumann, 1945). In the latter
setup both data and instructions for the processing block need to be read from the mem-
ory and transported between the blocks. This introduces a bottleneck, the von-Neumann
bottleneck, and can slow down computation (Backus, 1978). By removing the separation
betweenmemory and processing unit, neuromorphic approaches promise to avoid the inef-
ficiencies introduced by the von-Neumann bottleneck on conventional computing systems.
In addition to the low-level architectural differences, the neural networks on neuromorphic
hardware platforms also differ from the artificial neural networks (ANNs) commonly used
in deep learning, as the former are modelled more closely after their biological counter-
parts. In particular, the neurons in an ANN have no temporal dynamics, they are functions
that calculate an output value when prompted with an input. Information is exchanged be-
tween the neurons via the communication of the continuously valued outputs, i.e. typically
floating-point numbers. This is in stark contrast to neuromorphic and biological neurons
which both have internal temporal dynamics that process input signals. Additionally, these
neurons do not communicate with each other at all points in time, they only produce a
short output event, a spike, when the internal dynamics fulfill certain conditions, e.g. cross
a threshold (Gerstner and Kistler, 2002). Therefore, the communication between neurons is
spatially and temporally sparse. This means that of a given set of neurons only a subset is
actively communicating at any point in time. This sparsity in communication is believed to
be one of the main reasons for the brain’s energy efficiency and neuromorphic systems, by
mimicking this communication scheme, attempt to inherit the efficiency (Roy et al., 2019).
The prospect of combining the powerful and flexible algorithms of deep learning with
an energy-efficient neuromorphic computing system appears highly desirable (Roy et al.,
2019). However, while both deep learning and neuromorphic systems draw inspiration

3

from the brain, for the former the level of inspiration is significantly more abstract and the
two are not directly compatible. This discrepancy is rooted in the differences in neuron
dynamics and in particular the neuronal communication mechanisms.
In this thesis we aim at bridging the gap between deep learning and neuromorphics by
making error backpropagation, the central learning algorithm for artificial neural networks,
compatible with neuromorphic neural networks. After covering the required background
knowledge from the fields of computational neuroscience, neuromorphic engineering and
deep learning in Chapter 2 and outlining the scientific aims of this thesis in Chapter 3,
we approach this task from two angles: In Chapter 5 we employ a bottom-up, or “device-
up”, method, where we take common features of neuromorphic devices, in this case the
leaky integrate-and-fire (LIF) neurons, as a starting point and develop a variant of the error
backpropagation algorithm designed for these components. Conversely, in Chapter 6 we
attempt a top-down, or “algorithm-down”, approach, where we start out from an algorithm
approximating error backpropagation and improve its practical feasibility and compatibility
to neuromorphic systems in multiple step-wise modifications. Additionally, we introduce a
tool for algorithmic and neuromorphic prototyping in Chapter 4: During our work on the
topics in Chapters 5 and 6 we observed a lack of suitable small-scale benchmarks, which
we solved by developing the small but challenging Yin-Yang classification task. Finally, we
discuss the results obtained in this thesis in Chapter 7 and outline areas that promise further
improvement for both the “device-up” and the “algorithm-down” approach.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The topics discussed in this thesis are located at the intersection of three fields of research:
computational neuroscience, neuromorphic engineering and deep learning. In an effort
to keep these introductory sections brief we only discuss those aspects of each field that
are required for the understanding of the results presented in this thesis. Where possible,
references to standard textbooks are included for further reading.
The research fields of computational neuroscience, neuromorphic engineering and also
deep learning have in common that they are, to varying degrees, inspired by or based on
the biology of the brain. Therefore, before introducing the fields in Sections 2.2 to 2.4 we
first describe the biological systems they are rooted in Section 2.1.

2.1 Biological neurons and synapses

In this section we briefly describe the structure and properties of neurons and synapses.
Mathematical and computational models of these biological objects will be detailed in the
following sections. For a more in-depth description on the connection between the bio-
logical systems and their models we recommend the theoretical and computational neuro-
science textbooks by Dayan and Abbott (2005) and Gerstner and Kistler (2002).

2.1.1 Neurons

Neurons are electrically excitable cells that communicate with each other via electrochem-
ical signals. While the exact morphology of neurons varies widely across different neuron
types and brain areas, they share a common structure illustrated in Fig. 2.1. A neuron can
be roughly divided into three parts: The input signals into the neuron arrive at the den-
dritic tree (or dendrites). The soma integrates all inputs from the dendrites and potentially
generates an output signal. When an output signal, called an action potential or spike, is
generated, it travels along the axon. At the end of axon, the axon terminals, the neuron is
connected to other neurons, which then receive the spike signal.

5

6 CHAPTER 2. BACKGROUND

Schwann's cell

Node of Ranvier

Axon

Dendrites

Axon terminals

Nucleus

Cell body

Myelin sheath

Figure 2.1: Schematic drawing of neuron morphology and action potential. Left: Drawing of a bi-
ological neuron by Rougier (2007) (published under the CC BY-SA 3.0 license). The neuron cell
consists of three main parts: The dendrites or dendritic tree where input from connected neurons
arrives and is transported towards the soma. The cell body or soma where all input is integrated.
If the input is sufficiently strong, an action potential is generated. The action potential then trav-
els along the axon which brings the signal to the connected downstream neurons. Right: Sketch
of an action potential by Chris73 (2007) (published under the CC BY-SA 3.0 license). If the neuron
receives a strong enough input stimulus (black arrow), it reacts with a rapid and strong depolar-
ization followed by a quick drop in the potential. During what is called the refractory period the
membrane voltage is hyperpolarized, i.e. it is below the resting potential. After the refractory
period the membrane potential settles again at the resting potential.

Similar to any other cell type, a neuron is surrounded by a cell membrane which separates
its interior (cytoplasm) from the outside (extra-cellular medium). The membrane is semi-
permeable, which means that it lets small molecules such as water pass but stops larger
molecules or ions. It acts as a capacitor which separates the charged particles inside and
outside of the neuron. Even though the membrane itself is not permeable for ions, it con-
tains transmembrane proteins called ion-channels that allow the exchange of ions between
the inside and outside of the cell. Ion-channels are specific to one type of ion (e.g. sodium)
and can be either passive, which means they are always open and the flow of ions through
them is driven by concentration gradients, or gated by, for example, the voltage across the
cell membrane. In addition to the ion-channels, ion-pumps actively transport ions across
the membrane. Through an interplay between active ion-pumps, passive ion-channels and
gated ion-channels, described in detail in e.g. Gerstner and Kistler (2002), neurons actively
keep a concentration gradient of sodium, potassium, calcium and chlorine ions between the
inside and outside. Due to this imbalance of ion concentrations, there is a charge imbalance

2.1. BIOLOGICAL NEURONS AND SYNAPSES 7

and a voltage across the cell membrane. In its resting state (i.e. if it receives no input) the
voltage across the membrane is around −70mV.

Action potentials

If a neuron receives input, its reaction strongly depends on the input strength. To a weak
depolarizing input the membrane voltage reacts with a small deflection from the resting
potential, a postsynaptic potential (PSP), that quickly decays. If however a strong enough
depolarizing input is received, or multiple PSPs of weaker inputs arriving in short succes-
sion stack up to strongly depolarize the membrane potential, an action potential or spike
is triggered (Fig. 2.1).
The action potential is produced by the highly non-linear dynamics of the voltage-gated ion
channels in the membrane. Even though the exact shape of action potentials differs across
neuron types (Bean, 2007), the main features are similar enough that we can describe a
“stereotypical shape” of an action potential1: It starts off with a run-away mechanism in
the voltage-gated sodium channels, where an increase in membrane potential causes more
sodium channels to open, which increases themembrane potential even further. This causes
the membrane potential to rise above 0mV within less than 1ms. The strong depolariza-
tion is halted by the deactivation of the sodium channels and the opening of the potassium
channels which quickly repolarizes the membrane potential. This is followed by a drop be-
low the resting potential (hyperpolarization), which we call the refractory period. During
this time additional input into the neuron can not trigger another action potential. Typ-
ically, the refractory period lasts for multiple milliseconds before the membrane voltage
returns to the resting potential. This mechanism was first modelled in detail by Hodgkin
and Huxley (1952). As the action potential’s shape is always approximately the same, all
information content of the spike signal is in its timing and not in the exact shape of the
potential produced.
Action potentials or spikes are the main mode of communication between neurons. There-
fore, the spike signal needs to be transported from the point where it is produced to the
connection points to other neurons. These are located at the ends of the axon, the axon
terminals (Fig. 2.1). Action potentials are typically generated at the connection between
the soma and the beginning of the axon and travel along the axon to their destination
point (Clark et al., 2009). The axon consists of multiple segments which are each surrounded
by a myelin sheath (formed by Schwann cells which are located around the axon). By iso-
lating the axon from the extra-cellular medium, the myelin sheath increases the speed with
which the action potential travels along the axon. The sections between the axon segments
are the Ranvier nodes. They are not surrounded by a myelin sheath and reinforce the action
potential signal along its route to the axon terminals.

1Note that there are other types of spikes with different shapes such as calcium or NMDA spikes (Larkum et al., 1999;
Antic et al., 2010) which we do not address here.

8 CHAPTER 2. BACKGROUND

Axon
terminal

Dendrite

Synaptic cleft

Receptor
Neurotransmitter

Vesicle

Figure 2.2: Schematic drawing of a chemical synapse. On the left the presynaptic axon terminal is
shown. It releases vesicles of neurotransmitters into the synaptic cleft. The neurotransmitters
travel through the synaptic cleft to the receptors on the dendrite of the postsynaptic neuron
(right side). The presynaptic neuron recycles neurotransmitters from the synaptic cleft into new
vesicles that can then be reused later to transmit another spike event. This figure was adapted
from Splettstoesser (2015) (published under the CC BY-SA 4.0 license).

2.1.2 Synapses

The information exchange between two neurons takes place at the point of contact between
the axon terminals of the one neuron and the dendrite of the other. These points are called
synapses. There are chemical and electrical synapses. Electrical synapses, also called gap-
junctions, allow neurons to exchange electrical signals in both directions. This is in contrast
to the one-way chemical synapses. We will focus on chemical synapses in the following as
they are much more common.
A chemical synapse can develop at the point where the axon terminal of one neuron con-
nects to the dendrite of another neuron (Fig. 2.2). Synaptic connections to the soma can also
occur, but they are significantly less common than dendritic synapses. The neuron sending
the spike signal is called the presynaptic neuron, the receiving one is called the postsynaptic
neuron. When an action potential of the presynaptic neuron arrives at the axon terminal,
the presynaptic neuron releases neurotransmitters into the narrow space between the neu-
rons. This gap between the pre- and postsynaptic neuron is called the synaptic cleft. Once
the neurotransmitters reach the receptors at the postsynaptic neuron they trigger an open-
ing of ion channels. This changes the conductance across the postsynaptic membrane and
gives rise to a postsynaptic current (PSC). The PSC then in turn causes a change in the post-
synaptic membrane potential, a PSP. If the resulting PSP depolarizes the neuron, we call the
synapse that caused it excitatory, if the PSP hyperpolarizes, the synapse is inhibitory.

2.1. BIOLOGICAL NEURONS AND SYNAPSES 9

Plasticity

The strength of the impact that a presynaptic spike has on the membrane potential of the
postsynaptic neuron is commonly referred to as the synaptic weight of the connection. The
weight of a connection is not constant but can change over time. This is called synaptic
plasticity and is believed to be fundamental to learning, memory and the development of
neural circuits (Dayan and Abbott, 2005).

Synaptic plasticity can take place on multiple timescales. Short-term plasticity (STP) oper-
ates on the timescale of hundreds of milliseconds to seconds and modulates the synaptic
weight via the amount of neurotransmitters that are released into the synaptic cleft during
a synaptic event (Markram and Tsodyks, 1996). As it takes some time for the neuron to
recycle neurotransmitters after they have been released in a synaptic event, many synaptic
events occurring in short succession can deplete the amount of available neurotransmitters.
Then, the amount of neurotransmitters released in the next event is lower and therefore the
synaptic weight is decreased. This effect is called short-term depression. At the same time
the opposite effect, short-term potentiation, is also possible. Here, the occurrence of spike
events increases the calcium levels inside the presynaptic cell, which in turn increases the
release probability of neurotransmitters for the next synaptic event, thereby increasing the
synaptic weight. Both of these effects are non-permanent and after a few seconds without
spiking activity the synaptic weight decays back to its baseline value.

As the effects of STP persist only over time intervals of a few seconds at most, other mech-
anisms which operate on longer timescales are more relevant for the study of task learn-
ing and memory. Pioneering theoretical work in this direction was performed by Hebb
(1949). It is colloquially summarized in the famous Hebb rule “What fires together, wires
together”. More precisely Hebb (1949) suggests that if one neuron is frequently involved
in making another neuron fire, the connection from the first neuron to the second one
should be strengthened. Experimental evidence for activity dependent long-term potenti-
ation (LTP) was found by Bliss and Lømo (1973) and shortly after for long-term depression
(LTD) by Dunwiddie and Lynch (1978). Later results suggest that not only the correlation
of pre- and postsynaptic firing is relevant to the weight change but also the timing of it (Bi
and Poo, 1998). The effects of long-term plasticity typically persist on the order of tens of
minutes or longer (Dayan and Abbott, 2005).

Themost extreme form of synaptic plasticity is structural plasticity. Instead of changing the
strength of existing connections in the network, structural plasticity changes the connec-
tivity of the network itself by forming new synaptic connections and removing old ones. It
is believed that structural plasticity is involved in the learning of new tasks and the recovery
from injuries to the brain (Johansen-Berg, 2007).

10 CHAPTER 2. BACKGROUND

2.2 Computational models of neurons and synapses

In computational and theoretical neuroscience we use mathematical neuron and synapse
models and simulations of those models to understand the underlying principles of infor-
mation processing in the brain. In the formation of a model there is always a trade-off
between the mathematical/computational complexity and the level of detail with which bi-
ological mechanisms are described. There exists a very large collection of models across the
whole spectrum from detailed and computationally expensive to highly abstract, simplified
and computationally cheap. In this chapter we mainly highlight the ones relevant for this
thesis and again refer the reader to the textbooks of Gerstner and Kistler (2002) and Dayan
and Abbott (2005) for a more in-depth treatment of the subject.

2.2.1 Spiking neuron models

Spiking neuron models include, with a varying degree of abstraction, the all-or-nothing
spike communicationmechanism between neurons. A biophysically detailedmodel of spik-
ing neurons is the Hodgkin-Huxley model, which is based on the recordings from the squid
giant axon (Hodgkin and Huxley, 1952). It consists of four non-linear ordinary differential
equations describing the dynamics of the membrane voltage as well as sodium and potas-
sium ion channels. This allows it to reproduce the characteristic shape of action potentials
(Fig. 2.1), as well as neuronal firing patterns such as adaptation or bursting observed in
biology. However, the level of detail at which the Hodgkin-Huxley model reproduces bio-
logical phenomena comes at the cost of significant computational complexity, which makes
it less suitable for the study of larger networks. For a computationally cheaper model we
can leverage the fact that the actual shape of the action potential is stereotypical, which
means it is always approximately the same2. Therefore, the most information is encoded
in the timing of the action potential and not in its voltage dynamics. This allows us to not
model the shape of the action potential but to treat is as an abstract event (Gerstner and
Kistler, 2002, Chapter 4).

Leaky-integrate-and-fire model

One of the most commonly used neuron models which employs this method to reduce
mathematical and computational complexity is the leaky integrate-and-fire (LIF) neuron
model (Lapicque, 1907; Abbott, 1999; Dayan and Abbott, 2005). Here the ion channel dy-
namics are summarized into one passive leak conductance gℓ which pulls the membrane
voltage u to a resting potential Eℓ. The differential equation for the membrane voltage is

Cm
du

dt
= gℓ [Eℓ − u(t)] + Iext(t) + Isyn(t) (2.1)

2Although there are slight variations across different neuron types (Bean, 2007).

2.2. COMPUTATIONAL MODELS OF NEURONS AND SYNAPSES 11

a

200 400 600 800 1000
time [ms]

−70

−60

u
[m

V
]

u Vth Vreset

b

200 400 600 800 1000
time [ms]

0

1

I e
x
t

[n
A

] Iext

cEl

gl
Cm

IsynIext

Vth

Vreset

spike out

Figure 2.3: LIF neuron schematics and dynamics. (a) Equivalent circuit of the LIF neuron model. The
neuron membrane is modelled as a capacitor Cm. All ion channels are summarized into one
conductance gℓ pulling the membrane voltage u towards the leak potential Eℓ. A comparator
(triangle) compares the membrane voltage to a threshold Vth. If the membrane voltage reaches
the threshold, the comparator sends out a spike signal, which triggers a resetting of themembrane
to Vreset. The external input current Iext and the synaptic input current Isyn are treated as black-
box current sources here. (b) Membrane voltage u of an LIF neuron receiving an external input
current (shown in (c)). The first current step lets the membrane rise exponentially to a new and
higher membrane voltage, while the second one pulls the membrane below its resting value. The
final current step is strong enough to push the membrane above the threshold. The neuron spikes
two times, each spike is followed by a refractory period at Vreset. Once the current step ends, the
membrane voltage decays back to its resting potential. (c) External current Iext applied to the
neuron. Simulation parameters can be found in Table B.1.

whereCm is the membrane capacitance and Iext and Isyn are input currents to the cell, either
from an external source or synaptic events. The action potential dynamics are replaced by
a simple thresholding mechanism: If the membrane voltage crosses a threshold value Vth at
the time t = tspike, the membrane voltage is reset to a reset potential Vreset and held at this
value for the duration of the refractory period τref:

u = Vreset for t ∈ (tspike, tspike + τref] if u(tspike) = Vth (2.2)

The output of the neuron is a sequence of spike events, each at a precise time tspike,i. This
sequence is called a spike train S(t) and can be written as a sum of delta functions

S(t) =
∑

i∈spikes
δ
(
t− tspike,i

)
. (2.3)

The dynamics of the LIF neuron when presented with an external step current, e.g. a patch
clamp stimulus, are illustrated in Fig. 2.3 b and c. We see that a positive input current step
depolarizes the membrane, while a negative current hyperpolarizes it. As long as the input
is low enough that the membrane voltage stays below the spiking threshold, the membrane

12 CHAPTER 2. BACKGROUND

trace is a low-pass filtered version of the input current (see Eqn. (2.1)). The time constant
of the low-pass is given by the neuron parameters τm = Cm

gℓ
. If the depolarizing current is

strong enough, it can push the membrane above the threshold and elicit a spike followed by
a reset. In addition to simulating the dynamics described in Eqns. (2.1) and (2.2) as shown
in Fig. 2.3 b, we can also find an electrical circuit where the electrical quantities follow the
same differential equations (Fig. 2.3 a). This is going to be of particular relevance for the
discussion of mixed-signal neuromorphic hardware in Section 2.3.2.

2.2.2 Rate-based neuron models

While spiking neuron models like the LIF neuron describe the neuronal output as distinct
events in time, rate-based neuron models take a simplified approach. They describe the
neuronal output not as a series of events but as the firing rate: the rate at which the neuron
produces output events. The firing rate r can be defined in multiple ways, the simplest of
which being just the number of spikes N produced in a time interval ∆T

r =
N

∆T
. (2.4)

However, rate-based neuron models typically employ a quantity called the instantaneous
firing rate r(t), which is given for any point in time and can not be based on a spike count
in a macroscopic time interval ∆T . Instead, it is typically interpreted as the spike count
during a very short (infinitesimal) interval dt either averaged over multiple stochastic trials
or a population of neurons. For an extensive treatment of this see Dayan and Abbott (2005,
Chapter 1).
The simplification of no longer treating every single output event, but summarizing them
into a firing rate has both advantages and disadvantages. On the one hand a description of
the neuronal output using the firing rate is not able to capture effects based on spike timing
and spike correlation. On the other hand however rate-based models allow for the easier
inclusion of stochasticity on a network level and reduce the required amount of simulated
neurons by letting one rate-based neuron represent a population of spiking neurons (Dayan
and Abbott, 2005, Chapter 7.1). Additionally, the rate-based models also improve analytical
tractability as we will see in Chapter 6.
In addition to their membrane dynamics, rate-based neurons are characterized by their acti-
vation function φ which describes the firing rate of a neuron as a function of its membrane
potential r(t) = φ (u(t)). As it describes a neuronal firing rate, the activation function is
typically positive everywhere and very often bounded on the upper end, as arbitrarily high
firing rates are deemed unrealistic. A common choice for φ is the logistic function

φ(u) =
a

1 + exp
(
−u−b

c

) (2.5)

2.2. COMPUTATIONAL MODELS OF NEURONS AND SYNAPSES 13

EL

gL,basCbas Capi gL,api

EL EL

gL,somaCsoma

gapi gbas

gapi

Csoma

Cbas

Capi

gbas

Figure 2.4: Simple multi-compartment neuron model. Left: Illustration of a neuron with 3 compart-
ments: soma, basal dendrite and apical dendrite. Right: The three compartments are modelled by
three leaky integrator circuits which are connected by the conductances gbas and gapi. Note that
for visual clarity we have left out the mechanisms to produce an output or receive input for all
compartments in this drawing.

where a determines the maximum firing rate, b is a bias and c scales the steepness of the
activation function.
The rate-based neuron model which we will encounter in Chapter 6 has membrane voltage
dynamics that are similar to the dynamics of the previously discussed LIF neuron: The
membrane voltage u also follows the leaky-integrator dynamics

Cm
du

dt
= gℓ [Eℓ − u(t)] + I(t) (2.6)

where we have subsumed any input currents (external, synaptic or otherwise) into I(t).
In contrast to the LIF model however, there is no thresholding or reset mechanism. The
output of the rate-based neuron is r(t) = φ (u(t)).

2.2.3 Multi-compartment neuron models

So far we have focussed our modelling on the voltage dynamics and output signals of a
neuron. There is however another (somewhat orthogonal) aspect of biology for which we
have to decide on what level of detail we want to model it: the morphology of the neuron.
In Sections 2.2.1 and 2.2.2 we have implicitly already chosen the strongest simplification
possible by fully neglecting the fact that at different locations in the neuron, the voltage
across the membrane can have different values. By describing a neuron with only one
membrane voltage u(t), we implicitly reduced the shape of the neuron to a single point.
Neuron models employing this simplification are grouped under the term “point neuron
models”.
A quite flexible and commonly used method to include neuron morphology is to divide the
neuron into two ormore parts, whichwewill call compartments (Gerstner and Kistler, 2002,

14 CHAPTER 2. BACKGROUND

Chapter 2.6). In the most basic case, we just divide the neuron into a “soma compartment”
and a “dendritic compartment” and assume that the membrane voltage is approximately the
same everywhere within the soma of the neuron but different from the membrane voltage
in the whole dendritic tree. We model the connection between the two compartments as
a constant conductance. To model the complex branching structure of the dendritic tree,
we can also split up one “dendritic compartment” into multiple separated compartments
which can be connected to the soma in an arbitrary tree-like fashion. The voltage dynam-
ics of each compartment is governed by its own differential equation(s), which is coupled
to the equations describing the dynamics of the neighboring compartments. For a com-
partment iwhich is modelled by leaky-integrator dynamics and connected to a set of other
compartments C the voltage dynamics are

Cm,i
dui

dt
= gℓ,i [Eℓ,i − ui(t)] + Iext,i(t) + Isyn,i(t) +

∑
j∈C

gi,j [uj(t)− ui(t)] (2.7)

where gi,j is the conductance between the compartments i and j. We see that the dynamics
are the same as for the original leaky integrator in Eqn. (2.1) except for an added current
originating from the connected compartments.
Figure 2.4 illustrates such a multi-compartment setup consisting of a somatic compartment
and two dendritic compartments, the basal dendrites and the apical dendrites. Typically, in
a multi-compartment neuron only the somatic compartment is able to produce an output.
Whether this output is spiking or rate-based depends on the dynamics chosen for the so-
matic compartment. Furthermore, it is common (but not strictly necessary) that only the
dendritic compartments receive synaptic input and forward it to the somatic compartment.
We will reencounter the multi-compartment neuron illustrated in Fig. 2.4 in Sacramento
et al. (2018) and Chapter 6. There however, the dynamics are simplified: While we here
treated the dendritic compartments as leaky-integrators with their own temporal dynam-
ics, in Sacramento et al. (2018) the membrane voltages in the dendritic compartments are
instantaneous functions of their inputs (Eqn. (6.4) to Eqn. (6.6)). Furthermore, while here
each pair of connected compartments is influencing the dynamics of each other, in Sacra-
mento et al. (2018) the dendritic compartments influence the somatic compartment but not
the other way around.

2.2.4 Synapse models

In our discussions of neuron models we have so far not detailed the synaptic interactions
but rather collected the overall effect of all synaptic interactions into a synaptic input cur-
rent Isyn onto the membrane. In the following we will, for both a spiking and a rate-based
scenario, detail the modelled mechanisms and the temporal dynamics of the synaptic cur-
rents.

2.2. COMPUTATIONAL MODELS OF NEURONS AND SYNAPSES 15

First however, we need to distinguish between two types of synapse models: As discussed
in Section 2.1.2, neurotransmitters travelling through the synaptic cleft give rise to the
opening of ion-channels once they reach the postsynaptic neuron. This changes the con-
ductance across the cell membrane. We model this as a conductance gsyn(t) which varies
over time and pulls the membrane of the neuron towards a synaptic reversal potential Erev.
The resulting current

Isyn(t) = gsyn(t) [Erev − u(t)] (2.8)

depends on the current state of the membrane voltage. Synaptic models that are based
on a variation of a synaptic conductance are called conductance-based (CoBa) models. By
assuming that any fluctuation of the membrane voltage caused by the synapse is small com-
pared to the distance between the membrane voltage and the synaptic reversal potential,
we can simplify this model and remove the dependence of Isyn on u(t). Models using this
simplification assume the impact of synaptic input not to be a change in conductance but
directly a current onto the membrane Isyn(t) and are therefore called current-based (CuBa)
models.

Spike transmission

For both CoBa and CuBa synapse models we assume the impact of different synapses of a
neuron as well as multiple spikes across the same synapse to sum up linearly3:

gsyn(t) =
∑
i∈ syn

wi,CoBa
∑

ts ∈ spks(i)

κ (t− ts) for CoBa (2.9)

Isyn(t) =
∑
i∈ syn

wi,CuBa
∑

ts ∈ spks(i)

κ (t− ts) for CuBa (2.10)

where κ(t) is the kernel which describes the temporal shape of the synaptic interaction and
wi,. . . is the synaptic weight. For the CoBa case the synaptic weight is a conductance, while
it is a current for the CuBa case. Note that inhibitory synapses are realized differently for
the two model types: CuBa inhibitory synapses are modelled via a negative value for the
synaptic weight w. For CoBa synapses the value of the weight is always positive and the
distinction between excitatory and inhibitory synapses is made via different values for the
reversal potentialErev in Eqn. (2.8). The reversal potentialErev is above the resting potential
for excitatory and below for inhibitory synapses.

3For simplicity in the notation we have in the CoBa case assumed that either all synapses are excitatory or all are
inhibitory. If that where not the case, we would need to split the sum over all incoming synapses between inhibitory and
excitatory because the resulting gsyn, exc(t) and gsyn, inh(t) are multiplied with different reversals potential when calculating
the PSC.

16 CHAPTER 2. BACKGROUND

0 100 200 300 400 500
time [ms]

−70

−60
u

[m
V

] u Vth Vreset

a

0 100 200 300 400 500
time [ms]

0.0

2.5

I s
y
n

[n
A

] Isyn, exc Isyn, inh

b

0 100 200 300 400 500
time [ms]

sp
ik

es

exc inh out

c

Figure 2.5: LIF neuron with current-based synaptic input. (a) Membrane voltage of an LIF neuron re-
ceiving two spike trains of excitatory and inhibitory input spikes. Each input spike causes a
PSP on the membrane voltage. PSPs that are close together in time stack up. When enough in-
put spikes arrive in short succession, the PSPs add up to a high enough value that reaches the
threshold and the neuron produces and output spike. Afterwards, the membrane voltage is reset
to Vreset and held there for the duration of τref. (b) The synaptic input currents Isyn caused by
the excitatory and inhibitory input spike train (blue and orange respectively). The synapses are
current-based with an exponential kernel. (c) Raster plot of the spike trains: excitatory input
spike train in blue, inhibitory input spike train in orange and the postsynaptic output spike in
black. Simulation parameters can be found in Table B.1.

The most common kernel shapes used for describing the synaptic interaction are the

κ(t) = δ(t) delta kernel (2.11)

κ(t) = Θ(t) exp

(
− t

τsyn

)
exponential kernel (2.12)

κ(t) = Θ(t) t exp

(
− t

τsyn

)
alpha kernel (2.13)

where Θ(t) is the Heaviside-function and τsyn is the synaptic time constant defining the
timescale of the synaptic interaction.
Figure 2.5 illustrates the PSC induced by current-based synapses with an exponential ker-
nel for a set of excitatory and inhibitory input spikes as well as the resulting PSPs on the
membrane potential of an LIF neuron. The PSPs add up linearly and if the threshold voltage
is reached, a postsynaptic spike is triggered. The model illustrated here, an LIF neuron with
CuBa synapses with exponential kernels, is also the one employed in Chapter 5 and Sec-
tion 6.5 of this thesis.

2.2. COMPUTATIONAL MODELS OF NEURONS AND SYNAPSES 17

Rate transmission

For rate-based neuron models the synaptic interaction is not based on discrete events in
time, but instead the instantaneous firing rate of the presynaptic neuron is sent to the post-
synaptic neuron at every point in time. Again, we can make the distinction between CoBa
and CuBa synapses:

gsyn,exc(t) =
∑

i∈ exc syn

wi ri(t) for CoBa (2.14)

gsyn,inh(t) =
∑

i∈ inh syn

wi ri(t) for CoBa (2.15)

Isyn(t) =
∑

i∈ exc + inh syn

wi ri(t) for CuBa (2.16)

The resulting synaptic current in the CoBa case is

Isyn(t) = gsyn,exc(t) [Erev,exc − u(t)] + gsyn,inh(t) [Erev,inh − u(t)] . (2.17)

An example of the usage of CoBa rate-based synapses can be found in Urbanczik and Senn
(2014). The learning mechanisms introduced in this work form the basis for the learning in
the dendritic microcircuit model in Sacramento et al. (2018) which is prominently featured
in Chapter 6 of this thesis. However, the synapse model in Sacramento et al. (2018) was
simplified to a rate-based CuBa model.

Plasticity

The most commonly modelled form of synaptic plasticity is long-term plasticity (Gerstner
and Kistler, 2002; Dayan and Abbott, 2005). In general, we describe the change in a synaptic
weight between two neurons i and j4 with a differential equation

dwji

dt
= f (θi, θj, wji) (2.18)

where f is some function of the quantities of the neurons θi, θj and potentially of the
synaptic weight itself. The shape of the function f and the quantities of the neurons that
are part of the plasticity rule varies widely.
In a spike-based setting the relevant neuron quantities are typically the spike trains S(t)
of the neurons. The arguably most famous example for this is spike-timing-dependent
plasticity (STDP), which was first experimentally discovered by Bi and Poo (1998). Here, the

4We choose the convention of indexing a weight as wpost-idx, pre-idx to match the notation chosen in the publications
presented in Chapters 5 and 6.

18 CHAPTER 2. BACKGROUND

weight update is a function of the relative time differences between pre- and postsynaptic
spike times.
In a rate-based setting, typically time continuous quantities, such as the firing rates r(t)
or the membrane voltages u(t), are used. For example, the most basic form of Hebbian
LTP (Hebb, 1949) can be written as

dwji

dt
= c ri(t) rj(t) (2.19)

where c is a constant and positive parameter and ri and rj are the pre- and postsynaptic
firing rates. Other examples in this category of “Hebbian-like plasticity rules” are Oja’s
rule (Oja, 1982) and the BCM rule (Bienenstock et al., 1982).
More recently the category of “three-factor learning rules” has grown in popularity (Fré-
maux and Gerstner, 2016; Gerstner et al., 2018). In addition to the variables from the pre-
and postsynaptic neuron, the weight update additionally depends on a third factor. This
third factor can for example be a global modulatory signal like reward or surprise but also
a neuron specific error signal. An in-depth discussion on three-factor learning rules can be
found in a review on this topic by Gerstner et al. (2018). For this thesis however, it suffices
to say that this category contains the Urbanczik-Senn learning rule (upon which plastic-
ity mechanisms in Chapter 6 are based), along with many other plasticity mechanisms in
models for biologically plausible error backpropagation.

2.3 Neuromorphic engineering

In this chapter we aim to provide an overview of neuromorphic engineering with a specific
emphasis on the neuromorphic hardware type and specific chip that we will encounter in
Chapters 5 and 6 of this thesis. As the field of neuromorphic engineering is small compared
to e.g. theoretical neuroscience and at the same time is quite diverse we do not have estab-
lished textbooks to refer to. However, the reviews of Indiveri et al. (2011); Furber (2016);
Schuman et al. (2017); Thakur et al. (2018); Roy et al. (2019) provide a good overview on
neuromorphic hardware platforms. Even though the field is developing rather rapidly and
these reviews are missing some of the more recently developed hardware platforms, we
will base this chapter on them. Where appropriate, we will additionally point to the newer
developments throughout the following sections.
When the term neuromorphic was first coined by Carver Mead, it revolved around the idea
that the characteristics of metal-oxide-semiconductor (MOS) transistors were similar to
the dynamics of ion channels in neurons and that this could be used to build analog silicon
neurons that mimic the behavior of biological neurons (Mead and Ismail, 1989; Mead, 1990).
Nowadays, the term “neuromorphic” is used in a much broader sense and encompasses not
only hardware platforms but also algorithms and sensor technologies that are in some sense
inspired by the mechanisms and dynamics of the nervous system. In this thesis we will

2.3. NEUROMORPHIC ENGINEERING 19

flexibility, precision, ease of use

energy efficiency, computation speed

CPU GPU
Machine
learning

ASIC

FPGA-
based

digital
ASIC

mixed-signal
ASIC

novel
materials

Figure 2.6: Illustration of the range of computing hardware platforms. We go from conventional com-
puting hardware on the left towards novel (neuromorphic) computing paradigms on the right.
Generally speaking the more conventional platforms have advantages in one or multiple of the
areas of flexibility, precision and ease of use. Conversely, the neuromorphic hardware platforms
tend to be geared towards energy efficiency and/or computation speed, while being less flexible
or precise or easy to use. The red dashed line marks the area in the spectrum where often the
step towards event-based (spiking) communication is made and where often the line between
conventional and neuromorphic hardware is drawn.

focus on the neuromorphic computing platforms, of which there is also a great variety that
we will cover in Section 2.3.1. In spite of this diversity the different approaches share the
brain as a common inspiration and there are several reoccurring design ideas and concepts
across different neuromorphic platforms (Schuman et al., 2017):

• In contrast to conventional von-Neumann computing hardware, which separates the
memory from the processing unit (Von Neumann, 1945), the brain co-locates memory
and processing in the network of neurons and synapses. By inheriting this network
structure, neuromorphic platforms aim to avoid the so-called “von-Neumann bottle-
neck” in information processing.

• Computation is performed by a network of relatively simple compute nodes (neurons).
Each compute node typically operates on locally available information. This allows
for highly parallel information processing with little need for global synchronization.

• The high energy efficiency of the brain is partly credited to the use of a temporally
sparse, event-based communication scheme between neurons (i.e. spikes). Neuromor-
phic platforms often aim to achieve good energy efficiency by copying this commu-
nication mechanism.

• Neuromorphic platforms often aim to mimic the brain’s learning and adaptation
mechanisms by implementing synaptic plasticity in the hope of being able to con-
tinuously adapt to changing environments or tasks.

2.3.1 Variety of neuromorphic platforms

In this section we provide an overview of various types of neuromorphic platforms that
have been or are currently being developed. It can be instructive to arrange the different

20 CHAPTER 2. BACKGROUND

types from very close to conventional computing systems towards relying on completely
novel computing paradigms as done in Fig. 2.6. There, we have also included the con-
ventional (general purpose) computing hardware of central processing units (CPUs) and
graphical processing units (GPUs) as a reference. Generally speaking, more conventional
hardware types are more flexible, easier to use and/or more precise, while the more novel
architectures have advantages in energy efficiency and/or computation speed.
There is an ongoing debate in the fields of neuromorphic engineering and artificial intelli-
gence on what is considered to be neuromorphic and what is not. Sometimes, for example,
application-specific integrated circuits (ASICs) built for the acceleration of artificial neural
networks (ANNs) like the Tensor Processing Unit (Jouppi et al., 2017) are counted among
neuromorphic architectures as they are designed to optimally perform computations for a
model that is, at its roots, inspired by the brain. More commonly however the distinction is
made based on the employed communication mechanisms. Spiking communication is seen
as one of the key methods for neuromorphic architectures to inherit the energy efficiency
of the brain (Roy et al., 2019). In this thesis we will focus on spiking hardware systems.

FPGA-based neuromorphic implementations: Field-programmable gate arrays (FPGAs)
are commercially available general purpose computing architectures that can be used to
achieve a more efficient simulation of neural networks (both spiking or non-spiking) com-
pared to simulations performed on a CPU or GPU. An example for this is the FPGA-based
neuromorphic cortex simulator introduced in Wang et al. (2018). In the field of neuromor-
phics they are also commonly used in the development phase of custom digital ASICs as
they allow for cheaper and faster (pre-silicon) testing and benchmarking, as done for ex-
ample in Frenkel et al. (2020).

Custom digital platforms: In contrast to the commercially available and general purpose
FPGAs, custom design digital platforms are highly specialized on the simulation5 of (spik-
ing) neural networks. Nevertheless, the designers have significant freedom to choose the
main goal of their system and the design trade-offs they need to take to achieve it. For
example, the TrueNorth system by IBM (Akopyan et al., 2015) is focused on efficient simu-
lations of network dynamics and trades flexibility for it (fixed neuron model, no plasticity),
while the Loihi chip by Intel (Davies et al., 2018) favors online learning capabilities and
supports on-chip learning with configurable plasticity rules. In contrast to these fully cus-
tom platforms, the SpiNNaker system relies on conventional small ARM processors, which
are used for the computation of the neuron dynamics and which communicate with each
other via a custom spike-routing mechanism. The use of ARM processors as neuromorphic

5The terms of simulation and emulation are often not clearly defined in the field of neuromorphics. For this thesis,
we will speak of a simulation, if the neuron and synapse dynamics are calculated using numerical methods (e.g. using
Euler integration to advance the quantities step by step in time), while in an emulation a physical system (e.g. a circuit)
is governed by the same differential equations as the neurons and synapses and we observe the behavior of the physical
system.

2.3. NEUROMORPHIC ENGINEERING 21

cores in combination with custom spike routing allows for a large flexibility in network ar-
chitectures and simulated neuron as well as synapse models. For TrueNorth, Loihi as well
as SpiNNaker it is possible to combine multiple of the respective chips on a custom board
which connects the individual systems to each other and allows for the simulation of larger
networks than can be achieved with a single chip (Furber, 2016).

Mixed-signal ASICs: Mixed-signal neuromorphic platforms contain both analog and dig-
ital circuitry. The analog circuits replace the numerical simulation of the neuron and
synapse dynamics by a physical emulation. The communication of spikes between neu-
rons is realized using similar digital mechanisms as on the fully digital platforms. The
analog emulation of dynamics offers a significant advantage in terms of energy efficiency6
but comes at the cost of reduced flexibility7 as well as increased levels of variability and
noise. We will describe these platforms in detail in Section 2.3.2.

Neuromorphic architectures based on novel devices: While the neuromorphic platforms
discussed so far differ from conventional computing hardware in architecture or tech-
nology use, both fundamentally rely on the complementary metal-oxide-semiconductor
(CMOS) technology. Recent developments in the field of material sciences have shown
that this could be complemented by novel devices, especially in the field of neuromor-
phic computing. The most prominent of these new devices is the memristor (“memory
resistor”) (Strukov et al., 2008). Roughly speaking, a memristor is a resistor with a history-
dependent resistive value. In a neuromorphic context memristors could be used as a low-
power alternative for synaptic circuits, where thememristor functions as an energy efficient
storage for the synaptic weight. Some memristors even exhibit properties resembling the
STDP plasticity mechanism and could therefore directly include a learning mechanism in
the synaptic weight storage (Covi et al., 2015; Acciarito et al., 2016). While promising sig-
nificant gains in energy efficiency, the current generations of memristors still suffer from
large device variability and cycle-to-cycle variability (Pino et al., 2012; Gi et al., 2015), which
limits their practical applicability. In addition to the memristor, other novel technologies
and their application in neuromorphic computing such as phase-change memory, spintron-
ics and optical electronics are currently being investigated. As a detailed description of all
of these technologies is beyond the scope of this thesis, we refer to Schuman et al. (2017,
Section V.B) for an extensive summary.

2.3.2 Mixed-signal neuromorphic platforms

Arguably, the mixed-signal approach, where neuron dynamics are emulated in analog cir-
cuitry is a natural choice, as in biology also neuron dynamics (e.g. membrane voltages)

6and, depending on the platform, also in terms of emulation speed
7Different neuronmodels would require different circuits to emulate them. Therefore, mixed-signal platforms typically

restrict themselves to emulate only one neuron model.

22 CHAPTER 2. BACKGROUND

evolve as analog values in continuous time. The routing of spikes from presynaptic to
postsynaptic neurons is handled by digital circuitry, as this allows the most flexibility, e.g.
in the realizable connectivity between the neuron circuits.
As originally proposed by Mead and Ismail (1989), the neuron dynamics are emulated by
finding electronic circuits in which the voltages and currents correspond to neuronal quan-
tities and follow the same temporal dynamics. We have already seen an example of this for
the LIF neuron in Fig. 2.3. However, for the fabrication of a neuromorphic chip we can not
use the common electronic components like the resistors or capacitors shown in Fig. 2.3
as they are simply too large. Instead, we need to rely on transistors and very-large-scale
integration (VLSI) technology. Generally speaking, there are two different ways of using
the analog dynamics of CMOS transistors to emulate neuron dynamics and the choice of
method divides the resulting mixed-signal neuromorphic platforms into two groups.
The first method uses the dynamics of the transistor in the subthreshold regime to emu-
late neuron dynamics. This regime is characterized by low currents and relatively slowly
evolving dynamics which result in a real-time emulation of neurons (i.e. with neuronal time
constants similar to the ones of biological neurons). Examples for neuromorphic platforms
in this category are ROLLS (Qiao et al., 2015), the DYNAPs (Moradi et al., 2017) and Neu-
rogrid (Benjamin et al., 2014). These platforms operate in real-time, which makes them
suitable for the control of robotic devices or for interfacing with neuromorphic sensors.
While the sub-threshold regime of the transistors allows them to operate on a low power
budget, this comes at the price of more noisy signals, larger (compared to the secondmixed-
signal device category) device-to-device mismatch as well as larger fixed-pattern noise on
a device8.
In the second category transistors operate in the above-threshold regime. This leads to
higher currents and faster evolving dynamics. Neuronal dynamics are emulated faster, with
a speed-up of 103− 104 compared to biology, hence these platforms are often called “accel-
erated”. The high emulation speedsmake the platforms particularly suited for long-running
experiments (e.g. on learning or evolutionarymechanisms) or high throughput applications
(e.g. machine learning style image classification) but less suited for real-time robotic con-
trol. The higher currents compared to the subthreshold regime make these platforms less
susceptible to thermal and fixed-pattern noise but also result in a higher power consump-
tion. The higher power consumption however is, to a certain extent, counterbalanced by
the accelerated emulation speedwhich shortens experiment duration and thereby limits the
energy consumed. Examples for neuromorphic systems in the category are the chips in the
BrainScaleS series, developed by the Electronic Vision(s) group in Heidelberg, of which we
will describe the newest iteration BrainScaleS-2 in the following section (Schemmel et al.,
2007, 2010, 2022).

8The term fixed-pattern noise describes the fact that due to production imperfections no two transistors on a chip are
exactly identical. This leads to variations between e.g. neuron circuits even if they are parameterized identically.

2.3. NEUROMORPHIC ENGINEERING 23

SynapsesSynapsedrivers

Neurons

Figure 2.7: BrainScaleS-2 HICANN-X ASIC photograph and block diagram. Left: Photograph of the
HICANN-XASIC. The locations of the neuron circuits (green), the synapse drivers (white) and the
synapse array (yellow) are marked on the photograph. Image taken with permission from (Czis-
chek et al., 2022, Figure 5a). Right: Block diagram of the main components of the HICANN-X
chip. The analog neuromorphic core contains the neuron and synapse circuits. The synapses are
arranged in a matrix called the synapse array. Spike signals are sent into the synapse array via the
synapse drivers (triangles). The analog parameter storage provides bias currents and voltages for
the parametrization of the neuron circuits. The correlation analog-to-digital-converter (CADC)
makes synaptic correlation data available as a digital signal. Spike signals produced by the neu-
rons are sent outside of the analog core to the digital circuitry which handles event-routing. The
plasticity processing unit (PPU) has access to spike data, traces from the CADC and the synaptic
weights and can implement programmable plasticity mechanisms. This diagram was taken with
permission from (Billaudelle et al., 2021, Figure 1a).

BrainScaleS-2: HICANN-X

The HICANN-X ASIC is the newest chip in the BrainScaleS-2 series. In contrast to the
previous BrainScaleS-1 generation it is fabricated in the newer 65 nm CMOS process and
runs with a 1000-fold speed-up compared to biological timescales. Figure 2.7 shows a pho-
tograph of the chip as well as a block diagram illustrating the main components of the
chip.
The analog network core contains 512 neuron circuits emulating the adaptive exponen-
tial leaky integrate-and-fire (AdEx) neuron model (Brette and Gerstner, 2005). The AdEx
model is an extension of the LIF neuron model, which adds both an adaptation current
and an exponential spike onset. This allows for more biologically plausible voltage dynam-
ics and in particular the reproduction of neuronal firing patterns recorded from biological
neurons (Naud et al., 2008). For the applications in this thesis both the adaptation and the
exponential circuits were disabled through parametrization such that the standard LIF dy-
namics were recovered9. The synaptic input can be configured to be either CoBa or CuBa

9For more details on the analog implementation of the AdEx neurons we recommend Billaudelle (2022); Billaudelle
et al. (2022).

24 CHAPTER 2. BACKGROUND

with an exponential kernel.10 The membrane capacitances of the neurons can be coupled,
similarly to the illustration in Fig. 2.4, to form multi-compartment neurons. Additionally, a
mechanism to model nonlinear dendritic action potentials is implemented (Schemmel et al.,
2017).11 Each neuron can be configured individually using bias currents and voltages that
are stored in the analog parameter storage called the “CapMem” (Hock et al., 2013) as well
as digital configuration parameters stored in local static random-access memory (SRAM)
to enable or disable parts of the circuit.
The synapse circuits are arranged in a grid called the synapse array (see Fig. 2.7). Their
main task is to transform the digital event they receive if the presynaptic neuron emits a
spike into an analog signal that travels to the postsynaptic neuron. This analog signal is
a current pulse. Each synapse has 6 bit of local SRAM storage where the synaptic weight
is stored. The larger the synaptic weight, the stronger the current pulse that is sent to the
postsynaptic neuron. Additionally, each synapse contains analog circuitry to accumulate
correlation measurements between pre- and postsynaptic spike times.
The arrangement of synapse circuits in a grid is to facilitate the routing of spike events
from the presynaptic to the postsynaptic neurons. Below each column of synapses in the
grid is one neuron circuit (circles in Fig. 2.7). This neuron is the postsynaptic neuron of all
synapses in that column. Therefore, once a synapse has emitted a current pulse indicating
a presynaptic event, the current pulse only needs to travel down the column to reach the
correct postsynaptic neuron. Routing a presynaptic spike event to the correct synapse is
more difficult: When a neuron spikes, a digital signal, which carries information about the
identity of the spiking neuron, is sent to an event-handler. The event-handler knows which
neurons are connected to the neuron that sent the spike and based on this information then
forwards the signal to one or multiple synapse drivers (triangles in Fig. 2.7). Each synapse
driver is connected to two rows in the synaptic array and can receive spike events from 64
sources. The synapse driver forwards the received signal to the rows in the synapse array it
is connected to. Therefore, all synapse circuits in the two rows receive the event. However,
each synapse is configured to only react to events coming from one specific presynaptic
neuron. As each spike event carries information about the neuron that produced it, each
synapse circuit can compare this information to its configuration and only produce a cur-
rent pulse if the event came from the right source. The presynaptic source of a synapse
can be changed while the chip is emulating a network. This allows for a reconfiguration of
the network topology, implementing a form of structural plasticity on the chip (Billaudelle
et al., 2021).

10There were multiple iterations of the HICANN-X chip. Only the newest version (at the time of writing) HICANN-
X v3 includes the CoBa synaptic input. For the experiments shown in this thesis the older generation of HICANN-X v2
was used (both the experiments in Chapter 5 and Chapter 6 required CuBa synaptic input). After the publication the
experiments shown in Chapter 5 have also been reproduced on the v3 chip version.

11This publication describes an older prototype chip version (HICANN DLS3) but the mechanisms are also realized in
the current iteration.

2.4. DEEP LEARNING 25

The structural as well as synaptic plasticity mechanisms are handled via the plasticity pro-
cessing unit (PPU) (Friedmann et al., 2013). The PPU is an embedded microprocessor that
has access to several observables on the chip including membrane voltages, spike counts
and spike-time correlations measured in the synapse circuits. In addition to that the PPU
can modify the values of the synaptic weights stored in the SRAM in the synapse circuits.
Using this and the available observables, the PPU can perform synaptic weight updates that
follow freely programmable plasticity rules.

2.4 Deep learning

In this sectionwe introduce the basic techniques and ideas of deep learningwith a particular
focus on the relation of ANNs and their biological counterparts. It is important to note that
this is not a review of advanced deep learning models and techniques (for this we refer
the reader to e.g. Goodfellow et al. (2016)) but rather we cover the fundamental ideas upon
which modern deep learning is built.

2.4.1 Artificial neural networks

While modern deep learning uses many different architectures of ANNs (e.g. Krizhevsky
et al. (2017); Kingma andWelling (2013); Hochreiter and Schmidhuber (1997)) we will focus
here on themost basic one, the fully-connected feedforward network. It consists of multiple
layers (groups of artificial neurons) where each layer only receives input from the layer
directly adjacent it (Fig. 2.8). All neurons in layer n − 1 are connected to all neurons in
layer n via a weight matrixwn,n−1. The first layer is called the input layer, all intermediate
ones are hidden layers and the final one is called the output layer. The employed neuron
model is highly simplified compared to the more biological ones described in the previous
chapters: We call the outputs of the neurons in the n-th layer yn. The ANN equivalent of
the membrane voltage we call an with

an = wn,n−1yn−1 + bn (2.20)
yn = φ (an) (2.21)

where bn is a learnable bias for each neuron and φ is the activation function of the neuron.
Common choices for this activation function are a rectified linear unit (ReLU) (Krizhevsky
et al., 2012b), a sigmoidal function or tanh(.). Note that in the machine learning literature
this setup is colloquially referred to as multilayer perceptron (MLP) (Goodfellow et al., 2016,
Chapter 6), even though this is historically only correct for binary activation functions φ,
which nowadays are rarely used (Rosenblatt, 1958).
When the network is presented with an input sample in the lowest layer, the outputs of the
neurons are calculated layer by layer until the output layer is reached (Fig. 2.8). The output
yN of the neurons in the output layer N determines the network’s response to the given

26 CHAPTER 2. BACKGROUND

L target

Input
layer

Hidden
layer

Output
layer

Loss
function

Figure 2.8: Information propagation in ANNs Schematic drawing of a small fully-connected feedforward
ANN. The input layer is shown in green, the hidden layer in blue and the output layer in red.
When input is presented to the network, activities y travel from left to right to the output layer.
The loss function (black box with label L) takes the network’s output and evaluates how well the
network performs, e.g. by comparing the output to a target. For the learning step “error signals”,
which indicate how much each activity contributed to the loss ∂L

∂yn
, are sent backwards through

the network.

input sample. This response is fed into a task-dependent loss function L which determines
how good the produced output is for the given input sample.

2.4.2 Error backpropagation

ANNs are trained to solve a task by adjusting their weights and biases using gradient de-
scent on the loss function

∆wn,n−1 = −η∇w L (2.22)
∆bn = −η∇b L (2.23)

with a small learning rate η. Optimally, each update step should be based on the value of
the loss L obtained for all available training examples, however in practice this is typically
not feasible. If the number of training samples (the training set) is too large, each update
step is calculated on the basis of only a subset of the training samples (a “batch”). This
is commonly called stochastic gradient descent (definitions in machine learning literature
vary, sometimes stochastic gradient descent only refers to a batch size of 1 sample).

2.4. DEEP LEARNING 27

The algorithm employed to realize the gradient descent steps in ANNs is called “error back-
propagation” (Rumelhart et al., 1986). In its essence the error backpropagation algorithm
is a layer-wise application of the chain-rule for derivatives and results in weight update
equations that are based on a layer-wise recursive error signal. Here we present the weight
updates and recursive error calculation that are derived in Appendix A.1.
The updates of the synaptic weights from layer n−1 to n are derived from gradient descent
on some task-dependent loss function L

∆wn,n−1 = −η∇w L (2.24)

= −η ∂L
∂yn

⊙ φ′ (an)︸ ︷︷ ︸
=en

yT
n−1 (2.25)

= −η en y
T
n−1 (2.26)

where we define the error signal for the layer n as en = ∂L
∂yn
⊙ φ′ (an).

The error signal can be calculated recursively from the error signal in the layer above

en =
∂L
∂yn

⊙ φ′ (an) (2.27)

=
[
wT

n+1,nen+1

]
⊙ φ′ (an) . (2.28)

Fig. 2.8 illustrates how this can be realized in a network when the derivative of the loss
with respect to the layers’ activity ∂L

∂yn
is propagated backwards through the layers. Note

that φ′ (an) does not need to be sent backwards from layer n+1 as it is a local quantity of
layer n.

2.4.3 Biological plausibility

Even though ANNs are to a certain extent inspired by the brain, they and especially the
error backpropagation mechanism employed to train them have been deemed biologically
implausible for a long time (Crick, 1989; Grossberg, 1987). Nevertheless, there has been
a large interest both in the field of computational neuroscience and AI to find alternative
formulations or approximations of error backpropagation that address the biologically im-
plausible aspects of the original version (Richards et al., 2019; Whittington and Bogacz,
2019; Lillicrap et al., 2020). We detail here the areas of implausibility which need to be
addressed by a biologically-plausible variant of deep learning and error backpropagation.
These aspects are collected from reviews on this topic by Whittington and Bogacz (2019)
and Lillicrap et al. (2020).

• Symmetry of forward and backward connectivity: In an ANN information can
flow forward and backward through the same synaptic connection. As biological

28 CHAPTER 2. BACKGROUND

(chemical) synapses are one-way connections, this information flow would need to
be realized by having two biological synapses with opposite directions but the same
synaptic strength for each artificial one. This is however problematic since the synap-
tic strength of the feedforward synapse changes during learning and the feedback
synapse, which is physically separate from it, would need to somehow notice this
change and adjust itself accordingly. This issue is commonly referred to as the “weight
transport problem”. A biologically plausible model needs to either not require the
symmetry between forward and backward connectivity or find a biologically plausible
learning mechanism that keeps the feedback connections symmetric to the forward
ones.

• Phased computation: During the training of an ANN we alternate between feed-
forward and feedback phases. In the feedforward phase an input is presented to the
network and travels from lowest to highest layer towards the output layer of the net-
work. In the feedback phase an error signal is sent into the network in the output layer
and travels backwards. The information flow is strictly unidirectional in both phases
and since the phases are separate, the error signals never mix or interfere with the
feedforward information flow. Such phased and strictly separated information flow
is unrealistic. A biologically plausible model needs to be able to handle simultaneous
forward and backward information flow as well as the interference of both.

• Non-local weight updates: The synaptic weight updates of an ANN are calculated
by an external algorithm (error backpropagation) which has access to all state vari-
ables in the network. However, it is assumed that a biological synapse can only rely
on quantities represented in the pre- and postsynaptic neurons and maybe a global
(i.e. network wide) factor through neuromodulators (Gerstner et al., 2018). Therefore,
a biologically plausible model must include mechanisms to represent the required
quantities for the weight updates locally in space and time, which means at the time
of the synaptic update within the pre- or postsynaptic cell.

• Signed error signals: The error signals propagating backwards through the network
can be of both positive and negative value. This is in disagreement with the assump-
tion that biological neurons communicate via spikes or firing rates. Neither of them
are directly able to communicate a signed value, because spikes are just a 1-bit signal
and firing rates are strictly positive. A biologically plausible model should be able
to represent, communicate or calculate the signed error signals with only spikes or
positive firing rates.

• Unrealistic neuron model: The neuron model employed in an ANN is highly sim-
plified, as it has for example no notion of time. A more biologically plausible model
should include a neuron model which more closely matches the behavior of biological
neurons and exhibits temporal dynamics.

2.4. DEEP LEARNING 29

In recent years significant progress has been made in addressing the above-mentioned
points. One of the most prominent findings, upon which many subsequent studies rely,
is the mechanism of feedback alignment (FA) by Lillicrap et al. (2016). It tackles the
weight transport problem by showing that the synaptic weights used for the backward pass
through the network do not need to be the transposed of the forward weights but instead
can be replaced with a random (and constant throughout the training) set of weights. While
losing some performance, the FA networks are still able to learn tasks with a high degree
of accuracy. Lillicrap et al. (2016) attributes this to the forward weights roughly aligning
themselves (throughout the training) with the randomly chosen backward weights. Due to
this alignment the errors propagated using the random feedback weights point roughly in
a similar direction as the “correct ones” which the network would have propagated if the
transposed of the forward weights would have been used. In practice, it turns out that the
errors pointing roughly in the right direction is often good enough to eventually learn to
solve a task. Even though later studies have shown that FA is not feasible for all network ar-
chitectures and sizes (Bartunov et al., 2018; Moskovitz et al., 2018; Max et al., 2022) it is still
widely used due to the fact that it completely avoids the weight transport problem while
not requiring any architectural changes to the network or any other additional complexity.
There are many recent studies attempting to address the biological implausibilities of error
backpropagation by suggesting approximative solutions that prevent one or multiple of
the above-mentioned implausibilities (Whittington and Bogacz, 2017; Scellier and Bengio,
2017; Guerguiev et al., 2017; Sacramento et al., 2018; Mesnard et al., 2019; Song et al., 2020;
Millidge et al., 2020a,b; Pozzi et al., 2020; Payeur et al., 2021; Tang et al., 2021). Among them
is the dendritic microcircuit model of Sacramento et al. (2018) which we will summarize,
discuss and improve upon in multiple aspects in Chapter 6.

30 CHAPTER 2. BACKGROUND

Chapter 3

Hypothesis and Aim

Within the last decade deep learning has revolutionized the field of machine intelligence
starting from breakthroughs in computer vision (Krizhevsky et al., 2012a) to nowadays
approaching human-level performance in a variety of areas such as complex strategical
planning and natural language processing (Vinyals et al., 2019; Brown et al., 2020; Rae
et al., 2021). This progress was fueled by the ever-increasing amount of available compute
power, mainly carried by the exponential growth of transistor densities on chips, com-
monly referred to as Moore’s law (Moore et al., 1965). However, as transistor dimensions
are approaching the sizes of single atoms, this growth is slowing down and the contin-
uation of Moore’s law is uncertain. Currently, parallelization techniques in combination
with specialized deep learning hardware are employed to fulfill the increasing demand on
computational power, but also this approach is expected to struggle to keep up in the fu-
ture (Thompson et al., 2020; Leiserson et al., 2020). Nonetheless, new deep learning models
are tackling increasingly challenging tasks while growing ever larger and requiring more
compute power. Already a few years ago it was not out of the ordinary for state-of-the-
art models to require the equivalent of several hundred GPUs (consuming dozens of kW
of power) to perform a task at human level (Silver et al., 2016; Economist, 2016). This is
not sustainable, in particular if we remind ourselves that the original inspiration of these
artificial neural networks, the human brain, is able to solve such tasks at a power budget of
around 20W.
The field of neuromorphic engineering aims to develop novel computing architectures that
are more closely related to the mechanisms in the brain. They thereby hope to inherit the
efficiency of their biological role model. Neuromorphic computing architectures that strive
to mimic the brain’s ability to learn, need to include mechanisms that allow for the adaption
of their neural networks such that they can learn or be trained to perform a large variety
of tasks. However, since it is so far not fully understood how learning in the brain works
in detail, there is no ready-made blueprint of how the learning mechanisms on neuromor-
phic architectures should look like. In contrast to the only partially understood learning in
biological neural networks, the mechanisms for training artificial neural networks, in par-

31

32 CHAPTER 3. HYPOTHESIS AND AIM

ticular the error backpropagation algorithm, are known since the 1980s (Rumelhart et al.,
1986). Since then, the error backpropagation algorithm has demonstrated its flexibility and
ability to train artificial neural networks in a variety of scenarios and is at the center of the
resounding success of deep learning.
We therefore hypothesize that the combination of neuromorphic hardware and error back-
propagation can yield powerful and flexible devices for the deployment of neural networks
and present an energy-efficient alternative to classical deep learning on conventional com-
puting hardware.
Even though both, classical deep neural networks and current neuromorphic platforms,
draw inspiration from the same archetype, they are not directly compatible with each other.
In this thesis we aim at bridging this gap. There are two possible angles from which we
can approach this task, both of which we will explore in this thesis. The first option is
to start from current neuromorphic design philosophies, to identify common components
of recent neuromorphic platforms and to develop a method of performing error backprop-
agation based on these components (Chapter 5). The second option is to start out with
an already existing biologically plausible approximation of error backpropagation and to
modify it step-by-step to make it amenable to hardware implementation (Chapter 6). Be-
fore we can address either of these topics however, we need to solve an often over-looked
difficulty (Chapter 4):

Chapter 4: A dataset for algorithmic and neuromorphic prototyping

As it is our aim to implement a variant or approximation of error backpropagation on a
neuromorphic platform, we need to ensure, both during the development process of the
algorithm and during the deployment on the hardware platform, that the implemented/de-
ployed algorithm actually correctly propagates the errors as intended. Theoretically, this
can simply be tested by attempting to learn a task which is only solvable by if appropriate
error signals reach all layers of the network. In practice however, this is a difficult prob-
lem: Common benchmarks, for which we are confident that they are difficult enough and
therefore sensitive to a potential flaw in an implementation, e.g. CIFAR (Krizhevsky et al.,
2014) or Imagenet (Deng et al., 2009), are simply too large. They typically require extensive
training runs which can hinder quick iterations when developing and testing an algorithm.
Additionally, the relatively large size of the networks required to solve them can prohibit
the deployment on neuromorphic prototype hardware which often has only limited re-
sources. Conversely, smaller tasks, such as the classification of the MNIST dataset (LeCun
et al., 1998) or XOR, are unsuitable because they are not sensitive enough to expose imple-
mentation flaws. In Chapter 4 we therefore aim to engineer a task, the Yin-Yang dataset,
that is suitable both for algorithmic as well as hardware prototyping. For this we require it
to be a difficult enough test case to spot implementation flaws while at the same time being
small enough to be deployable on small-scale neuromorphic systems.

33

Chapter 5: Error backpropagation compatible with neuromorphic LIF neurons

One of the big obstacles for implementing error backpropagation on neuromorphic chips
is the fact that the original error backpropagation mechanism is not directly applicable to
networks of spiking neurons. This is due to the fact that it requires differentiability of ac-
tivities and spikes are, in principle, non-differentiable, all-or-nothing signals. Therefore,
developing an error backpropagation algorithm compatible with spiking neurons has been
an active field of research in recent years (Mostafa, 2017; Neftci et al., 2019). In Chapter 5
we go a step further and not only aim to find an algorithm that is compatible with LIF neu-
rons, one of the most common spiking neuron types on neuromorphic platforms, but is also
robust to neuromorphic hardware constraints and distortion effects (Göltz et al., 2021). In
particular, we both evaluate our algorithm in an ideal simulated setting and investigate the
effects of fixed-pattern noise and quantizedweight values. Finally, we demonstrate the algo-
rithm’s suitability for neuromorphic deployment by implementing it on the BrainScaleS-2
platform. We show that our algorithm is able to leverage the efficiency and speed of the
BrainScaleS-2 platform and achieve competitive results in accuracy, classification speed as
well as power consumption.

Chapter 6: Adapting a biologically plausible algorithm for deployment on neuro-
morphic hardware

In contrast to the original error backpropagation algorithm its biologically plausible vari-
ants are more likely to be amenable to an implementation on neuromorphic platforms. This
is due to the fact that the biologically plausible variants operate, to varying extend, under
similar constraints as those imposed by neuromorphic platforms, such as for example the
locality of learning rules. The dendritic microcircuits of Sacramento et al. (2018) are one of
the recently developed models that approximate error backpropagation in a local, phase-
free and bio-plausible fashion. However, despite their biological plausibility, the dendritic
microcircuits are still not directly deployable on current neuromorphic systems. This is
due to for example their rate-based exchange of information, which contrasts the spike- or
event-based communication on neuromorphic hardware. In Chapter 6 we assess the model
with the focus on practical feasibility and neuromorphic implementability. We, further-
more, propose multiple extensions that make a neuromorphic deployment more feasible
and can also inform the development of future hardware generations.

34 CHAPTER 3. HYPOTHESIS AND AIM

Chapter 4

Result I: A proper test case for
prototyping

This chapter contains the article The Yin-Yang dataset. It was published in the Association
for ComputingMachinery’s (ACM) Proceedings of the Neuro-inspired Computational Elements
Workshop 20221 and a preprint is available on arXiv.2 The format was adapted to the format
of this thesis and the references have been included in the main bibliography.

Author contributions

The project idea was developed jointly by LK, JG and MAP. LK and JG designed the ex-
periments, LK wrote the necessary software, prepared it for publication on GitHub3 and
performed the experiments in Fig. 4.1, Fig. 4.2 and Fig. 4.3. The Fig. 4.4 was created by JG.
LK, JG and MAP collectively wrote the article.

1Kriener et al. (2022)
2Kriener et al. (2021a)
3Kriener et al. (2021b)

35

36 CHAPTER 4. RESULT I

The Yin-Yang dataset

L. Kriener1, J. Göltz2,1, M. A. Petrovici1,2
1 Department of Physiology, University of Bern, 3012 Bern, Switzerland.

2 Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.

Abstract

The Yin-Yang dataset was developed for research on biologically plausible error backprop-
agation and deep learning in spiking neural networks. It serves as an alternative to classic
deep learning datasets, especially in early-stage prototyping scenarios for both network
models and hardware platforms, for which it provides several advantages. First, it is smaller
and therefore faster to learn, thereby being better suited for small-scale exploratory stud-
ies in both software simulations and hardware prototypes. Second, it exhibits a very clear
gap between the accuracies achievable using shallow as compared to deep neural networks.
Third, it is easily transferable between spatial and temporal input domains, making it in-
teresting for different types of classification scenarios.

4.1 Introduction

We introduce the Yin-Yang dataset for learning in hierarchical networks (Kriener et al.,
2021b). It is tailored to the requirements of research on biologically plausible error back-
propagation algorithms, learning in spiking neural networks and hierarchical networks on
neuromorphic hardware. These fields typically require small but at the same time not triv-
ially solvable datasets to prototype and test network architectures and learning algorithms.
Setups commonly used for this purpose involve either elementary logic tasks such as XOR
or small-scale datasets such as MNIST or fashion-MNIST (LeCun et al., 1998; Xiao et al.,
2017) and reduced versions thereof. However, these setups often do not adequately ful-
fill their purpose. Binary XOR only has a tiny number of input patterns and therefore a
very limited, discrete set of reachable accuracies, making the evaluation and comparison of
learning algorithms difficult. In turn, MNIST-type datasets have other drawbacks. For one,
they require comparatively large networks, which might not be feasible during prototyp-
ing. But even more importantly, and despite this ostensible difficulty, they can nevertheless
be classified with high accuracy even by shallow networks or networks without learning
in the lower layers. This is problematic because training a deep network with an imperfect
learning algorithm can result in performance indistinguishable from that of a shallow net-
work or a network with plasticity only in the last layer. Conversely, a test on the MNIST
dataset can fail to reveal the inability of the training algorithm to propagate error signals
through the network, as the achieved high accuracies obscure the underlying problem.

4.2. DATASET 37

0.00.51.0
x2

0.0 0.5 1.0
x1

0.00

0.25

0.50

0.75

1.00

y1
training set

0.00.51.0
x2

0.0 0.5 1.0
x1

validation set

0.00.51.0
x2

0.00

0.25

0.50

0.75

1.00

y2

0.0 0.5 1.0
x1

test set

Figure 4.1: Training, validation and test dataset. Each dot in the yin-yang symbol represents one sample
of the dataset. The color of the dot denotes its class (“Yin”, “Yang” or “Dot”). This figure was
generated using the default settings for random seeds and dataset sizes (5000 samples for the
training set and 1000 samples each for the validation and test set).

The Yin-Yang dataset can provide an alternative for these testing and prototyping scenarios
as it is solvable by smaller networks, contains fewer samples and most importantly exhibits
a large gap between the accuracies reached by shallow or partly fixed networks on the one
hand and correctly trained deep networks on the other. Note that here, we use “deep” in
opposition to “shallow”, i.e., any network that has latent variables through which errors
need to propagate. We consider a shallow network to be the equivalent of a single-layer
perceptron, with only an input layer connected directly to a label layer.

4.2 Dataset

Each sample in the dataset represents a point in a two-dimensional representation of the
yin-yang symbol. Depending on their location in the symbol the samples are classified into
the “Yin”, “Yang” or “Dot” class (Fig. 4.1). Even though the areas in the yin-yang symbol
covered by the different classes have different sizes, the dataset is designed to be balanced,
which means that all classes are represented by approximately the same amount of sam-
ples. Note that therefore the density of samples is higher in the “Dot”-class regions, as the
combined area of these regions is smaller than that of the others.
The samples are randomly generated using rejection sampling. The exact version of a gen-
erated set of samples is therefore determined by the random seed and dataset size. This
makes it possible to produce multiple dataset versions by providing different random seeds
and dataset sizes. In the default configuration the training set has 5000 samples while the
validation and test sets have 1000 samples respectively, each generated with a different
random seed.

38 CHAPTER 4. RESULT I

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train errors
validation errors
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train error
validation error
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

0 100 200 300
epoch

1

10

100

er
ro

r [
%

]

train error
validation error
test error

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

y1

A

B

C

Figure 4.2: Comparison of exemplary training results for different network setups. Network param-
eters are given in Table 4.2. Left column: Evolution of the validation and training error during
training. Right column: training result illustrated on the test set. (A) Network with one hid-
den layer and fully functional synaptic plasticity via classical error backpropagation. (B) Shallow
network. (C) Network with one hidden layer and frozen lower weights.

4.3. TRAINING RESULTS 39

0 100 200 300
epoch

1

10

100
va

lid
at

io
n

er
ro

r [
%

]
10 hidden units
30 hidden units
100 hidden units

50 100 150
hidden layer size

1

10

te
st

 e
rro

r [
%

]

A B

Figure 4.3: Impact of hidden layer size on network performance. (A) Validation errors during training
for three different network architectures with different hidden layer sizes. For each architecture,
ten training runs with different random weight initialization are overlaid. (B)Mean and standard
deviation of the final test error depending on hidden layer size of the network. The colored data
points correspond to the runs shown in A.

Table 4.1: Mean and standard deviation of the test accuracy for 20 training runs with different random ini-
tializations for different network configurations. Training parameters can be found in Table 4.2.

network hidden layer with 20 neurons hidden layer with 30 neurons

deep network (97.0 ± 1.6) % (97.6 ± 1.5) %
deep network (frozen lower weights) (78.3 ± 7.8) % (85.5 ± 5.8) %

shallow network (63.8 ± 1.0) %

As can be seen in Fig. 4.1, values of all samples in the dataset are strictly positive. This is the
case to accommodate network models which require positive input values only (common in
the field of biologically-plausible networks, as firing rates as well as spike times are typically
denoted by positive numbers). Because of that the yin-yang symbol is not centered around
zero. This however complicates training in neuron models without intrinsic (learnable)
bias. To facilitate training for these models, each sample in the dataset consists not only of
the coordinates (x, y) determining the position in the yin-yang symbol but additionally also
the values (1−x, 1−y). This effectively symmetrizes the input and removes the need for a
bias even though the yin-yang symbol is not centered around the origin of the coordinate
system.

40 CHAPTER 4. RESULT I

4.3 Training results

As a baseline for further applications of this dataset we also provide some training results
achieved with classical artificial neural networks. In particular, we compare network per-
formance in three scenarios:

1. a network with one hidden layer and fully functional error backpropagation;

2. a shallow network with only an input and an output layer;

3. a network with one hidden layer, but with frozen weights between the input and the
hidden layer to emulate training with a faulty error backpropagation algorithm.

For all scenarios, we use very small network sizes to emulate a model or hardware proto-
typing environment. Incidentally, this is also helpful in highlighting another problem that
is frequently overlooked when increasing the network size: because a large enough hidden
layer can mask faulty error backpropagation, larger-scale networks are often inadequate
for a quantitative verification of credit assignment (precise error propagation) within the
studied network model. This is discussed below in more detail.
The comparison between the three scenarios (Table 4.1 and Fig. 4.2) illustrates a manifest
advantage of the Yin-Yang dataset compared to other commonly used datasets of compa-
rable size: both the shallow network and the one with the frozen lower weights are clearly
unable to learn the required features to successfully classify the dataset. This leads to a gap
of more than 30 % between the accuracies achieved by a shallow and a deep network.
The failure of the partially frozen network highlights another important issue for various
proposals of bio-plausible solutions to the credit assignment problem. In large enough
networks, the large hidden layers project the input into a very high-dimensional space,
which makes classification tasks more easily solvable by the linear classifier embodied by
the top layer. This is commonly referred to as the “kernel trick” (see e.g. Scholkopf (2001)).
This can easily mask the inability of a network to correctly propagate errors and perform
true gradient descent learning. While this issue would become observable when dealing
with more complicated classification problems, it would require using large, deep networks
that are not only difficult to debug but, more importantly, would lie beyond the capabilities
of typical prototype devices or software simulations.
The Yin-Yang dataset addresses both problems simultaneously, by clearly highlighting
faulty error backpropagation already within resource-efficient implementations with hid-
den layer sizes of around 20 to 30 neurons (see Table 4.1). Under these circumstances, the
difference between the accuracy reached by a properly trained network and the network
where only the top weights are trained lies around 20% and 12% respectively. This is a
much higher gap than in a comparable example with the MNIST dataset, where networks
need several hundred hidden neurons to show significant performance improvements be-
yond linear classifiers LeCun et al. (1998). However, such sizes automatically introduce the

4.4. INPUT ENCODING 41

Table 4.2: Training parameters used to produce the results in Fig. 4.2. Fig. 4.3 uses the same parameters
except for the size of the hidden layer.

parameter name value

activation function ReLU
size input 4
size hidden layer (for deep net) 30
size output layer 3
training epochs 300
batch size 20
optimizer Adam, (Kingma and Ba, 2014)
Adam parameter β (0.9, 0.999)
Adam parameter ϵ 10−8

learning rate 0.01

kernel trick: a network with 500 hidden units reaches on average 98.3 % on MNIST, while
the same network with only training in the top layer reaches 94.8 %. Unmasking these is-
sues can become crucial in research on biologically plausible forms of credit assignment
and (local) synaptic plasticity, where exact error backpropagation is notoriously difficult to
realize, both for rate-based models and, even more pronouncedly, for spiking networks.

Another advantage of the Yin-Yang dataset over many other commonly used datasets is the
dimensionality of its samples and the network sizes required to learn the task. Each sam-
ple consists of only four input values (compared to, e.g., the 784 input channels required
by MNIST), which significantly reduces the required fan-in for hidden neurons. This can
be especially beneficial on neuromorphic platforms, where the number of synaptic connec-
tions to a neuron is very often limited by the chip architecture, even more so for early-stage
prototypes (e.g. (Binas et al., 2016, Section 3.3), Moradi and Indiveri (2013); Schemmel et al.
(2017); Frenkel et al. (2018); Nair and Indiveri (2019); Billaudelle et al. (2020)).

Also, this dataset can be learnedwith a single hidden layer of reasonably small size (Fig. 4.3).
For consistently high final accuracies, a hidden layer of 20 to 30 neurons is required, but
for a small proof-of-concept demonstration of a learning algorithm or hardware prototype,
even 10 hidden units are enough to achieve results (around 88% accuracy) that would be
impossible with shallow networks, or with algorithms that cannot profit from a network’s
representational hierarchy. The full set of training parameters can be found in Table 4.2.

In addition to the results shown here, the dataset has already been used to showcase al-
gorithms for error backpropagation in spiking neural networks in (Göltz et al., 2021) and
(Wunderlich and Pehle, 2021).

42 CHAPTER 4. RESULT I

0 0.5 1.0
x1

0.0

0.5

1.0
y1

A

0
time

x1

y1
orange samle

0
time

x1

y1
green samle

0
time

x1

y1
blue samle

BrainScaleS-2

B

Yin Yang Dot
predicted class

Yi
n

Ya
ng

Do
t

tru
e

cla
ss

95 3 2

2 96 3

3 3 95

C

5 10
input time t1 [s]

5

10

in
pu

t t
im

e
t 2

 [
s]

D

20

40

60

80

te
st

 a
cc

ur
ac

y
[%

]

Figure 4.4: Spatio-temporal input encoding scheme and classification results on the neuromorphic
chip BrainScaleS-2. Panels (B-D) taken from Göltz et al. (2019). (A) Encoding of the x, y-
coordinates of the Yin-Yang pattern as input spike times t1 and t2 illustrated on one sample each
for the three classes. (B) Image of the BrainScaleS-2 ASIC. (C) Confusion matrix after training
the BrainScaleS-2 chip to classify the Yin-Yang dataset. (D) Classification result of the chip on the
test set. For each input sample the color indicates the class determined by the trained network.
Wrong classifications are marked with a black X. The wrongly classified samples all lie very close
to the border between two classes.

4.4 Input encoding

The Yin-Yang dataset can be adapted to suit the needs of very different network models.
Depending on the used network architecture, neuron model and mode of communication
between the neurons, different types of information encoding become necessary. In the
following, we discuss several encodingmethods that arewell-suited for a variety of different
network and neuron types.

4.4.1 Spatio-temporal input encoding

Using this dataset for spiking neural networks requires an explicit spatio-temporal input
encoding. In Göltz et al. (2021) and Wunderlich and Pehle (2021), the four input features of
the dataset were directly interpreted as the spike times of 4 input neurons (Fig. 4.4 A). This
was done by choosing parameters tearly and tlate as the earliest and latest possible time the
input neurons are allowed to spike. Then the dataset values x = (x, y, 1 − x, 1 − y) were
translated into the four spike times t = (t1, t2, t3, t4) as follows:

t = tearly + x · (tlate − tearly) (4.1)

4.4. INPUT ENCODING 43

The choice of tearly/late is dependent on the network architecture and employed learning
algorithms. For Göltz et al. (2021) it has proven beneficial to choose tearly slightly after the
start of the experiment and tlate as the sum of the two neuron time constants tlate ≈ τm+τsyn.
The classification results achieved with the BrainScaleS-2 chip are shown in Fig. 4.4.
Alternatively, a different spike-based spatio-temporal encoding can be achieved implicitly
by manipulating input currents, as proposed for example in Cramer et al. (2020b). Here,
each input variable is interpreted as the strength of a constant input current into a leaky-
integrate and fire neuron. The timing of the output spike of the input neurons depends on
the strength of the input current I with

tspike = τm log
I

I − θI
(4.2)

where τm denotes the membrane time constant and θI the minimal current necessary to
evoke an output spike.

4.4.2 Rate-based input encoding

Many models for biologically plausible error backpropagation are built around rate-based
neuron models (e.g. Sacramento et al. (2018); Scellier and Bengio (2017); Haider et al. (2021),
for a review see also Whittington and Bogacz (2019)). These approaches use continuous
rates as an idealized version of rate coding in spiking neurons. Others build on the same
approximations but explicitly use spike-based communication in their neural network im-
plementations (e.g. Schmitt et al. (2017); Esser et al. (2015); Guerguiev et al. (2017)). For
such rate-based models, a suitable encoding scheme can be easily realized by designating
4 input neurons and setting their output rates proportional to the values of the respective
input feature.
In case of spiking neurons, these four input neurons can produce Poisson spike trains with
the same rates as their rate-based counterparts, as, for example, in Schmitt et al. (2017).
Alternatively, regular spike trains could also be used to represent firing rates; while more
precise than the intrinsicly stochastic Poisson solution, this scheme has its own potential
drawback of making the neuronal input-output function dependent on not just the rate, but
also the phase of a neuron’s afferents. Under certain circumstances, encoding an input as
a single neuron may not be viable, for example when synaptic bandwidth or neuron firing
rate are limited. In this case, one input can be represented by a population of neurons with
a mean firing rate equal to the value of the input.

Code and data availability

Code for the Yin-Yang data set is available at https://github.com/lkriener/yin_
yang_data_set. The example notebook in the repository includes the plotting of the data

https://github.com/lkriener/yin_yang_data_set
https://github.com/lkriener/yin_yang_data_set

44 CHAPTER 4. RESULT I

samples (Fig. 4.1) and the training of deep and shallow networks (Fig. 4.2). Additional data
available on request from the authors.

Acknowledgment

We wish to thank Sebastian Billaudelle and Benjamin Cramer for valuable discussions, as
well asMikeDavies and Intel for their ongoing support. We gratefully acknowledge funding
from the European Union under grant agreements 604102, 720270, 785907, 945539 (HBP)
and the Manfred Stärk Foundation.
During the development of the dataset some calculations were performed on UBELIX,
the HPC cluster at the University of Bern, others were performed on the bwForCluster
NEMO, supported by the state of Baden-Württemberg through bwHPC and the German Re-
search Foundation (DFG) through grant no INST 39/963–1 FUGG. Additionally, our work
has greatly benefitted from access to the Fenix Infrastructure resources, which are par-
tially funded from the European Union’s Horizon 2020 research and innovation programme
through the ICEI project under the grant agreement No. 800858.

Chapter 5

Result II: Exact error backpropagation
with LIF neurons

This chapter contains the article Fast and energy-efficient neuromorphic deep learning with
first-spike times. It was published in the journal Nature machine intelligence1 and a preprint
is available on arXiv.2 Springer Nature permits the reproduction of the article as part of
the author’s thesis. The format was adapted to the format of this thesis and the references
have been included in the main bibliography.

Author contributions

JG and LK contributed equally and share the first authorship of this publication. JG, AB
and MAP designed the conceptual and experimental approach. JG derived the theory and
implemented the algorithm. LK embedded the algorithm into a comprehensive training
framework. All experiments were performed in close collaboration between JG and LK.
In the following the main contributor to each experiment is indicated. JG performed the
hardware emulations and theoretical evaluations (Fig. 5.1, Fig. 5.4, Fig. SI.A1, Fig. SI.D1,
Fig. SI.E1, Fig. SI.F1). LK performed the software simulations (Fig. 5.2, Fig. 5.3, Fig. 5.5,
Table SI.B1, Fig. SI.C1, Fig. SI.E2). AB and OJB offered substantial software support. SB, BC,
JG and AFK provided low-level software for interfacing with the hardware. JG, LK, DD, SB
and MAP wrote the manuscript.

1Göltz et al. (2021)
2Göltz et al. (2019)

45

46 CHAPTER 5. RESULT II

Fast and energy-efficient neuromorphic deep learning
with first-spike times

J. Göltz∗,1,2, L. Kriener∗,2,
A. Baumbach1, S. Billaudelle1, O. Breitwieser1, B. Cramer1, D. Dold1,3, A. F. Kungl1,

W. Senn2, J. Schemmel1, K. Meier1, M. A. Petrovici2,1
∗ These authors contributed equally

1 Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
2 Department of Physiology, University of Bern, 3012 Bern, Switzerland.

3 Siemens AI lab, Siemens AG Technology, 80331 Munich, Germany.

Abstract

For a biological agent operating under environmental pressure, energy consumption and
reaction times are of critical importance. Similarly, engineered systems are optimized for
short time-to-solution and low energy-to-solution characteristics. At the level of neuronal
implementation, this implies achieving the desired results with as few and as early spikes
as possible. With time-to-first-spike coding both of these goals are inherently emerging
features of learning. Here, we describe a rigorous derivation of a learning rule for such first-
spike times in networks of leaky integrate-and-fire neurons, relying solely on input and out-
put spike times, and show how this mechanism can implement error backpropagation in hi-
erarchical spiking networks. Furthermore, we emulate our framework on the BrainScaleS-2
neuromorphic system and demonstrate its capability of harnessing the system’s speed and
energy characteristics. Finally, we examine how our approach generalizes to other neuro-
morphic platforms by studying how its performance is affected by typical distortive effects
induced by neuromorphic substrates.

5.1 Introduction

In recent years, themachine learning landscape has been dominated by deep learningmeth-
ods. Among the benchmark problems they managed to crack, some were thought to still
remain elusive for a long time (Krizhevsky et al., 2012a; Silver et al., 2017; Brown et al.,
2020). It is thus not exaggerated to say that deep learning dominates our understanding of
“artificial intelligence” (Brooks et al., 2012; Ng, 2016; Hassabis et al., 2017; Sejnowski, 2018;
Richards et al., 2019).
Compared to abstract neural networks used in deep learning, their more biological
archetypes — spiking neural networks — still lag behind in performance and scalability
(Pfeiffer and Pfeil, 2018). Reasons for this difference in success are numerous; for instance,
unlike abstract neurons, even an individual biological neuron represents a complex system,
with finite response times, membrane dynamics and spike-based communication (Gerstner,

5.1. INTRODUCTION 47

2001; Izhikevich, 2004), making it more challenging to find reliable coding and computa-
tion paradigms (Gerstner, 1998; Maass, 2016; Davies, 2019). Furthermore, one of the major
driving forces behind the success of deep learning, the backpropagation of errors algorithm
(Linnainmaa, 1970; Werbos, 1982; Rumelhart et al., 1986), remained incompatible with spik-
ing neural networks until only very recently (Tavanaei et al., 2018a; Neftci et al., 2019).
Despite these challenges, spiking neural networks promise to hold some important advan-
tages. The time information inherent to spikes allows a coding scheme for spike-based
communication that utilizes both spatial and temporal dimensions (Gütig and Sompolin-
sky, 2006), unlike spike-count-based approaches (Cao et al., 2015; Diehl et al., 2016; Schmitt
et al., 2017; Wu et al., 2019), where the information of spike times is at least partially di-
luted due to temporal or population averaging. Owing to the inherent parallelism of all
biological, as well as many biologically-inspired, spiking neuromorphic systems Thakur
et al. (2018), this promises fast, sparse and energy-efficient information processing, and
provides a blueprint for computing architectures that could one day rival the efficiency of
the brain itself (Mead, 1990; Roy et al., 2019; Pfeiffer and Pfeil, 2018; Thakur et al., 2018).
This makes spiking neural networks implemented on specialized neuromorphic devices po-
tentially more powerful — at least in principle — than the “conventional”, simple machine
learning models currently used on von-Neumann machines, even though this potential still
remains mostly unexploited (Pfeiffer and Pfeil, 2018).
Many attempts have been made to reconcile spiking neural networks with their abstract
counterparts in terms of functionality, e.g., featuring spike-based inference models (Petro-
vici et al., 2013; Neftci et al., 2014; Petrovici et al., 2016; Neftci et al., 2016; Leng et al., 2018;
Kungl et al., 2019; Dold et al., 2019; Jordan et al., 2019; Hunsberger and Eliasmith, 2016) and
deep models trained on target spike times by shallow learning rules (Kheradpisheh et al.,
2018; Illing et al., 2019) or using spike-compatible versions of the error backpropagation al-
gorithm (Bohte et al., 2000; Zenke and Ganguli, 2018; Huh and Sejnowski, 2018). Especially
for tasks operating on static information, a particularly elegant way of utilizing the tem-
poral aspect of exact spike times is the time-to-first-spike (TTFS) coding scheme (Thorpe
et al., 2001). Here, a neuron encodes its real-valued response to a stimulus as the time
elapsed before its first spike in reaction to that stimulus. Such single-spike coding enables
fast information processing by explicitly encouraging the emission of as few spikes as early
as possible, which meets physiological constraints and reaction times observed in humans
and animals (Thorpe et al., 1996, 2001; Johansson and Birznieks, 2004; Gollisch and Meister,
2008). Apart from biological plausibility, such a fast and sparse coding scheme is a natu-
ral fit for neuromorphic systems that offer energy-efficient and fast emulation of spiking
neural networks (Schemmel et al., 2010; Akopyan et al., 2015; Billaudelle et al., 2019; Davies
et al., 2018; Mayr et al., 2019; Pei et al., 2019; Moradi et al., 2017).
For hierarchical TTFS networks, a gradient-descent-based learning rule was proposed in
(Mostafa, 2017; Kheradpisheh andMasquelier, 2020), using error backpropagation on a con-
tinuous function of output spike times. However, this approach is limited to a neuronmodel

48 CHAPTER 5. RESULT II

without leak, which is neither biologically plausible, nor compatible withmost analog very-
large-scale integration (VLSI) neuron dynamics (Thakur et al., 2018). We propose a solution
for leaky integrate-and-fire (LIF) neurons with current-based (CuBa) synapses — a widely-
used dynamical model of spiking neurons with realistic integration behavior (Rauch et al.,
2003; Gerstner and Naud, 2009; Teeter et al., 2018). An early version of this work was pre-
sented in Göltz (2019).

For several specific configurations of time constants, we provide analytical expressions for
first-spike timing, which, in turn, allow the calculation of exact gradients of any differ-
entiable cost function that depends on these spike times. In hierarchical networks of LIF
neurons using the TTFS coding scheme, this enables exact error backpropagation, allow-
ing us to train such networks as universal classifiers on both continuous and discrete data
spaces.

As our algorithm only requires knowledge about afferent and efferent spike times of all neu-
rons, it lends itself to emulation on neuromorphic hardware. The accelerated, yet power-
efficient BrainScaleS-2 platform (Friedmann et al., 2017; Billaudelle et al., 2019) pairs espe-
cially well with the sparseness and low latency already inherent to TTFS coding. We show
how an implementation of our algorithm on BrainScaleS-2 can obtain similar classification
accuracies to software simulations, while displaying highly competitive time and power
characteristics, with a combination of 48 µs and 8.4 µJ per classification.

By incorporating information generated on the hardware for updates during training, the
algorithm automatically adapts to potential imperfections of neuromorphic circuits, as im-
plicitly demonstrated by our neuromorphic implementation. In further software simula-
tions, we show that our model deals well with various levels of substrate-induced distor-
tions such as fixed-pattern noise and limited parameter precision and control, thus pro-
viding a rigorous algorithmic backbone for a wide range of neuromorphic substrates and
applications. Such robustness with respect to imperfections of the underlying neuronal
substrate represents an indispensable property for any networkmodel aiming for biological
plausibility and for every application geared towards physical computing systems (Prodro-
makis and Toumazou, 2010; Esser et al., 2015; van De Burgt et al., 2018; Wunderlich et al.,
2019; Kungl et al., 2019; Dold et al., 2019; Feldmann et al., 2019).

In the following, we first introduce the CuBa LIF model and the TTFS coding scheme, be-
fore we demonstrate how both inference and training via error backpropagation can be
performed analytically with such dynamics. Finally, the presented model is evaluated both
in software simulations and neuromorphic emulations, before studying effects of several
types of substrate-induced distortions.

5.2. RESULTS 49

c

time [a.u.]

n
eu

ro
n

id

d

time [a. u.]

P
S

P
s

[a
.

u
.] τm/τs →∞

τm/τs = 2

τm/τs = 1

τm/τs → 0

a
ϑ

E`

b

time [a. u.]

ϑ

E`

m
em

b
ra

n
e

vo
lt

ag
e

Figure 5.1: Time-to-first-spike coding and learning. Top: single neurons. (a) Postsynaptic potential
(PSP) shapes for different ratios of time constants τs and τm. The finiteness of time constants
causes the neuron to gradually forget prior input. (b) One key challenge of this finite memory
arises when small variations of the synaptic weights result in disappearing/appearing output
spikes, which elicits a discontinuity in the function describing output spike timing. Bottom:
application to feedforward hierarchical networks. (c) Network structure. The geometric
shape of the neurons represents a notation of their respective types (input □, hidden ◦, label △).
The shading of the input neurons is a representation of the corresponding data, such as pixel
brightness (■, . . . ,■, . . . ,□). The color of the label neurons represents their respective class (▲,
▲, ▲). (d) Time-to-first-spike (TTFS) coding exemplified in a raster plot. As an example of input
encoding, the brightness of an input pixel is encoded in the lateness of a spike. Note that in our
framework, TTFS coding simultaneously refers to two individual aspects, namely the input-to-
spike-time conversion and the determination of the inferred class by the identity of the first label
neuron to fire (▲). In all figures we denote units in square brackets; in particular, we use [a. u.]
for arbitrary units, and [1] for dimensionless quantities, and [τs] for times that are measured in
multiples of the synaptic time constant τs.

50 CHAPTER 5. RESULT II

5.2 Results

Leaky integrate-and-fire dynamics The dynamics of an LIF neuron with CuBa synapses
are given by

Cmu̇(t) = gℓ[Eℓ − u(t)] +
∑
i

wi

∑
ti

θ(t− ti) exp

(
−t− ti

τs

)
, (5.1)

with membrane capacitance Cm, leak conductance gℓ (from which the membrane time con-
stant τm = Cm/gℓ follows), presynaptic weights wi and spike times ti, synaptic time con-
stant τs and θ the Heaviside step function. The first sum runs over all presynaptic neurons
while the second sum runs over all spikes for each presynaptic neuron. The neuron elicits a
spike at time T when the presynaptic input pushes the membrane potential above a thresh-
old ϑ. After spiking, a neuron becomes refractory for a time period τref , which is modeled
by clamping its membrane potential to a reset value ϱ: u(t′) = ϱ for T ≤ t′ ≤ T + τref .
For convenience and without loss of generality, we set the leak potential Eℓ = 0. Eqn. (5.1)
can be solved analytically and yields subthreshold dynamics as described by Eqn. (5.9). The
choice of τm and τs ultimately influences the shape of a postsynaptic potential (PSP), start-
ing from a simple exponential (τm ≪ τs), to a difference of exponentials (with an alpha
function for the special case of τm = τs) to a graded step function (τm ≫ τs) (Fig. 5.1a). Note
that all of these scenarios are conserved under exchange of τs and τm, as is apparent from
the symmetry of the analytical solution (Eqn. 5.9).
The first two cases with finite membrane time constant τm are markedly different from the
last one, which is also known as either the non-leaky integrate-and-fire (nLIF) or simply
integrate-and-fire (IF) model and was used in previous work (Mostafa, 2017). In the nLIF
model, input to the membrane is never forgotten until a neuron spikes, as opposed to the
LIF model, where the PSP reaches a peak after finite time and subsequently decays back to
its baseline. In other words, presynaptic spikes in the LIF model have a purely local effect
in time, unlike in the nLIF model, where only the onset of a PSP is localized in time, but
the postsynaptic effect remains forever, or until the postsynaptic neuron spikes. A pair of
finite time constants thus assigns much more importance to the time differences between
input spikes and introduces discontinuities in the neuronal output that make an analytical
treatment more difficult (Fig. 5.1b).

First-spike times Our spike-timing-based neural code follows an idea first proposed in
(Mostafa, 2017). Unlike coding in artificial neural networks (ANNs) and different from
spike-count-based codes in spiking neural networks (SNNs), this scheme explicitly uses
the timing of individual spikes for encoding information. In time-to-first-spike (TTFS) cod-
ing, the presence of a feature in a stimulus is reflected by the timing of a neuron’s first
spike after the onset of the stimulus, with earlier spikes representing a more strongly mani-

5.2. RESULTS 51

fested feature. This has the effect that important information inherently propagates quickly
through the network, with potentially only few spikes needed for the network to process
an input. Consequently, this scheme enables efficient processing of inputs, both in terms
of time-to-solution and energy-to-solution (assuming the latter depends, in general on the
total number of spikes and the time required for the network to solve, e.g., an input classi-
fication problem).
In order to formulate the optimization of a first-spike time T as a gradient-descent problem,
we derive an analytical expression for T . This is equivalent to finding the time of the first
threshold crossing by solving u(T) = ϑ for T . Even though there is no general closed-form
solution for this problem, analytical solutions exist for specific cases. For example, we show
that (see Methods)

T = τs

{
b

a1
−W

[
−gℓϑ

a1
exp

(
b

a1

)]}
for τm = τs (5.2)

and

T = 2τs ln

[
2a1

a2 +
√
a22 − 4a1gℓϑ

]
for τm = 2τs , (5.3)

whereW is the Lambert W function and using the shorthand notations an and b for sums
over the set of causal presynaptic spikes C = {i | ti < T} (see Eqns. (5.11) and (5.12)). We
note that, when calculating the output spike time for a large number of input neurons,
determining C can be computationally intensive (see Methods). One inherent advantage of
physical emulation is the reduction of this calculational burden.
The above equations are differentiable with respect to synaptic weights and presynaptic
spike times. As will be shown in the following, this directly translates to solving the credit
assignment problem and thus allows exact error propagation through networks of spiking
neurons. For easier reading, we focus on one specific case (τm = τs), but the others can be
treated analogously.

Exact error backpropagation with spikes Learning in SNNs requires the ability to relate
efferent spiking to both afferent weights and spike times. For the output spike time of a
neuron k with presynaptic partners i, the first relationship can be formally described by
the derivative of the output spike time with respect to the presynaptic weights (Eqn. 5.22).
Using certain properties of W , we can find a simple expression that can, additionally, be
made to depend on the output spike time tk itself:

∂tk
∂wki

= − 1

a1

exp
(

ti
τs

)
W(z) + 1

(tk − ti) , (5.4)

52 CHAPTER 5. RESULT II

with a1 and z representing functions ofwki and ti as defined in Eqns. (5.11) and (5.18). Using
the output spike time as additional information optimizes learning in scenarios where the
exact neuron parameters are unknown and the real output spike time differs from the one
calculated under ideal assumptions, as discussed later.
Second, the capability to relate errors in the output spike time to errors in the input spike
times allows us to recursively propagate changes from neurons to their presynaptic part-
ners.

∂tk
∂ti

= − 1

a1

exp
(

ti
τs

)
W(z) + 1

wki

τs
(tk − ti − τs) . (5.5)

Together, Eqns. (5.4) and (5.5) effectively and exactly solve the credit assignment problem
in appropriately parametrized LIF networks of arbitrary architecture.
We can now apply the findings above to study learning in a layered network. Figure 5.1c
shows a schematic of our feedforward networks and their spiking activity. The input uses
the same coding scheme as all other neurons: more prominent features are encoded by
earlier spikes. The output of the network is defined by the identity of the label neuron that
spikes first (Fig. 5.1d).
We denote by t

(l)
k the output spike time of the kth neuron in the lth layer; for example, in

a network with N layers, t(N)
n is the spike time of the nth neuron in the label layer. The

weight projecting to the kth neuron of layer l from the ith neuron of layer l− 1 is denoted
by w

(l)
ki .

To apply the error backpropagation algorithm (Linnainmaa, 1970; Rumelhart et al., 1986),
we choose a loss function that is differentiable with respect to synaptic weights and spike
times. During learning, the objective is to maximize the temporal difference between the
correct and all other label spikes. The following loss function fulfills the above require-
ments:

L[t(N), n∗] = dist
(
t
(N)
n∗ , t

(N)
n̸=n∗

)
= log

[∑
n

exp

(
−t

(N)
n − t

(N)
n∗

ξτs

)]
, (5.6)

where t(N) denotes the vector of label spike times t(N)
n , n∗ the index of the correct label and

ξ ∈ R+ is a scaling parameter. This loss function represents a cross entropy between the
true label distribution and the softmax-scaled label spike times produced by the network
(see Methods). Reducing its value therefore increases the temporal difference between the
output spike of the correct label neuron and all other label neurons. Notably, it only de-
pends on the spike time difference and is invariant under absolute time shifts, making it
independent of the concrete choice of the experiment start which defines t = 0. In case of
a non-spiking label neuron we treat its spike time as t(N)

n = ∞. In this case however, the

5.2. RESULTS 53

equation Eqn. (5.2) is not defined and neither are its derivatives. We therefore introduce a
simple, local heuristic to encourage spiking behavior in large portions of the network (see
Methods). In some scenarios, learning can be facilitated by the addition of a spike-time-
dependent regularization term (see Methods).
Gradient descent on the loss function Eqn. (5.6) can now be easily performed by repeated
application of the chain rule. Using the exact derivatives Eqns. (5.4) and (5.5), this yields
the synaptic plasticity rule

∆w
(l)
ki ∝ −

∂L[t(N), n∗]

∂w
(l)
ki

(5.7)

= − ∂t
(l)
k

∂w
(l)
ki

∂L[t(N), n∗]

∂t
(l)
k︸ ︷︷ ︸

δ
(l)
k

= − ∂t
(l)
k

∂w
(l)
ki

∑
j

∂t
(l+1)
j

∂t
(l)
k

δ
(l+1)
j .

A compact formulation for hierarchical networks that highlights the backpropagation of
errors can be found in Eqns. (5.38) to (5.40). In either form, only the label layer error and the
neuron spike times are required for training, which can either be calculated using Eqn. (5.2)
or by simulating (or emulating) the LIF dynamics (Eqn. 5.1).
The computational complexity of the synaptic plasticity rule— a potential limiting factor for
on-chip implementations — can be drastically reduced by appropriate approximations. In
the Supplementary Information SI.D we present early results using such an approach. Note
that the simplification is only used in Supplementary Information SI.D and all other results
we report in the following were produced using the full analytical equations Eqns. (5.4)
and (5.5).

5.2.1 Simulations

After deriving the learning algorithm in the previous chapter, we show its classification ca-
pabilities in software simulations. In these simulations we demonstrate successful learning
and provide a baseline for the hardware emulations that follow.
We use two data sets that emphasize different aspects of interesting real-world scenarios.
As an example for low-dimensional, “continuous” data spaces, in which points belonging
to different classes can be arbitrarily close together (thus making separation particularly
challenging), we chose the Yin-Yang data set (Kriener et al., 2021a). For higher-dimensional,
discrete input, we used the MNIST data set (LeCun et al., 1998) as a small-scale image clas-
sification scenario.
The results in this section are based on Eqn. (5.2) for calculating the spike times in the
forward pass, and Eqn. (5.40) for calculating weight updates; for details regarding imple-
mentation see Methods. For hyperparameters of the discussed experiments see Tables SI.F1
and SI.F2.

54 CHAPTER 5. RESULT II

1 2
input time tx [τs]

0.5

1.0

1.5

2.0

in
p

u
t

ti
m

e
t y

[τ
s]

a

1 2
input time tx [τs]

0.5

1.0

1.5

2.0

in
p

u
t

ti
m

e
t y

[τ
s]

d

0

1
before trainingb

0

1
after training

0

1

u
[a

.u
.]

0

1

u
[a

.u
.]

0

1

0

1

1

2

3
during training

1

2

3

t s
p
ik

e
[τ

s]

0 50
epochs [1]

1

2

3

0 1 2
t [τs]

500

1000

o
cc

u
re

n
ce

[1
]

0 1 2
t [τs]

500

1000
correct label neuron

wrong label neuron

10−1

100

va
li
d

at
io

n
lo

ss
[1

]

c

0 100 200 300
epochs [1]

10−1

100

va
li
d

at
io

n
er

ro
r

[1
]

20 seeds

seed in b, d, e, f

Yin Yang Dot
predicted class

Y
in

Y
an

g
D

ot
tr

u
e

cl
as

s

.97 .01 .01

.03 .95 .02

.01 .04 .94

f

1 2
input time tx [τs]

0.5

1.0

1.5

2.0

in
p

u
t

ti
m

e
t y

[τ
s]

Yin neuron
e

1 2
input time tx [τs]

Yang neuron

1 2
input time tx [τs]

Dot neuron

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

[1
]

0.0

0.5

1.0

1.5

2.0

t n
eu

ro
n
−

m
in
i∈
{l

a
b

el
n
eu

ro
n
s}
t i

[τ
s]

Figure 5.2: Classification of the Yin-Yang data set. (a) Illustration of the Yin-Yang data set. The samples
are separated into three classes, Yin (), Yang () and Dot (). The yellow symbols (, ,) mark
samples for which the training process is illustrated in (b). The input times tx and ty correspond
to the spike time of the inputs associated with the x and y coordinates of individual samples.
(b) Training mechanism for three exemplary data samples (cf. (a)). For the first three rows, the
left and middle columns depict voltage dynamics in the label layer before and after training for
300 epochs, respectively. The voltage traces of the three label neurons are color-coded according
to their corresponding class as in (a). Before training, the random initialization of the weights
causes the label neurons to show similar voltage traces and almost indistinguishable spike times.
After training there is a clear separation between the spike time of the correct label neuron and
all others, with the correct neuron spiking first. The evolution of the label spike times during
training is shown in the right column for the first 70 epochs. Bottom row: spike histograms over
all training samples. Our learning algorithm induces a clear separation between the spike times
of correct and wrong label neurons. (c) Training progress (validation loss as given in Eqn. (5.6)
and error rate) over 300 epochs for 20 training runs with random initializations (gray). The run
shown in panels b and d-f is plotted in blue. (d) Classification result on the test set (1000 samples).
The color of each sample indicates the class determined by the trained network. The wrongly
classified samples (marked with black X) all lie very close to the border between classes. (e) Spike
times of the Yin, Yang and Dot neurons for all test samples after training. For each sample, spike
times were normalized by subtracting the earliest spike time in the label layer. Bright yellow
denotes zero difference, i.e., the respective label neuron was the first to spike and the sample was
assigned to its class. The bright yellow areas resemble the shapes of the Yin, Yang and Dot areas,
reflecting the high classification accuracy after training. (f) Confusion matrix for the test set after
training.

5.2. RESULTS 55

Yin-Yang classification task: The first data set consists of points in the yin-yang figure
(Fig. 5.2a). Each point is defined by a pair of Cartesian coordinates (x, y) ∈ [0, 1]2. To
build in redundancy and capture the intrinsic symmetry of the yin-yang motive, the data
set is augmented with mirrored coordinates (1 − x, 1 − y) enabling networks of neurons
without trainable bias to learn the task (Kriener et al., 2021a). The three classes are labeled
as per the respective area they occupy, i.e., Yin, Yang or Dot. This augmented data set was
specifically designed to require latent variables for classification: a shallow non-spiking
classifier reaches (64.3 ± 0.2)% test accuracy, an ANN with one hidden layer of size 120
typically around (98.7± 0.3)%. Due to this large gap, our Yin-Yang data set represents an
expressive test of error backpropagation in our hierarchical spiking networks. At the same
time, it can be learned by networks that are compatible in size with the current revision of
BrainScaleS-2 (Schemmel et al., 2020).
After translation of the four features to spike times (see Fig. 5.1 and Methods for more de-
tails), they were joined with a bias spike at fixed time, and these five spikes served as input
to a network with 120 hidden and 3 label neurons. We illustrate the training mechanism
with voltage traces for three samples belonging to different classes (Fig. 5.2b). The algo-
rithm changes the weights to create a separation in the label spike times (cf. left and middle
column) that corresponds to correct classification. Note that the voltage traces were just
recorded for illustration, as only spike times are required for calculating weight updates.
After 300 epochs our networks reached (95.9 ± 0.7)% test accuracy for training with 20
different random seeds (Fig. 5.2c). The classification failed only for samples that were ex-
tremely close to the border between two classes (Fig. 5.2d). Figure 5.2e shows the spike
times of the label neurons. These vary continuously for inputs belonging to other classes,
but drop abruptly at the boundary of the area belonging to their own class, which denotes a
clear separation — see, for example, the abrupt change from red (late spike time) to yellow
(early spike time) of the Yin-neuron when moving from Yang to Yin (Fig. 5.2e, left panel).
MNIST classification task: To study the scalability of our approach to larger and more high-
dimensional data sets, we applied it to the classification of MNIST handwritten digits (Le-
Cun et al., 1998). Figure 5.3 shows training results for networks with 784–350–10 neurons,
where pixel intensities were translated to spike times. During training, noise was added to
the input samples to aid generalization, but no bias spikes were used. As seen in Fig. 5.3a,
training converges for 10 different initial random seeds, reaching a final test accuracy of
(97.1 ± 0.1)%. Similar results are also achieved for deeper architectures with multiple
hidden layers (see Table SI.B1 for additional simulation runs with different network archi-
tectures).
For reference, we consider several other results obtained with spiking-time coding. In
Mostafa (2017), a maximum test accuracy of 97.55% using a network with a hidden layer of
800 neurons is reported; note that this work uses non-leaky neurons with effectively infi-
nite membrane memory. Also for non-leaky neurons, but using an approximative approach
for calculating gradients, Kheradpisheh and Masquelier (2020) report 97.4% using 400 hid-

56 CHAPTER 5. RESULT II

0 1 2 3 4 5 6 7 8 9
predicted class

0

1

2

3

4

5

6

7

8

9

tr
u

e
cl

as
s

.98 .00 .00 .00 .00 .00 .01 .00 .01 .00

.00 .99 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .96 .01 .00 .00 .01 .00 .02 .00

.00 .00 .00 .97 .00 .01 .00 .00 .01 .00

.00 .00 .00 .00 .98 .00 .01 .00 .00 .01

.00 .00 .00 .01 .00 .97 .01 .00 .01 .00

.00 .00 .00 .00 .00 .00 .98 .00 .00 .00

.00 .01 .01 .00 .00 .00 .00 .96 .01 .00

.00 .00 .00 .00 .00 .00 .00 .01 .98 .00

.00 .00 .00 .00 .01 .01 .00 .01 .02 .93

b

0 50 100 150
10−1

100
va

li
d

at
io

n
lo

ss
[1

] 10 seeds

seed in b

a

0 50 100 150
epochs [1]

10−1

100

va
li

d
at

io
n

er
ro

r
[1

]

0.0

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

[1
]

Figure 5.3: Classification of the MNIST data set. (a) Training progress of a network over 150 epochs for
10 different random initializations. The run drawn in blue is the one which produced the results
in (b). (b) Confusion matrix for the test set after training.

den neurons. In Comsa et al. (2020), a maximum test accuracy of 97.96% was achieved
using 340 hidden neurons, supported by a regular spike grid and extensive hyperparameter
search.
We note that there also exist trial-averaging and spike-count-based approaches that have
the benefit ofmore straight-forward learning rules, but these approaches sacrifice precision,
neuronal real-estate or time-to-solution in comparison to frameworks based on the precise
timing of single output spikes.
For example, Esser et al. (2015) report 92.7% using 512 neurons, while Tavanaei et al. (2018b)
require 1000 hidden neurons to achieve 96.6%.

5.2.2 Fast neuromorphic classification

In our framework, the time to solution is a function of the network depth and the time con-
stants τm and τs. Assuming typical biological timescales, most input patterns in the above
scenario are classified within several milliseconds. By leveraging the speedup of neuromor-
phic systems such as BrainScaleS (Schemmel et al., 2010, 2020), with intrinsic acceleration
factors of 103 to 104, the same computation can be achieved within microseconds. In the
following, we present an implementation of our framework on BrainScaleS-2 and discuss
its performance in conjunction with the achieved classification speed and energy consump-
tion. For a proof-of-concept implementation on its predecessor BrainScaleS-1, we refer to
Supplementary Information SI.A.
The advantages of such a neuromorphic implementation come at the cost of reduced con-
trol. Training needs to cope with phenomena such as spike jitter, limited weight range and
granularity, as well as neuron parameter variability, among others. In general, an important
aspect of any theory aiming for compatibility with physical substrates, be they biological
or artificial, is its robustness to substrate imperfections; our results on BrainScaleS-2 im-

5.2. RESULTS 57

a

100

10−1va
li
d

at
io

n
lo

ss
[1

]

b

0 200 400
epochs [1]

10−1

100
va

li
d

at
io

n
er

ro
r

[1
] 10 seeds

run in c, d, e Yin Yang Dot
predicted class

Y
in

Y
an

g
D

ot
tr

u
e

cl
as

s

.95 .03 .02

.02 .96 .03

.03 .03 .95

c

5 10
input time tx [µs]

5

10

in
p

u
t

ti
m

e
t y

[µ
s]

d

5 10
input time tx [µs]

5

10

in
p

u
t

ti
m

e
t y

[µ
s]

Yin neuron

e

5 10
input time tx [µs]

Yang neuron

5 10
input time tx [µs]

Dot neuron

0 20 40

100

10−1va
li
d

at
io

n
lo

ss
[1

]

f

0 20 40
epochs [1]

10−1

100

va
li
d

at
io

n
er

ro
r

[1
]

10 seeds

run in g, h

0 1 2 3 4 5 6 7 8 9
predicted class

0
1
2
3
4
5
6
7
8
9

tr
u

e
cl

as
s

.99 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .98 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .97 .00 .00 .00 .00 .01 .00 .00

.00 .00 .01 .96 .00 .01 .00 .00 .01 .01

.00 .00 .00 .00 .97 .00 .01 .00 .00 .01

.00 .00 .00 .01 .00 .97 .00 .00 .00 .01

.01 .00 .00 .00 .01 .01 .97 .00 .00 .00

.00 .00 .01 .00 .00 .00 .00 .98 .00 .00

.01 .00 .01 .00 .00 .01 .00 .01 .95 .01

.00 .00 .00 .00 .03 .00 .00 .01 .00 .95

g

u
[a

.
u

.]

0
h

u
[a

.
u

.]

1

u
[a

.
u

.]

3

0 10 20
time [µs]

u
[a

.
u

.]

8

0.2 0.4 0.6 0.8
test accuracy [1]

0

5

10

t n
eu

ro
n
−

m
in
i∈
{l

a
b

el
n

eu
ro

n
s}
t i

[µ
s]

0.0

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

[1
]

BrainScaleS-2
ASIC

Figure 5.4: Classification on the BrainScaleS-2 neuromorphic platform. (a) Photograph of a
BrainScaleS-2 chip. (b-e) Yin-Yang data set (b) Training progress over 200 epochs for 11 dif-
ferent random initializations. The run drawn in blue also produced the results shown in panel
(b-d). (c) Confusion matrix for the test set after training. (d) Classification result on the test set.
For each input sample the color indicates the class determined by the trained network. Wrong
classifications are marked with a black X. The wrongly classified samples all lie very close to the
border between two classes. (e) Separation of label spike times (cf. Fig. 5.2e). For each of the label
neurons, bright yellow dots represent data samples for which it was the first to spike, thereby
assigning them its class. Similarly to the software simulations, the bright yellow areas align well
with the shapes of the Yin, Yang and Dot areas of the data set. (f-h) MNIST data set (f) Evolu-
tion of training over 50 epochs for 10 different random initializations. The run drawn in blue is
the one which produced the results shown in panel (g) and (h). (g) Confusion matrix for the test
set after training. (h) Exemplary membrane voltage traces on BrainScaleS-2 after training. Each
panel shows color-coded voltage traces of four label neurons for one input that was presented
repeatedly to the network (inlays show the input and its correct class). Each trace was recorded
four times to point out the trial-to-trial variations.

plicitly represent a powerful demonstration of this property. To further substantiate the
generalizability of our algorithm to different substrates, we complement our experimental
results with a simulation study of various substrate-induced distortive effects.
Learning on BrainScaleS-2: BrainScaleS-2 is a mixed-signal accelerated neuromorphic plat-
form with 512 physical neurons, each being able to receive inputs via 256 configurable syn-
apses. These neurons can be coupled to form larger logical neurons with a correspondingly
increased number of inputs. At the heart of each neuron is an analog circuit emulating
LIF neuronal dynamics with an acceleration factor of 103 to 104 compared to biological
timescales.
Due to variations in the manufacturing process, the realized circuits systematically deviate
from each other (fixed-pattern noise). Although these variations can be reduced by calibrat-
ing each circuit (Aamir et al., 2018b), considerable differences remain (standard deviation
on the order of 5 % on BrainScaleS-2) and pose a challenge for possible neuromorphic al-
gorithms — along with other features of physical model systems such as spike time jitter

58 CHAPTER 5. RESULT II

Table
5.1:Com

parison
ofpattern

recognition
m
odelson

theM
N
IST

datasetem
ulated

on
neurom

orphicback-ends,sorted
by

classification
speed.

Forreference,an
A
N
N
running

on
GPU

isincluded
in

thetop
row.N

otethatw
eincludeonly

referencesw
hich

presentm
easurem

ents
forboth

energy
and

throughputin
addition

to
accuracy.A

n
extended

tablecontaining
resultsw

ith
partialorestim

ated
m
easurem

ents
can

be
found

in
Supplem

entary
Inform

ation,Table
SI.F3.

platform
type

technology
coding

input
netw

ork
data

augm
entation/

energy
per

classifi
cations

test
reference

resolution
size/structure

regularization
classifi

cation
per

second
1

accuracy

N
vidia

Tesla
P100

digital
14nm

A
N
N

28×
28

CN
N
2

dropout
852µJ

125
000

99.2%
see

SI.E

SpiN
N
aker

digital
130nm

rate
28×

28
784–600–500–10

noisy
inputencoding

3.3m
J

91
95.0%

Strom
atiasetal.(2015)

True
N
orth

digital
28nm

rate
28×

28
CN

N
noisy

inputencoding
0.27µJ

1000
92.7%

Esseretal.(2015)
True

N
orth

digital
28nm

rate
28×

28
CN

N
noisy

inputencoding
108µJ

1000
99.4%

Esseretal.(2015)
Loihi

digital
14nm

bin.rate
(20×

20) 3
400–400–10

n.a.
2.5µJ

5917
96.2%

Renneretal.(2021)
unnam

ed
(Intel)

digital
10nm

tem
poral

(28×
28) 4

236–20
stochasticspike

loss
1.0µJ

6250
88.0%

Chen
etal.(2018)

BrainScaleS-2
m
ixed

65nm
tem

poral
16×

16
256–246–10

inputnoise
8.4µJ

20
800

96.9%
thisw

ork,
see

also
SI.E

1
N
ote

thatsom
e
platform

sachieve
a
high

num
berofclassificationspersecond

sim
ply

by
processing

a
large

num
berofsam

plesin
parallel,

w
hile

otherplatform
srely

on
the

sequential(butfast)processing
ofindividualsam

ples.
2
Standard

architecture
given

asan
exam

ple
in

the
PyTorch

repository,fordetailssee
Supplem

entary
Inform

ation
SI.E.

3
Four(em

pty)pixelson
each

m
argin

are
cropped

to
yield

the
2
0×

2
0
centerfrom

the
2
8×

2
8
im

age.
4
The

2
8×

2
8
im

age
ispreprocessed

using
5×

5
Gabor-filtersand

3×
3
pooling

before
being

sentinto
the

chip.

5.2. RESULTS 59

or spike loss (Petrovici et al., 2014; Wunderlich et al., 2019; Kungl et al., 2019; Dold et al.,
2019).
The chip’s synaptic arrays were configured to support arbitrary fully-connected networks
of up to 256 emulated neurons with a maximum of 256 inputs per neuron. Each such logical
connection was realized via two physical synapses in order to allow transitions between an
excitatory and an inhibitory regime. Synaptic weights on the chip are configurable with 6
bit precision. More details about our setup can be found in the Methods section.
We used an in-the-loop training approach (Schmitt et al., 2017; Kungl et al., 2019; Cramer
et al., 2020a), where inference runs emulated on the neuromorphic substrate were inter-
leaved with host-based weight update calculations. For emulating the forward pass, the
spike times for each sample in a mini-batch were joined sequentially into one long spike
train and then injected into the neuromorphic system via a field-programmable gate array
(FPGA). The latter was also used to record the spikes emitted by the hidden and label layers.
Figure 5.4a-d shows the results of training a spiking network with 120 hidden neurons on
BrainScaleS-2 on the Yin-Yang data set. The system quickly learned to discriminate between
the presented patterns, with an average test accuracy of (95.0± 0.9)%.
The hardware emulation performs similarly to the software simulations (Fig. 5.2), with the
wrong classifications still only happening along the borders of the areaswith different labels
(Fig. 5.4c). The remaining difference in performance after training is attributable to the
substrate variability (cf. also Fig. 5.4h). Considering that one of the specific challenges built
into the Yin-Yang data set resides in the continuity of its input space and abrupt class switch
between bordering areas, this result highlights the robustness of our approach.
To classify the MNIST data set using the BrainScaleS-2 system, we emulated and trained
a network of size 256–246–10 (Fig. 5.4f-h). Due to the restrictions imposed by the hard-
ware on the input dimensionality, we used downsampled images of 16× 16 pixels. Across
multiple initializations, we achieved a test accuracy of (96.9± 0.1)%; similarly to the Yin-
Yang data set, this is only slightly lower than in software simulations of equally sized net-
works (Table 5.2). The ability of our framework to achieve reliable classification despite
such substrate-induced distortions is well-illustrated by post-training membrane dynamics
measured on the chip Fig. 5.4h. In all cases shown here, the correct label neuron spikes
before 10 µs and is clearly separable from all other label neurons.
Due to its short intrinsic time constants and overall energy efficiency, the BrainScaleS-2 sys-
tem enables very fast and energy-efficient acquisition of classification results. Classification
of the 10 000MNIST test samples takes a total of 0.937 s, including data transmission, emula-
tion of dynamics and return of the classification results. The total time on the BrainScaleS-2
chip was 480ms, a detailed breakdown of the execution time is shown in Supplementary
Information SI.E. The power consumption of the chip, measured during runtime, including
all chip components needed for spike generation and processing (i.e., excluding the host
and FPGA) amounted to 175mW. For measurement details and scalability considerations
we refer to Supplementary Information SI.E. This results in an average energy consumption

60 CHAPTER 5. RESULT II

Table 5.2: Summary of the presented results. Accuracies are given as mean value and standard deviation. For
comparison, on the Yin-Yang data set a linear classifier achieves (64.3 0.2)% test accuracy, while a
(non-spiking, not particularly optimized) ANNwith 120 hidden neurons achieves (98.7 0.3)%. As
a reference for the MNIST data set we trained a 784–350–10 fully connected ANN which reached
an average test accuracy of (98.2 0.1)%. The results in this table were obtained without extensive
hyperparameter tuning.

data set hidden accuracy [%]
neurons test train

Yin-Yang
in SW 120 95.9± 0.7 96.3± 0.7
on HW 120 95.0± 0.9 95.3± 0.7

MNIST
in SW 350 97.1± 0.1 99.6± 0.1
in SW (τs = 2τm) 350 97.2± 0.1 99.7± 0.1

MNIST 16×16
in SW 246 97.4± 0.2 99.2± 0.1
on HW 246 96.9± 0.1 98.2± 0.1

of 8.4 µJ per classification. For a comparison to other neuromorphic platforms, we refer to
Table 5.1.
Note that the networks on the other neuromorphic platforms differ in their architectures,
coding schemes and training methods, and while we list some of these differences in the
table, a direct comparison in terms of individual numbers remains difficult.
This table only includes references in which measurements for both classification rate and
energy are reported. A more comprehensive overview, including studies that lack some of
the above measurements, can be found in the Supplementary Information, Table SI.F3.
Our current experimental setup leaves room for significant optimization. For an estima-
tion of possible improvements and their potential effect on classification rate and energy
consumption, we refer to Supplementary Information SI.E and (Cramer et al., 2020a). With
these improvements we expect to increase the classification rate by up to a factor of four
while simultaneously decreasing the energy-per-classification value by up to a factor of 3.

5.2.3 Robustness of time-to-first-spike learning

As noted earlier, a learning scheme operating only on spike times combined with our cod-
ing represents a natural fit for neuromorphic hardware, both for requiring commonly ac-
cessible observables (i.e., spike times, as opposed to, e.g., membrane potentials or synap-
tic currents) and due to its intrinsic efficiency, as it emphasizes few and early spikes. An
important indicator of a model’s feasibility for neuromorphic emulation is its robustness

5.2. RESULTS 61

1.0 1.5 2.0 3.0 5.0 None
wclip [1]

0.80

0.85

0.90

0.95
te

st
ac

cu
ra

cy
[1

]
a

2 3 4 5 6 double
weight resolution [bit]

0.80

0.85

0.90

0.95

wclip = 2.0

wclip = 3.0

wclip = 5.0

b

0.0 0.1 0.2 0.3 0.4
στs/m

[τ̄s]

0.85

0.90

0.95

te
st

ac
cu

ra
cy

[1
]

c

0.6 0.8 1.0 1.2 1.4
τm [τ̄s]

0.85

0.90

0.95

with tspike

(Eqns. 5.24, 5.25)

without tspike

(Eqns. 5.22, 5.23)

d

Figure 5.5: Effects of substrate imperfections. Modeled constraints were added artificially into simulated
networks. All panels show median, quartiles, minimum, and maximum of the final test accuracy
on the Yin-Yang data set for 20 different initializations. (a) Limited weight range. The weights
were clipped to the range [−wclip, wclip] during training and evaluation. The triangle, square and
circle mark the clip values that are used in panel (b). (b) Limited weight resolution. For the three
weight ranges marked in (a) the weight resolution was reduced from a double precision float
value down to 2 bits. Here, n-bit precision denotes a setup where the interval [−wclip, wclip] is
discretized into 2 ·2n−1 samples (nweight bits plus sign). (c) Time constants with fixed-pattern
noise. For these simulations each neuron received a random τs and τm independently drawn
from the distribution N(τ̄s, στs/m). This means that the ratio of time constants was essentially
never the one assumed by the learning rule. (d) Systematic shift between time constants. Here τs
was drawn from N(τ̄s, στs/m) while τm was drawn from N(τ̄m, στs/m) for each neuron for varying
mean τ̄m and fixed στs/m = 0.1τ̄s. The orange curve illustrates a training where the backward
pass performs “naive” gradient descent, without using explicit information about output spike
times. The blue curve, as all other panels, has the output spike time as an observable.

62 CHAPTER 5. RESULT II

towards substrate-induced distortions. By experimentally demonstrating its capabilities on
BrainScaleS-2, we have implicitly provided one substantive data point for our framework.
Here, we present a more comprehensive study of the robustness of our approach.
Most physical neuronal substrates have several forms of variability in common (Petrovici,
2016, Chapter 5). In both digital and mixed-signal systems, synaptic weights are typi-
cally limited in both range and resolution. Additionally, parameters of analog neuron and
synapse circuits exhibit a certain spread.
To study the impact of these effects, we included them in software simulations of our model
applied to the Yin-Yang classification task.
In this context, we highlight the importance of a detail mentioned in the derivation of
Eqn. (5.4). The output spike time given in Eqn. (5.2) depends only on neuron parame-
ters, presynaptic spike times and weights, thus its derivatives share the same dependencies
(Eqns. 5.22 and 5.23). With some manipulations, the equation for the actual output spike
time can be inserted (Eqns. 5.24 and 5.25), producing a version of the learning rule that
directly depends on the output spike time itself. This version thus allows the incorpora-
tion of additional information gained in the forward pass and is therefore expected to be
significantly more stable, which is confirmed below.
Using dimensionless weight units (scaled by the inverse threshold), we observe that an
upper weight limit of approximately 3 is sufficient for achieving peak performance (Fig-
ure 5.5a). This weight value is equivalent to a PSP that covers the distance between leak
potential and firing threshold.
If this is not achievable within the typical parametrization range of a neuromorphic chip,
the effective maximum weight to the hidden layer can be increased by multiplexing each
input into the network (cf. Methods).
In the experiments with limited weight resolution (both in software and on hardware),
a floating-point-precision “shadow” copy of synaptic weights was kept in memory. The
forward and backward pass used discretized weight values, while the calculated weight
updates were applied to the shadow weights (Hubara et al., 2017). Our model shows ap-
proximately constant performance forweight resolutions down to 5 bit, followed by gradual
degradation below (Figure 5.5b).
Interestingly, adding variability to the synapse and membrane time constants has no dis-
cernible effects (Figure 5.5c). This is a direct consequence of having used the true output
spike times for the learning rule in the backward pass. A comparison to “naive” gradient
descent without this information is shown in (Figure 5.5d). These simulations show that the
algorithm can be expected to adequately cope with a large amount of fixed-pattern noise
on the time constants if the mean of the distributions for τm and τs match reasonably well
with the values assumed by the learning rule (up to 10–20% difference).
Additionally, in Supplementary Information SI.C we investigate trained networks regard-
ing their robustness to adverse effects that appear only after training, such as temperature-
induced parameter variations or inactivation of neurons. Our simulations show that trained

5.3. DISCUSSION 63

networks can cope with such effects, suggesting that our training algorithm develops net-
work structures robust even to distortions not present during training.
Finally, we note that all of the effects addressed above also have biological correlates. While
not directly reflecting the variability of biological neurons and synapses, our simulations
do suggest that biological variability does not present a fundamental obstacle to our form
of TTFS computation.

5.3 Discussion

We have proposed a model of first-spike-time learning that builds on a rigorous analysis of
neuro-synaptic dynamics with finite time constants and provides exact learning rules for
optimizing first-spike times. The resulting form of synaptic plasticity operates on pre- and
postsynaptic spike times and effectively solves the credit assignment problem in spiking
networks; for the specific case of hierarchical feedforward topologies, it yields a spike-
based form of error backpropagation. In this manuscript, we have applied this algorithm
to networks with one and two hidden layers. Given the reported results, we are confident
that our approach scales to even larger and deeper networks.
While TTFS coding is an exceptionally appealing paradigm for reasons of speed and effi-
ciency, our approach is not restricted to this particular coding scheme. Our learning rules
enable a rigorous manipulation of spike times and can be used for a variety of loss func-
tions that target other relationships between spike timings. The time-to-first-spike scenario
studied here merely represents the simplest, yet arguably also the fastest and most efficient
paradigm for spike-based classification of static patterns. Additionally, our derived theory
is applicable to more complex, e.g., recurrent, network structures and multi-spike coding
schemes which are needed for processing temporal data streams.
First-spike coding schemes are particularly relevant in the context of biology, where deci-
sions often have to be taken under pressure of time. The action to be taken in response to a
stimulus can be considerably sped up by encoding it in first-spike times. In turn, such fast
decision making on the order of∼100ms (Thorpe et al., 1996, 2001) will have a particularly
sensitive dependence on exact spike times and thus require a corresponding precision of
parameters.
At first glance, demands for precision appear at odds with the imperfect, variable nature
of microscopic physical substrates, both biological and artificial. We met this challenge
by incorporating output spike times directly into the backward pass. With this, the theo-
retical requirement of exact ratios of membrane to synaptic time constants is significantly
softened, which greatly extends the applicability of our framework to a wide range of sub-
strates, including, in particular, BrainScaleS-2.
By requiring only spike times, the proposed learning framework has minimal demands for
neuromorphic hardware and becomes inherently robust towards substrate-induced distor-
tions. This further enhances its suitability for a wide range of neuromorphic platforms.

64 CHAPTER 5. RESULT II

Bolstered by the design characteristics of the BrainScaleS-2 system, our implementation
achieves a time-to-classification of about 10 µs after receiving the first spike. Including re-
laxation between patterns and communication, the complete MNIST test set with 10 000
samples is classified in less than 1 s with an energy consumption of about 8.4 µJ per clas-
sification, which compares favorably with other neuromorphic solutions for pattern clas-
sification. The time characteristics of this implementation do not deteriorate for increased
layer sizes because neurons communicate asynchronously and their dynamics are emulated
independently. For the current incarnation of BrainScaleS-2, an increase in spiking activity
only has a negligible effect on power consumption. Furthermore, for larger numbers of
neurons we would expect only a weak increase of the power drain.
We also stress that, in contrast to, e.g., GPUs, our system was used to process input data
sequentially. Our reported classification speed is thus a direct consequence of our coding
scheme combined with the system’s accelerated dynamics. Further increasing the through-
put by parallelization (simultaneously using multiple chips) is straightforward and would
not affect the required energy per classification.
Due to the complexity of our exact gradient-based rules, our hardware networks were
trained using updates calculated off-chip based on emulated spike times. Early, promising
simulations using a significantly simplified learning rule, however, suggest the possibility
of an on-chip implementation of our framework. Furthermore, we note that our learning
rules require three components that can all be made available at the locus of the synapse:
pre- and post-synaptic spikes, as in classical spike-timing-dependent plasticity, and an error
term, which could be propagated by mechanisms such as those proposed in, e.g., (Payeur
et al., 2020; Sacramento et al., 2018). This raises the intriguing possibility for our framework
to help explain learning in biological substrates as well.
Since, compared to the von-Neumann paradigm, artificial brain-inspired computing is only
in its infancy, its range of possible applications still remains an open question. This is
reflected by most state-of-the-art neuromorphic approaches to information processing,
which, in order to accommodate a wide range of spike-based computational paradigms,
aim for a large degree of flexibility in network topology and parametrization. Despite the
obvious efficiency trade-off of such general-purpose platforms, we have shown that an em-
bedded version of our framework can achieve a powerful combination of performance,
speed, efficiency and robustness. This gives us confidence that a more specialized neu-
romorphic implementation of our model represents a competitive alternative to current
solutions based on von-Neumann architectures, especially in edge computing scenarios.

5.4. METHODS 65

5.4 Methods

Preliminaries In this section we derive the equations from the main manuscript, starting
with the learning rule for τm →∞, then τm = τs, Eqn. (5.2) and finally τm = 2τs, Eqn. (5.3).
The case τm → ∞ has already been discussed in Mostafa (2017) and was reproduced here
for completeness and comparison. Due to the symmetry in τm and τs of the PSP (Eqn. 5.14),
the τm = 2τs case describes the τm = 1

2
τs case as well.

For each, a solution for the spike time T , defined by

u(T) = ϑ, (5.8)

has to be found, given LIF dynamics

u(t) =
1

Cm

τmτs
τm − τs

∑
spikes ti

wiκ(t− ti) , (5.9)

κ(t) = θ(t)

[
exp

(
− t

τm

)
− exp

(
− t

τs

)]
, (5.10)

with membrane time constant τm = Cm/gℓ and the PSP kernel κ given by a difference
of exponentials. Here we already assumed our TTFS use case in which each neuron only
produces one relevant spike and the second sum in Eqn. (5.1) reduces to a single term.
For convenience, we use the following definitions

an :=
∑
i∈C

wi exp

(
ti
nτs

)
, (5.11)

b :=
∑
i∈C

wi
ti
τs
exp

(
ti
τs

)
, (5.12)

with summation over the set of causal presynaptic spikes C = {i | ti < T}.
In practice, this definition of the causal set C is not a closed-form expression because the
output spike time T depends explicitly on C . However, it can be computed straightfor-
wardly by iterating over the ordered sets of input spike times (for n presynaptic spikes
there are n sets C̃i each comprising of the i first input spikes). For each set C̃i one calcu-
lates an output spike time Ti and determines if this happens later than the last input of this
set and before the next input (the i+1th input spike). The earliest such spike Ti is the actual
output spike time and the corresponding C̃i is the correct causal set. If no such causal set
C̃i exists, the neuron did not spike and we assign it the spike time T =∞.

nLIF learning rule for τm → ∞ With this choice of τm, the first term in Eqn. (5.10) be-
comes 1 and we recover the nLIF case discussed in (Mostafa, 2017). Given the existence

66 CHAPTER 5. RESULT II

of an output spike, in Eqn. (5.8) the spike time T appears only in one place and simple
reordering yields

T

τs
= ln

[
a1

a∞ − ϑCm/τs

]
, (5.13)

where we used Eqn. (5.11) for n = 1 and n =∞, the latter being the sum over the weights.

Learning rule for τm = τs According to l’Hôpital’s rule, in the limit τm → τs Eqn. (5.9)
becomes a sum over α-functions of the form

u(t) =
1

Cm

∑
i

wiθ(t− ti) · (t− ti) exp

(
−t− ti

τs

)
. (5.14)

Using these voltage dynamics for the equation of the spike time Eqn. (5.8), together with
the definitions Eqns. (5.11) and (5.12) and τm = Cm/gℓ, we get the equation

0 = gℓϑ exp

(
T

τs

)
+ b− a1

T

τs︸ ︷︷ ︸
=:y

. (5.15)

The variable y is introduced to bring the equation into the form

h exp (h) = z (5.16)

which can be solved with the differentiable Lambert W function h = W(z). The goal is
now to bring Eqn. (5.15) into this form, this is achieved by reformulation in terms of y

0 = gℓϑ exp

(
b

a1

)
exp

(
− y

a1

)
+ y (5.17)

y

a1︸︷︷︸
=: h

exp

(
y

a1

)
= −gℓϑ

a1
exp

{(
b

a1

)}
︸ ︷︷ ︸

=: z

. (5.18)

With the definition of the Lambert W function the spike time can be written as

T

τs
=

b

a1
−W

[
−gℓϑ

a1
exp

(
b

a1

)]
. (5.19)

Branch choice: Given that a spike happens, there will be two threshold crossings: One from
below at the actual spike time, and one from above when the voltage decays back to the leak
potential (Fig. SI.F1a,b). Correspondingly, the Lambert W function (Fig. SI.F1c,d) has two
real branches (in addition to infinite imaginary ones), and we need to choose the branch

5.4. METHODS 67

that returns the earlier solution. In case the voltage is only tangent to the threshold at its
maximum, the Lambert W function only has one solution.

For choosing the branch in the other cases we need to look at h from the definition, i.e.

h =
y

a1
=

b

a1
− T

τs
. (5.20)

In a setting with only one strong enough input spike, the summations in an and b reduce
to yield h = (ti− T)/τs. Because the maximum of the PSP for τm = τs occurs at ti + τs, we
know that the spike must occur at T ≤ ti + τs and therefore

−1 ≤ ti − T

τs
= h. (5.21)

This corresponds to the branch cut of the Lambert W function meaning we must choose
the branch with h ≥ −1. For a general setting, if we know a spike exists, we expect an
and b to be positive. In order to get the earlier threshold crossing, we need the branch that
returns the largerW (Fig. SI.F1d), that is whereW = h > −1.
Derivatives: The derivatives for ti in the causal set i ∈ C come down to

∂T

∂wi

(w, t) (5.22)

=
τs
a1

exp

(
ti
τs

)[
zW ′(z) +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
,

∂T

∂ti
(w, t) (5.23)

=
wi

a1
exp

(
ti
τs

)[
1 +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
.

A crucial step is to reinsert the definition of the spike time where it is possible (cf. Fig. 5.5d).
For this we need the derivative of the Lambert W function zW ′(z) = W(z)

W(z)+1
that follows

from differentiating its definition Eqn. (5.16) with h = W(z) with respect to z. With this
equation one can calculate the derivative of Eqn. (5.19) with respect to incoming weights
and times as functions of presynaptic weights, input spike times and output spike time:

∂T

∂wi

(w, t, T) = − 1

a1

1

W(z) + 1
exp

(
ti
τs

)
(T − ti) , (5.24)

∂T

∂ti
(w, t, T) = − 1

a1

1

W(z) + 1
exp

(
ti
τs

)
wi

τs
(T − ti − τs) . (5.25)

These equations are equivalent to the Eqns. (5.4) and (5.5) shown in the main text.

68 CHAPTER 5. RESULT II

Learning rule for τm = 2τs Inserting the voltage (Eqn. 5.9) into the spike time (Eqn. 5.8)
yields

gℓϑ =exp

(
− T

τm

)∑
i∈C

wi exp

(
ti
τm

)
− (5.26)

exp

(
−T

τs

)∑
i∈C

wi exp

(
ti
τs

)
.

Reordering and rewriting this in terms of a1, a2, and τs (with τm = 2τs) we get

0 = −a1
[
exp

(
− T

2τs

)]2
+ a2 exp

(
− T

2τs

)
− gℓϑ . (5.27)

This is written such that its quadratic nature becomes apparent, making it possible to solve
for exp(−T/2τs) and thus

T

τs
= 2 ln

[
2a1

a2 +
√

a22 − 4a1gℓϑ

]
. (5.28)

Branch choice: The quadratic equation has two solutions that correspond to the voltage
crossing at spike time and relaxation towards the leak later; again, we want the earlier of
the two solutions. It follows from the monotonicity of the logarithm that the earlier time is
the one with the larger denominator. Due to an output spike requiring an excess of recent
positively weighted input spikes, an are positive, and the + solution is the correct one.

Derivatives: Using the definition x =
√

a22 − 4a1gℓϑ for brevity, the derivatives of
Eqn. (5.28) are

∂T

∂wi

(w, t) (5.29)

= 2τs

[
1

a1
+

2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
− 2τs

x
exp

(
ti
2τs

)
,

∂T

∂ti
(w, t) (5.30)

= 2wi

[
1

a1
+

2gℓϑ

(a2 + x)x

]
exp

(
ti
τs

)
− wi

x
exp

(
ti
2τs

)
.

5.4. METHODS 69

Again, inserting the output spike time yields

∂T

∂wi

(w, t, T) (5.31)

=
2τs
a1

[
1 +

gℓϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− 2τs

x
exp

(
ti
2τs

)
,

∂T

∂ti
(w, t, T) (5.32)

=
2wi

a1

[
1 +

gℓϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− wi

x
exp

(
ti
2τs

)
.

Error backpropagation in a layered network Our goal is to update the network’s weights
such that they minimize the loss function L[t(N), n∗]. For weights projecting into the label
layer, updates are calculated via

∆w
(N)
ni ∝ −

∂L[t(N), n∗]

∂w
(N)
ni

= − ∂t
(N)
n

∂w
(N)
ni

∂L[t(N), n∗]

∂t
(N)
n

. (5.33)

The weight updates of deeper layers can be calculated iteratively by application of the chain
rule:

∆w
(l)
ki ∝ −

∂L[t(N), n∗]

∂w
(l)
ki

= − ∂t
(l)
k

∂w
(l)
ki

δ
(l)
k , (5.34)

where the second term is a propagated error that can be calculated recursively with a sum
over the neurons in layer (l + 1):

δ
(l)
k :=

∂L[t(N), n∗]

∂t
(l)
k

=
∑
j

∂t
(l+1)
j

∂t
(l)
k

δ
(l+1)
j . (5.35)

In the followingwe treat the τm = τs case but the calculations can be performed analogously
for the other cases. Rewriting Eqns. (5.24) and (5.25) in a layer-wise setting, the derivatives

70 CHAPTER 5. RESULT II

of the spike time for a neuron k in arbitrary layer l are

∂t
(l)
k

∂w
(l)
ki

(w, t(l−1), t(l)) (5.36)

= − 1

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1

(
t
(l)
k − t

(l−1)
i

)
,

∂t
(l)
k

∂t
(l−1)
i

(w, t(l−1), t(l)) (5.37)

= − 1

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1

w
(l)
ki

τs

(
t
(l)
k − t

(l−1)
i − τs

)
.

Inserting Eqns. (5.35) to (5.37) into Eqns. (5.33) and (5.34) yields a synaptic learning rule
which implements exact error backpropagation on spike times.
This learning rule can be rewritten to resemble the standard error backpropagation algo-
rithm for ANNs:

δ(N) =
∂L

∂t(N)
, (5.38)

δ(l−1) =
(
B̂(l) − 1

)
⊙ ρ(l−1) ⊙

(
w(l),Tδ(l)

)
, (5.39)

∆w(l) = −ητs
(
δ(l)ρ(l−1),T

)
⊙ B̂(l) , (5.40)

where ⊙ is the element-wise product, the T -superscript denotes the transpose of a matrix
and δ(l−1) is a vector containing the backpropagated errors of layer (l − 1). The individual
elements of the tensors above are given by

ρ
(l)
i = − 1

a1
exp

(
t
(l)
i

τs

)
1

W(z) + 1
, (5.41)

B̂
(l)
ki =

t
(l)
k − t

(l−1)
i

τs
. (5.42)

BrainScaleS-2 The application-specific integrated circuit (ASIC) is built around an ana-
log neuromorphic core which emulates the dynamics of neurons and synapses. All state
variables, such as membrane potentials and synaptic currents, are physically represented in
their respective circuits and evolve continuously in time. Considering the natural time con-
stants of such integrated analog circuits, this emulation takes place at 1000-fold accelerated
time scales compared to the biological nervous system. One BrainScaleS-2 chip features 512
adaptive exponential leaky integrate-and-fire (AdEx) neurons, which can be freely config-

5.4. METHODS 71

ured; these circuits can be restricted to LIF dynamics as required by our training framework
(Aamir et al., 2018a). Both the membrane and synaptic time constants were calibrated to
6 µs.
Each neuron circuit is connected to one of four synapse matrices on the chip, and integrates
stimuli from its column of 256 CuBa synapses (Friedmann et al., 2017). Each synapse holds
a 6 bit weight value; its sign is shared with all other synapses located on the same synaptic
row. The presented training scheme, however, allows weights to continuously transition
between excitation and inhibition. We therefore allocated pairs of synapse rows to convey
the activity of single presynaptic partners, one configured for excitation, the other one for
inhibition.
Synapses receive their inputs from an event routing module allowing to connect neurons
within a chip as well as to inject stimuli from external sources. Events emitted by the neu-
ron circuits are annotated with a time stamp and then sent off-chip. The neuromorphic
ASIC is accompanied by a FPGA to handle the communication with the host computer.
It also provides mechanisms for low-latency experiment control including the timed re-
lease of spike trains into the neuromorphic core. The FPGA is furthermore used to record
events and digitized membrane traces originating from the ASIC. BrainScaleS-2 only per-
mits recording one membrane trace at a time. Each membrane voltage shown in Fig. 5.4h
therefore originates from a different repetition of the experiment.
The ASIC is controlled by a layered software stack (Müller et al., 2020) which exposes the
necessary interfaces to a high-level user via Python bindings. Thesewere used in our frame-
work that is described in the following.

Simulation software Our experiments were performed using custommodules for the deep
learning library PyTorch (Paszke et al., 2019). The network module implements layers of
LIF neurons whose spike times are calculated according to Eqn. (5.2). This method of deter-
mining the spike times of the neurons is fastest, but also memory-intensive. An alternative
implementation integrates the dynamical equations of the LIF neurons in a layer, which
also yields the neuron spike times. Even though both approaches are technically equiva-
lent, this method is slower and should only be employed if the computing resources are
limited.
The activations passed between the layers during the forward pass are the spike times. The
equations describing the weight updates for the network (Eqn. 5.40) are realized in a custom
backward-pass module for the network.

Training and regularization methods In order to train a given data set using our learning
framework, the input data has to be translated into spike times first. We do this by defining
the times of the earliest and latest possible input spike tearly and tlate and mapping the range
of input values linearly to the time interval [tearly, tlate].

72 CHAPTER 5. RESULT II

If the data set requires a bias to be solvable, our framework allows its addition. These bias
spikes essentially represent additional input spikes for a layer, which have the same spike
time for any input. The weights from the neurons to these “bias sources” is learned in
the same way as all the other synaptic weights. For the Yin-Yang data set, the addition
of a bias spike facilitated training. For some samples, due to the low number of inputs,
the relatively low activity that is received by the network is spread out over a long time
interval. The additional spike in themiddle of the available interval decreases themaximum
distance between input spikes for the hidden layer. In contrast, the MNIST data set has a
much higher input dimensionality and the spikes are more distributed over the input time
interval. Therefore, the activity provided to the hidden layer at any point in time is high
even without additional bias.
Implementing our learning algorithm as custom PyTorchmodules allows us to use the train-
ing architecture provided by the library. The simulations were performed using mini-batch
training in combination with with the Adam optimizer (Kingma and Ba, 2014) and learning
rate scheduling (the parameters can be found in Tables SI.F1 and SI.F2).
To assist learning we employ several regularization techniques. The term

+α
[
exp

(
t
(N)
n∗ /βτs

)
− 1
]

with scaling parameters α, β ∈ R+, can be added to the loss in Eqn. (5.6). This regularizer
further pushes the correct neuron towards earlier spike times.
Gaussian noise on the input spike times can be used to combat overfitting. This proved
beneficial for the training of the MNIST data set.
Weight updates∆w with absolute value larger than a given hyperparameter are set to zero
to compensate divergence for vanishing denominator in Eqn. (5.40).
As noted previously, the weight update equations are only defined for neurons that elicit
a spike. To prevent fully quiescent networks we add a hyperparameter which controls
how many neurons without an output spike are allowed. If the portion of non-spiking
neurons is above this threshold, we increase the input weights of the silent neurons. In
case of multiple layers where this applies, only the first such layer with insufficient spikes
is boosted. If neurons in a layer are too inactive multiple times in direct succession, the
boost to the weights increases exponentially.

Training on hardware In principle our training framework can be used to train any neu-
romorphic hardware platform that (i) can receive a set of input spikes and yield the output
spike times of all neurons in the emulated network and (ii) can update the weight configu-
ration on the hardware according to the calculated weight updates. In our framework the
hardware replaces the computed forward-pass through the network. For the calculation of
the loss and the following backward pass, the hardware output spikes are treated as if they

5.4. METHODS 73

had been produced by a forward pass in simulation. The backward pass is identical to pure
simulation.
As accessible value ranges of neuron parameters are typically determined by the hardware
platform in use, a translation factor between the neuron parameters and weights in soft-
ware and the parameters realized on hardware needs to be determined. In our experiments
with BrainScaleS-2 the translation between hardware and software parameter domain was
determined by matching of PSP shapes and spike times predicted by a software forward
pass to the ones produced by the chip.
The implicit assumption of having only the first spike emitted by every neuron be relevant
for downstream processing can effectively be ensured by using a long enough refractory
period. Since the only information-carrying signal that is not reset upon firing is the synap-
tic current, which is forgotten on the time scale of τs, we found that, in practice, setting the
refractory time τref > τs leads to most neurons eliciting only one spike before the classifi-
cation of a given input pattern.
For training the Yin-Yang data set on BrainScaleS-2, having only five inputs proved in-
sufficient due to the combination of limited weights and neuron variability. We therefore
multiplexed each logical input into five physical spike sources, totalling 25 inputs spikes
per pattern. Adding further copies of the inputs effectively increased the weights for each
individual input. This method has the added benefit of averaging out some of the effects of
the fixed-pattern noise on the input circuits as multiple of them are employed for the same
task.

Data availability

We used the MNIST LeCun et al. (1998) and the Yin-Yang data set Kriener et al. (2021a), for
the latter code is available at https://github.com/lkriener/yin_yang_data_set.

Code availability

Code for the simulations Göltz et al. (2021) is available at https://github.com/
JulianGoeltz/fastAndDeep.

Acknowledgment

Wewish to thank Jakob Jordan and Nico Gürtler for valuable discussions, Sebastian Schmitt
for his assistance with BrainScaleS-1, Vitali Karasenko, Philipp Spilger and Yannik Strad-
mann for taming physics, as well as Mike Davies and Intel for their ongoing support (LK,
WS,MAP). Some calculationswere performed onUBELIX, theHPC cluster at the University
of Bern. Our work has greatly benefitted from access to the Fenix Infrastructure resources,
which are partially funded from the European Union’s Horizon 2020 research and innova-
tion programme through the ICEI project under the grant agreement No. 800858. Some

https://github.com/lkriener/yin_yang_data_set
https://github.com/JulianGoeltz/fastAndDeep
https://github.com/JulianGoeltz/fastAndDeep

74 CHAPTER 5. RESULT II

simulations were performed on the bwForCluster NEMO, supported by the state of Baden-
Württemberg through bwHPC and the German Research Foundation (DFG) through grant
no INST 39/963–1 FUGG. We gratefully acknowledge funding from the European Union
for the Human Brain Project under grant agreements 604102 (JS, KM, MAP), 720270 (SB,
OB, BC, JS, KM, MAP), 785907 (SB, OB, BC, WS, JS, KM, MAP), 945539 (LK, AB, SB, OB, BC,
WS, JS, MAP) and the Manfred Stärk Foundation (JG, AB, DD, AFK, KM, MAP).

Author contributions

JG, AB and MAP designed the conceptual and experimental approach. JG derived the the-
ory, implemented the algorithm, and performed the hardware experiments. LK embedded
the algorithm into a comprehensive training framework and performed the simulation ex-
periments. AB and OJB offered substantial software support. SB, BC, JG and AFK provided
low-level software for interfacing with the hardware. JG, LK, DD, SB and MAP wrote the
manuscript.

Competing Interests statement

The authors declare no competing interests.

5.5. SUPPLEMENTARY INFORMATION 75

5.5 Supplementary Information

SI.A Learning with time-to-first-spike (TTFS) coding on BrainScaleS-1

To demonstrate the applicability of our approach to different neuromorphic substrates, we
also tested it on the BrainScaleS-1 system (Schemmel et al., 2010). This version of Brain-
ScaleS has a very similar architecture to BrainScaleS-2, but its component chips are inter-
connected through post-processing on their shared wafer (wafer-scale integration). More
importantly for our coding scheme and learning rules, its circuits emulate conductance-
based (CoBa) instead of CuBa neurons. Furthermore, due to the different fabrication tech-
nology and design choices (in particular, the floating-gate parameter memory, see Srowig
et al., 2007; Schemmel et al., 2010; Koke, 2017), the parameter variability and spike time
jitter are significantly higher than on BrainScaleS-2 (Schmitt et al., 2017).
The training procedure was analogous to the one used on BrainScaleS-2 although using a
different code base. To accommodate the CoBa synapse dynamics, we introduced global
weight scale factors that modeled the distance between reversal and leak potentials and the
total conductance, which were multiplied to the synaptic weights to achieve a CuBa. This
approximation could then be trained with our learning rules. Despite this approximation
and the considerable substrate variability, our framework was able to compensate well and
classify the data set (Fig. SI.A1) correctly after only few training steps.

SI.B Additional experiments

In addition to the simulation results collected in Table 5.2 we provide additional training
results on the MNIST data set here (Table SI.B1). We quantify the effect of noisy input spike
times on generalization by comparing a noiseless training run and a run with input noise,
both using the hyperparameters shown in Table SI.F1. Additionally, we train a network
with a larger hidden layer as well as a deeper network with two hidden layers. Finally, we
illustrate the effect of the weight quantization on the training of the MNIST data set by
using the same 6-bit quantization as on the BrainScaleS-2.

SI.C Robustness to post-training variations

We have already shown that our learning mechanism is able to cope well with noise and
parameter variability which are present during training (Figs. 5.4 and 5.5). In addition to
these distortions which can be accounted for by the learning mechanism, it is interesting
to measure the performance of the trained network under adverse effects that were not
present during training. This is especially relevant for analog circuits where, for example,
temperature changes can lead to shifts in the analog neuron parameters. We model this ef-
fect by training 10 networks on the MNIST data set using the ideal parameters of ϑ = 1 and
τs = τm = 1 for the neuron threshold and time constant and then evaluating their perfor-
mance on the test data set for shifted values of the threshold and time constant (Fig. SI.C1

76 CHAPTER 5. RESULT II

a

0

2

sp
ik

e
ti

m
e

[µ
s] d

0

2

sp
ik

e
ti

m
e

[µ
s] e

0

2

sp
ik

e
ti

m
e

[µ
s] f

0 50 100
training steps [1]

0

2
sp

ik
e

ti
m

e
[µ

s] g

0.0

0.5

1.0

ac
cu

ra
cy

[1
]

b

0 50 100
training steps [1]

100

10−1

lo
ss

[1
]

c

0.0 2.5
time [µs]

n
eu

ro
n

id

h

waferASIC

BrainScaleS-1

Figure SI.A1: Training a spiking network on the wafer-scale BrainScaleS-1 system. (a) Simple data
set consisting of 4 classes with 7 × 7 input pixels. Accuracy (b) and loss (c) during training
of the four pattern data set. (d-g) Evolution of the spike times in the label layer for the four
different patterns. In each, the neuron coding the correct class is shown with a solid line and
in full color. (h) Raster plot for the second pattern (e, correct class ▲) after training.

Table SI.B1: Additional simulation runs on the MNIST data set. The values given as the baseline are taken
from Table 5.2. With the noted exception of training length. Apart from the number of training
epochs (see footnotes), the hyperparameters for simulations with the input resolution of 28×28
are the same as in Table SI.F1 and the simulations for the input resolution of 16 × 16 used the
hyperparameters given in Table SI.F2.

simulation input hidden accuracy [%]
resolution neurons test train

baseline 28× 28 350 97.1± 0.1 99.6± 0.1
without noise 28× 28 350 95.7± 0.3 99.7± 0.1
larger hidden layer 28× 28 800 97.3± 0.1 99.8± 0.1
two hidden layers1 28× 28 400–400 97.1± 0.1 99.5± 0.1

baseline2 16× 16 246 97.4± 0.2 99.2± 0.1
6-bit weight resolution2 16× 16 246 97.3± 0.1 99.1± 0.1

1 This network was trained for 300 epochs.
2 This network was trained for 150 epochs.

5.5. SUPPLEMENTARY INFORMATION 77

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
θ [1]

0.96

0.97
te

st
ac

cu
ra

cy
[1

]

a

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
τs = τm [1]

0.96

0.97

te
st

ac
cu

ra
cy

[1
]

b

0 2 4 6 8 10
neuron death ratio [%]

0.7

0.8

0.9

te
st

ac
cu

ra
cy

[1
]

c

Figure SI.C1: Robustness to variations not present during training. All panels show median (black),
quartiles (dark gray), as well as the entire range between minimum and maximum (light gray)
in the shaded regions. (a) Dependence of test accuracy for evaluation for 10 trained networks
with shifted threshold value θ. (b) Test accuracies for shifts in the neuron time constant τs and
τm. (c) Influence of random deletion of hidden neurons on test accuracies. For each neuron
death ratio, 10 different random sets of hidden neurons were deleted. These ten deletion sets
were applied to the same ten networks as in (a) and (b).

a, b). These simulations show that the trained networks cope well, even if the relative shifts
to the parameters are much larger than what can be typically expected due to temperature
changes on BrainScaleS-2.

Furthermore, we consider a scenario which is less likely on neuromorphic platforms, but
may be more relevant in biological networks. In biology, neural networks have to be ro-
bust against the death of neuron cells within the network. For each of the 10 fully trained
networks we delete a percentage of its hidden population and evaluate the performance on
the test set. As the consequences of this procedure strongly depend on exact choice of the
deleted neurons, we repeat each deletion scenario for each network 10 times with different
random seeds. Figure SI.C1c shows that networks trained with our learning mechanism
exhibit stability towards sudden neuron death after training and even for 5 % neuron death
the bound of the second quartile is still at 92.3 % accuracy. Note also that if plasticity is
ongoing, the network can learn to recover much of its performance after apoptosis.

78 CHAPTER 5. RESULT II

0.5 1.0 1.5 2.0
input time tx [τs]

0.5

1.0

1.5

2.0

in
p

u
t

ti
m

e
t y

[τ
s]

b

0 50 100 150

100
va

li
d

at
io

n
lo

ss
[1

]

a

0 50 100 150
epochs [1]

10−1

va
li

d
at

io
n

er
ro

r
[1

] 10 seeds

seed in b

Figure SI.D1: Training on the Yin-Yang data set with a simplified learning rule. We approximated
the learning rule to have less complex updates (Eqns. SI.D1 and SI.D2). (a) shows the train-
ing process of 150 epochs. We reach a test accuracy of (91.7 ± 1.4) % and training accuracy
(91.7 ± 1.2) % averaged over 10 seeds. (b) shows the classification as in Fig. 5.2 after training
for the highlighted training in (a).

SI.D Simplification of the learning rule

The learning rule for τm = τs described in the main paper and derived in the Methods is
computationally rather demanding: it needs multiple evaluations of the exponential func-
tion as well as an evaluation of the Lambert W functionW , for which no closed form exists.
As the computational complexity of plasticity mechanisms on many neuromorphic chips is
limited, we investigate the possibility of approximating the derivatives Eqns. (5.4) and (5.5)
by replacing the exponential functions as well asW by a constant λ3:

∂tk
∂wki

= −λ (tk − ti) , (SI.D1)

∂tk
∂ti

= −λwki

τs
(tk − ti − τs) . (SI.D2)

The approximated version consists only of simple differences and multiplications making
this learning rule more amenable for on-chip implementations.
To examine the approximated learning rule in the standard setup with τm = τs we chose
λ = 0.0192 by evaluating 1

a1
1

W(z)+1
for a few inputs into the hidden layer. Using this

extreme simplification we trained a network to classify the Yin-Yang data set (Fig. SI.D1).
While the network learned the task correctly and achieved a test accuracy of (91.7 ± 1.4) %,
this represents a small but noticeable drop in accuracy compared to the full learning rule
(Table 5.2). We also observed that these simplified rules led to more instability for longer
training periods (not shown here). Nonetheless, these promising results give us confidence

3This effectively leads to ρ being a constant in Eqns. (5.39) and (5.40).

5.5. SUPPLEMENTARY INFORMATION 79

that that a more careful choice of the constant or a replacement with a simple, but non-
constant term can alleviate these problems while retaining a simple form of the learning
rule.
Note, in particular, that Eqn. (SI.D2) explicitly contains the term ti+τs. This term represents
the maximum of a PSP and changes sign when the output spike at T happens before versus
after the maximum. This simple difference captures the major non-monotonic relationship
in the time derivative. As the maximum of the PSP is given by a closed form solution
tmax = ti+

τmτs
τs−τm

log τs
τm

for arbitrary combinations of τs and τm, it seems natural to investigate
a slightly altered learning rule for different time constants.

SI.E Power consumption and execution time measurements

Table 5.1 in themainmanuscript compares the energy consumption and classification speed
of our model on BrainScaleS-2 with other neuromorphic platforms and an ANN on a GPU.
This section details how the power and classification speed measurements were performed,
as well as their implications for the scalability of and potential improvements to our setup.
Additionally, we present our measurement technique for the GPU reference.

BrainScaleS-2

Power breakdown The full BrainScaleS-2 chip consumed a total of 175mWmeasured dur-
ing runtime with the INA219 chip Tex (2015). This overall figure encompasses the chip’s
high-speed communication links (approx. 60mW), the digital periphery as well as its clock-
ing infrastructure (approx. 80mW), and the biasing of analog circuits (approx. 35mW).
Importantly, we could not observe a significant change in power consumption between the
network during inference and an emulation of an inactive network. This implies that the
cost of event transport and synaptic processing is negligible on the reported scales and that
the overall figure would not be impacted by increased activity levels. As inactive synapses
mostly contribute to the overall power consumption through negligible leakage currents,
the power consumption would not be impacted by an increase of the neuron circuit’s fan-in
that would allow the training on larger input spaces.

Execution time breakdown We define the round-trip time for an on-chip inference run as
starting before the forward pass through the network in our PyTorch implementation and
ending when all classification results produced by the chip are available in PyTorch. For
the classification of the full MNIST test data set on BrainScaleS-2 we measured a round-trip
time of 0.937 s.
Due to this conservative definition of the round-trip time, our measurement includes a sig-
nificant amount of time on the host (for data pre- and post-processing) and for communica-
tion between host and the neuromorphic system. Fig. SI.E1 shows a detailed breakdown of
the execution time. We see that once the data arrives on the chip, it takes 480ms to process

80 CHAPTER 5. RESULT II

encoding

184ms

experiment

674ms

dec.

79ms

neuromorphic emulation on BrainScaleS-2

480ms

48µs

Figure SI.E1: Breakdown of the execution time for inference on the MNIST test set. The total time of
about one second consists of an encoding, an experiment and a decoding phase. The encoding
phase includes the translation of PyTorch tensors into spike trains and the encoding of the spike
trains into instructions for the neuromorphic chip. In the experiment phase the instructions
are sent from the host to the chip, the emulation is performed and the results are read out from
the chip and communicated back to the host. In the final decoding phase the emulations results
are converted back to PyTorch tensors.

the 10 000 images of the test set. This results in a classification every 48 µs or equivalently
a classification rate of 20 800 images per second.
Considering the relevant hardware time constants of τs ≈ τm ≈ 6 µs and the typical time to
solution of around 1 τs to 1.5 τs, a classification duration per sample of 48 µs seems surpris-
ingly long. This is owed to the sequential presentation of data samples to the network, for
which we need to ensure that all residual activity — membrane voltages as well as synap-
tic currents — from the last sample has fully decayed before the next sample is presented.
Currently, this is achieved by simply waiting between samples, but Cramer et al. (2020a)
present an alternative: The plasticity processing unit (PPU) is able to trigger a reset of all
membrane voltages and synaptic currents on the chip. Using this mechanism, Cramer et al.
(2020a) shorten the classification time per image to 11.8 µs. The usage of artificial resets
would also be a viable optimization for our model. It would require the previously switched
off PPU to be activated and would therefore slightly increase the power consumption (by
approximately 20mW). This increase in power would however be more than compensated
by the approximately quadrupled sample throughput.

GPU

For comparison to conventional computing hardware we add power and classification
speed measurements on a Nvidia Tesla P100 GPU to Table 5.1. For the measure-
ments on the GPU we use the convolutional neural network given as standard ex-
ample in the PyTorch repository (https://github.com/pytorch/examples/blob/
507493d7b5fab51d55af88c5df9eadceb144fb67/mnist/main.py).

https://github.com/pytorch/examples/blob/507493d7b5fab51d55af88c5df9eadceb144fb67/mnist/main.py
https://github.com/pytorch/examples/blob/507493d7b5fab51d55af88c5df9eadceb144fb67/mnist/main.py

5.5. SUPPLEMENTARY INFORMATION 81

The power measurements are performed using the tool nvidia-smi which is running in the
background while in the foreground we run a PyTorch program which repeats the classi-
fication of the MNIST test data set (in one batch of size 10 000) for 10 times. Figure SI.E2
shows the power consumption over the full program runtime. We see that the GPU is only
active for 10 short periods, the duration of which match the measured times during which
the PyTorch program uses the GPU (Fig. SI.E2 b). The power consumption is calculated as
an average over these intervals, resulting in 106.5W.
The speed measurements were performed using time measurements in Python and aver-
aged over the 10 classifications, resulting in a classification time per image of 8 µs. This
amounts to an energy-per-classification value of 852 µJ.
As an additional reference we attempted to determine the power consumption and classifi-
cation speed for a fully connected network with a hidden layer of 246 neurons (same size as
the hidden layer on BrainScaleS-2) on GPU. However, due to the fact that the classification
was a factor of 20 to 25 faster than for the CNN, we were not able to measure the power
in a fine enough resolution with nvidia-smi to yield reliable values. To estimate a lower-
bound for the energy per classification in this case, we can take the power consumption of
the GPU in the phases where it was not actively used in the CNN measurement (i.e. power
values between the peaks in Fig. SI.E2a) which is approximately 34W. This “idle” power
consumption for the CNN case seemed to approximately match the averaged power drain
for the fully connected network. This amounts to a lower-bound estimate of the energy-
per-classification value on the order of 10 µJ.

SI.F Additional data

82 CHAPTER 5. RESULT II

0 5 10 15 20 25
time [s]

0

50

100

150

p
ow

er
[W

]

a

14.10 14.15 14.20 14.25 14.30 14.35
time [s]

0

50

100

150

p
ow

er
[W

]

b

Figure SI.E2: Power consumption of Nvidia Tesla P100 GPU during classification of MNIST test
data. (a) Power consumption of a standard PyTorch network for MNIST classification while
running inference on the test data set for 10 times. (b) Zoom on a peak in the power con-
sumption. The shaded area corresponds to the time during which the GPU is actively used
(measured from within Python).

5.5. SUPPLEMENTARY INFORMATION 83

time [a. u.]

ϑ

E`

m
em

b
ra

n
e

vo
lt

ag
e
u

[a
.

u
.]

argmaxt[u(t)]= ti+τsa

time [a. u.]

ϑ

E`

maxt[u(t)]=u(ti+τs) =ϑ
b

−5 0
h [1]

−0.25

0.00

0.25

0.50

0.75

z(
h

)
=
h
·e

h
[1

]

c

−0.25 0.00 0.25 0.50 0.75 1.00
z [1]

−5

−4

−3

−2

−1

0

1
h

=
W

(z
)

[1
]

h =W(z), h < −1

h =W(z), h > −1

d

Figure SI.F1: (a) Membrane dynamics for one strong input spike at ti (upward arrow) with two threshold
crossings due to leak pullback (earlier violet, later brown). The change induced by a reduction
of the input weight is shown in red. (b) Edge case without crossing and exactly one time where
u(t) = ϑ. (c) Defining relation for the Lambert W functionW , evidently not an injective map.
(d) Distinguishing between h ≶ −1 allows to define the inverse function of (c), the Lambert
W functionW .

84 CHAPTER 5. RESULT II

Table SI.F1: Neuron, network and training parameters used to produce the results in Figs. 5.2 and 5.3.

Parameter name Yin-Yang MNIST

Neuron parameters
gℓ 1.0 1.0
Eℓ 0.0 0.0
ϑ 1.0 1.0
τm 1.0 1.0
τs 1.0 1.0

Network parameters
size input 5 784
size hidden layer 120 350
size output layer 3 10
bias time1 [0.9τs, 0.9τs] no bias
weight init mean1 [1.5, 0.5] [0.05, 0.15]
weight init stdev1 [0.8, 0.8] [0.8, 0.8]
tearly 0.15τs 0.15τs
tlate 2.0τs 2.0τs

Training parameters
training epochs 300 150
batch size 150 80
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ϵ 10−8 10−8

learning rate 0.005 0.005
lr-scheduler StepLR StepLR
lr-scheduler step size 20 15
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.0] [0.15, 0.05]
max allowed ∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2

1 Parameter given layer wise [hidden layer, output
layer].

2 ξ implemented differently in code-base developed by
the authors.

5.5. SUPPLEMENTARY INFORMATION 85

Table SI.F2: Network and training parameters for training on BrainScaleS-2 used to produce the results in
Fig. 5.4. In contrast to Table SI.F1, the neuron parameters are not given here, as they are deter-
mined by the used chip.

Parameter name Yin-Yang 16×16 MNIST

Network parameters
size input 25 256
size hidden layer 120 246
size output layer 3 10
bias time1 [0.9τs, no bias] no bias
weight init mean1 [0.1, 0.075] [0.01, 0.006]
weight init stdev1 [0.12, 0.15] [0.03, 0.1]
tearly 0.15τs 0.15τs
tlate 2.0τs 2.0τs

3

Training parameters
training epochs 400 50
batch size 40 50
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ϵ 10−8 10−8

learning rate 0.002 0.003
lr-scheduler StepLR StepLR
lr-scheduler step size 20 10
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.05] [0.5, 0.5]
max allowed∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2

1 Parameter given layer wise [hidden layer, output layer].
2 ξ implemented differently in code-base developed by the au-
thors.

3 After translation of pixel values to spike times, inputs spikes
with tinput = tlate were not sent into the network.

86 CHAPTER 5. RESULT II
Table

SI.F3:Extension
ofliterature

review
for

pattern
recognition

m
odels

on
neurom

orphic
back-ends,including

results
w
hich

do
notdetail

certain
m
easurem

ents.

platform
type

coding
netw

ork
energy

per
classifi

cations
test

reference
size/structure

classifi
cation

per
second

accuracy

SpiN
N
aker

digital
rate

764–600–500–10
3.3m

J
91

95.0%
Strom

atiasetal.(2015)
True

N
orth

1
digital

rate
CN

N
0.27µJ

100
0

92.7%
Esseretal.(2015)

True
N
orth

1
digital

rate
CN

N
108µJ

100
0

99.4%
Esseretal.(2015)

FPGA
(nLIF

neurons) 2
digital

tem
poral

784–600–10
—

—
96.8%

M
ostafa

etal.(2017)
Loihi

digital
bin.rate

400–400–10
2.5µJ

591
7

96.2%
Renneretal.(2021)

Loihi 3
digital

tem
poral

1920–10
—

—
96.4%

Lin
etal.(2018)

unnam
ed

(Intel) 4
digital

tem
poral

236–20
1.0µJ

625
0

88.0%
Chen

etal.(2018)
unnam

ed
(Intel) 5

digital
tem

poral
784–1024–512.-10

12.4µJ
—

98.2%
Chen

etal.(2018)
unnam

ed
(Intel) 5

digital
tem

poral
784–1024–512–10

1.7µJ
—

97.9%
Chen

etal.(2018)
SPO

O
N
6

digital
tem

poral
CN

N
0.3µJ

8547
97.5%

Frenkeletal.(2020)
BrainScaleS-2

m
ixed

tem
poral

256–246–10
8.4µJ

20
800

96.9%
thisw

ork

1
In

Esseretal.(2015)itisstated
that“The

instrum
entation

available
m
easuresactive

pow
erforthe

netw
ork

in
operation

and
leakage

pow
erforthe

entire
chip,w

hich
consistsof4096

cores.W
e
reportenergy

num
bersasactive

pow
erplusthe

fraction
ofleakage

pow
erforthe

coresin
use.”.Forthe

firstresult5
coresw

ere
used,w

hile
the

second
resultrequires1920

cores.
2
N
o
energy

orspeed
m
easurem

entsreported.
3
N
o
energy

orspeed
m
easurem

entsreported.Im
agesw

ere
preprocessed

w
ith

an
algorithm

described
as“using

scan-line
encoders”.

4
Im

agespreprocessed
w
ith

4
5×

5
Gaborfiltersand

3×
3
pooling.

5
N
o
speed

m
easurem

entsreported.
6
Reported

energy
valuesare

pre-silicon
sim

ulations.

Chapter 6

Result III: Towards dendritic
microcircuits on neuromorphic
hardware

6.1 Introduction

In this chapter we employ an opposite approach to the one in Chapter 5: There, we took
the leaky integrate-and-fire (LIF) neuronwhich is commonly utilized on neuromorphic plat-
forms as starting point and derived an error backpropagation method for its spike times.
Here, we start from an already existing form of error backpropagation and make it more
amenable to a neuromorphic implementation. As the design of neuromorphic platforms
is inspired by the brain, they share some of the constraints that biology imposes. One
example for this is the requirement for plasticity to be local in space and time. Thus, bio-
logically plausible models, in addition to forming hypotheses about learning in the brain,
provide a better starting point for neuromorphic implementations, as they inherently take
some neuromorphic constraints into account. However, these models (a collection of them
can be found in Section 2.4.3) are typically not designed with an immediate neuromorphic
implementation in mind and are therefore not directly portable to currently existing neu-
romorphic platforms1.
Out of the many available models we choose the dendritic microcircuits of Sacramento
et al. (2018) because it is able to approximate the error backpropagation algorithm (see
Appendix A.2) while also addressing all of the aspects of biological implausibility detailed
in Section 2.4.3:

• Through the usage of feedback alignment (FA) the dendritic microcircuits do not suf-
fer from the weight transport problem.

1The exception here is Tang et al. (2021), however even in this case the algorithm is only approximately portable to
the Loihi platform and suffers a severe loss in achieved accuracy on the task.

87

88 CHAPTER 6. RESULT III

• There are no separate forward- and backward propagation phases. Through the re-
currency of the dendritic microcircuit network information flows forward and back-
ward simultaneously. There is also no phasing in plasticity, so the network constantly
learns.

• All synaptic weight updates are local in space and time. The synaptic update rules
only rely on information available within the pre- and postsynaptic neurons at the
time of the update.

• Errors are not sent through the network via synaptic connections but instead com-
puted locally from different firing rates arriving at the neuron. This also avoids the
issue of having to communicate negative values via firing rates.

• The microcircuits consist of multi-compartment neurons with leaky dynamics which
makes them more realistic than the artificial neurons in an artificial neural network
(ANN).

Nevertheless, the dendritic microcircuits are not directly portable to neuromorphic plat-
forms. In the following we will evaluate the dendritic microcircuit in detail (Section 6.2),
highlight the challenges for the implementability on neuromorphic systems (Section 6.2.3)
and address the drawbacks step-by-step to make it more practically feasible (Sections 6.3
to 6.5).

6.2 Biologically plausible error backpropagation in dendritic mi-
crocircuits

The article Dendritic cortical microcircuits approximate the backpropagation algorithm was
published by Sacramento et al. in Advances in Neural Information Processing Systems 31
(NeurIPS 2018)2. Since the rest of Chapter 6 builds on and extends this model, we here lay
the groundwork with a detailed description of the model in the state of the original publica-
tion (Sacramento et al., 2018). This includes not only the dynamics and functional principles
of themodel as stated in the publication but also our assumptions on implementation details
where information was incomplete. We also reiterate how the model approximates error
backpropagation in a from that is more easily transferable to the content of the following
sections than the approach chosen in Sacramento et al. (2018). Finally, we highlight key
points which need to be addressed to improve the model’s practical feasibility and neuro-
morphic implementability. Note that for consistency with the publications in Section 6.3
and Section 6.4, we here use a notation that differs from the original publication.

2Sacramento et al. (2018)

6.2. DENDRITIC MICROCIRCUIT 89

uPi

vapii

vbasi

vbasi+1

vapii+1

uPi+1

vdeni

uIi WPP
i+1,i

WPI
i,i

WIP
i,i

BPP
i,i+1

Figure 6.1: Schematic of a dendritic microcircuit network. Left: Layered network of dendritic microcir-
cuits. Information travels from bottom to top. The pyramidal neurons are drawn in red (soma)
and orange (dendrites) while the interneurons are colored in blue. In contrast to the hidden layer
pyramidal neurons, the ones in the top layer only have a basal dendrite and no apical dendrite.
The gray box marks the area drawn in detail on the right. Right: Single microcircuit consisting
of a pyramidal neuron (red) in layer i and i + 1 and an interneuron (blue). The lines between
neurons represent synaptic connections, where the lateral connections are drawn in blue, the
backward connections in gray and the forward connections in red. For clarity, the schematic of
the connections is simplified here: In general, solid lines represent all-to-all connections between
neurons, i.e.W PP

i+1,i,W IP
i,i,W PI

i,i andBPP
i,i+1 are matrices. For exampleW PP

i+1,i connects all pyra-
midal neurons in layer i to all pyramidal i+1, but here we only draw the one synapse connecting
the two pyramidal neurons in the magnified drawing. The dotted connection represents the one-
to-one nudging from a higher layer pyramidal neuron to the interneuron which is supposed to
mimic it.

6.2.1 Summary of network-, neuron- and plasticity model

Network structure and dynamics

Networks of dendritic microcircuits as illustrated in Fig. 6.1 contain three types of multi-
compartment neurons: the interneuron, the pyramidal neurons in the hidden layers of the
network and the pyramidal neurons in the output layer of the network which differ slightly
from their counterparts in the lower layers. A pyramidal neuron in a hidden layer has
two dendritic compartments: the basal compartment which receives bottom-up input and
the apical compartment which receives top-down and lateral input from the interneurons

90 CHAPTER 6. RESULT III

in the same layer. An interneuron has only one dendritic compartment but receives an
additional input which we call a nudging current and which will be detailed later. The
top-layer pyramidal neurons, in contrast to their lower-layer counterpart, do not have an
apical compartment since there are no interneurons in the top-layer nor another layer above
from which an apical compartment could receive input (Fig. 6.1). Instead, these pyramidal
neurons also receive a nudging current which is used to provide a learning target to the
network. The differential equations describing the somaticmembrane dynamics of the three
neuron types are similar

Cmu̇
P
ℓ = gl

(
El − uP

ℓ

)
+ gbas

(
vbas
ℓ − uP

ℓ

)
+ gapi

(
v
api
ℓ − uP

ℓ

)
, (6.1)

Cmu̇
I
ℓ = gl

(
El − uI

ℓ

)
+ gden

(
vden
ℓ − uI

ℓ

)
+ inudge, I , (6.2)

Cmu̇
P
N = gl

(
El − uP

N

)
+ gbas

(
vbas
N − uP

N

)
+ inudge, tgt (6.3)

where the respective somatic voltage u is driven by a leak gl, conductive coupling with
gbas/den/api to the dendritic voltages vbas/den/api and for the interneuron and the top-layer pyra-
midal a nudging current i. The index ℓ or N denotes the layer of the neurons. Note that
the bold notation indicates a vector that contains the voltages of all neurons in a layer. The
dendritic voltages v are instantaneous functions of their input

vbas
ℓ = W PP

ℓ,ℓ−1φ
(
uP

ℓ−1

)
, (6.4)

v
api
ℓ = BPP

ℓ,ℓ+1φ
(
uP

ℓ+1

)
+W PI

ℓ,ℓφ
(
uI

ℓ

)
, (6.5)

vden
ℓ = W IP

ℓ,ℓφ
(
uP

ℓ

)
(6.6)

where W PP
ℓ,ℓ−1 is the synaptic weight matrix from the pyramidal neurons in layer ℓ − 1 to

the pyramidal neurons in layer ℓ,BPP
ℓ,ℓ+1 is the matrix of backward pyramidal to pyramidal

connections from layer ℓ+ 1 to layer ℓ andW PI
ℓ,ℓ andW IP

ℓ,ℓ are lateral connections from the
interneurons to the pyramidal neurons and the other way around within the same layer.
The weight matrices are multiplied by the firing rates of the presynaptic neurons which
are given as a non-linear function of the presynaptic somatic voltage φ(u). To simplify the
notationwewill in the following assumewithout loss of generality amembrane capacitance
of Cm = 1 and a leak potential of El = 0.

Plasticity

Plasticity in the dendritic microcircuit model is implemented via a rate-based variant of
the Urbanczik-Senn plasticity rule (Urbanczik and Senn, 2014). In this rule the bottom-up
synapses w which connect to a dendritic compartment are learned with

ẇ = η [φ(u)− φ(v∗)] rin (6.7)

6.2. DENDRITIC MICROCIRCUIT 91

where u is the somatic and v dendritic voltage and rin the presynaptic firing rate. v∗ is a
scaled version of the dendritic voltage. The scaling ensures that, in the case where the soma
receives no other input than the one from its dendritic compartment, v∗ matches the somatic
voltage u. In that case we can see that Eqn. (6.7) would result in zero weight change. If an
additional input is now applied to the soma that is proportional to an error signal utgt − u,
the somatic voltage u is closer to its target than if the additional input was not present
(which is represented by v∗). This process is called nudging the somatic voltage towards its
target. Now the difference calculated in the plasticity rule is no longer zero and results in a
weight change. The changing weight converges to a value that allows the dendritic input
into the soma alone to produce a somatic voltage which matches the target.

The plasticity in the network of dendritic microcircuits is divided into two stages: The first
stage starts from a completely random weight initialization and learns what is called the
self-predicting state. In that state the lateral connectivity in the network is set up such
that, in the second stage, error signals are correctly propagated in the network and the
feedforward weights can learn to solve a task. Note that this first stage of network setup
is only used once before the actual training starts. Once the self-predicting state is reached
and the learning of a task has begun, the network automatically retains the self-predicting
state.

To learn the self-predicting state from a random initialization, the network receives random
inputs but is not given any target or error signal. The self-predicting state is characterized
by two requirements: Firstly, each interneuron mimics (i.e. produces the same output) as
its corresponding pyramidal neuron in the layer above (see Fig. 6.1). The nudging input
received by the interneurons in layer ℓ is

inudge, I = gnudge, I
(
uP

ℓ+1 − uI
ℓ

)
. (6.8)

The input weights to the interneuronsW IP can then be learned analogously to Eqn. (6.7)

Ẇ IP
ℓ,ℓ = ηIPℓ

[
φ
(
uI

ℓ

)
− φ

(
gden

gl + gden
vden
ℓ

)]
φ
(
uP

ℓ

)
(6.9)

with gden

gl+gdenv
den
ℓ = vden,∗

ℓ .

The second requirement for the self-predicting state is that all apical voltages vapi in the
network must be zero. Since they are used to store local error signals during the second
stage of learning, they need to be zero if no error/target signal is provided to the network.
This goal is reached by adjusting the lateral weights from interneurons to the apical com-
partments of the pyramidal neuronsW PI

Ẇ PI
ℓ,ℓ = ηPIℓ

[
−vapi

ℓ

]
φ
(
uI

ℓ

)
. (6.10)

92 CHAPTER 6. RESULT III

This learning rule is a slight variant of Eqn. (6.7), as it is no longer based on the difference
of rates φ(u)− φ(v∗) but instead on the difference of the potentials El − vapi with El = 0.
When both lateral weights are learned correctly, each interneuron receives the same input
as the pyramidal neuron it is supposed to mimic. Therefore, both interneuron and above-
layer pyramidal neuron will produce the same output. Additionally, the weights connecting
to the apical compartments have been set up in a way so the signals from the interneurons
and from the above-layer pyramidal neurons cancel each other out and the apical voltage
is at rest. An example of a small network learning the self-predicting state can be found
in Fig. 6.3 b, c. Note that for this figure the network dynamics have been modified but the
principle of learning the self-predicting state remains the same3.
It is possible to initialize the network directly in a self-predicting state by setting

W IP
ℓ,ℓ =

gbas
(
gl + gden

)
gden (gl + gbas + gapi)

W PP
ℓ+1,ℓ (6.11)

W PI
ℓ,ℓ = −BPP

ℓ,ℓ+1 (6.12)

in the lower layers and

W IP
N−1,N−1 =

gbas
(
gl + gden

)
gden (gl + gbas)

W PP
N,N−1 (6.13)

in the last layer which contains interneurons.
Once the network is in the self-predicting state, the learning of the task can start. To this
end pairs of input- and target signals are provided to the network. The pyramidal neurons
in the top-layer receive a nudging signal

inudge, tgt = gnudge, tgt
(
utgt − uP

N

)
. (6.14)

With this the weight from the last hidden layer to the top-layer pyramidal neurons can be
learnt analogously to Eqn. (6.7)

Ẇ PP
N,N−1 = ηPPN

[
φ
(
uP

N

)
− φ

(
gbas

gl + gbas
vbas
N

)]
φ
(
uP

N−1

)
(6.15)

where gbas

gl+gbasv
bas
N = vbas,∗

N .
In the hidden layers the nudging of the somatic voltage is not done via a nudging current
but via the apical dendrite. If the top-layer pyramidal neurons receive external nudging to
drive them closer to the target, the interneurons in the layer below can no longer exactly
mimic the pyramidal neurons as they only receive their bottom-up input. Therefore, the

3This figure was produced for Haider et al. (2021) to illustrate the learning mechanisms of dendritic microcircuits with
neuron dynamics that contain the Latent Equilibrium mechanism.

6.2. DENDRITIC MICROCIRCUIT 93

two signals arriving at the apical dendrites in the last hidden layer no longer perfectly cancel
out and what remains serves as local error to nudge these hidden pyramidal neurons.
This local error which nudges the pyramidal neurons in the highest hidden layer is in turn
not available to interneurons in the layer below and therefore the signals arriving at the
apical dendrites in the layer below also do not cancel and provide a local error to those
pyramidal neurons too. And with that, all pyramidal neurons in all layers receive a back-
propagated error signal which is stored in the apical dendrite and serves as nudging for
learning:

Ẇ PP
ℓ,ℓ−1 = ηPPℓ

[
φ
(
uP

ℓ

)
− φ

(
gbas

gl + gbas + gapi
vbas
ℓ

)]
φ
(
uP

ℓ−1

)
(6.16)

Note that in the hidden layers vbas,∗ℓ = gbas

gl+gbas+gapiv
bas
ℓ includes the apical conductance which

is not present in the top-layer.
During learning the self-predicting state has to be maintained in order to keep the error
propagation mechanism functional. Therefore, whenever the feedforward weights W PP

change, the lateral weights W IP need to be adapted accordingly. As there are no phases
in the learning process, this has to be done simultaneously to learning the feedforward
weights. The update rule is the same as shown for the self-predicting state in Eqn. (6.9). In
Section 6.2.2 and Appendix A.2 we show how the learning mechanisms in dendritic micro-
circuits under certain circumstances approximate the error backpropagation algorithm.

Implementation

We have found that in practice numerical stability of the simulations is improved if we
rewrite the differential equations for the neurons to

Cmu̇ =
1

τeff

(
ueff − u

)
, (6.17)

τeff =
Cm

gl + gbas/den + gapi/nudge
. (6.18)

ueff represents the voltage at which the somatic voltage will settle once the steady state is
reached. The steady-state voltage is calculated differently for the different neuron types:

ueff,P
ℓ =

glEl + gbasvbas
ℓ + gapiv

api
ℓ

gl + gbas + gapi
, (6.19)

ueff,I
ℓ =

glEl + gdenvden
ℓ + gnudge, IuP

ℓ+1

gl + gden + gnudge, I
, (6.20)

ueff,P
N =

glEl + gbasvbas
N + gnudge, tgtutgt

gl + gbas + gnudge, tgt
. (6.21)

94 CHAPTER 6. RESULT III

If no target is presented to the top-layer pyramidal neurons their steady state changes to

ueff,P
N =

glEl + gbasvbas
N

gl + gbas
. (6.22)

We have also found in practice that for larger networks and more complicated tasks it is ad-
visable to initialize the network directly in the self-predicting state as shown in Eqn. (6.11)
to Eqn. (6.13). We believe that the reason for that is that for larger networks this weight
configuration is not the only one which (at least approximately, for the limited number of
inputs shown) fulfills the requirements of the self-predicting state. Large networks trying
to learn the self-predicting state will typically converge to an approximate weight config-
uration which is closest to their initialization. This can be problematic for learning, since
these alternative solutions are highly dependent on the feedforward weights and on the
input samples shown. If the feedforward weights change slightly during the learning of
the task, a self-predicting state which was initialized with Eqn. (6.11) can be reestablished
with only a slight change in the lateral weights, while the alternative solutions typically re-
quire much larger weight changes. This slows down the learning of the task as it requires
the learning rates for the feedforward weights to be lowered drastically compared to when
Eqn. (6.11) to Eqn. (6.13) is used for network initialization.

6.2.2 Approximation of the error backpropagation algorithm

Under the following assumptions it can be shown that the dendritic microcircuit architec-
ture approximates the error backpropagation algorithm:

• No FA (i.e. random and fixedBPP
ℓ−1,ℓ) butBPP

ℓ−1,ℓ = W PP, T
ℓ,ℓ−1 instead

• Perfect self-predicting state at all times (see Eqns. (6.11) to (6.13))

• Interneurons match their corresponding above-layer pyramidal neurons perfectly.
This requires the self-predicting state and the nudging on the interneurons (i nudge,I
in Eqn. (6.8)) is negligible such that uI

ℓ = vbas,*
ℓ+1

• Only the steady-state solutions of the somatic membrane voltages (i.e. the value to
which the somatic membrane voltage settles for constant input) are regarded.

We will see in Section 6.3 that among these assumptions the steady-state approximation is
the most problematic one.
It is important to note that in contrast to ANNs, dendritic microcircuit networks are recur-
sively connected networks. Due to the recursive connectivity the information flowing from
top-to-bottom has an impact on the signals travelling along the feedforward pathway in the
network. This is different to an ANN where the flow of forward and backward information

6.2. DENDRITIC MICROCIRCUIT 95

are separated into different phases and do not interfere with each other. Therefore, the den-
dritic microcircuits can only approximate error backpropagation under the condition that
the backward information flow has only a weak influence on the feedforward pathway.
Under these conditions it can be shown (see Appendix A.2) that there is a layer-wise recur-
sive formulation for the apical voltages

v
api
ℓ = λW PP, T

ℓ+1,ℓ

(
v
api
ℓ+1 ⊙ φ′

(
vbas,∗
ℓ+1

))
(6.23)

and that the weight update rule for the feedforward weights can be rewritten to

Ẇ PP
ℓ,ℓ−1 = η λv

api
ℓ ⊙ φ′

(
vbas,∗
ℓ

)
φ
(
uP

ℓ−1

)T
. (6.24)

By identifying the error signal as

eℓ = v
api
ℓ ⊙ φ′

(
vbas,∗
ℓ

)
(6.25)

we achieve a correspondence to the error backpropagation equations Eqn. (2.26) and
Eqn. (2.28). For a more detailed discussion of this correspondence and the treatment of
the top-layer see Appendix A.2.2. While the mechanism for error backpropagation in mi-
crocircuits is derived for an arbitrary number of hidden layers, in practice it is very difficult
to train a larger network with more than one hidden layer. In Appendix A.2.3 we give an
explanation on why this is the case.

6.2.3 Neuromorphic implementability and known drawbacks

While the dendritic microcircuit addresses many of the points of biological implausibility
in the error backpropagation algorithm, we have identified three main drawbacks of the
model that stand in the way of practical implementations in physical systems. These three
points will be addressed in the following sections.

• Section 6.3: The choice of leaky-integrator dynamics for the neurons makes them
more biologically plausible than their ANN counterparts. However, this comes with
the disadvantage of slow information propagation through the network which has a
severely negative impact on learning performance and speed (see Section 6.3.2).

• Section 6.4: Dendritic microcircuits employ the FA mechanism to avoid the weight-
transport problem. However, the effectiveness of FA is highly task-dependent and is
suboptimal both for too small or too deep networks.

• Section 6.5: The model is fundamentally rate-based, which is not amenable to cur-
rently available, typically spiking, neuromorphic hardware.

96 CHAPTER 6. RESULT III

6.3 Latent equilibrium: A unified learning theory for arbitrarily
fast computation with arbitrarily slow neurons

6.3.1 Article and author contribution

The article Latent equilibrium: A unified learning theory for arbitrarily fast computation with
arbitrarily slow neurons was published by Haider et al. in Advances in Neural Information
Processing Systems 34 (NeurIPS 2021)4. LK produced the experimental setup and results for
Figure 3 and Figure 5 (shown as Fig. 6.4 and Fig. 6.3 here) and was involved in the writing
of the corresponding Sections 5 and 14.

6.3.2 Summary

In the following we summarize the main contents of Haider et al. (2021) while focussing in
particular on its impact on dendritic microcircuits.

The relaxation problem

The dendritic microcircuit model (Sacramento et al., 2018) as well as a whole host of other
models for biologically plausible error backpropagation (Whittington and Bogacz, 2017;
Scellier and Bengio, 2017; Guerguiev et al., 2017; Song et al., 2020; Millidge et al., 2020a,b)
suffer from what we call the relaxation problem. The relaxation problem is caused by the
output of a neuron reacting slowly to a change in the neuron’s input. One common example
for this are neurons with leaky integrator dynamics:

Cmu̇ = −gl u+ Iinput (6.26)

where themembrane voltage u is a low-pass filtered version of the inputwith themembrane
time constant τm = Cm

gl
. Here, a sudden jump from one value of the input current to a new

one will trigger the membrane voltage to decay exponentially to its new value with the
time constant τm. If we now imagine a hierarchical setup where the lowest layer of leaky
integrators receives an input from outside the system and the output of the network (for
example a classification result) is observed in the highest layer, we see that a network with
n layers will take on the order of n τm to settle to the output value which corresponds to
the new input.
This is problematic for two reasons: Firstly, in an inference setting the response time of
the network is increased with network depth which might make it unsuitable in situations
where fast reaction times to inputs are required. Secondly and more importantly, the de-
layed network response disrupts the learning process: In a setting where the network is
trained with pairs of inputs and corresponding target- or teaching-signals, the difference

4Haider et al. (2021)

6.3. LATENT EQUILIBRIUM 97

between the output of the network and the target is driving the learning. But what should
ideally drive the learning instead is the difference between the converged output and the
target. Using the non-converged network output leads to wrong error- or learning signals
being passed into the network during the time when the network has not yet reached its
settled state.
This effect is illustrated in a simple example with a chain of two neurons in Fig. 6.2. We
see that in a system where the output, once settled, matches the target, learning does take
place and changes the weights. This is due to the mismatch of output and target before
the output has reached its settled state. This mismatch is transported as an error-signal
into the network and drives plasticity. The plasticity “over corrects” and pushes the output
above the target. Even though, towards the end of the experiment, the output reaches the
target again, the synaptic weights have permanently changed, so the previous synaptic
weights, which already were able to produce a correct output, were unlearned. This can be
problematic, if we imagine that the first set of weights was able to provide a good solution
to a given task for all possible inputs. The new weights that the network settled on provide
a correct solution for the one specific input that was shown, but can be much for the other
inputs, since there was only this one specific input present during their learning.
Previously there have been two common ways of mitigating or weakening this effect: On
the one hand phasing of the plasticity can be introduced: Plasticity is switched off until
the network has reached its settled state, so all “wrong” error signals from the pre-settling
phase have no impact on the weights. This method requires an external and global schedul-
ing mechanism, which, while easily implemented in a software simulation, might be hard
to realize in an asynchronous neuromorphic or biological system. The other option is to
decrease the learning rate drastically and present each stimulus for a long time. Then the
“wrong” learning in the beginning has a low impact and there is enough time once the
settled state is reached to undo it and learn with the correct error signals. This has the
obvious drawback that each input has to be presented for a long time and therefore the
training process of the network is very slow.

Latent equilibrium

Here we introduce a new and superior solution to the relaxation problem. For this we first
define a new network state ŭm which depends on the network’s membrane voltages u and
their derivatives u̇

ŭm := u+ τmu̇ . (6.27)

Intuitively, this ŭm is a prediction of the futuremembrane voltages in the network, given the
currentmembrane voltagesu and their derivatives. To reflect this we call it the “prospective
voltages” of the network.

98 CHAPTER 6. RESULT III

0 20 40 60 80 100 120 140
u

2
[a

.u
.]

w2r1

η → 0

η 6= 0

0 20 40 60 80 100 120 140
time [ms]

w
[a

.u
.]

w1

w2

Figure 6.2: Relaxationproblem in learningwith slowneurons. Figure and caption adapted from (Haider
et al., 2021, Fig. 1a,c). Left: A simple, functionally feedforward network of two neurons. Note the
recurrence induced by the propagation of both bottom-up signals and top-down errors. Right:
Continuous learning during relaxation without prospective coding. Dotted black: target mem-
brane potential. Solid lines: trajectories for vanishing learning rates. Dashed lines: trajectories
for nonzero learning rates. Purple: membrane potentials. Note the overshoot that occurs when
learning is continuously active. Green/red: presynaptic weights w1, w2 of 1st/2nd neuron.

We then define an energy for the network state of prospective voltages

E(ŭm) :=
1

2
∥ŭm −Wφ(ŭm)− b∥2 + βL(ŭm) (6.28)

with the weight matrixW , neuronal biases b, activation function φ and a loss term L. The
first part of the energy is a mismatch energy between “what neurons guess that they will
be doing in the future” (ŭm) and “what their biases and presynaptic afferents believe they
should be doing” (b+Wφ(ŭm)). The second part is a task-dependent loss which provides
a measure on how well the neurons perform at the chosen task.
By requiring the energy function to be extremal we can now derive the dynamics of the
neurons

∇ŭmE = 0 =⇒ τmu̇ = −u+Wφ(ŭm) + b+ e , (6.29)

with Wφ(ŭm) as the bottom-up input and top-down error signals

e = φ′(ŭm)W
T [ŭm −Wφ(ŭm)− b] . (6.30)

6.3. LATENT EQUILIBRIUM 99

For top-layer neurons which receive direct teaching input the error-signal is e = −β∇ŭmL.
In a layered network the error signals can be rewritten to a layer-wise recursive form eℓ =
φ′(ŭm)W

T
ℓ+1eℓ+1, therefore performing a variant of error backpropagation. For the detailed

derivation of these results see (Haider et al., 2021, Supplementary Information, Section 11).
The stationarity requirement on the energy function enforces our networks to evolve, for
a constant input, on a constant-energy manifold, we therefore call our approach Latent
Equilibrium (LE).
From the differential equation for the membrane voltage in Eqn. (6.29) we see that the neu-
rons in our model are leaky integrators. With this and the definition for ŭm we can show
that the breve operator exactly “un-does” the slow low-pass filtering of the leaky integrator,
see (Haider et al., 2021, Supplementary Information, Section 10). Then, the neurons’ mem-
brane voltages u react slowly to a jump in the input, while the corresponding prospective
voltages ŭm immediately jump to the value that u will reach once settled. We now define
the output firing rate of the neuron as r = φ (ŭm), in contrast to the previous definition
r = φ (u). This allows information to travel instantaneously through the network, even
though the actual membrane voltages of the neurons have not reached their settled state.
Synaptic plasticity is derived as gradient descent on the energy function:

Ẇ ∝ −∇WE =⇒ Ẇ = ηW [ŭm −Wr − b] rT (6.31)

The resulting weight updates evolve continuously in time and rely only on information and
error signals that are locally available. Plasticity in the output layer depends on the chosen
loss function L. For the least squares loss on the output rates and a target rate the weight
updates are

ẆN = ηWβ [r∗
N − rN] r

T
N−1 .

The ability to train networks of slow leaky integrator neuron with time-continuous and
fast-changing inputs is demonstrated on the MNIST (LeCun et al., 1998) and the more
challenging CIFAR10 (Krizhevsky, 2009) datasets. The LE networks achieve test errors
of (1.1 ± 0.1) % (MNIST) and (38.0 ± 1.3) % (CIFAR10). For reference a classical ANN with
the same structure was trained and achieves (1.08 ± 0.07) % (MNIST) and (39.4 ± 5.6) % (CI-
FAR10).

Application to dendritic microcircuits

The dendritic microcircuit model (Sacramento et al., 2018) suffers from the relaxation prob-
lem and in practice requires such long presentation times for each input sample to make it
practically unfeasible5. However, the ideas of LE can be applied to the model to alleviate

5This can be seen in the original publication, where only the small scale examples are simulated with full dynamics.
For the larger simulations on the MNIST dataset a highly simplified steady-state approximation of the model has to be
used, to shorten the simulation times.

100 CHAPTER 6. RESULT III

a

0 5 10
time [ms]

−0.5

0.0

w
ei

gh
t

WPP
2,1

W IP
1,1

BPP
1,2

−1 ·WPI
1,1

b

0 5 10
time [ms]

−0.2

0.0

p
ro

sp
.

vo
lt

ag
e

ŭP
2

ŭI
1

c

0 5
time [ms]

−0.4

−0.2

0.0

p
ro

s.
vo

lt
ag

e

ŭP
2

utgt

d

0 5
time [ms]

ŭP
2

utgt

e

0 2000 4000
time [ms]

0

1

w
ei

gh
t

WPP
2,1

W IP
1,1

W tgt
2,1

WPP
1,0

W tgt
2,1

f

𝜑𝜑 �𝑢𝑢

𝑾𝑾𝑾𝑾

𝑒𝑒

𝜏𝜏�̇�𝑢 = −𝑢𝑢
+𝑾𝑾𝑾𝑾 + 𝑒𝑒

𝑟𝑟in

𝑟𝑟1

𝑟𝑟2

𝑒𝑒1

𝑤𝑤1

𝑤𝑤2

𝑢𝑢2

𝑢𝑢1

𝑊𝑊1,1
IP

𝑊𝑊1,1
PI

𝑊𝑊2,1
PP

𝑊𝑊1,0
PP

𝐵𝐵1,2
PP

𝑢𝑢1P

𝑢𝑢2P

𝑢𝑢1I

𝑢𝑢tgt

Figure 6.3: Learning to mimic a teacher microcircuit with LE. Figure and caption taken from (Haider
et al., 2021, Fig. 5). (a) Microcircuit architecture following Sacramento et al. (2018). (b) Learn-
ing of the lateral weights W IP

1,1 and W PI
1,1 to implement the self-predicting state. (c) Prospective

membrane voltages during learning of the self-predicting state where (in absence of a target) the
top-down activity is matched by the activity of the interneuron. (d, e) Comparison between the
prospective membrane voltage ŭP

2 of the output pyramidal neuron and the target voltage utgt be-
fore (d) and after (e) training. (f)Weight evolution during learning.

this issue with only two changes: Firstly, the firing rates of all neurons are no longer calcu-
lated as φ(u) but as φ(ŭeff). Note that here we use ŭeff instead of ŭm. This is due to the fact
that for the multi-compartment neurons the time constant of the low-pass filtering is not
only the time constant of the leak τm = Cm

gl
but the effective time constant τeff = Cm

gl+gcompartments

which combines the influence of leak and compartmental coupling. For notational simplic-
ity we will in the following omit the index indicating the time constant and write ŭ instead
of ŭeff.
The replacement of φ(u)with φ(ŭ) occurs at all points where the activation function is ap-
plied to a somatic voltage: the calculation of the dendritic membrane potentials (Eqn. (6.4)),
the calculation of neuronal output firing rates as well as the weight updates (Eqn. (6.60)).
And finally, the interneurons must also be nudged with the prospective voltage of the pyra-
midal neuron in the layer above

ueff,I
ℓ =

glEl + gdenvden
ℓ + gnudge, IŭP

ℓ+1

gl + gden + gnudge, I
. (6.32)

Fig. 6.3 illustrates on a simple teacher-student-mimic task that the addition of the LE mech-
anism preserves the basic microcircuit functionality, while at the same time adding near

6.3. LATENT EQUILIBRIUM 101

a b

0 250 500 750 1000
epochs

0

25

50

75

100

va
li

d
at

io
n

er
ro

r
[%

]

Tpres = 1 τeff

Tpres = 10 τeff

Tpres = 100 τeff

d

100 102

Tpres[τeff]

0

50

100

te
st

er
ro

r
[%

]

MC by Sacramento et al.

MC with LE

horizontal vertical diagonal

c

𝑢𝑢𝑖𝑖som

𝑢𝑢𝑗𝑗som

𝑣𝑣𝑗𝑗bas

𝑣𝑣𝑖𝑖bas

𝑣𝑣𝑗𝑗
api

𝑣𝑣𝑖𝑖
api

𝑟𝑟𝑗𝑗

𝑟𝑟𝑖𝑖

𝑔𝑔bas

𝑔𝑔bas

𝑔𝑔api

𝑔𝑔api

output

input

output

input

𝑢𝑢𝑖𝑖som

𝑢𝑢𝑗𝑗som

𝑣𝑣𝑗𝑗bas

𝑣𝑣𝑖𝑖bas

𝑣𝑣𝑗𝑗
api

𝑣𝑣𝑖𝑖
api

𝑟𝑟𝑗𝑗

𝑟𝑟𝑖𝑖

𝑔𝑔bas

𝑔𝑔bas

𝑔𝑔api

𝑔𝑔api

output

input

Figure 6.4: Dendritic microcircuits with LE mechanism. Figure and caption taken from (Haider et al.,
2021, Fig. 3). (a,b) Model architecture following Sacramento et al. (2018). Red: pyramidal cells,
blue: interneurons; somatic compartments have darker colors. Each soma sends out a single axon
that transmits either ϕ(u) (Sacramento et al.) or ϕ(ŭm) (LE). Except for top-down synapses, all
synapses are plastic. (c) Synthetic dataset with 8 images grouped in 3 classes used to train a 3-
layer networkwith 9-30-3 pyramidal cells. (d)Model performance during (top) and after (bottom)
learning with (blue) and without (orange) LE. Top: Note the similarity in performance gains at
the beginning of training, before the disruptive effects of relaxation begin to dominate. For better
visualization, fluctuations are smoothed with a sliding window over 10 epochs. Bottom: Model
performance (min, max andmean over 10 seeds) after 1000 epochs for different input presentation
times.

instantaneous information propagation in the network. First, as a preparation for the learn-
ing of the actual task, the self-predicting state is learned by the lateral weights from a fully
random weight initialization (Fig. 6.3 b, c). At this stage random input but no targets are
provided to the network. Once the self-predicting state is reached, the network is taught to
reproduce an input-output relationship which is produced by a teacher network of the same
size but with different synaptic weights (Fig. 6.3 d – f)6. Note how, even though neurons
in this microcircuit are simulated with an effective time constant τeff = 5ms, the inputs
into the networks change every 1ms and the prospective voltages of the top-layer and in-
terneuron instantaneously react to those changes (Fig. 6.3 c – e). The slow change in the

6We use a teacher network to produce the input-output pairs in order to guarantee that the input-output relationship
is actually realizable by a network of the chosen architecture.

102 CHAPTER 6. RESULT III

interneuron voltage ŭI
1 in Fig. 6.3 c is due to its slowly adapting W IP and not due to the

neuron dynamics.
To illustrate the effect of the inclusion of LE in the microcircuit model on its learning ca-
pabilities we compare the adapted model and the original as described in Sacramento et al.
(2018) on a small classification task (Fig. 6.4). We see that the microcircuit model with LE
is able to fully learn the task even for presentation times of each input sample that are
far below its effective time constant τeff. In contrast, the original model is unable to learn
the task if each sample is not at least presented for 100 τeff. This shows that the inclusion
of the LE mechanism into the dendritic microcircuit model is absolutely crucial to bring
the required presentation times (and by that also the effective training durations) into a
biologically plausible and practically feasible range.

6.3. LEARNING EFFICIENT BACKPROJECTIONS 103

6.4 Learning efficient backprojections across cortical hierarchies in
real time

This chapter contains the article Learning efficient backprojections across cortical hierarchies
in real time. It is available as a preprint on arXiv7. The format was adapted to the format of
this thesis and the references have been included in the main bibliography.

Author contributions

KM derived, with contributions by LK and MAP, the phaseless alignment learning (PAL)
algorithm. KM and LK adapted the dendritic microcircuit model to include PAL for learning
the feedback weights. GG and TN developed a dendritic microcircuit module for the GeNN
simulator. LK added the latent equilibrium and PAL mechanisms to the module. KM and
LK performed the simulation experiments (KM: Figs. 6.5 to 6.7, 6.9 and 6.10; LK: Fig. 6.8).
The manuscript was mainly written by KM, aided by LK and MAP.

7Max et al. (2022)

104 CHAPTER 6. RESULT III

Learning efficient backprojections across cortical hierarchies
in real time

K. Max1, L. Kriener1, G. Garcia2, T. Nowotny2, W. Senn1, M. A. Petrovici1
1 Department of Physiology, University of Bern, 3012 Bern, Switzerland.

2 School of Engineering and Informatics, University of Sussex, BN1 9RH Brighton, United Kingdom.

Abstract

Models of sensory processing and learning in the cortex need to efficiently assign credit to
synapses in all areas. In deep learning, a known solution is error backpropagation, which
however requires biologically implausible weight transport from feed-forward to feedback
paths.
We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient
feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise
naturally found in biophysical systems as an additional carrier of information. In our dy-
namical system, all weights are learned simultaneously with always-on plasticity and using
only information locally available to the synapses. Ourmethod is completely phase-free (no
forward and backward passes or phased learning) and allows for efficient error propaga-
tion across multi-layer cortical hierarchies, while maintaining biologically plausible signal
transport and learning.
Our method is applicable to a wide class of models and improves on previously known
biologically plausible ways of credit assignment: compared to random synaptic feedback,
it can solve complex tasks with less neurons and learn more useful latent representations.
We demonstrate this on various classification tasks using a cortical microcircuit model with
prospective coding.

6.4.1 Introduction

Deep learning has originally been inspired by neuroscience, being influenced by the de-
scription of the visual cortex in particular. Nonetheless, these two fields remain at vastly
different levels in the description of their respective subjects. While deep learning has made
great leaps in terms of applicability and real-world usage in the past decade, the study of
biological neural systems has revealed a plethora of different brain areas, connection types,
cell types, and neuron as well as system states. Currently, no clear organization scheme
of computations and information transfer in the brain is known, and the question of how
ANNs are related to models of the cortex remains an active field of research (Yamins and
DiCarlo, 2016; Richards et al., 2019; Lillicrap et al., 2020).
However, progress is being made in bridging the gap between these two fields (Roelfsema
and Ooyen; Costa et al., 2017; Scellier and Bengio, 2017; Whittington and Bogacz, 2017;
Sacramento et al., 2018; Haider et al., 2021; Lillicrap et al., 2016; Yamins and DiCarlo, 2016;

6.4. LEARNING EFFICIENT BACKPROJECTIONS 105

Payeur et al., 2021). For recent review articles, see Marblestone et al. (2016) and Richards
et al. (2019). In particular, important similarities between cortical and artificial informa-
tion processing have been highlighted: as in the cortex (Haak and Beckmann, 2018), most
ANN architectures process information hierarchically. Additionally, external stimuli gener-
ate activity in functional units (neurons), which utilize bottom-up and top-down informa-
tion (Zmarz and Keller, 2016; Jordan and Keller, 2020; Cerliani et al., 2022). Neural activity
is modulated through learning, i.e. long-term adaptation of synaptic weights. However, it is
currently unclear how weights are adapted across the cortex in order to competently solve
a task. This is commonly referred to as the credit assignment problem, where neuroscience
may learn from deep learning (Friedrich et al., 2011; Richards et al., 2019).

In the case of ANNs, an efficient solution to this problem is known: currently, error back-
propagation (BP) (Rumelhart et al., 1986; LeCun et al., 1988) is the gold standard for learn-
ing in artificial networks. However, BP has several biologically implausible requirements.
ANNs trained with BP operate in distinct forward and backward phases, where inference
and learning alternate. Between phases, network activities need to be buffered — i.e., in-
formation is processed non-locally in time. Furthermore, error propagation occurs through
weights which need to be mirrored at synapses in different layers (weight transport prob-
lem).

In order to explain credit assignment for analog, physical computing (in the cortex or on
neuromorphic hardware), physically plausible architectures and algorithms are therefore
needed. We assume such dynamical systems to operate in continuous time. They may
minimize the difference between network output and target (“cost”) by performing (ap-
proximate) gradient descent. Ideally, such physical systems are able to learn from useful
instructive signals at all times, using only information which is locally available in space
and time. Crucially, all physical systems have inherent sources of noise — in the form
of stochastic activity, noisy parameters or intrinsic fluctuations of electrical and chemical
signals. The theory we propose makes use of neuronal noise as an additional carrier of
information, instead of treating it as a nuisance parameter.

For efficient credit assignment as in ANNs, errors need to be propagated from higher to
lower areas in the cortical hierarchy. With vanilla BP being excluded due to biological im-
plausibility of weight transport, the question of how such error propagation occurs remains
open. Several methods have been proposed where feedback connections are assumed to be
fixed or are learned. Broadly, these can be categorized into methods with fixed feedback
connections (feedback alignment, FA Lillicrap et al. (2016); Nøkland (2016)), bio-plausible
approximations to BP (Kolen and Pollack, 1994; Akrout et al., 2019; Lansdell et al., 2019;
Ernoult et al., 2022), or alternative cost minimization schemes (Bengio, 2014; Lee et al., 2015;
Meulemans et al., 2020, 2021). In this work, we introduce a method in the second category,
related to the top-down weight alignment method of Ernoult et al. (2022), which itself is
based on previous insights on cost minimization in difference target propagation (Meule-

106 CHAPTER 6. RESULT III

mans et al., 2020). The aim of our algorithm is to propagate BP-like error, and to perform
gradient descent on a cost function.
The novelty of this work is that we propose a fully dynamical system with efficient always-
on plasticity: the neuronal and weight dynamics model properties of physical substrates,
while learning is completely phase-less, and plasticity is enabled for all synapses and at all
times. In agreement with biological plausibility, our method allows for efficient learning
without requiring wake-sleep phases or other forms of phased plasticity implemented in
many other models of learning in the cortex (O’Reilly, 1996; Ackley et al., 1987; Bengio
and Fischer, 2015; Sacramento et al., 2018; Guerguiev et al., 2017; Scellier and Bengio, 2017;
Mesnard et al., 2019; Xie and Seung, 2003; Song et al., 2022).
Our method is based on modeling of biologically plausible signal transport in the form
of rate-coding. The learning mechanism incorporates bio- and hardware-plausible com-
ponents and computations. All dynamics and plasticity rules are fully local in time and
space. Our model also makes full use of a recently proposed prospective coding mecha-
nism (Haider et al., 2021). This ensures fast propagation of information through layered
networks, leading to quick convergence of useful top-down projections when using our
method.

6.4.2 Results

Learning of efficient backprojections

We describe our theory in a rate-based coding scheme. Following the convention defined
for artificial neural networks, different cortical areas are represented by layers. The somatic
potentials of all neurons follow the dynamics of leaky integrators: given an input current
I[t], the membrane potential u obeys Cmu̇ = −gl u + I[t], where Cm denotes the capaci-
tance, and gl the leak conductance of the cell membrane. These dynamics imply a delayed
response of the somatic potential with membrane time constant τeff := Cm/gl.
Our model integrates the prospecitve coding mechanism of Latent Equilibrium (Haider
et al., 2021), which solves the relaxation problem of slow physical substrates, which dis-
rupts inference as well as learning (see Methods). This is achieved by calculating the neural
output from the prospective voltage ŭ := u + τeff

du
dt

where τeff is the effective membrane
time constant. As a result, the rates calculated from ŭ follow the input current I[t] instan-
taneously.
Our theory describes neural dynamics where the current I[t] contains a local error signal.
For concreteness, but without loss of generality, we consider the leaky-integrator model for
a layered architecture with ℓ = 1 . . . N ,

τeffu̇ℓ = −uℓ + bℓ +Wℓ,ℓ−1rℓ−1 + eℓ + ξℓ . (6.33)

6.4. LEARNING EFFICIENT BACKPROJECTIONS 107

In this description, the somatic potential uℓ integrates neuron bias bℓ, the bottom-up input
rate rℓ−1 weighted with Wℓ,ℓ−1, and the local error eℓ. We also model a noise component
ξℓ. The somatic potential of each layer generates a rate, which we denote as rℓ := φ(ŭℓ).
The central question of cortical credit assignment is how the error eℓ is calculated, given
an error signal in a higher area, eℓ+1, and how this error signal is used to adjust bottom-up
weights. Plenty of solutions to this question have been proposed (Marblestone et al., 2016).
Here, we focus on theories which can be formulated such that forward weights are updated
as Ẇℓ,ℓ−1 ∝ eℓ r

T
ℓ−1. Under this scheme, several theories for bio-plausible error transport

exist (Xie and Seung, 2003; Scellier and Bengio, 2017; Haider et al., 2021; Lee et al., 2015;
Sacramento et al., 2018; Meulemans et al., 2020), among them contrastive Hebbian learning
or difference target propagation. They have in common that errors in a higher layer eℓ+1

are propagated down through feedback (top-down) weightsBℓ,ℓ+1 to form errors in a given
layer eℓ.
Typically, a symmetric overall weight matrix is assumed, such thatBℓ,ℓ+1 = [Wℓ+1,ℓ]

T (Xie
and Seung, 2003; Scellier and Bengio, 2017; Sacramento et al., 2018; Podlaski and Machens,
2020).8 This assumption relates the above schemes to classical error backpropagation based
on gradient descent on a loss function, where eℓ = φ′ ·[Wℓ+1,ℓ]

Teℓ+1. However, this assign-
ment of weights implies that top-down synapses in layer ℓ must adapt to the (potentially
distant) bottom-up synapses in layer ℓ+1. This issue of how two spatially distant synapses
(e.g. across cortical areas) can keep up a similar weight when one of them is learning is
known as the weight transport problem.
A proposed solution is the replacement of Bℓ,ℓ+1 with a random, fixed weight matrix
(known as feedback alignment, FA (Lillicrap et al., 2016)). However, FA has been shown to
solve credit assignment inefficiently, and does not scale well to complex problems (Nøkland,
2016; Moskovitz et al., 2018; Bartunov et al., 2018; Lansdell et al., 2019). We are therefore
motivated to learn top-down weights such that credit assignment is improved compared
to random feedback with layer-wise connections. Furthermore, we would like to learn all
weights Bℓ,ℓ+1 simultaneously, and in a way which does not interrupt feed-forward infer-
ence or learning of bottom-up weights.
The general method we propose is explained in the following (see Fig. 6.5). An input signal
r0(t) (“data”) is presented to the neurons in the lowest layer for the duration of a presenta-
tion time Tpres. This signal is propagated forward from layer 1 toN , where each neuron fol-
lows the dynamics of Eqn. (6.33). To reflect the inherent stochasticity of biological neurons
subject to synaptic noise, thermal activity and probabilistic firing, high-frequency noise is
modeled at every neuron. This noise is accumulated across layers, and propagated on top
of the data signal. The top-down projections carry this mixed signal back to the lower lay-
ers, and we exploit the auto-correlation between noise signals to learn the corresponding
feedback synapses based on a local alignment loss.

8Some learning schemes apply Ḃℓ,ℓ+1 = [Ẇℓ+1,ℓ]
T (Roelfsema and Ooyen; Pozzi et al., 2018), leading to a symmetric

overall weight matrix. It is unclear however how weight updates are communicated.

108 CHAPTER 6. RESULT III

Figure 6.5: Sensory processing over cortical hierarchies. a: Brain areas in the visual pathway beyond the
primary visual cortex (V1). Information is propagated to higher areas (red arrows) such as V2, V4,
the medial temporal (MT) area, and beyond. In order to assign credit, feedback information from
higher level areas needs to be propagated top-down (blue arrows). Adapted from Gray (1918).
b: Pyramidal cells as functional units of sensory processing and credit assignment. Top-down
and bottom-up projections preferentially target different dendrites. Due to stochastic dynamics
of individual neurons, noise is added to the signal.

Concretely, for each hidden layer we sample Ornstein-Uhlenbeck noise ξℓ with zero mean
and a small amplitude compared to the somatic potentialuℓ (see Methods, Eqn. (6.40)). This
generic noise term is added as a current to the soma of each hidden layer neuron, where
it adds to the data signal to form a noisy firing rate. therefore, the sampled noise changes
faster than the data signal (i.e. stimulus). This condition, Tpres ≫ τξ , ensures that data and
noise are separable in frequencies.
To learn the backwards weights, simple and only local computations need to be performed
by the backprojections. At every top-down synapseBℓ,ℓ+1, a high-pass filtered rate r̂ℓ+1 is
computed, which extracts the noise signal; this can be implemented in a physical substrate
as the difference of the top-down rate with a low-pass filtered version. This filter separates
the noise from the data portion of the top-down rate. We learn the feedback synapses
through minimization of a layer-wise alignment loss defined as

LPAL
ℓ = −ξTℓ (t)[Bℓ,ℓ+1r̂ℓ+1(t)] +

α

2
∥Bℓ,ℓ+1∥2 , (6.34)

where α is a constant defining the size of the regularizer. Minimization of LPAL
ℓ leads

to approximate alignment of Bℓ,ℓ+1 with Wℓ+1,ℓ, as detailed below. Performing gradient
descent on the alignment loss defines the top-down weight updates,

Ḃℓ,ℓ+1 := −ηbwℓ ∇Bℓ,ℓ+1
LPAL

ℓ = ηbwℓ
[
ξℓ
(
r̂ℓ+1

)T − αBℓ,ℓ+1

]
, (6.35)

which can be performed simultaneously for all layers to learn all backprojections Bℓ,ℓ+1,
while allowing the learning of forward weightsWℓ+1,ℓ at the same time. Due to this crucial

6.4. LEARNING EFFICIENT BACKPROJECTIONS 109

property, we name the above method phaseless alignment learning (PAL). Note also that
the learning rule is constructed solely from information which is available pre- and post-
synaptically for each neuron at each point in time. This is in line with our requirement of
physical information processing, as well as phenomenological models of plasticity (Clopath
et al., 2010; Bono and Clopath, 2017).
Useful alignment ofBℓ,ℓ+1 through minimization of LPAL

ℓ occurs in the following way (see
also Methods). At a given top-down synapse, the rate rℓ+1 arrives from the layer above.
Note that this rate is made from data as well as noise accumulated from all layers; among
this is also the noise originating in layer ℓ. The top-down synapse now calculates the high-
pass filtered rate r̂ℓ+1, discarding the data portion of the incoming signal. As has been
pointed out in Meulemans et al. (2021), we then can exploit that the autocovariance of
Ornstein-Uhlenbeck noise decays exponentially in time (Särkkä and Solin, 2019). There-
fore, the only non-zero correlation between all noise signals contained in r̂ℓ+1 and the
current, local noise sample ξℓ is proportional to the expectation value of the local noise
auto-covariance ξℓ(t+∆t) ξℓ(t)

T . Here ∆t denotes the time it takes for a noise sample to
travel in a loop containing the layer above.
Minimization of LPAL

ℓ for a given input sample and fixed bottom-up weights aligns the
backwards weights as

Bℓ,ℓ+1 ∝ φ′(ŭ0
ℓ)
[
Wℓ+1,ℓ

]T
φ′(ŭ0

ℓ+1) , (6.36)

where we refer to Methods for the derivation. More generally, in a fully dynamical system
with changing input, Bℓ,ℓ+1 will converge to a weight which also aligns approximately
with [Wℓ+1,ℓ]

T , but is a mean over input data, i.e.Bℓ,ℓ+1 ∝ E[φ′ [Wℓ+1,ℓ]
T φ′]r0 .

Note that our mechanism is able to take full advantage of the property of arbitrarily fast
propagation due to Latent Equilibrium. Noisy rates are calculated from the prospective
voltage, and therefore the time delay between the top-down noise signal and the post-
synaptic noise sample can become arbitrarily small. This means that the correlation time
scale of the Ornstein-Uhlenbeck noise τξ can also be small,9 leading to fast convergence
of backprojections; in comparison, methods without prospective coding require τξ ≫ τeff,
such that top-down weights converge slowly (e.g. Meulemans et al. (2021)).
Learning backward weights in our framework is not disturbed by simultaneous learning of
forwardweights due to the frequency separation of data and noise: as we require τξ ≪ Tpres,
the error signal for forward weights can be recovered from backprojections by a low-pass
filter with time constant larger than τξ . Furthermore, phaseless alignment learning (PAL) is
also able to learn useful backprojections in absence of a teaching signal, facilitating efficient
learning once an instructive signal is (re-)introduced. In particular, top-down weights do
not decay to zero if forward weights are kept fixed, even though the weight decay term
Ḃℓ,ℓ+1 ∝ −αBℓ,ℓ+1 might suggest so. The reason for this is that the expectation value of

9The exact requirement on the time scales is τξ ≳ ∆t.

110 CHAPTER 6. RESULT III

uP

vapi

vbas

uP

vapi

vbas

uI

vden

uI

vden

1

1

1

1

uP

vbas
2

2

1

WPP
2,1

WPP
1,0

WIP
1,1

BPP
1,2

BPI
1,1

la
ye

r
1

la
y
e

r
2

sensory input

hidden layer

output layer

utgt

pyramidal	

cells

interneurons

layer 1

layer 2

layer 0

signal + noise

Figure 6.6: Cortical microcircuit setup with one hidden layer. Left: Full network with pyramidal cells
and interneurons. Triangles represent somata of pyramidal neurons, with attached basal and api-
cal compartments. Interneuron somata (circle) receive input from a single dendritic compartment
and a nudging signal from a matching pyramidal cell in the layer above. Right: Single microcir-
cuit. Somatic voltages contain bottom-up data signal, top-down error, and noise. The top-down
synapses adapted with PAL are marked with a star.

top-down weights, Eqn. (6.36), are formed from a balance between noise and the contribu-
tion due to the regularizer; see simulation results, Fig. 6.8, and Methods for details.

Cortical microcircuit implementation

We now consider a particular implementation of PAL in the framework of dendritic cortical
microcircuits (Sacramento et al., 2018). This model has been introduced with biological
plausible (error) signal transport in mind. Each microcircuit is defined by populations of
two types of neurons, pyramidal cells and interneurons. These are organized in layers
corresponding to cortical areas with a biologically plausible connection scheme, see Fig. 6.6.
In absence of a teaching signal, pyramidal cells take the role of representation units, reflect-
ing feed-forward activation. They receive bottom-up information onto their basal dendrites
and top-down activity in the distal apical dendrite, integrating both signals in the soma in
accordance with observations of layer 2/3 pyramidal cells (Jordan and Keller, 2020). Pyrami-
dal cells are modeled with a simplified three-compartment model with distinct basal, apical
and somatic voltages (Körding and König, 2001; Spruston, 2008).
The interneurons in this model are present in the hidden layers, and aim to represent a copy
of the activation of pyramidal cells in the layer above. Across layers, populations of pyra-
midal neurons and interneurons are arranged such that the number of interneurons in the
hidden layers matches that of pyramidal cells in the layer above. Interneurons are modeled

6.4. LEARNING EFFICIENT BACKPROJECTIONS 111

with two compartments, representing dendritic tree and soma. They receive lateral input
from pyramidal cells in the same layer, and project back laterally to the same neurons.

The dynamics of the somatic membrane potentials of pyramidal cells uP
ℓ with ℓ =

1, . . . , N − 1 are an instance of the general leaky-integrator equation Eqn. (6.33),

Cmu̇
P
ℓ = gl

(
El − uP

ℓ

)
+ gbas

(
vbas
ℓ − uP

ℓ

)
+ gapi

(
v
api
ℓ + ξℓ(t)− uP

ℓ

)
, (6.37)

where Ornstein-Uhlenbeck noise ξℓ is modeled at all hidden layers, and El denotes the
leak potential. A target signal can be introduced by clamping the apical compartment of
the top layer pyramidal neurons to the target voltage utgt. Somatic voltages are determined
by leaky integration of input basal and apical currents. Dendritic compartment voltages
are calculated instantaneously from their rate input, through vbas

ℓ = W PP
ℓ,ℓ−1r

P
ℓ−1 for basal

(bottom-up) input, vden
1 = W IP

1,1 r
P
1 for the lateral input from pyramidal cells to interneu-

rons, and the apical compartment potential determined from the sum of top-down and
lateral activity, vapi

1 = BPP
1,2r

P
2 +BPI

1,1 r
I
1. We refer to Methods for details.

As shown in Sacramento et al. (2018), the weight updates in this model approximate those
of error backpropagation in the limit of weak nudging (small top-down conductances):

∆W PP
ℓ,ℓ−1 ∝ λN−ℓ+1 φ′(v̂bas

ℓ)
[N−1∏

k=ℓ

BPP
k,k+1 φ

′(v̂bas
k+1)

]
eN

(
rP
ℓ−1

)T
, (6.38)

where v̂bas
ℓ := gbas

gl+gbas+gapiv
bas
ℓ denotes the conductance-weighted feed-forward input to each

pyramidal cell, eN := utgt − v̂bas
N the output layer error, and a small parameter λ, which

regulates the amount of top-down nudging.

In contrast to the model defined by Sacramento et al. (2018), which employs fixed feed-
back connections, we learn the backward connections using PAL with the scheme defined
in Section 6.4.2. We consider noise in the hidden layers with a small amplitude compared to
the corresponding somatic potentials. Synaptic plasticity of thus-far fixed weights BPP

ℓ,ℓ+1

is enabled through the learning rule Eqn. (6.35). Finally, in order to preserve learning of
feed-forward weights, we endow the update rule ofW PP

ℓ,ℓ−1 with a low-pass filter with time
constant τlo. Note that all computations required for PAL can be performed locally by the
corresponding synapse.

Additionally, we implement Latent Equilibrium into the microcircuit model as in Haider
et al. (2021) by replacing all rates calculated from somatic potentials with rates obtained
from the prospective voltage, rP/I

ℓ = φ(uP/I
ℓ) 7→ φ(ŭP/I

ℓ). This affects all compartment
potentials as well as synaptic plasticity rules.

112 CHAPTER 6. RESULT III

Experiments

We perform several experiments in order to evaluate PAL. The base algorithm given
by Eqn. (6.35) is applicable to rate-based neuronmodels. Here, we focus our experiments on
a microcircuit implementation as defined in the previous section, in order to demonstrate
its merits as a bio-plausible method for learning. We show that PAL is able to align top-
down weights to useful backprojections, and compare weight updates to those of an ANN
trained with BP. A simple toy task (teacher-student) illustrates where PAL improves on
using fixed random backprojections. Using computer vision benchmark tests, we demon-
strate that PAL is able to scale to bigger networks andmore complex tasks. Finally, we show
that PAL facilitates credit assignment in deep networks, where multiple hidden layers are
required for successful learning.
We stress that all simulations are performed with fully recurrent dynamics described
by Eqns. (6.33) and (6.37), differentiating our work from similar studies where the dynamics
are replaced by steady-state approximations and the recurrency is implicitly removed by
calculating separate forward and backward passes (Sacramento et al., 2018; Greedy et al.,
2022). All simulation parameters are given in Supplementary Information.

Phaseless backwards weight alignment We first demonstrate that PAL aligns top-down
weights in cortical microcircuits with the theoretical result given by Eqn. (6.36). We
simulate the dendritic microcircuit model with three hidden layers, keeping the forward
weights W PP

ℓ,ℓ−1 fixed while modeling noise in all hidden layers and learning all BPP
ℓ,ℓ+1 si-

multaneously. In this experiment, we present no target to the output layer. Top-down
weights as well as lateral weights from interneurons to pyramidal cells are adapted fully
dynamically during training.
Results are shown in Fig. 6.7, where the upper and lower row correspond to the two cases
where neurons are active in their linear/non-linear regime. It is of interest to evaluate both
of these regimes, as complex tasks cannot be solved with a fully linear network. Never-
theless, it is also not the case that all neurons are in the non-linear regime for all inputs;
typically, there is a mixture of both states present in the network.
The first column shows the angle between top-down weights and Eqn. (6.36), demonstrat-
ing good agreement with the theoretical expectation over all hidden layers.10 These back-
ward weight configurations are useful, as they approximately align with the transpose of
the forward weights; we show the corresponding alignment angle in the second column.
Alignment of top-down weights with the transpose is much better in the linear regime, as
φ′ = 1.
In the third column, we show that errors propagated in a microcircuit with PAL approxi-
mately align with backpropagation. After each epoch of training the backprojections, we
evaluate the model in its current state by introducing a teaching signal. This generates an

10We hypothesize that the larger misalignment angle in the non-linear case is due to the data-specific learning of
backwards weights (see Discussion).

6.4. LEARNING EFFICIENT BACKPROJECTIONS 113

Figure 6.7: PAL aligns weight updates with backpropagation in deep networks. Top: We train the
backward projections in a deep microcircuit network with layer sizes [5-20-10-20-5] and sig-
moid activation with no target present. All backward weightsBPP

ℓ,ℓ+1 are learned simultaneously,
while forward weights are fixed. Lines and shading show mean and standard deviation over 5
seeds. Weights are initialized as W PP ∼ U [−1, 1], such that neurons are activated in their lin-
ear regime. The right column compares the potential forward weight updates generated from
backpropagation using BPP

ℓ,ℓ+1 in the microcircuit model to those in an ANN with BP (see main
text and Methods). Bottom: Same as above, but with weights initialized in non-linear regime,
W PP ∼ U [−5, 5]. Weight updates (f) are biased towards misalignment due to the dendritic mi-
crocircuit model, see Methods.

error which propagates to all layers, and from which a forward weight update ∆W PP
ℓ,ℓ−1 is

constructed; see Methods for details. We stress that here, no weight update is applied, as in
this experiment, we only demonstrate learning of top-downweights. We compare∆W PP

ℓ,ℓ−1

of this microcircuit model to the weight updates∆W BP
ℓ,ℓ−1 in an ANNwith backpropagation

and equivalent feed-forward weights. The results in the third column demonstrate that PAL
is able to propagate useful error signals through alignment of backward weights.

Teacher-student setup To further demonstrate that PAL enables propagation of useful er-
ror signals, we turn to a simple teacher-student task. A microcircuit model consisting of
a chain of two neurons is trained with PAL and, for comparison, random fixed backwards
weights. Plasticity is enabled in all synapses, i.e. forward weights are adapted, too. A teach-
ing signal is obtained from a similar two-neuron chain connected with fixed and positive
weights. The teacher chain produces a non-linear input-output mapping determined by the

114 CHAPTER 6. RESULT III

0 1000 2000 3000 4000

−0.5

0.0

0.5

B
P

P
1
,2

teacher-student

a

0 1000 2000 3000 4000
epochs

−20

−15

−10

−5

0

W
P

P
1
,0 BPP

1,2 = [W PP
2,1]T

PAL

FA

b

0 100 200 300 400

100

101

102

va
li
d

at
io

n
er

ro
r

[%
]

Yin-Yang

PAL (MC)

FA (MC)

BP (ANN)

c

0 100 200 300 400
epochs

50

60

70

80
al

ig
n

m
en

t
[°]

PAL (MC)

FA (MC)

d

0 25 50 75 100

100

101

102

va
li
d

at
io

n
er

ro
r

[%
]

MNIST

PAL (MC)

FA (MC)

BP (ANN)

e

0 25 50 75 100
epochs

45

50

55

60

65

al
ig

n
m

en
t

[°]

PAL (MC)

FA (MC)

f

Figure 6.8: PAL improves learning on teacher-student and classification tasks compared to fixed
random synaptic feedback. Left column: A chain of two neurons learns to mimic a teaching
signal. The student neurons are initialized with negative weights and need to flip the sign. In
particular, in order to achieve correct weights to the hidden neuron W PP

1,0, positive feedback
weights are required. The teacher (red) has a positive weight. Results for student neuron chains
are shown for PAL (blue) and FA (orange). The shading indicates mean and standard deviation
over 5 seeds. Due to the wrong sign of the transported error, random synaptic feedback fails
to solve the task, and weights diverge. The models trained with PAL start in a similar fashion;
however, after sign flip (at about 500 epochs, see a), the error signal becomes useful, and W PP

1,0

converges to the weight of the teacher. As a control, we also show the ideal solution with weight
transport,BPP

1,2 = (W PP
2,1)

T . Center column: Validation error during training and test errors for
the Yin-Yang task (c) of the microcircuit model (MC) with network size [4-30-3]. For reference,
we also show the test error in an ANN trained with BP with equal network size. The shading
indicates mean and standard deviation over 10 seeds. d: Alignment angle between backwards
weights BPP

1,2 and (W PP
2,1)

T . While FA relies on alignment of forward weights, PAL improves on
this by aligning the backward weights with the transpose of forward weights. Right column:
Same as center column, but for the MNIST data set with network size [784-100-10].

choice of its synaptic weights. The task of the student is to adapt its weights to reproduce
this input-output relationship.
In order to highlight an important shortcoming of fixed feedback weights, we initialize the
student models with negative forward and backward weights. As shown in Fig. 6.8, a model
trained with fixed random feedback weights is not able to reproduce the teacher output and
even has diverging weights. This is caused by the wrong sign of the top-down weights: a
positive error on the output layer is projected backwards through the negative synapse
BPP

1,2. Thus, the weight W PP
1,0 to the hidden layer grows negatively, further increasing the

disparity between teacher and student weights. PAL resolves this issue by approximately

6.4. LEARNING EFFICIENT BACKPROJECTIONS 115

aligningBPP
1,2 withW PP

2,1, thereby learning backwards weights with correct sign (left column
in Fig. 6.8). Note that as as long as BPP

1,2 has not yet aligned, W PP
1,0 moves in the wrong

direction, but as soon asBPP
1,2 switches sign (at epoch ∼ 500), the forward weight is able to

learn correctly11.
For comparison, we also show the ideal however bio-implausible case corresponding to BP,
where top-down weights are set to the same value as the forward weights to the output
neuron.

Classification experiments Wenow turn tomore complex tasks and evaluate PAL on clas-
sification benchmarks, while still working with the biologically plausible microcircuits as
the base model. Due to the complexity of simulating microcircuit models with full dynam-
ics, we focus this evaluation on the computationally effective Yin-Yang task, and perform
experiments on MNIST digit classification as a sanity check.
The Yin-Yang classification problem (Kriener et al., 2022) is designed to be a computationally
inexpensive task which nonetheless requires useful error signals to reach the lower layer
of a network, i.e. is able to differentiate the error propagation quality between FA and BP
or variants of it. The task consists in learning to map 2d input coordinates correctly to
three distinct categories. ANNs trained with backprop can solve this task with as few as 30
hidden neurons (test error (2.4 ± 1.5) %) (Kriener et al., 2022). This requires the formation of
a useful hidden layer representation, which is more likely if backwards weights are adapted
instead of random and fixed.
The microcircuit models with PAL achieve a test error of (4.0 ± 0.4) %, performing consider-
ably better than microcircuits with fixed random feedback weights at (7.8 ± 2.4) % (Fig. 6.8,
center column). This is reflected in the increased alignment between the transpose of for-
ward and backward weights.
We also perform the MNIST digit classification task with a similar setup (right panel
in Fig. 6.8). In a similar vein to the Yin-Yang experiments, this single and small hidden
layer is chosen as to highlight whether a good latent representation is formed. We achieve
a final test error (3.9 ± 0.2) % using PAL and (4.7 ± 0.1) % with microcircuits with FA.
We highlight that our results were obtained by simulating a fully dynamical, recurrent
and bio-plausible system with weight and voltage updates applied at every time step. This
is in contrast to previous simulations using bio-plausible networks with recurrency, where
simplified network dynamics were assumed for computational feasibility (Sacramento et al.,
2018; Greedy et al., 2022). Such approximations do not accurately reproduce the dynamics
of recurrent physical networks.12

11This also requires the weightsW PP
2,1 to be positive, which is achieved independently of the method (PAL/FA) through

learning of the top-layer (not shown).
12Simulations on theMNIST task in Sacramento et al. (2018) use the steady state approximation of voltage dynamics, and

weight updates are calculated in two distinct steps. In effect, this simplifies the recurrent dynamics defined by Eqn. (6.37)
to those of an ANN with separate forward and backward phases and voltage buffering.

116 CHAPTER 6. RESULT III

Figure 6.9: PAL learns useful latent representations, where feedback alignment fails to do so.
a: Encoder/decoder setup network with size [784-200-2-200-784]. MNIST digit dataset is fed into
an encoder network with two output neurons. A stacked decoder network aims to reproduce
the original input. b-d: Latent space activations after training. We show the activations after
training in the two-neuron layer of one seed for all samples in the test set; colors encode the
corresponding label. Backpropagation and PAL show improved feature separation compared to
feedback alignment. e: Linear separability of latent activation. f: Alignment angle of top-down
weights to all layers for the PAL setup (mean and standard deviation over 5 seeds). PAL is able
adapt top-down weights while forward weights are also learned. Note that the layer ℓ = 1
maps 200 neurons onto two in the forward direction, leading to many possible solutions in the
backwards direction, and hence a larger alignment angle is to be expected.

Efficient credit assignment in deep networks The previous analyses have shown that PAL
can learn useful backprojections in dynamical systems. The simulations performed with
microcircuit models stress the bio-plausibility of PAL. However, the microcircuit model
(both with and without PAL) carries the issue that error signals decay with increasing hid-
den layer number (see Methods). PAL is designed to learn useful backprojections in deep
hierarchies; in order to demonstrate the full capability of our method, we now relax our re-
quirement for bio-plausible error transport and shift away from the dendritic microcircuit
model.
We revisit the general leaky integratormodel defined by Eqn. (6.33). The difference between
this simpler model and the microcircuit model is the exclusion of interneurons. Instead,
errors are transported directly via eℓ = φ′(ŭℓ) ·Bℓ,ℓ+1 eℓ+1.

6.4. LEARNING EFFICIENT BACKPROJECTIONS 117

We demonstrate the capability of PAL for credit assignment using the MNIST-autoencoder
task (Fig. 6.9) (Lansdell et al., 2019). Autoencoders can be used to to greatly compress an
input image to a latent representation, in this case reducing down to a vector of dimension
two. In order to decode such a representation, a successfully trained autoencoder network
should show a separation of input of different classes in the latent space. To learn a well
separated latent representation, suitable error signals need to travel through the whole
network to train the encoder weights.
We evaluate the latent space separability by training a linear classifier. Results shown
in Fig. 6.9 (e) demonstrate that networks trained with PAL achieve linear separability close
to BP ((37 ± 1) % vs. (40 ± 1) %, respectively), while training with FA leads to significantly
poorer linear separability at a test accuracy of (22 ± 2) %. Figure 6.9 (f) shows that PAL is
able to learn the transpose of forward weights across hidden layers. Our results imply that
with PAL, the network is able to transport useful error signals and learn suitable weights
throughout all hidden layers, whereas FA leads to poor feature separation.

6.4.3 Discussion

Wehave introduced phaseless alignment learning (PAL), a general method of learning back-
projections in hierarchical, dynamical networks. Our theoretical results and simulations
show that PAL provides online learning of forward and backward weights in a phase-less
manner. As a general method, it is applicable to models where time-continuous activity
is propagated, and approximately aligns feedback weights with those of backpropagation.
PAL fulfills the requirements of learning and signal transport in physical systems: all nec-
essary information is available locally in time and space.
In our evaluation, we have emphasized the biological plausibility of PAL as a model of
sensory processing. PAL could be implemented in biological components; in particular, it
explicitly exploits noise found in physical systems and makes use of simple filtering tech-
niques for disentangling signal and noise where needed. We argue that a cortical realiza-
tion of PAL (or a variant) would be evolutionarily more advantageous than fixed feedback
weights, as it implements a significantly more efficient solution to the weight transport
problem.
Our simulation results show that PAL is able to outperform FA in terms of credit assign-
ment in biologically plausible, recurrently connected networks. The requirements for PAL
are quite general, and we stress that the dendritic microcircuit model with PAL is only one
possible implementation, which however is notable for its bio-plausible error transport. In
principle, it can be argued that a test error comparable to PAL could have been achievedwith
fixed random backprojections by scaling up the hidden layer size (not shown). Neverthe-
less, it is advantageous for a method to performwell while requiring less neurons/synapses,
for biological plausibility but also energetic efficiency. It has been suggested that the inef-
ficiency of FA can mitigated through direct random backprojections (direct feedback align-
ment, DFA), where the feedback signal from the output layer is sent directly to all hidden

118 CHAPTER 6. RESULT III

layers, passing only through a single random feedbackmatrix (Nøkland, 2016; Crafton et al.,
2019). However, in the context of cortical hierarchies, this presupposes skip connections
from one higher cortical area to all lower areas instead of layer-wise connections. While
such connections have been observed in the cortex, the visual stream is largely organized
in hierarchical manner, with significantly weaker correlation between non-neighboring ar-
eas (Haak and Beckmann, 2018).
However, like any algorithm based on learning from data samples, weights trained with
PAL are data-specific. That is, top-down weights are aligned with an average over many
input samples r0 asBℓ,ℓ+1 ∝ E[φ′ [Wℓ+1,ℓ]

T φ′]r0 , leading to imperfect alignment of trans-
ported errors with those of backpropagation (see Fig. 6.7). Lower learning rates ηbw lead
to an inclusion of more samples into the expectation value; by sampling over the whole
training set, data-dependency can be minimized — however, as forward weights need to
evolve slower than backward weights, this leads to slow overall learning. In contrast to
this, Ernoult et al. (2022) circumvents this issue by separate phases of forward and back-
ward learning for each data sample, but no fully on-line solution is currently known. As
we have shown, the error transported by this data-specific weights can still be efficient in
learning to solve complex tasks.
Note that PAL is able to make full use of prospective coding — i.e., that all information
propagation occurs through prospective rates φ(ŭℓ), which converge to their steady state
quasi-instantaneously. In particular, this ensures that the weight update rules are con-
structed from useful learning signals at all times, not only after the neuronal dynamics
have settled into a steady state. As a consequence, we were able to simulate our dynamical
system with fully continuous voltage dynamics and learning of all synapses enabled at all
times. This is an important difference compared to previously known bio-plausible mecha-
nisms of learning in dynamical systems, which have mitigated the issue of slow relaxation
through slow or phased learning (see e.g. O’Reilly (1996); Bengio and Fischer (2015); Sacra-
mento et al. (2018); Guerguiev et al. (2017); Scellier and Bengio (2017); Mesnard et al. (2019);
Xie and Seung (2003); Song et al. (2022)), and/or by re-initializing the somatic potentials to
their bottom-up input state for every data sample (Scellier and Bengio, 2017; Sacramento
et al., 2018; Meulemans et al., 2021).
As our theory is based on a rate-based abstractions of neural dynamics, there remain several
open questions of bio-plausibility and realism. Extensions to our theory may implement
Dale’s law of either inhibitory or excitatory activity, a constraint which could be realized by
separate populations of neurons (Cornford et al., 2021). Equally, the dendritic microcircuit
model could model biology more closely by implementing spiking neuronal output, and
arguing that credit is assigned through a probabilistic interpretation.
Our results clearly point towards future work on theories of on-line learning in the cortex
and on neuro-inspired hardware. Building on similar ideas in the literature (Faisal et al.,
2008; McDonnell and Ward, 2011; Maass, 2014; Rusakov et al., 2020), we hypothesize a
general principle of using noise in physical systems for learning, instead of considering it

6.4. LEARNING EFFICIENT BACKPROJECTIONS 119

an undesirable side effect when modeling substrates. PAL can serve as a blueprint for the
greater philosophy of viewing noise as a resource rather than a nuisance.

6.4.4 Methods

As in the main text, bold lowercase (uppercase) variables x (X) denote vectors (matrices).
The partial derivative of the activation given by rℓ = φ(ŭ) is denoted by φ′(ŭ), which is a
diagonal matrix with µ-th entry ∂rµ

∂ŭµ
.

Prospective Coding

As neurons in our theory are modelled by leaky integrators, the somatic voltage follows
the low-pass filtered sum of input currents, and therefore exhibits a slow response to its
input. This effect multiplies with increasing layer number, resulting in the requirement to
present an input for many membrane time constants to allow both input signals from the
bottom and learning signals from the top to fully propagate through the whole network.
Additionally, slow neuron dynamics do not only slow down the flow of information, but
also introduce incorrect error signals, as demonstrated in Haider et al. (2021).
Several schemes have been proposed to solve this issue. A common fix is scheduled plas-
ticity, where synapses are only learned once the system has settled into the equilibrium
state (O’Reilly, 1996; Bengio and Fischer, 2015; Sacramento et al., 2018; Guerguiev et al.,
2017; Scellier and Bengio, 2017; Mesnard et al., 2019; Xie and Seung, 2003; Song et al., 2022).
This leads to slow learning, and the need to explain the phased plasticity through a bio-
logically plausible mechanism. In Haider et al. (2021) and our model however, the issues
caused by response lag are overcome by calculating the firing rate of each neuron based on
the prospective future voltage: all neural outputs and weight updates are calculated from
the prospective voltage ŭ := u + τeff

du
dt
. The implementation of prospective coding with

PAL is essential for fast transfer of information, ensuring quick convergence of weights.

Alignment of feedback weights

We show how the weight transport problem can be solved through alignment of top-down
weights. We keep our description general by discussing the basic leaky integrator model
with noise,

τeffu̇ℓ = −uℓ + bℓ +Wℓ,ℓ−1rℓ−1 + eℓ + ξℓ (6.39)

with eℓ propagated downwards from the upper layer error through feedback connections
Bℓ,ℓ+1. As detailed in Section 6.4.2, we do not discuss error propagation itself, but focus
instead on the learning of feedback weights from the rates generated within each layer.
The procedure to learn the backwards weights relies on two recent theoretical advance-
ments: the local difference reconstruction loss defined in Ernoult et al. (2022) trains back-

120 CHAPTER 6. RESULT III

wards weights to approximate backpropagation, whereas the proposal of Meulemans et al.
(2021) to consider Ornstein-Uhlenbeck noise enables us to learn all backwards weights si-
multaneously.

To begin, we model Ornstein-Uhlenbeck noise ξk in each hidden layer. The noise signal is
generated from low-pass filtered white noise,

ξ̇ℓ(t) = −
1

τξ

[
ξℓ(t)− µℓ(t)

]
, (6.40)

with µℓ(t) ∼ N (0, σ2), and low-pass filtering constant τξ smaller than the usual presenta-
tion time Tpres of input signals r0. Therefore, ξk represents an Ornstein-Uhlenbeck process
with high frequency compared to the inference and error signals. We choose the scale of
noise σ such that it is small compared to the somatic potential in all hidden layers. If we
denote as φ(ŭ0

k) the neuron output in absence of noise, we can expand to first order in
small noise, rk ≈ φ(ŭ0

k) + φ′(ŭ0
k) ξk. This signal is sent to the corresponding higher layer

k + 1 through the weight Wk+1,k, where the upper layer noise ξk+1 is added on top. This
continues through all layers up to the output layer. Hence, for a given layer ℓ+1, the output
rate is modified by noise to be13

rℓ+1 ≈ φ(ŭ0
ℓ+1) + φ′(ŭ0

ℓ+1) ξℓ+1 + φ′(ŭ0
ℓ+1)

ℓ∑
m=1

[ℓ∏
n=m

Wn+1,nφ
′(ŭ0

n)
]
ξm . (6.41)

This noise-inclusive rate is also propagated top-down. In the case of layer-wise feedback
connections, rℓ+1 is sent to layer ℓ through the synapseBℓ,ℓ+1. Therefore, the information
locally available to learn useful top-down weights is restricted to the pre-synaptic rate rℓ+1

and the post-synaptic potential including noise.

We aim now to learn the top-down synapses by exploiting the auto-correlation of noise.
The slow portion φ(ŭ0

ℓ+1) of the pre-synaptic signal is not useful for learning of backwards
weights, as it contains correlations across layers which cannot be canceled. Therefore, we
extract the noise-induced portion of the signal with a high-pass filtered version of the top-
down rate, r̂ℓ+1 (Meulemans et al., 2021). The dynamics ofBℓ,ℓ+1 are derived from gradient
descent on the local alignment loss LPAL

ℓ , cf. Eqn. (6.34). This yields the learning rule

Ḃℓ,ℓ+1 = ηbwℓ
[
ξℓ
(
r̂ℓ+1

)T − αBℓ,ℓ+1

]
(6.42)

13In this description, we omit noise originating in downstream areas (ξℓ+2, . . . , ξN) as it quickly averages to zero (see
below).

6.4. LEARNING EFFICIENT BACKPROJECTIONS 121

We determine the fixed point of the feedback weights by taking the expectation value over
many noise samples for fixed inputs and weights,

0
!
= E

[
Ḃℓ,ℓ+1

]
ξ

(6.43)

= E
[
ηbwℓ
{
ξℓ
(
r̂ℓ+1

)T − αBℓ,ℓ+1

}]
ξ

(6.44)

⇒ E
[
Bℓ,ℓ+1

]
ξ
=

1

α
E
[
ξℓ
(
r̂ℓ+1

)T]
ξ

(6.45)

Using Eqn. (6.41), the right hand side can be expanded,

E
[
Bℓ,ℓ+1

]
ξ
≈ 1

α
E
[
ξℓ

{
φ′(ŭ0

ℓ+1) ξℓ+1 + φ′(ŭ0
ℓ+1)

ℓ∑
m=1

[ℓ∏
n=m

Wn+1,nφ
′(ŭ0

n)
]
ξm

}T]
ξ

(6.46)

We now make use of the fact that the auto-covariance of Ornstein-Uhlenbeck noise decays
exponentially in time,

E
[
ξℓ(t+∆t) ξk(t)

T
]
ξ
= 1 δk,ℓ

σ2

2
e−|∆t|/τξ , (6.47)

where δk,ℓ is the Kronecker delta, σ2 the variance, and ∆t corresponds to the time needed
for a noise sample to travel to the layer above and back. As noise originating in different
layers is uncorrelated, it quickly averages to zero, whereas the correlation of noise samples
at different times generated at the same layer is non-zero. We thus have as our final result

E
[
Bℓ,ℓ+1

]
ξ
≈ 1

α

σ2

2
e−|∆t|/τξ{φ′(ŭ0

ℓ)
[
Wℓ+1,ℓ

]T
φ′(ŭ0

ℓ+1)
}
. (6.48)

The curly brackets show the alignment between feedback and feedforward weights.

We now incorporate this result with the learning rule for bottom-up weights Wℓ,ℓ−1. As
discussed in Section 6.4.2, error propagation mechanisms generally produce a layer-wise
error eℓ as a function of top-down synapsesBℓ,ℓ+1.

Models closely related to backpropagation (Xie and Seung, 2003; Scellier and Bengio, 2017;
Haider et al., 2021) employ forward weight updates of the form

Ẇℓ,ℓ−1 = ηfwℓ eℓ r
T
ℓ−1

= ηfwℓ
{
φ′(ŭ0

ℓ)Bℓ,ℓ+1 eℓ+1

}
rT
ℓ−1 , (6.49)

122 CHAPTER 6. RESULT III

whereas models where rates are propagated top-down (Lee et al., 2015; Sacramento et al.,
2018; Meulemans et al., 2020) can be generally described by

Ẇℓ,ℓ−1 = ηfwℓ
{
Bℓ,ℓ+1 φ

′(ŭ0
ℓ+1) eℓ+1

}
rT
ℓ−1 . (6.50)

We plug our result for learned top-down weights, Eqn. (6.48), into these update rules. Be-
cause we have based our derivation on a general leaky-integrator model, our result in the
form of E

[
Bℓ,ℓ+1

]
∝ φ′(ŭ0

ℓ)
[
Wℓ+1,ℓ

]T
φ′(ŭ0

ℓ+1) ∀ ℓ can be employed in any of these theo-
ries. Plugging into either Eqn. (6.49) or Eqn. (6.50), we see that the weight updates∆Wℓ,ℓ−1

align with those of a feed-forward network trained with backpropagation up to additional
factors of derivatives. Therefore, our algorithm can provide useful error signals which ap-
proximately align with backpropagation, improving on random feedback weights.

Dendritic cortical microcircuits

Wenow describe learning throughminimization of the dendritic error as proposed in Sacra-
mento et al. (2018). In this model, weights are adapted using local dendritic plasticity rules
in the form Ẇ = η [φ(u)−φ(v)] rT , whereW represents lateral or feed-forward weights,
η is a learning rate,u and v denote different compartmental voltages and r the pre-synaptic
rate (Urbanczik and Senn, 2014; Gerstner et al., 2018). In order to adhere to the principle
of bio-plausibility, the microcircuit model uses rules such that u corresponds to the soma
of a given neuron and v to the corresponding compartment the synapse connects to. The
concrete form of all learning rules can be found in Supplementary Information. They are
designed such that the system settles in a specific state, where activity of the apical dendrite
of hidden layer pyramidal cells represents an error useful for learning.
We first describe learning using fixed random feedback connections. Before supervised
training, the system is run in absence of a teaching signal with random input r0(t). As
demonstrated in Sacramento et al. (2018), the plasticity of W IP

ℓ,ℓ and BPI
ℓ,ℓ allow the system

to settle in a self-predicting state. This is a system state described by matching voltages be-
tween interneurons and pyramidal cells, uI

ℓ = uP
ℓ+1, together with zero apical voltages v

api
ℓ .

This second condition is achieved in the hidden layers by learning lateral weights such
that top-down and lateral activity cancel, i.e. BPI

ℓ,ℓ r
I
ℓ = −BPP

ℓ,ℓ+1 r
P
ℓ+1. We now turn on an

instructive signal by clamping the apical compartment of top layer pyramidal cells to the
target voltageutgt. The somata of these neurons integrate the target signal with the bottom-
up input and propagate it top-down to the hidden layers. In the limit of small conductances
(weak nudging), the pyramidal neurons are now slightly nudged towards the target, while
the interneurons in the hidden layers do not observe the teaching signal; therefore, they
represent the activity which pyramidal cells in the layer above would have if there were
no target. As the apical dendrite calculates the difference between top-down and lateral
activity, it now encodes the error signal passed down to the hidden layers. This is how
cortical microcircuits with dendritic error encoding assign credit to hidden layers neurons.

6.4. LEARNING EFFICIENT BACKPROJECTIONS 123

In fact, the microcircuit model implements difference target propagation (Lee et al., 2015)
in a dynamical system with recurrency, with v

api
ℓ = BPP

ℓ,ℓ+1(r
P
ℓ+1 − rI

ℓ) representing the
backprojected difference target gℓ(ĥℓ+1)− gℓ(hℓ+1).14
PAL is implemented naturally by the inclusion of noise and our learning rule Eqn. (6.35).
Contrary to simulations with fixed top-down weights (Sacramento et al., 2018; Haider et al.,
2021), the inclusion of PAL also requires dynamical lateral weights from interneurons to
pyramidal cells. For efficient learning, a tight balance between learning rates needs to be
kept: lateral weights W IP

ℓ,ℓ need to adapt quickly to any changes of feed-forward weights
W PP

ℓ+1,ℓ, while top-downweightsBPP
ℓ,ℓ+1 need to adapt to changing forward weights quickly;

on the other hand, lateral weightsBPI
ℓ,ℓ from interneurons to pyramidal cells need to adapt

quickly to changing top-down weights, such that no spurious error occurs. The precise
order of weights updates is |∆W PP

ℓ+1,ℓ| < |∆BPP
ℓ,ℓ+1| < |∆BPI

ℓ,ℓ| ≲ |∆W IP
ℓ,ℓ|.

We comment on the ability of cortical microcircuits to assign credit over hierarchies with
multiple hidden layers. While Eqn. (6.38) implies that in theory, tasks can be learned suc-
cessfully using many hidden layers, the derivation assumes perfect cancellation of the top-
down signal with the interneuron activity, such that only the error signal is encoded in the
apical dendrite. This requires a perfect self-predicting state, which is unattainable in prac-
tice unless learning is phased (learning phases interleaved with phases where no target is
present and the self-predicting state is reestablished). As the error signal scales with the
small nudging strength λ, early layers in the network receive instructive signals which are
weaker by orders of magnitude, further complicating realistic evaluations of the model. For
this reason, we restrict our simulations showing credit assignment in cortical microcircuits
to a single hidden layer (see Section 6.4.2).

Simulation details

In all experiments, dynamics are simulated in discrete time steps of length dt using the
Euler-Maruyama method (Särkkä and Solin, 2019). Input and targets are passed as data
streams in the form of vectors presented for Tpres = 100 dt without any kind of filtering or
pre-processing. In all simulations, voltage and weight updates (where non-zero) are applied
at all time steps. All layers are fully connected throughout all experiments.
Microcircuits are simulated by defining effective voltages ueff as described in Haider et al.
(2021): we rewrite all dynamical equations in the form Cmu̇ = 1

τeff
(ueff − u), where u

denotes the pyramidal or interneuron somatic potential. Models are initialized in the self-
predicting state defined (see Supplement, and Sacramento et al. (2018)). Before training, we
allow the voltages to equilibrate during a brief settling phase (several dt). Activation func-
tions are the same throughout all layers, including the output layer. Targets are provided
as a target voltage utgt at the output layer.

14Independent of the error propagation scheme, the framework of DTP also includes the learning of top-down weights
such that the system’s cost is minimized according to Gauss-Newton optimization with batch size 1 (Meulemans et al.,
2020).

124 CHAPTER 6. RESULT III

For the PAL implementations, we calculate Ornstein-Uhlenbeck noise by sampling white
noisew ∼ N (0, 1) and low-pass filtering with time constant τξ , that is, ξℓ[t+ dt] = ξℓ[t] +
1
τξ
(
√
τξ dt σℓ w−dt ξℓ[t]). High-pass filtered rates r̂ℓ are calculated with respect to the time

constant τhp through
dr̂P

ℓ

dt
=

drP
ℓ

dt
− r̂P

ℓ

τhp
. Forward weight updates low-pass filtered with τlo

before application.
For pseudocode, all parameters and architecture details, see Supplementary Information.

Phaseless backwards weight alignment We simulate a microcircuit network of size [5-20-
10-20-5] with sigmoid activation. Linear and non-linear regimes are simulated by choosing
bottom-up weights as W PP ∼ U [−1, 1] and ∼ U [−5, 5], respectively. Forward weights are
fixed, while top-down and lateral (inter- to pyramidal neuron) weights are learned.
During evaluation against BP (right column in Fig. 6.7), we set the lateral weights during to
the exact self-predicting state, in order to observe an error signal in earlier hidden layers.
Note that the weight updates in the microcircuit model do not exactly represent those of an
ANN. This is due to an additional factor φ′(ŭP

N) as well as the fact that top-down nudging
influences the somatic activity (see Supplementary Information for details). These factors
introduce a misalignment unrelated to the performance of PAL, as can be seen through
the comparison of updates in the non-linear case (Fig. 6.7 (f)); in particular, already in the
output layer (ℓ = 4), a misalignment of ∼ 20◦ can be observed, and hence even perfectly
learned backprojections are likely to observe increased misalignment. Therefore, it is to be
expected that alignment is improved further in theories of error propagation which relate
more closely to backpropagation.

Classification experiments The Yin-yang and MNIST tasks were solved using microcir-
cuit networks of size [4-30-3] and [784-100-10], respectively, with sigmoid activation. All
weights (including lateral) were trained with fully recurrent dynamics. For the experiments
shown in this sectionwe use the GPU enhancedNeuronal Network simulation environment
(GeNN) (Yavuz et al., 2016; Knight et al., 2021). Natively, GeNN supports the simulation of
spiking neural networks, but the possibility to add custom neuron and synapse models to
the already provided ones makes the implementation of rate-based models such as the den-
dritic microcircuit possible. The simulation of the dendritic microcircuits benefited greatly
from the graphical processing unit (GPU) support provided by GeNN which allowed us to
perform the experiments shown in this section within practically feasible simulation times.

Efficient credit assignment in deep networks For this experiment, we simulated the gen-
eral leaky integrator model, Eqn. (6.33). Network size of the autoencoder is [784-200-2-
200-784], with activations [tanh, linear, tanh, linear]. We define as latent space activity
the output of the two neurons in the central hidden layer. PAL is implemented by adding
Ornstein-Uhlenbeck noise ξℓ to each hidden layer neuron, calculating the high-pass filtered
rate r̂ℓ+1 and updating top-down weights with Eqn. (6.35). The output layer error is defined

6.4. LEARNING EFFICIENT BACKPROJECTIONS 125

as eN = utgt − ŭN . We also include a bias term for each neuron. Forward weight updates
are low-pass filtered with time constant τlo.
As previously, this model is simulated in discrete time steps, with images presented for
Tpres = 100 dt. Voltages are updated continuously, and weight updates are applied at all
steps. After every epoch of training the LImodel, we trained a linear classifier on theMNIST
train set and show the accuracy of the linear classifier on the test set.

Acknowledgment

We wish to thank Jakob Jordan, Alexander Meulemans and João Sacramento for valuable
discussions. We gratefully acknowledge funding from the European Union under grant
agreements 604102, 720270, 785907, 945539 (HBP) and the Manfred Stärk Foundation. Ad-
ditionally, our work has greatly benefited from access to the Fenix Infrastructure resources,
which are partially funded from the European Union’s Horizon 2020 research and innova-
tion programme through the ICEI project under the grant agreement No. 800858.

6.4.5 Supplementary Information A: Additional information on PAL

In this Supplement, we give more detail on the derivation and application of PAL and the
microcircuit implementation used to perform the simulations.
As in the main text, bold lowercase (uppercase) variables x (X) denote vectors (matrices).
The partial derivative of the activation given by rℓ = φ(ŭ) is denoted by φ′(ŭ), which is a
diagonal matrix with µ-th entry ∂rµ

∂ŭµ
.

Derivation of PAL

We point out how and why our alignment loss LPAL
ℓ , defined in Eqn. (6.34), differs from

the reconstruction loss L̂ introduced in Ernoult et al. (2022). Using the notation of this
manuscript, this can be expressed as

L̂ℓ
Bℓ,ℓ+1

=∧ −ξTℓ Bℓ,ℓ+1

{
rξℓ
ℓ+1 − φ(ŭ0

ℓ+1)
}
+
∥∥∥Bℓ,ℓ+1

{
r
ξℓ+1

ℓ+1 − φ(ŭ0
ℓ+1)

}∥∥∥2 , (6.51)

where rξℓ
ℓ+1 is the rate which comprising data signal and noise from layer ℓ only, while the

second term generated from ŭ0
ℓ contains no noise signal. The regularizer requires a separate

phase, where noise is injected only into layer ℓ+ 1 and backpropagated to layer ℓ.
Training feedback weights by gradient descent on this alignment loss represents a case
closely related to PAL – for fixed input and forward weights, Bℓ,ℓ+1 converges such that
the Jacobians matrices align, Bℓ,ℓ+1 φ

′(ŭ0
ℓ+1) ∥ [φ′(ŭ0

ℓ)Wℓ+1,ℓ]
T . Inserting this result into

the difference target propagation rule of Eqn. (6.50), we see that the update reproduces exact
backpropagation with linear activation function on the output layer.

126 CHAPTER 6. RESULT III

An analogous implementation of gradient descent on L̂ in our setup requires making use of
the noise in the output layer, and using a different kind of regularizer, i.e.−α ∥Bℓ,ℓ+1r̂ℓ+1∥2
instead of weight decay. Unfortunately, this regularizer contains non-zero correlations of
all noise signals up to layer ℓ + 1, and not only auto-correlations of ξℓ. Therefore, gradi-
ent descent on a difference reconstruction loss with this regularizer does not lead to useful
top-down weights, as a particular weight Bℓ,ℓ+1 receives contributions proportional to all
weights Wk+1,k for k = 1 . . . ℓ. The central reason causing this issue is that our sys-
tem learns to adapt all feedback weights simultaneously, which requires considering noise
in all layers at all times. Contrary to this, in Ernoult et al. (2022), feedback weights are
trained sequentially with two separate phases of noise injections in different layers. We
have therefore designed Eqn. (6.42) as a heuristic approximation to the optimal update rule,
while achieving full always-on plasticity in our system.
Alternatively, the problem of superfluous derivatives φ′ can be addressed if the derivative
of the activation w.r.t. to the potential is available at the synapse. Given this information,
the weight updates can be defined as

Ḃℓ,ℓ+1 = ηbwℓ
[
ξℓ
(
r̂ℓ+1

)T − αφ′(ŭℓ)Bℓ,ℓ+1φ
′(ŭℓ+1)

]
. (6.52)

Note that the derivatives φ′(ŭℓ) are a function of the full somatic potential, comprising
data as well as noise. Using the fact that correlations between ξℓ and ξℓ+1 cancel to zero,
we obtain that the new expectation value of top-down weights to first order,

E
[
φ′(ŭ0

ℓ)Bℓ,ℓ+1φ
′(ŭ0

ℓ+1)
]
ξ
∝ φ′(ŭ0

ℓ)[Wℓ+1,ℓ]
Tφ′(ŭ0

ℓ+1) . (6.53)

We have tested this alternative regularizer in the relevant regime of in non-linear activation.
As shown in Fig. 6.10, it is able to improve alignment ofBPP

ℓ,ℓ+1 with [W PP
ℓ+1,ℓ]

T by about 10◦
in this example (note that we have used the same parameters as in the PAL setup. With ap-
propriate hyperparameter search, convergence time and final alignment may be improved).
However, whether a bio-plausible synapse can calculate the derivative φ′ = ∂φ

∂ŭ
is not clear.

Given our requirement that all computations can be implemented with simple physical
components, we have opted for the weight decay regularizer as defined in Eqn. (6.34).

Error propagation in microcircuits

In this section, we explain in detail how the cortical microcircuit is able to propagate mean-
ingful targets, and align its feedback weights using PAL in order to efficiently minimize the
difference between its output and a teaching signal.
We briefly review the general microcircuit setup defined by Sacramento et al. (2018). In
this model, the different neuron populations are each selected to play a distinct role. Each
hidden layer is composed of a population of pyramidal neurons and interneurons, where

6.4. LEARNING EFFICIENT BACKPROJECTIONS 127

0 100 200 300 400
epochs

0

20

40

60

80

100
al

ig
n

m
en

t
[°]

6 (BPP
`,`+1 , (W PP

`+1,`)
T)

a

0 500 1000 1500 2000
epochs

0

20

40

60

80

100
6 (BPP

`,`+1 , (W PP
`+1,`)

T)

` = 1

` = 2

` = 3b

Figure 6.10: Alternative regularizer with derivative shows further improvement in alignment. We
reproduce the experiment in Fig. 6.7 (e) using the same parameters: microcircuits learning to
adapt backwards weights with PAL using (a) the standard weight decay regularizer and (b) the
derivative-dependent regularizer of Eqn. (6.52).

the number of interneurons in a given layer matches the number of pyramidal cells in the
layer above. The neurons form a network defined by connections as shown in Fig. 6.6.

As in Sacramento et al. (2018), we define the following coupled differential equations to
govern the voltage dynamics of pyramidal cells (uP

ℓ) and interneurons (uI
ℓ) in a network

with layers ℓ = 1 . . . N :

Cmu̇
P
ℓ = gl

(
El − uP

ℓ

)
+ gbas

(
vbas
ℓ − uP

ℓ

)
+ gapi

(
v
api
ℓ + ξℓ(t)− uP

ℓ

)
∀ℓ ̸= N, (6.54)

Cmu̇
P
N = gl

(
El − uP

N

)
+ gbas

(
vbas
N − uP

N

)
+ inudge,tgt , (6.55)

Cmu̇
I
ℓ = gl

(
El − uI

ℓ

)
+ gden

(
vden − uI

ℓ

)
+ inudge,I . (6.56)

Here, ξℓ denotes the noise modeled in all hidden layers. Compartment voltages are induced
instantaneously by the respective input rates and synaptic weight,

vbas
ℓ = W PP

ℓ,ℓ−1φ
(
ŭP

ℓ−1

)
, (6.57)

v
api
ℓ = BPP

ℓ,ℓ+1φ
(
ŭP

ℓ+1

)
+BPI

ℓ,ℓ φ
(
ŭI

ℓ

)
, (6.58)

vden
ℓ = W IP

ℓ,ℓφ
(
ŭP

ℓ

)
. (6.59)

The nudging currents for the interneurons are inudge,I = gnudge,I(ŭP
ℓ+1 − ŭI

ℓ), and the output
layer pyramidal neurons receive aweak instructive signal via inudge,tgt = gnudge,tgt(utgt−ŭP

N).

128 CHAPTER 6. RESULT III

In the base microcircuit model of Sacramento et al. (2018) augmented with prospective
coding (Haider et al., 2021), synaptic plasticity of forward and lateral weights is defined as

Ẇ PP
ℓ,ℓ−1 = ηfwℓ

[
φ
(
ŭP

ℓ

)
− φ

(
gbas

gl + gbas + gapi
vbas
ℓ

)]
φ
(
ŭP

ℓ−1

)T ∀ℓ ̸= N , (6.60)

Ẇ PP
N,N−1 = ηfwN

[
φ
(
ŭP

N

)
− φ

(
gbas

gl + gbas
vbas
N

)]
φ
(
ŭP

N−1

)T
, (6.61)

Ẇ IP
ℓ,ℓ = ηIP

[
φ
(
ŭI

ℓ

)
− φ

(
gden

gl + gden
vden
ℓ

)]
φ
(
ŭP

ℓ

)T
, (6.62)

ḂPI
ℓ,ℓ = ηPIℓ

[
−vapi

ℓ

]
φ
(
ŭI

ℓ

)T
, (6.63)

while top-down weights BPP
ℓ,ℓ+1 are fixed.

Before deriving the relevant analytical expressions, we briefly explain how the design of
the circuitry leads to well-defined error propagation. In absence of a teaching signal, and
if the microcircuit has settled into its self-predicting state, the interneuron activity in each
layer represents an exact copy of the pyramidal neurons in the layer above. Interneurons
project laterally onto the apical dendrites of pyramidal cells in the same layer; these apical
dendrites also receive input from pyramidal cells in the layer above. In the self-predicting
state, these activities are subtracted from each other; as they are exactly the same, the inputs
cancel, and the apical compartment voltage is zero.
We now introduce a weak nudging signal towards the correct voltage at the output layer. To
first order in expansion parameters, the interneurons still represent the pyramidal neurons
in the layer above in absence of a teaching signal. The activity of the pyramidal cell in the
layer above now however additionally contains the error signal. Therefore, the difference
in activity calculated at the apical dendrite in a given layer also represents an error. Starting
from the penultimate layer, this argument extends successively to the apical compartment
voltages in all hidden layers. Consequently, the apical compartments represent errors useful
for learning, and these errors are backpropagated.
In order to prove the above statements, we reconsider the dynamics defined by Eqns. (6.54)
to (6.56) without noise, and learning rules Eqns. (6.60) to (6.63). Before performing su-
pervised training, the system must settle in a self-predicting state. This is achieved by
presenting input sequences while clamping the target voltage to the prospective voltage,
utgt = ŭP

N , and evolving the system while keeping the bottom-up weights W PP
ℓ+1,ℓ and

top-down weightsBPP
ℓ,ℓ+1 fixed. The dynamics of the lateral weights, Ẇ IP

ℓ,ℓ and ḂPI
ℓ,ℓ , are de-

signed to drive the respective weights to the self-predicting state and are required to work
in conjunction.
The lateral connections from interneurons to pyramidal cells BPI

ℓ,ℓ are driven by gradient
descent on the mismatch energy ∥vapi

ℓ ∥2 defined by the apical compartment potential. For

6.4. LEARNING EFFICIENT BACKPROJECTIONS 129

fixed top-down synapses, the dynamics of Eqn. (6.63) settle such that vapi
ℓ is (approximately)

zero for all inputs.
Through the dynamics of Eqn. (6.62), the weights W IP

ℓ,ℓ are adapted to minimize the dif-
ference between the dendritic potential of the interneurons and the voltage in the basal
compartment of pyramidal cells in the layer above. This can be seen by expanding the
learning rule in gnudge,I ≪ gl + gden,

Ẇ IP
ℓ,ℓ ∝ φ

(
ŭI

ℓ

)
− φ

(gden

gl + gden
vden
ℓ

)
(6.64)

= φ
(gdenvden

ℓ + gnudge,IŭP
ℓ+1

gl + gden + gnudge,I

)
− φ

(gden

gl + gden
vden
ℓ

)
(6.65)

≈ φ′
(gden

gl + gden
vden
ℓ

) gnudge,I

gl + gden
[
ŭP

ℓ+1 −
gden

gl + gden
vden
ℓ

]
, (6.66)

where in the first step, we have replaced the prospective interneuron voltage with the po-
tentials which induce it, ŭI

ℓ =
gdenvden

ℓ +gnudge,IŭP
ℓ+1

gl+gden+gnudge,I given by Eqn. (6.56). In the second step, we
expand in weak nudging of the interneuron.
In conjunction with the minimization of the apical potential in all layers through ḂPI

ℓ,ℓ , the
prospective potential ŭP

ℓ+1 is fully determined by its basal input, ŭP
ℓ+1 =

gbas

gl+gbas+gapiv
bas
ℓ+1 for

1 ≤ ℓ < N−1 and ŭP
N = gbas

gl+gbasv
bas
N for the output layer. Therefore, the synapses settle into

a state which minimizes the difference between the basal voltage vbas
ℓ+1 and the interneuron

compartment vden
ℓ (up to a factor defined by the conductances) for all input samples.

After the lateral weights have converged, the interneuron potentials are an exact copy of the
pyramidal cells in the layer above, ŭI

ℓ = ŭP
ℓ+1; this can be seen by plugging the steady state

solution gdenvden
ℓ = (gl+ gden) ŭP

ℓ+1 into the expression of ŭI
ℓ in terms of its compartmental

voltages.
A particularly well-suited self-predicting state is defined by

BPI
ℓ,ℓ = −BPP

ℓ,ℓ+1

W IP
ℓ,ℓ =

gbas

gden
gl + gden

gl + gbas + gapi
W PP

ℓ+1,ℓ (6.67)

for hidden layers, and W IP
N−1,N−1 = gbas

gden
gl+gden

gl+gbasW
PP
N,N−1 for the lateral weights projecting

to the interneurons in the final hidden layer. This state has the advantage that the lateral
weights form a self-predicting state independent of the input data (general solutions of
Ẇ IP

ℓ,ℓ = 0 = ḂPI
ℓ,ℓ do not perform as well in practice, as stimulus switching often requires

re-learning of lateral weights before apical compartments represent useful error signal). In
the simulations presented in this work, the networks are initialized in this specific self-
predicting state.

130 CHAPTER 6. RESULT III

We now turn on a teaching signal utgt. The new, nudged prospective state of the output
neurons is ŭP

N =
gbasvbas

N +gnudge,tgtutgt

gl+gbas+gnudge,tgt . Inserting this state into Eqn. (6.61) and expanding the
somatic potential about the weighted basal input v̂bas

N , we obtain

∆W PP
N,N−1 ≈ φ′(v̂bas

N) · gnudge,tgt

gl + gbas + gnudge,tgt
[
utgt − v̂bas

N

] (
rP
N−1

)T
. (6.68)

Here, we have defined v̂bas
N := gbas

gl+gbasv
bas
N , and we have rewritten the bottom-up input from

pyramidal neurons in the penultimate layer as a rate rP
N−1. We can now identify the differ-

ence between target and bottom-up input as the output layer error, eN := utgt − v̂bas
N , and

we may thus write

∆W PP
N,N−1 ∝ φ′(v̂bas

N) eN

(
rP
N−1

)T
. (6.69)

Written in this form, we have demonstrated that the update rule in Eqn. (6.61) implements
error minimization on the output layer in the limit of weak nudging. One can regard this as
equivalent to training the output layer of a feed-forward network, evaluated at theweighted
input v̂bas

N .

We now aim to show that the error eN is propagated backwards through the network, where
the apical compartment voltages represent the local error within each layer. Starting from
the self-predicting state, the apical voltages are

v
api
N−1 = BPP

N−1,N

[
φ
(
ŭP

N

)
− φ

(
ŭI

N−1

)]
(6.70)

= BPP
N−1,N

[
φ
(gbas vbas

N + gnudge,tgt utgt

gl + gbas + gnudge,tgt

)
− φ

(
(1− λI) v̂bas

N + λI g
bas vbas

N + gnudge,tgt utgt

gl + gbas + gnudge,tgt

)]
v
api
ℓ = BPP

ℓ,ℓ+1

[
φ
(
ŭP

ℓ+1

)
− φ

(
ŭI

ℓ

)]
(6.71)

= BPP
ℓ,ℓ+1

[
φ
(
v̂bas
ℓ+1 + λP v

api
ℓ+1

)
− φ

(
v̂bas
ℓ+1 + λI λP v

api
ℓ+1

)]
with λI := gnudge,I

gl+gden+gnudge,I , λ
P := gapi

gl+gbas+gapi , and v̂bas
ℓ+1 := gbas

gl+gbas+gapiv
bas
ℓ+1. Let us first focus

on the apical voltage in the penultimate layer. We again make use of the assumption of
weak nudging, and additionally require that the interneuron is only weakly nudged by the
top-down input it receives, λI ≪ 1. The apical voltage takes the form

v
api
N−1 ≈ BPP

N−1,N φ′ (v̂bas
N

) gnudge,tgt

gl + gbas
eN . (6.72)

6.4. LEARNING EFFICIENT BACKPROJECTIONS 131

In the same fashion, we expand the apical potentials in the layers below. The first order in
λP v

api
ℓ+1 and zeroth order in λI yields

v
api
ℓ ≈ BPP

ℓ,ℓ+1 φ
′ (v̂bas

ℓ+1

)
λP v

api
ℓ+1 . (6.73)

Taken together, these two results show that the apical potentials represent errors which are
successively propagated backwards through the network.
Finally, the last missing ingredient is how apical errors are used to update the forward
weights. Performing the same expansion in small apical voltages on Eqn. (6.60), we obtain

∆W PP
ℓ,ℓ−1 ∝ λPφ′(v̂bas

ℓ)v
api
ℓ

(
rP
ℓ−1

)T
. (6.74)

We now collect and summarize our findings. Bottom-up weights W PP
ℓ,ℓ−1 are updated us-

ing the local error, represented by the apical voltage as vapi
ℓ , multiplied with the bottom-up

signal rP
ℓ−1. Eqns. (6.72) and (6.73) show that these errors are backpropagated by multi-

plying with the derivative φ′(v̂bas
ℓ+1) and feedback weights BPP

ℓ,ℓ+1. This learning scheme
resembles that of feed-forward networks trained with feedback alignment (for fixed BPP),
or backpropagation (if BPP

ℓ,ℓ+1 = (W PP
ℓ+1,ℓ)

T). One marked difference to a feed-forward
network is the emergence of the derivative φ′(v̂bas

N) in the update rule to all bottom-up
weights, see Eqns. (6.69) and (6.72). As we have defined the error eN on the voltage level,
one may expect there to be no such derivative, as one finds in the corresponding case of
a feed-forward networks trained with backpropagation with linear activation functions on
the output layer. This additional factor signals a fundamental difference in architecture be-
tween backpropagation and difference target propagation, of which dendritic cortical mi-
crocircuits are an implementation. In difference target propagation, targets are constructed
locally from backpropagated rates – i.e. a target potential utgt is converted into a rate be-
fore it can be passed to a lower layer. In contrast, in backpropagation, top-down signals are
given by errors, bypassing the activation function in the upper layer and instead directly
transporting potential differences to hidden layers.
We now incorporate this result with PAL. As shown in Eqn. (6.48), using PAL, the top-down
weights converge toE

[
Bℓ,ℓ+1

]
∝ φ′(ŭ0

ℓ)
[
Wℓ+1,ℓ

]T
φ′(ŭ0

ℓ+1) ∀ ℓ. In the microcircuit model,
forward weights are learned as derived in Eqn. (6.74); in summary, we have found that

∆W PP
ℓ,ℓ−1 ∝ φ′(v̂bas

ℓ)
[N−1∏

k=ℓ

BPP
k,k+1 φ

′(v̂bas
k+1)

]
eN

(
rP
ℓ−1

)T
. (6.75)

In the limit of weak nudging and feedback, the noise-free potentials ŭP,0
ℓ are well approx-

imated by the bottom-up input v̂bas
ℓ , and our result for top-down weights takes the form

E
[
BPP

ℓ,ℓ+1

]
∝ φ′(v̂bas

ℓ)
[
W PP

n+1,n

]T
φ′(v̂bas

ℓ+1) ∀ ℓ. Plugging this into Eqn. (6.75), we see that
the weight updates∆W PP

ℓ,ℓ−1 align with those of a feed-forward network trained with back-

132 CHAPTER 6. RESULT III

propagation up to additional factors of derivatives. Therefore, our algorithm can provide
useful error signals which approximately align with backpropagation, improving on ran-
dom feedback weights.

Local alignment is compatible with approximate Gauss Newton-target propagation

The framework of PAL can easily be extended to propagate Gauss-Newton targets. As
shown in Meulemans et al. (2020), this requires the training of feedback connections such
that they invert the signal passed from given layer ℓ to the output layer N ; i.e. training
weights such that the backward mapping Jacobian matrix Jgℓ,N is a pseudoinverse of the
forward mapping, Jgℓ,N =

[
JfN,ℓ

]+. These feedback mappings could be realized by skip
connections from the output layer to each hidden layer, while maintaining a layer-wise
feed-forward architecture. In contrast to the layer-wise feedback setup defined in the main
text (cf. Fig. 6.6), only one interneuron population matching the output layer pyramidal
cells would be required here, as the same error signal eN is backpropagated to all hidden
layers.
In analogy to DTP-DRL (Meulemans et al., 2020), we can define a difference-based recon-
struction loss,

Ldiff
ℓ = ∥Bℓ,N r̂N − ξℓ∥2 + α ∥Bℓ∥2 . (6.76)

Gradient descent on this reconstruction loss yields the update rule

Ḃℓ,N = −ηbwi
[(
Bℓ,N r̂N − ξℓ

)
r̂N + αBℓ,N

]
. (6.77)

If noise injection and plasticity of top-down weights is phased, i.e. by a schedule that se-
quentially injects noise only into a given layer ℓ while enabling plasticity of Bℓ,N , this
learning rule minimizes the reconstruction loss of ξℓ as it passes to the output layer and
back. This can be seen by plugging in the equivalent of Eqn. (6.41) for phased noise,

r̂N ≈ φ′(ŭ0
N)
[N−1∏

n=ℓ

Wn+1,nφ
′(ŭ0

n)
]
ξℓ . (6.78)

The difference Bℓ,N r̂N − ξℓ is minimal if Bℓ,N φ′(ŭ0
N) is equal to

λP [∏N−1
n=ℓ W PP

n+1,nφ
′(ŭ0

n)
]+, thereby aligning the backwards Jacobian with the Moore-

Penrose inverse of the forward Jacobian matrix.
As shown in Meulemans et al. (2020), learning backwards weight to minimize such a re-
construction loss produces forward updates closely related to Gauss-Newton optimization,

∆W PP
ℓ,ℓ−1 ∝

[
JfN,ℓ

]+
eN (rP

ℓ−1)
T , (6.79)

6.4. LEARNING EFFICIENT BACKPROJECTIONS 133

where JfN,ℓ
denotes the Jacobian matrix mapping potentials in layer ℓ to the output layer

N .
While error propagation using the Moore-Penrose inverse has been shown to perform well
on simple classification tasks (Lee et al., 2015; Bartunov et al., 2018; Meulemans et al., 2020;
Podlaski andMachens, 2020), it is currently not knownhow such a difference reconstruction
loss could be implemented while training all top-down weights simultaneously.

6.4.6 Supplementary Information B: Simulation of PAL

Microcircuit models

Below we address several implementation details:
For all simulations, we set the resting potential to El = 0.
Figure 6.7 (Phaseless backwards weight alignment): In order to compare the backprojections
with those in an ANN trained with BP (right column), we perform several steps. After each
epoch of top-down weight training, we instantiate a teacher model with the architecture as
the respective ‘student’ microcircuit model. To this model, we pass the input sequence and
record the teacher output as a target signal. We now provide the newly acquired input/-
target pairs to the student model. As in all other simulations, these pairs are presented for
Tpres = 100 dt, and we disable noise during this evaluation. It is also necessary to set the
lateral weights to the self-predicting state defined by Eqn. (6.67) in order to obtain a mea-
surable error signal in layers below the last hidden layer. We record the potential weight
updates defined by the backprojections, but do not apply them. Next, we feed the same in-
put/target sequence into an ANN with weights set to W PP

ℓ,ℓ−1 and layer size and activation
as defined in Table 6.1. For this ANN, we calculate the output layer error as the difference
between target and voltage (linear activation on output layer). The weight update given in
this ANN is then compared to the recorded update for the microcircuit model.
Figure 6.8 (Teacher-student setup): We initialize the teacher with weightsW PP

2,1 = W PP
1,0 = 2.

For the student models with feedback alignment, the same parameters as for PAL are used,
but with ηbw = ηPI = 0, no noise injection, and without the low-pass filter on ∆W PP

ℓ,ℓ−1.
For the BP reference model, we additionally set BPP

ℓ−1,ℓ = [W PP
ℓ,ℓ−1]

T and BPI
ℓ−1,ℓ = −BPP

ℓ−1,ℓ

after every update.
Figure 6.8 (Classification tasks): For the Yin-Yang task, we used datasets of size 6000 for
training, 900 for validation, and 900 for testing. For MNIST digit classification, sets were
50000 for training, 10000 for validation, and 10000 for testing. In either case, FA runs use
the same parameters as PAL, but with fixed BPP

ℓ,ℓ+1 and BPI
ℓ,ℓ and no noise injection. The

reference network is an ANN trained with BP using a Cross-Entropy loss and ADAM with
default parameters of PyTorch. In this case, 10 seeds were trained.

134 CHAPTER 6. RESULT III

Algorithm 1: Dendritic cortical microcircuits with prospective coding and PAL
Input: Data stream encoded as rate vector rP0 [t], target voltage vector utgt[t]
Parameters: Network with layers 1 to N ; effective neuron time constants τ eff,Pℓ , τ eff,Iℓ

1 Update instantaneous rates and compartment potentials
2 for ℓ in range(1, N) do

3 ŭP
ℓ [t]← uP

ℓ [t− dt] +
τ eff,Pℓ
dt (uP

ℓ [t]− uP
ℓ [t− dt])

4 ŭI[t]← uI[t− dt] +
τ eff,Iℓ
dt (uI[t]− uI[t− dt])

5 rPℓ [t]← φ
(
ŭP
ℓ [t]
)

6 rIℓ[t]← φ
(
ŭI
ℓ[t]
)

7 for ℓ in range(1, N) do
8 vbas

ℓ [t]←W PP
ℓ,ℓ−1[t] r

P
ℓ−1[t]

9 v
api
ℓ [t]← BPP

ℓ,ℓ+1[t] r
P
ℓ+1[t] +BPI

ℓ,ℓ[t] r
I
ℓ[t]

10 vden
ℓ [t]←W IP

ℓ,ℓ[t] r
P
ℓ [t]

11 Update high-pass filtered rates
12 for ℓ in range(1, N) do
13 r̂Pℓ [t]← r̂Pℓ [t− dt] + rPℓ [t]− rPℓ [t− dt]− dt

τhp
r̂Pℓ [t− dt]

14 Update noise vectors
15 for ℓ in range(1, N − 1) do
16 µℓ ∼ N (0, I)
17 ξℓ[t]← ξℓ[t− dt] + 1

τξ

(√
τξ dt σℓ µℓ − dt ξℓ[t− dt]

)
18 Update somatic potentials with noise injection
19 for ℓ in range(1, N − 1) do
20 ueff,I

ℓ [t]← τ eff,Iℓ

{
gden vden

ℓ [t] + gnudge,I ŭP
ℓ [t]
}

21 ∆uI
ℓ[t]← dt

τ eff,Iℓ

{
ueff,I
ℓ [t]− uI

ℓ[t]
}

22 ueff,P
ℓ [t]← τ eff,Pℓ

{
gbas vbas

ℓ [t] + gapi (v
api
ℓ [t] + ξℓ[t])

}
23 ∆uP

ℓ [t]← dt
τ eff,Pℓ

{
ueff,P
ℓ [t]− uP

ℓ [t]
}

24 ueff,P
N [t]← τ eff,PN

{
gbas vbas

N [t] + gnudge,tgt utgt[t]
}

25 ∆uP
N [t]← dt

τ eff,PN

{
ueff,P
N [t]− uP

N [t]
}

26 apply voltage updates: uP
ℓ +∆uP

ℓ ,u
I
ℓ +∆uI

ℓ ∀ ℓ
27 Update weights, incl. low-pass filtering feedforward weight updates
28 for ℓ in range(1, N − 1) do
29 ∆W PP

ℓ,ℓ−1 ← dt ηfwℓ
{
rPℓ [t]− φ

(gbas

gl+gbas+gapi
vbas
ℓ [t− dt]

)}
rPℓ−1[t− dt]

30 ∆BPP
ℓ,ℓ+1 ← dt ηbwℓ

{
ξℓ[t] r̂

P
ℓ+1[t− dt]− αℓB

PP
ℓ,ℓ+1[t]

}
31 ∆BPI

ℓ,ℓ ← −dt ηPIℓ v
api
ℓ [t− dt] rIℓ[t− dt]

32 ∆W IP
ℓ,ℓ ← dt ηIP

{
rIℓ[t]− φ

(gden

gl+gden
vden
ℓ [t− dt]

)}
rPℓ [t− dt]

33 ∆W PP
N,N−1 ← dt ηfwℓ

{
rPN [t]− φ

(gbas

gl+gbas
vbas
N [t− dt]

)}
rPN−1[t− dt]

34 for ℓ in range(1, N) do
35 ∆W

PP
ℓ,ℓ−1 ← ∆W

PP
ℓ,ℓ−1[t− dt] + dt

τlo

(
∆W PP

ℓ,ℓ−1[t− dt]−∆W
PP
N,N−1[t− dt]

)
36 apply weight updates:

W PP
ℓ,ℓ−1 +∆W

PP
ℓ,ℓ−1,B

PP
ℓ,ℓ+1 +∆BPP

ℓ,ℓ+1,B
PI
ℓ,ℓ +∆BPI

ℓ,ℓ,W
IP
ℓ,ℓ +∆W IP

ℓ,ℓ ∀ ℓ

6.4. LEARNING EFFICIENT BACKPROJECTIONS 135

Table 6.1: Parameters for microcircuit model simulations.

Fig. 6.7 (a+b+c) Fig. 6.7 (d+e+f) Fig. 6.8 (a+b) Fig. 6.8 (c+d) Fig. 6.8 (e+f)

dt [ms] 10−2 10−2 10−2 10−2 10−2

Tpres [ms] 1 1 1 1 1
τhp [ms] 0.1 0.1 0.1 0.1 0.1
τlo [ms] —1 —1 102 102 102

τξ [ms] 0.1 0.1 0.1 0.1 0.1
noise scale σℓ ∀ ℓ 5× 10−2 5× 10−2 10−2 10−2 10−2

regularizer α 10−5 10−5 10−6 10−6 10−6

gl [ms−1] 0.03 0.03 0.03 0.03 0.03
gbas [ms−1] 0.1 0.1 0.1 0.1 0.1
gapi [ms−1] 0.06 0.06 0.06 0.06 0.06
gden [ms−1] 0.1 0.1 0.1 0.1 0.1

gnudge, I [ms−1] 0.06 0.06 0.06 0.06 0.06
gnudge,tgt [ms−1] 0.06 0.06 0.06 0.06 0.06

input U [0, 1] U [0, 1] U [0, 1] Yin-Yang MNIST
dataset size 100 100 100 6000 50000
epochs 100 500 5000 400 100

network size [5-20-10-20-5] [5-20-10-20-5] [1-1-1] [4-30-3] [784-100-10]
activation 1

1+e−x
1

1+e−x
1

1+e−x
1

1+e−x
1

1+e−x

ηfw [ms−1] 0, 0, 0, 0 0, 0, 0, 0 2, 0.5 50, 0.01 1.0, 5× 10−3

ηbw [ms−1] 50, 50, 50 20, 20, 20 20 0.5 0.2
ηIP [ms−1] 0, 0, 0 0, 0, 0 10 0.05 0.02
ηPI [ms−1] 5, 5, 5 0.5, 0.5, 0.5 0.5 0.02 0.02

weight initW PP
ℓ,ℓ−1 U [−1, 1] U [−5, 5] U [−1, 0] U [−0.1, 0.1] U [−0.1, 0.1]

weight init BPP
ℓ−1,ℓ U [−1, 1] U [−5, 5] U [−1, 0] U [−1, 1] U [−1, 1]

1 No forward weight updates applied.

136 CHAPTER 6. RESULT III

Efficient credit assignment in deep networks

We detail the parameters for the general LI-model simulation below:

Table 6.2: Simulation parameters for the autoencoder simulation with the general LI-model.

Fig. 6.9

dt [ms] 10−1

Tpres [ms] 10
τhp [ms] 1
τlo [ms] 103

τξ [ms] 1
noise scale σℓ ∀ ℓ 10−2

regularizer α 10−4

input MNIST
epochs 10

batch size 32
network size [784-200-2-200-784]
activation tanh, linear, tanh, linear

ηfw [ms−1] 8× 10−4, 8× 10−4, 8× 10−3, 8× 10−3

ηbw [ms−1] 0.8, 0.8, 0.8

weight init Wℓ,ℓ−1 N (0, 0.05)
weight initBℓ−1,ℓ N (0, 0.05)

bias init bℓ N (0, 0.05)

Errors on the output layer are defined as eN = β (utgt − ŭN), and we have simulated with
β = 0.1. Weight updates were calculated by taking the mean∆Wℓ,ℓ−1 over batches of size
32; we stress that these weight updates are applied at all time steps dt. The dataset sizes
for the MNIST autoencoder task are 50000 for training, 10000 for validation, and 10000 for
testing.

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 137

6.5 Event-based communication in dendritic microcircuits

The original model of the dendritic microcircuits is based on rate-based communication
between neurons and rate-based learning rules. In this form it is not amenable to an im-
plementation on spiking neuromorphic platforms. This section outlines two potential ap-
proaches to bridge this gap.

6.5.1 Point neuron microcircuits

This first approach is centered around the idea of recreating the functional principles of
the dendritic microcircuit out of components that are available on a broad range of current
spiking neuromorphic platforms. In particular, we identify the LIF neuron as one of the
most popular and widely used neuron models in the neuromorphic field (Pfeil et al., 2013;
Furber et al., 2014; Akopyan et al., 2015; Davies et al., 2018; Billaudelle et al., 2022)15 and use
it as a basis for our alternative dendritic microcircuit. This entails two crucial changes: On
the one hand we move from a rate-based neuron model to a spiking one and on the other
we make the step from compartmental to point neurons.

Author contributions

The project idea for a recreation of the dendritic microcircuit’s functional principle with LIF
neuronswas developed in a collaborative effort by Laura Kriener (LK), Sebastian Billaudelle,
Benjamin Cramer, Matteo Cartiglia and Mihai Petrovici (MAP) during the 2019 Capo Caccia
Neuromorphic Engineering Workshop. The workshop’s results were extended and refined in
first simulations by LK under the joint supervision of MAP, Jakob Jordan and Walter Senn.
The project was continued by a collaboration of Ben von Hünerbein (BvH) and Ismael Jaras
(IJ) under the supervision of LK and MAP. BvH and IJ simulated and refined the model.
Afterwards, IJ implemented the model on the BrainScaleS-2 hardware. The results of this
collaboration were presented as an abstract and poster at the 6th HBP Student Conference on
Interdisciplinary Brain Research under the title Towards fully embedded biologically inspired
deep learning on neuromorphic hardware16. BvH, IJ and LK share the first-authorship.

Approximating rate-based neurons with LIF neurons

The dynamics and synaptic communication mechanisms of LIF neurons are radically dif-
ferent from the previously used rate-based leaky-integrator neuron models. Nevertheless,
LIF neurons can be used to approximate the input-output relations of the neurons described
in Sacramento et al. (2018). In this section we provide an intuition on why this is the case.

15This includes also other popular neuron models such as the adaptive exponential leaky integrate-and-fire (AdEx)
neuron that can be reduced back to the LIF neuron through parameter choice.

16(von Hünerbein et al., 2022)

138 CHAPTER 6. RESULT III

If LIF neurons are provided with spike input of a constant input rate rin, we can see in
Fig. 6.11 a that after a short initial phase an equilibrium is reached. The average synaptic
current in that equilibrium Īsyn is proportional to the product of input weight win and input
rate rin (see Fig. 6.11 c, d):

Īsyn ∝ winrin

This shows the similarity between the rate-based neuron with u̇ ∝ winrin+ leak+ bias and
the LIF neuron where we have u̇ ∝ Isyn+Ileak. Note that for the latter we have absorbed the
bias current into the leak term. Furthermore, by focusing on the free membrane potential
ufree, which is the membrane voltage that the LIF neuron would have if its spiking threshold
were infinitely high, we see another parallel to rate-based leaky-integrator neurons. The
(free) membrane potential is, like the voltage in the rate-based case, a low-pass filter of the
synaptic input. Additionally, the steady state of the free membrane ūfree, after subtraction of
the leak potential, is proportional to winrin, just like the steady-state membrane voltage in
a rate-based neuron after subtraction of bias and leak (see Fig. 6.11 e). Finally, in Fig. 6.11 f
we see the shape of the activation function of the LIF neuron. The time constants, in par-
ticular the refractory period τref, and the leak potential control the shape of the activation
function. τref determines the maximum firing rate of the neuron with rmax =

1
τref

. With an
appropriately chosen bias, i.e. leak potential, and very short τref, such that rmax is far above
the usual firing rates of the network, the LIF neuron’s activation function can be used to
approximate a rectified linear unit (ReLU).
Note that the activation function shown here is not perfectly monotonous. This is due
to aliasing effects caused by the regular input. The impact of this can be weakened by
introducing jitter on the regular spike times and longer synaptic time constants. If a neuron
receives multiple inputs of different frequencies, the effect is typically also less pronounced.
Additionally, since the output spike trains that neurons with multiple inputs produce are
not perfectly regular, the issue is less relevant for higher layers of hierarchical networks.
Finally, we could also choose to replace the regularly-spaced input with random spike trains
of the same average firing rate, for example Poisson spike trains. This however, adds a
significant amount of additional noise to the system, which, in practice, had a detrimental
effect on learning.
In the following we will make use of the correspondence between the LIF neurons and
rate-based neurons and use the same notation as for the original dendritic microcircuits.

Approximating multi-compartment microcircuit mechanisms with point neurons

The original microcircuit model features three different types of neurons: the three-
compartment pyramidal neurons in the hidden layers of the network, the two-compartment
interneurons and the two-compartment pyramidal neurons in the top layer. While the den-
dritic compartments collect the synaptic inputs, the soma integrates the dendritic signals

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 139

0 200 400
t [ms]

0.0

0.5

1.0

1.5

2.0

I s
y
n

[n
A

]

Isyn Īsyn

a

0 200 400
t [ms]

−65.0

−62.5

−60.0

−57.5

−55.0

u
fr

ee
[m

V
]

ufree, spikes

ufree, current

ūfree

b

0 50 100 150
rin [Hz]

−5

0

5

10

Ī s
y
n

[n
A

]

win = −2 nA
win = −1 nA

win = 1 nA
win = 2 nA

c

−2 −1 0 1 2
win [nA]

−5

0

5

Ī s
y
n

[n
A

]

rin = 0 Hz
rin = 50 Hz

rin = 100 Hz
rin = 150 Hz

d

−5 0 5
Īsyn [nA]

−50

−25

0

25

50

ū
fr

ee
−
E

l
[m

V
]

e

0 200 400
winrin [nA Hz]

0

100

200

r o
u
t

[H
z]

f

Figure 6.11: Illustration of how a LIF neuron can be used to approximate a rate-based neuron. a:
Synaptic current of an LIF with current-based exponential synaptic kernels that receives regu-
lar spiking input with the synaptic weight win and rate rin (blue). The average synaptic current
(excluding a short initial phase) Īsyn is marked in gray. b: Free membrane voltage of the same
neuron as in (a) is drawn in blue. The free membrane voltage of another neuron which does
not receive spiking input but the average current Īsyn is shown in orange. The average free
membrane potential after the initial phase is marked in gray. c and d: Illustration of the pro-
portionality of Īsyn to the input rate rin and the input weight win and therefore by extension to
their product. e: Illustration of the proportionality of the steady state free membrane ūfree −El
to the average input current Īsyn. f: Activation function of the LIF neuron as output firing rate
rout over the input strength rinwin. The parameters used for these simulations can be found in
Table B.2.

and produces the neuron’s output. Fig. 6.12 shows the transition of the original microcir-
cuit to a point neuron version. By making the step from multi-compartment neurons to
point neurons, the number of dynamic variables per neuron decreases: instead of multi-
ple dendritic voltages plus the somatic voltage there is only the one membrane voltage.
It is no longer possible to store multiple “signals” (e.g. bottom-up input in the basal den-
drite, top-down input in the apical dendrite and the linear combination of both in the soma)
within the same neuron. Therefore, in the point neuron microcircuit model a single multi-
compartment pyramidal neuron is replaced by two LIF neurons (see Fig. 6.12). We call one
of them the “error neuron” which holds the signal formerly stored in the apical compart-
ment and the other keeps the name pyramidal neuron, as it holds the same information
as the soma of the multi-compartment pyramidal neuron. Note that we do not need the
information of the basal dendrites to be stored separately, so there is no “basal neuron”,

140 CHAPTER 6. RESULT III

WPP
i+1,i

WPI
i,i

WIP
i,i

BPP
i,i+1

WPP
i+1,i

WPI
i,i

WIP
i,i

BPP
i,i+1

baseline

P

I I

P

E

P

P

E baseline

- WB
i

- WB
i+1

Figure 6.12: Comparison of the schematic of the original microcircuit and the point neuron mi-
crocircuit. Left: Schematic drawing of the original dendritic microcircuit as in Sacramento
et al. (2018). Right: Adaptation to LIF point neurons. The two-compartment interneuron on
the left (blue) is replaced by a single LIF neuron while the three-compartment pyramidal neu-
ron is replaced by an “error neuron” (orange) and a pyramidal (red) LIF neuron. Neurons firing
constantly at baseline frequency are introduced (gray box) as well as an additional connection
from error and baseline neuron to the pyramidal neuron. Dashed gray arrows denote one-to-
one target signals used for plasticity.

but instead the bottom-up input is sent directly into the pyramidal neuron. Similarly, the
multi-compartment interneuron is replaced by a single LIF interneuron.
In the dendritic microcircuit model the apical dendrites store a local error signal for the
pyramidal neuron and nudge its somatic voltage, via conductive coupling, towards a local
target. Since the error neuron and the pyramidal neuron are separate cells now, the nudging
has to happen via a synaptic connection (orange connections in Fig. 6.12). This introduces
the complication that, while the apical voltages and their impact on the somatic voltage
can be both positive and negative, the impact of the synaptic connection can not, because
firing rates of neurons are strictly nonnegative. We solve this issue by increasing the leak
potential El of the LIF neurons such that they fire with a baseline frequency of rB. By con-
necting the error neuron as well as a “baseline neuron” (which always fires with the baseline
frequency) with the weight +W B and −W B to the pyramidal neuron, the effective signal

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 141

nudging the pyramidal neuron isW B (rE − rB) which can have positive as well as negative
values. Note that each error neuron, while receiving input from all above-layer pyramidal
neurons and interneurons, is only connected to one of the pyramidal neurons in the same
layer. For more details on the nudging via a synaptic connection see Appendix A.3.1.

The switch to point neurons also impacts the learning mechanism. The weight updates in
the original microcircuit models are based on firing rates. Since we have shown previously
that firing rates of LIF neurons correctly approximate firing rates of rate-based neurons, we
can do the same here. In practice, this means that we present each input sample as regular
input spike trains for a certain duration T and record all spiking activity in the network.
Then, after the time T , we calculate all firing rates of the neurons as r = nspikes

T
and perform

one weight update based on these firing rates.

The weight update in Urbanczik-Senn plasticity rule (Urbanczik and Senn, 2014) in
Eqn. (6.7) is proportional to the difference between a signal which is nudged towards a
target φ(u) and a non-nudged signal φ(v∗). Both signals are present in the same neuron,
in the soma and the basal dendrite respectively. This is not directly realizable with a point
neuron. Therefore, we have to replace one of the two neuron-internal signals with an ex-
ternal one: The former — the nudged signal — is replaced by an external target, while the
latter is represented by the point neuron’s output. Other neurons in the network serve as
targets (dashed arrows in the Fig. 6.12).

For the interneurons, the target is most easily determined: As each interneuron is supposed
to mimic a pyramidal neuron in the layer above, the firing rate of that pyramidal neuron is
the target for the interneuron

Ẇ IP
ℓ,ℓ = ηIP

[
rP
ℓ+1 − rI

ℓ

]
rP
ℓ (6.80)

≈ ηIP
[
φ
(
uP

ℓ+1

)
− φ

(
uI

ℓ

)]
φ
(
uP

ℓ

)
. (6.81)

The weights from the interneurons to the error neurons (called W PI to show the analogy
to the original microcircuits) only need to be learned during the setup of the self-predicting
state. In that setting the network receives random input and no target and since no target
is provided to the network, all internal error signal should be zero. For the point neuron
microcircuit this results in the baseline firing rate as target for the error neurons and the
weight update rule

Ẇ PI
ℓ,ℓ = ηPI

[
rB − rE

ℓ

]
rI
ℓ (6.82)

≈ ηPI
[
φ(0)− φ

(
uE

ℓ

)]
φ
(
uI

ℓ

)
. (6.83)

142 CHAPTER 6. RESULT III

For the feedforward weights the target rate is the sum of the pyramidal firing rate and the
error signal in the layer

Ẇ PP
ℓ,ℓ−1 = ηPP

[(
rP
ℓ + rE

ℓ − rB)− rP
ℓ

]
rP
ℓ−1 (6.84)

= ηPP
[
rE
ℓ − rB] rP

ℓ−1 (6.85)
≈ ηPP

[
φ
(
uE

ℓ

)
− φ(0)

]
φ
(
uP

ℓ−1

)
. (6.86)

A detailed description on how the error propagation mechanisms of this setup correspond
to the mechanisms in the original microcircuit is given in Appendix A.3.2.

Modifications for practical implementability

After having discussed the conceptual changes for going from rate-based multi-
compartment neurons to spiking point neurons, we here highlight further implementation
details that facilitate learning in a neuromorphic but also in a simulation setting.
So far we have not specified how exactly the error signal is given into the error neurons of
the top layer. There are multiple possibilities, for example providing the error neurons with
a current proportional to the difference between the target and the network’s output. The
most easily realizable solution in practice is to have a “target neuron” fire with the target
rate and connect it with a constant weightW tgt to the error neuron while at the same time
connecting the pyramidal neuron of the output layer to the error neuron with the weight
−W tgt. This effectively provides the error neuron with the signal eN = W tgt (rtgt − rPN).
The approach of providing only the target signal to the error neuron directly and locally
calculating the error, i.e. the difference between the target and the network’s output, is
more practically feasible. This is due to the fact that the target is already known before
the start of the simulation and therefore this signal can be provided via a predetermined
spike-source (both in simulation and on a neuromorphic chip), while an error signal would
need to be calculated and generated while the experiment is already running, which is not
possible in all simulators or on all neuromorphic platforms.
The nudging of the pyramidal neurons in the point neuron model is performed via synap-
tic connections in contrast to a conductive coupling in the original model. Therefore, the
nudging signal is a firing rate instead of a voltage. If the activation function of the error
neuron is highly non-linear, the nudging signal is strongly distorted, which can affect learn-
ing performance. To prevent this, we tune the error neurons to have an activation function
which strongly resembles a ReLU with a bias. With that we can assume for most cases that
the nudging signal transported by the rate is proportional to the nudging signal that would
be there in case of a conductive coupling. While a ReLU-like activation function is desir-
able for the error neurons, for all other neurons it is beneficial to have an upper bound on
the firing rate. This allows for example to avoid communication bandwidth limitations on
neuromorphic platforms and is easily achieved by increasing the refractory period of the
LIF neurons.

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 143

On neuromorphic platforms neuronal and synaptic resources are often limited and
resource-efficient implementations can be crucial. A subtle difference between the orig-
inal and the point neuron microcircuit allows us to reduce the required synapse count for
the point neuron microcircuit. In the original microcircuit model the nudging of the soma
via the apical compartments in the pyramidal neurons serves two purposes: Firstly, it cre-
ates the difference between the two signals used in the weight update of the feedforward
weights, the soma which is nudged towards a target and the basal dendrite (Eqn. (6.60)).
Secondly, via the nudging of the pyramidal neurons and the backward connections the er-
ror signal is transported to lower layers in the network. In contrast to that, in the point
neuron microcircuit the nudging serves only one purpose: Since the weight update for the
feedforward weights is changed (Eqn. (6.85)) and no longer relies on the nudging, only the
transportation of the error signal downwards remains. This is only necessary in all lay-
ers above the lowest hidden layer. Below the lowest hidden layer lies only the input layer
which does not need the error signal since no learning takes place there. Therefore, in the
point neuron microcircuit, the nudging of the pyramidal neurons in the lowest hidden layer
serves no purpose and can be omitted, especially if the available connectivity is limited on
a neuromorphic platform.
The task of the interneuron is to match the activity of the pyramidal neuron in the layer
above, as reflected in the learning rule forW IP Eqn. (6.80). This matching works as intended
in the learning of the self-predicting state, however during the learning of the task, the pyra-
midal neurons are nudged by the error neurons. Therefore, the target for the interneuron
is a nudged version of the pyramidal activities and it learns to mimic that. This directly
counteracts the error propagation mechanism which relies on the difference between the
nudged pyramidal neuron and the interneuron. If both are the same, there is no error signal
in the layer below. This phenomenon of the interneuron learning to mimic the pyramidal
activity including the nudging is also present in the original microcircuit model, however it
is less pronounced and can be controlled through careful tuning of the learning rate ratios
between ηIP and ηPP. For the point neuron microcircuits the required level of fine-tuning
on the learning rates is higher and practically unfeasible. Alternatively, the learning rule
for the interneuron can be changed for the learning of the task: We assume the learning of
the task starts in the self-predicting state. At this point, the value of W IP is such that the
interneuron produces the same activity as the pyramidal neuron without nudging. If pyra-
midal and interneuron have the same activation function (which we assume here) then this
relationship can be kept if whenever an update is applied to W PP the same weight update
is applied toW IP. We realize this by employing the learning rule forW PP (Eqn. (6.85)) also
for W IP

Ẇ IP
ℓ,ℓ = ηIP

[
rE
ℓ − rB] rP

ℓ . (6.87)

The final point we address here ismostly relevant formixed-signal or analog platforms. Due
to device mismatch no two neurons or synaptic circuits behave exactly identical even with

144 CHAPTER 6. RESULT III

identical parametrization. The microcircuit model however is based on the idea that if two
neurons receive the same input via synapses with the same weight, they will produce the
same output (e.g. interneurons matching pyramidal neurons). On neuromorphic hardware
this is not necessarily the case. Therefore, the difference of a target rate and the postsynaptic
rate which is part of the learning rules will, in most cases, not be zero even for an optimal
tuning of the synaptic weights. To prevent weight updates caused solely by this effect, a
thresholding mechanism can be introduced in the learning rules: If the difference between
target and output is smaller than a certain threshold θ, then no weight update is applied

∆W =

{
0 if |rtgt − rout| < θ

η (rtgt − rout) rin otherwise.
(6.88)

Preliminary results

Here we show preliminary results on how the introduced point neuron microcircuit func-
tions and reproduces the key functionalities of the original model.
In Fig. 6.13 we see simulation results for a single microcircuit (as illustrated in Fig. 6.12)
which first sets itself up in a self-predicting state while receiving random input and then
learns to match a predefined input-output relationship. During the learning of the self-
predicting state the same mechanisms as in the original model apply: The synaptic weights
W PI andW IP are adapted such that the interneuron mimics the upper layer pyramidal neu-
ron and the firing rates of the error neurons decay to the baseline, as no external target is
present, and therefore no error signal should propagate through the network (Fig. 6.13 a –
c). Once the self-predicting state is reached, the microcircuit is taught to reproduce fixed
and predefined input-output pairs (Fig. 6.13 d – f). During learning the difference between
the output of the pyramidal neuron in the upper layer and the desired output shrinks and
correspondingly, the error signals present in the network, which are represented as the fir-
ing rates of the error neurons, decrease. Once the network’s output matches the target the
error neurons fire at their baseline frequency.
The same experiment was repeated on the mixed-signal neuromorphic platform
BrainScaleS-2 (Fig. 6.14). While we see that the general mechanisms during the learning
of the self-predicting state are the same, we also see that the firing rates in the hardware
emulation are much more noisy compared to the software simulation. These fluctuations
in the firing rates for constant inputs are caused by a combination of several effects such
as thermal noise on the membrane voltages, intermittent drifts or drops in supply voltages
due to increased load, jitter in the spike timing during communication as well as potential
spike-loss if communication bandwidths are reached during phases of high spike counts.
Additionally, fixed-pattern noise causes each neuron to be slightly different and therefore to
have, among other effects, a slightly different baseline firing rate. Calibration mechanisms
were employed to reduce the impact of the fixed-pattern noise, but it was not possible to

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 145

0 100 200 300 400 500
0

50

100

150

fi
ri

n
g

ra
te

[H
z] Input

a

0 100 200 300 400 500
115

120

125

130

fi
ri

n
g

ra
te

[H
z]

Interneuron hidden

Pyramidal top

b

0 100 200 300 400 500
evaluation windows

100

150

200

fi
ri

n
g

ra
te

[H
z] Error neuron top

Error neuron hidden

Baseline

c

0 500 1000 1500 2000 2500
120

140

160

fi
ri

n
g

ra
te

[H
z]

Target

Output

d

0 500 1000 1500 2000 2500
evaluation windows

100

120

140

160

fi
ri

n
g

ra
te

[H
z] Error neuron top

Error neuron hidden

Baseline

f
10 20 30

130

140

150

160

170

fi
ri

n
g

ra
te

[H
z]

e

1250 1260 1270 2450 2460 2470

Target

Output

Figure 6.13: Functional principles of the point neuron microcircuits in simulation. This figure was
adapted from the poster corresponding to (von Hünerbein et al., 2022). The simulations were
performed using the PyNN simulator (Davison et al., 2009), the parameters can be found in
Table B.3. Left: Learning of the self-predicting state. a: Input firing rates into a point neuron
microcircuit for learning the self-predicting state. The x-axis is given in evaluation windows
which mark the presentation of one input sample. After each evaluation window the firing
rates of the neurons in the microcircuits are determined via the spike counts and the weights
are updated. b: Firing rates of the interneuron and the pyramidal neuron in the upper layer. The
interneuron learns to match the firing rate of the pyramidal neuron. c: Firing rates of the error
neurons during the learning of the self-predicting state. Since no target is present, the error
neuron in the upper layer fires with its baseline frequency from the start. The rate of the lower
error neuron decreases to baseline once the self-predicting state is reached. Right: Learning of
the task. d: Comparison of the pyramidal firing rate and the target rate while the microcircuit
learns to match the provided target. e: Zoom-in on the data shown in (d) during different stages
of training (left: early, center: middle, right:late). f: Firing rates of the error neurons in the
upper and hidden layer during the learning of the task. The errors decrease towards baseline
when the output matches the target more closely.

remove it entirely. Therefore, the baseline firing rate for each error neuron must be mea-
sured before the start of the experiment and then the measured, instead of the ideal value,
needs to be used in the weight updates (Fig. 6.14 c, f). In spite of the challenges introduced
by noisy firing rates as well as fixed-patter noise on neural and synaptic circuits, the micro-
circuit is both able to successfully learn the self-predicting state and reproduce the desired
input-output relationship.

146 CHAPTER 6. RESULT III

0 5 10 15 20 25 30 35 40
0

50

100

150

200

fi
ri

n
g

ra
te

[H
z]

Input

a

0 5 10 15 20 25 30 35 40
100

200

300

fi
ri

n
g

ra
te

[H
z]

Interneuron hidden

Pyramidal top

b

0 5 10 15 20 25 30 35 40
evaluation windows

100

120

140

fi
ri

n
g

ra
te

[H
z] Error neuron top

Error neuron hidden

Baseline top

Baseline hidden

c

0 50 100 150 200 250 300
120

140

160

fi
ri

n
g

ra
te

[H
z]

Target Output

d

0 50 100 150 200 250 300
evaluation windows

80

90

100

fi
ri

n
g

ra
te

[H
z]

Error neuron top

Error neuron hidden

Baseline top

Baseline hidden

f
10 20 30

140

160

180

fi
ri

n
g

ra
te

[H
z]

e

150 160 170 250 260 270

Target

Output

Figure 6.14: Emulation of the point neuron microcircuit on the BrainScaleS-2 hardware. This figure
was adapted from the poster corresponding to (von Hünerbein et al., 2022). The parameters for
this experiment can be found in Table B.4. All quantities recorded on the hardware were scaled
to match the biological time domain. Left: Learning of the self-predicting state. a: Input firing
rates into a point neuron microcircuit for learning the self-predicting state. b: Firing rates of
the interneuron and the pyramidal neuron in the upper layer. The interneuron learns to match
the firing rate of the pyramidal neuron, however a perfect match is not achieved due to slightly
noisy firing rates. c: Firing rates of the error neurons during the learning of the self-predicting
state. Since no target is present, the error neuron in the upper layer fires with its baseline
frequency from the start. The rate of the lower error neuron decreases to baseline once the self-
predicting state is reached. Note that the two baselines are slightly different as no two neurons
on the BrainScaleS chip are perfectly identical. Right: Learning of the task. d: Comparison of
the pyramidal firing rate and the target rate while the microcircuit learns to match the provided
target. e: Zoom-in on the data shown in (d) during different stages of training (left: early, center:
middle, right:late). f: Firing rates of the error neurons in the upper and hidden layer during the
learning of the task.

Challenges and drawbacks

In spite of the successful demonstration of the point neuronmicrocircuit’s general function-
ality (Fig. 6.13 and Fig. 6.14) in both simulation and neuromorphic emulation, its applicabil-
ity for larger and more complex tasks is limited for multiple reasons: Due to the mechanism
of determining firing rates via a spike count which is accumulated over a significant time
window (typically around 1 s) software simulations in particular but also hardware emu-
lations take a long time. For every weight update the network is simulated/emulated for
the duration of one window, then the simulation/emulation is interrupted for the calcu-
lation of the weight update. This interruption is necessary as neither the currently used

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 147

simulator PyNN (Davison et al., 2009) nor our current implementation on BrainScaleS-2 is
able to perform the required weight updates at runtime. In particular, for larger networks
in simulation the combination of long simulations and the interruptions of the simulations
for every weight update lead to prohibitively long experiment durations.
The long simulation/emulation durations have the additional knock-on effect of mak-
ing parameter tuning (e.g. tuning of learning rates and weight initializations) very time-
consuming up to the point of rendering fine-tuning unfeasible. This is problematic as all
forms of the microcircuit model are quite sensitive to the parameter configurations espe-
cially the ratios of different learning rates. In addition to that the learning rate ratios are
highly dependent on network size and the specific task, which makes it difficult to transfer
parameters obtained for a smaller network (which can be simulated in reasonable time) to
a larger network with a different task.
While the accelerated emulation speed of the BrainScaleS-2 neuromorphic hardware at least
partially alleviates the effects of long experiment durations, the different forms of noise as
described above provide challenges for the learning and error transport mechanisms. The
microcircuit relies on different neurons matching each other’s activity closely and the ac-
tivities of different neurons cancelling each other out at a shared postsynaptic partner. In
a noise-free simulation this is easily achieved given the correct parameters and synaptic
weights, but on a mixed-signal neuromorphic platform this is much more difficult. Espe-
cially fixed-pattern noise and the quantized and limited weight resolution prevent the exact
matching of neuronal activities. Therefore, the errors transported through the network are
noisy and only approximate the true errors that would lead to an optimal learning of the
task. The easier the task (such as the one shown previously), the less the noisy errors ham-
per learning. However, for a more complex task that requires the network to learn highly
tuned feedforward weights, this effect becomes detrimental.
Finally, as discussed in Appendix A.3.2, the point neuron microcircuit only approximately
implements the error backpropagation mechanism. It might be the case that for more diffi-
cult tasks which require a very precise error signal the approximations made by the point
neuronmicrocircuit are not good enough. While there have been indications for this during
attempts to learn a more difficult task, the effect is hard to pinpoint exactly and has proven
difficult to clearly demonstrate.

6.5.2 Event-based approximation of rates

In this section we outline an alternative idea on how the rate-based dendritic microcircuits
could be realized on a spiking system. The approach is centered around what is called
“spikes with payloads”17 which is a feature of increasing popularity among neuromorphic
platforms currently under development. In contrast to biology on neuromorphic systems
a spike signal is, from a technical perspective, often not a 1 bit signal, but typically carries

17Spikes with payloads are sometimes also referred to as graded spikes.

148 CHAPTER 6. RESULT III

additional information (e.g. the identity of the presynaptic neuron) which is necessary to
route the spike signal to the correct postsynaptic partners.
The infrastructure for routing signals that carry more than a single bit of information there-
fore already exists and it is in principle straightforward to let the signal carry some more
bits of information, which we call the payload18. Generally speaking, this feature is easier to
implement on digital neuromorphic platforms as they offer more flexibility. A popular ex-
ample for this is the second generation of the Loihi chip which is expected to support spikes
with payloads (IntelLabs, 2021). On other platforms like e.g. SpiNNaker spike payloads can
in principle be realized but are not the intended mode of operation and can therefore not
be accessed directly via the high-level user interface19. Even though the discussion about
the inclusion of spike payloads is much more prominent around digital neuromorphic plat-
forms, the event-handling as well as the synapse drivers and synapse circuits on the mixed-
signal BrainScaleS-2 HICANN-X platform could in principle also handle them (Billaudelle,
2022, Chapter 3.2)20.
In the following we will assume that our target neuromorphic platform supports spike pay-
loads and processes the neuron and synapse dynamics using discrete time steps (i.e. we fo-
cus on digital platforms). Since we just outline a general concept here, we will neglect po-
tential hardware effects such as limited precision or fixed-point arithmetic for now. Given
this, there is an obvious way of implementing a rate-based model on such a platform: If
each neuron at every time step emits an event21 which carries the neuron’s current instan-
taneous firing rate as payload, we achieve the same setup as in a simulation with discrete
time steps on conventional hardware. This is, however, not optimal, as the communication
architectures of spiking neuromorphic chips are optimized for temporally sparse communi-
cation. By letting each neuron spike at each time step we would most likely hit bandwidth
restrictions and destroy potential efficiency gains. The next two sections will discuss two
potential ideas on how this can be alleviated by sparsifying the events produced by each
neuron in time.

Events at regularly spaced time intervals

In the previously described scenario every neuron sends out events with an inter-event
time interval of∆t = dt, where dt is the time step of the simulation. The amount of events
can be reduced by increasing the time interval ∆t between events for every neuron. The

18Note that while there is some biological evidence for spikes carrying more than one bit of information (e.g. bursts or
dendritic spikes), this feature is mainly motivated by the technological possibility rather than by the biological example.

19Personal communication with Oliver Rhodes, September 2019.
20Note that even though parts of the infrastructure could handle spike payloads, it is not the intended use of the chip

and e.g. the neuron circuits or the high-level user interface are not designed for it.
21From now on we will call a spike with payload an event.

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 149

a

0.0

0.2

0.4

0.6

u
o
u
t

baseline ∆t = 1 ms ∆t = 3.5 ms

b

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

u
h
id

0.0

0.2

0.4

0.6

r o
u

t

baseline ∆t = 1 ms ∆t = 3.5 ms

c

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

r h
id

Phid

Pout

rin

Figure 6.15: Dynamics of pyramidal neurons with regular event-based communication. a: Chain
of two pyramidal neurons. The lower pyramidal neuron receives the input rin from a source
outputting an instantaneous firing rate (this source is not simulated in the event-based fash-
ion). The points in time when rin changes are marked with vertical gray lines in (b) and (c).
b: Somatic voltages of the hidden (bottom) and output (top) pyramidal neuron for different ∆t
(orange and green) used to produce the pyramidal output events. Additionally, the result for a
normal rate-based simulation is shown as baseline (blue). The lower pyramidal neuron receives
only input from the source which does not use the event-based scheme, therefore the dynamics
for all settings of ∆t are the same. The upper pyramidal neuron receives input from the lower
pyramidal neuron which produces its output in event-based fashion, therefore the pyramidal
voltages differ depending on∆t. c: Output events of the hidden (bottom) and output (top) pyra-
midal neuron indicated at the time points of their emission (orange and green) in comparison
with the rate-based baseline simulation. The simulation parameters for this figure can be found
in Table B.5.

presynaptic instantaneous firing rate received by the postsynaptic neuron then is

rpre(t) =

{
pevent if event arrives in this time step
plast event if no event arrives

(6.89)

where p is the payload of an arriving event. Colloquially speaking, if no event arrives with
new information, the neuron “assumes that nothing has changed” compared to the last time
step and uses the old information for the calculation of its dynamics.
Figure 6.15 illustrates the resulting dynamics for a simple chain of pyramidal neurons using
this regular event-based output scheme. We see that the smaller ∆t is chosen, the closer
the resulting voltages and output rates match the baseline of a rate-based simulation. This
is intuitive because, as discussed before, a rate-based simulation with discrete time steps
dt is the same as an event-based simulation with ∆t = dt. We have purposefully chosen
one ∆t = 3.5ms such that the presentation time of the input is not a multiple of ∆t, to

150 CHAPTER 6. RESULT III

a

0.0

0.2

0.4

0.6

u
o
u
t

baseline ∆u = 0.02 ∆u = 0.1

b

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

u
h
id

0.0

0.2

0.4

0.6

r o
u

t

baseline ∆u = 0.02 ∆u = 0.1

c

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

r h
id

Phid

Pout

rin

Figure 6.16: Dynamics of pyramidal neurons with voltage triggered event-based communication.
a: Same experimental setup as in Fig. 6.15. The only difference is the event trigger mechanism
of the pyramidal neurons. b: Somatic voltage of the hidden (bottom) and output (top) pyramidal
neuron for different ∆u (orange and green) used to produce the pyramidal output events. The
rate-based simulation is shown as baseline (blue). c: Output events of the hidden (bottom) and
output (top) pyramidal neuron indicated at the time points of their emission (orange and green)
in comparisonwith the rate-based baseline simulation. The simulation parameters for this figure
can be found in Table B.5.

illustrate that in this case we induce a delay in the information propagation: As the events
are rather sparse in time, information about a change in input takes a noticeable amount
of time to reach the top pyramidal neuron in Fig. 6.15 c.
While this method of sending events at regular time intervals decreases the overall num-
ber of events throughout a simulation, it can still cause bandwidth issues. If, in the most
straightforward implementation,∆t is equal for all neurons in a network, they will all emit
their events in the same time step. This means that there is a peak load on the event routing
mechanism for this time step while there is no load at all during the others. We can cir-
cumvent this by varying∆t for the neurons or by keeping the same∆t for all neurons but
adding varying timing offsets. The latter is preferable, as it allows us to choose one specific
∆t which offers the right trade-off between event sparsity and faithful reproduction of the
original rate-based dynamics.

Events triggered by voltage changes

Alternatively, the sending of an output event can also be triggered by a large enough change
in the neuron’s voltage. In this case an output event carrying the instantaneous rate as
payload is sent if the difference between the current voltage and the voltage at the time of
the last event is large enough |u(t)− u(tlast event)| ≥ ∆u.

6.5. EVENT-BASED COMMUNICATION IN DENDRITIC MICROCIRCUITS 151

Figure 6.16 shows a repetition of the experiment in Fig. 6.15 with this voltage-based event
trigger mechanism. We see that the smaller the threshold ∆u, the closer the dynamics
match the rate-based baseline. In contrast to Fig. 6.15 c, where the events are separated
by equal distances in time (i.e. on the x-axis), here the output events are approximately
equidistant in the output rate (i.e. on the y-axis)22. Therefore, this mechanism automatically
alleviates the synchronization of events that occurs in the regular event-based scenario.
As a neuron only produces an output event if its voltage changes enough, the threshold for
triggering the output must be chosen carefully. Otherwise, a small change in input, which
leads only to a small change in the membrane voltage, might not trigger an output event
and therefore this information will not travel further in the network. We expect the choice
of an appropriate∆u to depend on parameters such as the input encoding of the task or the
network size. To alleviate this effect, hybrids of the two event trigger mechanisms might
also be feasible. The voltage-triggered mechanism with a high ∆u could for example be
accompanied by a regular trigger with a rather high∆t. This would prevent small changes
from not being transmitted at all, while also allowing to quickly transmit the, presumably
more important, larger changes.

Inclusion of the LE mechanism

Both methods discussed above have advantages and disadvantages and depending on the
specific neuromorphic platform either might be more suitable. However, if we include the
LE mechanism into the simulated dynamics, a clear favorite emerges. Figure 6.17 repeats
the experiments shown in Figs. 6.15 and 6.16 with the LEmechanism included in the neuron
dynamics. We see that, while the outcome for the regularly timed events is similar to before,
the number of events per input sample for the voltage triggered mechanism is reduced to
one23. This is due to the fact that the prospective pyramidal voltages react instantaneously
to a change in the input and since there is only one input change per input sample, there
is also only one pyramidal voltage change causing an event. This is clearly advantageous
since it on the one hand greatly reduces the overall number of events necessary and on
the other hand also ensures rapid information propagation due to the instantaneity. How-
ever, it also reintroduces a synchronization within the network which, as for the regularly
timed events, can lead to high load peaks on the communication network which can cause
potential bandwidth issues24.
Note, that these results are specific to our chosen form of inputs, step-wise constant rin.
While this setup is common for e.g. static image classification, the advantage of the voltage
triggered mechanism is less obvious for continuously changing inputs.

22Note that this is only the case for ReLU or linear activation functions.
23Due to the inclusion of the LE mechanism, the output rate of the neuron no longer is a function of u but of ŭ. We

have therefore also defined the trigger of the output events on the prospective voltage |ŭ(t)− ŭ(tlast event)| ≥ ∆u.
24Note here that the effect is slightly less pronounced as for the regular mechanism. This is due to the fact that for the

regular mechanism all neurons with the same ∆t spike at the same time. Here however, only neurons in the same layer
can spike simultaneously, since even with LE information needs one time step per layer to travel.

152 CHAPTER 6. RESULT III

0.0

0.2

0.4

0.6

r o
u
t

baseline ∆t = 1 ms ∆t = 3.5 ms

a

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

r h
id

0.0

0.2

0.4

0.6

r o
u
t

baseline ∆u = 0.02 ∆u = 0.1

b

0 10 20 30 40
time [ms]

0.0

0.2

0.4

0.6

r h
id

Figure 6.17: Dynamics of event-based pyramidal neuron with LE. a: Same setup as in regular event-
based setup of Fig. 6.15 but with the LE mechanism in the pyramidal neurons. Bottom: Input
rate into the lower pyramidal neuron. Middle and Top: Output events of the pyramidal neuron
indicated at the time points of their emission (orange and green) in comparison with the rate-
based baseline simulation. b: Same setup as in voltage-triggered event-based setup of Fig. 6.16
but with the LE mechanism in the pyramidal neurons. As the LE mechanism causes instanta-
neously changing (prospective) voltages, they only change once per input change and therefore
only one event per input is necessary. The simulation parameters for this figure can be found
in Table B.5.

Chapter 7

Discussion and Outlook

The research presented in this thesis is located at the intersection between the fields of deep
learning and neuromorphic computing. While deep learning has produced revolutionary
results in many areas of machine intelligence (Krizhevsky et al., 2012a; Brown et al., 2020;
OpenAI, 2022a), the field faces increasing challenges due to its ever-growing demand for
computational power (Schwartz et al., 2020; Thompson et al., 2020) and the corresponding
rise in energy consumption. In contrast to the conventional computing architectures that
currently back most deep learning models, the field of neuromorphic engineering aims at
developing novel computing hardware that is more closely inspired by the mechanisms in
the brain (Schuman et al., 2017). By mimicking functional principles of the brain, neuro-
morphic systems hope to inherit the energy efficiency of their biological archetype.
The work presented in this thesis is motivated by the prospect of combining the powerful
training capabilities for neural networks developed in the field of deep learning with the
efficient computing offered by neuromorphic architectures and implementations. By lever-
aging their inherent parallelism as well as the efficiency of sparse spiking communication,
this approach promises a more energy-efficient computing strategy for neural networks
than classical von Neumann architectures (Roy et al., 2019).
However, although deep learning and neuromorphic computing are, at their roots, both
inspired by the brain, the research fields have evolved largely independently of each other
and are not directly compatible. In particular, the error backpropagation algorithm, the
central algorithm for training artificial neural networks (ANNs), can in its original form not
operate on spiking neural networks (SNNs) like they are found on neuromorphic devices.
Additionally, it is at odds with several biological principles (see Section 2.4.3) that are, to a
varying degree, also reflected in neuromorphic architectures.
To tackle this incompatibility of error backpropagation with neuronal and neuromorphic
systems, this thesis explored two different approaches: On the one hand we formulated a
novel method of performing error backpropagation on the spike times of leaky integrate-
and-fire (LIF) neurons (Chapter 5), one of the most commonly used neuron models on neu-
romorphic systems. On the other hand we started out from a biologically plausible approx-

153

154 CHAPTER 7. DISCUSSION AND OUTLOOK

imation of error backpropagation and modified it to make it more amenable to a neuromor-
phic implementation (Chapter 6). During the development and neuromorphic deployment
of the above-mentioned algorithms we observed a lack of suitable datasets for testing and
prototyping scenarios and developed the Yin-Yang dataset to fill this gap (Chapter 4).
In the following, we will discuss the results of each chapter separatly. In Section 7.1 we
start with the Yin-Yang dataset, as it was a prerequisite for parts of the results presented
in the following sections. It is followed in Sections 7.2 and 7.3 by the discussions of our
method for error backpropagation of first spike times of LIF neurons and our adaptations
of the dendritic microcircuits for neuromorphic implementation. Both of which include
outlined ideas for project extensions in Section 7.2.1 and Section 7.3.1 respectively. We have
explored both a bottom-up or “device-up” (Chapter 5) and a top-down/“algorithm-down”
approach (Chapter 6) for implementing error backpropagation on neuromorphic systems
in this thesis. In Section 7.4 we conclude by contrasting the outcome of the two approaches
and discussing their advantages and drawbacks.

7.1 The Yin-Yang dataset

The Yin-Yang dataset introduced in Chapter 4 was developed for algorithmic and neuro-
morphic prototyping. To be suited for these scenarios, we require a dataset to be difficult
or sensitive enough, such that it is able to expose potential flaws of an algorithmic or im-
plementation. At the same time, it also must be deployable on neuromorphic platforms
in their prototype stages, which often feature relatively few neurons and might have lim-
ited input-output interfaces. Finally, simulations of networks trained on the dataset must
complete within reasonable times to be amenable for iterative algorithmic development or
debugging.
The Yin-Yang dataset fulfills the difficulty requirements, as shown in Section 4.3, while
requiring only a network of between 20 and 30 neurons to be solved and having only 4
input dimensions. This is small enough to be deployable on a typical neuromorphic proto-
type (Moradi and Indiveri, 2013; Schemmel et al., 2017; Frenkel et al., 2018; Nair and Indiveri,
2019; Billaudelle et al., 2020). Being tractable also for small networks and by comprising only
few input samples — an order of magnitude less than the popular MNIST dataset (LeCun
et al., 1998) — comparatively short simulation times.
The most important feature of the Yin-Yang dataset however, is the fact that it allows for
a better performance evaluation of competing models or neuromorphic implementations.
In contrast to the XOR problem and the classification of MNIST, the two tasks most com-
monly used in testing and prototyping, allows to more clearly differentiate and compare the
performance of competing models: XOR, as there are only four different inputs, only has a
small discrete set of resulting test accuracies. The MNIST dataset has a continuous range
of potential output accuracies, but even a linear classifier, arguably the most basic model
available, can achieve a test accuracy of around 92% (LeCun et al., 1998). Therefore, the

7.2. ERROR BACKPROPAGATION WITH FIRST-SPIKE TIMES OF LIF NEURONS 155

range over which models of different quality are distributed is small, hampering a mean-
ingful comparison. This issue is exemplified by our results in Section 6.4, where we present
results on MNIST and the Yin-Yang dataset in a direct comparison. While both show the
same general trends, the differences between the compared models are more clearly visible
on the Yin-Yang dataset. This is due to the fact that the results of the different models are
spread over a wider accuracy range. But not only do the MNIST results show the desired
effects less clearly, they additionally took a factor of 10 times longer to produce.
Finally, for the study of error backpropagation, the Yin-Yang dataset allows us to clearly
distinguish a network that receives proper error signals in the lower layers and a network
that does not. This is, again, in contrasted by classification of the MNIST dataset, where the
typically used network sizes are large enough that, even with no error signals propagating
back to the lower layers, a high accuracy can be reached due to the kernel trick (Scholkopf,
2001). The Yin-Yang dataset avoids this, as it can be solved with small enough networks so
that the kernel trick is less effective.
Since its publication, the Yin-Yang dataset has already found significant usage: Results from
the dataset are directly featured in the following publications Göltz et al. (2021); Wunder-
lich and Pehle (2021); Max et al. (2022); Müller et al. (2022); Lee et al. (2022). Additionally,
the dataset was used during the development phase of the following projects but was not
featured as final result in the paper Haider et al. (2021); Cramer et al. (2022)1. Finally, the
relatively fast training and evaluation times make the dataset suitable for demonstrations
and tutorials such as the one included in the BrainScaleS-2 demo set (Electronic Vision(s),
2022, Tutorial 7).
So far the Yin-Yang dataset is not widely know, and we have accompanied results on it with
results on MNIST in our publications (Göltz et al., 2021; Max et al., 2022). Since however the
Yin-Yang dataset has clear advantages compared to the commonly used benchmark tasks,
we expect it to establish itself in due time as its own widely-known and accepted reference
in the field of neuromorphics.

7.2 Error backpropagation with first-spike times of LIF neurons

Developing a form of error backpropagation that is compatible with spiking neurons has
been an active field of research in recent years (Mostafa, 2017; Neftci et al., 2019). In Chap-
ter 5 we presented an algorithm for the exact optimization of first-spike times of LIF neu-
rons with a time constant ratio of either τm = τs or τm = 2τs. The resulting update rules for
the synaptic weights can be applied in a variety of scenarios, including different network
architectures or information coding schemes (see Section 5.2). When applied to a layered
feedforward network topology, the plasticity rules result in an exact form of spike-based
error backpropagation. We chose a time-to-first-spike (TTFS) encoding for both the input

1Even though Cramer et al. (2022) does not include the results obtained with the Yin-Yang dataset, the PhD theses of
both main authors (Billaudelle (2022, Chapter 6.6), Cramer (2021, Chapter 5.3)) do.

156 CHAPTER 7. DISCUSSION AND OUTLOOK

and output of the network. TTFS is an appealing coding scheme because of its inherent
speed and temporal sparseness. In the case of static image classification a sample can be
classified with at most one spike per neuron in the network and typically within 1 to 2 τm
after the stimulus onset.
While it was clear that this efficient and fast coding scheme would pair well with the accel-
erated mixed-signal neuromorphic platform BrainScaleS-2, at first glance the requirement
of precise time constant ratios appeared at odds with the analog nature of the neuron and
synapse circuits (Schemmel et al., 2022). However, simulation studies on the robustness
to fixed-pattern noise showed that, while the derivations in theory required precise time
constants, in practice the requirements are significantly softer. This is mainly due to our ap-
proach of basing the derivative calculation on the actual output of a noisy network instead
of the theoretical spike times (see Section 5.2.3). We note here that our robustness stud-
ies benefitted greatly from the comparatively fast training times on the Yin-Yang dataset
and would not have been practically feasible to the same extent if for example the MNIST
dataset was the only dataset available.
The suitability of our algorithm to neuromorphic deployment was not only investigated
using the robustness studies in simulations, but also clearly confirmed by our implemen-
tation on the BrainScaleS-2 chip. The combination of an accelerated mixed-signal hard-
ware platform with our TTFS coding scheme resulted in a competitive classification rate
of 20 kHz and an energy consumption of 8.4 µJ per sample. This compares favorably with
other neuromorphic implementations as shown in Table 5.1 and Supplementary Informa-
tion, Table SI.F3. Keeping in mind that the BrainScaleS-2 hardware platform is a general
research platform with a large variety of features, we would expect that a platform specif-
ically tailored to our approach would further increase the energy efficiency and speed.

7.2.1 Future work

There are two main areas where the work presented by Göltz et al. (2021) can be extended.
On the one hand the in-the-loop training approach could be replaced by an on-chip training
and on the other hand the algorithm could be extended to not only optimize the first spike
of a neuron but also the following ones.

From in-the-loop training to on-chip plasticity

So far the training of our network on the BrainScaleS-2 chip is performed in an in-the-
loop fashion: the synaptic weight updates are calculated off-chip on a host computer. The
calculations are based on the spike times that were recorded from the chip and sent to the
host. Once the updates are calculated, the neural network on the chip is reconfigured with
the updated synapticweights and the next inputs are sent to the chip. Thismethod of in-the-
loop plasticity has the advantage of imposing very few requirements on the neuromorphic
chip. The only infrastructure required (besides the capability of accommodating networks

7.2. ERROR BACKPROPAGATION WITH FIRST-SPIKE TIMES OF LIF NEURONS 157

of LIF neurons with configurable time constants) is the possibility to record all spiking
activity and send it off-chip to a host computer.
The main disadvantage of the in-the-loop approach is its speed. Alternating between cal-
culations performed on the host and the hardware runs introduces a significant overhead
and slows the training process. Learning on chip and using the host computer only to pro-
vide the input samples but not for plasticity, cuts out the communication overhead and is
expected to significantly speed up training.
On-chip plasticity, especially on mixed-signal hardware, is however more difficult to real-
ize than in-the-loop training. Different neuromorphic platforms provide varying levels of
support for on-chip plasticity, but generally speaking at least the following infrastructure
needs to be available: The weight updates need to be calculated by circuitry, either analog
or digital, that is able to perform the calculations prescribed by the plasticity rule. Further-
more, all quantities that are used in the plasticity rule need to be available to those circuits
at the point in time when the update is calculated. This means that there needs to be cir-
cuitry on the chip to record and potentially buffer all required quantities. Also, since the
location where the quantities are measured on chip can be physically distant from where
the plasticity is calculated, there needs to be a mechanism in place to transport information
about the measured quantities to the appropriate location. Finally, the required quantities
need to be in an appropriate format to be processed by the plasticity circuit: a digital cir-
cuit needs the quantities it operates on to be digital, while an analog circuit would require
analog signals.
The capabilities of implementing on-chip plasticity and the available flexibility therein vary
widely across different neuromorphic platforms. Since we have already shown that the in-
the-loop implementation of our algorithm is possible on BrainScaleS-2, we propose this
system for an attempt at implementing on-chip plasticity. For all other neuromorphic sys-
tems we highly recommend to establish the in-the-loop version first, before taking the step
to the on-chip approach.
Commonly, the plasticity circuitry is part of the synaptic circuits. On BrainScaleS-2 how-
ever, theweight updates are calculated by a general purposemicroprocessor on the chip, the
plasticity processing unit (PPU). In principle, the plasticity rules that the PPU applies are
freely programmable. However, the weight updates for our algorithm (see Section 5.4), us-
ing for example the LambertW function and exponential functions, are too mathematically
complex to compute with feasible turn-around times. In order to make our algorithm com-
patible with themathematical capabilities of the PPUwe have already explored the possibil-
ity of replacing the exact derivatives out of which the weight updates are composed with
simplified approximations. Preliminary experiments in Supplementary Information SI.D
of our manuscript indicate that while a highly simplified, PPU compatible, learning rule
comes at some performance cost, it is still able to successfully train a network on the Yin-
Yang dataset. Supplementary Information SI.D explores one specific simplification of the
learning rule. There are however different potential approximations that can be chosen.

158 CHAPTER 7. DISCUSSION AND OUTLOOK

Before deploying any of the resulting learning rules on the PPU, a more thorough investi-
gation of the trade-off between learning rule simplicity and accuracy penalty is required.
In addition to a potential performance loss due to the simplification of the learning rule,
we expect some impact on performance caused by the fixed-point arithmetic employed on
the PPU. How severely this reduced precision impacts performance is however impossible
to predict without further experimental evidence.
For in-the-loop plasticity it is beneficial that our learning rules only depend on the spike
times of the neurons because the spikes are typically the quantity for which every hard-
ware has infrastructure to record them and send them off-chip. This is also true for the
BrainScaleS-2 system, unfortunately however, these recordings of the spike times are not
accessible by the PPU. There are two ways to circumvent this problem:
As shown in Supplementary Information SI.D the simplified learning rule does not depend
on the absolute spike times but only on the difference between the pre- and postsynaptic
spike time. The exponential of this difference is a measurable quantity on BrainScaleS-2
and is available to the PPU2. The circuits measuring the difference are part of the analog
synaptic circuits and are called correlation sensors. It might be possible to use the mea-
surements of the correlation sensors as a proxy for the time difference between the pre-
and postsynaptic spike time. Since the sensor circuits are analog, they are however subject
to significant fixed-pattern noise (Wunderlich et al., 2019, Figure 2). Whether the impact of
the fixed-pattern noise and the exponential transformation on the spike time differences is
detrimental to the learning performance needs to be investigated.
Alternatively, we suggest to extend the current chip design by additional digital registers
available to the PPU where the spike times can be recorded. This requires changes to the
circuitry on chip and therefore the tapeout of a new chip version. However, it could already
be preliminarily tested in the current chip generation. The new spike time registers can be
implemented as part of the external PPU memory on the field-programmable gate array
(FPGA) that handles the chip’s communication with the host. While this prototype design
is expected to be significantly slower than the actual implementation, it does not require any
changes to the current chip design and allows to test the algorithm before committing to a
new chip version. We expect this second approach to have a higher chance of successfully
enabling on-chip learning, as the digital nature of this measurement method both avoids
the fixed-pattern noise and the exponential transformation of the correlation sensors.

Recurrent networks and multiple spikes per neuron

While first-spike time codings can be advantageous for fast information processing, there
are situations that require operating on longer time scales. For example, in a speech classifi-
cation task such as the Heidelberg Spiking Digit dataset (Cramer et al., 2020c) each sample
has a duration of several hundred milliseconds. This is a far longer timescale than the

2Its intended use is for correlation-based learning rules like for example spike-timing-dependent plasticity (STDP)
implementations (Billaudelle, 2022, Chapter 3).

7.2. ERROR BACKPROPAGATION WITH FIRST-SPIKE TIMES OF LIF NEURONS 159

typical time-to-classification in our setup (around 1 − 2τm). Typically, these speech clas-
sification or similar temporal tasks require some sort of memory, operating on time scales
significantly longer than the membrane time constants of the neurons in the classifying
network.
In order to solve temporal tasks such as the Heidelberg Spiking Digit dataset, we need
to extend our training algorithm to be able to train recurrent networks. The recurrency
in the network automatically introduces, through the loops in the connectivity structure, a
second, longer timescale into the network. This recurrency however, only becomes relevant
if more than one spike per neuron is allowed. We therefore need to be able to not only
calculate the time of the first spike of a neuron, given all its input spike times and synaptic
weights, but also the times of all subsequent spikes.
Assuming we already know the time of the first output spike T1, we can, relative to that,
calculate the timing of the second spike. For this we define the point in time when the
refractory period after the first spike ends t = T1 + τref as t′ = 0. From this new starting
point the second output spike time T2 can be calculated as was done for T1 if the differing
initial conditions

u(t′ = 0) = Vreset (7.1)
Isyn(t

′ = 0) ̸= 0 (7.2)

are taken into consideration. The initial value for the synaptic current at t′ = 0 can be
calculated from the sum of all synaptic currents that are induced by spikes arriving during
the neuron’s refractory period and the residual synaptic current that remains from the input
that triggered the first spike. In practice, it might be possible, depending on the length of
the refractory period, to neglect the residual synaptic current after the refractory period.
With these new initial conditions, all output spike times of the neuron can be calculated
iteratively. While the resulting equations for the output spike time do change slightly, they
are still differentiable and with that the methods for optimizing the synaptic weights via
gradient descent discussed in Chapter 5 should be transferrable.
While the extension to more than the first spike does not entail large changes to the math-
ematical formulation, it does bring significant new challenges for the practical implemen-
tation: First, the software architecture for the training process needs to be adjusted. So far,
it is optimized for a layer-wise calculation of the output spike time. In a first-spike and
layer-wise setting, all input spikes to a neuron over the whole duration of a sample are
known, as they all come from the lower layer, which is calculated before the current layer.
Therefore, the output spike times of the current layer can be directly calculated using the
equations described in Section 5.4. In a recurrent setting this is not the case: an output
spike of the current neuron can, through the recurrent connectivity, cause another input
spike into the current neuron at a later point in time. This prevents the direct calculation of
all output spike times of a neuron. By not calculating the spike times but instead recording

160 CHAPTER 7. DISCUSSION AND OUTLOOK

them either from a neuromorphic emulation or a network simulation we can side-step this
issue.
Secondly, we expect the choice of appropriate time constants for the neurons to be more
difficult. They still have to (approximately) satisfy either the property of τm = τs or τm =
2τs, but the choice of the absolute value is less clear than for the static image classification.
For static images encoded via TTFS coding, it has proven to be beneficial to adjust the
time constants such that the sample duration is around double τm. In a more temporal
task and a recurrent network there is an additional timescale involved and it is not a-priori
clear, and might very well be task-dependent, what the ratios between the timescales of the
task, the recurrency and the neuron dynamics should be. In principle, a multidimensional
parameter sweep could solve this issue, but in practice this is often unfeasible due to the
required amount of compute. Finally, it might even be beneficial to not have the same
parameters for all neurons, but to introduce heterogeneity into the network dynamics to
improve performance (Perez-Nieves et al., 2021).
The extension to multiple spikes per neuron and recurrent network models requires ad-
ditional efforts in all areas of the project, in the mathematical foundations, the software
architecture, the modeling and parametrization and finally the mechanisms for neuromor-
phic deployment. Nevertheless, we expect it to be worthwhile as it opens up the capabilities
of our algorithm to a whole class of formerly unsuited tasks, where we can potentially pro-
vide a fast and efficient solution (Orchard et al., 2015; Amir et al., 2017; Cramer et al., 2020c).

7.3 Towards dendritic microcircuits on neuromorphic hardware

In Chapter 6 we evaluated the dendritic microcircuit model by Sacramento et al. (2018)
based on its practical feasibility and neuromorphic implementability and identified three
areas for improvement:

• The slow, leaky-integrator neuron dynamics cause a delayed neuronal response to a
change in its input. This delay not only slows down information propagation through
a deep network but also, more crucially, hampers learning through the introduction
of artificial, wrong, error signals.

• The dendritic microcircuits rely on the mechanism of feedback alignment (FA) to
avoid the weight transport problem. FA, however, is not well-suited for all network
architectures and its performance can be task-dependent.

• The rate-based communication and plasticity mechanisms prevent a direct implemen-
tation on spiking neuromorphic hardware.

In Section 6.3 and Haider et al. (2021) we introduced the Latent Equilibrium (LE) frame-
work. Through the mechanism of prospective coding, LE offers a solution to the delayed
information propagation and the induced disturbance of learning caused by slow neuronal

7.3. TOWARDS DENDRITIC MICROCIRCUITS ON NEUROMORPHIC HARDWARE 161

dynamics (“relaxation problem”). In this thesis we have mainly focussed on how the LE
mechanism can be incorporated into the dendritic microcircuit. We have seen that for the
inclusion of LE it is only necessary to modify the activation function: Instead of depending
on the normal somatic voltage, the activation function with LE depends on the prospective
somatic voltage. The network architecture, error transport mechanisms and learning rules
remain unchanged. While the required changes to the model of the dendritic microcircuits
are small, their impact on its learning performance is profound: We have illustrated how
the required presentation times for an input sample shrink from a minimum of a hundred
times τeff for the original model to below a single τeff. This results in a shortening of the
required simulation times by two orders of magnitude. The practical impact of this can be
seen when comparing the training of dendritic microcircuits on the MNIST dataset shown
in the original publication of the model (Sacramento et al., 2018) and in Max et al. (2022):
In Sacramento et al. (2018) a highly simplified steady-state approximation of the model was
used, because the full model could not be trained on a large dataset within reasonable simu-
lation times. In contrast to that, the inclusion of the LE mechanism allowed us in Max et al.
(2022) to train on the MNIST dataset while simulating the network with full dynamics, even
despite increased model complexity through the learning of the backward synapses.
While the impact of the LE mechanism on the practical feasibility of the dendritic micro-
circuit model is crucial for the work in this thesis, it is also important to note that LE is
not specifically designed for nor tailored towards this model. It can be applied flexibly to
any network model that includes leaky-integrator neuron dynamics. In particular, it is ex-
pected to be beneficial to a whole array of models targeting biologically plausible error
backpropagation that suffer from the relaxation problem.
Besides the inclusion in already existing network models to improve their performance,
the ideas by Haider et al. (2021) open up several areas for further research: So far for ex-
ample, the time constant for the calculation of the prospective voltage was equal to the
time constant of the neuronal low-pass filter. As the neuronal components that provide
the prospective voltage are, however, most likely not the same ones as those that apply the
low-pass filter, the two time constants do not necessarily have to be the same. If they differ,
we lose the instantaneity of the information propagation, which would be detrimental for
the static image classification tasks shown in Haider et al. (2021). However, for tasks that
operate on temporal signals, this might prove beneficial. By introducing different ratios
between the low-pass and prospective time constants for different neurons, the network
includes neurons that delay an incoming signal, neurons that instantaneously react and
neurons for which the output looks into the future. With that, an input signal into the
network is processed on multiple time-scales simultaneously and the network also auto-
matically stores information about the input signal at different points in time within the
neuron activities. Another wide open area of research is the step from prospective rate-
based neurons to prospective spiking or event-based neurons. While it is clear that some
form of spiking or event-based communication mechanism is required for an efficient de-

162 CHAPTER 7. DISCUSSION AND OUTLOOK

ployment on a neuromorphic platform, whether it is best based on event-based solutions
like in Section 6.5.2 or on e.g. encoding information inter-spike-intervals or bursts remains
an open question.

In Section 6.4 and Max et al. (2022) we have introduced the phaseless alignment learning
(PAL) framework for learning feedback synaptic weights in hierarchical, dynamical net-
work models. Building on and extending the work by Meulemans et al. (2020) and Ernoult
et al. (2022), PAL focuses on biological plausibility and implementability in physical sys-
tems. In particular, it implements the learning of all synaptic weights in the network in
a fully phaseless manner and bases the learning mechanisms solely on quantities locally
available in space and time. PAL leverages the noise found in bio-physical systems and
uses the correlations between the noise on different signals as an additional carrier of infor-
mation. With that, the information carried by the signals travelling through the network
can be used for the learning of the feedforward weights, while the correlations between
the noise on top of the signals provides the information necessary for the learning of the
feedback weights. By disentangling the two information carriers using simple low- and
highpass filters, which are implementable by biological components, both noise and signal
can be present in the network at the same time and can be leveraged for the simultaneous
learning of all synaptic weights.

The presented mechanism and theoretical derivations are accompanied by their application
to the dendritic microcircuit. The performed experiments demonstrate the ability of PAL to
improve a networkmodel’s performance compared towhen the simplemethod of FA is used
for the avoidance of the weight transport problem. The experiments also directly showcase
the value of our previous work in Kriener et al. (2022) by using the Yin-Yang dataset to
more clearly demonstrate the advantages of PAL compared to FA in comparison to MNIST
and the work in Haider et al. (2021) by allowing us to train comparatively large dendritic
microcircuit networks with full dynamics. The results with dendritic microcircuit networks
are accompanied by an additional experiment demonstrating PAL’s ability to operate on
multiple hidden layers. For this purpose dendritic microcircuits are unsuitable due to the
reasons discussed in Appendix A.2.3, instead a similar network setup as in Haider et al.
(2021, Figure 2) was used.

While we demonstrated PAL’s applicability to biologically plausible network models us-
ing the dendritic microcircuits, the PAL framework is, similarly to LE, not specific to one
network architecture. We expect it to be applicable and beneficial to many other network
models that so far employ FA as a solution to the weight transport problem. Furthermore,
also similarly to LE, one of the biggest open questions for further research on PAL is how
the mechanism can be realized in a spiking or event-based setting. This would not only
address the current limitation to rate-based models, but also open up the possibility of a
neuromorphic realization.

7.3. TOWARDS DENDRITIC MICROCIRCUITS ON NEUROMORPHIC HARDWARE 163

Finally, in Section 6.5 we addressed the issue of a rate-based dendritic microcircuit not being
directly implementable on a spiking neuromorphic platform. We described two potential
approaches:
In Section 6.5.1 we developed an alternative, LIF-neuron-based network architecture that
mimics the functional principles of the dendritic microcircuits. For this we separated the
compartments of the multi-compartment neurons into multiple LIF point neurons. The
plasticitymechanisms remained rate-based andwe calculated the firing rates from the spike
counts of the LIF neurons. We could show that this spiking point neuron setup approxi-
mated the functional principles of the original dendritic microcircuit model and with that
implemented an approximation of the error backpropagation algorithm.
We were able to demonstrate the functionality of learning the self-predicting state and a
small proof-of-concept task both in simulation and on the BrainScaleS-2 hardware. Despite
the successful small-scale demonstration, we observed significant problems in scaling to
larger networks and more difficult tasks. On the one hand our approach of calculating
firing rates by accumulating spike counts resulted in prohibitively long simulation times.
Particularly in simulation this issue becomes more severe with increasing network size. On
the other hand, we also observed that the error transport mechanism, i.e. reconstructing an
error signal from the difference of the activities of interneurons and pyramidal neurons in
the layer above, is error-prone and susceptible to disturbance by noise and circuit mismatch.
This results in a noisy and potentially unstable error transportation which severely impacts
learning performance. We will highlight a potential solution for this in Section 7.3.1.
The observed shortcomings of our LIF-neuron-based approximation for a spiking imple-
mentation of dendritic microcircuits lead us to consider an alternative approach: The ideas
presented in Section 6.5.2 are based on spikeswith payload, a feature that has seen increased
popularity on newer neuromorphic systems (IntelLabs, 2021). It allows for a spike signal to
carry more than a single bit of information. We can use this to transport information about
the firing rates of neurons between pre- and post-synaptic partners. With this, we can have
an intermediate solution between a fully rate-based model and a spiking one. As the ideas
outlined in Section 6.5.2 are preliminary and have not been extensively tested, more work
on this topic, in particular on the areas outlined in the following section, is required.

7.3.1 Future work

For a successful and scalable implementation of a dendritic microcircuit network on a neu-
romorphic platform two main challenges remain: Firstly, since our first approach to a spik-
ing implemenation with LIF neuron in Section 6.5.1 proved difficult to scale to larger tasks,
the alternative ideas suggested in Section 6.5.2 should be investigated in more detail. Sec-
ondly, one of the other causes of the scaling difficulties, the error transport mechanism,
which is not robust to disruption by noise, should be addressed.

164 CHAPTER 7. DISCUSSION AND OUTLOOK

Event-based communication as an intermediate between spikes and rates

The ideas on event-based transmission of neuron activations (firing rates) sketched in Sec-
tion 6.5.2 are just a first step in the exploration of the potential of spikes with payloads.
While we have so far illustrated the mechanistic principles, a more thorough investigation
of their practical feasibility is necessary. Here, we will highlight three crucial areas that
have not been covered so far.
Firstly, not only firing rate transmission but also plasticity has to be adressed: In the most
basic form of event-based firing rate communication, where every neuron sends an event
at every time step, we expect neuromorphic implementations to struggle with bandwidth
restrictions and communication bottlenecks3. It is therefore beneficial to enforce a sparsity
in time for the events. Similarly, the calculation of a weight update for every synapse at
every time step is expected to be difficult to handle on hardware and might require a reduc-
tion in emulation speed. An event-based form of the plasticity mechanisms, where updates
are triggered by either pre- or postsynaptic events, would address this issue.
Secondly, the simulations in Section 6.5.2 cover only a highly simplified network struc-
ture. The mechanisms need to be tested in a setting where multiple inputs with different
event timings connect to one neuron. Additionally, the potential impacts of the recurrent
connectivity in the microcircuit architecture on the event rates as well as the precision of
information propagation should be investigated. Also, it should be evaluated whether there
is a difference in learning performance between the original, rate-based, microcircuit and
the microcircuit with event-based communication and plasticity. If there is a performance
drop caused by the event-based implementation, its dependence on the parameter choices
for the event-based mechanism should be investigated.
Finally, as a last step before the deployment on a neuromorphic platform, the impact of
specific hardware restrictions such as fixed-precision integer arithmetics, bandwidth and
connectivity limitations or restrictions on the available plasticity mechanisms need to be
investigated. As the different hardware platforms vary significantly in their specifications,
this final step is specific to the chosen platform. Among the currently available hardware
platforms we expect the Loihi 2 chip to be the one with the highest chance for a successful
implementation, as it promises native support for spikes with payloads as well as flexible
neuron models and plasticity rules (IntelLabs, 2021).

Error transport mechanisms

The dendritic microcircuit model does not directly transport error signals between network
layers. Instead, the errors are constructed in each layer through differences in activities
of pyramidal and interneurons. In theory, this is an elegant way of avoiding the issues
that a direct transport of error signals entails, for example the necessity of communicating

3Note that this setup would be a misuse of the event-based neuromorphic infrastructure which is optimized for tem-
porally sparse communication.

7.3. TOWARDS DENDRITIC MICROCIRCUITS ON NEUROMORPHIC HARDWARE 165

positive and negative valued signals via a strictly positive firing rate. In practice, we have
however found it to be highly sensitive to imperfections in the network setup, e.g. the self-
predicting state (see Appendix A.2.3) and hardware effects such as fixed-pattern noise and
quantized weights (see Section 6.5.1):
Learning is driven by the error signals that are constructed in the apical dendrites from the
differences in activities between pyramidal and interneurons. Both neuron types receive
the same input, but the pyramidal neurons are additionally nudged towards the desired
behavior of the network, while the interneurons do not receive the nudging signal. A dif-
ference between the two signals therefore reconstructs the nudging, i.e. the error signal. In
a setting where the network already solves the task correctly and therefore no error signal
is present, the activities of pyramidal and interneurons should match exactly and therefore
all signals arriving at the apical compartments should cancel out to zero. In practice this
is however not the case for multiple reasons. Even in an ideal, noise free, simulation the
assumption that pyramidal and interneurons produce the exact same output in absence of
nudging is flawed: While both receive the same input firing rates, as they are connected
to the same presynaptic partners, the pyramidal neurons receive their input via synapses
with the weightsW PP while the synapses of the interneurons have the weightW IP. As the
synaptic weightsW PP constantly evolve during learning, the synapses of the interneurons
never exactly match them. This mismatch always introduces an additional, wrong, error
signal that disturbs the learning of the task. How severely these wrong errors disrupt learn-
ing depends on the relative magnitudes of the actual error signals and the wrong ones. As
we have seen in Appendix A.2.3, the magnitude of the actual error signals, decreases with
increasing distance to the top layer due to the nudging mechanism. Therefore, in the lower
layers, the wrong errors dominate over the actual error signals and prevent learning.
A neuromorphic implementation, in particular on a mixed-signal platform, compounds this
problem, since, due to fixed-pattern noise, interneurons and pyramidal neurons cannot pro-
duce the exact same output even if they received the exact same inputs via the exact same
weights. Also, since parts of the synaptic circuits are analog as well, they are also influ-
enced by fixed-pattern noise. Therefore, even if the same weight value is configured, the
effective synaptic weight is not the same. A correction mechanism for that is difficult to
realize due to the quantization of the synaptic weight values.
The issues detailed above show that the approach of reconstructing error signals from dif-
ferences in activities induces a significant amount of practical problems and is in particular
not well-suited to an implementation on mixed-signal neuromorphic platforms. We there-
fore suggest to rethink the error transportation mechanism. An alternative approach could
be the direct propagation of error signals via a set of error neurons as for example in Pozzi
et al. (2020). We expect this approach to be less susceptible to distortive effects as it is sig-
nificantly less reliant on fine-tuned interactions between different parts of the network. It
however reintroduces the necessity to communicate a signed error signal. Drawing inspi-
ration from neuroscience we can identify two potential ways how this can be realized: One

166 CHAPTER 7. DISCUSSION AND OUTLOOK

of them is the method employed in Section 6.5.1 where the error neurons have a baseline
activity and a negative error is encoded by activity lower than the baseline (Schultz et al.,
1997). Alternatively, we can use two types of error neurons, one coding for the positive and
the other for the negative errors (Keller and Mrsic-Flogel, 2018; Hertäg and Sprekeler, 2020;
Wilmes et al., 2022). We expect both of these approaches to be more robust than activity
differences, but which one is easier to implement and most stable in practice needs to be
investigated.
A microcircuit model with a replaced error transport mechanism, in its basic form, will
most likely suffer from the same issues introduced by slow neuron dynamics as the den-
dritic microcircuits. As the LE mechanism (Haider et al., 2021) is rather general and in
particular not specifically tailored to the dendritic microcircuits, we expect it to be equally
applicable and beneficial to a revised microcircuit model. The same statement holds for the
PAL algorithm (Max et al., 2022) which should be used to solve the weight transport prob-
lem and align feedback to feedforward weights in the network. Finally, the ideas outlined
in Section 6.5.2 should also be transferrable and put a robust and efficient implementation
of the revised microcircuit model on event-based hardware systems within reach.

7.4 Conclusions

In this thesis we have utilized two different approaches to bring the concepts of deep learn-
ing and error backpropagation onto neuromorphic hardware. The first approach can be
described as bottom-up or “device-up”, as it aims to develop mechanisms for error back-
propagation using the components of a neuromorphic system. The second one represents
a top-down or “algorithm-down” strategy, since it starts from an already existing algorith-
mic model and amends that to be deployable on neuromorphic systems.
Comparing the outcome of the two approaches, at first glance the bottom-up approach ap-
pears to have been more fruitful as it led to a functional neuromorphic implementation
that is competitive both with regards to algorithmic performance and efficiency. The main
reason for this is that a bottom-up approach benefits from the intertwined algorithmic de-
velopment and neuromorphic implementation. Since it is fundamentally based on existing
neuromorphic components, prototypes and subcomponents can be tested early and poten-
tial incompatibilities with the neuromorphic platforms can be remedied already during the
algorithmic design process. An example for this is our simulated test for robustness to fixed
pattern noise: Since we knew our target neuromorphic platform from the beginning, we
could estimate the levels of e.g. fixed-pattern noise and evaluate the algorithm’s robustness.
If these tests had revealed a strong detrimental effect, we would have been able to incorpo-
rate these findings in the algorithmic design process and improve robustness. Additionally,
since bottom-up approaches typically target one specific or a set of similar neuromorphic
systems, they can be specialized to those and optimally exploit the platform’s strengths. In
our case the choice of the fast TTFS coding scheme paired well with the accelerated emula-

7.4. CONCLUSIONS 167

tion of the BrainScaleS-2 system and allowed us to achieve competitively high classification
rates.
However, a bottom-up approach is, by design, focussed on achieving functionality within
the scope of already existing hardware technologies. In contrast to that, the top-down ap-
proach offers more freedom in algorithmic design choices and promotes innovative ideas.
We have seen in this thesis how this can lead to more widely applicable concepts: While
both the Latent Equilibrium mechanism and the Phaseless Algignment Learning algorithm
address weaknesses of the dendritic microcircuits, our solutions remain general and are
applicable to a wide spectrum of other models that suffer from similar limitations. In gen-
eral, a top-down approach settles on an algorithmic solution first and then adapts it to
be deployable on a neuromorphic platform. This however, has the significant disadvan-
tage that neuromorphic restrictions are often only considered at the end of the algorithmic
design process. This is problematic, since it can be very difficult to exactly predict how
the required adaptations and the hardware restrictions impact algorithmic performance.
Our suggested adaptation of the dendritic microcircuits, an LIF-neuron-based variant de-
ployed on the BrainScaleS-2 system, suffered from the error-transport mechanism’s insta-
bility to fixed-pattern noise and a large increase in required training time. These issues,
while predictable to a certain degree, were significantly more pronounced than expected
and rendered the approach practically infeasible. While this example of the microcircuit’s
adaptation to LIF-based hardware illustrates the potential pitfalls of a top-down approach,
our alternative adaptation based on spike signals with payloads also highlights how the
adaptations of an algorithm for deployment can inform innovative ideas for new hardware
design principles.
From these considerations we see that our bottom-up approach resulted in an efficient and
specialized solution for a currently available neuromorphic system, while the larger free-
dom provided by the top-down approach has inspired more general algorithmic ideas as
well as provided insights into the value of new design principles for future hardware gen-
erations.

168 CHAPTER 7. DISCUSSION AND OUTLOOK

Appendices

169

Appendix A

Error Backpropagation in ANNs and
Microcircuits

A.1 Derivations for ANNs

Here we derive the weight update and recursive error calculation for a fully connected
feedforward network. The output activations ynof the neurons in layer n are given as

an = wn,n−1yn−1 + bn (A.1)
yn = φ (an) (A.2)

where φ is a differentiable activation function.
We derive the update of the synaptic weights from layer n− 1 to n via gradient descent on
the loss function L

∆wn,n−1 = −η∇w L. (A.3)

If we consider one element in the weight matrix, the weight connecting neuron i in layer
n− 1 to neuron j in layer n, we can expand the above equation using the chain rule

∆wij
n,n−1 = −η

∂L
∂wij

n,n−1

(A.4)

= −η ∂L
∂yin

∂yin
∂ain

∂ain
∂wij

n,n−1

(A.5)

= −η ∂L
∂yin

φ′ (ain) yjn−1. (A.6)

171

172 APPENDIX A. ERROR BACKPROPAGATION IN ANNS AND MICROCIRCUITS

For the full weight matrix this can be written as

∆wn,n−1 = −η
∂L
∂yn

⊙ φ′ (an)︸ ︷︷ ︸
=en

yT
n−1 (A.7)

= −η en y
T
n−1 (A.8)

with

∂L
∂yn

=

∂L
∂y1n
∂L
∂y2n...

 and φ′ (an) =

φ′ (a1n)
φ′ (a2n)

...

 (A.9)

and ⊙ an element-wise multiplication. Here we have defined the error signal as en =
∂L
∂yn
⊙φ′ (an). Note that this error signal is not consistently defined in the machine learning

literature but the definition chosen here is among the commonly used ones (e.g. Lillicrap
et al. (2020)).

To derive the layerwise recursive definition of the error, we first need a layerwise recursive
form of ∂L

∂yn
. This can be calculated again for a single element i using the chain rule.

∂L
∂yin

=
∑
j

in layer
n+1

∂L
∂yjn+1

∂yjn+1

∂ajn+1

∂ajn+1

∂yin
(A.10)

=
∑
j

in layer
n+1

∂L
∂yjn+1

φ′ (ajn+1

)
wji

n+1,n (A.11)

For the full vector this results in

∂L
∂yn

= wT
n+1,n

(
∂L

∂yn+1

⊙ φ′ (an+1)

)
. (A.12)

With that the recursive definition of the error signal is

en =
∂L
∂yn

⊙ φ′ (an) (A.13)

=

[
wT

n+1,n

(
∂L

∂yn+1

⊙ φ′ (an+1)

)]
⊙ φ′ (an) (A.14)

=
[
wT

n+1,nen+1

]
⊙ φ′ (an) . (A.15)

A.2. ERROR BACKPROPAGATION IN DENDRITIC MICROCIRCUITS 173

A.2 Error backpropagation in dendritic microcircuits

The derivations in this chapter are performed under the following assumptions:

• No feedback alignment (FA) butBPP
ℓ−1,ℓ = W PP, T

ℓ,ℓ−1

• Perfect self-predicting state at all times

• Interneuronsmatch their corresponding above-layer pyramidal neurons perfectly and
the nudging on the interneurons is negligible such that uI

ℓ = vbas,*
ℓ+1

• Only the steady state solutions of the somatic membrane voltages (i.e. the value to
which the somatic membrane voltage settles for constant input) are regarded.

To simplify the notation we consider a network with only a single pyramidal neuron per
layer. Nevertheless, the methods and calculations are transferrable to networks with larger
layers, albeit with more complicated notation.

A.2.1 Hidden layers

A pyramidal neuron in the ℓ-th layer is described by its somatic voltage uP
ℓ and its dendritic

voltages vbasℓ and v
api
ℓ . Given constant inputs (and therefore constant dendritic potentials)

the somatic voltage converges to its steady state of

uP
ℓ =

gbasvbasℓ + gapiv
api
ℓ

gl + gbas + gapi
(A.16)

=
gbas

gl + gbas + gapi
vbasℓ︸ ︷︷ ︸

vbas,∗ℓ

+
gapi

gl + gbas + gapi︸ ︷︷ ︸
λ

v
api
ℓ (A.17)

= vbas,∗ℓ + λv
api
ℓ . (A.18)

The scaled dendritic voltage vbas,∗ℓ represents the state of the soma in a setting where there is
no backward information flow in the network. This corresponds to the purely feedforward
“membrane voltages” aℓ in an ANN.
Using a taylor expansion around vbas,∗ℓ+1 , thereby assuming that the impact of the backward
information flow is weak, we can express the apical voltages in the hidden layers in a re-

174 APPENDIX A. ERROR BACKPROPAGATION IN ANNS AND MICROCIRCUITS

cursive form:

v
api
ℓ = W PP, T

ℓ+1,ℓ

[
φ
(
uP
ℓ+1

)
− φ

(
uI
ℓ

)]
(A.19)

= W PP, T
ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1 + λv

api
ℓ+1

)
− φ

(
vbas,∗ℓ+1

)]
(A.20)

= W PP, T
ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1

)
+ λ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
− φ

(
vbas,∗ℓ+1

)]
(A.21)

= λW PP, T
ℓ+1,ℓ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
(A.22)

For a layer with multiple neurons this results in

v
api
ℓ = λW PP, T

ℓ+1,ℓ

(
v
api
ℓ+1 ⊙ φ′

(
vbas,∗
ℓ+1

))
(A.23)

By again using a taylor expansion we can also rewrite the update rule for the feedforward
weights

Ẇ PP
ℓ,ℓ−1 = η

[
φ
(
uP
ℓ

)
− φ

(
vbas,∗ℓ

)]
φ
(
uP
ℓ−1

)
(A.24)

= η
[
φ
(
vbas,∗ℓ + λv

api
ℓ

)
− φ

(
vbas,∗ℓ

)]
φ
(
uP
ℓ−1

)
(A.25)

= η
[
φ
(
vbas,∗ℓ

)
+ λ v

api
ℓ φ′

(
vbas,∗ℓ

)
− φ

(
vbas,∗ℓ

)]
φ
(
uP
ℓ−1

)
(A.26)

= η λ v
api
ℓ φ′

(
vbas,∗ℓ

)
φ
(
uP
ℓ−1

)
. (A.27)

For a full network this then results in

Ẇ PP
ℓ,ℓ−1 = η λv

api
ℓ ⊙ φ′

(
vbas,∗
ℓ

)
φ
(
uP

ℓ−1

)T
. (A.28)

By comparing Eqn. (A.28) to the weight updates in error backpropagation in Eqn. (A.7)
we see a clear correspondence if it can be shown that vapi

ℓ ∝ ∂L
∂yℓ

. We also find that the
layer-wise recursive forms for the apical voltages in Eqn. (A.23) and for ∂L

∂yℓ
in Eqn. (A.12)

match.

A.2.2 Top layer

Due to the recursivness vapi
ℓ ∝ ∂L

∂yℓ
can be confirmed by showing v

api
N−1 ∝ ∂L

∂yN−1
for the

highest layer that contains apical compartments.

A.2. ERROR BACKPROPAGATION IN DENDRITIC MICROCIRCUITS 175

We start be rewriting the steady state of the somatic voltage in the top layer uP
N

uP
N =

gbas

gl + gbas + gnudge,tgt
vbasN +

gnudge,tgt

gl + gbas + gnudge,tgt
utgt (A.29)

=
gbas

gl + gbas + gnudge,tgt
vbasN + αutgt (A.30)

= (1− α) vbas,∗N + αutgt (A.31)

= vbas,∗N + α
(
utgt − vbas,∗N

)
(A.32)

with α = gnudge,tgt

gl+gbas+gnudge,tgt and vbas,∗N = gbas

gl+gbas v
bas
N which is the value uP

N converges towards in
the absence of nudging. With that we can write the apical voltage as

v
api
N−1 = W PP, T

N,N−1

[
φ
(
uP
N

)
− φ

(
uI
N−1

)]
(A.33)

= W PP, T
N,N−1

[
φ
(
vbas,∗N + α

(
utgt − vbas,*N

))
− φ

(
vbas,∗N

)]
(A.34)

= W PP, T
N,N−1

[
φ
(
vbas,∗N

)
+ α

(
utgt − vbas,*N

)
φ′
(
vbas,∗N

)
− φ

(
vbas,∗N

)]
(A.35)

= αW PP, T
N,N−1

(
utgt − vbas,*N

)
φ′
(
vbas,∗N

)
. (A.36)

For the ANN we have

∂L
∂yN−1

= wT
N,N−1

(
∂L
∂yN

⊙ φ′ (aN)

)
. (A.37)

We now assume the loss function for the dendritic microcircuits to be

L =
1

2

(
ũP
N − utgt)2 (A.38)

where ũP
N is the voltage of the top layer if no nudging is applied (we want the network to

solve the task also in the absence of a guiding nudging signal). We can then calculate

∂L
∂ũP

N

= ũP
N − utgt (A.39)

= vbas,∗N − utgt (A.40)

using that the unnudged potential is by definition vbas,∗ and with that have shown that
indeed v

api
N−1 corresponds to ∂L

∂yN−1
. Therefore, we can conclude that under the given as-

sumptions the dendritic microcircuits approximate error backpropagation.
However, we have assumed the outputs of the top-layer pyramidal neurons to be their
somatic voltages ũP

N instead of their somatic firing rates φ(ũP
N). This is technically only

176 APPENDIX A. ERROR BACKPROPAGATION IN ANNS AND MICROCIRCUITS

half correct, as the somatic voltages are the “outputs” used for calculating the loss function
and reading out the network result, but they are not the output that travels back along
the backward connections in the network. In theory, either the loss function should be
calculated based on the somatic firing rates or the output that travels backwards should be
the somatic voltage. The latter is not possible due to the fact that somatic voltages can be
negative and for biological plausibility reasons only strictly positive firing rates can travel
along synaptic connections. The former is not advisable since we know from machine
learning that the application of an activation function in the output layer hampers learning
performance. In practice the applied mixture of outputs in the top layer of the microcircuit
networks does not seem to significantly impact the learning performance, but it should be
noted that it is strictly speaking neither correct nor biologically plausible.

A.2.3 Multiple hidden layers

Even though the derivation of the error backpropagation mechanism in the dendritic mi-
crocircuits is derived for an arbitrary number of hidden layers in a network, it is in practice
very hard (to the extent that it has not yet been performed successfully) to train a micro-
circuit network with full dynamics and more than one hidden layer. An intuition on why
this is the case, can be found by revisiting the recursive expression for the apical voltages:

v
api
ℓ = W PP, T

ℓ+1,ℓ

[
φ
(
uP
ℓ+1

)
− φ

(
uI
ℓ

)]
(A.41)

= W PP, T
ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1 + λv

api
ℓ+1

)
− φ

(
uI
ℓ

)]
(A.42)

= W PP, T
ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1

)
+ λ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
− φ

(
uI
ℓ

)]
(A.43)

At this point in the derivation we normally assume a perfect self-predicting state and set
uI
ℓ = vbas,∗ℓ+1 . In practice however the network never is in a perfect self-predicting state since

the feedforward weights are constantly changing and the lateral weights are not capable
to perfectly keep up. We now include this by setting uI

ℓ = vbas,∗ℓ+1 + ξ where ξ is a mismatch
between the pyramidal neuron and the interneuron caused by an imperfect self-predicting
state. The magnitude of ξ is mainly determined by the level of fine-tuning on the learning
rates. The optimal learning rates are highly dependent on the task, the network size and
neuron parameters as well as the weight initialization.

A.3. ERROR BACKPROPAGATION IN POINT NEURON MICROCIRCUITS 177

Including the mismatch in the derivation we get

v
api
ℓ = W PP, T

ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1

)
+ λ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
− φ

(
vbas,∗ℓ+1 + ξ

)]
(A.44)

= W PP, T
ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1

)
+ λ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
−
[
φ
(
vbas,∗ℓ+1

)
+ φ′

(
vbas,∗ℓ+1

)
ξ
]]

(A.45)

= W PP, T
ℓ+1,ℓ

[
λ v

api
ℓ+1 φ

′
(
vbas,∗ℓ+1

)
− φ′

(
vbas,∗ℓ+1

)
ξ
]

(A.46)

= W PP, T
ℓ+1,ℓφ

′
(
vbas,∗ℓ+1

) [
λ v

api
ℓ+1 − ξ

]
. (A.47)

Here we now see that due to the recursion the apical voltage accumulates a factor of λ≪ 1
for every layer it is below the top layer. The error signal used for learning is therefore
downscaled by λN−(ℓ+1) once it reaches the layer ℓ. In contrast to that the mismatch ξ is
introduced locally and therefore of approximately equal size in all layers. If the learning
rates are not fine-tuned enough there exists a layer ℓ below which the mismatch ξ drowns
out the error signal and prevents learning. In practice, it turns out that with the typically
feasible amount of fine-tuning this layer is already the second one below the top layer.

This finding is seemingly contradicted by the experiment discussed in Sacramento et al.
(2018) where a network with two hidden layers (500 neurons each) is trained to solve the
MNIST dataset. However, the model there is not simulated with full dynamics but only in
the steady state with only one weight update for each input sample. This makes keeping
up the self-predicted state significantly easier. In addition to that the chosen method for
approximating the steady-state of the network is rather crude and results in a forward
information flow in the network that is not influenced by the backward flowing signals.
Thereby this approximation effectively removes a crucial characteristic by, for the forward-
pass through the network, ignoring the inherent recurrency of the dendritic microcircuit
and making it more akin to an ANN than to a dendritic microcircuit simulated with full
dynamics. Finally, as shown in Max et al. (2022) an ANN with a single hidden layer of 100
neurons is already capable of achieving similar accuracies on theMNIST dataset. Therefore,
the results in Sacramento et al. (2018) could have easily been achieved even if nomeaningful
learning signal reached the lowest layer.

A.3 Error backpropagation in point neuron microcircuits

In this section we use the approximation in Section 6.5.1 where it was shown that the firing
rates of LIF neurons can act similarly to the leaky-integrator neurons used in the original
microcircuit models. We can therefore, in the following sections use the same notation as

178 APPENDIX A. ERROR BACKPROPAGATION IN ANNS AND MICROCIRCUITS

before and write

rout = φ(u) (A.48)

= φ

(
α
∑
inputs

W inrin

)
(A.49)

where α is some parameter dependent proportionality factor. Note that for the case of LIF
neurons u is not the actual membrane voltage, which is affected by resets after spikes, but
the artificial variable of the free membrane potential.

A.3.1 Nudging via synaptic connections

In contrast to the original microcircuit, where the apical compartment is connected to the
soma of the pyramidal neuron via a conductance, the error neuronwhich replaces the apical
compartment connects to the pyramidal neuron via a synapse. In the following we show
that for small error signals this synaptic connection has approximately the same effect on
the pyramidal neuron as the conductive coupling. Eqn. (A.18) shows that for the original
microcircuit the somatic voltage can be described as

uP
ℓ =

gbas

gl + gbas + gapi
vbasℓ +

gapi

gl + gbas + gapi
v
api
ℓ (A.50)

which is a sum of the bottom-up signal and the apical signal, both scaled by parameter-
dependent constant factors. For the point neuron microcircuit we can describe the pyrami-
dal neuron similarly with

uP
ℓ = αW PP

ℓ,ℓ−1r
P
ℓ−1 + αW B [rEℓ − rB

]
(A.51)

= αW PP
ℓ,ℓ−1r

P
ℓ−1 + αW B [φ (uE

ℓ

)
− φ (0)

]
(A.52)

where we have assumed the leak of the error neuron to be at zero (El = 0). For small errors
we can assume that uE

ℓ is close to the leak potential, and we can do a taylor expansion

uP
ℓ = αW PP

ℓ,ℓ−1r
P
ℓ−1 + αW B [φ (El) + φ′ (0)uE

ℓ − φ (0)
]

(A.53)
= αW PP

ℓ,ℓ−1r
P
ℓ−1 + αW Bφ′ (0)uE

ℓ . (A.54)

Since both W B and φ′ (0) are both constant, we arrive at a similar relationship of uP with
the error signal as in the original model.

A.3. ERROR BACKPROPAGATION IN POINT NEURON MICROCIRCUITS 179

A.3.2 Correspondence to propagation mechanisms in original microcircuit

Under the same conditions as in Appendix A.2 we derive a recursive form for the error
neurons voltage, which replaces the voltage in the apical compartments of the original
model

uE
ℓ = α̃W PP, T

ℓ+1,ℓ

[
rPℓ+1 − rIℓ

]
(A.55)

= α̃W PP, T
ℓ+1,ℓ

[
φ
(
uP
ℓ+1

)
− φ

(
uI
ℓ

)]
(A.56)

= α̃W PP, T
ℓ+1,ℓ

[
φ
(
αW PP

ℓ+1,ℓr
P
ℓ + αW Bφ′ (0)uE

ℓ+1

)
− φ

(
uI
ℓ

)]
. (A.57)

To show the analogy to the original microcircuit we call the bottom-up input αW PP
ℓ+1,ℓr

P
ℓ the

basal voltage vbas,∗ℓ+1 even though the basal compartment was absorbed into the pyramidal
point neuron. Finally, we use the assumption of a perfect self-predicting state and write
uI
ℓ = vbas,∗ℓ+1 . Then another taylor expansion shows the layer-wise recursive form for the

error neurons:

uE
ℓ = α̃W PP, T

ℓ+1,ℓ

[
φ
(
vbas,∗ℓ+1 + αW Bφ′ (0)uE

ℓ+1

)
− φ

(
vbas,∗ℓ+1

)]
(A.58)

= α̃W PP, T
ℓ+1,ℓ φ

′ (vbas,∗) αW B φ′(0)uE
ℓ+1 (A.59)

This is, up to constant factors, the same as for the same relationship as for the apical com-
partments in the original microcircuits (Eqn. (A.23)).
In contrast to the error signal, which exactly matches the one in the original microcircuit
we can compare the resulting weight updates for the feedforward connections and see a
slight deviation there:

W PP
ℓ,ℓ−1 = η

[
rE − rB

]
rPℓ−1 (A.60)

= η
[
φ
(
uE
ℓ

)
− φ(0)

]
rPℓ−1 (A.61)

= η φ′(0)uE
ℓ r

P
ℓ−1 (A.62)

This corresponds to Eqn. (A.27) except for the missing φ′
(
vbas,∗ℓ

)
in the point neuron mi-

crocircuit. Note that the φ′ (vbas,∗) of the other layers are implicitly included in Eqn. (A.62)
through the recursive definition of uE but the derivative of the activation function in the
current layer ℓ is missing. Therefore, the weight updates in the point neuron microcircuit
only approximately correspond to the error backpropagation weight updates in the original
microcircuit model.

180 APPENDIX A. ERROR BACKPROPAGATION IN ANNS AND MICROCIRCUITS

Appendix B

Parameter tables

The simulation and emulation parameters for the publications in Chapter 4, Chapter 5 and
Section 6.4 are part of themanuscripts and can therefore be found in the respective chapters.
The parameters for the summarized results in Section 6.3 can be found in the supplementary
information for Haider et al. (2021).

B.1 Background

Table B.1: This table includes the parameters for the simulations shown in Fig. 2.3 and Fig. 2.5. The sim-
ulations were performed using the iaf_psc_exp neuron model in the version 2.20.2 of the NEST
simulator (Fardet et al., 2021).

Parameter name Value

Simulator NEST
Version 2.20.2
Time step 0.1ms
C_m 1000.0 pF
E_L −75.0mV
V_reset −65.0mV
V_th −55mV
tau_m 10.0ms
tau_syn_ex 5.0ms
tau_syn_in 5.0ms
t_ref 15.0ms
I_e 0.0 nA

181

182 APPENDIX B. PARAMETER TABLES

B.2 Point neuron Microcircuits

Table B.2: This table includes the parameters for the simulations shown in Fig. 6.11. The simulations were
performed using the iaf_psc_exp neuronmodel in the version 2.20.2 of the NEST simulator (Fardet
et al., 2021).

Parameter name Value

Simulator NEST
Version 2.20.2
Time step 0.1ms
C_m 1000.0 pF
E_L −65.0mV
V_reset −65.0mV
V_th −50mV
tau_m 5.0ms
tau_syn_ex 15.0ms
tau_syn_in 15.0ms
t_ref 1.0ms
I_e 0.0 nA

B.2. POINT NEURON MICROCIRCUITS 183

Table B.3: This table includes the parameters for the simulations shown in Fig. 6.13.

Parameter name Value

General

Simulator PyNN
Backend NEST
Time step 0.1ms
Simulation window 1000.0ms
Neuron model IF_curr_exp
Stimulus repetition: (SP1, learning) 20, 7
Input-Target Pairs (20, 145), (190, 150) Hz

Network

Layers size (input-hidden-output) 1–1–1
baseline firing freq. 100.0Hz
Weight initW PP U [0, 1.5] nA
Weight initW IP U [−1.5, 1.5] nA
Weight initW PI U [0.6, 1.0] nA
Weight init BPP 1.2 nA
Weight initW B

1 ,W
B
2 0.8 nA, 0.8 nA

Weight range3 [-10, 10] nA
Learning rate ηPP1,0 (SP, learning) 0.0, 1e−6
Learning rate ηPP2,1 (SP, learning) 0.0, 5e−7
Learning rate ηIP (SP, learning) 7e−6, 5e−7
Learning rate ηPI (SP, learning) 3e−7, 0.0
Pyr.4+ Interneuron4

cm 1.0 nF
tau_m 10.0ms
tau_syn_E 15.0ms
tau_syn_I 15.0ms
tau_refrac 5.0ms

Error neuron4

cm 1.0 nF
tau_m 20.0ms
tau_syn_E 50.0ms
tau_syn_I 50.0ms
tau_refrac 0.1ms
1 All parameters marked with “SP” were only used in the simulations for
learning the self-predicting state.

2 It proved beneficial to present each stimulus several times before
switching to the next sample.

3 On neuromorphic platforms the range of available rates is typically lim-
ited. We model this here, by artificially only allowing synaptic weights
in this range. Additionally, the cap on weights can prevent the weights
from drifting to excessively high values in case of “wrong error signals”
caused by noise or non-perfect self-predicting states.

4 All potentials were chosen such that the baseline frequency is as given
above.

184 APPENDIX B. PARAMETER TABLES

Table B.4: This table includes the parameters for the emulations shown in Fig. 6.14.

Parameter name Value

General

Frontend PyNN
Backend BrainScaleS-2 (HICANN-X v2)
Simulation window 2000.0 µs1
Neuron model LIF (AdEx circuits switched off)
Stimulus repetition: (SP2, learning) 7, 7
Input-Target Pairs (50, 140), (190, 160) kHz

Network

Layers size (input-hidden-output) 1–1–1
baseline firing freq. 100.0 kHz
Weight init W PP U [0, 50]
Weight init W IP U [−50, 50]
Weight init W PI U [15, 63]
Weight init BPP U [0, 50]
Weight init W B

1 ,W
B
2 0, 15

Weight range [-50, 50]
Learning rate ηPP1,0 (SP, learning) 0.0, 9e−4
Learning rate ηPP2,1 (SP, learning) 0.0, 7e−4
Learning rate ηIP (SP, learning) 5e−4, 6e−4
Learning rate ηPI (SP, learning) 3e−4, 0.0
Learning threshold θ 0 kHz

Neuron parameters determined individually through calibration routine3
1 While the plot shows the recorded traces in the biological timescale, here the hardware
timescale (1000x accelerated) is used.

2 All parameters marked with “SP” were only used in the simulations for learning the
self-predicting state.

3 In addition to the standard calibration routine another step of adjusting the firing
threshold is added in order to set all neurons up with an as similar as possible base-
line firing frequency.

B.3. EVENT-BASED MICROCIRCUITS 185

B.3 Event-based Microcircuits

Table B.5: This table includes the parameters for the simulations shown in Figs. 6.15 to 6.17.

Parameter name Value

Time step 0.1
Tpres 15.0
Cm 1.0
El 0.0
gl 0.06
gbas 0.2
gapi 0.12
W PP

1,0 1.7
W PP

2,1 1.3
Activation function ReLU
∆t (Figs. 6.15 and 6.17) [1.0, 3.5]
∆u (Figs. 6.16 and 6.17) [0.02, 0.1]

List of Figures

2.1 Schematic drawing of neuron morphology and action potential shape . . 6
2.2 Schematic drawing of a chemical synapse 8
2.3 LIF neuron schematics and dynamics . 11
2.4 Simple multi-compartment neuron model 13
2.5 LIF neuron with synaptic input . 16
2.6 Spectrum of hardware platforms . 19
2.7 BrainScaleS-2 chip with block diagram . 23
2.8 Illustration of error backpropagation in ANNs 26

4.1 Yin-Yang dataset . 37
4.2 ANN results on Yin-Yang for different network setups 38
4.3 ANN results on Yin-Yang for different hidden layer sizes 39
4.4 Spatio-temporal input encoding scheme for the Yin-Yang dataset 42

5.1 Time-to-first-spike coding and learning 49
5.2 Time-to-first-spike classification of the Yin-Yang data set 54
5.3 Time-to-first-spike classification of the MNIST data set 56
5.4 Time-to-first-spike classification on BrainScaleS-2 57
5.5 Effects of substrate imperfections . 61
SI.A1 Time-to-first-spike training on BrainScaleS-1 76
SI.C1 Robustness to variations not present during training 77
SI.D1 TTFS training with a simplified learning rule 78
SI.E1 Inference execution time breakdown . 80
SI.E2 GPU power measurement during MNIST classification 82
SI.F1 Choice of branch for case with τm = τs. 83

6.1 Schematic of dendritic microcircuit network 89
6.2 Slow neuron dynamics and learning . 98
6.3 Learning to mimic a teacher microcircuit with LE 100
6.4 Dendritic microcircuits with LE mechanism 101
6.5 Sensory processing over cortical hierarchies 108
6.6 Cortial microcircuit setup . 110
6.7 PAL aligns weight updates with backpropagation 113

186

LIST OF FIGURES 187

6.8 PAL improves learning on different tasks 114
6.9 PAL learns useful latent representations 116
6.10 Alternative regularizer for PAL . 127
6.11 Approximation of a rate-based neuron with an LIF neuron 139
6.12 Schematic of the original microcircuit vs. the point neuron microcircuit . 140
6.13 PyNN-Simulations of point neuron microcircuits 145
6.14 Hardware emulations of point neuron microcircuits 146
6.15 Pyramidal neuron dynamics with regular events 149
6.16 Pyramidal neuron dynamics with voltage triggered events 150
6.17 Event-based pyramidal neuron dynamics with LE 152

List of Tables

4.1 ANN results on Yin-Yang dataset with different network setups 39
4.2 Simulation parameters for ANN reference of Yin-Yang dataset 41

5.1 Comparison of MNIST classification on neuromorphic back-ends 58
5.2 Summary of TTFS classification results 60
SI.B1 Additional TTFS simulation runs on MNIST 76
SI.F1 Simulation parameters for the time-to-first-spike classifications 84
SI.F2 Emulation parameters for time-to-first spike training on BrainScaleS-2 . . 85
SI.F3 Extended literature review for MNIST on neuromorphic back-ends 86

6.1 Parameter table for MC simulations in PAL 135
6.2 Parameter table for autoencoder simulation in PAL 136

B.1 Parameter table: LIF neuron simulations in Chapter 2 181
B.2 Parameter table: LIF neurons approximate rate-based neurons 182
B.3 Parameter table: Simulation results of LIF microcircuits 183
B.4 Parameter table: Emulation results of LIF microcircuits 184
B.5 Parameter table: Event-based simulations Chapter 6 185

188

Acronyms

AdEx adaptive exponential leaky integrate-and-fire 23, 70, 137

ANN artificial neural network 2, 20, 25–28, 50, 55, 58, 70, 88, 94, 95, 104, 105, 112, 114, 115,
124, 133, 153, 173, 175, 177

ASIC application-specific integrated circuit 20, 23, 70, 71

CMOS complementary metal-oxide-semiconductor 21–23

CoBa conductance-based 15, 17, 23, 24, 75

CPU central processing unit 20

CuBa current-based 15–17, 23, 24, 48, 50, 71, 75

FA feedback alignment 29, 87, 94, 95, 105, 107, 114, 115, 117, 160, 162

FPGA field-programmable gate array 20, 59, 71, 158

GeNN GPU enhanced Neuronal Network simulation environment 124

GPU graphical processing unit 20, 31, 124

LE Latent Equilibrium 99–102, 151, 152, 160–162, 166, 186, 187

LIF leaky integrate-and-fire 3, 10–13, 16, 22, 23, 33, 48, 50, 52, 53, 57, 65, 71, 87, 137–142,
153–155, 157, 163, 177, 178, 187

LTD long-term depression 9

LTP long-term potentiation 9, 18

MLP multilayer perceptron 25

MOS metal-oxide-semiconductor 18

189

190 Acronyms

nLIF non-leaky integrate-and-fire 50, 65

PAL phaseless alignment learning 109–119, 123–127, 131–134, 162, 166

PPU plasticity processing unit 25, 80, 157, 158

PSC postsynaptic current 8, 15, 16

PSP postsynaptic potential 7, 8, 16, 49, 50, 62, 65, 67, 73, 79

ReLU rectified linear unit 25, 138, 142

SNN spiking neural network 50, 51, 153

SRAM static random-access memory 24, 25

STDP spike-timing-dependent plasticity 17, 21, 158

STP short-term plasticity 9

TTFS time-to-first-spike 47–50, 63, 65, 155, 156, 160, 166

VLSI very-large-scale integration 22, 48

Bibliography

S. A. Aamir, P. Müller, G. Kiene, L. Kriener, Y. Stradmann, A. Grübl, J. Schemmel, and
K. Meier. A mixed-signal structured adex neuron for accelerated neuromorphic cores.
IEEE Transactions on Biomedical Circuits and Systems, 12(5):1027–1037, October 2018a.
doi: 10.1109/TBCAS.2018.2848203.

S. A. Aamir, Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl, J. Schemmel, and
K. Meier. An accelerated lif neuronal network array for a large-scale mixed-signal neu-
romorphic architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 65
(12):4299–4312, December 2018b. doi: 10.1109/TCSI.2018.2840718.

Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907).
Brain research bulletin, 50(5-6):303–304, 1999.

Simone Acciarito, Alessandro Cristini, Luca Di Nunzio, Gaurav Mani Khanal, and Gianluca
Susi. An a vlsi driving circuit for memristor-based stdp. In 2016 12th Conference on Ph.
D. Research in Microelectronics and Electronics (PRIME), pages 1–4. IEEE, 2016.

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm
for boltzmann machines. In Martin A. Fischler and Oscar Firschein, editors, Readings
in Computer Vision, pages 522–533. Morgan Kaufmann, 1987. ISBN 978-0-08-051581-6.
doi: 10.1016/B978-0-08-051581-6.50053-2. URL https://www.sciencedirect.com/
science/article/pii/B9780080515816500532.

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul
Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10):
1537–1557, 2015.

Mohamed Akrout, Collin Wilson, Peter C Humphreys, Timothy Lillicrap, and Douglas
Tweed. Deep learning without weight transport. arXiv preprint arXiv:1904.05391, 2019.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo
Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza,

191

https://www.sciencedirect.com/science/article/pii/B9780080515816500532
https://www.sciencedirect.com/science/article/pii/B9780080515816500532

192 BIBLIOGRAPHY

et al. A low power, fully event-based gesture recognition system. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7243–7252, 2017.

Srdjan D Antic, Wen-Liang Zhou, Anna RMoore, ShainaM Short, and Katerina D Ikonomu.
The decade of the dendritic nmda spike. Journal of neuroscience research, 88(14):2991–
3001, 2010.

John Backus. Can programming be liberated from the von neumann style? a functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Tim-
othy Lillicrap. Assessing the scalability of biologically-motivated deep learning algo-
rithms and architectures. Advances in neural information processing systems, 31, 2018.

Bruce P Bean. The action potential in mammalian central neurons. Nature Reviews Neuro-
science, 8(6):451–465, 2007.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via
target propagation. arXiv preprint arXiv:1407.7906, 2014.

Yoshua Bengio and Asja Fischer. Early inference in energy-based models approximates
back-propagation. arXiv preprint arXiv:1510.02777, 2015.

Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chan-
drasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A Merolla,
and Kwabena Boahen. Neurogrid: A mixed-analog-digital multichip system for large-
scale neural simulations. Proceedings of the IEEE, 102(5):699–716, 2014.

Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of
neuroscience, 18(24):10464–10472, 1998.

Elie L Bienenstock, Leon N Cooper, and PaulWMunro. Theory for the development of neu-
ron selectivity: orientation specificity and binocular interaction in visual cortex. Journal
of Neuroscience, 2(1):32–48, 1982.

Sebastian Billaudelle. From transistors to learning systems: Circuits and algorithms for brain-
inspired computing. Phd thesis, Universität Heidelberg, May 2022.

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas
Baumbach, Domnik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich, Andreas
Hartel, Eric Müller, Oliver J. Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl,
David Stöckel, Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali
Karasenko, Walter Senn, Karlheinz Meier, Johannes Schemmel, and Mihai A. Petrovici.
Versatile emulation of spiking neural networks on an accelerated neuromorphic sub-
strate. arXiv preprint arXiv:1912.12980, 2019.

BIBLIOGRAPHY 193

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas
Baumbach, Dominik Dold, Julian Göltz, Akos F Kungl, Timo CWunderlich, Andreas Har-
tel, et al. Versatile emulation of spiking neural networks on an accelerated neuromorphic
substrate. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pages
1–5. IEEE, 2020.

Sebastian Billaudelle, Benjamin Cramer, Mihai A Petrovici, Korbinian Schreiber, David Kap-
pel, Johannes Schemmel, and Karlheinz Meier. Structural plasticity on an accelerated
analog neuromorphic hardware system. Neural networks, 133:11–20, 2021.

Sebastian Billaudelle, Johannes Weis, Philipp Dauer, and Johannes Schemmel. An accu-
rate and flexible analog emulation of adex neuron dynamics in silicon. arXiv preprint
arXiv:2209.09280, 2022.

Jonathan Binas, Daniel Neil, Giacomo Indiveri, Shih-Chii Liu, and Michael Pfeiffer.
Precise neural network computation with imprecise analog devices. arXiv preprint
arXiv:1606.07786, 2016.

Tim VP Bliss and Terje Lømo. Long-lasting potentiation of synaptic transmission in the
dentate area of the anaesthetized rabbit following stimulation of the perforant path. The
Journal of physiology, 232(2):331–356, 1973.

Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-State
Circuits Society Newsletter, 12(1):11–13, 2007.

Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for
networks of spiking neurons. ESANN, pages 419–424, 2000.

Jacopo Bono andClaudia Clopath. Modeling somatic and dendritic spikemediated plasticity
at the single neuron and network level. 8(1):706, 2017. ISSN 2041-1723.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. J. Neurophysiol., 94:3637 – 3642, 2005. doi: NA.

Rodney Brooks, Demis Hassabis, Dennis Bray, and Amnon Shashua. Is the brain a good
model for machine intelligence? Nature, 482(7386):462, 2012.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural net-
works for energy-efficient object recognition. International Journal of Computer Vision,
113(1):54–66, 2015.

194 BIBLIOGRAPHY

Leonardo Cerliani, Ritu Bhandari, Lorenzo De Angelis, Wietske van der Zwaag, Pierre-
Louis Bazin, Valeria Gazzola, and Christian Keysers. Predictive coding during
action observation – a depth-resolved intersubject functional correlation study at
7t. Cortex, 148:121–138, 2022. ISSN 0010-9452. doi: https://doi.org/10.1016/j.
cortex.2021.12.008. URL https://www.sciencedirect.com/science/article/
pii/S0010945222000016.

Gregory K Chen, Raghavan Kumar, H Ekin Sumbul, Phil C Knag, and Ram K Krishna-
murthy. A 4096-neuron 1m-synapse 3.8-pj/sop spiking neural network with on-chip stdp
learning and sparse weights in 10-nm finfet cmos. IEEE Journal of Solid-State Circuits, 54
(4):992–1002, 2018.

Chris73. Action potential. https://commons.wikimedia.org/wiki/File:Action_potential.svg,
June 2007. URL https://commons.wikimedia.org/wiki/File:Action_
potential.svg. Accessed: 2022-09-22.

Brian D Clark, Ethan M Goldberg, and Bernardo Rudy. Electrogenic tuning of the axon
initial segment. The Neuroscientist, 15(6):651–668, 2009.

Claudia Clopath, Lars Büsing, Eleni Vasilaki, and Wulfram Gerstner. Connectivity reflects
coding: a model of voltage-based STDP with homeostasis. 13(3):344–352, 2010. ISSN
1546-1726. doi: 10.1038/nn.2479.

Iulia M Comsa, Thomas Fischbacher, Krzysztof Potempa, Andrea Gesmundo, Luca Versari,
and Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic
function. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8529–8533, 2020.

Jonathan Cornford, Damjan Kalajdzievski, Marco Leite, Amélie Lamarquette, Dimitri M.
Kullmann, and Blake Richards. Learning to live with dale’s principle: Anns with separate
excitatory and inhibitory units. bioRxiv, 2021. doi: 10.1101/2020.11.02.364968.

Rui Costa, Ioannis Alexandros Assael, Brendan Shillingford, Nando de Freitas, and Tim
Vogels. Cortical microcircuits as gated-recurrent neural networks. Advances in neural
information processing systems, 30, 2017.

E Covi, S Brivio, M Fanciulli, and S Spiga. Synaptic potentiation and depression in al: Hfo2-
based memristor. Microelectronic Engineering, 147:41–44, 2015.

Brian Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. Direct feedback
alignment with sparse connections for local learning. Frontiers in neuroscience, 13:525,
2019.

Benjamin Cramer. Optimizing Spiking Neuromorphic Networks for Information Processing.
Phd thesis, Universität Heidelberg, December 2021.

https://www.sciencedirect.com/science/article/pii/S0010945222000016
https://www.sciencedirect.com/science/article/pii/S0010945222000016
https://commons.wikimedia.org/wiki/File:Action_potential.svg
https://commons.wikimedia.org/wiki/File:Action_potential.svg

BIBLIOGRAPHY 195

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,
Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes
Weis, Johannes Schemmel, and Friedemann Zenke. Training spiking multi-layer net-
works with surrogate gradients on an analog neuromorphic substrate. arXiv preprint
arXiv:2006.07239, 2020a.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,
Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes
Weis, et al. Surrogate gradients for analog neuromorphic computing. arXiv preprint
arXiv:2006.07239, 2020b.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 2020c.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vi-
tali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis,
et al. Surrogate gradients for analog neuromorphic computing. Proceedings of the Na-
tional Academy of Sciences, 119(4):e2109194119, 2022.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132,
1989.

Stefanie Czischek, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Lukas
Kades, Jan M Pawlowski, Markus Oberthaler, Johannes Schemmel, Mihai A Petrovici,
Thomas Gasenzer, et al. Spiking neuromorphic chip learns entangled quantum states.
SciPost Physics, 12(1):039, 2022.

Mike Davies. Benchmarks for progress in neuromorphic computing. Nature Machine Intel-
ligence, 1(9):386–388, 2019.

MikeDavies, Narayan Srinivasa, Tsung-Han Lin, GauthamChinya, Yongqiang Cao, Sri Har-
sha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Andrew P Davison, Daniel Brüderle, Jochen M Eppler, Jens Kremkow, Eilif Muller, Dejan
Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common interface for neuronal
network simulators. Frontiers in neuroinformatics, 2:11, 2009.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. MIT press, 2005.

Deepmind. Alphafold: a solution to a 50-year-old grand challenge in biology.
https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-
old-grand-challenge-in-biology, 2020. Accessed: 2022-10-19.

https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

196 BIBLIOGRAPHY

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. Con-
version of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware. 2016 IEEE International Conference on Rebooting Computing
(ICRC), pages 1–8, 2016.

Dominik Dold, Ilja Bytschok, Akos F Kungl, Andreas Baumbach, Oliver Breitwieser, Walter
Senn, Johannes Schemmel, Karlheinz Meier, and Mihai A Petrovici. Stochasticity from
function–why the bayesian brainmay need no noise. Neural Networks, 119:200–213, 2019.

Thomas Dunwiddie and Gary Lynch. Long-term potentiation and depression of synaptic
responses in the rat hippocampus: localization and frequency dependency. The Journal
of physiology, 276(1):353–367, 1978.

The Economist. Showdown. https://www.economist.com/science-and-
technology/2016/03/12/showdown, 2016. Accessed: 2022-10-19.

Electronic Vision(s). Brainscales-2: Demos and tutorials. https://github.com/
electronicvisions/brainscales2-demos, 2022. Accessed: 2022-11-07.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene
Belilovsky, Irina Rish, Blake Richards, and Yoshua Bengio. Towards scaling differ-
ence target propagation by learning backprop targets. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pages 5968–5987. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/ernoult22a.html.

Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmendra S
Modha. Backpropagation for energy-efficient neuromorphic computing. Advances in
Neural Information Processing Systems, pages 1117–1125, 2015.

A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. Noise in the nervous system. Nature
Reviews Neuroscience, 9(4):292–303, 2008. ISSN 1471-0048. doi: 10.1038/nrn2258.

Tanguy Fardet, Stine Brekke Vennemo, Jessica Mitchell, Håkon Mørk, Steffen Graber, Jan
Hahne, Sebastian Spreizer, Rajalekshmi Deepu, Guido Trensch, Philipp Weidel, Jakob
Jordan, Jochen Martin Eppler, Dennis Terhorst, Abigail Morrison, Charl Linssen, Alberto
Antonietti, Kael Dai, Alexey Serenko, Binghuang Cai, Piotr Kubaj, Robin Gutzen, Hanjia
Jiang, Itaru Kitayama, Björn Jürgens, Sara Konradi, Jasper Albers, and Hans Ekkehard
Plesser. Nest 2.20.2, August 2021. URL https://doi.org/10.5281/zenodo.5242954.

https://www.economist.com/science-and-technology/2016/03/12/showdown
https://www.economist.com/science-and-technology/2016/03/12/showdown
https://github.com/electronicvisions/brainscales2-demos
https://github.com/electronicvisions/brainscales2-demos
https://proceedings.mlr.press/v162/ernoult22a.html
https://doi.org/10.5281/zenodo.5242954

BIBLIOGRAPHY 197

J Feldmann, N Youngblood, CDWright, H Bhaskaran, andWHP Pernice. All-optical spiking
neurosynaptic networks with self-learning capabilities. Nature, 569(7755):208, 2019.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plastic-
ity, and theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

Charlotte Frenkel, Martin Lefebvre, Jean-Didier Legat, and David Bol. A 0.086-mm 2 12.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor
in 28-nm cmos. IEEE transactions on biomedical circuits and systems, 13(1):145–158, 2018.

Charlotte Frenkel, Jean-Didier Legat, and David Bol. A 28-nm convolutional neuromor-
phic processor enabling online learning with spike-based retinas. 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2020.

S. Friedmann, J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier. Demonstrating hy-
brid learning in a flexible neuromorphic hardware system. IEEE Transactions on Biomed-
ical Circuits and Systems, 11(1):128–142, 2017. doi: 10.1109/TBCAS.2016.2579164.

Simon Friedmann, Nicolas Frémaux, Johannes Schemmel, WulframGerstner, and Karlheinz
Meier. Reward-based learning under hardware constraints—using a risc processor em-
bedded in a neuromorphic substrate. Frontiers in Neuroscience, 7:160, 2013.

Johannes Friedrich, Robert Urbanczik, andWalter Senn. Spatio-temporal credit assignment
in neuronal population learning. 7(6):e1002092, 2011. ISSN 1553-7358. doi: 10.1371/
journal.pcbi.1002092.

Steve Furber. Large-scale neuromorphic computing systems. Journal of neural engineering,
13(5):051001, 2016.

Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project.
Proceedings of the IEEE, 102(5):652–665, 2014.

Wulfram Gerstner. Spiking neurons. MIT Press, 1998.

Wulfram Gerstner. What is different with spiking neurons? Plausible neural networks for
biological modelling, pages 23–48, 2001.

WulframGerstner andWernerMKistler. Spiking neuronmodels: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Wulfram Gerstner and Richard Naud. How good are neuron models? Science, 326(5951):
379–380, 2009.

WulframGerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligi-
bility traces and plasticity on behavioral time scales: experimental support of neohebbian
three-factor learning rules. Frontiers in neural circuits, 12:53, 2018.

198 BIBLIOGRAPHY

SanggyunGi, Injune Yeo, Myunglae Chu, SeunghunKim, and Byunggeun Lee. Fundamental
issues of implementing hardware neural networks using memristor. In 2015 International
SoC Design Conference (ISOCC), pages 215–216. IEEE, 2015.

Tim Gollisch and Markus Meister. Rapid neural coding in the retina with relative spike
latencies. Science, 319(5866):1108–1111, 2008.

Julian Göltz. Training deep networks with time-to-first-spike coding on the brainscales
wafer-scale system. Master’s thesis, Universität Heidelberg, April 2019. URL http://
www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909.

Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel,
Karlheinz Meier, and Mihai A Petrovici. Fast and deep: energy-efficient neuromorphic
learning with first-spike times. arXiv:1912.11443, 2019.

Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel,
Karlheinz Meier, and Mihai A Petrovici. Fast and energy-efficient neuromorphic deep
learning with first-spike times. Nature Machine Intelligence, 3(9):823–835, 2021.

Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Akos Kungl, and Mihai Alexandru Petrovici. Fast and energy-efficient
neuromorphic deep learning with first-spike times, July 2021. URL https://doi.org/
10.5281/zenodo.5115007.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Henry Gray. Anatomy of the human body, 1918. URL https://commons.wikimedia.
org/wiki/File:Gray728.svg.

Will Greedy, Heng Wei Zhu, Joseph Pemberton, Jack Mellor, and Rui Ponte Costa. Single-
phase deep learning in cortico-cortical networks. arXiv preprint arXiv:2206.11769, 2022.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive reso-
nance. Cognitive science, 11(1):23–63, 1987.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with
segregated dendrites. Elife, 6:e22901, 2017.

Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–
based decisions. Nature Neuroscience, 9(3):420, 2006.

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3909
https://doi.org/10.5281/zenodo.5115007
https://doi.org/10.5281/zenodo.5115007
http://www.deeplearningbook.org
https://commons.wikimedia.org/wiki/File:Gray728.svg
https://commons.wikimedia.org/wiki/File:Gray728.svg

BIBLIOGRAPHY 199

Koen V. Haak and Christian F. Beckmann. Objective analysis of the topological organization
of the human cortical visual connectome suggests three visual pathways. Cortex, 98:73–
83, 2018. ISSN 0010-9452. doi: https://doi.org/10.1016/j.cortex.2017.03.020. URL https:
//www.sciencedirect.com/science/article/pii/S0010945217301004.

Paul Haider, Benjamin Ellenberger, Laura Kriener, Jakob Jordan, Walter Senn, and Mihai A
Petrovici. Latent equilibrium: Arbitrarily fast computation with arbitrarily slow neurons.
Advances in Neural Information Processing Systems, 34:17839–17851, 2021.

Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

Donald OldingHebb. The organization of behavior: A neuropsychological theory. This edition
was published in 2009 by Psychology Press, 1949.

Loreen Hertäg and Henning Sprekeler. Learning prediction error neurons in a canonical
interneuron circuit. Elife, 9:e57541, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Matthias Hock, Andreas Hartel, Johannes Schemmel, and Karlheinz Meier. An analog dy-
namic memory array for neuromorphic hardware. In 2013 European Conference on Circuit
Theory and Design (ECCTD), pages 1–4. IEEE, 2013.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of physiology, 117
(4):500, 1952.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking neural networks.
Advances in Neural Information Processing Systems 31, pages 1433–1443, 2018.

Eric Hunsberger and Chris Eliasmith. Training spiking deep networks for neuromorphic
hardware. arXiv preprint arXiv:1611.05141, 2016.

Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically plausible deep learning–but
how far can we go with shallow networks? Neural Networks, 2019.

Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André Van Schaik, Ralph
Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie
Renaud, et al. Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5:73, 2011.

https://www.sciencedirect.com/science/article/pii/S0010945217301004
https://www.sciencedirect.com/science/article/pii/S0010945217301004

200 BIBLIOGRAPHY

IntelLabs. Taking neuromorphic computing to the next level with loihi 2. https:
//download.intel.com/newsroom/2021/new-technologies/neuromorphic-
computing-loihi-2-brief.pdf, 2021. Accessed: 2022-09-16.

Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions
on Neural Networks, 15(5):1063–1070, 2004.

Heidi Johansen-Berg. Structural plasticity: rewiring the brain. Current Biology, 17(4):R141–
R144, 2007.

Roland S Johansson and Ingvars Birznieks. First spikes in ensembles of human tactile af-
ferents code complex spatial fingertip events. Nature Neuroscience, 7(2):170, 2004.

Jakob Jordan, Mihai A Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier,
MarkusDiesmann, and TomTetzlaff. Deterministic networks for probabilistic computing.
Scientific Reports, 9(1):1–17, 2019.

Rebecca Jordan and Georg B Keller. Opposing influence of top-down and bottom-up input
on excitatory layer 2/3 neurons in mouse primary visual cortex. Neuron, 108(6):1194–
1206, 2020.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

Georg B Keller and Thomas D Mrsic-Flogel. Predictive processing: a canonical cortical
computation. Neuron, 100(2):424–435, 2018.

Saeed Reza Kheradpisheh and Timothée Masquelier. S4nn: temporal backpropagation for
spiking neural networks with one spike per neuron. International Journal of Neural Sys-
tems, 30(6):2050027, 2020.

Saeed Reza Kheradpisheh, MohammadGanjtabesh, Simon J Thorpe, and TimothéeMasque-
lier. Stdp-based spiking deep convolutional neural networks for object recognition. Neu-
ral Networks, 99:56–67, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

James C Knight, Anton Komissarov, and Thomas Nowotny. Pygenn: a python library for
gpu-enhanced neural networks. Frontiers in Neuroinformatics, 15:659005, 2021.

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

BIBLIOGRAPHY 201

Christoph Koke. Device Variability in Synapses of Neuromorphic Circuits. PhD thesis
Heidelberg University, 2017. doi: 10.11588/heidok.00022742.

J.F. Kolen and J.B. Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pages 1375–
1380 vol.3, 1994. doi: 10.1109/ICNN.1994.374486.

Laura Kriener, Julian Göltz, and Mihai A. Petrovici. The yin-yang dataset. arXiv preprint
arXiv:2102.08211, 2021a.

Laura Kriener, Julian Göltz, and Mihai A Petrovici. Yin-yang dataset repository. https:
//github.com/lkriener/yin_yang_data_set, 2021b. Accessed: 2022-03-20.

Laura Kriener, Julian Göltz, and Mihai A. Petrovici. The yin-yang dataset. In Neuro-
Inspired Computational Elements Conference, NICE 2022, page 107–111, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450395595. doi: 10.1145/
3517343.3517380. URL https://doi.org/10.1145/3517343.3517380.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, pages
1097–1105, 2012a.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25,
2012b.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www.cs.toronto.edu/kriz/cifar.html, 55, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Akos Ferenc Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Do-
minik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider, et al. Accel-
erated physical emulation of bayesian inference in spiking neural networks. Frontiers in
Neuroscience, 13:1201, 2019.

Konrad P. Körding and Peter König. Supervised and unsupervised learning with two sites of
synaptic integration. 11(3):207–215, 2001. ISSN 1573-6873. doi: 10.1023/A:1013776130161.

Benjamin James Lansdell, Prashanth Ravi Prakash, and Konrad Paul Kording. Learning to
solve the credit assignment problem. arXiv preprint arXiv:1906.00889, 2019.

https://github.com/lkriener/yin_yang_data_set
https://github.com/lkriener/yin_yang_data_set
https://doi.org/10.1145/3517343.3517380

202 BIBLIOGRAPHY

LM Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs. J. Physiol.
Paris., 9:620–635, 1907.

Matthew E Larkum, J Julius Zhu, and Bert Sakmann. A new cellularmechanism for coupling
inputs arriving at different cortical layers. Nature, 398(6725):338–341, 1999.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist models summer school, volume 1,
pages 21–28, 1988.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target prop-
agation. In Joint european conference on machine learning and knowledge discovery in
databases, pages 498–515. Springer, 2015.

Jane H Lee, Saeid Haghighatshoar, and Amin Karbasi. Exact gradient computation for
spiking neural networks through forward propagation. arXiv preprint arXiv:2210.15415,
2022.

Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, Butler W Lamp-
son, Daniel Sanchez, and Tao B Schardl. There’s plenty of room at the top: What will
drive computer performance after moore’s law? Science, 368(6495):eaam9744, 2020.

Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes
Schemmel, Karlheinz Meier, and Mihai A Petrovici. Spiking neurons with short-term
synaptic plasticity form superior generative networks. Scientific Reports, 8(1):1–11, 2018.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random
synaptic feedback weights support error backpropagation for deep learning. Nature com-
munications, 7(1):1–10, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton.
Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Chit-Kwan Lin, Andreas Wild, Gautham N Chinya, Yongqiang Cao, Mike Davies, Daniel M
Lavery, and Hong Wang. Programming spiking neural networks on intel’s loihi. Com-
puter, 51(3):52–61, 2018.

Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as
a taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki,
pages 6–7, 1970.

Wolfgang Maass. Noise as a resource for computation and learning in networks of spiking
neurons. Proceedings of the IEEE, 102(5):860–880, 2014. doi: 10.1109/JPROC.2014.2310593.

BIBLIOGRAPHY 203

Wolfgang Maass. Searching for principles of brain computation. Current Opinion in Behav-
ioral Sciences, 11:81–92, 2016.

Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward an integration of
deep learning and neuroscience. Frontiers in Computational Neuroscience, 10:94, 2016.
ISSN 1662-5188. doi: 10.3389/fncom.2016.00094. URL https://www.frontiersin.
org/article/10.3389/fncom.2016.00094.

Henry Markram and Misha Tsodyks. Redistribution of synaptic efficacy between neocor-
tical pyramidal neurons. Nature, 382(6594):807–810, 1996.

Kevin Max, Laura Kriener, Garibaldi Pineda García, Thomas Nowotny, Walter Senn, and
Mihai A Petrovici. Learning efficient backprojections across cortical hierarchies in real
time. arXiv preprint arXiv:2212.10249, 2022.

Christian Mayr, Sebastian Hoeppner, and Steve Furber. Spinnaker 2: A 10 million core pro-
cessor system for brain simulation andmachine learning. arXiv preprint arXiv:1911.02385,
2019.

Mark D. McDonnell and Lawrence M. Ward. The benefits of noise in neural systems: bridg-
ing theory and experiment. Nature Reviews Neuroscience, 12(7):415–425, 2011. ISSN 1471-
0048. doi: 10.1038/nrn3061.

Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636,
1990.

Carver Mead and Mohammed Ismail. Analog VLSI implementation of neural systems, vol-
ume 80. Springer Science & Business Media, 1989.

Thomas Mesnard, Gaëtan Vignoud, Joao Sacramento, Walter Senn, and Yoshua Bengio.
Ghost units yield biologically plausible backprop in deep neural networks. arXiv preprint
arXiv:1911.08585, 2019.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Ben-
jamin F Grewe. A theoretical framework for target propagation. Advances in Neural
Information Processing Systems, 33:20024–20036, 2020.

Alexander Meulemans, Matilde Tristany Farinha, Javier Garcia Ordonez, Pau Vil-
imelis Aceituno, João Sacramento, and Benjamin F Grewe. Credit assignment in neu-
ral networks through deep feedback control. Advances in Neural Information Processing
Systems, 34, 2021.

Beren Millidge, Alexander Tschantz, and Christopher L. Buckley. Predictive Coding Ap-
proximates Backprop along Arbitrary Computation Graphs. 2020a.

https://www.frontiersin.org/article/10.3389/fncom.2016.00094
https://www.frontiersin.org/article/10.3389/fncom.2016.00094

204 BIBLIOGRAPHY

Beren Millidge, Alexander Tschantz, Christopher L Buckley, and Anil Seth. Activation
relaxation: A local dynamical approximation to backpropagation in the brain. 2020b.

Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

Saber Moradi and Giacomo Indiveri. An event-based neural network architecture with an
asynchronous programmable synaptic memory. IEEE transactions on biomedical circuits
and systems, 8(1):98–107, 2013.

SaberMoradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore archi-
tecturewith heterogeneousmemory structures for dynamic neuromorphic asynchronous
processors (dynaps). IEEE transactions on biomedical circuits and systems, 12(1):106–122,
2017.

Theodore H Moskovitz, Ashok Litwin-Kumar, and LF Abbott. Feedback alignment in deep
convolutional networks. arXiv preprint arXiv:1812.06488, 2018.

H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs. Fast classification using sparsely
active spiking networks. 2017 IEEE International Symposium on Circuits and Systems (IS-
CAS), pages 1–4, May 2017. doi: 10.1109/ISCAS.2017.8050527.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural net-
works. IEEE Transactions on Neural Networks and Learning Systems, 29(7):3227–3235,
2017.

Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,
David Stöckel, Timo Wunderlich, and Johannes Schemmel. Extending brainscales os
for brainscales-2. arXiv preprint arXiv:2003.13750, 2020.

Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski, Arne Emmel, Jakob Kaiser,
Christian Mauch, Sebastian Schmitt, Philipp Spilger, Raphael Stock, et al. A scalable
approach to modeling on accelerated neuromorphic hardware. Frontiers in neuroscience,
16, 2022.

Manu V Nair and Giacomo Indiveri. An ultra-low power sigma-delta neuron circuit. In 2019
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2019.

Richard Naud, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner. Firing patterns
in the adaptive exponential integrate-and-fire model. Biological cybernetics, 99(4-5):335,
2008.

Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert Cauwen-
berghs. Event-driven contrastive divergence for spiking neuromorphic systems. Frontiers
in Neuroscience, 7:272, 2014.

BIBLIOGRAPHY 205

Emre O Neftci, Bruno U Pedroni, Siddharth Joshi, Maruan Al-Shedivat, and Gert Cauwen-
berghs. Stochastic synapses enable efficient brain-inspired learning machines. Frontiers
in Neuroscience, 10:241, 2016.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks. arXiv preprint arXiv:1901.09948, 2019.

Andrew Ng. What artificial intelligence can and can’t do right now. Harvard Business
Review, 9, 2016.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Ad-
vances in neural information processing systems, 29, 2016.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathe-
matical biology, 15(3):267–273, 1982.

OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/
blog/chatgpt/, 2022a. Accessed: 2022-12-07.

OpenAI. Dall-e 2. https://openai.com/dall-e-2/, 2022b. Accessed: 2022-12-13.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting
static image datasets to spiking neuromorphic datasets using saccades. Frontiers in neu-
roscience, 9:437, 2015.

Randall C. O’Reilly. Biologically plausible error-driven learning using local activation dif-
ferences: The generalized recirculation algorithm. Neural Computation, 8(5):895–938,
1996.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. Advances in Neural Information
Processing Systems 32, pages 8024–8035, 2019.

Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A. Richards, and Richard
Naud. Burst-dependent synaptic plasticity can coordinate learning in hierarchical cir-
cuits. bioRxiv 10.1101/2020.03.30.015511, 2020. doi: 10.1101/2020.03.30.015511.

Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard
Naud. Burst-dependent synaptic plasticity can coordinate learning in hierarchical cir-
cuits. Nature neuroscience, 24(7):1010–1019, 2021.

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/dall-e-2/

206 BIBLIOGRAPHY

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang,
Zhe Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid
tianjic chip architecture. Nature, 572(7767):106–111, 2019.

Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neu-
ral heterogeneity promotes robust learning. Nature communications, 12(1):1–9, 2021.

Mihai A Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier.
Stochastic inference with deterministic spiking neurons. arXiv preprint arXiv:1311.3211,
2013.

Mihai A Petrovici, Bernhard Vogginger, Paul Müller, Oliver Breitwieser, Mikael Lundqvist,
Lyle Muller, Matthias Ehrlich, Alain Destexhe, Anders Lansner, René Schüffny, et al.
Characterization and compensation of network-level anomalies in mixed-signal neuro-
morphic modeling platforms. PloS one, 9(10):e108590, 2014.

Mihai A Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier.
Stochastic inference with spiking neurons in the high-conductance state. Physical Review
E, 94(4):042312, 2016.

Mihai Alexandru Petrovici. Form versus function: theory and models for neuronal sub-
strates. Springer, 2016.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and
challenges. Frontiers in Neuroscience, 12, 2018.

Thomas Pfeil, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul Müller, Mihai A Petrovici,
Michael Schmuker, Daniel Brüderle, Johannes Schemmel, and Karlheinz Meier. Six net-
works on a universal neuromorphic computing substrate. Frontiers in neuroscience, 7:11,
2013.

Robinson E Pino, Hai Li, Yiran Chen, Miao Hu, and Beiye Liu. Statistical memristor mod-
eling and case study in neuromorphic computing. In DAC Design Automation Conference
2012, pages 585–590. IEEE, 2012.

Bill Podlaski and Christian K. Machens. Biological credit assignment through dynamic
inversion of feedforward networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
10065–10076. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/7261925973c9bf0a74d85ae968a57e5f-Paper.pdf.

Isabella Pozzi, Sander Bohté, and Pieter Roelfsema. A biologically plausible learning rule
for deep learning in the brain. arXiv preprint arXiv:1811.01768, 2018.

https://proceedings.neurips.cc/paper/2020/file/7261925973c9bf0a74d85ae968a57e5f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7261925973c9bf0a74d85ae968a57e5f-Paper.pdf

BIBLIOGRAPHY 207

Isabella Pozzi, Sander Bohte, and Pieter Roelfsema. Attention-gated brain propagation:
How the brain can implement reward-based error backpropagation. Advances in Neural
Information Processing Systems, 33:2516–2526, 2020.

Themistoklis Prodromakis and Chris Toumazou. A review on memristive devices and ap-
plications. 2010 17th IEEE International Conference on Electronics, Circuits and Systems,
pages 934–937, 2010.

Ning Qiao, HeshamMostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumis-
lawska, and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128k synapses. Frontiers in neuroscience, 9:141,
2015.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling
language models: Methods, analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Alexander Rauch, Giancarlo La Camera, Hans-Rudolf Luscher, Walter Senn, and Stefano
Fusi. Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo–like
input currents. Journal of Neurophysiology, 90(3):1598–1612, 2003.

Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger. The
backpropagation algorithm implemented on spiking neuromorphic hardware. arXiv
preprint arXiv:2106.07030, 2021.

Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,
et al. A deep learning framework for neuroscience. Nature Neuroscience, 22(11):1761–
1770, 2019.

Pieter Roelfsema and Arjen Ooyen. Attention-gated reinforcement learning of internal
representations for classification. 17:2176–214. doi: 10.1162/0899766054615699.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

Nicolas Rougier. Biological neuron schema. https://commons.wikimedia.org/wiki/File:Neuron-
figure.svg, June 2007. URL https://commons.wikimedia.org/wiki/File:Neuron-
figure.svg. Accessed: 2022-09-22.

https://commons.wikimedia.org/wiki/File:Neuron-figure.svg
https://commons.wikimedia.org/wiki/File:Neuron-figure.svg

208 BIBLIOGRAPHY

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine
intelligence with neuromorphic computing. Nature, 575(7784):607–617, 2019.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, pages 533–536, 1986.

Dmitri A. Rusakov, Leonid P. Savtchenko, and Peter E. Latham. Noisy synaptic conductance:
Bug or a feature? Trends in Neurosciences, 43(6):363–372, 2020. ISSN 0166-2236. doi:
10.1016/j.tins.2020.03.009.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical mi-
crocircuits approximate the backpropagation algorithm. Advances in Neural Information
Processing Systems, 31, 2018.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Institute of
Mathematical Statistics Textbooks. Cambridge University Press, 2019. doi: 10.1017/
9781108186735.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in computational neuroscience, 11:
24, 2017.

Johannes Schemmel, Daniel Bruderle, Karlheinz Meier, and Boris Ostendorf. Modeling
synaptic plasticity within networks of highly accelerated i&f neurons. In 2007 IEEE in-
ternational symposium on circuits and systems, pages 3367–3370. IEEE, 2007.

Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier, and
Sebastian Millner. A wafer-scale neuromorphic hardware system for large-scale neural
modeling. Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
pages 1947–1950, 2010.

Johannes Schemmel, Laura Kriener, Paul Müller, and Karlheinz Meier. An accelerated ana-
log neuromorphic hardware system emulating nmda-and calcium-based non-linear den-
drites. 2017 International Joint Conference on Neural Networks (IJCNN), pages 2217–2226,
2017.

Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, and Johannes Weis. Accelerated
analog neuromorphic computing. arXiv preprint arXiv:2003.11996, 2020.

Johannes Schemmel, Sebastian Billaudelle, Philipp Dauer, and Johannes Weis. Accelerated
analog neuromorphic computing. In Analog Circuits for Machine Learning, Current/Volt-
age/Temperature Sensors, and High-speed Communication, pages 83–102. Springer, 2022.

Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Güttler, An-
dreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch, et al.

BIBLIOGRAPHY 209

Neuromorphic hardware in the loop: Training a deep spiking network on the brainscales
wafer-scale system. 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2227–2234, 2017.

Bernhard Scholkopf. The kernel trick for distances. Advances in neural information process-
ing systems, pages 301–307, 2001.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593–1599, 1997.

Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell, Mark E Dean,
Garrett S Rose, and James S Plank. A survey of neuromorphic computing and neural
networks in hardware. arXiv preprint arXiv:1705.06963, 2017.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of
the ACM, 63(12):54–63, 2020.

Terrence J Sejnowski. The deep learning revolution. MIT Press, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, AjaHuang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354, 2017.

Louis Sokoloff. The metabolism of the central nervous system in vivo. Handbook of physi-
ology, section I, neurophysiology, 3:1843–1864, 1960.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do
backpropagation? – exact implementation of backpropagation in predictive coding net-
works. Advances in Neural Information Processing Systems, 33:22566, 2020.

Yuhang Song, Beren Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and
Rafal Bogacz. Inferring neural activity before plasticity: A foundation for learning beyond
backpropagation. bioRxiv, 2022. doi: 10.1101/2022.05.17.492325.

Thomas Splettstoesser. Schematic drawing of a chemical synapse.
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg, July 2015. URL
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg.
Accessed: 2022-11-02.

Nelson Spruston. Pyramidal neurons: dendritic structure and synaptic integration. 9(3):
206–221, 2008. ISSN 1471-0048. doi: 10.1038/nrn2286.

https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg

210 BIBLIOGRAPHY

André Srowig, Jan-Peter Loock, Karlheinz Meier, Johannes Schemmel, Holger Eisenreich,
Georg Ellguth, and René Schüffny. Analog floating gate memory in a 0.18 µm single-poly
cmos process. Internal FACETS Documentation, 2007.

Evangelos Stromatias, Daniel Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, and
Steve Furber. Scalable energy-efficient, low-latency implementations of trained spiking
deep belief networks on spinnaker. 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2015.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R StanleyWilliams. Themissing
memristor found. nature, 453(7191):80–83, 2008.

Guangzhi Tang, Neelesh Kumar, Ioannis Polykretis, and Konstantinos P Michmizos. Bi-
ograd: Biologically plausible gradient-based learning for spiking neural networks. arXiv
preprint arXiv:2110.14092, 2021.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothee Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 2018a.

Amirhossein Tavanaei, Zachary Kirby, and Anthony S Maida. Training spiking convnets
by stdp and gradient descent. 2018 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2018b.

Corinne Teeter, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David Feng, Jim Berg,
Aaron Szafer, Nicholas Cain, Hongkui Zeng, Michael Hawrylycz, et al. Generalized leaky
integrate-and-fire models classify multiple neuron types. Nature Communications, 9(1):
709, 2018.

INA219. Texas Instruments, 12 2015. URL https://www.ti.com/lit/ds/symlink/
ina219.pdf. Rev. G.

Chetan Singh Thakur Thakur, Jamal Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan
Kumar, Ning Qiao, Johannes Schemmel, RunchunMarkWang, Elisabetta Chicca, Jennifer
Olson Hasler, et al. Large-scale neuromorphic spiking array processors: A quest to mimic
the brain. Frontiers in Neuroscience, 12:891, 2018.

Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. The computa-
tional limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.

Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human visual
system. Nature, 381(6582):520, 1996.

Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid
processing. Neural Networks, 14(6-7):715–725, 2001.

https://www.ti.com/lit/ds/symlink/ina219.pdf
https://www.ti.com/lit/ds/symlink/ina219.pdf

BIBLIOGRAPHY 211

Robert Urbanczik and Walter Senn. Learning by the Dendritic Prediction of Somatic Spik-
ing. 81(3):521–528, 2014.

Yoeri van De Burgt, Armantas Melianas, Scott Tom Keene, George Malliaras, and Alberto
Salleo. Organic electronics for neuromorphic computing. Nature Electronics, 1(7):386–
397, 2018.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh,
Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James
Molloy, Trevor Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, To-
bias Pfaff, Toby Pohlen, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Has-
sabis, and David Silver. Alphastar: Mastering the real-time strategy game starcraft
ii. https://www.deepmind.com/blog/alphastar-mastering-the-real-time-
strategy-game-starcraft-ii, 2019. Accessed: 2022-10-19.

Ben von Hünerbein, Ismael Jaras, Laura Kriener, Jakob Jordan, Walter Senn, and Mihai A
Petrovici. Towards fully embedded biologically inspired deep learning on neuromorphic
hardware. In 6th HBP Student Conference on Interdisciplinary Brain Research, pages 85–89.
Frontiers Event Abstracts, 2022.

John Von Neumann. First draft of a report on the edvac. IEEE Annals of the History of
Computing, Republication of the original draft in 1993, 15(4):27–75, 1945.

Runchun M Wang, Chetan S Thakur, and Andre Van Schaik. An fpga-based massively
parallel neuromorphic cortex simulator. Frontiers in neuroscience, 12:213, 2018.

Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. System modeling
and optimization, pages 762–770, 1982.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity. 29(5):
1229–1262, 2017.

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.
Trends in cognitive sciences, 23(3):235–250, 2019.

Katharina Wilmes, Constanze Raltchev, Sergej Kasavica, Shankar Babu Sachidhanandam,
andWalter Senn. Uncertainty-weighted prediction errors (UPEs) in cortical microcircuits.
In Proceedings of Computational and Systems Neuroscience (Cosyne), page 253, 2022.

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

212 BIBLIOGRAPHY

Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, and Haizhou Li. Deep spiking
neural network with spike count based learning rule. arXiv preprint arXiv:1902.05705,
2019.

Timo Wunderlich, Akos Ferenc Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann,
Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David
Stöckel, et al. Demonstrating advantages of neuromorphic computation: a pilot study.
Frontiers in Neuroscience, 13:260, 2019.

Timo C Wunderlich and Christian Pehle. Event-based backpropagation can compute exact
gradients for spiking neural networks. Scientific Reports, 11(1):1–17, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv:1708.07747, 2017.

Xiaohui Xie and H. Sebastian Seung. Equivalence of Backpropagation and Contrastive
Hebbian Learning in a Layered Network. Neural Computation, 15(2):441–454, 02 2003.

Daniel L K Yamins and James J DiCarlo. Using goal-driven deep learning models to under-
stand sensory cortex. Nature Neuroscience, 19(3):356–365, March 2016.

Esin Yavuz, James Turner, and Thomas Nowotny. Genn: a code generation framework for
accelerated brain simulations. Scientific reports, 6(1):1–14, 2016.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spik-
ing neural networks. Neural computation, 30(6):1514–1541, 2018.

Pawel Zmarz and Georg B Keller. Mismatch receptive fields in mouse visual cortex. Neuron,
92(4):766–772, 2016.

Acknowledgments

I would like to thank

Mihai for being all that I could have wished for in a PhD-advisor and evenmore importantly
for being a friend. Thank you for being an inspiring scientist, a great mentor and sometimes
(I can’t believe I am writing this) for being the voice of reason and diplomacy. Also, though
I still don’t know how you do it, for always finding a 27th hour in your 26-hour days to talk
and help if something is up.

Walter for agreeing to supervise a thesis that focuses on those pesky neuromorphic details
that break the nice and clean theories. Thank you for always finding time for a discussion
if there is a problem, for your wealth of ideas and for sometimes pulling stunts that e.g.
result in us having symposium talks in the research station on top of the Jungfrau Joch!

Prof. Dr. Giacomo Indiveri for being my co-advisor for this thesis and for joining the com-
mittee in my midterm exam and the defense. And of course for the yearly Capo Caccia
workshops!

Prof. Dr. Steve Furber for taking the time to be external referee for this thesis and for joining
the committee in the defense.

Julian for a collaboration that was kicked-off by chance but quickly turned into a valued
friendship. Thank you for being an awesome person to share projects, debugging, paper
writing, coffee breaks, party pizzas, wine, talks and travels with. Let’s claim that we are the
only two people ever to take aweek-long trip to show up in person for an online conference!

Sebastian for our friendship. From the first day of Mathematischer Vorkurs to a PhD in
neuromorphics — what a path to share! Thank you for all your support, kindness and all
the fun, both study related and off work. The enthusiasm with which you tend to launch
yourself head-first into your work or non-work projects is both inspiring and contagious,
and I hope to continue getting drawn into them in the future.

Andreas for both your scientific and non-scientific advice that I could draw on, in partic-
ular during different stages of the TTFS work and thesis writing. And of course also for

213

214 BIBLIOGRAPHY

our many interesting, relaxed, funny and often challenging discussions during not-coffee
breaks.

Kevin for our enjoyable and prolific collaboration. It’s almost funny how well the combina-
tion of you, who stares down a problem with a whiteboard full of equations while turning
to the code last, and me, who is the exact opposite, turned out to work. I learned a lot from
you and I thoroughly enjoyed our many discussions, both on and off-topic.

Ismael and Ben for allowing me to drag you into this whole microcircuit business. It was
amazing to see you two grow together and tackle obstacle after obstacle.

All the proofreaders: Andreas, Julian, Katharina, Luisa, Nicolas, Paul and Sebastian for your
time and the valuable feedback. A special thank-you goes to Julian for expertly wielding
the languagetool as well as sed and grep and stuff and for not making too much fun of me
for all the misspelled micorcirutis. To Luisa for being an English grammar guru and reading
almost everything. To Sebastian for all his help with making all the “important chapters”
sound nice. And to Paul for always being the first one to read a chapter before I dared to
give it to someone else.

Everyone in the NeuroTMA and CompNeuro groups in Bern for being fun and great col-
leagues.

My family for always being there for me. Thank you for giving me the opportunity to
always follow my interests and for supporting me along all the way.

Paul for your love, your calmness and all of your support. Thank you for being who you
are. I love you.

Declaration of Originality

Last name, first name: Kriener, Laura Magdalena

Matriculation number: 18–131–680

I hereby declare that this thesis represents my original work and that I have used no other
sources except as noted by citations. All data, tables, figures and text citations which have been
reproduced from any other source, including the internet, have been explicitly acknowledged
as such. I am aware that in case of non-compliance, the Senate is entitled to withdraw the
doctorate degree awarded to me on the basis of the present thesis, in accordance with the
“Statut der Universität Bern (Universitätsstatut; UniSt)”, Art. 69, of 7 June 2011.

Bern, April 25, 2023

	Abstract
	Introduction
	Background
	Biological neurons and synapses
	Neurons
	Action potentials

	Synapses
	Plasticity

	Computational models of neurons and synapses
	Leaky-integrate-and-fire model
	Rate-based neuron models
	Multi-compartment neuron models
	Synapse models
	Spike transmission
	Rate transmission
	Plasticity

	Neuromorphic engineering
	Variety of neuromorphic platforms
	Neuromorphic architectures based on novel devices:

	BrainScaleS-2: HICANN-X

	Deep learning
	Artificial neural networks
	Error backpropagation
	Biological plausibility

	Hypothesis and Aim
	Result I: A proper test case for prototyping
	Introduction
	Dataset
	Training results
	Input encoding
	Spatio-temporal input encoding
	Rate-based input encoding

	Result II: Exact error backpropagation with LIF neurons
	Introduction
	Results
	Leaky integrate-and-fire dynamics
	First-spike times
	Exact error backpropagation with spikes
	Simulations
	Fast neuromorphic classification
	Robustness of time-to-first-spike learning

	Discussion
	Preliminaries
	nLIF learning rule
	Learning rule for equal time constants
	Learning rule for time constants of ratio 2
	Error backpropagation in a layered network
	Training on hardware

	Supplementary Information
	Learning with time-to-first-spike (TTFS) coding on BrainScaleS-1
	Additional experiments
	Robustness to post-training variations
	Simplification of the learning rule
	Execution time breakdown
	GPU

	Additional data

	Result III: Towards dendritic microcircuits on neuromorphic hardware
	Introduction
	Biologically plausible error backpropagation in dendritic microcircuits
	Network structure and dynamics
	Plasticity
	Implementation

	Approximation of the error backpropagation algorithm
	Neuromorphic implementability and known drawbacks

	Latent equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons
	Article and author contribution
	The relaxation problem
	Latent equilibrium
	Application to dendritic microcircuits

	Learning efficient backprojections across cortical hierarchies in real time
	Introduction
	Learning of efficient backprojections
	Cortical microcircuit implementation
	Phaseless backwards weight alignment
	Teacher-student setup
	Efficient credit assignment in deep networks

	Discussion
	Alignment of feedback weights
	Efficient credit assignment in deep networks

	Derivation of PAL
	Error propagation in microcircuits
	Local alignment is compatible with approximate Gauss Newton-target propagation

	Supplementary Information B: Simulation of PAL
	Microcircuit models
	Efficient credit assignment in deep networks

	Event-based communication in dendritic microcircuits
	Approximating rate-based neurons with lif neurons
	Approximating multi-compartment microcircuit mechanisms with point neurons
	Modifications for practical implementability
	Preliminary results
	Challenges and drawbacks

	Events at regularly spaced time intervals
	Events triggered by voltage changes
	Inclusion of the LE mechanism

	Discussion and Outlook
	The Yin-Yang dataset
	Error backpropagation with first-spike times of LIF neurons
	Recurrent networks and multiple spikes per neuron

	Towards dendritic microcircuits on neuromorphic hardware
	Error transport mechanisms

	Conclusions

	Appendices
	Error Backpropagation in ANNs and Microcircuits
	Derivations for ANNs
	Error backpropagation in dendritic microcircuits
	Hidden layers
	Top layer
	Multiple hidden layers

	Error backpropagation in point neuron microcircuits
	Nudging via synaptic connections
	Correspondence to propagation mechanisms in original microcircuit

	Parameter tables
	Background
	Point neuron Microcircuits
	Event-based Microcircuits

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Acknowledgments

