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Thesis overview and summary

Ocean extreme events can severely impact marine organisms and ecosystems. Of particular
concern are multivariate compound events, namely when conditions are simultaneously extreme
for multiple ocean ecosystem stressors. In 2013-2015, for example, an extensive marine heatwave
(MHW), known as the ‘Blob’, co-occurred locally with extremely low net primary productivity
(NPPX) and negatively impacted marine life in the northeastern Pacific. Yet, little is known
about the distribution, drivers, and impacts of such multivariate compound MHW-NPPX events.

The introduction of this thesis (Chapter 1) motivates the study of compound MHW-NPPX
events by first giving an overview of how sea surface temperature (SST) and net primary
production (NPP) are changing under climate change, with repercussions on climate and marine
ecosystems. Long-term changes in SST and NPP are associated with a rise in extremely high
SST and low NPP events, which may co-occur during compound MHW-NPPX events and drive
severe impacts on marine ecosystems.

The Methods section (Chapter 2) then introduces the tools used in this thesis to study
these potentially harmful compound MHW-NPPX events. We specifically use a combination of
satellite-derived SST, chlorophyll concentration, and NPP observations, and large ensemble
simulations by two Earth system models and by one global marine fish model.

Chapter 3, published in Biogeosciences (Le Grix et al., 2021), characterizes the distributions
of MHW-NPPX events over the satellite period using satellite-based SST and chlorophyll
concentration as a proxy for NPP. From 1998 to 2018, we find compound events to be frequent in
the low latitudes, especially in the center of the equatorial Pacific, in the Arabian Sea and along
the borders of the subtropical gyres. In contrast, compound events are rare in the high latitudes,
where MHWs rarely co-occur with NPPX events. The frequency of compound MHW-NPPX
events also varies across seasons, with most events occurring in spring in the mid-latitudes and
in summer in the high latitudes. At the interannual time scale, large-scale modes of climate
variability seem to modulate the frequency of compound events. For example, in the eastern
equatorial Pacific, compound event likelihood is multiplied by a factor of 4 during El Niño events.
Climate modes are associated with particular ocean conditions, which can favor or prevent
the occurrence of compound MHW-NPPX events. Surface warming and reduced upwelling of
nutrient-rich waters in the eastern equatorial Pacific during El Niño events may, for instance,
contribute to driving compound MHW-NPPX events (Le Grix et al., 2022).

Earth system models (ESMs) can help identify the exact drivers of compound MHW-NPPX
events. In Chapter 4, also published in Biogeosciences (Le Grix et al., 2022), we use large
ensemble simulations by two ESMs: the GFDL ESM2M and the CESM2. Their representation of
compound MHW-NPPX events is evaluated against satellite-derived observations. Both models
correctly simulate frequent compound MHW-NPPX events in the low latitudes. There, MHWs
are associated with nutrient limitation on phytoplankton growth and a relative increase in
phytoplankton loss (e.g., grazing) compared to phytoplankton production, which drive low
phytoplankton NPP and result in frequent compound MHW-NPPX events. In the high latitudes,
however, models disagree on the likelihood and drivers of compound MHW-NPPX events. There,
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improved understanding of the factors controlling phytoplankton NPP is key to improving model
representation of NPPX events and, ultimately, of compound MHW-NPPX events.

Lastly, in Chapter 5 (Le Grix et al., 2023 (submitted)), we evaluate the actual threat posed
by compound MHW-NPPX events on marine ecosystems using a global marine fish model, the
DBEM, forced by a large ensemble simulation from an ESM, the GFDL ESM2M. We first identify
events of extremely low biomass of pelagic fish, and then look back at the ocean conditions
that may have driven these events. We find that MHWs and NPPX events are both drivers of
extreme impacts on pelagic fish biomass in the equatorial Atlantic, the central and eastern
equatorial Pacific, in the northern part of the Indian Ocean and in the northeastern Pacific.
There, pelagic marine ecosystems may be particularly vulnerable to compound MHW-NPPX
events. We also identify regions where impacts may be caused by ocean conditions other than
compound MHW-NPPX events, and by ocean conditions that do not necessarily correspond to a
compound extreme event. Moderate anomalies in one ocean ecosystem stressor were found
to never drive extreme impacts on pelagic fish. In contrast, over 78% of the global ocean, a
combination of anomalies in multiple ocean ecosystem stressors is necessary to experience
extreme impacts. Overall, Chapter 5 highlights the key role of ocean compound events in driving
extreme impacts on marine ecosystems.

The Discussion (Chapter 6) summarizes our results and puts them into the larger perspective
of ocean and compound event research. Overall, this thesis provides a first understanding of the
distribution, drivers, and impacts of compound MHW-NPPX events. We highlight the need to
improve their representation in ESMs, to further study their impacts, and to extend compound
event research to other types of oceanic compound events. We also inform potential strategies to
predict, prevent and moderate compound MHW-NPPX events impacts on marine ecosystems.
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Extreme and compound ocean events are key drivers of projected low pelagic fish biomass.



Contents

Thesis overview and summary 3

1 Introduction 9

1.1 Ocean temperature and net primary productivity under climate change . . . 9

1.2 Ocean extreme events accompany changes in ocean temperature and net primary
productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Compound extreme events combine ocean extreme events across time and space 15

1.4 Impacts of compound extreme events on marine ecosystems . . . . . . . . . . 17

1.5 Knowledge gaps prior to this thesis . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Aims and outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Methods 31

2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Sea surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Surface chlorophyll concentration . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 Net primary productivity . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Earth system models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Global marine fish models . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Large ensemble simulations . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Compound high temperature and low chlorophyll extremes in the ocean over
the satellite period 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Marine heatwaves and low-chlorophyll events . . . . . . . . . . . . . . 52

3.3.2 Compound marine heatwaves and low-chlorophyll events . . . . . . . 53

3.3.3 Distribution of marine heatwaves and low-chlorophyll and compound
events over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 The role of natural internal climate variability . . . . . . . . . . . . . 55

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



6 CONTENTS

4 Hotspots and drivers of compound marine heatwaves and low net primary
production extremes 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Hotspots of compound MHW-NPPX events in the global ocean . . . . 75

4.3.2 Small and large phytoplankton NPP anomalies during compound
MHW-NPPX events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Drivers of low NPP during compound MHW-NPPX events . . . . . . 77

4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Extreme and compound ocean events are key drivers of projected low pelagic
fish biomass 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Drivers of low fish biomass events . . . . . . . . . . . . . . . . . . . . 105

5.3.2 The role of lagged effects in driving low fish biomass events . . . . . . 108

5.3.3 Most influential predictor of low fish biomass events . . . . . . . . . . 109

5.3.4 Categorizing the drivers of low fish biomass events into moderate, extreme,
univariate, and compound drivers . . . . . . . . . . . . . . . . . . . . . 109

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Discussion 127

6.1 Summary and discussion of the main results . . . . . . . . . . . . . . . . . . . 127

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Low confidence in NPP estimates . . . . . . . . . . . . . . . . . . . . . 132

6.2.2 2D perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.3 Imperfect representation of ocean biogeochemical extremes in ESMs . 133

6.2.4 Imperfect representation of the drivers of extreme impact on fish in global
marine fish models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 Describe the spatio-temporal structure of compound MHW-NPPX events134

6.3.2 Further investigate the impacts of compound MHW-NPPX events . . 134

6.3.3 Implications for the carbon pump . . . . . . . . . . . . . . . . . . . . . 135

6.3.4 Other types of ocean compound events . . . . . . . . . . . . . . . . . . 136

6.3.5 Impact prediction and mitigation . . . . . . . . . . . . . . . . . . . . . 137

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix A Simulating compound weather extremes responsible for critical
crop failure with stochastic weather generators 147



CONTENTS 7

Acknowledgements 167

Publications 169
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Chapter 1

Introduction

1.1 Ocean temperature and net primary productivity under
climate change

Greenhouse gases emitted by human activities have accumulated in the atmosphere since the
industrial revolution, mostly in the form of carbon dioxide (CO2) and methane (CH4) (Gulev
et al., 2021). Human emissions provide strong radiative forcing, which causes global surface
warming at a rate unprecedented since at least the past 2000 years (Gulev et al., 2021). More
than 90% of the excess heat is stored in the ocean (Bindoff et al., 2019), while the residual heat
contributes to melting land and sea ice and to warming the atmosphere and land surface. The
ocean is therefore a strong moderator of global warming.

Sea surface temperature (SST) is a primary indicator of ocean warming. On average,
global mean SST has already increased by 0.88◦C (0.68-1.01◦C) from 1850-1900 to 2011-2020
(Fox-Kemper et al., 2021). Earth system models simulate an SST increase of about 0.5◦C between
1950 and 2005 (in orange on Fig. 1.1) and project further SST increase between 2005 and 2100
of about 0.5◦C (in blue on Fig. 1.1) and 2.5◦C (in red on Fig. 1.1) under a low and a high
emissions scenario, respectively.

Figure 1.1: Global mean sea surface temperature (SST) change relative to 1986-2005. SST
changes are simulated over the historical period (in orange), and projected under a low (in blue)
and a high (in red) greenhouse gas emissions scenario by models participating in the fifth phase
of the Coupled Model Intercomparison Project (CMIP5). Lines correspond to the multi-model
mean. Shadings indicate ± one multi-model standard deviation. This figure is modified from
Figure TS.3 in IPCC, 2019: Technical Summary (Pörtner et al., 2019).

Warming is heterogeneously distributed over the global ocean, with the fastest surface
warming occurring in the Indian Ocean and in western boundary currents, and slower warming or
even surface cooling occurring in the Southern Ocean and in the subpolar North Atlantic since the
1950s (Fox-Kemper et al., 2021). Disparate ocean warming patterns perturb atmospheric weather
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patterns (e.g., Xie (2020)) and may enhance risk from extreme weather events. For instance,
ocean warming in Central America, in the tropical Atlantic and in the Indian Ocean has been
associated with more intense tropical Atlantic cyclones (Grinsted et al., 2013). Ocean warming
rates also vary vertically, as heat is taken up by the surface ocean before being distributed to the
deeper ocean (Barnett et al., 2005). Surface waters warm faster than subsurface waters, which
increases stratification (Li et al., 2020; Sallée et al., 2021). Stratification hinders the ventilation
of surface waters, potentially reducing the uptake of atmospheric heat by the ocean.

Oceans not only take up excess atmospheric heat, they have also taken up about 25% of
cumulative CO2 emissions since 1850 (Friedlingstein et al., 2022; Terhaar et al., 2022). CO2

uptake begins with atmospheric CO2 dissolving in ocean surface waters. The driving force
governing the exchange of CO2 across the air–sea interface is the air-sea difference in pCO2, the
CO2 partial pressure. As long as surface waters pCO2 remains lower than atmospheric pCO2,
oceans can take up atmospheric CO2. The transfer of carbon from surface waters to the ocean
interior contributes to maintaining surface pCO2 lower than atmospheric pCO2 and therefore
sustains the ocean carbon uptake. The physical carbon pump refers to the transfer of dissolved
inorganic carbon from surface waters to the ocean interior by ocean circulation (Boyd et al.,
2019). The biological carbon pump also participates in maintaining surface CO2 concentration
relatively low, by converting CO2 into organic carbon, and exporting the latter to depth (Volk &
Hoffert, 1985; Neuer et al., 2014). Fig. 1.2 illustrates the role of primary productivity in the
biological carbon pump.

Primary producers, i.e., mainly phytoplankton in the open ocean, first convert CO2 into
organic matter during photosynthesis (Sarmiento & Gruber, 2006; Williams & Follows, 2011).
Photosynthesis requires macronutrients, such as nitrogen and phosphorus, and micronutrients,
such as iron (Falkowski, 1994; Coale et al., 1996; Street & Paytan, 2005; Bristow et al., 2017).
It is also limited by light availability (Sarmiento & Gruber, 2006), and therefore restricted
to the sunlit euphotic layer, where incoming sunlight is, by definition, degraded down to 1%
of its surface strength (Lee et al., 2007). Net primary productivity (NPP) accounts for the
difference between the gross production of organic matter during photosynthesis and its loss
during respiration (Sarmiento & Gruber, 2006). NPP sustains the growth and reproduction of
phytoplankton, whose organic matter is then grazed by zooplankton and transferred to larger
marine species throughout the marine food web (Pauly & Christensen, 1995). Marine organisms
can migrate from the surface ocean, where they mostly feed, to the deeper ocean, resulting in a
net export of carbon toward the deep (Vinogradov, 1997; Davison et al., 2013; Boyd et al.,
2019). Marine organisms produce and are degraded into particulate organic carbon (POC),
which can be exported to the deeper ocean through physical mixing and gravitational settling
(Sarmiento & Gruber, 2006). As they sink, particles form aggregates that sink faster and can
potentially reach the seafloor, where they are sequestered in the sediments for millions of years.
However, most particles never reach the seafloor and are degraded into dissolved organic carbon
(DOC). DOC is remineralized by bacteria into dissolved inorganic carbon (DIC) which either
accumulates in the ocean interior or is upwelled by ocean circulation to the euphotic layer, where
it can again be used by phytoplankton to form organic carbon (Volk & Hoffert, 1985).

Overall, NPP sustains the marine food web and plays a key role in the biological carbon
pump by converting inorganic carbon into organic carbon. The future of marine fisheries (Pauly
& Christensen, 1995; Chassot et al., 2010; Friedland et al., 2012; Marshak & Link, 2021) and of
the carbon cycle on multi-centennial to geological timescales (Sarmiento & Bender, 1994; Bopp
et al., 2001) therefore depend on how NPP will change as oceans are getting warmer and more
stratified.

Changes in NPP are driven by an interplay of physical and biological processes. Stratification,
for instance, reduces the nutrient supply to surface waters (Sarmiento et al., 1998). In turn,
nutrient limitation on phytoplankton growth may drive a decrease in phytoplankton NPP (Bopp
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Figure 1.2: Role of net primary productivity (NPP) in the ocean as (1) the base of the marine
food web and (2) a key element of the biological carbon pump. NPP is the production of organic
carbon from CO2 through photosynthesis that remains after respiration. NPP by phytoplankton
is grazed by larger plankton, which are then eaten by larger marine predators, allowing a
transfer of organic carbon in the marine food web. Marine organisms produce particulate
organic carbon (POC), which forms aggregates that sink and either reach the bottom of the
ocean, where they form sediments, or are degraded into dissolved organic carbon (DOC) and
remineralized into dissolved inorganic carbon (DIC). DOC and DIC either accumulate at depth,
or are upwelled back to the euphotic layer by circulation processes such as vertical mixing. Note
that for simplicity, this schematic only presents a selection of the processes involved in the
biological carbon pump.

et al., 2001; Sarmiento et al., 2004; Behrenfeld et al., 2006; Laufkötter et al., 2015; Roxy et al.,
2016). However, stratification also maintains phytoplankton within the warm euphotic layer
(Sarmiento et al. (1998); Bopp et al. (2001); Fig. 1.2), where enhanced temperature and light
availability may counteract nutrient limitation on phytoplankton growth (Steinacher et al., 2010;
Laufkötter et al., 2015; Frölicher et al., 2016). Phytoplankton biomass may also be affected by
enhanced grazing pressure and by changes in ocean circulation (Laufkötter et al., 2015). Overall,
the future of phytoplankton NPP under climate change remains unclear (Steinacher et al., 2010;
Bopp et al., 2013; Laufkötter et al., 2015; Kwiatkowski et al., 2020). Previous studies based
on satellite-derived and in situ observations suggested a global decline over the past century
(Behrenfeld et al., 2006; Boyce et al., 2010). In contrast, Saba et al. (2010) reported a local
increase in NPP measured in-situ at two stations in the low latitudes. Disagreement arises from
various methodologies and regions under study (Saba et al., 2010; Siegel et al., 2013; Hammond
et al., 2020; Pinkerton et al., 2021), and in the past decades, observations remained anyway too
limited to detect a robust trend in NPP (Henson et al., 2010; Pinkerton et al., 2021). Earth
system models are another way to apprehend changes in NPP. On average, Earth system models
project a further decrease in NPP over the 21st century, especially in the nutrient-limited waters
of the low to mid latitudes (Bopp et al., 2013; Kwiatkowski et al., 2020). However, individual
Earth system models disagree on the magnitude and even sign of NPP changes (Steinacher
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et al., 2010; Laufkötter et al., 2015; Kwiatkowski et al., 2020; Tagliabue et al., 2021). Improved
representation of NPP in Earth system models is necessary to reduce uncertainties in future
marine NPP.

1.2 Ocean extreme events accompany changes in ocean tempera-
ture and net primary productivity

Warming and reduced net primary producivity are considered to be two of the major potential
stressors of open ocean ecosystems, along with acidification and deoxygenation (Gruber, 2011;
Bopp et al., 2013; Doney et al., 2012; Bindoff et al., 2019). However, marine ecosystems are not
only threatened by long-term decadal-scale changes in SST (Cheng et al., 2017) and NPP (Boyce
et al., 2010; Doney et al., 2012), they are also increasingly exposed to short-term extreme events,
such as marine heatwaves (MHWs) (Wernberg et al., 2013; Frölicher & Laufkötter, 2018b; Oliver
et al., 2018) and extremely low NPP events (hereafter called ‘NPPX’ events; Whitney (2015);
Cavole et al. (2016); Le Grix et al. (2022)).

Extreme events are broadly defined as the normally rare occurrences when a system is far
outside the norm (Gruber et al., 2021). Yet their exact definition varies across studies, depending
on the scientific question that is to be addressed. In the following, we describe the various
criteria that can be used when defining extreme events. Namely, extreme events occur when the
stress variable, such as SST or NPP, exceeds a certain threshold, which can be (1) absolute, i.e.
set to a particular value, or (2) varying in time or space relative to a climatological baseline.
This baseline can be (3) fixed or (4) shifting in time to account for long-term variability in the
stress variable. Extreme event definition may also consider (5) seasonal variability in the stress
variable, as well as (6) additional criteria such as extreme event duration.

(1) Absolute thresholds are recommended when the stress variable is expected to impact
marine organisms upon exceedance of a particular value (Gruber et al., 2021). For example,
warm-water corals seem to be impacted by temperatures exceeding a certain temperature
threshold, e.g. 32◦C for Acropora in northwestern Australia (Schoepf et al., 2015). One could
therefore define MHWs as periods over which temperatures exceed the 32◦C absolute threshold.
However, even though corals may motivate the use of an absolute temperature threshold, the
most common definition of MHWs in recent literature uses a relative threshold (Hobday et al.,
2016; Oliver et al., 2021).

(2) Relative thresholds vary in time and space. Their use is warranted in situations when
marine ecosystems are impacted by extreme deviations of a stress variable outside its normal
range of variability (Gruber et al., 2021). Most widely-used relative thresholds are percentile
thresholds. For example, MHWs are typically defined as events when the SST anomaly relative
to the climatological SST exceeds its local 90th or 99th percentile. The choice of percentile
threshold depends on the range of variability that marine ecosystems are expected to be able to
cope with. A restrictive (e.g., 99th) percentile threshold allows for identifying truly “extreme”
extreme events, which are bound to impact marine ecosystems. The percentile threshold also
controls the sample size, e.g., a 90th percentile threshold would sample 10 times as many extreme
events as a 99th percentile threshold, and therefore be recommended in situations where short
time series limit the statistical relevance of an extreme event analysis.

Relative thresholds are defined locally relative to a climatological baseline. This baseline may
be (3) fixed or (4) shifting in time (Oliver et al., 2019; Gruber et al., 2021; Burger et al., 2022).

(3) A fixed baseline is a fixed reference period over which to assess the distribution of
the stress variable when defining extreme events. A fixed baseline is usually stationary or
sufficiently short to be considered quasi-stationary. For example, Frölicher et al. (2018) use
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Figure 1.3: Marine heatwaves (MHWs) are defined relative to a climatological baseline that is
either fixed or shifting in time. (a) Simulated 5-day mean SST distribution over the preindustrial
period at a grid cell in the northern Pacific at 17◦N - 90◦W (black line). The 90th percentile of
SST (red line) is used as a threshold for the definition of MHWs, resulting in 10% of MHWs over
the preindustrial period (red shading). (b) The 5-day mean SST distribution over 1998-2018
(black dotted line) has shifted toward warmer SST compared to the preindustrial period (black
line). MHWs are still defined using the 90th percentile of SST relative to the fixed preindustrial
baseline (red line), resulting in an increase in MHW frequency over 1998-2018 compared to the
preindustrial period. (c) MHWs are now defined using the 90th percentile of SST relative to
the shifted 1998-2018 baseline (red dotted line) to account for the shift in 5-day mean SST
distribution, resulting in 10% of MHWs over 1998-2018. On the y-axes, density accounts for
the probability density function, which is smoothed using Gaussian kernel density estimation
and whose area under the curve is equal to 1. SST time series come from the GDFL ESM2M
simulations presented in Chapter 2, section 2.2.1.

multi-centennial preindustrial simulations as a baseline for their definition of MHWs. In Fig. 1.3a,
the preindustrial period also serves as baseline over which to assess the distribution of 5-day
mean SST at 17◦N - 90◦W. MHWs occur when the 5-day mean SST exceeds the 90th percentile
of this distribution (in red on Fig. 1.3a). A fixed baseline remains fixed despite any long-term
variability in the stress variable. A fixed baseline therefore allows to consider changes in extreme
event properties driven by a shift in the variable’s distribution over time (Frölicher et al., 2018;
Burger et al., 2022). For example, global mean ocean warming since the preindustrial period has
led to increased frequency, duration, spatial extent, and intensity of MHWs (Frölicher et al.,
2018; Oliver et al., 2019; Gruber et al., 2021). Simulated 5-day mean SST also increases over
1998-2018 compared to the preindustrial period, which results in more frequent MHWs over
1998-2018 (Fig. 1.3b) than over the cooler preindustrial period (Fig. 1.3a).

(4) In contrast, a shifting baseline shifts in time so as to be centered around the period
over which to sample extreme events (Fig. 1.3c). Thereby, the use of a shifting baseline accounts
for the mean shift in the stress variable, e.g. the warming trend in SST (Oliver et al., 2019; Xu
et al., 2022). It also accounts for the change in shape of the distribution. For example, the SST
distribution at 17◦N - 90◦W is more tailed towards extreme values over 1998-2018 than over
the preindustrial period (Fig. 1.3c compared to Fig. 1.3a), resulting in more intense MHWs.
A shifting baseline allows for sampling events that are truly extreme relative to the current
distribution of the stress variable.

(5) In addition, seasonal variability in the stress variable is sometimes accounted for in the
definition of extreme events (Hobday et al., 2016; Gruber et al., 2021). (5a) The stress variable
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Figure 1.4: Accounting for seasonality in the definition of marine heatwaves (MHWs) affects
the sampling of MHWs. (a) MHWs, defined as days when the SST exceeds its 90th percentile,
occur in summer. (b) MHWs, defined as days when the SST exceeds its seasonally-varying 90th
percentile, can occur in all seasons. The black line indicates the SST time series, the red line the
percentile threshold, and the red shading the MHWs identifed at a grid cell in the northern
Pacific (at 90◦W - 17◦N). Percentile thresholds are defined relative to the 1998-2018 baseline.
SST time series come from the GDFL ESM2M simulations presented in Chapter 2, section 2.2.1.

may be deseasonalized before applying any threshold to sample extreme events (e.g., Le Grix
et al. (2021); Gruber et al. (2021); Le Grix et al. (2022)). For example, Le Grix et al. (2022)
remove the seasonal cycles of SST and NPP before sampling MHWs and NPPX events. By doing
so, MHWs can occur throughout the year and not only in summer, whereas NPPX events are
not limited to the low productive seasons. However, this method does not account for enhanced
SST variability in summer and NPP variability in spring, which result in higher MHW frequency
in summer and NPPX event frequency in spring (Fig. 6 in (Le Grix et al., 2021)). (5b) Another
way to account for seasonal variability is to apply a seasonally-varying threshold (Burger et al.,
2020, 2022), such as the 90th percentile of SST computed on each calendar day (Fig. 1.4b). A
seasonally varying threshold ensures that extreme events are evenly sampled throughout the year
(Fig. 1.4b compared to Fig. 1.4a). Burger et al. (2022) thereby define MHWs that have the same
probability to occur on each calendar day. The use of a seasonally-varying threshold is warranted
in situations where marine ecosystems might be adapted to seasonal variability in the stress
variable.

(6) Lastly, additional conditions may be applied to the definition of extreme events, such
as a minimum duration. For example, Hobday et al. (2018) define MHWs as prolonged events of
anomalously warm water, where “prolonged” implies a duration of at least 5 days. Extreme
events can also be categorized based on the degree to which the stress variable exceeds the local
climatology (Hobday et al., 2018). None of these additional conditions apply in this thesis.

Although extreme events have always existed, they are rare by definition. Long-term changes
in ocean conditions under climate change have been associated with a rise in their frequency.
The number of MHW days has, for example, doubled between 1982 and 2016 (Frölicher et al.,
2018; Oliver et al., 2018) and is projected to increase strongly under continued global warming
(Frölicher et al., 2018). Yet impacts from extreme events may be worse than impacts due to
long-term climate change only (Cheung & Frölicher, 2020). The rise in ocean extreme events
under climate change motivates their study and explains growing interest in their distribution,
drivers and impacts (Gruber et al., 2021). Extreme events in the ocean have not been studied as
extensively as extreme events on land, which are more directly observed and which can directly
impact humans and ecosystems on land (Parmesan et al., 2000; Smith et al., 2021, 2023). Still,
ocean extreme events can have severe impacts on marine ecosystems, with repercussions on
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human societies. MHWs, for instance, have already impacted many key habitats (Smale et al.,
2019), including seagrass meadows (Marba & Duarte, 2010; Thomson et al., 2015), kelp forests
(Wernberg et al., 2013; Smale et al., 2019) and coral reefs (Hughes et al., 2018). Changes in
the biomass and distribution of marine species further impacted socio-economically important
fisheries (Cavole et al., 2016; Cheung & Frölicher, 2020). Given the role of NPP as the base of
the marine food web, NPPX events may also impact marine ecosystems (Cavole et al., 2016;
Le Grix et al., 2022).

1.3 Compound extreme events combine ocean extreme events
across time and space

When combined across time and space, MHWs and NPPX events may have synergistic
effects driving severe impacts on marine ecosystems. “Compound events” refer to potentially
harmful situations where more than one ecosystem driver is outside the norm simultaneously,
in close spatial proximity, or temporal succession (Leonard et al., 2014; Zscheischler et al.,
2018). Zscheischler et al. (2020) differentiate between four types of compound events: (1) the
“multivariate”, where multiple events co-occur and may lead to an impact; (2) the “preconditioned”,
where a precondition aggravates the impact of an event; (3) the “temporally compounding”,
where a succession of events may lead to an impact; and (4) the “spatially compounding”, where
events in multiple connected locations cause an aggregated impact.

a) Mean SST anomaly b) Mean NPP percentile
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Figure 1.5: The 2013-2015 ‘Blob’ in the northeastern Pacific, a compound marine heatwave
(MHW) and low NPP (NPPX) event. (a) Mean sea surface temperature (SST) anomaly during
the Blob, relative to the climatological seasonal cycle of SST. (b) Mean net primary productivity
(NPP) percentile during the Blob, relative to the climatological seasonal cycle of NPP. Dark blue
areas indicate regions where NPP was extremely low during the Blob compared to normal
conditions. The Blob’s extent is taken from Laufkötter et al. (2020) and corresponds to a
spatiotemporally continuous area with SST anomalies above their 99.5 percentile.

Although early research on compound events mostly focused on land (Zscheischler et al.,
2013; Leonard et al., 2014; Ridder et al., 2020), compound events also occur in the ocean. The
‘Blob’, for instance, refers to an extensive marine heatwave in the northeastern Pacific which
lasted from 2013 to 2015 and was associated with intense surface warming of 2 to 3◦C on
average (Fig. 1.5a). It coincided with anomalously low oxygen, low pH, and large anomalies in
phytoplankton NPP (Whitney, 2015; Le Grix et al., 2021; Gruber et al., 2021; Mogen et al.,
2022; Wyatt et al., 2022; Le Grix et al., 2022). NPP anomalies were particularly negative along
the western coast of America and in the eastern equatorial Atlantic (in dark blue on Fig. 1.5b).
Ocean compound events such as the Blob constitute compound hazards (Ridder et al., 2020) and,
as such, pose a threat for marine ecosystems that warrants further investigation.
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Figure 1.6: Schematic for the definition of compound extreme events. Sea surface temperature
(SST, in red) and net primary productivity (NPP, in blue) at a grid cell in the equatorial Pacific
(at 155◦W - 0.7◦N). A marine heatwave (MHW, red shading) occurs when the SST anomaly
relative to its climatological seasonal cycle exceeds its 90th percentile (red dotted line) and an
extremely low NPP (NPPX, blue shading) event occurs when the NPP anomaly relative to its
climatological seasonal cycle is lower than its 10th percentile (blue dotted line). A compound
MHW-NPPX event occurs when a MHW co-occurs with an NPPX event. Figure modified from
Fig. A1 in Le Grix et al. (2021).

.

So far, published studies have mostly focused on the “multivariate” type of ocean compound
events. Ocean compound events are usually defined as events when at least two ocean ecosystem
drivers are extreme at the same time and space. It is important to note that the original
definitions of compound events do not require extreme conditions in multiple drivers (Leonard
et al., 2014; Zscheischler et al., 2018). The combination of multiple moderate drivers may also
drive severe impacts on marine ecosystems and thereby be considered a compound event (van
der Wiel et al., 2020). Nevertheless, most studies on ocean compound events have decided to
define ocean compound events as the combination of multiple ocean extreme events, such as
marine heatwaves with extremely low oxygen (Gruber et al., 2021), with extremely high acidity
(Gruber et al., 2021; Burger et al., 2022), or with extremely low NPP (Le Grix et al., 2021,
2022). For example, a compound MHW and NPPX event can be defined as the co-occurrence of
extremely high SST and extremely low NPP (Fig. 1.6).

Various metrics are commonly used to characterize compound events (Gruber et al., 2021).
The duration corresponds to the number of days, months or years that a compound event lasts
without interruption (Fig. 1.6). The intensity of a univariate extreme event, such as a MHW, is
defined as the exceedance of the stress variable over its threshold. For example, the intensity of a
MHW would be the SST anomaly relative to the 90th percentile threshold (Fig. 1.6). The
amplitude is similar to the intensity, with the difference that it is defined as the exceedance of
the stress variable over its climatological baseline. The amplitude of a MHW would be the SST
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anomaly relative to the climatological seasonal cycle (Fig. 1.6). A compound MHW-NPPX
event can be characterized by the intensity or amplitude of both the MHW and NPPX event it
combines. The frequency of a compound event is the number of compound event days, months
or years, divided by the total number of days, months or years in the time series. Under the
assumption of independence between MHWs and NPPX events, the expected frequency of
compound MHW and NPPX events would be the product of the frequency of MHWs and of
NPPX events (Equation 1.1). Finally, the likelihood multiplication factor (LMF) of a
compound MHW-NPPX event is defined as the ratio of the observed frequency of compound
MHW-NPPX events to their expected frequency under the assumption of independence between
MHWs and NPPX events (Zscheischler & Seneviratne (2017), Equation 1.2). An LMF of more
than 1 indicates that compound events are more frequent than expected.

fexpected(MHW-NPPX) = f(MHW) ∗ f(NPPX) (1.1)

LMF =
f(MHW-NPPX)

fexpected(MHW-NPPX)
=

f(MHW-NPPX)

f(MHW) ∗ f(NPPX) (1.2)

These metrics are used to identify regions that are particularly exposed to compound extreme
events, i.e., where compound extreme events are particularly long, intense, or frequent (Gruber
et al., 2021). They can also be used to quantify changes in compound event characteristics under
climate change (e.g., Burger et al. (2022)). The incentive to characterize compound events is
motivated by their potentially negative impacts on marine ecosystems.

1.4 Impacts of compound extreme events on marine ecosystems

Marine species are sensitive to changes in ocean conditions (e.g., Denman et al. (1996)). For
example, reduced nutrient supply limits net primary productivity (NPP), i.e. food supply,
with repercussions on the whole marine food web (Field et al., 1998; Sarmiento et al., 2004;
Blanchard et al., 2012). Marine species are also adapted to a certain temperature range (Pörtner,
2002), which sustains their metabolism and allows for growth and reproduction. They are
sensitive to oxygen levels, which determine their growth and maximum body size (Pauly, 1980).
Oxygen demand increases with acidity (Melzner et al., 2009), i.e., [H+] concentration, and
with temperature (von Bertalanffy, 1951; Pauly & Cheung, 2017), thereby limiting fish growth.
Reductions in sea-ice also affect the reproduction, growth and development of polar species
(e.g., Barber & Iacozza (2004)). Individual species react differently to changes in these ocean
conditions, depending on their habitat preferences, food demand and specificity, and dispersal
ability (e.g., Urban et al. (2012, 2013); Cavole et al. (2016)). Diverse responses of individual
species to anomalous oceans conditions alter the structure and functioning of marine ecosystems
(e.g., Dossena et al. (2012); Puerta et al. (2019)).

Of particular concern are ocean extreme events, which may rapidly push marine ecosystems
beyond the limits of their adaptability (Gruber et al., 2021). Marine heatwaves (MHWs) have,
for example, been associated with habitat degradation (Wernberg et al., 2013; Thomson et al.,
2015), rapid population declines and destabilization of trophic interactions, resulting in reduced
ecosystem functioning (Frölicher & Laufkötter, 2018a; Oliver et al., 2019; Smale et al., 2019).
Cheung & Frölicher (2020) have shown that impacts from MHWs may be worse than impacts
from long-term climate change from 1981 to 2100. However, not all MHWs have devastating
impacts (Fredston, A. L. et al. (2023), submitted); they may even be beneficial to certain species
such as tunas and orcas (Cavole et al., 2016; Stuhr et al., 6 juil. 2017; Pansch et al., 2018; Saha
et al., 2020; Britton et al., 2020).



18 1. INTRODUCTION

Northward migration of 
warm water species

Shift to smaller zooplankton 
provides less nutritious 

food to higher trophic levels

Shift to smaller
phytoplankton

Enhanced
metabolism of 

predators due to 
warming

Depletion of 
forage fish stocks

Low nutrient supply due to 
enhanced stratification

Reduced habitat suitability
due to prolonged warming

Shellfish poisoning events 
and oyster farm closures

Massive common
murre die-offs

Harmful coastal
algal bloom

Mass strandings
of sea lions

Mass strandings
of whales

MHW impact

NPPX event impact

Compound MHW - NPPX event impact

Figure 1.7: Schematic illustrating some of the ecological impacts of the 2013-2015 ‘Blob’, a
compound marine heatwave (MHW) and low NPP (NPPX) event, in the northeastern Pacific.
The color of the box indicates that an impact is directly or indirectly driven by the MHW
(in red), the NPPX event (in blue), or by their compounding effects (in green). The yellow
shading on the map indicates the approximate extent of the compound MHW-NPPX event, here
defined as the area over which the mean NPP during the 2013-2015 MHW was lower than its
climatological mean (i.e., the blue area on Fig. 1.5b).

.

The response of marine organisms to extreme deviations in one stress variable may also
depend on the state of other ocean ecosystem stressors. Indeed, stressors do not act independently,
but rather have synergistic or antagonistic effects (Boyd & Brown, 2015). They interact to cause
non-linear changes in the performance of marine organisms. Ocean compound events, which
combine multiple stressors, may drive severe impacts on marine ecosystems when these stressors
act synergistically (Zscheischler & Seneviratne, 2017).

The Blob illustrates the potential threat posed by ocean compound events on marine
ecosystems (Fig. 1.7). A lack of nutrients due to enhanced stratification and reduced upwelling
(Leising et al., 2015) limited the growth of large phytoplankton in the northeastern Pacific during
the Blob (Yang et al., 2018; Wyatt et al., 2022; Arteaga & Rousseaux, 2023), resulting in a
shift towards smaller phytoplankton, e.g. cyanobacteria (Peña et al., 2019; Wyatt et al., 2022).
This shift in phytoplankton community, associated with overall extremely low phytoplankton
productivity (Whitney, 2015; Cavole et al., 2016; Capuzzo et al., 2017; Yang et al., 2018), might
have favored certain phytoplankton grazers and led to cascading impacts on marine ecosystems
(Cavole et al., 2016; Bindoff et al., 2019; Cheung & Frölicher, 2020). For instance, decreased
phytoplankton biomass led to declines in zooplankton populations (Leising et al., 2015), with
repercussions on fish and whale species in the northeastern Pacific (Cavole et al., 2016). Extreme
warming probably amplified the impacts by further disrupting the marine food web (Frölicher
& Laufkötter, 2018a; Oliver et al., 2019; Smale et al., 2019). For example, warm waters are
characterized by lipid-poor zooplankton in the northeastern Pacific, and therefore reduced prey
energy content for Cassin’s Auklets colonies, which massively died from starvation during the
Blob (Jones et al., 2018). Piatt et al. (2020) have shown that the prolonged heatwave also
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reduced the fat content and body size of forage fish, while enhancing the metabolism and
thus food demand of groundfish, thereby depleting forage fish stock. Poor food supply caused
reproductive failure and massive die-offs of common murres (Piatt et al., 2020). The heatwave
also triggered harmful algal blooms, which, in combination with changing prey dynamics, struck
a blow to marine bird and mammal species (Cavole et al., 2016; Piatt et al., 2020). Mass
strandings of sea lions were reported in California, while whales stranded in the western Gulf of
Alaska (Cavole et al., 2016). Harmful algal blooms also caused shellfish poisoning events and
oyster farm closures in Kachemak Bay, in Alaska (Vandersea et al., 2018). Further impacts from
the Blob included northward migration of certain marine species, such as tuna crabs, which were
followed northward by their predators, such as tuna or market squid, followed in turn by their
respective predators (Cavole et al., 2016). Shifts in species composition toward warm-water
species had further repercussions on fisheries (Cavole et al., 2016; Cheung & Frölicher, 2020).
Fig. 1.7 summarizes some of the aforementionned impacts of the Blob. Overall, the compound
effects of intense surface warming and reduced phytoplankton productivity may explain the
severity of some of the Blob’s impacts.

Nevertheless, not all compound MHW-NPPX events are necessarily harmful (van der Wiel
et al., 2020). Besides, compound moderate events, such as moderately high SST and low NPP,
may also impact marine ecosystems. Additional information on how to identify the actual drivers
of extreme impacts will be given in section 2.2.2.

1.5 Knowledge gaps prior to this thesis

As we have seen in this introduction, ocean compound MHW-NPPX events are rare by definition,
yet they may become more frequent under climate change and cause devastating impacts on
marine ecosystems (Gruber et al., 2021). However, little is known about the distribution, drivers
and impacts of compound MHW-NPPX events. The Blob, in the northeastern Pacific, is one of
the rare documented MHWs during which extremely low NPP has been reported. It remains
unclear whether compound MHW-NPPX events occur elsewhere over the global ocean, and at
which frequency. Assessing the distribution of compound MHW-NPPX events would help assess
where and when they generally occur, which in turn could facilitate the prediction of compound
MHW-NPPX events. Previous studies have linked MHW frequency and NPP variability to
large-scale modes of climate variability (e.g., Holbrook et al. (2019); Racault et al. (2017)),
which may also modulate the frequency of compound MHW-NPPX events and therefore be used
to predict their future occurrences.

A necessary step toward prediction is to develop a better mechanistic understanding of
the drivers of compound MHW-NPPX events (Gruber et al., 2021). Previous studies have
investigated the drivers of MHWs (e.g., Holbrook et al. (2019); Gupta et al. (2020); Oliver et al.
(2021); Vogt et al. (2022)) and of phytoplankton variability (e.g., Whitney (2015); Gittings et al.
(2018); Long et al. (2021)), separately. However, only a few studies have explored the drivers of
NPPX events during MHWs. For example, Wyatt et al. (2022) suggested that nutrient limitation
during MHWs generally reduces phytoplankton biomass in the northeastern Pacific transition
zone, which could potentially drive extremely low NPP and thus a compound MHW-NPPX
event. However, not all warming events are accompanied by NPPX events. For instance, Long
et al. (2021) noted an increase in NPP during two recent MHWs in the Northeast Pacific. This
could be explained by warm temperatures enhancing phytoplankton growth (e.g., Laufkötter
et al. (2015)). Phytoplankton biology is indeed modulated by multiple interacting processes
in the ocean, rendering it a complex task to identify the drivers of extremely low NPP, and
more specifically, of compound MHW-NPPX events. Understanding the drivers of compound
MHW-NPPX events is nonetheless crucial to build the tools for their prediction and ultimately
allow for adaptation and ecosystem management (Gruber et al., 2021).
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Ecosystem management requires a better understanding of the actual risks posed by compound
MHW-NPPX events on marine ecosystems. Compound MHW-NPPX events are, by definition,
extremely rare and therefore constitute a hazard for marine ecosystems. Yet risks arise not
only from hazards, but from the interactions between hazards, exposure and vulnerability
(e.g., Bindoff et al. (2019); Magnan et al. (2021)). Marine ecosystems may not be exposed nor
vulnerable to compound MHW-NPPX events. Certain marine species may even benefit from
such compound events. For instance, Cavole et al. (2016) reported increased recruitment of
rockfish in California and northward expansion of tropical and subtropical copepods during
the Blob. These findings highlight the complexity in the relationship between hazards and
impacts on marine ecosystems (Zscheischler et al., 2018; van der Wiel et al., 2020). To effectively
predict and mitigate future impacts on marine ecosystems, a better understanding of the ocean
conditions leading to extreme impacts on marine ecosystems is needed.

1.6 Aims and outline of this thesis

This thesis addresses the aforementioned gaps in our understanding of compound marine
heatwave (MHW) and low net primary productivity (NPPX) events in the ocean (section
1.5). The principal objectives of this thesis are: to characterize compound MHW-NPPX events
over the satellite period (1st goal), to assess the ability of Earth system models to correctly
represent them (2nd goal), before using the Earth system models to identify their physical
and biogeochemical drivers (3rd goal), and finally, to evaluate the risk posed by compound
MHW-NPPX events for marine ecosystems (4th goal).

To analyze these compound MHW-NPPX events, we employ a combination of satellite-based
observations and models, which will be presented in the Methods (Chapter 2).

(1st goal) Satellite-based SST and sea surface chlorophyll concentration (which we use as
a proxy for NPP) data from 1998 to 2018 allow us to provide a first characterization of the
compound events over the satellite period (Chapter 3). We describe their duration, intensity, and
frequency, and identify hotspots of particularly frequent compound events. We also assess their
distribution over time. At the interannual time-scale, we investigate the link between the phase
of large-scale climate modes of variability and the frequency of compound events, and show that
climate modes could be used to predict the occurrence of compound events.

(2nd and 3rd goal) In the second part of this thesis, we identify their physical and biogeochemical
drivers using large ensemble simulations by two Earth system models: the GFDL ESM2M
and the CESM2 (Chapter 4). First, we evaluate these models against observations based on
satellite SST and five different satellite-derived NPP products. Second, we use the comprehensive
outputs of the GFDL ESM2M and CESM2 to identify the drivers of compound MHW-NPPX
events. Since previous studies have already determined the drivers of MHWs (Holbrook et al.,
2019; Gupta et al., 2020; Vogt et al., 2022), we focus our analysis on the drivers of an extreme
reduction in NPP during MHWs, which would result in driving compound MHW-NPPX events.

(4th goal) In the third part of this thesis, we take a step back and ask whether compound
MHW-NPPX events actually threaten marine ecosytems (Chapter 5). All compound MHW-NPPX
events may not impact marine ecosystems. In contrast, marine ecosystems may be vulnerable
to other types of compound extreme events, to certain univariate extreme events, or even to
compound events with moderate anomalous ocean conditions. In Chapter 5, we specifically
identify the drivers of extremely low biomass of pelagic fish in a global marine fish model,
the DBEM, forced by a large ensemble simulation from an Earth system model, the GFDL
ESM2M. We first identify events of extremely low fish biomass and then look back at the
ocean conditions that may have driven these events. This backward “impact-driven” analysis
allows to identify unexpected drivers of low fish biomass. We determine whether these drivers
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correspond to extreme events, compound events, or compound extreme events, and show that
compound MHW-NPPX events pose a significant threat to pelagic ecosystems, especially in the
low latitudes.

The Discussion of this thesis (Chapter 6) summarizes our results, states their caveats, and
puts them into the wider perspective of compound event research in the ocean. A final outlook
discusses the way our thesis can orient both future research on compound events and strategies
to mitigate their impacts on marine ecosystems.

Lastly, the Appendix (A) of this thesis includes a paper co-written as part of a group project,
which started during the first training school on Statistical Modelling of Compound Events.
The training school, organized by the COST Action DAMOCLES, took place at the Lake
Como School of Advanced Studies in Fall 2019. There, I participated in a group project to
which I dedicated some time and energy during the first months of my PhD, although it was
unrelated to the study of compound MHW-NPPX events. The outcome is a paper published in
Earth System Dynamics, which discusses the use of stochastic weather generators based on
atmospheric circulation analogues, to simulate compound extreme events responsible for crop
failure (Pfleiderer et al., 2021).
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Chapter 2

Methods

In this thesis, we use a combination of satellite-based observations and numerical models to
analyse compound MHW-NPPX events. Satellite observations are limited to the ocean surface.
Although satellite passes cover the global ocean surface at only a few days interval, there remain
gaps, which must be interpolated. Cloud cover or sea ice also prevent direct scanning of the
ocean surface and cause observational biases. Nevertheless, biases can be corrected using in
situ data, and once satellite-based observations skillfully estimate ocean variables, they allow
fairly accurate sampling of surface compound events. In contrast, models are not limited in
space and time. They provide large datasets from which to statistically analyse rare compound
MHW-NPPX events. However, models are an incomplete representation of reality which must be
evaluated against observations. Over regions where they are consistent with observations, Earth
system models are useful tools to gain understanding on the physical and biogeochemical drivers
of compound events, whereas marine fish models allow for estimating their impacts on marine
species. Observations and models are therefore complementary. The following chapter presents
the satellite-derived observations, Earth sytem models and global marine fish model used in this
thesis to analyse compound MHW-NPPX events.

2.1 Observations

2.1.1 Sea surface temperature

For sea-surface temperature (SST), we use a blended SST dataset developed by the National
Oceanic and Atmospheric Administration (NOAA) (Reynolds et al., 2007; Banzon et al., 2016).
In situ and satellite observations were combined using Optimal Interpolation at daily resolution
and on a 0.25◦ spatial grid to form an SST analysis, i.e., a spatially complete field. The main
input of this Optimum Interpolation SST (OISST) analysis product is infrared satellite data
from the Advanced Very High Resolution Radiometer with temporal coverage beginning in late
1981 to the present. Infrared data are limited by the spatial width of the satellite swath. Any
gaps are filled in by interpolation so as to produce a consistent long-term record. Note that
this is a smoothed product, which may underestimate the intensity and duration of MHWs
(Schlegel et al., 2019). Nevertheless, these satellite-derived temperature data have been validated
extensively (Reynolds et al., 2007; Huang et al., 2020; Banzon et al., 2016) and used for many
recent marine heatwave analyses (e.g. Hobday et al. (2016); Oliver et al. (2018); Frölicher et al.
(2018); Laufkötter et al. (2020)). Clouds, dust plumes and volcanic aerosols, especially following
the Mt Pinatubo and El Chichón eruptions, also induce satellite biases, which are corrected
using in situ data from ships and buoys (Banzon et al., 2016).
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2.1.2 Surface chlorophyll concentration

Chlorophyll is a pigment enabling primary producers to convert solar energy into organic matter
through photosynthesis. The more chlorophyll in the surface open ocean, the higher net primary
productivity by phytoplankton generally is (Behrenfeld & Falkowski, 1997). In Chapter 3, we use
surface chlorophyll concentration as a proxy for net primary productivity in the upper ocean.

Surface chlorophyll concentration can be estimated by satellite observations, thanks to
empirical relationships between ocean colour and in situ measurements of chlorophyll concentration.
Ocean colour is assessed by satellite reflectance measurements at wavelengths spanning the
440-670 nm range. The difference and ratio of the reflectances at various wavelengths within that
440-670 nm range is then used by algorithms to estimate the chlorophyll concentration (Hu et al.,
2019; O’Reilly & Werdell, 2019). Satellite ocean color measurements started in 1998 with the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS; launched in 1997, O’Reilly et al. (1998)),
followed by the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua (launched
in 2002, Hu et al. (2012, 2019)) and the Visible Infrared Imaging Radiometer Suite (VIIRS;
launched in 2011, Wang & Son (2016)). These satellite missions provided an unprecedented
record of surface chlorophyll concentrations in the ocean. However, spatial coverage is sparse at
the daily scale, notably due to clouds. Here, we rather use chlorophyll concentrations derived by
a biogeochemical model which assimilates these SeaWiFS-MODIS-VIIRS data.

The NASA Ocean Biogeochemical Model (NOBM.R2020.1 version) (Gregg & Rousseaux,
2017) is a comprehensive ocean biogeochemical model, coupled to a global ocean circulation
and radiative model (Gregg & Casey, 2007). The model spans latitudes 84◦S to 72◦N at
1.25◦ longitude by 2/3◦ latitude spatial resolution. It only resolves open ocean areas where
depth exceeds 200m. The NOBM includes four phytoplankton groups: diatoms, chlorophytes,
cyanobacteria, and coccolithophores. Total chlorophyll is the sum of all phytoplankton groups’
chlorophyll.

SeaWiFS-MODIS-VIIRS data are assimilated daily into the NOBM, by combining model
outputs and satellite data to produce an “analysis”, or best state estimate. Heavier weighting
towards the model is enforced where satellite data tend to perform poorly compared to in situ
data (Gregg, 2008), e.g., under clouds or sea-ice. The resulting analysis is then used to reinitialize
the model for the next simulation day. Temporal coverage extends from 1998 to 2018 at a daily
resolution, without the gaps that are intrinsic to satellite data due to clouds and high solar
zenith angles. More details on the NOBM product and its limitations are provided in Chapter 3.

2.1.3 Net primary productivity

NPP measurements in the ocean were initially based on radioactive carbon (C14) (Nielsen, 1952)
or geochemical tracer distributions (Jenkins & Goldman, 1985; Williams, P.J.L. & Robertson, J.I.,
1989). Although numerous, these discrete NPP measurements undersampled spatial and temporal
NPP variability (Bidigare et al., 1992). Satellite-based estimates of chlorophyll concentration
(section 2.1.2) offered opportunities to develop satellite-based model estimates of NPP over the
global ocean. Yet, attempts to quantitatively relate NPP to chlorophyll concentration (e.g.,
Bidigare et al. (1992); Antoine & Morel (1996)) revealed that, although NPP tends to increase
with increasing chlorophyll, chlorophyll variability alone is insufficient to explain the complete
NPP variability over time and space (Behrenfeld & Falkowski, 1997). Indeed, chlorophyll simply
controls the light-harvesting capacity of photosynthetic organisms. Photosynthesis, however, also
depends on light availability and on photosynthetic efficiency, i.e., the carbon fixation rate per
chlorophyll unit.

Behrenfeld & Falkowski (1997) used a dataset of 14C-based NPP measurements to determine
the variables which, in addition to surface chlorophyll concentrations, were responsible for observed
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variability in NPP. Their study led to the first version of the Vertically Generalized Production
Model (VGPM), which estimates NPP from satellite-based chlorophyll data. Vertically-integrated
NPP is expressed as a function of surface chlorophyll concentration (Chl), photosynthetic
efficiency (PB

opt), photosynthetic active radiation (PAR), euphotic layer depth (Zeu) and day
length (DL) (Behrenfeld & Falkowski, 1997; Behrenfeld et al., 2001).

VGPM : NPP = Chl · PB
opt ·DL · f(PAR) · Zeu (2.1)

Zeu is estimated from surface chlorophyll concentrations using the Morel & Berthon
(1989) CASE I model, which is based on empirical relationships between surface chlorophyll
concentration, vertically-integrated chlorophyll concentration and Zeu. Errors in NPP estimates
by the VGPM mainly come from errors in chlorophyll estimates by satellites and uncertainties
in the photosynthetic efficiency. Behrenfeld & Falkowski (1997) state that photosynthesis
efficiency mainly depends on temperature, which controls the Calvin cycle enzymatic activity
performing photosynthesis. In this first version of the VGPM model, which we refer to as
Standard-VGPM, photosynthetic efficiency is described as a polynomial function of SST,
conveniently available from satellite observations. A subsequent version of the VGPM, the
Eppley-VGPM, expresses photosynthetic efficiency as an exponential function of temperature
(Eppley, 1972), resulting in weaker spatial gradients in NPP estimates (Le Grix et al., 2022). For
example, NPP gradients along the subtropical gyres are weaker in Eppley-VGPM compared
to Standard-VGPM (Fig. 2.1b,c). The continuous increase in photosynthetic efficiency with
temperature is justified in Eppley-VGPM by warm temperatures generally coinciding with
elevated light conditions, and thus with less light limitation.

The temperature-dependent representations of photosynthetic efficiency in Standard-VGPM
and Eppley-VGPM neglect physiological adjustments by phytoplankton to changes in nutrient
levels and in light quantity and spectral quality (Falkowski, 1980; Falkowski & LaRoche, 1991;
Falkowski, 1994; Geider et al., 1996, 1997; MacIntyre et al., 2002). Accurate representation of
photosynthetic efficiency is challenging and key to improving the performance of Standard-VGPM
and Eppley-VGPM.

Carbon-based models offer an alternative approach to calculating NPP. Phytoplankton
carbon biomass estimates can be derived from particulate backscattering coefficients (bbp). In
conjunction with satellite-based estimates of the chlorophyll concentration, the Carbon-based
Production Model (CbPM; Behrenfeld et al. (2005); Westberry et al. (2008)) is able to infer the
chlorophyll to carbon biomass ratio (Chl:C), and thus to account for varying pigment level in
phytoplankton in response to changes in light and nutrient levels. NPP is expressed as the
product of carbon biomass (C) and growth (µ), where growth is a function of Chl:C and of the
median light level in the mixed layer (IML).

CbPM : NPP = C · µ, where µ = f(Chl : C, IML) (2.2)

The CbPM distinguishes between the changes in Chl driven by changes in biomass, and the
changes in Chl driven by physiology, i.e., by adjustments in the Chl:C ratio (Westberry et al.,
2008). This is a significant improvement from Standard-VGPM and Eppley-VGPM, which assign
all changes in Chl to a change in biomass then translated into a change in NPP.

Recent advances in the understanding of ocean color properties and phytoplankton physiology
let to the development of the Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE)
model (Silsbe et al., 2016), which also derives NPP from satellite observations. The CAFE model
expresses NPP as the product of energy absorption (QPAR) and the efficiency (ϕ) by which
absorbed energy is converted into carbon biomass:

CAFE : NPP = QPAR · ϕ (2.3)
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Silsbe et al. (2016) found highest similarity between in-situ NPP measurements and NPP
estimates by the CAFE model, compared to other satellite-derived NPP models.

Lastly, we also consider NPP estimates by the NOBM (presented in section 2.1.2) in this
thesis. The NOBM calculates NPP as an integrated function of µ, Chl and the carbon to
chlorophyll ration (C:Chl) over depth (Rousseaux & Gregg, 2014). Satellite-based chlorophyll
estimates are assimilated into the NOBM (section 2.1.2).

NOBM : NPP =

∫
µ · Chl · (C : Chl) dz (2.4)

Figure 2.1: Main characteristics of the satellite-derived NPP estimates included in this thesis.
Model deriving the estimates and associated litterature (1 Behrenfeld & Falkowski (1997); 2

Eppley (1972); 3 Behrenfeld et al. (2005); 4 Westberry et al. (2008); 5 Silsbe et al. (2016); 6

Gregg (2008); 7 Gregg & Rousseaux (2014)); Data upon which the model is based; Global mean
net primary productivity (Pg C m−2 year−1) over 1998-2018; Mean net primary productivity
(mg C m−2 day−1) over 1998-2018 in Standard-VGPM (a), Eppley-VGPM (b), CbPM (c), CAFE
(d), and NOBM (e); Standard deviation of the net primary productivity (mg C m−2 day−1) over
1998-2018 in Standard-VGPM (f), Eppley-VGPM (g), CbPM (h), CAFE (i), and NOBM (j).

.

Fig. 2.1 summarizes the main characteristics of all observation-based models included in
this thesis. Models differ in their formulation of NPP and in their satellite-based input data,
resulting in different NPP estimates. Models considering varying Chl:C ratios (CbPM, CAFE)
account for phytoplankton adaptative strategies to low light levels, and thereby obtain higher
global oceanic NPP than models with fixed Chl:C ratio (66 and 62 Pg C year−1 in CbPM and
CAFE, against 50, 52 and 47 Pg C year−1 in Standard-VGPM, Eppley-VGPM, and NOBM).
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Although all models agree with generally low NPP in the subtropical gyres and high NPP in the
eastern boundary upwelling systems, absolute values and spatial gradients differ across models
(Fig. 2.1a-e). In particular, compared to other models, CbPM and CAFE suggest relatively higher
NPP in the oligotrophic subtropical gyres (Fig. 2.1c,d). There, chlorophyll variability can be
dominated by photoacclimation, i.e., by adjustments of the Chl:C ratio in response to changes in
light levels (Behrenfeld et al., 2005; Silsbe et al., 2016), which Standard-VGPM, Eppley-VGPM
and NOBM fail to represent. Lastly, models also represent divergent NPP variability over time,
e.g., at the seasonal time-scale (Silsbe et al., 2016).

In this thesis, we include all five observation-based models. The diversity of models allows for
distinguishing between regions where results are especially robust across models, and regions
where models disagree. High or low agreement is associated with a gain or loss in confidence in
our results. Temporal resolution is 5-day mean for the NOBM and 8-day mean for all other
models. We focus on the 1998-2018 period, when NPP estimates are available for all models.

2.2 Models

The following section presents two Earth system models and one global marine fish model, which
we used to characterize compound extreme events in the ocean, identify their physical and
biogeochemical drivers, and verify their impacts on marine ecosystems at the global scale.

2.2.1 Earth system models

Earth system models (ESMs) aim to simulate all climate-relevant aspects of the Earth system.
Contrary to global climate models, which represent atmospheric and oceanic processes, ESMs
additionally include representations of the global carbon cycle, dynamic vegetation, atmospheric
chemistry, ocean biogeochemistry, and sometimes continental ice sheets. ESMs are composed
by a set of equations, solved on a three-dimensional grid which can extend from the upper
atmosphere to the bottom of the oceans. An efficient infrastructure distributes the representation
of each climate component into model components for the atmosphere, ocean physics and
biogeochemistry, land, and sometimes land ice and sea ice (Fig. 2.2). A coupler handles fluxes
between these components (Fig. 2.2), such as air-sea heat and moisture fluxes, aerosol deposit on
sea-ice, and the emission of biogenic compounds by forests on land to the atmosphere.

Ocean physics model Ocean biogeochemistry
model

Sea ice model

Coupler

Land model

Atmospheric model

Land ice model

Figure 2.2: Schematic representation of the usual components of an ESM and their interactions
through a coupler. Dashed contours indicate model components that are usually not included.
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In this thesis, we use two ESMs: the GFDL ESM2M (Dunne et al., 2012, 2013), for which
we participated in running an ensemble of simulations, and the CESM2 (Danabasoglu et al.,
2020), whose model outputs were kindly provided by Dr. Keith Rodgers. Chapter 4 will review
the similarities, differences, and caveats of these two ESMs in details. Here, we give a brief
description of their main characteristics, with a focus on the ocean physics and biogeochemistry
components (Fig. 2.3).

Figure 2.3: The GFDL ESM2M and CESM2 model components. This is a non-exhaustive list
of the models’ main characteristics, with a focus on their divergences. References: 1Griffies
(2012); 2Dunne et al. (2013); 3Winton (2000); 4Anderson et al. (2004); 5Shevliakova et al. (2009);
6Martin & Adcroft (2010); 7Smith & Gent (2010) 8Tolman (2009); 9Long et al. (2021); 10Hunke
et al. (2017); 11Danabasoglu et al. (2020); 12 Lin & Rood (1997); 13Gettelman et al. (2019);
14Lawrence et al. (2019); 15Li et al. (2013); 16Lipscomb et al. (2019).
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The GFDL ESM2M is a fully coupled carbon-climate ESM developed at NOAA’s Geophysical
Fluid Dynamics Laboratory (GFDL) (Dunne et al., 2012, 2013). It couples an atmospheric
circulation model to an oceanic circulation model, and includes representations of land, sea-ice,
and iceberg dynamics, as well as interactive biogeochemistry. The atmospheric model AM2
(Anderson et al., 2004) has a horizontal resolution of 2 ◦ latitude x 2.5 ◦ longitude, and 24 vertical
levels. The horizontal resolution of the ocean model MOM4p1 (Griffies, 2012) is nominally 1 ◦

latitude x 1 ◦ longitude with increasing meridional resolution of up to 1/3 ◦ towards the equator,
and 50 depth levels. Phytoplankton is represented in GFDL ESM2M by the biogeochemical
module “Tracers of Ocean Phytoplankton with Allometric Zooplankton version 2.0” (TOPAZv2;
Dunne et al. (2013)), consisting of 30 tracers including three phytoplankton groups (small and
large phytoplankton, diazotrophs) and heterotrophic biomass. TOPAZv2 only implicitly simulates
zooplankton activity. The GFDL ESM2M does not include a proper land-ice component; land-ice
is represented in the land component and exchanged with the ocean model through iceberg
production.

The Community Earth System Model version 2 (CESM2, Danabasoglu et al. (2020)) is
also a fully coupled ESM. It couples an atmospheric model with comprehensive chemistry to
ocean, land, sea-ice, land-ice, river, and ocean wave models. The horizontal resolution of the
atmospheric model CAM6 (Danabasoglu et al., 2020) is 0.9◦ latitude x 1.25◦ longitude, with 32
vertical levels. The horizontal resolution of the ocean model POP2 (Smith & Gent, 2010) is
approximately 1◦, with uniform spacing of 1.125◦ in the zonal direction and significantly varying
spacing in the meridional direction, with the finest resolution of about 0.25 ◦ at the Equator.
The ocean model has 60 vertical levels. The “Marine Biogeochemistry Library” (MARBL; Long
et al. (2021)) is the biogeochemical component of CESM2, which simulates marine ecosystem
interactions and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen.
This prognostic ocean biogeochemistry model includes a flexible number of phytoplankton types.
In the simulations we use in Chapter 4, NPP is produced by three phytoplankton types: small
phytoplankton, diatoms (i.e., large phytoplankton) and diazotrophs.

Fig. 2.3 summarizes the main characteristics of the GFDL ESM2M and CESM2 components.
More details on their ocean biogeochemistry component will be given in Chapter 4, where we
fully describe the models’ representation of phytoplankton production.

2.2.2 Global marine fish models

As was demonstrated in the introduction, compound extreme events constitute hazards potentially
driving harmful impacts on marine ecosystems. Understanding the risks posed by extreme events
is key to implementing strategies to predict and moderate impacts on marine ecosystems. Risk
arises, however, not only from hazards, but from the interactions between hazards, vulnerability
and exposure. Marine ecosystems may not be exposed nor vulnerable to compound MHW-NPPX
extreme events. In contrast, they may be impacted by other types of extreme events, or by
moderate ocean conditions. Global marine fish models are a valuable tool to investigate this
complex relationship between ocean conditions and impacts on marine ecosystems (Cheung &
Frölicher, 2020; van der Wiel et al., 2020; Cheung et al., 2021). Marine fish models simulate the
response of marine species to changes in environmental conditions and/or to fisheries effort.
Contrary to observations, which are limited in space and time, fish models can be applied at
the global scale and they can sample a greater number of compound events, allowing for a
statistically relevant impact assessment. Fish models also allow for distinguishing between
environmental and non-environmental drivers (e.g., fisheries) of impacts. In Chapter 5, we use
the Dynamic Bioclimatic Envelope Model (DBEM, Cheung et al. (2008, 2009, 2016)) to identify
the environmental drivers of extreme impacts on pelagic fish biomass.

The DBEM uses an algorithm by Close et al. (2006) to estimate the distribution of 326
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Figure 2.4: Distribution and biomass of pelagic fish species in the DBEM. Distribution of the
(a) Southern bluefin tuna and (b) Moonfish. (c) Total number of pelagic fish species. Biomass (kg
m−2) of the (d) Southern bluefin tuna, (e) Moonfish, and (f) of all pelagic fish species.

pelagic fish species as well as 602 demersal fish species. This algorithm is based on the species’
maximum and minimum depth limits, northern and southern latitudinal range limits, habitat
type and known occurrence boundaries. Habitat types include seamounts, estuaries, inshore,
offshore, continental shelves, continental slopes and the abyss. These input parameters are
mainly provided by two online databases: FishBase (www.fishbase.org) and SeaLifeBase
(www.sealifebase.org). The resulting distribution is shown in Fig. 2.4 for two pelagic fish
species. The Southern bluefin tuna is distributed between 30◦S and 60◦S in the Atlantic and
Pacific Oceans and between 10◦S and 60◦S in the Indian Ocean (Fig. 2.4a), whereas the Moonfish
is distributed along the coasts of the tropical Indian and western Pacific Oceans (Fig. 2.4b).
Overall, many pelagic fish species are distributed along the coasts and few in the high latitudes
(Fig. 2.4c). Once the DBEM has determined the species’ distribution, it identifies the species’
preferred environmental conditions by overlaying environmental data from 1980 to 2000 with
maps of the species’ distribution.

The DBEM simulates the species’ physiological response to changes in environmental
conditions using an algorithm derived from von Bertalanffy (1951). Anabolism and catabolism
mainly depend on temperature and oxygen levels. They can also depend on acidity when
sensitivity to H+ is activated in the DBEM (note that it is not activated in the simulations we
use in Chapter 5). The natural mortality rate of a species is predicted from Pauly (1980). The
DBEM then models population growth using a size-based population model. Population growth
is limited by the species’ carrying capacity, i.e. its maximum relative abundance per grid cell,
which depends on habitat suitability. When environmental conditions deviate from a species’
environmental preferences, habitat suitability decreases, resulting in a decrease in carrying
capacity. An advection-diffusion-reaction model (Cheung et al., 2008) simulates larval dispersal
by ocean currents. The DBEM also simulates adult migration, which is assumed to follow the

www.fishbase.org
www.sealifebase.org
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calculated gradient of habitat suitability. Thus, changes in ocean conditions are translated by
the DBEM into changes in species’ physiology, population growth and migration, and, hence,
relative abundance in each grid cell. Biomass is calculated as the product of the population
mean body weight and its relative abundance in each grid cell. For example, the Southern
bluefin tuna is most abundant off the eastern coast of South America, where its biomass exceeds
5 kg m−2 (Fig. 2.4d).

The DBEM projects annual changes in fish biomass on a 0.5◦ x 0.5◦ horizontal grid. Further
details on the DBEM and its caveats are presented in Chapter 5, where we use DBEM simulations
forced by environmental data from the GFDL ESM2M over 1951-2000. Environmental data
include annual mean ocean temperature, oxygen, salinity, NPP, sea-ice extent and advection.
Demersal species are forced by bottom ocean variables and pelagic species by surface ocean
variables. In Chapter 5, we specifically link surface ocean conditions to their impacts on the total
biomass of all pelagic species (Fig. 2.4f).

2.2.3 Large ensemble simulations

Extreme events are, by definition, extremely rare. Yet the large sample size mandated by the
study of compound extreme events is even larger than that required for the study of extreme
events with single variables (Deser et al., 2020; Burger et al., 2022; Zscheischler & Lehner, 2022).
Large ensemble simulations (LES, Frölicher et al. (2009); Deser et al. (2020)), which we use in
Chapters 4 and 5, provide the necessary large datasets from which to sample and analyze rare
events (e.g., (Poschlod et al., 2020; Maher et al., 2021; Bevacqua et al., 2023; Le Grix et al.,
2021)).

LES are produced with a single climate model, under a particular historical or future forcing
scenario. Different perturbations are applied to the initial conditions of each ensemble member in
order to create diverging climate trajectories. For example, we use in subsequent chapters a
30-member LES produced by an Earth system model, the GFDL ESM2M. This LES was started
from a quasi-equilibrated 500-year-long preindustrial control simulation, where atmospheric
CO2 concentrations are set to 286 ppm (Burger et al., 2020). We generated an ensemble of 30
members by slightly perturbing the temperature on the order of 10−5 ◦C for ten ensemble
members at a grid cell at the surface of the Weddell Sea, for ten members at the surface of the
North Atlantic, and for ten members in the deep North Pacific (Burger et al., 2022; Le Grix et al.,
2022). These 30 simulations were forced with prescribed historical concentrations of atmospheric
CO2 and non-CO2 radiative-forcing agents from 1861 to 2005, and then by a high-emission
no-mitigation scenario (RCP8.5; RCP: Representative Concentration Pathway) from 2006 to
2100 (Riahi et al., 2011) (Fig. 2.5a). Under non-stationary conditions, relatively short time series
need to be analyzed to obtain a picture of quasi-stationary conditions. For example, Le Grix et al.
(2022) focuses on the recent 1998-2018 period over which observation-derived NPP estimates are
available (Fig. 2.5b). In this context, LES allow for sampling enough compound extreme events
for their analysis to be statistically relevant, despite short time series.

Single-member simulations from multiple climate models, such as the multi-model ensembles
from the Coupled Model Intercomparison Project (CMIP), also offer large sample size. However,
they do not allow for distinguishing between internal climate variability, as simulated by a
climate model, and structural differences across models (Schlunegger et al., 2020; Bevacqua
et al., 2023). In contrast, a single model LES produces multiple simulations based on the same
model’s physics. These ensemble members evolve from slightly different initial conditions due to
internal climate variability only (Maher et al., 2021; Bevacqua et al., 2023). For example, the
30 ensemble members on Fig. 2.5 capture natural variability in annual global mean NPP, as
illustrated by the ensemble spread. The larger the LES, the better it captures natural variability.
In Chapter 4, we compare the representation of compound MHW-NPPX events in LES produced
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by two ESMs: the GFDL ESM2M and the CESM2. Before comparing the two LES, we filtered
out natural variability by averaging our results over all ensemble members of each LES (e.g.,
black line on Fig. 2.5). Thereby, differences between the ensemble mean results of each LES only
account for structural differences between GFDL ESM2M and CESM2. This method allows for
identifying similarities and divergences in how ESMs simulate compound events.

Finally, LES can also be used as input for impact models, resulting in large ensembles of
impact data (e.g., van der Wiel et al. (2020); Chapter 5). This method is referred to as “ensemble
climate-impact modelling”. In the context of extreme and compound event research, ensemble
climate-impact modelling can follow two approaches. The “forward modelling” approach samples
extreme or compound events in the climate data and quantifies their impact as simulated in
the output of the impact model. This method requires prior knowledge of potentially harmful
extreme or compound events. In Chapter 5, we rather employ a backward “impact-driven”
approach (Zscheischler et al., 2014a,b; Ben-Ari et al., 2018; van der Wiel et al., 2020; Vogel et al.,
2021)), which starts by sampling rare high-impact events in the large ensembles of impact data
and then looks back into the climate data at the environmental conditions potentially causing
these high-impact events. This impact-driven approach allows for the discovery of unexpected
drivers of extreme impact (van der Wiel et al., 2020). Both approaches are further discussed in
Chapter 5.
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a)

b)

Figure 2.5: Annual mean net primary productivity integrated over the global ocean (Pg
C year−1) simulated by a GFDL ESM2M 30-member LES. (a) The LES is started from a
preindustrial simulation (dark blue line), which provides the initial conditions. Initial conditions
on January 1, 1861 are perturbed so as to generate 30 different simulations, i.e., a 30-member
LES (light blue lines), forced by historical CO2 concentrations from 1861 to 2005 and by RCP8.5
from 2006 to 2100. (b) Focus on the 1998-2018 period under study in Le Grix et al. (2021, 2022).
The black line indicates the ensemble mean.
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Burger, F. A., Terhaar, J., & Frölicher, T. L., 2022. Compound marine heatwaves and ocean acidity extremes,
Nature Communications, 13(1), 4722.

Cheung, W., Lam, V., & Pauly, D., 2008. Dynamic bioclimate envelope model to predict climate-induced changes
in distribution of marine fishes and invertebrates, Modelling Present and Climate-shifted Distributions of
Marine Fishes and Invertebrates, 16, 5–50.

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., & Pauly, D., 2009. Projecting global
marine biodiversity impacts under climate change scenarios, Fish and Fisheries, 10(3), 235–251.
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Frölicher

Published in Biogeosciences, Volume 18, 2119-2137, 2021. This chapter includes an Appendix
and Bibliography



Biogeosciences, 18, 2119–2137, 2021
https://doi.org/10.5194/bg-18-2119-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Compound high-temperature and low-chlorophyll
extremes in the ocean over the satellite period
Natacha Le Grix1,2, Jakob Zscheischler1,2,3, Charlotte Laufkötter1,2, Cecile S. Rousseaux4,5, and
Thomas L. Frölicher1,2

1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
4Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, USA
5Universities Space Research Association, Columbia, USA

Correspondence: Natacha Le Grix (natacha.legrix@climate.unibe.ch)

Received: 6 November 2020 – Discussion started: 14 November 2020
Revised: 25 January 2021 – Accepted: 9 February 2021 – Published: 24 March 2021

Abstract. Extreme events in the ocean severely impact ma-
rine organisms and ecosystems. Of particular concern are
compound events, i.e., when conditions are extreme for mul-
tiple potential ocean ecosystem stressors such as temper-
ature and chlorophyll. Yet, little is known about the oc-
currence, intensity, and duration of such compound high-
temperature (a.k.a. marine heatwaves – MHWs) and low-
chlorophyll (LChl) extreme events, whether their distribu-
tions have changed in the past decades, and what the po-
tential drivers are. Here we use satellite-based sea surface
temperature and chlorophyll concentration estimates to pro-
vide a first assessment of such compound extreme events.
We reveal hotspots of compound MHW and LChl events in
the equatorial Pacific, along the boundaries of the subtropi-
cal gyres, in the northern Indian Ocean, and around Antarc-
tica. In these regions, compound events that typically last
1 week occur 3 to 7 times more often than expected under
the assumption of independence between MHWs and LChl
events. The occurrence of compound MHW and LChl events
varies on seasonal to interannual timescales. At the seasonal
timescale, most compound events occur in summer in both
hemispheres. At the interannual timescale, the frequency of
compound MHW and LChl events is strongly modulated by
large-scale modes of natural climate variability such as the
El Niño–Southern Oscillation, whose positive phase is as-
sociated with increased compound event occurrence in the
eastern equatorial Pacific and in the Indian Ocean by a fac-
tor of up to 4. Our results provide a first understanding of

where, when, and why compound MHW and LChl events
occur. Further studies are needed to identify the exact physi-
cal and biological drivers of these potentially harmful events
in the ocean and their evolution under global warming.

1 Introduction

Over the last few decades, extreme events in the ocean, such
as marine heatwaves (MHWs), have occurred in all ocean
basins (Fig. 1a) (Frölicher and Laufkötter, 2018; Hobday
et al., 2016; Laufkötter et al., 2020). Alongside the long-
term warming of the global ocean (Cheng et al., 2017), the
number of MHW days has doubled between 1982 and 2016
(Frölicher et al., 2018; Oliver et al., 2018) and is projected to
increase strongly under continued global warming (Frölicher
et al., 2018). MHWs have already negatively impacted many
key habitats (Smale et al., 2019), including seagrass mead-
ows (Marba and Duarte, 2010; Thomson et al., 2015), kelp
forests (Wernberg et al., 2013; Smale et al., 2019), and coral
reefs (Hughes et al., 2018b). Changes in extreme condi-
tions are also expected in the concentration of phytoplank-
ton, which regulate key biogeochemical processes such as
ocean carbon uptake and export and form the base of the
aquatic food web, but so far less is known about extremes
in the abundance of these species.

An emerging concern is compound events, i.e., situations
where more than one ocean ecosystem driver is outside the
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Figure 1. Recent (a) prominent large-scale marine heatwaves (MHWs) for which impacts have been documented and (b) associated changes
in surface chlorophyll concentrations ([chl]). We use sea surface temperature (SST) and [chl] deseasonalized anomalies. MHWs are defined
when SST anomalies exceed their percentile 99.5 locally, and numbers indicate the years of the MHW occurrences. (a) SST anomaly
averaged over the MHW duration. (b) Percentile associated with the mean [chl] anomaly averaged over the duration of the MHW, compared
to the local empirical distribution of [chl] daily anomalies from 1998 to 2018. The MHW extent is taken from Laufkötter et al. (2020) and
corresponds to a spatiotemporally continuous area where each grid cell exhibits daily temperature anomalies above percentile 99.5.

norm simultaneously, in close spatial proximity or temporal
succession (Leonard et al., 2014; Zscheischler et al., 2018).
Major climate-related disasters often result from the com-
pounding effect of multiple drivers and/or hazards. Such sit-
uations might arise, for example, when the drivers of one
hazard (e.g., elevated temperature causing a marine heat-
wave) also cause other relevant changes, such as decreased
nutrient concentrations caused by increased thermal stratifi-
cation and reduced supply of nutrient-rich subsurface water
to the surface. Compound events can severely impact marine
ecosystems, especially when the hazards act synergistically.
While MHWs may enhance mortality of some marine organ-
isms, low productivity also threatens marine ecosystems that
rely on phytoplankton as the base of their food web (Cavole
et al., 2016). In recent years, interest in compound events has
evolved into a rapidly growing research field (Zscheischler
et al., 2020). However, most studies so far focus on com-
pound events over land (Ridder et al., 2020). Few have ad-
dressed compound events in the ocean (Collins et al., 2019).

This lack of knowledge is of concern as MHWs often co-
incide with large anomalies in surface chlorophyll concen-
trations (Fig. 1). One of the most prominent examples of a
compound event is “the Blob” in the northeast Pacific. Be-
tween 2013 and 2015, the northeast Pacific experienced the
most intense and longest-lasting MHW ever recorded, with
maximum surface temperature anomalies of more than 5 ◦C
(Fig. 1a) lasting for more than 350 d (Di Lorenzo and Man-
tua, 2016; Laufkötter et al., 2020). At its initiation, the MHW
coincided with large negative anomalies in phytoplankton
production along the California Current (∼ 28–48◦ N) be-
cause of below-average strength in coastal upwelling, result-
ing in low chlorophyll levels throughout spring and summer
(Leising et al., 2015). Later in 2014–2015, high tempera-
ture and low chlorophyll concentrations were observed fur-
ther south in the eastern equatorial Pacific. The compound
high-temperature and low-chlorophyll and low-nutrient event
had severe consequences for marine life (Cavole et al.,

2016). Ecosystem impacts included low primary productiv-
ity (Whitney, 2015), extreme mortality and reproductive fail-
ure of sea birds (Jones et al., 2018; Piatt et al., 2020), mass
strandings of whales in the western Golf of Alaska and of
sea lions in California, and changes in species distribution
in favor of warm-water species (Cavole et al., 2016; Cheung
and Frölicher, 2020). These changes in biomass and species
distribution further impacted socio-economically important
fisheries (Cheung and Frölicher, 2020). Another example of a
compound high-temperature and low-chlorophyll event is the
southwestern Atlantic 2013/14 MHW (not shown in Fig. 1).
This unprecedented MHW was associated with very low
surface chlorophyll a levels (Rodrigues et al., 2019). How-
ever, not all MHWs coincided with low-chlorophyll events in
the past (Fig. 1). During the Blob, for example, chlorophyll
anomalies were positive in some locations (e.g., Bering Sea),
exceeding on average the 80th percentile of their distribution,
whereas along the northwestern coast of North America and
in the equatorial Pacific, chlorophyll anomalies fell on aver-
age below their 5th percentile.

Previous studies have identified drivers of MHWs
(e.g., Holbrook et al., 2019) and of chlorophyll vari-
ability (Boyce et al., 2010; McClain, 2009; Wilson and
Adamec, 2002) separately, but it is currently unknown
what the underlying drivers of compound MHW and low-
chlorophyll (LChl) events are (Frölicher, 2019). Global
warming is the dominant driver of long-term changes in
MHW frequency (Frölicher et al., 2018; Oliver, 2019). Yet,
natural variability of the climate system also creates situ-
ations that favor the occurrence of extreme events. Recent
MHWs have been linked to various large-scale modes of
climate variability (Holbrook et al., 2019). These climate
modes favor or suppress the occurrence of MHWs by modu-
lating the local conditions. Bond et al. (2015) attributed the
development of the Blob to an unusually strong and persis-
tent weather pattern, featuring sea level pressure much higher
than normal over the Gulf of Alaska. These sea level pres-
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sure anomalies resulted from the strengthened Victoria Mode
of variability in the northeast Pacific, which was forced by
the atmosphere through the North Pacific Oscillation (Tseng
et al., 2017). Reduced circulation in the North Pacific Sub-
tropical Gyre suppressed the heat loss from the ocean to the
atmosphere and caused relatively weak cold advection in the
upper ocean (Leising et al., 2015). The resulting warming
in the northeast Pacific is thought to have acted as a precur-
sor to the development of the 2015/16 El Niño (Di Lorenzo
and Mantua, 2016), which further enhanced the Blob (Tseng
et al., 2017). Oceanic and atmospheric teleconnections as-
sociated with large-scale climate modes can also modulate
the occurrence of MHWs in distant regions. For example,
the extraordinary 2010–2011 La Niña remotely strengthened
and shifted the poleward-flowing Leeuwin Current along the
western coast of Australia to the south. As a result the south-
western coast of Australia experienced anomalous warm wa-
ters in 2011 (Feng et al., 2013). Climate variability may
also cause low-productivity events, since large-scale climate
modes affect nutrient concentrations and primary produc-
tion of phytoplankton (Behrenfeld et al., 2001, 2006; Racault
et al., 2017; Rousseaux and Gregg, 2014) at the surface via,
for example, changes in mixed-layer depth and upwelling
strength. Therefore, climate modes are potentially modulat-
ing the occurrence of compound MHW and LChl events and
may be used to predict such events.

In this study, we provide a first characterization of com-
pound MHW and LChl events using satellite-based observa-
tions. We first quantify the intensity and duration over time
and space of MHWs and LChl events separately, before iden-
tifying hotspots and characterizing the temporal distribution
of compound MHW and LChl events over the past decades.
Finally, we investigate the modulation of their frequency by
large-scale modes of climate variability.

2 Methods

2.1 Observation-based data

To identify and characterize compound MHW and LChl
events, we use satellite-derived sea surface tempera-
ture (SST) and chlorophyll concentration data. For SST,
we use NOAA’s daily Optimum Interpolation SST (OISST)
analysis product with a spatial grid resolution of 0.25◦ (Ban-
zon et al., 2016; Reynolds et al., 2007). This dataset provides
a daily global record of surface ocean temperature observa-
tions obtained from satellites, ships, buoys, and Argo floats
on a regular grid. Its main input is infrared satellite data from
the Advanced Very High Resolution Radiometer with tempo-
ral coverage beginning in late 1981 to the present. Any large-
scale satellite biases relative to in situ data from ships and
buoys are corrected, and any gaps are filled in by interpola-
tion. For chlorophyll, satellite data derived from ocean color
cannot be used because the coverage is too poor at the daily

scale, notably due to clouds. Instead, we use outputs from the
NASA Ocean Biogeochemical Model (NOBM.R2020.1 ver-
sion) (Gregg and Rousseaux, 2017), which provides assim-
ilated daily data for mean chlorophyll concentration within
the mixed layer. This comprehensive ocean biogeochemi-
cal model, coupled to a global ocean circulation and radia-
tive model (Gregg and Casey, 2007), assimilates satellite
ocean chlorophyll data from the Sea-viewing Wide Field-
of-view Sensor (SeaWiFs), the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Aqua, and the Visible In-
frared Imaging Radiometer Suite (VIIRS). The model spans
the domain from 84◦ S to 72◦ N in increments of 1.25◦ lon-
gitude by 2/3◦ latitude, including only open-ocean areas
where bottom depth exceeds 200 m. Temporal coverage ex-
tends from 1998 to 2018. NOBM takes care of differences
between sensors and also provides complete coverage at a
daily resolution, without the gaps that are intrinsic to satellite
data due to clouds and high solar zenith angles. Its chloro-
phyll outputs have been validated against the NASA satel-
lite products (Gregg and Rousseaux, 2014). The annual me-
dian chlorophyll is similar when computed using the satel-
lite products or the NOBM products, although in the high
latitudes, areas of high chlorophyll in the satellite products
are reduced in the assimilation data. According to Gregg and
Rousseaux (2014), these are artifacts of satellites sampling
only the warmer, more sunlit months while the assimilation
model produces information for all days of the year. In the
North Indian Ocean, high chlorophyll due to seasonal aerosol
obscuration in the satellite product is also reduced when
assimilated. Trends in global mean chlorophyll are similar
from 1998 to 2012 in both the satellite and assimilation prod-
ucts.

Prior to any analysis, the SST dataset is regridded onto the
lower-resolution chlorophyll dataset for the period from 1998
until 2018 so that the length of the SST dataset corresponds
to the length of the chlorophyll dataset. As chlorophyll con-
centration is close to or equal to zero during winter in the
polar regions when solar radiation is near zero, we removed
all days during which a particular grid cell receives no solar
radiation, thereby focusing on the growing season. The daily
shortwave radiation data were obtained from the Modern-Era
Retrospective analysis for Research and Applications ver-
sion 2 (Gelaro et al., 2017).

2.2 Analysis

2.2.1 Definition of extreme and compound extreme
events

We first computed anomalies by subtracting the mean daily
seasonal cycle from the SST and chlorophyll data. MHWs
and LChl events may therefore occur in any season, if so-
lar radiation is non-zero. The mean seasonal cycle has been
smoothed using a 30 d running mean to remove noise on a
daily scale associated with the 21-year data record. We also
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Figure 2. Schematic figure illustrating the definition of MHWs, LChl events, and compound MHW and LChl events. Time series of SST
and chlorophyll concentration are extracted from 2013 to 2015 at 0◦ N and 155◦ E and smoothed with a 14 d running mean for illustrative
purposes. A MHW occurs (red shaded area) when the SST (bold red line) exceeds its 90th percentile (dashed red line). A LChl event (blue
shaded area) occurs when the surface chlorophyll concentration (bold blue line) is below its 10th percentile (dashed blue line). Yellow bands
indicate the occurrence of compound MHW and LChl events.

used 7 and 14 d running means for smoothing, but the main
results are not sensitive to this choice.

Figure 2 illustrates our definition of univariate and com-
pound extreme events. Time series of SST and chlorophyll
concentration are smoothed with a 14 d running mean to ob-
tain a better visualization of extreme events; for comparison,
Fig. A1 shows results with no smoothing. We define MHWs
(i.e., hot temperature extremes) as events when the daily SST
anomaly exceeds its local 90th percentile (Fig. A2a). Fol-
lowing this definition, MHWs can be as short as 1 d and ex-
tend over only one grid cell. Respectively, we define low-
chlorophyll (LChl) events as days when the anomaly in the
chlorophyll concentration is below its local 10th percentile
(Fig. A2b). Here, we do not apply a duration threshold as has
been done for example in Hobday et al. (2016) for MHWs.
Duration thresholds are rather arbitrary as it is unknown
which thresholds are most impact-relevant in particular for
LChl events and compound events. Our definition without a
duration threshold is consistent with the usage in the IPCC
SROCC report (Collins et al., 2019). We have chosen to fo-
cus here on rather moderate extremes, as defined with the
90th and the 10th percentiles, because they provide suffi-
ciently large sample sizes for robust statistical assessments
over the current chlorophyll record extending from 1998
to 2018.

Compound MHW and LChl events are defined when
both extreme hot temperatures and low-chlorophyll condi-
tions co-occur in time and space (yellow bands in Fig. 2).
For simplicity we refer to them as “compound events”. If

MHWs and LChl events were independent, we would ex-
pect compound events to occur at a frequency (f ) equal
to the product of their univariate frequencies at each grid
cell, that is 10 % · 10 %= 1 %. The likelihood multiplication
factor (LMF) of compound events is defined as the ratio
of the observed frequency of events to their expected fre-
quency under the assumption of independence (Zscheischler
and Seneviratne, 2017).

LMF=
f (Compound MHW and LChl event)

f (MHW) · f (LChl event)

=
Compound MHW and LChl event frequency (%)

1%
(1)

Since the latter equals 1 % in our case, compound event fre-
quency (in percent) and the LMF are equivalent. Thus, com-
pound events occur particularly often at grid cells where their
frequency exceeds 1 % of all days.

2.2.2 Metrics for characterizing univariate extremes
and compound extremes

We compute the duration, intensity, and frequency of extreme
events. The duration of a univariate and compound extreme
event corresponds to the number of days the event lasted
without interruption (Fig. 2). Figure A3 shows that the dura-
tion of MHWs, LChl events, and compound events is expo-
nentially distributed. For this reason, we present the 90th per-
centile of the duration distribution in maps. The intensity of
a MHW is defined as its mean SST exceedance anomaly over
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Table 1. Large-scale modes of climate variability used in this study and which potentially modulate the occurrence of compound marine
heatwave and low-chlorophyll events.

Climate mode Climate mode index Acronym

El Niño–Southern Oscillation Niño-3.4 index ENSO
El Niño Modoki El Niño Modoki Index EMI
Pacific Decadal Oscillation Pacific Decadal Oscillation index PDO
North Pacific Gyre Oscillation North Pacific Gyre Oscillation index NPGO
Indian Ocean Dipole Dipole Mode Index DMI
North Atlantic Oscillation North Atlantic Oscillation Index NAO
Antarctic Oscillation Antarctic Oscillation index AAO

the duration of the event (Fig. 2). It corresponds to the dif-
ference between the mean SST anomaly over all MHW days
of an event and the 90th percentile of SST anomalies. The
intensity of a LChl event is defined as its mean chlorophyll
exceedance anomaly, which corresponds to the difference be-
tween the mean chlorophyll anomaly over the duration of the
event and the 10th percentile of chlorophyll anomalies. The
intensity of a compound event is characterized by both the
mean SST exceedance anomaly and the mean chlorophyll
exceedance anomaly over the duration of the event in a bi-
variate plane. Finally, the frequency of an event is the num-
ber of event days over the total number of days, expressed as
a percentage.

2.2.3 Attributing extreme and compound extreme
occurrence to large-scale modes of climate
variability

Large-scale modes of interannual to decadal climate vari-
ability may strongly modify the occurrence of MHWs, LChl
events, and compound events. Holbrook et al. (2019) es-
tablished an analytical framework to identify regions where
statistically significant relationships exist between surface
MHW occurrence and large-scale climate modes. Following
the approach by Holbrook et al. (2019) for MHWs, we com-
pute the frequency of MHWs, LChl events, and compound
events during both positive and negative phases of the most
relevant large-scale climate modes. These climate modes
are the El Niño–Southern Oscillation (ENSO), the El Niño
Modoki, the Pacific Decadal Oscillation (PDO), the North
Pacific Gyre Oscillation (NPGO), the Indian Ocean Dipole,
the North Atlantic Oscillation (NAO), and the Antarctic Os-
cillation (AAO) (Table 1). In Appendix B, we briefly describe
the individual modes and where we obtained the necessary
data. In total we consider the impact of 14 different climate
phases (positive and negative phases of seven climate modes)
on the frequency of univariate extreme and compound ex-
treme events.

For each climate mode, we define positive, negative, and
neutral phases based on their index values. We consider all
days associated with the 50 % lowest absolute values of the
climate index to be in a neutral phase. Days associated with

its most positive or negative values are respectively in a pos-
itive or negative phase. To estimate whether a climate mode
has a discernible effect on local univariate and compound ex-
treme events, we compare at each grid cell the frequency of
extreme event days over the positive and negative phases to
their frequency over the neutral phase. To ensure these fre-
quency changes are statistically significant, we shuffle the
temporal order of each climate index and recompute the fre-
quency change in extreme event days 1000 times for each
grid point. If the observed frequency increase/decrease dur-
ing a particular climate phase is higher/lower than 95 % of
the shuffled cases, we consider the association of that climate
phase with a change frequency of extreme events significant
at that grid point (α = 0.1). We then also report significant
associations for those climate modes that lead to the largest
increase in extreme events for each location.

3 Results

We first assess the intensity and duration of MHWs and
low-chlorophyll events separately (Sect. 3.1), before we ana-
lyze spatial and temporal distribution of compound extreme
events (Sect. 3.2 and 3.3) and their drivers (Sect. 3.4).

3.1 Marine heatwaves and low-chlorophyll events

The strongest MHWs with mean temperatures of up to
2 ◦C above the 90th percentile are observed in high lati-
tudes in regions with high temperature variability (Oliver
et al., 2018; Holbrook et al., 2019; Deser et al., 2010), such
as the western boundary currents and the Agulhas Current
and Return Current, but also in the eastern equatorial Pa-
cific (Fig. 3a). Less intense MHWs (< 0.3 ◦C) occur in the
western part of the subtropical gyres, the northern Indian
Ocean, and south of 45◦ S. The mean intensity pattern of
low-chlorophyll events broadly resembles the MHW inten-
sity map but with distinct differences (Fig. 3b). The most in-
tense (up to −0.2 mg m−3) LChl events are located at high
latitudes, especially in the seasonally varying sea ice region
of the Southern Ocean, the North Atlantic, and the North Pa-
cific. LChl events are also intense in the equatorial Ocean, but
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Figure 3. Observed marine heatwave and low-chlorophyll extreme event characteristics averaged over the 1998–2018 period. (a, b) Mean
intensity of MHWs (◦C) and LChl events (mg m−3). (c, d) The 90th percentile of the duration of MHWs and LChl events in days.

in contrast to MHWs, the mean intensity is not as pronounced
in the eastern equatorial Pacific. Less intense chlorophyll ex-
tremes (<−0.02 mg m−3) are generally found in the tropics
and mid-latitudes, similar to MHWs.

The spatial distribution of the 90th percentile of MHW
and LChl event durations is shown in Fig. 3c and d. Par-
ticularly long MHWs (> 20 d) occur in the eastern equato-
rial Pacific, where prolonged El Niño conditions may sus-
tain positive SST anomalies for a few months and occa-
sionally for up to 2 years (Fig. 3c). Long MHWs (> 30 d)
are also observed in the seasonally varying sea ice region
of the Southern Ocean and the northeastern Pacific. Short
MHWs (< 5 d) are found in the western part of the subtropi-
cal gyres, where the intensity of MHWs is also weak. Similar
to MHWs, long LChl events are observed in high latitudes,
in particular in the Southern Ocean around Antarctica, where
10 % of events last longer than a month. Maximum durations
are found in the Weddell Sea, where LChl events last up to
130 d. When excluding the Southern Ocean, MHW and LChl
events have rather opposite duration patterns over most of
the global ocean. In contrast to MHWs, low-chlorophyll ex-
tremes last longest in the equatorial Atlantic and in the center
of the equatorial Pacific, where El Niño oscillations may lead
to zonal shifts of warm surface waters and high variability in
phytoplankton growth conditions (Fig. 3d).

3.2 Compound marine heatwaves and low-chlorophyll
events

MHWs and LChl events often occur simultaneously. Indeed,
the frequency of compound MHW and LChl events exceeds
1 % in most of the global ocean (over 80 % of the area), in-
dicating that MHWs and LChl co-occur more often than if

variations in SST and chlorophyll anomalies were indepen-
dent (Fig. 4a). Globally, the average frequency of compound
event days is 1.65 %. Compound events are especially fre-
quent (> 2 % of all days) in the equatorial Pacific, along the
boundaries of the subtropical gyres, in the Arabian Sea, and
around Antarctica. On the contrary, compound events occur
on less than 1 % of days in the North Atlantic and in the
North Pacific, in the Indian Ocean south of 15◦ S, and in the
Southern Ocean between 40 and 60◦ S.

Hotspots of compound MHW and LChl events are typi-
cally located in regions where SST and chlorophyll anoma-
lies are strongly negatively correlated (Fig. 4c), indicating
that the overall dependence between SST and chlorophyll is
not fundamentally different from the dependence in the tails
of the distributions. The highest frequencies of compound
event days (> 6 % of all days) occur at grid points for which
this correlation coefficient is especially negative (r <−0.5;
Fig. 4d). The most frequent events (> 7 % of all days) oc-
cur in the center of the equatorial Pacific. Here, the negative
correlation between SST and chlorophyll anomalies is much
lower than −0.5 (Fig. 4c). Grid points with positive correla-
tions between SST and chlorophyll anomalies (r > 0.2) tend
to have low frequencies of compound event days (< 1 % of
all days). Overall, there is a strong relationship (r =−0.74)
between the occurrence of compound events and the corre-
lation coefficient between SST and chlorophyll anomalies
(Fig. 4d).

The frequency pattern of compound MHW and LChl
events shown in Fig. 4a also resembles to some extent the
observed temperature and chlorophyll concentrations dur-
ing the most recent prominent large-scale marine heatwaves
(Fig. 1). Chlorophyll concentrations were exceptionally low
in the eastern equatorial Pacific during the 2013–2015 north-
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Figure 4. Occurrence of compound marine heatwave and low-chlorophyll events and its relationship to the correlation coefficient between
SST and chlorophyll anomalies over the 1998–2018 period. (a) Frequency of compound MHW and LChl event days (%). Here, the frequency
is equivalent to the likelihood multiplication factor. (b) The 90th percentile of the duration of compound events. (c) Linear correlation
coefficient between SST and chlorophyll anomalies. (d) Scatter plot of this correlation coefficient against the frequency of compound event
days over the global ocean.

east Pacific MHW and in the Indonesian Sea during the
2017 MHW. These are regions where the compound event
frequencies are very high (Fig. 4a). Chlorophyll concentra-
tions were normal or high during the 2012 northwest Atlantic
MHW and during the 2016 MHW in the Southern Ocean, re-
gions where the compound event frequency is also low. There
are exceptions however, such as in the northern subtropical
Pacific gyre where chlorophyll concentrations were locally
high during the 2013–2015 MHW, even though compound
MHW and LChl events are relatively frequent (> 1.8 % of
all days) there.

Next, we assess the duration of compound events (Fig. 4b).
The longest compound events (> 15 d) occur in regions of
the longest MHWs or LChl events, i.e., in the center of the
equatorial Pacific and in the seasonally varying sea ice region
of the Southern Ocean (Fig. 4b). In the Weddell Sea, 10 % of
compound events last longer than a month. Long compound
events (where 10 % of events last longer than 10 d) also occur
along the boundaries of the subtropical gyres in the North Pa-
cific and in the Arabian Sea. The shortest compound events
occur in the western part of the subtropical gyres and, in gen-
eral, in the extra-tropics.

Assessing the intensity of compound events is not as
straightforward as assessing their frequency or duration,
since they involve two variables. Figure 5 illustrates the
joint 90th–10th percentile threshold exceedance anomalies of
SST and chlorophyll anomalies averaged over all compound
events at a grid point. These joint exceedance anomalies are
generally low over most of the low-latitude to mid-latitude

ocean (green colors in Fig. 5). High exceedance anomalies
are reached in regions exhibiting the most intense MHWs
and LChl events (see Fig. 3a and b). Specifically, compound
events with particularly warm SST (yellow and light pink
colors in Fig. 5) occur in the eastern equatorial Pacific, while
compound events with particularly low chlorophyll (purple
colors in Fig. 5) occur in the seasonally varying sea ice re-
gion of the Southern Ocean, in parts of the North Atlantic,
and in the equatorial Atlantic. Intense compound events char-
acterized by both extremely warm SST and low chlorophyll
concentration (pink colors) occur at high northern latitudes;
in eastern boundary upwelling regions such as the Canary,
Humboldt, and California upwelling systems; in the western
boundary currents of the Atlantic; and in the center of the
equatorial Pacific.

3.3 Distribution of marine heatwaves and
low-chlorophyll and compound events over time

Next, we assess occurrences of MHWs and LChl and com-
pound events on seasonal to inter-annual timescales.

3.3.1 Seasonal timescale

The seasonal occurrences of extreme events strongly vary
with latitude. MHWs occur all year long at low latitudes and
mid-latitudes (Fig. 6a). In high latitudes, MHWs mostly oc-
cur in summer, especially in the Southern Ocean where, on
average, more than 14% of austral summer days are affected
by a MHW, while there are almost no MHW days in austral
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Figure 5. Intensity of compound marine heatwaves and low-chlorophyll events over the 1998–2018 period. Mean exceedance anomalies
above the 90th and 10th percentile thresholds of SST (◦C) and chlorophyll (mg m−3) anomalies, respectively, during compound events.

Figure 6. Seasonal cycle of MHWs, LChl events, and compound events over the 1998–2018 period. Frequency of (a) MHW, (b) LChl, and
(c) compound event days (%) as a function of latitude and day of the year.

winter and spring south of 55◦ S. The temporal distribution
over the year of LChl events is more heterogeneous across
latitudes (Fig. 6b). While these events occur throughout the
year along the Equator (about 10 % of days correspond to
a LChl event), they seem to follow the onset of the spring
bloom in mid-latitudes. This onset varies over the spring, re-
sulting in higher chlorophyll variability in spring, which may
explain why LChl events occur more frequently in this sea-
son. In high latitudes, LChl events mostly occur in summer,
especially in the Southern Ocean. As a result of the tempo-
ral distributions in MHW and LChl occurrences, compound
events predominantly follow the distribution of LChl events
over the year (Fig. 6c). At low latitudes, compound events oc-
cur at a similar frequency throughout the year. They mostly
occur in spring at mid-latitudes and in summer at high lati-
tudes, with especially high frequency (> 3 % of days) in the
Southern Ocean in austral summer.

3.3.2 Interannual timescale

The occurrence of extreme events also varies at the interan-
nual timescale from 1998 to 2018 (Fig. 7). In 1998, 2010,
and 2015–2016, the frequency of MHW days exceeded 15 %
on average over the global ocean (Fig. 7a and Oliver et al.,
2018). The mean frequency of MHWs is positively corre-
lated with time series of the El Niño 3.4 index (r = 0.54).
As indicated by the red bands, these years were all character-
ized by strong El Niño events. These years were also char-

acterized by longer MHWs, especially in 2015 when MHWs
lasted more than 30 d on average (not shown). In contrast,
the occurrence probability and duration of MHWs is reduced
during La Niña events (blue bands in Fig. 7a). LChl events
also vary over the years, but to a smaller extent than MHWs.
The frequency of LChl days strongly increased during the
2015–2016 El Niño event to up to 15 % on average over the
global ocean, but other strong El Niño events had almost no
impact on the frequency of LChl events (Fig. 7b), also exem-
plified by the low correlation coefficient of r = 0.23 between
LChl events and the El Niño 3.4 index. Most of the interan-
nual distribution of compound events seems to be explained
by the interannual distribution of MHWs, as LChl events are
relatively uniformly distributed over the years. Compound
events occurred most frequently (> 2.5 % of all days) in the
global ocean in 1998 and 2015–2016 (Fig. 7c), years which
are characterized by strong El Niño events. Their frequency
is more positively correlated with El Niño 3.4 (r = 0.42) than
the frequency of LChl events but slightly less than the fre-
quency of MHWs.

3.4 The role of natural internal climate variability

To improve our understanding of when and where compound
MHW and LChl events occur, we identify the large-scale
modes of internal climate variability that are associated with
compound events locally. We compute the frequency of com-
pound event days during the positive and negative phases
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Figure 7. Global mean frequency of MHWs (a), LChl events (b), and compound events (c) over time. Daily time series are smoothed with
a 1-year running mean to highlight interannual variability. Red and blue shading indicates the occurrence of El Niño and La Niña events,
respectively. These events occur when the El Niño 3.4 index exceeds 0.4 or is lower than −0.4, respectively, for at least 6 months. Note the
different y-axis scales.

of seven different climate modes (see Methods). Figure 8
presents the frequency change in compound event days dur-
ing these climate modes compared to their frequency over all
days in a neutral phase from 1998 to 2018.

Overall, the relationship between compound event occur-
rence and climate modes is rather complex, but there are clear
patterns emerging that are consistent with the well-known
SST or atmospheric pressure patterns during these modes.
The positive phase of ENSO (i.e., El Niño events) is asso-
ciated with increased frequency of compound events in the
central and eastern equatorial Pacific (> 300 %) (Fig. 8a).
In 2015, an El Niño event was indeed associated with a com-
pound MHW and LChl event (Fig. 1); chlorophyll anoma-
lies reached extremely low values as the warming extended
southward into the eastern equatorial Pacific due to the en-
hancement of the Blob by El Niño (Tseng et al., 2017).
El Niño events are also associated with increased frequency
of compound events in the Indian Ocean (> 300 %), the Pa-
cific sector of the Southern Ocean, and the California Cur-
rent system, whereas they suppress compound events in the
western Pacific (−100 %) and in the mid-latitudes (Fig. 8a).
On the contrary, the negative phase of ENSO (i.e., La Niña
events) is associated with higher frequency in the western Pa-
cific (> 300%) and in the Southern Ocean from 30 to 50◦ S
(> 300 %) and with fewer compound events in the eastern
equatorial Pacific and in the Indian Ocean (Fig. 8b). During
the positive and negative phases of EMI (Fig. 8c and d), the
pattern of compound event frequency broadly resembles the
pattern during positive and negative ENSO phases. However,
compound events in the eastern equatorial Pacific and the In-
dian Ocean are less affected by EMI than by ENSO. The pos-
itive phase of PDO is associated with increased frequency
of compound events in the eastern equatorial Pacific, in the
northeastern Pacific, and in the Indian Ocean, and vice versa
during the negative phase of PDO (Fig. 8e and f). Although
the ENSO and PDO patterns are very similar in the Pacific –
PDO is often described as the long-lived El Niño-like climate
pattern in the Pacific (Zhang et al., 1997) – they differ in the

Southern Ocean where PDO phases are associated with less
frequent compound events than ENSO phases (Fig. 8a, b, e
and f). NPGO is another leading mode of climate variability
in the Pacific; its positive phase is associated with suppressed
compound event occurrence in the northern Pacific gyre and
reduced occurrence in the southern Pacific gyre while its neg-
ative phase is associated with increased occurrence of com-
pound events in the subtropical Pacific (Fig. 8g and h). Note
that ENSO, EMI, PDO, and NPGO are all correlated, their
definition being based on climate variability in the Pacific
Ocean. The positive phase of the Indian Ocean Dipole (i.e.,
DMI+) is associated with higher frequency (> 75 %) in the
Arabian Sea and reduced frequency (<−75 %) around the
Maritime Continent (Fig. 8i). The positive phase of NAO is
associated with increased frequency of compound events in
the North Atlantic mid-latitudes and in the northeastern Pa-
cific, while it suppresses compound events in the North At-
lantic high and low latitudes (Fig. 8k). Finally, the positive
phase of AAO is associated with higher frequency of com-
pound events (> 75 %) in parts of the Southern Ocean, of the
eastern Pacific, and of the eastern Indian Ocean (Fig. 8m).

In general, the positive and negative phases of each cli-
mate mode are associated with opposite changes in the fre-
quency of compound events. However, Fig. 8a, c, e, g, i, k,
and m are not exactly complementary to Fig. 8b, d, f, h, j, l,
and n, which partly reflects that the modes themselves are not
perfectly complementary; e.g., there are asymmetries in the
spatial structure, amplitude, duration, and time evolution of
El Niño and La Niña (An and Jin, 2004; Dommenget et al.,
2013; Okumura and Deser, 2010).

The climate mode associated with the largest frequency in-
crease in compound event days varies over the global ocean
(Fig. 9). ENSO seems to be the main modulator of compound
events in the eastern equatorial Pacific and in the northwest-
ern part of the Indian Ocean, where El Niño events are as-
sociated with the highest frequency of compound event days
from 1998 to 2018. The positive phase of PDO is associated
with the greatest occurrence of compound events in some
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Figure 8. Frequency change in compound event days during positive and negative phases of several climate modes compared to their
frequency over the neutral phase (in percent). Analyzed climate modes are (a, b) El Niño Southern Oscillation, (c, d) El Niño Modoki,
(e, f) Pacific Decadal Oscillation, (g, h) North Pacific Gyre Oscillation, (i, j) Indian Ocean Dipole using its Dipole Mode Index, (k, l) North
Atlantic Oscillation, and (m, n) Antarctic Oscillation. Grids cells where this frequency change is not statistically relevant remain white.

parts of the Indian Ocean and of the tropical and northeastern
Pacific. The negative phase of NPGO is associated with the
largest frequency of compound events in some parts of the
North Pacific gyre. The Indian Ocean Dipole is the climate
mode associated with the highest occurrence of compound
events around Indonesia and in parts of the subtropical Pa-
cific. NAO is associated with their highest occurrence in the
eastern equatorial Atlantic, in the Gulf Stream region, and in
some parts of the northeastern Pacific. Finally, AAO is as-
sociated with the highest frequency of compound events in
some parts of the Southern Ocean. Figure 9 is patchy in many
areas, presumably due to the relatively short 1998–2018 time
period over which the sampling of compound events is lim-
ited. The climate modes associated with the largest frequency
increase in MHW days and in LChl event days, separately,
are provided in the Appendix for reference (Fig. A4).

4 Discussion and conclusion

In this study, we provide a first assessment of compound
marine heatwave and low-chlorophyll extreme events in the
global ocean over the 1998–2018 period. We show that
hotspots of compound MHW and LChl events can be found
in the equatorial Pacific, along the boundaries of the sub-
tropical gyres, and in the Arabian Sea. These correspond
to regions where the sea surface temperature and chloro-
phyll anomalies are predominantly negatively correlated and
also to regions where most of the warm-water corals are lo-
cated and where coral-bleaching events have often occurred
in the recent past (Hughes et al., 2018a). Furthermore, we
show that compound events mostly occur in summer in the
high latitudes and throughout the year in the low latitudes to
mid-latitudes and that different large-scale modes of climate
variability are associated with compound MHW and LChl
events.

Our identified global pattern of compound event frequency
in Fig. 4a also corresponds to some extent with the re-
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Figure 9. Phases of large-scale climate modes associated with the highest frequency of compound event days from 1998 to 2018. Regions
for which the base frequency over the whole 1998–2018 period is < 1 % are marked white.

sults of Hayashida et al. (2020), who concluded that the
general response of chlorophyll to MHWs at specific sites
depends on the background surface nutrient concentration.
They showed that during MHWs, shallower mixed-layer
depth and lower nitrate concentration exacerbate nutrient
stress (Behrenfeld et al., 2006; Racault et al., 2017), resulting
in lower chlorophyll concentration in nutrient-limited surface
waters, whereas the relief of light limitation during MHWs
leads to higher chlorophyll concentrations in nutrient-rich
surface waters. The eastern equatorial Pacific is an excep-
tion, where, for example during El Niño events, the reduc-
tion in the upwelling of cold and nutrient-rich subsurface
waters leads to lower chlorophyll concentration (Hayashida
et al., 2020; Racault et al., 2017). The decrease in chloro-
phyll concentration may be exacerbated by a potential in-
crease in grazing pressure in warmer waters in these eu-
trophic waters (Laufkötter et al., 2015). In contrast to the
Hayashida et al. (2020) study, which investigates the general
response of chlorophyll to MHWs at specific sites regard-
less of whether the chlorophyll concentration is extreme or
not, our analysis identifies regions at the global scale where
both temperature and chlorophyll are extreme at the same
time. Despite this difference, we also identify elevated com-
pound event frequency in the nutrient-limited surface waters
of the low latitudes and in the eastern equatorial Pacific and
low compound event frequency in the nutrient-rich surface
waters of the Southern Ocean (Fig. 4a). The eastern equato-
rial Pacific behaves like a nutrient-limited region even though
it is nutrient-rich. There are exceptions, however, between
our results and Hayashida et al. (2020). Compound events
are relatively frequent in the North Pacific, North Atlantic,
and around Antarctica even though the background nutri-
ent concentration is relatively high in these regions. There,
phytoplankton growth may be limited by other key nutrients
(e.g., iron around Antarctica), and increased phytoplankton
grazing may lead to low chlorophyll during marine heat-
waves. In addition, the frequency of compound events in the

tropical Indian Ocean is relatively low even though the sur-
face nutrient concentrations are low there. This calls for ad-
ditional process-oriented studies to identify the exact phys-
ical and biogeochemical processes driving compound high-
temperature and low-chlorophyll events.

While there is a growing understanding of how the oc-
currence of MHWs changes under several modes of inter-
nal climate variability (Holbrook et al., 2019), the modula-
tion of LChl events and in particular of compound MHW
and LChl event frequency is barely understood. We assessed
changes in the frequency of compound events during the pos-
itive and negative phases of several climate modes. Even
though statistical relationships do not necessarily indicate
causal links, these changes help predict the occurrence of
compound events as a function of the oceanic region and
the state of a climate mode. For example, compound event
frequency is increased by up to 300 % in the Pacific and In-
dian oceans during El Niño events. We can therefore expect
frequent compound events in these regions during upcoming
El Niño events. The relationships we demonstrate between
climate drivers and compound events resemble the relation-
ships between climate drivers and MHWs shown in Holbrook
et al. (2019) in the equatorial Pacific, in the Indian Ocean,
and in the northern Atlantic. Therefore, the state of the dif-
ferent large-scale climate modes can potentially be used to
predict the occurrence of both MHWs and compound MHW
and LChl events in these regions. However, this is not the
case in other regions (e.g., in the western Pacific), where
the occurrence pattern of MHWs and compound MHW and
LChl events differ for the different large-scale modes of cli-
mate variability. This indicates again that other processes
(see above) may affect chlorophyll concentrations in these
regions, that MHWs are mostly modulated by climate modes
that we omitted in our study (e.g., the Interdecadal Pacific
Oscillation in parts of the Pacific Ocean) because our shorter
period of analysis does not capture their variability, or that
some climate modes would be dominant if we used a longer
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period of analysis such as in Holbrook et al. (2019). Given
that compound events are strongly associated with several
large-scale modes of climate variability, skillful multi-annual
forecasts of the state of these climate modes may be used
as an early warning system for the occurrence of compound
events and may therefore provide critical information for
fishery management and adaptation interventions to reduce
risks and impacts on marine organisms and ecosystems dur-
ing such events (Holbrook et al., 2020).

Even though we consider our results robust, two poten-
tial uncertainties need to be discussed. First, our quantita-
tive results are sensitive to the particular assumptions that
need to be made during the statistical analysis (e.g., threshold
value, fixed vs. moving baseline; Burger et al., 2020; Oliver
et al., 2021). We chose to use the 90th and 10th percentile
thresholds to have a relatively large number of compound
events given the length of the satellite record for chlorophyll.
Choosing different thresholds led to qualitatively similar re-
sults. In addition, we use a fixed baseline climatology (i.e.,
the entire 1998–2018 satellite record). Therefore, any long-
term changes in sea surface temperature and chlorophyll af-
fect the frequency of compound events over time. Because
there is a gradual increase in mean sea surface tempera-
ture (SST), MHWs generally occur more often towards the
end of the satellite record (Fig. 7a; Frölicher et al., 2018;
Oliver et al., 2018; Laufkötter et al., 2020). This is not the
case for LChl events, as the long-term trend in mean chloro-
phyll concentrations is close to zero (Hammond et al., 2020;
Rousseaux and Gregg, 2014). Consequently, a fixed baseline
might not affect the occurrence of LChl events, but it might
favor an increase in the occurrence of compound MHW and
LChl events over the satellite period along with the increase
in mean SST.

Second, whereas the satellite-derived temperature data
have been validated extensively (Banzon et al., 2016; Huang
et al., 2021; Reynolds et al., 2007) and used for many re-
cent marine heatwave analyses (e.g., Hobday et al., 2016;
Oliver et al., 2018; Frölicher et al., 2018; Laufkötter et al.,
2020), the satellite-derived chlorophyll estimates have not
been extensively used to analyze extreme events. High solar
zenith angles, clouds, aerosols, and interorbital gaps can lead
to a bias in the chlorophyll (and temperature) data (Gregg
et al., 2009). Furthermore, the data have to be merged over
several weeks or even months to achieve true global repre-
sentation. By assimilating satellite ocean color in the NASA
Ocean Biogeochemical Model, we reduced some of these bi-
ases. Nevertheless, we note that our results need to be taken
with caution, especially near the coasts and at high latitudes,
where the chlorophyll estimates remain uncertain.

Impacts of compound MHW and LChl events on ma-
rine organisms and ecosystems may be more severe than
the impacts from MHWs and LChl events individually. Even
though little is known about the impacts of compound MHW
and LChl events, many studies have documented the mostly
strong negative effects of MHWs alone. It is assumed that

marine species are particularly vulnerable to MHWs in the
low latitudes, since these species already live at the upper
thermal edge of their habitat (Smale et al., 2019). MHWs
in the low latitudes also have critical impacts on founda-
tion species such as corals, seagrass, and kelp (Smale et al.,
2019). In the high latitudes, where biological production is
often light-limited (McClain, 2009), MHWs may be benefi-
cial for some species as long as MHWs are not very abrupt,
prolonged, or compounded with other stressors over time
(Cavole et al., 2016; Walsh et al., 2018). On the other hand,
low chlorophyll, when indicating lower net primary produc-
tion, results in lower food supply in all oceanic regions with
harmful effects on marine biology. While chlorophyll is not
always correlated with phytoplankton biomass or net pri-
mary production, particularly in subtropical regions (Barbi-
eux et al., 2018), it is still commonly used as a proxy for phy-
toplankton biomass or net primary production (e.g., Behren-
feld et al., 2005; Henson et al., 2010). We therefore assume
that LChl events often exacerbate the impacts from MHWs.
In addition, phytoplankton includes a diverse range of dif-
ferent species that may respond differently to MHWs. For
example, both the phytoplankton and zooplankton commu-
nity composition have changed from larger species to smaller
species during the northeast Pacific 2013–2015 MHW (Cav-
ole et al., 2016), resulting in less energy available for the
food web. While some species benefited from the compound
MHW and LChl event (e.g., rockfish, subtropical copepods,
tuna, and orcas), the mortality of many other species substan-
tially increased (subarctic copepods, crabs and mussels, sea
birds, seals, sea lions, and whales). More research is needed
to understand the effects of exceptional warming events com-
bined with LChl levels, as marine ecosystems could suffer
severe damage.

Earth system models project further surface warming and
decreasing primary production in nutrient-limited waters of
the low latitudes to mid-latitudes during the 21st century
(Bopp et al., 2013; Kwiatkowski et al., 2020). Given these
projected long-term trends, we can expect more frequent
compound events and increasing pressure on marine organ-
isms and ecosystems over the next decades in these regions.
We therefore encourage future work aimed at assessing the
vulnerability, adaptability, and resilience of marine ecosys-
tems to these compound events.

Our results provide a first characterization of where and
when compound MHW and LChl events might occur and
how these events are associated with large-scale modes of
internal climate variability. Additional observationally based
and modeling studies are needed to identify the exact phys-
ical and biological drivers of such compound events in the
ocean, their evolution with climate change, and their impacts
on marine ecosystems.
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Appendix A: Additional figures

Figure A1. Schematic figure illustrating the definition of MHWs, LChl events, and compound MHW and LChl events. Time series of SST
and chlorophyll concentration are extracted from 2013 to 2015 at 0◦ N and 155◦ E. A MHW occurs (red shaded area) when the SST (bold
red line) exceeds its 90th percentile (dashed red line). A LChl event (blue shaded area) occurs when the surface chlorophyll concentration
(bold blue line) is below its 10th percentile (dashed blue line). Yellow bands indicate the occurrence of compound MHW and LChl events.

Figure A2. (a) The 90th percentile of SST anomalies (◦C) and (b) 10th percentile of chlorophyll anomalies (mg m−3) from 1998 to 2010 at
each grid cell.
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Figure A3. Distribution of the duration of all MHWs (a, b), LChl events (a, c), and compound events (a, d) sampled over the global ocean
from 1998 to 2018. In (a), the box extends from the lower to upper quartiles, with a line at the median. The bottom and upper whiskers
correspond to the 10th and 90th percentiles of the duration, respectively. Density plots (b–d) show the probability density function (PDF) for
2 d wide bars. The longest MHW lasted 346 d, the longest LChl event 394 d, and the longest compound event 227 d.

Figure A4. Phases of large-scale climate modes associated with the highest frequency of MHW days (a) and low-chlorophyll event days (b).
Regions for which none of the climate modes reach a significant change of the frequency (see Methods) are marked grey.
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Appendix B: Climate indices

– The Niño-3.4 index indicates the state of ENSO and
corresponds to the area-averaged SST anomaly in the
equatorial central Pacific from 5◦ S–5◦ N and 170–
120◦W, relative to the mean SST over this area (https:
//psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/, last ac-
cess: March 2021).

– The El Niño Modoki is equivalent to the central Pa-
cific ENSO. It is estimated using the El Niño Modoki
Index (EMI), which is based on the difference be-
tween SST anomalies in the central equatorial Pa-
cific and the averaged eastern and western Pacific SST
anomalies (http://www.jamstec.go.jp/frsgc/research/d1/
iod/modoki_home.html.en, last access: March 2021).

– The PDO index is obtained by linearly regressing
monthly SST anomalies upon the leading principal
component of SST anomalies in the North Pacific Ocean
poleward of 20◦ N (http://research.jisao.washington.
edu/pdo/PDO.latest, last access: March 2021).

– The NPGO index is based on the second mode of
sea surface height variability in the northeast Pacific
and it accurately describes the climate pattern south of
40◦ N (http://www.o3d.org/npgo/npgo.php, last access:
March 2021).

– The Dipole Mode Index (DMI) measures the strength
of the Indian Ocean Dipole. It is based on the difference
between SST anomalies in the western equatorial
Indian Ocean (50–70◦ E and 10◦ S–10◦ N) and in the
southeastern equatorial Indian Ocean (90–110◦ E and
10◦ S–0◦ N) (http://www.jamstec.go.jp/frsgc/research/
d1/iod/e/iod/dipole_mode_index.html, last access:
March 2021).

– The NAO index is constructed by projecting the daily
500 mb height anomalies over the Northern Hemisphere
onto the loading pattern of the North Atlantic Oscil-
lation. The latter oscillation of atmospheric pressure
anomalies consists of a north–south dipole with one
center located over Greenland and the other center of
opposite sign over the North Atlantic between 35 and
40◦ N (https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml, last access: March 2021).

– Finally, the AAO index is constructed by projecting
daily 700 mb height anomalies poleward of 20◦ S
onto the loading pattern of the Antarctic Oscilla-
tion (https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/daily_ao_index/aao/monthly.aao.index.b79.
current.ascii.table, last access: March 2021).
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Data availability. The satellite SST data are available under https:
//www.ncdc.noaa.gov/oisst/data-access (last access: March 2021)
(Banzon et al., 2016; Reynolds et al., 2007). The chlorophyll
data assimilated by the NASA Ocean Biogeochemical Model
are publicly available from 1998 to 2015 under https://disc.
gsfc.nasa.gov/datasets/NOBM_DAY_R2017/summary (last access:
March 2021) (Gregg and Rousseaux, 2017). Cécile Rousseaux pro-
vided a pre-release of the chlorophyll data from 2016 to 2018,
and these data are available upon request. The figures and
analysis are available under the following link on ZENODO:
https://doi.org/10.5281/zenodo.4542015 (Le Grix, 2021).
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Abstract. Extreme events can severely impact marine or-
ganisms and ecosystems. Of particular concern are multi-
variate compound events, namely when conditions are si-
multaneously extreme for multiple ocean ecosystem stres-
sors. In 2013–2015 for example, an extensive marine heat-
wave (MHW), known as the Blob, co-occurred locally with
extremely low net primary productivity (NPPX) and nega-
tively impacted marine life in the northeast Pacific. Yet, lit-
tle is known about the characteristics and drivers of such
multivariate compound MHW–NPPX events. Using five dif-
ferent satellite-derived net primary productivity (NPP) esti-
mates and large-ensemble-simulation output of two widely
used and comprehensive Earth system models, the Geophys-
ical Fluid Dynamics Laboratory (GFDL) ESM2M-LE and
Community Earth System Model version 2 (CESM2-LE),
we assess the present-day distribution of compound MHW–
NPPX events and investigate their potential drivers on the
global scale. The satellite-based estimates and both models
reveal hotspots of frequent compound events in the center of
the equatorial Pacific and in the subtropical Indian Ocean,
where their occurrence is at least 3 times higher (more than
10 d yr−1) than if MHWs (temperature above the seasonally
varying 90th-percentile threshold) and NPPX events (NPP
below the seasonally varying 10th-percentile threshold) were
to occur independently. However, the models show dispari-
ties in the northern high latitudes, where compound events
are rare in the satellite-based estimates and GFDL ESM2M-
LE (less than 3 d yr−1) but relatively frequent in CESM2-LE.

In the Southern Ocean south of 60◦ S, low agreement be-
tween the observation-based estimates makes it difficult to
determine which of the two models better simulates MHW–
NPPX events. The frequency patterns can be explained by the
drivers of compound events, which vary among the two mod-
els and phytoplankton types. In the low latitudes, MHWs are
associated with enhanced nutrient limitation on phytoplank-
ton growth, which results in frequent compound MHW–
NPPX events in both models. In the high latitudes, NPPX
events in GFDL ESM2M-LE are driven by enhanced light
limitation, which rarely co-occurs with MHWs, resulting in
rare compound events. In contrast, in CESM2-LE, NPPX
events in the high latitudes are driven by reduced nutrient
supply that often co-occurs with MHWs, moderates phyto-
plankton growth, and causes biomass to decrease. Compound
MHW–NPPX events are associated with a relative shift to-
wards larger phytoplankton in most regions, except in the
eastern equatorial Pacific in both models, as well as in the
northern high latitudes and between 35 and 50◦ S in CESM2-
LE, where the models suggest a shift towards smaller phy-
toplankton, with potential repercussions on marine ecosys-
tems. Overall, our analysis reveals that the likelihood of com-
pound MHW–NPPX events is contingent on model represen-
tation of the factors limiting phytoplankton production. This
identifies an important need for improved process under-
standing in Earth system models used for predicting and pro-
jecting compound MHW–NPPX events and their impacts.
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1 Introduction

Warming and reduced primary productivity of organic matter
by marine phytoplankton are considered to be two of the ma-
jor potential stressors of open-ocean ecosystems, along with
acidification and deoxygenation (Gruber, 2011; Bopp et al.,
2013; Bindoff et al., 2019). Not only are marine ecosystems
threatened by long-term decadal-scale changes in sea surface
temperature (SST) (Cheng et al., 2017) and net primary pro-
ductivity (NPP) (Boyce et al., 2010; Doney et al., 2012), they
are also increasingly impacted by short-term extreme events,
such as marine heatwaves (MHWs) (Wernberg et al., 2013;
Frölicher and Laufkötter, 2018; Oliver et al., 2018) and ex-
tremely low NPP events (hereafter called “NPPX” events;
Whitney, 2015; Cavole et al., 2016). An emerging concern
is the occurrence of multivariate compound events, namely
situations when multiple ecosystem stressors deviate from
normal conditions simultaneously, in close spatial proxim-
ity or temporal succession (Leonard et al., 2014; Zscheis-
chler et al., 2018, 2020). Together they may severely im-
pact marine ecosystems (Boyd and Brown, 2015; Gruber
et al., 2021). To date, the majority of studies have focused
on compound events over land (e.g., Ridder et al., 2020;
Zscheischler et al., 2020), with only a relatively small num-
ber of studies having addressed compound events in the
ocean (Gruber et al., 2021; Shi et al., 2021; Le Grix et al.,
2021; Mogen et al., 2022; Burger et al., 2022).

The combination of MHW and NPPX may cause severe
impacts on marine organisms and ecosystems (Boyd and
Brown, 2015; Le Grix et al., 2021). The “Blob” in the north-
east Pacific stands as an example of such an impactful com-
pound event. Between 2013 and 2015, the northeast Pacific
experienced the most intense and longest-lasting MHW ever
recorded, with maximum SST anomalies of more than 5 ◦C
lasting for more than 350 d (Di Lorenzo and Mantua, 2016;
Laufkötter et al., 2020). Along with anomalously low oxygen
and high [H+] concentrations, the Blob coincided with large
negative anomalies in phytoplankton NPP (Whitney, 2015;
Gruber et al., 2021; Mogen et al., 2022), and it had severe
impacts on marine life (Cavole et al., 2016), including ex-
treme mortality and reproductive failure of sea birds (Jones
et al., 2018; Piatt et al., 2020) and mass stranding of whales
in the western Gulf of Alaska and of sea lions in California,
not to mention shifts in species distribution towards warm-
water species (Cavole et al., 2016; Cheung and Frölicher,
2020). Although not all compound MHW and NPPX events
may lead to extreme consequences for marine organisms and
ecosystems, they should at the very least be considered com-
pound hazards (Ridder et al., 2022) and, as such, pose a threat
that warrants further investigation.

In a previous study, Le Grix et al. (2021) character-
ized compound high-SST and low-chlorophyll events, with
low chlorophyll assumed as a proxy for low phytoplankton
biomass. Using satellite-derived chlorophyll and SST obser-
vations, they found hotspots of frequent compound events

in the equatorial Pacific, in the Indian Ocean, and along
the borders of the subtropical gyres. In these regions, more
than 10 compound-event days occurs per year. This is 3
to 7 times more often than expected under the assump-
tion of independence between high-SST and low-chlorophyll
events. The authors also showed that compound-event occur-
rence is strongly modulated over interannual timescales by
large-scale modes of climate variability. An example is the
El Niño–Southern Oscillation, whose positive phase is as-
sociated with increased occurrence of compound events in
the eastern equatorial Pacific. Although the state of climate
modes provides valuable information regarding the likeli-
hood of compound events occurring, much remains to be
learned regarding local physical and biological drivers of
such compound events. Enhanced mechanistic understand-
ing of these potentially harmful events in the ocean is crucial
for building and improving the tools for their prediction and
ultimately for adaptation and ecosystem management (Gru-
ber et al., 2021).

Previous studies have investigated the drivers of MHWs,
which can act on various spatial and temporal scales
(e.g., Holbrook et al., 2019; Gupta et al., 2020; Oliver et al.,
2021; Vogt et al., 2022). MHWs can be triggered through lo-
cal processes affecting the temperature budget of the mixed
layer such as air–sea heat fluxes, local vertical mixing, or ad-
vection (Gupta et al., 2020; Vogt et al., 2022), while MHWs
can also be caused remotely through atmospheric or oceanic
teleconnection processes (Bond et al., 2015; Holbrook et al.,
2019). A number of studies have investigated phytoplank-
ton variability using data derived from satellite ocean color
(Boyce et al., 2010; Whitney, 2015; Gittings et al., 2018;
J. S. Long et al., 2021). However, only a few studies have
explored the drivers of NPPX events during MHWs. For ex-
ample, Whitney (2015) shows that in winter 2013/14 during
the Blob, anomalous winds weakened nutrient transport to
the northeastern Pacific transition zone and decreased phyto-
plankton NPP, resulting in the lowest chlorophyll concentra-
tions ever measured using satellite observations. Wyatt et al.
(2022) suggest that nutrient limitation during MHWs gener-
ally reduces the biomass of small and large phytoplankton in
the northeast Pacific transition zone. However, not all warm-
ing events are accompanied by NPPX events. For instance,
J. S. Long et al. (2021) noted an increase in NPP during two
recent MHWs in the northeast Pacific. Even though high SST
may be associated with nutrient limitation on phytoplank-
ton growth and with enhanced phytoplankton grazing, it also
directly enhances phytoplankton growth (Laufkötter et al.,
2015). Phytoplankton biology is indeed modulated by multi-
ple interacting processes in the ocean, rendering it a complex
task to identify drivers of any extreme change in NPP. As data
derived from satellite observations can be sparse, biased, or
uncertain (Behrenfeld et al., 2005; J. S. Long et al., 2021) and
limited to recent decades, multiple simulations from Earth
system models that include a biological component in the
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ocean appear to be a useful tool to improve our lack of un-
derstanding of NPP variability and extremes.

Extreme events are rare by definition, and compound ex-
treme events occur even less frequently. Understanding com-
pound MHW–NPPX events from a statistical point of view
requires therefore large datasets from which to sample nu-
merous combinations of extremely high SST and extremely
low NPP. Over our period of interest (i.e., satellite pe-
riod 1998–2018) both extremes rarely co-occur together. In
this context, large-ensemble simulations (LES) with climate
models (Frölicher et al., 2009; Deser et al., 2020) provide
an invaluable tool for advancing our understanding of com-
pound events. LES are created with a single climate model
under a particular historical or future radiative-forcing sce-
nario by applying perturbations to the initial conditions of
each member in order to create diverging climate trajecto-
ries. LES provide the necessary large datasets from which to
infer the uncertainty in the likelihood of compound events.
Here, we use LES from two global coupled climate Earth
system models, the Geophysical Fluid Dynamics Labora-
tory (GFDL) ESM2M and Community Earth System Model
version 2 (CESM2), to investigate compound MHW–NPPX
events.

The principal objectives of our study are to identify
hotspots of compound MHW–NPPX events, to assess the
fidelity of both Earth system models in simulating MHW–
NPPX events, and to gain mechanistic insights into processes
driving these compound events, to thereby enhance our ca-
pacity to better project the occurrence of such events into
the future. We focus on the satellite period (1998–2018) over
which we have satellite-based data of NPP.

2 Methods

2.1 Observation-based data

We use SST data from NOAA’s daily high-resolution Op-
timum Interpolation SST (OISST) analysis product with
a horizontal resolution of 0.25◦ latitude× 0.25◦ longi-
tude (Reynolds et al., 2007; Banzon et al., 2016). This
observation-based data product provides a high-quality daily
global record of surface ocean temperature obtained from
satellites, ships, buoys, and Argo floats on a regular grid. Its
main input is infrared satellite data from the Advanced Very
High Resolution Radiometer with high temporal–spatial cov-
erage spanning late 1981 to the present. Any large-scale
satellite biases relative to in situ data from ships and buoys
are corrected, and any gaps are filled in by interpolation.

We use five different satellite-based estimates of NPP.
The first is calculated by the NASA Ocean Biogeochem-
ical Model (NOBM) (Gregg and Rousseaux, 2017; Gregg
and Casey, 2007), a comprehensive ocean biogeochemi-
cal model coupled to a global ocean circulation and ra-
diative model, which assimilates satellite ocean color data

from the Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS), the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard Aqua, and the Visible Infrared Imaging
Radiometer Suite (VIIRS) to constrain NPP estimates over
the mixed layer. The four other NPP datasets are based
on the Vertically Generalized Production Model (VGPM)
(Behrenfeld et al., 2005), which estimates NPP within the
euphotic layer from chlorophyll or phytoplankton carbon
concentrations, available light, and a temperature-dependent
description of photosynthetic efficiency. The four versions
of this model are Standard VGPM, Eppley-VGPM, CbPM-
VGPM, and CAFE-VGPM (http://sites.science.oregonstate.
edu/ocean.productivity/index.php, last access: 30 Novem-
ber 2021). The only difference between Standard VGPM
(Behrenfeld and Falkowski, 1997) and Eppley-VGPM is the
temperature-dependent description of photosynthetic effi-
ciencies: Standard VGPM uses a polynomial function of tem-
perature, while Eppley-VGPM uses the exponential function
described by Eppley (1972). Instead of deriving phytoplank-
ton biomass from surface chlorophyll, the Carbon-based
Production Model (CbPM; Behrenfeld et al., 2005; West-
berry et al., 2008) estimates phytoplankton carbon concentra-
tions using coefficients of particulate scattering. And finally,
CAFE-VGPM refers to the Carbon, Absorption, and Fluo-
rescence Euphotic-resolving (CAFE) model (Silsbe et al.,
2016), which calculates NPP as the product of energy absorp-
tion and the efficiency by which absorbed energy is converted
into carbon biomass. VGPM-based models also use SeaW-
iFS, MODIS, or VIIRS data. Figure B1a–j in the Appendix
provide the temporal mean and standard deviation of each
observation-based NPP product. We chose to include all five
observation-based NPP products as NPP estimates by models
assimilating satellite data are still uncertain and highly sensi-
tive to their respective model configurations (e.g., Behrenfeld
et al., 2005; J. S. Long et al., 2021).

The SST and all satellite-derived NPP data used in this
study are regridded to the coarser NOBM grid resolution
of 1.25◦ longitude by 2/3◦ latitude for the period 1998 to
2018 before the analysis. The NOBM-based NPP product
has a 5 d resolution, whereas the four VGPM-based NPP
products have an 8 d resolution. From daily SST, we com-
puted and used the 5 d mean SST when working with the
5 d mean NOBM-based NPP products and the 8 d mean SST
when working with VGPM-based NPP. As NPP is close to
or equal to zero during winter in the polar regions when so-
lar radiation is near zero, we follow the approach of Le Grix
et al. (2021) and remove all days during which a particular
grid cell receives no solar radiation, thereby focusing on the
growing season. The daily shortwave radiation data were ob-
tained from the Modern-Era Retrospective analysis for Re-
search and Applications version 2 (Gelaro et al., 2017).
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2.2 Model descriptions and large-ensemble simulations

We use two global fully coupled Earth system models
(ESMs): GFDL’s ESM2M and CESM2. ESM2M is a fully
coupled carbon–climate ESM developed at NOAA’s Geo-
physical Fluid Dynamics Laboratory (GFDL) (Dunne et al.,
2012, 2013). It couples an atmospheric circulation model
to an oceanic circulation model and includes representa-
tions of land, sea ice, and iceberg dynamics, as well as
interactive biogeochemistry. The atmospheric model AM2
(The GFDL Global Atmospheric Model Development Team,
2004) has a horizontal resolution of 2◦ latitude× 2.5◦ longi-
tude and 24 vertical levels. The horizontal resolution of the
ocean model MOM4p1 (Griffies, 2012) is nominally 1◦ lati-
tude× 1◦ longitude with increasing meridional resolution of
up to 1/3◦ towards the Equator, with 50 depth levels. Phy-
toplankton is represented in ESM2M by the biogeochem-
ical module “Tracers of Ocean Phytoplankton with Allo-
metric Zooplankton version 2.0” (TOPAZv2; Dunne et al.,
2013), consisting of 30 tracers including three phytoplank-
ton groups (small and large phytoplankton, diazotrophs) and
heterotrophic biomass (see Sect. 2.4 for further details).
TOPAZv2 only implicitly simulates zooplankton activity.
The large-ensemble simulation ESM2M-LE was started from
a quasi-equilibrated 500-year-long preindustrial control sim-
ulation, where atmospheric CO2 concentrations are set to
286 ppm (Burger et al., 2020). We generated an ensemble of
15 members by slightly perturbing the temperature on the
order of 10−5 ◦C for five ensemble members at a grid cell
at the surface of the Weddell Sea, for five members at the
surface of the North Atlantic and for five members in the
deep North Pacific (Burger et al., 2022). These 15 simula-
tions were forced with prescribed historical concentrations
of atmospheric CO2 and non-CO2 radiative-forcing agents
from 1861 to 2005 and then by following a high-emission
no-mitigation scenario (RCP8.5; RCP: Representative Con-
centration Pathway) from 2006 to 2100 (Riahi et al., 2011).

The Community Earth System Model version 2 (CESM2;
Danabasoglu et al., 2020) is also a fully coupled ESM. It cou-
ples an atmospheric model with comprehensive chemistry to
ocean, land, sea-ice, land-ice, river, and ocean wave models.
The horizontal resolution of the atmospheric model CAM6
(Danabasoglu et al., 2020) is 0.9◦ latitude× 1.25◦ longi-
tude, with 32 vertical levels. The horizontal resolution of the
ocean model POP2 (Smith and Gent, 2010) is approximately
1◦, with uniform spacing of 1.125◦ in the zonal direction
and varying significantly in the meridional direction, with
the finest resolution of ∼ 0.25◦ at the Equator. The ocean
model has 60 vertical levels. The “Marine Biogeochemistry
Library” (MARBL; M. C. Long et al., 2021) is the biogeo-
chemical component of CESM2, which includes three phy-
toplankton types: small phytoplankton, diatoms (i.e., large
phytoplankton), and diazotrophs. It is a prognostic ocean bio-
geochemistry model that simulates marine-ecosystem inter-
actions and the coupled cycles of carbon, nitrogen, phos-

phorus, iron, silicon, and oxygen. We use nine members
of a 100-member large-ensemble simulation (CESM2-LE;
Rodgers et al., 2021) in this study, for which all necessary
5 d mean data for the analysis were available. All members
differ by their starting day, sampled at 20-year intervals from
a preindustrial control simulation (Rodgers et al., 2021). His-
torical simulations were run from 1850 to 2014, forced by
prescribed atmospheric CO2 concentrations and non-CO2
radiative-forcing agents. Projections from 2015 to 2100 fol-
low the SSP3-7.0 (SSP: Shared Socioeconomic Pathway)
scenario (Eyring et al., 2016).

Aside from differences in their physical ocean and atmo-
sphere modules, ESM2M and CESM2 differ in their ocean
biogeochemical module and how the latter computes phy-
toplankton growth and decay (see Appendix A for a de-
tailed description and comparison). For example in ESM2M,
TOPAZv2 uses an Eppley function of temperature to repre-
sent the dependence of phytoplankton growth on tempera-
ture, whereas in CESM2, MARBL uses a power function
following a Q10 model (Sherman et al., 2016), resulting in
weaker dependence of phytoplankton growth on tempera-
ture in CESM2. Although both models represent the nutrient
limitation on phytoplankton growth according to Michaelis–
Menten kinetics, MARBL uses lower half-saturation con-
stants for each nutrient than TOPAZv2. In addition to these
differences, ESM2M-LE is forced by RCP8.5 after 2006,
whereas CESM2-LE is forced by SSP3-7.0 after 2015. How-
ever, the different forcings applied do not impact our results,
as the total radiative forcing of the two scenarios differ very
little before the year 2018 (Riahi et al., 2017), which is the
end point of our analysis period.

For both ESM2M-LE and CESM2-LE, we select the his-
torical period spanning from 1998 to 2018, over which we
can compare the simulations to available satellite-derived
observations of SST and NPP. Outputs are saved at a 5 d
mean resolution. They include SST, NPP, and all variables
from which we analyze the drivers of NPP – phytoplankton
biomass, growth, and loss terms (i.e., grazing of phytoplank-
ton by zooplankton in ESM2M, grazing, mortality, and ag-
gregation in CESM2) – as well as the temperature, light, and
nutrient limitations on phytoplankton growth. These vari-
ables are saved at a 10 m vertical resolution. We integrate
the phytoplankton NPP, biomass, and loss terms over the up-
per 100 m layer of the ocean and compute biomass-weighted
averages of phytoplankton growth and of its limitation terms
by multiplying these variables with the biomass at each depth
level, computing the vertical mean over the top 100 m and
dividing by the vertical mean biomass. Similarly to for the
observation-based products, we focus on the growing season
by removing all calendar days receiving no solar radiation
(Gelaro et al., 2017).
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2.3 Definition of compound MHW–NPPX events

We subtract from each time series its mean seasonal cycle,
which we smoothed to remove noise associated with the rel-
atively short time series. For the observations, the smoothed
seasonal cycle was obtained using a 30 d running average,
and for ESM2M-LE and CESM2-LE, it was identified using
their respective ensemble mean seasonal cycle. As we work
with de-seasonalized anomalies, compound events can oc-
cur throughout the year. At each grid cell, an MHW occurs
when the SST anomaly exceeds its local 90th percentile. An
NPPX event occurs when the NPP anomaly is lower than its
10th percentile. There are pros and cons to using a relative
threshold compared to using an absolute threshold. Certain
marine species might only be negatively impacted by MHWs
and NPPX events once an absolute SST or NPP threshold
is reached. Still, given our limited knowledge of marine-
ecosystem response to extremes, especially to NPPX events,
we decided to align with the common definition of MHWs
in recent literature; i.e., we define extreme events relative to
the seasonal cycle (Hobday et al., 2016). Thereby, we iden-
tify MHWs and NPPX events that would potentially impact
all marine ecosystems vulnerable to extreme deviations from
the seasonally varying climatology.

A multivariate compound MHW–NPPX event occurs
when MHW and NPPX conditions are satisfied at the same
time and location. Following this definition where no dura-
tion threshold is applied, extreme events can be as short as
one time step, which here is a 5 d mean.

We use a relatively low threshold to define MHWs and
NPPX events so as to capture enough compound MHW–
NPPX events in the relatively short 1998–2018 time pe-
riod over which NPP observations are available. Due to
their definition, univariate extreme events have the same fre-
quency over the global ocean. At each grid cell, 10 % of
all time steps are MHWs and 10 % are NPPX events. This
implies that under the assumption of independence between
MHW and NPPX events, the frequency of compound MHW–
NPPX events would be 1 % over the global ocean. Com-
pound MHW–NPPX events can be considered unexpectedly
frequent or unfrequent over all regions where their frequency
is not equal to 1 %, which indicates potential dependences
between the drivers of MHWs and NPPX events. In our case,
the frequency of compound events is equivalent to the like-
lihood multiplication factor, i.e., a measure of how many
times more frequent compound events are compared to their
expected frequency under the assumption of independence
(Zscheischler and Seneviratne, 2017; Le Grix et al., 2021;
Woolway et al., 2021; Burger et al., 2022).

2.4 Model evaluation

The Taylor diagrams presented in Fig. 1 provide a summary
of the relative skill with which the models simulate the mean
of and variability in SST and NPP as well as the extreme

event magnitude (i.e., mean SST and NPP anomalies dur-
ing extreme events relative to their climatological mean val-
ues) and duration of MHWs and NPPX events. The sim-
ulated patterns of the mean state of SST by ESM2M-LE
and CESM2-LE are very similar to that computed from the
observation-based SST (r > 0.99 and normalized SD∼ 1, red
point and cross in Fig. 1a). CESM2-LE is slightly better than
ESM2M-LE at simulating the pattern of temporal variabil-
ity in SST (r = 0.8 for ESM2M-LE and r = 0.9 for CESM2-
LE, Fig. 1b). The globally integrated NPP is 74 Pg C yr−1

in ESM2M-LE and 43 Pg C yr−1 in CESM2-LE, compared
to 53 Pg C yr−1 on average (range of 46 to 62 Pg C yr−1)
in the observation-based estimates (Fig. B1). ESM2M-LE
substantially overestimates NPP, especially in the low lati-
tudes where the simulated NPP exceeds 1000 mg C m−2 d−1

compared to the observation-based estimate of about 400–
800 mg C m−2 d−1. Despite these differences, ESM2M-LE
and CESM2-LE succeed in representing the NPP mean spa-
tial pattern of higher values in the low latitudes and lower
values in the subtropical gyres and in the Southern Ocean.
These results are summarized in Fig. 1a, where the dif-
ferent observation-based NPP products are as dispersed as
ESM2M-LE and CESM2-LE themselves, indicating that the
models are approximately within the range of the observa-
tions. The NPP temporal variability simulated by the two
models is also similar to that estimated by the observation-
based products (Figs. 1b and B1, right column), although the
models underestimate the spatial heterogeneity in the NPP
temporal variability pattern (normalized SD< 0.25).

The MHW magnitudes identified from the satellite-based
observations are similar to those simulated by ESM2M-LE
and CESM2-LE (Figs. 1c and B2a–c). However, both mod-
els simulate MHWs that last longer than those in the obser-
vations (Fig. B2d–f), especially in the eastern equatorial Pa-
cific. This is a common bias across all current global Earth
system models (Frölicher et al., 2018), irrespective of their
vertical and horizontal resolution (Pilo et al., 2019). The spa-
tial pattern of MHW duration is reasonably well simulated
in both models (Fig. 1d). In contrast, the models differ in
their representation of NPPX events (Figs. 1c–d and B3).
The observation-based mean NPPX magnitude is most in-
tense (< 250 mg C m−2 d−1) in the tropical Atlantic Ocean
and in the northern high latitudes, whereas the magnitude
is most intense in ESM2M-LE in the equatorial Pacific and
in the Indian Ocean and in CESM2-LE in the northern high
latitudes and in the Southern Ocean. Given the low agree-
ment between the observation-based NPP products (Fig. 1c),
it is difficult to assess how well ESM2M-LE and CESM2-
LE simulate the magnitude of NPPX events and which of
the two models is more realistic. We also compare the 90th
percentile of the duration of NPPX events (Fig. 1d) to high-
light differences between the observations and the models
even though their observed and simulated median duration is
close to 5 d over the global ocean due to the predominance of
short NPPX events. In the observations, NPPX events reach
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Figure 1. Comparative assessment of the simulated mean and extreme states of SST and NPP and an observed reference. These Taylor
diagrams compare the spatial pattern of the climatological mean state (a) and standard deviation (b) of 5 d mean SST and NPP, as well as
of the magnitude (c) and 90th percentile of the duration (d) of MHWs and NPPX events, simulated by each model to that of a reference.
The reference is calculated from the observation-based SST estimate or from the mean of the five different observation-based NPP estimates,
and it is indicated by a star on the diagrams. A circle; a triangle; and the numbers 1, 2, 3, 4, and 5 represent ESM2M-LE, CESM2, NOBM,
Standard VGPM, Eppley-VGPM, CbPM-VGPM, and CAFE-VGPM, respectively. The Pearson correlation coefficient, which quantifies
similarity between the simulated pattern and the reference, is indicated by the azimuthal angle; the centered RMSE in the simulated field is
proportional to the distance from the star on the x axis; and the standard deviation of the simulated pattern is indicated by the radial distance
from the origin. All statistics are normalized by the standard deviation of the reference.

their longest durations (> 70 d) in the central equatorial Pa-
cific (Fig. B3d). The spatial patterns simulated by the mod-
els for the NPPX event duration differ from that of the ob-
served reference (r < 0.2 for ESM2M-LE and for CESM2-
LE, Fig. 1d). In ESM2M-LE, the longest events (> 90 d) oc-
cur within the subtropical gyres, where NPP anomalies do
not vary much over time (Fig. B3e, normalized and cen-
tered RMSE= 4.3 in Fig. 1d). Longer NPPX durations in

ESM2M-LE compared to observations might arise from an
overestimation of durations in the non-eddying ocean mod-
els, which might fail to capture short-lived extremes associ-
ated with mesoscale and submesoscale processes. However,
it might also be explained by an underestimation of dura-
tions in the observations due to gaps in satellite observations.
In contrast, in CESM2-LE, events are of short duration over
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most of the global ocean and slightly longer (> 30 d) in the
high latitudes and in the eastern equatorial Pacific (Fig. B3f).

Overall, ESM2M-LE and CESM2-LE represent the mean
state of and variability in SST reasonably well. Their rep-
resentation of NPP diverges from observations, yet the ref-
erence for NPP observation in Fig. 1 is computed as the
mean of five observation-based NPP products which them-
selves disagree (Fig. B1), although the spatial pattern of the
mean state of and variability in NPP is broadly similar across
products. Considering that both ESM2M-LE and CESM2-
LE capture this spatial pattern, they appear suited to investi-
gating the likelihood and drivers of compound MHW–NPPX
events over the global ocean. However, divergent magnitudes
and durations of NPPX events in ESM2M-LE and CESM2-
LE hint at different drivers for NPPX events in the two mod-
els. Different processes might thus drive NPPX in association
with an MHW and result in a compound MHW–NPPX event
in ESM2M-LE and CESM2-LE.

2.5 Driver decomposition of compound MHW–NPPX
events

We investigate the drivers of compound MHW–NPPX events
and more specifically the drivers of extreme reductions in
NPP during MHWs. Both ESM2M and CESM2 contain
an ecological module distinguishing between three differ-
ent phytoplankton types (small, large, and diazotrophs), for
which specific constants and limitation terms are used to
compute NPP. Total net phytoplankton production is simply
the sum of NPP over all three phytoplankton types. Thus,
during a low-NPP event, although the total phytoplankton
NPP is extremely low, not all types may have contributed to
that anomaly. We ignore the diazotrophs in this study as their
contribution to total NPP (1.5 % in ESM2M-LE and 3 % in
CESM2-LE on average) and to the total NPP anomaly during
compound MHW–NPPX events (< 0.1 % in ESM2M-LE and
CESM2-LE) is negligible. Thus, in each model, total NPP is
approximated as the sum of small- and large-phytoplankton
NPP.

For each phytoplankton type i, NPP is the product of its
growth rate µ and its biomass n:

NPPi = µini . (1)

Therefore, any anomaly in NPP, dNPP, can be decom-
posed as

dNPPi = nidµi +µidni . (2)

If dNPP stands for the mean NPP anomaly during compound
events relative to the climatological mean state of the sea-
sonal cycle, we can assess the contributions of the mean
growth anomaly, dµ, and of the mean biomass anomaly, dn,
during compound events to dNPP.

TOPAZv2 and MARBL define µ in the same way:

µi = µmaxiTfiLlimi
Nlimi

, (3)

where Tf is a function of the temperature, Llim is the light
limitation, and the nutrient limitation Nlim is computed us-
ing Liebig’s law of the minimum. More details are provided
in Appendix A. Both Nlim and Llim are between 0 and 1,
where 1 means they do not limit phytoplankton growth and 0
means they fully suppress growth. Figure B4 in the Appendix
presents the climatological mean states of Tf, Llim, and Nlim.

dµ can be decomposed into the contributions of a change
in Tf, Llim, and Nlim during compound events.

dµi = µmaxi
(
Nlimi

Llimi
dTfi +Nlimi

TfidLlimi

+TfiLlimi
dNlimi

)
(4)

This decomposition enables us to assess the drivers of a
change in phytoplankton growth during compound events.
Drivers of a change in phytoplankton biomass n are less triv-
ial as n depends on NPP itself. In TOPAZv2 and MARBL,
n is considered a tracer whose time derivative is defined as
follows:

∂tni = NPPi −Lossi +Circi, (5)

where NPP and Loss are the biological production and decay
of phytoplankton, respectively, and Circ corresponds to the
physical advection and mixing of phytoplankton by ocean
circulation. The model equations only hold at the time and
vertical resolution of model computations, i.e., at 2 h and
10 m resolution. Here we use 5 d mean output and data av-
eraged over the top 100 m layer. Therefore, Eq. (5) becomes

∂tni = NPPi −Lossi +Circi +Errorsi . (6)

Given that we do not have the necessary output to compute
the circulation term, we cannot assess how small Errors is,
and therefore we cannot neglect it.

Over time, biomass changes build up a biomass anomaly
dn that might be sufficient to drive or contribute to driv-
ing extremely low dNPP. In this study, we intend to explain
the contribution of dn to dNPP during compound MHW–
NPPX events using Eq. (6). A positive or negative biomass
anomaly during a compound event may be explained by
an overall increase or decrease in biomass over time, un-
til the largest biomass anomaly reached during the com-
pound event. Therefore, we integrate ∂tn, NPP, and Loss
over all periods over which dn builds up, i.e., over which n
changes from its climatological mean value (at t0, ni(t0)= 0)
to its maximum absolute anomaly relative to the climatology
reached during a compound event (at tmax, ni(tmax)= nimax).
1n refers to the integrated biomass change between t0 and
tmax, which corresponds to the largest biomass anomaly
reached during a compound event. Note that 1n is not ex-
actly equivalent to dn.1n is a tool to understand the buildup
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of the largest biomass anomaly reached during a compound
event, whereas dn is the mean biomass anomaly over all
compound-event days.

1ni =

tmax∫
t0

∂tnidt =

tmax∫
t0

(NPPi −Lossi)dt

+

tmax∫
t0

(Circi +Errorsi)dt (7)

1ni =

tmax∫
t0

∂tnidt =

tmax∫
t0

(NPPi −Lossi)dt +Residuali (8)

The term
∫ tmax
t0

(NPPi −Lossi)dt accounts for the con-
tribution of biological processes to 1n, whereas Residual
includes both the contribution of ocean circulation to 1n
and all errors inherent to the decomposition using 5 d mean
and vertically integrated output. Results are averaged over
all compound events. In theory, this method could enable
us to apprehend the contribution of biological processes to
dn. However, errors in the decomposition might be sub-
stantial and result in a poor estimation of that contribu-
tion. Further work with more highly temporally and spa-
tially resolved model output is needed to fully decompose
the biomass changes during compound MHW–NPPX events
into its drivers.

Details on the computation of phytoplankton loss are
provided in Sect. A1.5 for TOPAZv2 and Sect. A2.5 for
MARBL, and Fig. B5 presents the climatological mean states
of NPP, Loss, n, and µ.

3 Results

3.1 Hotspots of compound MHW–NPPX events in the
global ocean

Figure 2 shows the present-day distribution of compound
MHW–NPPX events. Under the assumption of independence
between MHW and NPPX events, the expected frequency
of compound MHW–NPPX events is 1 % of time inter-
vals or 3.65 d yr−1 over the global ocean (Sect. 2.3). How-
ever, observation-based estimates show strong regional de-
viations from this expected frequency (Fig. 2a). Most com-
pound events occur in the low latitudes, with hotspots of es-
pecially high frequency in the center of the equatorial Pa-
cific, in the subtropical Indian Ocean, and around Antarc-
tica. In these regions, compound MHW–NPPX events occur
more than 3 times more frequently (> 3 % or > 10 d yr−1)
than would be expected if univariate extremes were inde-
pendent. Compound MHW–NPPX events are also relatively
frequent (about 2 % or 7 d yr−1) in the low to middle lati-
tudes between 10 and 45◦. In contrast, compound events are
rare (about 0.5 % or 2 d yr−1) in the high northern latitudes

north of 45◦ N and between 45 and 60◦ S in the Southern
Ocean. However, these estimates correspond to the mean of
the results obtained from five observation-based NPP prod-
ucts, which disagree particularly in the high southern lati-
tudes and somewhat in the low latitudes (Figs. 2d and B6).
Around Antarctica, the frequency computed using NOBM’s
NPP is much lower on average (0.5 %) than those com-
puted using VGPM-based NPP products (> 4 %). Sea ice and
clouds create gaps in the satellite ocean color data that are
potentially more extended in time and space around Antarc-
tica than over the rest of the global ocean. Sparse satellite
data coverage implies that in NOBM, fewer ocean color ob-
servations are available to constrain NPP estimates, whereas
in VGPM-based models, gaps are filled by interpolation with
data points that might be too distant in space and time to yield
a realistic estimate of NPP (Rousseaux and Gregg, 2014;
http://orca.science.oregonstate.edu/gap_fill.php, last access:
21 October 2021). For this reason, we have lower confi-
dence in the NOBM and VGPM-based NPP products around
Antarctica than elsewhere. In the low to middle latitudes, the
frequency computed using Standard VGPM is higher than
that of all other observation-based estimates (Fig. 2d). Stan-
dard VGPM is the only model that uses a polynomial func-
tion to describe the temperature dependence of photosyn-
thesis. Therefore, extremely hot surface waters in the warm
low to middle latitudes have a weaker positive effect on
photosynthesis and thus on NPP in Standard VGPM than
in the other observation-based products. It may thereby be
easier for high SST to co-occur with low NPP, resulting in
higher frequency of compound MHW–NPPX events in Stan-
dard VGPM in the low to middle latitudes.

Next, we compare the simulated frequency of compound
MHW–NPPX events in ESM2M-LE (Fig. 2b) and CESM2-
LE (Fig. 2c) to the observation-based frequency (Fig. 2a, d).
Overall, the simulated frequency pattern is similar in the two
models and mostly within the uncertainty range of the ob-
servational products (e.g., areas with no stippling in Fig. 2b
and c, corresponding to 84 % of the global ocean in ESM2M-
LE and to 82 % in CESM2-LE). The models correctly sim-
ulate frequent compound MHW–NPPX events in the equa-
torial Pacific (> 4 % or > 14 d yr−1) and relatively frequent
compound events in the low to middle latitudes between
10 and 45◦ (2 % or 7 d yr−1; Fig. 2a–c). ESM2M-LE sim-
ulates too frequent compound events in the southern tropi-
cal Atlantic, in the center of the equatorial Pacific, and in
the northern part of the Indian Ocean. CESM2-LE simulates
too frequent compound events in the western equatorial Pa-
cific and in the northern part of the Indian Ocean. In spite of
there being relatively few dissimilarities between models and
observations in the low and middle latitudes, they strongly
disagree in the high latitudes. ESM2M-LE slightly outper-
forms CESM2-LE, especially in the northern high latitudes,
where it simulates rare compound events consistent with the
observation-based estimates, whereas CESM2-LE simulates
too frequent compound events (> 1 %). Around Antarctica,
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Figure 2. Frequency of compound MHW–NPPX events in (a) observation-based estimates and as simulated by (b) ESM2M-LE and
(c) CESM2-LE. Observations correspond to the mean of the results obtained with five satellite-based estimates of NPP, namely NOBM,
Standard VGPM, Eppley-VGPM, CbPM-VGPM, and CAFE-VGPM. (d) Zonal mean frequency of compound MHW–NPPX events. The
gray-, red-, and blue-shaded areas in (d) indicate the range of the observation-based estimates, of the ESM2M-LE members, and of the
CESM2-LE members, respectively. Stippling in (b) and (c) corresponds to regions where the frequency simulated by ESM2M-LE and
CESM2-LE is outside the range of the observation-based estimates, i.e., higher or lower than all five observation-based estimates.

neither ESM2M-LE nor CESM2-LE simulates the very fre-
quent compound MHW–NPPX events shown in the observa-
tions. However, low agreement between the five observation-
based estimates (their frequency being as low as 0.5 % and
as high as 6.5 % on average at 75◦ S, in Fig. 2d) makes it dif-
ficult to determine which of the two models better simulates
compound events in this regions.

3.2 Small- and large-phytoplankton NPP anomalies
during compound MHW–NPPX events

Next, we assess which phytoplankton type is responsible for
NPPX during compound MHW–NPPX events. In both mod-
els, total NPP is approximately equal to the sum of small-
and large-phytoplankton NPP (Sect. 2.5), whose respective
mean anomalies (relative to the mean seasonal cycle) during
compound MHW–NPPX events are presented in Fig. 3a–d.

The decrease in small-phytoplankton NPP dominates the
overall decrease in NPP during compound MHW–NPPX
events in both models, although the models differ in the mag-
nitude and spatial pattern of anomalies in small and large
phytoplankton. The decrease in small-phytoplankton NPP
accounts for 79 % and 70 % of the total NPPX anomalies
in the global ocean during MHW–NPPX events in ESM2M-
LE and CESM2-LE, respectively (Fig. 3a, c). Especially
pronounced is the dominance of small-phytoplankton NPP

decreases in the low to middle latitudes and the South-
ern Ocean in both models. This implies a shift in the
phytoplankton community composition from small phyto-
plankton towards more large phytoplankton during MHW–
NPPX events in these regions, with potential repercus-
sions for marine community structure. In both models, de-
creases in large-phytoplankton NPP dominate the NPP de-
crease during MHW–NPPX events in the eastern equato-
rial Pacific. Large-phytoplankton NPP also decreases dur-
ing MHW–NPPX events in the northern high latitudes. In
CESM2-LE, the decline in large-phytoplankton NPP even
dominates the response in the northern high latitudes as
small-phytoplankton NPP increases, resulting in an assem-
blage shift towards smaller phytoplankton there. In addi-
tion, the decline in large-phytoplankton NPP also dominates
along the southern boundaries of the subtropical gyres in
the Southern Hemisphere in CESM2-LE. Overall, these pat-
terns resemble well the climatological mean state pattern of
small- and large-phytoplankton NPP (Figs. 3a–d and B5a–d).
Small-phytoplankton anomalies during MHW–NPPX events
dominate in regions where the climatological mean state
of small-phytoplankton NPP generally dominates, whereas
large-phytoplankton NPP anomalies play an important role
during MHW–NPPX events where the climatological mean
state of large-phytoplankton NPP generally dominates.
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Figure 3. Small- and large-phytoplankton NPP anomalies, dNPP, relative to the climatological seasonal cycle (mg C m−2 d−1) during com-
pound MHW–NPPX events in ESM2M-LE (a, b) and in CESM2-LE (c, d) and contributions of the growth rate ndµ (e–h) and of the
biomass anomaly µdn (i–l) to these NPP anomalies. Contours on panels (a)–(d) indicate the climatological mean state of small and large
NPP averaged over 1998–2018 (see also Fig. B5a–d); labels have been omitted.

3.3 Drivers of low NPP during compound
MHW–NPPX events

To understand the drivers of NPPX during compound MHW–
NPPX events, we decompose the NPP anomaly dNPP of
each phytoplankton type into the contributions of its growth
rate anomaly dµ (Fig. 3e–h) and of its biomass anomaly dn
(Fig. 3i–l) (see Eq. 2 in Sect. 2.5). One must note, how-
ever, that these variables are not independent and that the
biomass anomaly may result from changes in the growth rate
itself. The decomposition amounts to 104 % and 105 % of the
global dNPP of small and large phytoplankton, respectively,
in ESM2M-LE and to 104 % and 99 % of the global dNPP
of small and large phytoplankton, respectively, in CESM2-
LE (Fig. B7). Our decomposition method is therefore well
suited to investigating the drivers of extreme reductions in
NPP during MHW–NPPX events.

Globally, the growth rate anomaly dµ barely contributes
to the large-phytoplankton dNPP in ESM2M-LE (28 %,
Fig. 3b, f) and to the small- and large-phytoplankton dNPP
in CESM2-LE (−12 % and −14 %, respectively; Fig. 3c, d,
g, h). A large part of the extreme reduction in NPP during
MHWs is in fact driven by a negative biomass anomaly dn
in both models and for both phytoplankton types. However,
the growth rate anomaly explains about half (51 %) of the
global small-phytoplankton dNPP in ESM2M-LE (Fig. 3a, e)
and can regionally be even more dominant. In ESM2M-LE,
the contribution of dµ (i.e., ndµ) is most negative in the low
latitudes for small phytoplankton (Fig. 3e), especially in the
western equatorial Pacific. In CESM2-LE, the contribution

of dµ is slightly negative in the low latitudes (Fig. 3g), and
positive (i.e., it counteracts the negative dNPP) in the high
latitudes and eastern equatorial Pacific for small and large
phytoplankton (Fig. 3g, h). In other words, an increase in the
growth rate increases small- and large-phytoplankton NPP in
these regions in CESM2-LE. However, the large decreases
in dn overcompensate for this increase in the growth rate and
lead to an overall decrease in NPP for small phytoplankton in
the low to middle latitudes and in the high southern latitudes
(Fig. 3k) and for large phytoplankton in the eastern equato-
rial Pacific, in the high northern latitudes, and at around 40◦ S
(Fig. 3l).

Increases in small- or large-phytoplankton NPP mod-
erate the negative dNPP during MHW–NPPX events. In
ESM2M-LE, small-phytoplankton NPP locally increases in
the eastern equatorial Pacific as a result of increased small-
phytoplankton growth (Fig. 3e). In CESM2-LE, the increase
in small-phytoplankton NPP in the northern high latitudes
and the increase in large-phytoplankton NPP in the southern
high latitudes are driven by both an increase in growth and
an increase in biomass (Fig. 3g, h, k, l).

3.3.1 Phytoplankton growth rate anomaly during
compound MHW–NPPX events

Before explaining the changes in phytoplankton biomass, we
look into the drivers of changes in phytoplankton growth
rates because they contribute to reducing NPP either directly
or indirectly by affecting phytoplankton biomass. Figure 4
shows the spatial pattern of the mean growth rate anomaly dµ
during compound events for small and large phytoplankton in
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each model, as well as the contributions of temperature, light
and nutrient limitations to dµ, as described in Sect. 2.5.

In ESM2M-LE, the drivers of dµ are similar during com-
pound events for small and large phytoplankton. The neg-
ative growth rate anomaly in the low to middle latitudes
(Fig. 4a, b) is associated with increased nutrient limitation
(−0.10 d−1 on average between 40◦ S and 35◦ N; Fig. 4m, n),
i.e., reduced mixing of nutrient-rich waters from the deeper
ocean to the upper 100 m. In the high latitudes, the nega-
tive growth rate anomaly is mainly associated with increased
light limitation (−0.05 d−1 on average south of 40◦ S and
north of 35◦ N; Fig. 4i, j). Even though the light limitation
depends on a number of factors other than the light supply,
such as temperature, nutrient levels, mixed-layer depth, or
the carbon-to-chlorophyll ratio in phytoplankton, increased
light limitation is here a direct result of reduced light supply
by −13 W m−2 on average (Fig. B8a). High-latitude MHWs
are, however, mainly driven by enhanced shortwave radia-
tion in summer (Vogt et al., 2022). Enhanced shortwave ra-
diation seems incompatible with reduced light levels, hence
the low compound MHW–NPPX event frequency in the high
latitudes in ESM2M-LE. Therefore, for MHWs to co-occur
with reduced light levels, they must be driven by drivers other
than radiative heating, such as vertical mixing or advective
processes. These drivers might be compatible with clouds or
extended sea-ice cover and thus with light limitation. In addi-
tion, high temperatures during MHWs also raise energy de-
mand on phytoplankton and directly enhance the light limita-
tion (see the role of Tf in Sect. A1.3 and A2.3). High tempera-
tures during MHWs somewhat moderate the negative growth
rate anomalies by their positive effect on the growth rate for
both large and small phytoplankton, especially in the low lat-
itudes (Fig. 4e, f). In the eastern equatorial Pacific, this pos-
itive effect of the temperature is able to overcompensate for
the negative effect of nutrient limitation on the growth rate of
small phytoplankton (Fig. 4e), resulting in increased small-
phytoplankton growth and a shift towards small phytoplank-
ton during MHW–NPPX events (Fig. 3a, b).

In CESM2-LE, dµ is negative in the low latitudes (Fig. 4c,
d) for both small and large phytoplankton. The growth of
small phytoplankton is mainly reduced by increased nu-
trient limitation (−0.05 d−1 on average between 15◦ S and
20◦ N; Fig. 4o, p), whereas the growth of large phytoplank-
ton is mainly reduced by light limitation in the low lat-
itudes (−0.03 d−1 on average between 20◦ S and 20◦ N;
Fig. 4l). Divergent responses of the nutrient limitation to
changes in nutrient levels during compound MHW–NPPX
events for small and large phytoplankton can be explained
by smaller half-saturation constants in small phytoplankton,
which, given the formulation of the nutrient limitation in
MARBL (Sect. A2.2), would result in a stronger decrease
in Nlim given a certain decrease in nutrient levels. In the high
latitudes, increased light levels by 7 W m−2 on average re-
duce light limitation (Fig. B8b), which ultimately enhances
small- and large-phytoplankton growth. High temperature

anomalies contribute positively to the growth rate of small
and large phytoplankton, especially in the eastern equato-
rial Pacific for small phytoplankton (> 0.09 d−1; Fig. 4g), re-
sulting in a shift towards large phytoplankton during MHW–
NPPX events there (Fig. 3c, d).

In both models, nutrient limitation on phytoplankton
growth is especially strong during MHW–NPPX events com-
pared to simple NPPX events (not shown here). Stronger
nutrient limitation all over the ocean counteracts the posi-
tive temperature effect on phytoplankton growth associated
with MHWs. Overall, the models agree that phytoplankton
growth is enhanced by high temperatures and reduced by
low nutrient levels during MHW–NPPX events. However,
the models disagree on the strength of the nutrient limita-
tion, especially in the low latitudes and the eastern equato-
rial Pacific, potentially due to a stronger reduction in nutrient
levels in ESM2M-LE compared to CESM2-LE. Background
nutrient limitation is also higher in ESM2M-LE compared
to CESM2-LE (Fig. B4i–l) and therefore more sensitive to
changes in nutrient levels (see the formulation of Nlim in
Sect. A1.2 and A2.2). Lastly, the models disagree on their
representation of the light limitation changes during MHW–
NPPX events, especially in the high latitudes. This model
divergence may arise from a number of factors involved in
the calculation of Llim, such as different light harvest coeffi-
cients in TOPAZv2 (Sect. A1.3) and MARBL (Sect. A2.3),
but most importantly, divergent representation of the cou-
pling between radiative fluxes, ocean temperature, and phy-
toplankton growth in the two models results in different light
levels during MHW–NPPX events.

3.3.2 Phytoplankton biomass anomaly during
compound MHW–NPPX events

Next, we investigate the drivers of the mean phytoplankton
biomass anomaly dn during compound MHW–NPPX events
(Fig. 5a–d), which contributes to driving dNPP. The spatial
pattern of dn resembles the spatial pattern of dNPP (Fig. 3a–
d); their Pearson’s correlation coefficients are 0.4 and 0.9
for small and large phytoplankton, respectively, in ESM2M
and 0.8 and 0.9 for small and large phytoplankton, respec-
tively, in CESM2. In ESM2M-LE, the negative dn is rather
uniform across latitudes for small phytoplankton (Fig. 5a)
but shows a distinct spatial pattern for large phytoplankton
with stronger declines in the eastern equatorial Pacific and
in the high northern latitudes (Fig. 5b). In CESM2-LE, low
NPP is driven by a decrease in small-phytoplankton biomass
in the southern high latitudes and partly in the low latitudes
(Fig. 5c) and by a decrease in large-phytoplankton biomass
along the Equator, in the northern high latitudes, and in the
southern boundary of the subtropical gyres of the Southern
Hemisphere (Fig. 5d).

We are further interested in the buildup of this biomass
anomaly dn over time. 1n is the integrated biomass change
over the period over which biomass anomalies build up
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Figure 4. Growth rate anomaly dµ (d−1) of small and large phytoplankton during compound MHW–NPPX events in ESM2M-LE (a, b) and
in CESM2-LE (c, d) and contributions of a change in the temperature function Tf (e–h), in the light limitation Llim (i–l), and in the nutrient
limitationNlim (m–p) to this growth rate anomaly. The decomposition of dµ into these three contributions comes with a global mean residual
of 0.009 and −0.002 d−1 for small and large phytoplankton in ESM2M-LE and of −0.007 and 0.002 d−1 for small and large phytoplankton
in CESM2-LE.

Figure 5. Biomass anomaly dn (mg C m−2) of small and large phytoplankton during compound MHW–NPPX events in ESM2M-LE (a, b)
and in CESM2-LE (c, d). Integrated biomass change 1n (mg C m−2) leading to the maximum anomaly reached during a compound MHW–
NPPX event (e–h). Contribution of biological processes (NPP−Loss, i–l) to 1n.
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(Sect. 2.5). Even though dn and1n differ by definition, they
have almost identical spatial patterns (Fig. 5a–d compared to
Fig. 5e–h), signifying it is indeed possible to understand dn
from 1n.
1n is driven by changes in the difference between phy-

toplankton NPP and Loss (NPP−Loss; Fig. 5i–l) and by
changes in ocean circulation (see Eq. 8). The residual pre-
sented in Fig. B10 includes both the unknown contribution
of ocean circulation and all errors inherent to our decompo-
sition at low temporal resolution and vertical integration.

The role of biological processes in driving dn can be ap-
prehended by the sign of the integrated NPP−Loss term
over the period over which dn builds up. Although the indi-
vidually integrated NPP and Loss terms seem almost equiv-
alent (Fig. B9), phytoplankton loss actually exceeds phy-
toplankton NPP over most of the global ocean (Fig. 5i–l),
which might contribute to decreasing the biomass over time
(Fig. 5e–h) and thus to driving the negative biomass anomaly
dn (Fig. 5a–d).

In ESM2M-LE, integrated NPP−Loss is particularly neg-
ative (<−150 mg C m−2) for small phytoplankton in the low
to middle latitudes between 35◦ S and 35◦ N and for large
phytoplankton in the northern high latitudes and in a narrow
band along the Equator (Fig. 5i, j). In CESM2-LE, the nega-
tive NPP−Loss contribution to 1n seems especially strong
(<−200 mg C m−2) for small phytoplankton in the low to
middle latitudes between 35◦ S and 35◦ N and in the South-
ern Ocean and for large phytoplankton along the Equator and
in the high latitudes (Fig. 5k, l).

Note that integrated NPP−Loss generally exceeds the
integrated biomass changes (Fig. 5e–l), with some excep-
tions, e.g., in the high latitudes for small phytoplankton in
ESM2M-LE.1n, NPP, and Loss terms include an error term
when computed from 5 d mean, 10 m vertically integrated
biomass. Further studies at higher temporal and vertical res-
olution are needed to remove errors in all terms in Eq. (8) so
as to quantify the exact NPP−Loss contribution to 1n.

Overall in both models, the negative biomass anomaly dn
(Fig. 5a–d) can be explained by negative biomass changes
(1n, Fig. 5e–h) over time, which seem to be driven by
negative contributions from NPP−Loss (Fig. 5m–p). Loss
terms include grazing of phytoplankton by zooplankton in
TOPAZv2 and by grazing, mortality, and aggregation in
MARBL. During MHWs, not only do higher temperatures
enhance NPP via their positive effect on the growth rate but
they also directly enhance phytoplankton loss via their simi-
larly positive effect on phytoplankton grazing and mortality
(see Sect. A1.5 and A2.5). However, other factors such as
nutrient and light limitation moderate phytoplankton growth
during compound MHW–NPPX events, as we have seen in
the previous section. In turn, nutrient and/or light limita-
tion might moderate NPP sufficiently for it to be exceeded
by phytoplankton loss, allowing a decrease in phytoplankton
biomass over time.

3.3.3 Summary of driving processes

Figure 6 summarizes the drivers of NPPX during MHWs
in ESM2M-LE and in CESM2-LE. We distinguish between
four regions of rather homogeneous drivers: the northern
high latitudes north of 35◦ N; the low latitudes between 35◦ S
and 35◦ N, except for the eastern equatorial Pacific (as de-
fined by Fay and Mckinley, 2014); and lastly the southern
high latitudes south of 35◦ S. Small- and large-phytoplankton
contributions to dNPP are represented in Fig. 6 by dark and
light colors, respectively. Here, we compare the drivers of
NPPX in the two models and choose not to focus on the
magnitude of their NPP anomalies (note the different y axes
in Fig. 6). Small and large phytoplankton both contribute to
driving NPPX during compound MHW–NPPX events. In the
two models, small phytoplankton is responsible for the ma-
jority (> 70 %) of dNPP in the low latitudes and in the south-
ern high latitudes. In ESM2M, large phytoplankton accounts
for a larger part (44 %) of dNPP in the northern high latitudes
and about half of dNPP over the cold tongue, whereas in
CESM2-LE, large phytoplankton dominates (> 84 %) dNPP
in the northern high latitudes and over the cold tongue.

We further decomposed dNPP into the contributions from
a change in the temperature function Tf (red bars in Fig. 6),
in the light limitation Llim (yellow bars), and in the nutrient
limitation Nlim (blue bars) by multiplying their contributions
to the growth rate anomaly dµ (Sect. 3.3.1) with the climato-
logical mean biomass n. We also assessed the contribution of
the biomass anomaly dn (green bar) to dNPP by multiplying
dn with the climatological mean growth rate µ (Sect. 3.3.2).
In Fig. 6, we did not decompose the biomass anomaly con-
tribution to dNPP into the further contribution of a change
in NPP−Loss, since this decomposition might be associ-
ated with substantial errors when performed at 5 d mean res-
olution and when integrating over the top 100 m layer (see
Sect. 2.5), resulting in a slightly inaccurate estimation of the
NPP−Loss contribution. The decomposition in Sect. 3.3.2 is
not intended to quantify the exact NPP−Loss contribution to
dn but rather to apprehend the sign of the biomass anomaly.

Over all four regions and in both models, high tempera-
tures during MHWs have a positive effect on the growth rate
and thus positively contribute to dNPP. This positive effect
can be supported or counteracted by the light and nutrient
contributions to dNPP.

On average, in the low latitudes, changes in the light lim-
itation hardly contribute to dNPP. In the high latitudes and
in the equatorial Pacific, the models disagree on the sign of
the light contribution. Although in CESM2-LE, reduced light
limitation during MHW–NPPX events has for the most part
a positive effect on dNPP except on large phytoplankton in
the equatorial Pacific (Fig. 6b, f, h), in ESM2M-LE, strong
light limitation on phytoplankton growth contributes to re-
ducing dNPP and thus to driving NPPX in the high latitudes
(Fig. 6a, g).
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Figure 6. Regional mean NPP anomaly (mg C m−2 d−1) during compound MHW–NPPX events in ESM2M-LE and in CESM2-LE over the
northern latitudes (a, b), the low latitudes (c, d), the eastern equatorial region (e, f), and the southern latitudes (g, h). Contributions of the
small- and large-phytoplankton dNPP to the total NPP anomaly are represented in black and gray, respectively. The indirect contributions
to dNPP of changes in each phytoplankton growth limiting factor (the temperature function Tf, in red; the light limitation Llim, in orange;
and the nutrient limitation Nlim, in blue) and of changes in phytoplankton biomass, in green, during compound MHW–NPPX events are
indicated in dark and light colors for small and large phytoplankton, respectively. Remaining changes in NPP that could not be explained by
the decomposition of dNPP are represented in purple.
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The models agree that lower nutrient levels limit phy-
toplankton growth during compound MHW–NPPX events.
However, the models disagree on the strength of the nutrient
limitation changes. In ESM2M-LE, the nutrient limitation on
phytoplankton growth is strong enough (in combination with
the light limitation in the high latitudes) to reduce the growth
rate, which directly contributes to reducing NPP and thus to
driving NPPX events (Fig. 6a, c, e, g). On the other hand, in
CESM2-LE, the nutrient limitation is not sufficient to coun-
terbalance the positive effects of temperature and light on the
growth rate during MHWs in the high latitudes and over the
cold tongue (Fig. 6b, d, h) and only slightly contributes to
reducing dNPP in the low latitudes (Fig. 6f) along with en-
hanced light limitation.

Both models agree on low phytoplankton biomass during
compounds events, which contributes to driving low NPP
over all four biomes. The negative biomass anomaly might be
explained by a relative increase in phytoplankton loss com-
pared to phytoplankton NPP during compound events, as dis-
cussed in Sect. 3.3.2. It might also be explained or counter-
acted by changes in ocean circulation, which this study does
not address. Low biomass contributes to driving NPPX by
about 50 % in ESM2M-LE and > 100 % in CESM2-LE.

Overall, the models agree on the effect of high temper-
atures, which tend to increase NPP during MHWs. They
disagree on the sign of the light limitation in the high lat-
itudes, potentially due to reduced light levels in ESM2M-
LE and higher light levels in CESM2-LE during compound
MHW–NPPX events. Lastly, the models agree on increased
nutrient limitation during compound MHW–NPPX events,
which contributes to driving NPPX. The main difference be-
tween ESM2M-LE and CESM2-LE is the strength of the
nutrient limitation effect on phytoplankton growth during
MHW–NPPX events. In ESM2M-LE, the nutrient limita-
tion is strong enough to reduce the growth rate and directly
drive NPPX. In CESM2-LE, weaker nutrient limitation sim-
ply moderates the temperature effect on the growth rate and
thus on NPP, thereby potentially allowing NPP to be ex-
ceeded by phytoplankton loss, which might decrease the
biomass over time and eventually drive NPPX. Divergent re-
sponses of the nutrient limitation in the two models can be
explained by a stronger reduction in nutrient levels during
MHW–NPPX events in ESM2M-LE compared to CESM2-
LE and by higher background nutrient limitation in ESM2M-
LE, which implies higher sensitivity of the nutrient limitation
to changes in nutrient levels.

4 Discussion and conclusion

We had three primary goals in setting out with this study:
(i) identify hotspots of compound marine heatwaves and
low-NPP (MHW–NPPX) events, (ii) assess the fidelity of
state-of-the-art Earth system models (ESMs) in representing
MHW–NPPX events, and (iii) apply the models to develop

mechanistic insights into the underlying drivers of these po-
tentially harmful compound MHW–NPPX events.

The analysis revealed that compound MHW–NPPX events
occur relatively frequently in the low latitudes, especially in
the center of the equatorial Pacific and in the subtropical
Indian Ocean, and less frequently in the northern high lati-
tudes (Fig. 2a, d; first goal). Both models agree with obser-
vations in the low latitudes (second goal). However, CESM2-
LE overestimates the frequency of compound MHW–NPPX
events in the northern high latitudes. In the southern high
latitudes, elevated uncertainty in the observation-based prod-
ucts renders it difficult to determine which of the two models
better simulates compound events. Overall, our results agree
with previous studies that reported suppressed NPP during
MHWs in regions with relatively low surface nutrient levels,
such as the subtropical gyres (Hayashida et al., 2020; Gupta
et al., 2020; Le Grix et al., 2021). Gupta et al. (2020), for
example, reported low chlorophyll during an MHW in the
Indian Ocean, where background nitrate concentrations are
especially low. Le Grix et al. (2021) described frequent co-
occurrence of MHWs and low-chlorophyll events in the cen-
ter of the equatorial Pacific and in the Indian Ocean. These
correspond to the regions where we found especially frequent
MHW–NPPX events in the observation-based estimates and
in the two models. In addition, previous studies reported ele-
vated chlorophyll concentrations during MHWs over regions
with high nutrient concentrations, such as in the northern
reaches of the Southern Ocean (Hayashida et al., 2020; Gupta
et al., 2020). These are regions where we also found com-
pound events to be rare.

We then investigated the drivers of compound MHW–
NPPX events and the reasons why ESM2M-LE and CESM2-
LE have similar compound-event likelihoods in the low lat-
itudes and divergent likelihoods in the high latitudes (third
goal). We found that the models represent NPPX events of
different magnitude and duration, which is suggestive of dif-
ferent drivers for NPPX events during MHWs. In both mod-
els, higher temperatures have a positive effect on NPP dur-
ing MHW–NPPX events. In ESM2M-LE, this temperature
effect is counteracted by enhanced nutrient limitation in the
low latitudes and by enhanced light limitation in the high
latitudes, which contribute to driving approximately half of
the negative NPP anomaly by directly limiting phytoplank-
ton growth. Although higher temperatures have the same en-
hancing effect on phytoplankton NPP and loss, nutrient and
light limitation during MHW–NPPX events might decrease
NPP sufficiently for it to be exceeded by phytoplankton loss
over the global ocean. This relative increase in phytoplank-
ton loss compared to NPP possibly explains the buildup of
a negative biomass anomaly that contributes to driving the
other half of the negative NPP anomaly during MHW–NPPX
events. In CESM2-LE, nutrient limitation over the global
ocean is too weak to counterbalance the positive tempera-
ture effect on phytoplankton growth, though it may moder-
ate the growth sufficiently for NPP to be exceeded by phy-
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toplankton loss, resulting in a biomass decrease over time.
Lower biomass is the main driver of NPPX events over
the global ocean in CESM2-LE. These divergent drivers of
NPPX events in ESM2M-LE and CESM2-LE reflect the low
degree of agreement in how ESMs represent phytoplankton
growth and loss (Laufkötter et al., 2015), with this constitut-
ing a major source of uncertainties in global projections of
NPP under global warming (Laufkötter et al., 2015; Frölicher
et al., 2016; Kwiatkowski et al., 2020; Tagliabue et al., 2021).
We expect ESMs to differ not only in their projection of NPP
but also in how they simulate future changes in NPPX events
and compound MHW–NPPX events, depending on how the
drivers of NPPX events evolve under global warming.

These NPPX drivers may well also be responsible for
the differences in the likelihood of compound MHW–NPPX
events between the models. We expect MHWs to be fre-
quently associated with increases in vertical stratification that
inhibit the upward mixing of deep nutrients (Holbrook et al.,
2019; Hayashida et al., 2020); therefore, in regions where nu-
trient limitation is the dominant NPPX driver, we would ex-
pect NPPX events to frequently co-occur with MHWs. That
is indeed the case in the low latitudes, where nutrient limita-
tion drives NPPX events in the two models via its direct ef-
fect on the growth rate (in ESM2M) and its indirect effect on
NPP−Loss, which reduces the biomass (in ESM2M-LE and
CESM2-LE). Previous studies have identified nutrient limi-
tation as the main driver of negative NPP anomalies during
MHWs. For example, Whitney (2015) and Le et al. (2019)
found that decreased westerly winds and southward Ekman
transport over the eastern part of the North Pacific transi-
tion zone reduced nutrient concentrations during the Blob
and thus inhibited NPP. Compound MHW–NPPX events are
also relatively frequent in CESM2-LE in the high latitudes,
where nutrient limitation contributes to driving NPPX events.
On the other hand, it has been shown that MHWs are as-
sociated with enhanced incident shortwave radiation in the
high latitudes (Vogt et al., 2022). Therefore, in regions where
light limitation drives NPPX events, we expect rare com-
pound events, which is indeed the case in the high latitudes
in ESM2M-LE.

Our analysis revealed that compound MHW–NPPX events
are accompanied by shifts in phytoplankton species. The
models suggest a general shift towards larger phytoplankton
over most of the global ocean during MHW–NPPX events,
except in the eastern equatorial Pacific in ESM2M-LE and
in CESM2-LE, as well as north of 35◦ N and between 35
and 50◦ S in CESM2-LE, where the contribution of smaller-
phytoplankton NPP increases during MHW–NPPX events.
In general, the shift towards larger phytoplankton occurs
over regions where small phytoplankton are dominant and
vice versa. Other studies have previously documented phy-
toplankton shifts during MHWs (Yang et al., 2018; Wyatt
et al., 2022). Wyatt et al. (2022), for example, described
a relative shift towards small phytoplankton in the north-
east Pacific during the 2014–2015 Blob due to a stronger

response of large phytoplankton to reduced nutrient lev-
els and a stronger response of small phytoplankton to in-
creased light availability driven by shallower mixed layers.
Small phytoplankton even increased during the Blob over
the Gulf of Alaska (Wyatt et al., 2022), in agreement with
CESM2-LE, which simulates increased small-phytoplankton
NPP during MHW–NPPX events in the northern high lat-
itudes (Fig. 3c). Peña et al. (2019) also found a shift to-
wards cyanobacteria, i.e., small phytoplankton, in the north-
eastern Pacific during the Blob. Their results are consistent
with modeling studies showing that a surface ocean with
lower nutrient concentrations and increased light availabil-
ity favors smaller phytoplankton species (Litchman et al.,
2006; Acevedo-Trejos et al., 2014). These phytoplankton
shifts might lead to cascading impacts on marine ecosys-
tems depending on which phytoplankton type marine species
preferentially graze on (Cavole et al., 2016; Bindoff et al.,
2019; Cheung and Frölicher, 2020). They might also impact
the biological carbon pump because larger and heavier phy-
toplankton sink faster to the deep ocean (Boyd and Harri-
son, 1999). To better predict phytoplankton shifts and their
impacts on marine ecosystems and the carbon pump during
MHW–NPPX events, we need models to accurately simu-
late these events and their associated changes in small- and
large-phytoplankton NPP. Yet models such as ESM2M and
CESM2 still disagree, especially in the high latitudes.

One important aspect of our study is the use of large-
ensemble simulations (LES) with high-frequency ocean out-
put, encompassing not only SST and NPP but also diagnos-
tic variables used for driver attribution. The large sample size
mandated by the study of compound extreme events is even
larger than that required for extreme events with single vari-
ables (Deser et al., 2020; Burger et al., 2022; Zscheischler
and Lehner, 2022). This is particularly important under non-
stationary conditions, where relatively short time series need
to be analyzed to obtain a picture of quasi-stationary condi-
tions. The application of two different Earth system models
facilitated an exploration of how uncertainties in the formu-
lation of NPP manifest themselves in the occurrence (pat-
tern and frequency) of compound events. This should com-
plement work by Kwiatkowski et al. (2020) and Bopp et al.
(2022) in underscoring the challenges faced by the Earth sys-
tem modeling community given pervasive NPP uncertainty.

One challenging aspect of our study is the lack of agree-
ment between observation-based estimates of the frequency
of compound MHW–NPPX events in the middle to high
southern latitudes, which makes it difficult to determine
whether the ESMs well represent compound MHW–NPPX
events and their drivers over this region. NPP estimates pro-
duced by models assimilating satellite data are still uncertain
and highly sensitive to their respective model configurations
(e.g., Behrenfeld et al., 2005; J. S. Long et al., 2021), espe-
cially in sea-ice-covered regions. We decided to include five
observation-based NPP products in this study to take into ac-
count the high uncertainty in NPP estimates, which affects
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the observation-based estimates of MHW–NPPX event fre-
quency. Direct NPP measurements would be needed to better
constrain the NPP estimated by ESMs in the future.

To conclude, the combination of an MHW and an NPPX
event constitutes a compound hazard which potentially leads
to severe impacts on marine organisms and ecosystems.
Here, we assessed whether LES from two ESMs can be used
to understand compound MHW–NPPX events in the ocean
and to project them into the future. Our analysis reveals that
the likelihood of compound MHW–NPPX events depends
on how ESMs represent the factors limiting phytoplankton
growth and loss. These factors are similar in ESM2M and
CESM2 in the low latitudes but differ in the high latitudes.
This identifies an important need for improved process un-
derstanding in the models used for predicting and project-
ing the potentially harmful compound MHW–NPPX events
in the ocean.

Appendix A: Ecosystem model description

A1 GFDL ESM2M: TOPAZv2

TOPAZv2 stands for Tracers of Ocean Phytoplankton with
Allometric Zooplankton version 2.0. It is the biogeochemi-
cal and ecological module used in GFDL’s ESM2M (Dunne
et al., 2013). Three phytoplankton types are represented:
nano-phytoplankton (or small phytoplankton), large phyto-
plankton, and diazotrophs. Nitrogen in each phytoplankton
type i is a prognostic variable.

∂tni = NPPi −Lossi +Circi, (A1)

where NPP is the nitrogen-specific NPP, Loss is the nitrogen-
specific decay, and Circ corresponds to the physical advec-
tion and mixing of phytoplankton nitrogen n by ocean circu-
lation. The NPP of each phytoplankton type is the product of
its growth rate µ and its biomass n:

NPPi = µini . (A2)

A1.1 Phytoplankton growth

In TOPAZv2, the nitrogen-specific growth rate is defined for
all phytoplankton types as follows:

µi =
µmaxNlimi

Tf+ ε

1+ ζ
Llimi

≈ µmaxNlimi
Llimi

Tf, (A3)

where Nlim is the nutrient limitation, Llim is the light limita-
tion, and Tf is an Eppley function of the temperature.

A1.2 Nutrient limitation

Nlim is computed using Liebig’s law of the minimum, where
NFe, NSi(OH)4 , NPO4 , NNH4 , and NNO3 correspond to the nu-

trient limitation specific to iron, silicon, phosphate, ammo-
nia, and nitrate.

Nlimi
=min

(
NFei ,NSi(OH)4i

,NPO4i
,NNH4i

+NNO3i

)
Nutrient limitation is represented according to Michaelis–

Menten kinetics, where KFe, KSi(OH)4 , KPO4 , KNH4 , and
KNO3 are the half-saturation constants of each nutrient.

NFei =
Fe

Fe+KFei
(A4)

NPO4i
=

PO4

PO4+KPO4i

(A5)

NSi(OH)4i
=

Si(OH)4
Si(OH)4+KSi(OH)4i

(A6)

NNH4i
=

NH4

NH4+KNH4i

(A7)

Nitrate limitation with ammonia inhibition is represented
after Frost and Franzen (1992).

NNO3i
=

NO3

NO3+KNO3i

·

(
1+

NH4

KNH4i

)
(A8)

A1.3 Light limitation

Light limitation is calculated as

Llimi
= 1− e

−
αi θi Irr

Nlimi
Tfµmax+ε , (A9)

where α is the light harvest coefficient, θ is the chlorophyll-
to-carbon ratio, and Irr corresponds to the mean light level
(W m−2) of a depth layer. µmax is the maximal growth rate
and ε a constant for numerical stability. More details on how
to compute θ , NFe, NPO4 , and the limitation terms specific to
iron and phosphate when Fe : N or P : N varies in phytoplank-
ton are given in Dunne et al. (2013).

A1.4 Temperature function

The temperature function is given as

Tf = e
KeppT , (A10)

where T is the temperature and Kepp is the constant temper-
ature coefficient for growth.

A1.5 Phytoplankton grazing

In TOPAZ, phytoplankton decays through grazing only.
Grazing is computed separately for small and large phyto-
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Table A1. Parameter values used in TOPAZv2 to compute the production and grazing of both small and large phytoplankton.

Parameter Value Unit Name

Kepp 0.063 ◦C−1 temperature coefficient for growth
µmax 1.296 d−1 maximal growth rate at 0 ◦C
ζ 0.1 – photosynthetic respiration loss
ε 8.64× 10−26 d−1 constant for numerical stability
α 9.2× 10−5 g C (g Chl)−1 m2 W−1 s−1 light harvest coefficient
n? 1.9× 10−6

× 16.0 / 106.0 mol N kg−1 pivot phytoplankton concentration
kgrazmax 6 d−1 maximum phytoplankton grazing rate
λ0 0.19 d−1 phytoplankton grazing rate
nmin 1× 10−6 mol N m−3 minimum phytoplankton concentration for grazing
τ 0.01 d−1 temperature-dependent response timescale for grazers

Table A2. Parameter values used in TOPAZv2 to compute the production and grazing of small phytoplankton.

Parameter Value Unit Name

KFe 3× 10−3 mmol dissolved Fe m−3 half-saturation coefficient
KPO4 0.2 mmol PO4 m−3 half-saturation coefficient
KNH4 0.2 mmol NH4 m−3 half-saturation coefficient
KNO3 2 mmol NO3 m−3 half-saturation coefficient

Table A3. Parameter values used in TOPAZv2 to compute the production and grazing of large phytoplankton.

Parameter Value Unit Name

KFe 9× 10−3 mmol dissolved Fe m−3 half-saturation coefficient
KPO4 0.6 mmol PO4 m−3 half-saturation coefficient
KNH4 0.6 mmol NH4 m−3 half-saturation coefficient
KNO3 6 mmol NO3 m−3 half-saturation coefficient
KSi(OH)4 1 mmol Si(OH)4 m−3 half-saturation coefficient

plankton.

Gsmall =min
(
kgrazmax ,λ0Tf

nsmall

n?

) n2
small

nsmall+ nmin
, (A11)

Glarge =min

(
kgrazmax ,λ0Tf

(
ngrazlarge

n?

)1/3

ngrazlarge

nlarge+ nmin

)
nlarge, (A12)

where kgrazmax is the maximum grazing rate, λ0 is another
grazing rate, and n? is the pivot phytoplankton concentration
for grazing-based variations in ecosystem structure. ngrazlarge

is an implicit phytoplankton concentration after incorpora-
tion of a temperature-dependent time lag:

ngrazlarge =
(
ngrazlarge

)
old · e

nlarge−
(
n

grazlarge
)

old
nlarge+

(
n

grazlarge
)

old

·2·min
(

1,Tf
1t
τ

)
,

(A13)

where (ngrazlarge)old corresponds to ngrazlarge of the previous
time step 1t and τ is the temperature-dependent response
timescale for grazers, which is set to a very small num-
ber to simulate instantaneous response. More explanations
are given in Dunne et al. (2013). Parameter values used in
TOPAZv2 to compute phytoplankton production and grazing
are provided in Tables A1, A2, and A3.

A2 CESM2: MARBL

The Marine Biogeochemistry Library (MARBL) is the bio-
geochemical component of CESM2. It is a prognostic ocean
biogeochemistry model that simulates marine-ecosystem dy-
namics and the coupled cycles of carbon, nitrogen, phospho-
rus, iron, silicon, and oxygen (M. C. Long et al., 2021). Three
phytoplankton types are represented: small phytoplankton,
diatoms, and diazotrophs. The concentration Pi of each phy-
toplankton type i is a prognostic variable.

∂tPi = NPPi −Lossi +Circi, (A14)
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where Loss corresponds to phytoplankton decay and Circ
corresponds to the physical advection and mixing of phyto-
plankton by ocean circulation. The NPP of each phytoplank-
ton type is the product of its growth rate µ and its biomass
n:

NPPi = µiPi . (A15)

Table A4. Parameter values used in MARBL to compute the production and loss of small and large phytoplankton.

Parameter Value Unit Name

µref 5 d−1 resource-unlimited growth rate
αsmall 0.39 mol C (g Chl)−1 m2 W−1 d−1 light harvest coefficient
αlarge 0.28 mol C (g Chl)−1 m2 W−1 d−1 light harvest coefficient
KP 1.2 mmol m−3 half-saturation coefficient for grazing
m 0.1 d−1 linear mortality rate

Table A5. Parameter values used in MARBL to compute the production and loss of small phytoplankton.

Parameter Value Unit Name

KFe 3× 10−5 mmol dissolved Fe kg−1 half-saturation coefficient
KPO4 0.01 mmol PO4 m−3 half-saturation coefficient
KNH4 0.01 mmol NH4 m−3 half-saturation coefficient
KNO3 0.25 mmol NO3 m−3 half-saturation coefficient
gmax 3.3 d−1 maximum grazing rate

Table A6. Parameter values used in MARBL to compute the production and loss of large phytoplankton.

Parameter Value Unit Name

KFe 7× 10−5 mmol dissolved Fe kg−1 half-saturation coefficient
KPO4 0.05 mmol PO4 m−3 half-saturation coefficient
KNH4 0.05 mmol NH4 m−3 half-saturation coefficient
KNO3 0.5 mmol NO3 m−3 half-saturation coefficient
KSiO3 0.7 mmol SiO3 m−3 half-saturation coefficient
gmax 3.15 d−1 maximum grazing rate

A2.1 Phytoplankton growth

In MARBL, the carbon-specific growth rate of phytoplank-
ton is defined as

µi = µrefNlimi
Llimi

Tf, (A16)

where µref is a constant accounting for the maximum growth
rate at the reference temperature of 30 ◦C.Nlim is the nutrient
limitation; Llim is the light limitation; Tf is the temperature
function.

A2.2 Nutrient limitation

Nlim is computed using Liebig’s law of the minimum, where
NFe, NSiO3 , NP, NNH4 , and NNO3 correspond to the nutrient
limitation specific to iron, silicon, phosphate, ammonia, and
nitrate.

Nlimi
=min

(
NFei ,NSiO3i

,NPi ,NNH4i
+NNO3i

)
(A17)

NFei =
Fe

Fe+KFei
(A18)
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NSiO3i
=

SiO3

SiO3+KSiO3i

(A19)

Phytoplankton can alternatively assimilate nitrate and am-
monium following O’Neill et al. (1989), such that

NNH4i
=

NH4
KNH4i

1+ NO3
KNO3i

+
NH4
KNH4i

, (A20)

NNO3i
=

NO3
KNO3i

1+ NO3
KNO3i

+
NH4
KNH4i

. (A21)

Phytoplankton is able to assimilate phosphorus in the form
of phosphate (PO4) and semi-labile dissolved organic phos-
phate (DOP); a similar approach is used to compute NP.

A2.3 Light limitation

The light limitation is given as

Llimi
= 1− e

−
αi θi Irr

Nlimi
Tfµref , (A22)

where α is the light harvest coefficient; θ is the chlorophyll-
to-carbon ratio; and Irr corresponds to the photosynthetically
available radiation, defined as 45 % of incoming shortwave
radiation (W m−2). In the high latitudes, CESM2 simulates
a subgrid-scale sea-ice thickness distribution and computes
shortwave penetration independently in each sub-column.
MARBL then takes an area-weighted average across sub-
columns to compute the grid cell mean light level. For more
details on how to compute θ and NP, see M. C. Long et al.
(2021).

A2.4 Temperature function

The temperature function is given as

Tf = 1.7
T−30 ◦C

10 ◦C , (A23)

where T is the temperature.

A2.5 Phytoplankton loss

In MARBL, phytoplankton decays through grazing G, mor-
tality M , and aggregation A, which refers to the pro-
cess by which dying phytoplankton form aggregates that
sink through the water column. The three loss terms de-
pend on P ′, the phytoplankton concentration in excess of
a temperature- and depth-dependent threshold (M. C. Long
et al., 2021).

P ′i =max
(
Pi −Pthresholdi ,0

)
(A24)

Lossi =G(P ′i )i +M(P
′

i )+Aii (P
′

i ) (A25)

Grazing by zooplankton is given as

Gi(P
′

i )= gmaxiTf
P ′i

KP+P ′i
z, (A26)

where gmax is the maximum grazing rate, KP is the half-
saturation constant for phytoplankton grazing, and z is the
zooplankton biomass.

Mortality is given as

M(P ′i )=mTfP
′

i , (A27)

where m is the linear mortality rate.
Finally, aggregation is parameterized as

Ai(P
′

i )= ai × (P
′

i )
1.75, (A28)

where a is the aggregation rate (see M. C. Long et al., 2021,
for more details). Parameter values used in MARBL to com-
pute phytoplankton production and loss are provided in Ta-
bles A4, A5, and A6.
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Appendix B: Additional figures

Figure B1. Climatological mean and standard deviation of the observation-based NPP estimates (mg C m−2 d−1) calculated from
NOBM (a, b), Standard VGPM (c, d), Eppley-VGPM (e, f), CbPM (g, h), and CAFE (i, j) and simulated by ESM2M-LE (k, l) and CESM2-
LE (m, n) over 1998–2018. Gray boxes indicate the globally integrated mean NPP (Pg C yr−1). We use 5 d mean NPP output for all products
except for the VGPM-based products (c–j).
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Figure B2. Simulated mean magnitude and duration of MHWs over 1998–2018. Mean SST anomaly relative to the seasonal cycle (◦C)
during MHWs in (a) the observation-based estimate, (b) ESM2M-LE, and (c) CESM2-LE. Simulated 90th percentile of the MHW durations
(days) in (d) the observation-based estimate, (e) ESM2M-LE, and (f) CESM2-LE. The global mean magnitude equals 1.3, 1.2, and 1.2 ◦C,
while the global mean 90th percentile of the duration equals 36, 69, and 75 d in the observations, ESM2M-LE, and CESM2-LE, respectively.

Figure B3. Simulated mean magnitude and duration of NPPX events over 1998–2018. Mean NPP anomaly relative to the seasonal cycle
(mg C m−2 d−1) during NPPX events in (a) observation-based estimates, (b) ESM2M-LE, and (c) CESM2-LE. The 90th percentile of the
NPPX events duration (days) in (d) observation-based estimates, (e) ESM2M-LE, and (f) CESM2-LE. The global mean magnitude equals
−209, −182 and −223 mg C m−2 d−1, while the global mean 90th percentile of the duration equals 29, 34, and 18 d in the observations,
ESM2M-LE, and CESM2-LE, respectively.
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Figure B4. Simulated mean states of the temperature (a–d, Tf), light (e–h, Irrlim), and nutrient (i–l, Nlim) limitations on the small- and
large-phytoplankton growth rates in ESM2M-LE and CESM2-LE over 1998–2018.

Figure B5. Simulated mean states of small- and large-phytoplankton NPP (a–d, mg C m−2 d−1), loss (e–h, mg C m−2 d−1), biomass (i–l,
mg C m−2), and growth rates (m–p, d−1) in ESM2M-LE and CESM2-LE over 1998–2018.
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Figure B6. Likelihood (%) of compound MHW–NPPX events estimated using the observation-based NPP product of (a) NOBM, (b) Stan-
dard VGPM, (c) Eppley-VGPM, (d) CbPM-VGPM, and (e) CAFE-VGPM.

Figure B7. Difference between the NPP anomaly dNPP during compound MHW–NPPX events and its decomposition into a contribution of
the growth rate anomaly ndµ and of the biomass anomaly µdn (mg C m−2 d−1) during compound MHW–NPPX events for small and large
phytoplankton in ESM2M-LE (a, b) and in CESM2-LE (c, d).

Figure B8. Surface photosynthesis available radiation anomaly (W m−2) during MHW–NPPX events relative to the seasonal cycle in
ESM2M-LE (a) and in CESM2-LE (b).
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Figure B9. Contributions (1× 10−2 g C m−2 d−1) of small- and large-phytoplankton NPP and Loss to the buildup of the maximum biomass
anomaly (mg C m−2 d−1) in ESM2M-LE (a, b, e, f) and in CESM2-LE (c, d, g, h).

Figure B10. Difference between the integrated biomass change 1n (Fig. 5e–h) and the NPP−Loss contribution to 1n (Fig. 5i–l). This
residual term includes the circulation contribution to 1n and all errors inherent to the decomposition in Eq. (8).

Code and data availability. The satellite SST data are avail-
able under https://psl.noaa.gov/data/gridded/data.noaa.oisst.
v2.highres.html (last access: 21 October 2021; Reynolds et
al., 2007). The NPP data assimilated by the NASA Ocean
Biogeochemical Model are publicly available from 1998 to
2015 under https://doi.org/10.5067/PT6TXZKSHBW9 (Wat-
son and Rousseaux, 2017). Cécile Rousseaux provided a
pre-release of the chlorophyll data from 2016 to 2018, and
these data are available upon request. The NPP data assim-
ilated by the VGPM-based models are publicly available
under http://orca.science.oregonstate.edu/npp_products.php
(last access: 30 November 2021; Standard-VGPM and
Eppley-VGPM: https://doi.org/10.4319/lo.1997.42.1.0001,
Behrenfeld and Falkowski, 1997; CbPM:
https://doi.org/10.1029/2007GB003078, Westberry et al.,
2008; CAFE: https://doi.org/10.1002/2016GB005521, Silsbe
et al., 2016). The data and the code to generate the figures in
this study have been deposited in a Zenodo repository under
https://doi.org/10.5281/zenodo.7330443 (Le Grix, 2022).
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Abstract. Ocean extreme events, such as marine heatwaves, can have harmful impacts on marine ecosystems. Understanding

the risks posed by such extreme events is key to develop strategies to predict and mitigate their effects. However, the underlying

ocean conditions driving severe impacts on marine ecosystems are complex and often unknown as risks to marine ecosystems

arise not only from hazards, but from the interactions between hazards, exposure and vulnerability. Marine ecosystems may not

be impacted by extreme events in single drivers but rather by the compounding effects of moderate ocean anomalies instead.5

Here, we employ an ensemble climate-impact modelling approach that combines a global marine fish model with output from

a large ensemble simulation of an Earth system model, to identify the key ocean ecosystem drivers associated with the most

severe impacts on the total biomass of 326 pelagic fish species. We show that low net primary productivity is the most influential

driver of extremely low fish biomass over 68% of the ocean area, especially in the subtropics and the mid-latitudes, followed

by high temperature and low oxygen in the eastern equatorial Pacific and the high latitudes. Severe biomass loss is generally10

driven by extreme anomalies in at least one ocean ecosystem driver, except in the tropics, where a combination of moderate

ocean anomalies is sufficient to drive extreme impacts. Single moderate anomalies never drive extremely low fish biomass.

Compound events with either moderate or extreme ocean conditions are a necessary condition for extremely low fish biomass

over 78% of the global ocean, and compound events with at least one extreme variable are a necessary condition over 61%

of the global ocean. Overall, our model results highlight the crucial role of extreme and compound events in driving severe15

impacts on pelagic marine ecosystems.

1 Introduction

Extreme events, such as marine heatwaves (Hobday et al., 2016) or low net primary production (NPP) events (Le Grix et al.,

2021, 2022) have been linked to a range of negative impacts on marine organisms and ecosystems (Wernberg et al., 2013;

Cavole et al., 2016; Smale et al., 2019; Wernberg et al., 2016; Smith et al., 2023), including the collapse of entire ecosystems20

(e.g., Wernberg (2021)). Of particular concern are compound events, which occur when conditions are anomalous for multiple

1
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ocean ecosystem drivers (Zscheischler et al., 2018; Gruber et al., 2021; Le Grix et al., 2021, 2022; Burger et al., 2022). The

‘Blob’, a prolonged and extensive marine heatwave that occurred from 2013 to 2015 in the Northeast Pacific, illustrates the

potential threat posed by marine compound events on ecosystems. This marine heatwave coincided with anomalously low

oxygen, low pH, and large negative anomalies in phytoplankton NPP (Whitney, 2015; Le Grix et al., 2021; Gruber et al., 2021;25

Mogen et al., 2022; Wyatt et al., 2022), leading to severe impacts on marine life (Cavole et al., 2016), including mortality

and reproductive failure of sea birds (Jones et al., 2018; Piatt et al., 2020), mass strandings of sea lions in California and of

whales in the western Gulf of Alaska (Cavole et al., 2016), as well as shifts in species distribution towards warm-water species,

with repercussions on fisheries (Cavole et al., 2016; Cheung and Frölicher, 2020). Previous research has shown that marine

heatwaves and compound extreme events have become more frequent over the past century (Oliver et al., 2018; Gruber et al.,30

2021) and that this trend is projected to continue as global warming persists (e.g., Frölicher et al. (2018); Burger et al. (2022)).

If extreme events and compound events regularly induce collapses in animal biomass and community reorganization, the

consequences of an increase in their frequency could be catastrophic for ecosystems, fisheries and human coastal communities.

However, the extent to which ocean extreme events and compound events have negative impacts on marine ecosystems remains

unclear.35

Risks to marine ecosystems arise not only from hazards, such as marine heatwaves or compound events, but from the

interactions between hazards, exposure and vulnerability (e.g., Bindoff et al. (2019); Magnan et al. (2021)). Marine ecosystems

may not be exposed nor vulnerable to certain extreme or compound extreme events. For example, Fredston, A. L. et al.

(2023) (submitted) uses a collection of bottom trawl data from Atlantic and Pacific marine ecosystems to show that historical

marine heatwaves did not substantially impact the community composition and biomass of these ecosystems. Certain marine40

species may even benefit from extreme events. Cavole et al. (2016) reported increased recruitment of rockfish in California and

northward expansion of tropical and subtropical copepods during the ’Blob’. These findings highlight the complexity in the

relationship between hazards and impacts on marine ecosystems, and suggest that compound events with moderate anomalous

ocean conditions may also drive or contribute to severe impacts (Zscheischler et al., 2018). To effectively predict and mitigate

future impacts on marine ecosystems, a better understanding of the ocean conditions leading to extreme impacts on marine45

ecosystems is needed.

The limited understanding of the drivers of extreme impacts on marine ecosystems is partly a result of a lack of sufficient

observations (Gruber et al., 2021). One approach that circumvents this lack of observations is the use of ensemble climate-

impact modelling simulations (van der Wiel et al., 2020; Tschumi et al., 2022). These simulations couple a climate model with

an impact model, in our case a global marine fish model. Ensemble climate simulations are produced with the same single50

climate model under identical external forcing but starting from different initial conditions (Frölicher et al., 2009; Deser et al.,

2020). These simulations are then used to force the marine fish model, resulting in a large dataset from which to analyze rare

events (e.g., Poschlod et al. (2020); Maher et al. (2021); Bevacqua et al. (2022); Cheung et al. (2021); Le Grix et al. (2021)).

The ensemble climate-impact modelling simulations are used for two different purposes. The first and most common purpose

is forward modelling, which samples oceanic events, such as marine heatwaves, and quantifies their associated impacts on55

marine ecosystems (Cheung and Frölicher, 2020; Cheung et al., 2021). However, this approach requires prior knowledge of

2
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potentially harmful hazards and typically only considers extreme events and ignores other moderate drivers of extreme impacts.

Here, we employ a backward approach (e.g., Zscheischler et al. (2014b, c); Ben-Ari et al. (2018); van der Wiel et al. (2020);

Vogel et al. (2021)), which starts by sampling events of extreme impacts and then looks back at the ocean conditions potentially

causing these events. This "impact-driven" approach allows for the discovery of unexpected drivers (van der Wiel et al., 2020)60

of extreme impacts on fish biomass.

The goal of this study is to identify the ocean conditions associated with the most severe impacts on pelagic fish species,

especially those associated with extremely low fish biomass. To achieve this, we employ the global marine fish model DBEM,

driven by output of a large ensemble simulation of the comprehensive Earth system model GFDL ESM2M. By considering

the total biomass of 326 pelagic fish species, we aim to gain a deeper understanding of the drivers of extreme impacts on the65

entire pelagic community, rather than focusing on individual species. While this study focuses on a specific climate-fish impact

model that is associated with particular assumptions and uncertainties, we aim to obtain generalizable insights that would form

the foundation for future studies.

2 Methods

2.1 Ensemble climate-impact modelling70

We apply an ensemble climate-impact modelling (van der Wiel et al., 2020; Vogel et al., 2021) approach to identify the

environmental drivers that lead to projected low pelagic fish biomass events. The approach consists of three steps: 1. Forward

modelling; 2. Identification of low biomass events; 3. Backward assessment of the drivers of low fish biomass events. These

three steps are illustrated in Fig. 1 and described in detail in the following.
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Figure 1. Schematic of the ensemble climate-impact modelling approach used in this study. In a first step ("forward modelling"), changes

in fish biomass for 326 pelagic species were simulated over the period 1951-2000 by the Dynamic Bioclimatic Envelope Model (DBEM)

forced with environmental data from a 10-member large ensemble simulation of the Earth System Model GFDL ESM2M. In a second step

("Identification of low fish biomass events"), low fish biomass events were identified using the 10th percentile threshold (red areas in the

bottom figure). In a final step ("backward assessment of the drivers of low fish biomass"), the environmental conditions driving low fish

biomass events are assessed. The right panel illustrates low fish biomass events sampled at a grid cell in the northern Pacific (at 71°N;

167°W) for one ensemble member, when the pelagic fish biomass is lower than its local 10th percentile computed from 1951 to 2000 over

the entire 10-member simulation.

1. Step: Forward modelling75

We use annual mean fish biomass data of 326 pelagic fish species simulated by the species-based Dynamic Bioclimatic Enve-

lope Model (DBEM, Cheung et al. (2008, 2016)) (Fig. 1). Pelagic fish represent a large proportion of the marine fish biomass

relevant to fisheries (Pauly D. and Palomares M.L.D., 2020). The DBEM uses a species distribution modeling algorithm (Close

et al., 2006) to estimate the species initial distribution based on its maximum and minimum depth limits, northern and south-

ern latitudinal range limits, habitat type and known occurrence boundaries (Cheung et al., 2008). These input parameters are80

mainly provided by two online databases: FishBase (www.fishbase.org) and SeaLifeBase (www.sealifebase.org). Once the

DBEM has determined the species distribution, it then simulates their growth, population dynamics and net migrations, de-

pending on ocean temperature, oxygen, and advection, as well as a set of species-specific growth parameters. Movement and

dispersal of adults and larvae are modeled through advection-diffusion reaction equations. Environmental preferences are iden-

tified for each species by overlaying environmental data from the Earth system model GFDL ESM2M (see below) with maps85

of the species relative abundance. When environmental conditions deviate from a species environmental preferences, habitat

suitability decreases, resulting in a decrease in the species abundance. Biomass is calculated from the population mean body

weight and abundance.

4

101



The DBEM projects shifts in marine species biomass and distribution under changes in ocean conditions (e.g., Cheung et al.

(2013, 2016)) including changes in ocean extreme conditions, such as marine heatwaves, that are consistent with alternative90

species distribution models and empirical evidence, where data exists (e.g., Cheung et al. (2021)). The horizontal resolution of

the DBEM is 0.5o longitude x 0.5o latitude. The model was spun-up for a thousand years using climatological average ocean

conditions from 1971 to 2000, allowing the population to reach an equilibrium before it was perturbed with environmental

changes from 1951 to 2000.

The DBEM was driven by environmental data from a 10-member large ensemble simulation (LES) of an Earth system95

model, the GFDL ESM2M, covering the time period 1951-2000 (Fig. 1). The GFDL ESM2M, developed at NOAA’s Geo-

physical Fluid Dynamics Laboratory (GFDL), is a fully coupled carbon cycle–climate Earth system model (Dunne et al.,

2012, 2013). It couples an atmospheric circulation model to an oceanic circulation model, and includes representations of

land, sea ice, and iceberg dynamics, as well as interactive biogeochemistry. The ocean biogeochemical module, TOPAZv2

(Dunne et al., 2013), simulates 30 tracers, including three phytoplankton groups (small and large phytoplankton, diazotrophs)100

and implicit zooplankton activity. The horizontal resolution of the ocean model MOM4p1 (Griffies, 2012) is nominally 1°

with increasing meridional resolution of up to 1/3° towards the equator. The 10-member large ensemble simulation is forced

with prescribed historical concentrations of atmospheric CO2 and non-CO2 radiative forcing agents over the historical period

(Burger et al., 2020, 2022). The GFDL ESM2M data was regridded to a horizontal resolution of 0.5° for use in the DBEM.

Input GFDL ESM2M data into the DBEM includes annual mean horizontal velocities, temperature, dissolved O2 and salinity105

at the surface of the ocean, vertically integrated NPP (sum of small and large phytoplankton and diazotrophs), and sea-ice

extent. These DBEM simulations do not take into account changes in acidity (e.g., Tai et al. (2021)) or fisheries pressure (e.g.,

Cheung et al. (2018)).

2. Step: Identification of low fish biomass events110

Next, we identify low fish biomass (LFB) events over the period 1951 to 2000 (Fig. 1). We chose that time period as it repre-

sents the historical oceanic state and is short enough to not contain too large long-term trends in ocean variables. At each grid

cell, we define LFB events as years when the annual mean total biomass of pelagic fish is lower than its local 10th percentile

(Fig. A1) computed from all ensemble members over 1951-2000. Therefore these events correspond to 1-in-10 year events.

From the 10 realizations of the 50-year period, we thus identify 10 x 5 = 50 LFB events per grid cell.115

3. Step: Backward assessment of the drivers of low fish biomass events

In a third step, we investigate the drivers of extreme reductions in simulated pelagic fish biomass over the 1951-2000 historical

period. To do this, we perform a backward assessment of the environmental drivers of LFB events (e.g., Zscheischler et al.

(2014b, c); Ben-Ari et al. (2018); van der Wiel et al. (2020); Gagné et al. (2020); Vogel et al. (2021)). Changes in pelagic fish120

biomass in the DBEM can be driven by changes in depth-integrated net primary production (NPP), surface temperature (T),

surface dissolved oxygen levels (O2), surface salinity (S), and sea-ice extent (Ice). We standardize these ocean variables so
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as to best compare their contributions to driving LFB events, by removing the mean and dividing by the standard deviation

computed over 1951-2000.

To identify drivers of LFB events, we employ a LASSO (least absolute shrinkage and selection operator) logistic regression125

(Tibshirani, 1996; Vogel et al., 2021). This statistical model allows for classifying years into LFB events and non-LFB events

depending on ocean conditions. We consider ocean conditions up to two years before the event, to account for possible lagged

effects. The probability of an LFB event to occur is given as:

P (LFB) =
1

1+ e−y
(1)

with130

y = β0 +βiXi (2)

where Xi ϵ [NPP, T, O2, S, and Ice] at the year of the event, one year prior to the event (indicated with -1y) and two years prior

to the event (indicated with -2y). An LFB event is predicted when P (LFB)> 0.5.

The regression coefficient βi accounts for the link between an ocean variable Xi and the probability of LFB. A positive βi

signifies that an increase in Xi raises the probability of LFB, and vice versa. However, high correlation between NPP, T, O2,135

S, and Ice implies a high variability of the coefficients βi (Vogel et al., 2021). For example, T and O2 are often negatively

correlated in the surface ocean, where the main driver of oxygen changes is oxygen solubility, which decreases with increasing

temperature (Garcia and Gordon, 1992). The information brought by a high absolute value of T and a low absolute value of O2

could alternatively be conveyed by a low absolute value of T and a high absolute value of O2. To address the high correlation

between variables, we specifically employ a LASSO logistic regression (Tibshirani, 1996), which prevents high variability in140

the coefficients by applying a penalty term on the norm of the coefficients ||β||. The regression coefficients are determined by

minimizing a cost function Cost(β) with regularization on ||β||:

min
β

(Cost(β)+λ||β||) (3)

The parameter λ controls the strength of the regularization. Through 5-fold cross validation, we obtained λoptimal, the value

of λ associated with the highest mean cross-validated performance of the model. We then selected λ= λSE , the value of λ145

that gives the most regularized model (i.e. the highest lambda) such that its cross-validated performance is within one standard

deviation of that of λoptimal (Friedman et al., 2010; Krstajic et al., 2014). The penalty term λ||β|| tends to produce some

regression coefficients βi that are exactly 0. The LASSO logistic regression therefore performs an automatic selection of the

variables that are statistically linked to LFB. As a result, certain grid cells might have just one predictor, like NPP, while others

might have up to fifteen predictors.150
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Figure 2. Area under the precision-recall curve (AUC PR) of the LASSO logistic regression. Model performance is satisfactory over areas

where AUC PR > 0.1. White areas correspond to regions without fish biomass data.

Model performance is assessed by the area under the precision-recall curve (AUC PR), a metric commonly used to summa-

rize the performance of a binary classification model when the sets are unbalanced (here, 10% of years are LFB events, 90%

are not) (Saito and Rehmsmeier, 2015; Cook and Ramadas, 2020). More than 99.99% of the ocean surface area has an AUC

PR value greater than 0.1 (Fig. 2), the rate of LFB events in the time series (Saito and Rehmsmeier, 2015), which indicates

that the logistic regression performs well at predicting LFB events. Note that we allowed for the inclusion of lagged-effects.155

Namely, variables one year (-1 year NPP, -1 year T, -1 year O2, -1 year S, -1 year Ice) and two years (-2 years NPP, -2 years T,

-2 years O2, -2 years S, -2 years Ice) before the event can also be selected as predictors. Allowing for lagged effects increases

model performance by 35% compared to a model based on concurrent predictors only.

2.2 Categorizing the drivers of low fish biomass events

We use the coefficients from the LASSO logistic regression to assess whether extreme, compound, or compound and extreme160

drivers are necessary conditions for LFB events. An LFB is predicted when P (LFB)> 0.5, which is equivalent to y > 0 in

equation 2. For a given location and given the regression coefficients βi, we test whether y can be positive with all predictors

between their 10th and 90th percentile. If not, moderate events cannot drive LFB events, and extreme events are necessary

to drive LFB events. Similarly, we test whether drivers can be univariate by testing whether y can be positive with only one

predictor being non-zero (and the rest are zero). If not, compounding drivers are a necessary condition for LFB events.165

3 Results

Low fish biomass events are associated with shifts in ocean conditions, as demonstrated by the red and blue distributions

presented in Fig. 3. On a global scale and on average, NPP is decreased by 0.8 standard deviation (SD) during LFB events

compared to normal conditions. Temperature is increased by 0.5 SD, dissolved oxygen decreased by 0.5 SD, and salinity is 0.1
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SD lower than usual. Furthermore, sea ice extent variability is also enhanced during LFB events. In the following subsections,170

we further discuss these changes in ocean conditions and show how they can be used to predict LFB events.Low fish stock events are associated with a shift in ocean conditions.

Methods

All years

Low fish biomass years

a) b)                                                        c)

d)                                                        e)

Figure 3. Global distribution of the annual mean standardized NPP, T O2, S, and sea ice extent over all years (in blue) and low fish biomass

years (in red) over 1951-2000. On the y-axis, density accounts for the probability density function, whose area under the curve is equal to 1.

On the x-axis, a shift of the distribution towards -1 corresponds to a reduction in annual mean values of one standard deviation.

3.1 Drivers of low fish biomass events

Using LASSO logistic regression, the probability of an LFB event to occur is modeled as a function of NPP, T, O2, S, and

Ice conditions up to two years prior to the event. Fig. 4a presents the global mean regression coefficients associated with each

predictor. A positive coefficient indicates that any increase in the associated predictor increases the probability of an LFB event,175

while a negative coefficient indicates that any decrease in the associated predictor increases the probability. We first describe

the regression coefficients associated with NPP, T, O2, S, and Ice conditions in the year of the event.
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b)

a)

Figure 4. (a) Global mean logistic regression coefficient associated with T, O2, S, NPP, Ice, -1 year T (one year prior of the event), -1 year

O2, -1 year S, -1 year NPP, -1 year Ice, -2 years T, -2 years O2, -2 years S, -2 years NPP, -2 years Ice. Error bars indicate the standard

deviation of each regression coefficient across space. (b) Fraction of the global ocean (%) over which each variable is selected as a predictor

of LFB events in the regression.

Globally, the LASSO logistic regression coefficients indicate that LFB events are more likely to occur when NPP, O2, and

S are anomalously low, and when T and Ice are anomalously high (Fig. 4a). This is consistent with the shift in these ocean

variables’ distribution during LFB events (Fig. 3). NPP is selected over 88% of the global ocean (Fig. 4b), due to its negative180

impacts on the biomass of fish species in the DBEM (Cheung et al., 2011). On the other hand, T, O2, S are selected over 47%,

42%, and 29% of the global ocean, respectively (Fig. 4b). The effect of changes in T on fish biomass varies depending on the

species’ temperature preference, which may result in poor prediction of LFB events when considering the total biomass of all

pelagic fish species. Changes in salinity are usually too subtle in the open ocean to directly affect osmotic processes in fish and

ultimately limit fish biomass. However, salinity changes may be correlated with changes in other ocean conditions that directly185

influence fish biomass and thus serve as a proxy for LFB events in certain regions. Ice is only selected as a predictor in and

around sea-ice covered regions (5% of the global ocean, Fig. 4b).
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a) b)                                                            c)

d)                                                                     e)

Figure 5. Regression coefficient associated with NPP (a), T (b), O2 (c), S (d) and Ice (e) conditions in the year of the event in the logistic

regression. Black areas correspond to regions without fish biomass data, in contrast to white areas, which correspond to regions where a

given ocean variable was not selected as a predictor in the logistic regression.

There is substantial degree of spatial variability, as indicated by the standard deviation of each regression coefficient over

the area over which it is selected (Fig. 4a). The regression coefficient for NPP (Fig. 5a) is negative over most of the global

ocean, which means that low NPP is related to LFB. The more negative the regression coefficient, the more a reduction in190

NPP increases the likelihood of LFB. For example, in the northeastern Pacific, where the regression coefficient for NPP is

particularly negative, even a relatively weak reduction in NPP might be sufficient to drive LFB events. In contrast, in the center

of the northern Pacific, a stronger reduction in NPP might be necessary, as indicated by the less negative regression coefficient.

LFB events are associated with high temperatures over most of the area over which T is a predictor (positive coefficient on

Fig. 5b), yet they are also associated with low temperatures over a few regions in the northern high latitudes and in the northern195

part of the Southern Ocean. The regression coefficient for O2 varies in sign over the global ocean (Fig. 5c). Over most of the low

to mid-latitudes, LFB events are associated with low O2. Low oxygen levels limit metabolism, growth performance and body

size, and therefore limit total population biomass (Pauly and Cheung, 2017; Cheung et al., 2011, 2013; Clarke et al., 2021),

potentially driving LFB events. In isolated grid cells in the high northern latitudes and in the northern part of the Southern

Ocean, LFB events are, however, associated with high O2. There, high O2 is usually driven by increased solubility associated200

with lower T (Fig. A3), a potential driver of LFB for which high O2 would simply be a proxy. Low salinity is an indicator

of LFB especially in the equatorial Pacific, whereas high salinity is an indicator of LFB in the western South Indian Ocean

and the North Atlantic (Fig. 5d). LFB events are also favored by high Ice in the northern high latitudes and low Ice in the

southern high latitudes (Fig. 5e). This hemispheric divergence might be explained by the species composition. In the Arctic,

although larger sea-ice extent provides more favorable conditions for polar species, it reduces the suitable habitat for sub-Arctic205

species. In the Antarctic, marine species are highly endemic (Eastman, 2005) and sub-polar species are less connected with the

Antarctic compared to Arctic marine species. Thus, the relationship between reduced sea-ice extent and LFB in the Antarctic is
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largely driven by species that are better adapted to polar conditions, namely to cold and light-limited conditions under sea-ice

(Eastman, 2005).

3.2 The role of lagged effects in driving low fish biomass events210

Anomalous ocean conditions may have lagged effects on fish biomass, which potentially drive LFB events a few years later.

To account for these lagged effects, ocean conditions one to two years prior to an LFB event were also selected as predictors

in our analysis.

We found that NPP from one and two years prior to an LFB event was selected as a predictor over about 70% of the global

ocean (Fig. 4b). The associated regression coefficients are still relatively high (on the order of -0.3; Fig. 4a). This lagged215

effect might be explained by NPP having large negative impacts on fish population biomass (Chassot et al., 2010), leading to a

reduction in reproductive capacity that would take multiple years to recover particularly for longer-lived, later-matured species

(i.e., with lower intrinsic population growth rate). Negative impacts from low NPP propagate over time through the population,

potentially driving a decline in overall fish biomass. The lagged effect is most pronounced in the low latitudes (Fig. A4), where

time variability in NPP is also especially low in the ESM2M (Le Grix et al., 2022). Low NPP may therefore be associated with220

low NPP in the following years, and thus indirectly with LFB in the following years. A time lag of 1 year or 2 years for T

and O2 is rarely selected as a predictor (over less than 21% of the global ocean, Fig. 4b). Moreover, the regression coefficients

associated with lagged T and O2 are of much lower absolute value compared to the regression coefficients associated with

concurrent T and O2 (Fig. 4a). T and O2 appear better suited at predicting concurrent LFB events than future LFB events.

Compared to concurrent salinity, one-year and two-year lagged S were selected as a predictor over a similar area (30% of the225

global ocean). This suggests persistent low salinity conditions which indicate negative impacts on fish biomass over time. In

contrast, one-year and two-year lagged Ice are never selected as a predictor, potentially reflecting high interannual variability

in sea-ice extent. Maps of the regression coefficient associated with one-year and two-year lagged predictors are shown in

Fig. A4.

Our results highlight the important role of lagged effects in driving LFB events. They might include “direct” lagged ef-230

fects, by which anomalous ocean conditions drive LFB on their own after one or two years, as well as “indirect” lagged

effects. Anomalous ocean conditions may indirectly drive LFB by playing the role of a preconditioning event or by temporally

compounding with other events (Zscheischler et al., 2020). Preconditioning events correspond to anomalous ocean conditions

rendering an ecosystem more vulnerable to subsequent ocean events, which might end up driving LFB. Temporally compound-

ing events correspond to a repetition of the same kind of ocean event, like a marine heatwave, whose impacts accumulate over235

time and end up driving LFB.
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3.3 Most influential predictor of low fish biomass events

Figure 6. Most influential predictor of LFB events, defined as the predictor with highest absolute regression coefficient in the logistic

regression.

We identified at each grid cell the most influential predictor of LFB events, i.e., the predictor associated with the highest

absolute regression coefficient (Fig. 6). NPP is the main predictor over most of the global ocean (52% of the area). -1 year and

-2 year-lagged NPP are the main predictors over 16% of the global ocean, mostly located in the subtropical gyres, where NPP240

variability is low. T is the main predictor in the eastern equatorial Pacific, in the equatorial Atlantic and locally over the Gulf

Stream region and in the high latitudes. O2 is the main predictor over a few regions, e.g., locally in the eastern equatorial Pacific

and Atlantic. S is the main predictor in the western equatorial Pacific. Lastly, Ice is the main predictor over certain regions in

the high latitudes, such as in the Arctic Ocean. Overall, our results highlight the dominance of NPP, as a useful indicator of

potential extreme declines in pelagic fish biomass over most of the global ocean (Fig. 6).245

3.4 Categorizing the drivers of low fish biomass events into moderate, extreme, univariate, and compound drivers

We use LASSO logistic regression with lagged effects to classify the drivers of LFB events into four categories: univariate,

compound, moderate and extreme. Our methodology utilizes the regression coefficients from the previoulsy-built logistic

regression to determine whether an LFB event can be driven by univariate or moderate anomalies in ocean conditions or if

compound or extreme anomalies are necessary (see Methods).250

Our analysis shows that moderate oceanic events can drive LFB events over only 30% of the global ocean (in grey in Fig. 7a),

primarily in the low latitudes, particularly in the central equatorial Pacific, and in the California Current System. These regions

have a high number of predictors in the logistic regression and moderate anomalies in multiple variables may compound to
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drive LFB events. Extreme oceanic events are necessary to experience LFB events over 70% of the global ocean, primarily in

the mid to high latitudes (yellow area in Fig. 7a). This is further supported by the co-occurrence of LFB events with extreme255

conditions, such as extremely high SST, low O2 and low NPP in the mid latitudes, as well as with extremely high Ice and low

Ice in the northern and southern high latitudes, respectively (Fig. A5).

Next, we analyze whether univariate events alone can drive LFB events or if compound events are necessary. Our results

show that univariate events can drive LFB events over 22% of the global ocean, primarily in the eastern equatorial Pacific

(in grey on Fig. 7b), where high absolute regression coefficient for O2 and T suggest that even univariate O2 and T events260

may be sufficient to drive LFB events. Over the remaining 78% of the global ocean (in blue on Fig. 7b), compound events

are necessary to experience LFB events. In the Appendix, we further differentiate between temporally compounding events,

where one single ocean variable is anomalous over multiple years, and multivariate compound events, where multiple ocean

variables are anomalous (Fig. A6). Temporally compounding events are necessary for the occurrence of LFB events over 36%

of the global ocean (in light blue on Fig. A6), mostly located in the subtropics, where NPP, -1 year NPP and -2 year NPP are265

LFB predictors. There, low NPP could persist over multiple years and drive LFB. In contrast, multivariate compound events

are necessary for LFB events over the remaining 42% of the global ocean (in dark blue on Fig. A6), where multiple events

such as high T, low O2, and low NPP events may compound to drive LFB.

Lastly, we overlapped Fig. 7a and Fig. 7b to identify regions where the LFB drivers must be both an extreme and a compound

event (Fig. 7c). The fraction of the global ocean where extreme and compound events are necessary to experience LFB events270

overlap in the mid to high latitudes (61% of the ocean, in green on Fig. 7c). There, a compound extreme event with an extreme

in at least one variable is required to drive extreme impacts on pelagic fish. Note that although compound extreme events

are necessary to experience LFB events over 61% of the global ocean, this area comprises only 37% of the total pelagic fish

biomass, as fish species are heterogeneously distributed over the global ocean (Fig. A1a). Over the remaining 13% of the

global ocean (in grey on Fig. 7c), LFB events can be driven by a univariate event as long as it is extreme or, interchangeably,275

by a moderate event as long as it is a compound moderate event (i.e. a combination of moderate anomalies in multiple ocean

variables). A univariate and moderate anomaly in one ocean variable is not sufficient to drive LFB anywhere (in black on the

legend of Fig. 7c).
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i.e. necessarily a compound 
extreme event, where at 

least one variable is extreme

be driven by a univariate 
moderate event

only be driven by an 
extreme event

only be driven by a 
compound event

c)                                                                            Extremely low fish biomass can

be driven by either an 
extreme or compound event

i.e. a compound 
moderate event, where all 

variables are moderate

i.e. a univariate 
extreme event

9% 61% 17%

13%0%

be driven by a 
moderate event 

event

a)                          Extremely low fish biomass can

only be driven by 
an extreme event

70% 30%

be driven by a 
univariate event

only be driven by a 
compound event

78% 22%

b)                                 Extremely low fish biomass can

Figure 7. Spatial distribution of each category of LFB drivers. The legend indicates the fraction of the global ocean occupied by each

category. (a) Extreme events are necessary to experience LFB events. (b) Compound events are necessary to experience LFB events. Both

upper panels are superposed to create the bottom panel (c), which shows where compound extreme events are necessary to experience LFB

events.
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4 Discussion and Conclusion

We investigated the drivers of extremely low pelagic fish biomass (LFB) events by applying a LASSO logistic regression to280

output of a global marine fish model. We found that low net primary productivity is the most influential predictor of LFB events

over the majority (68%) of the surface ocean. The prediction of such LFB events is substantially improved by considering net

primary production one to two years before the event. We also found that a moderate and univariate anomaly in one ocean

variable is not sufficient to drive LFB events, and that over 61% of the surface ocean, anomalies in multiple ocean variables

– which must be extreme in at least one variable – are required to cause LFB events. Our findings highlight the key role of285

extreme and compound events for severe impacts on pelagic fish biomass.

This study takes the original approach of investigating the drivers of extreme impacts on pelagic fish biomass using a

backward assessment method. Contrary to previous studies that apply a forward approach to investigate the impacts of extreme

hazards, such as marine heatwaves, on ecosystems (e.g., Smale et al. (2019); Cheung and Frölicher (2020); Cheung et al.

(2021); Smith et al. (2023)), the focus here is rather on extreme impacts on fish and what drives such impacts. Such backward290

approaches have become more common in recent years, for instance to identify drivers of extremely low vegetation activity and

carbon uptake (Zscheischler et al., 2013, 2014a), floods (Jiang et al., 2022), and crop failure events (Vogel et al., 2021). The

backward approach allows for the identification of potentially unexpected drivers (van der Wiel et al., 2020), such as low NPP,

and for the distinction between univariate, compound, moderate, and extreme drivers. The dominant role of low NPP, and not

of marine heatwaves (e.g., Cheung and Frölicher (2020)), in driving extremely low fish biomass, was particularly unexpected.295

Our findings may explain why some recent studies did not find substantial impacts of marine heatwaves on ecosystems, e.g., on

the biomass and community composition of coastal Atlantic and Pacific demersal fish communities over the last three decades

(Fredston, A. L. et al. (2023) submitted). Additionally, we found that combinations of moderate ocean anomalies might be

sufficient to drive extreme impacts on pelagic fish biomass over 22% of the global ocean. Therefore, monitoring multiple

ocean ecosystem drivers in addition to marine heatwaves (e.g., Jacox et al. (2022)) may help to improve predictions of high300

impacts on the pelagic fish ecosystem.

An important aspect of this study is that it considers the perspective of the entire pelagic fish community, as opposed to

focusing on individual species. Each species has its own unique response to anomalous ocean conditions, based on its natural

habitat and range of tolerance (Pörtner, 2002; Pörtner and Peck, 2010). For instance, some species that are already at the upper

limit of their thermal tolerance might be negatively affected by elevated temperatures, while others may benefit from the same305

warming event. However, the overall response of the pelagic fish ecosystem to changes in ocean conditions is not yet well

understood. This study offers an initial evaluation of the drivers of extreme declines in the biomass of pelagic fishes.

A compound event combines individual ocean events, whose effects may act synergistically to drive LFB events (Boyd

and Brown, 2015; Gruber et al., 2021). We employed a logistic regression to analyze these effects, assuming an additive

relationship between them. However, it is important to note that these effects may not be linear, as demonstrated by previous310

research (Zscheischler and Seneviratne, 2017). For example, the combined effect of increased temperature and reduced net

primary production on fish may be different from the sum of their isolated effects. To further investigate this, we conducted a
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sensitivity analysis (not shown) that considered mixed effects in the logistic regression. Specifically, we allowed the product of

two ocean variables to be selected as a predictor of LFB events under the condition that it improved the prediction. However,

accounting for mixed effects did not substantially improve the prediction of LFB events in our study.315

The robustness of the results presented here depends on the fidelity of the DBEM in simulating the ocean ecosystem drivers

of changes in pelagic fish biomass. The DBEM has been shown to reproduce observed shifts in the biomass and distribution

of hundreds of fish species under moderate (e.g., Cheung et al. (2013, 2016)) and extreme (Cheung et al., 2021) changes in

ocean conditions. However, as with any model, the DBEM is an incomplete representation of the pelagic ecosystems (Cheung

et al., 2011) and certain limitations require further discussion. One limitation of the DBEM is that it does not account for320

vertical heterogeneity in ocean ecosystem drivers and assumes surface ocean conditions to be the primary drivers of pelagic

fish biomass. In reality, subsurface ocean conditions may also play a significant role in driving extreme declines in pelagic fish

biomass. Additionally, the DBEM simulations that we used in this study do not consider the effects of ocean acidification or

fishing pressure on fish biomass. Ocean acidification can cause physiological stress and perturb fish olfactory ability to detect

suitable habitat, potentially leading to population declines (Melzner et al., 2009; Munday et al., 2009; Cheung et al., 2011;325

Branch et al., 2013; Tai et al., 2021). These effects may be particularly pronounced when combined with other ocean stressors

such as low oxygen (Gobler and Baumann, 2016) or high temperature (Cornwall et al., 2021; Burger et al., 2022). Fishing

pressure also impacts fish biomass (e.g. Watson et al. (2013)), and may be a primary reason for the recent marine biodiversity

decline (Jaureguiberry et al., 2022). Further DBEM simulations representing the impacts of fishing pressure on fish biomass

would help to assess the role of human activities in driving extreme changes in fish biomass (Cheung et al., 2011; Tai et al.,330

2018; Cheung et al., 2022).

The conclusions of this study are not only dependent on the global fish model used, but also on the ocean ecosystem

drivers as simulated by the GFDL ESM2M. For example, the dependencies between ocean variables, such as the correlation

between net primary production and temperature, may differ between the GFDL ESM2M and other Earth system models.

Dependencies between ocean variables are reflected in the logistic regression coefficients and may impact our results. In335

particular, the negative correlation between net primary production and temperature in GFDL ESM2M is overestimated in

the tropics and strongly underestimated around Antarctica when compared to observation-based data (Le Grix et al., 2022).

Therefore, the role of compound high temperature and low net primary productivity events in driving low fish biomass events

may be overestimated in the tropics and underestimated around Antarctica. To further validate the robustness of our results,

different Earth system models with potentially divergent dependencies between ocean variables should be used, following340

similar sensitivity experiments as over land (Tschumi et al., 2023). New simulations from global fish models forced by different

Earth system models, that have now become available under the Inter-Sectoral Impact Model Intercomparion Project (ISIMIP)

framework (Tittensor et al., 2021), might be used for an intermodel comparison study in the future. In this study, the selection of

the GFDL ESM2M was motivated by the availability of a large ensemble simulation, which provides the necessary large dataset

from which to study rare extreme events over a time period sufficiently short to be assumed quasi-stationary. At present, there345

are only a few large ensemble simulations available with fully coupled Earth system models that simulate ocean ecosystem

drivers (e.g., Rodgers et al. (2015); Deser et al. (2020)).
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This study provides insights into potential environmental drivers of high impacts on pelagic fish biomass. We highlight

the key role played by univariate extreme events, compound moderate events and compound extreme events in driving severe

impacts on fish. Our results motivate further work on ocean extreme and compound events, as well as the monitoring of multiple350

ocean ecosystem drivers including net primary productivity as a means to predict impacts on pelagic fish.

Appendix A: Additional figures

a) b)

Figure A1. (a) Mean pelagic fish biomass (kg m−2) over 1951-2000. (b) Difference between the 10th percentile of the annual mean pelagic

fish biomass and the mean pelagic fish biomass (kg m−2) over 1951-2000.

Figure A2. Mean standardized NPP, T, O2, S, and sea ice extent during the LFB years. Ocean variables are standardized by removing their

mean and dividing by their standard deviation at each grid cell.
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Figure A3. Pearson’s correlation coefficient between each pair of ocean variables.
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Figure A4. Regression coefficients associated with NPP, T, O2, S, Ice, -1 year NPP, -1 year T, -1 year O2, -1 year S, -1 year Ice, -2 years

NPP, -2 years T, -2 years O2, -2 years S, and -2 years Ice. Black areas correspond to regions without fish biomass data, in contrast to white

areas, which correspond to regions where a given ocean variable was not selected as a predictor in the logistic regression.
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Figure A5. Percentage of LFB events co-occurring with extreme ocean conditions. High and low NPP, T, O2, S, and Ice events are defined

as years when the annual mean NPP, T, O2, S, and Ice is higher or lower than their 10th or 90th percentiles, respectively. Grid cells where

the co-occurrence is not significantly high remain white. Statistical relevance is assessed by artificially shuffling the time series of ocean

variables and counting the co-occurrence days. We procede to a thousand shuffle tests and consider LFB events to frequently co-occur with

extreme events when co-occurrence in the initial time series is higher than in at least 95% of shuffle tests.
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i.e. necessarily a multivariate
compound extreme event,

only be driven by a 
compound event

Extremely low fish biomass can

be driven by a 
univariate event

i.e. a temporally
compounding event

36% 42%

22%

Figure A6. Spatial distribution of univariate and compound LFB drivers. LFB can be driven by a univariate event over regions in grey. It

must be driven by a compound event over the regions in blue. A temporally compounding event is sufficient to drive LFB over the regions in

light blue, whereas a multivariate compound event is necessary to drive LFB over the regions in dark blue.
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i.e. necessarily a compound 
extreme event, where at 

least one variable is extreme

be driven by a univariate 
moderate event

only be driven by an 
extreme event

only be driven by a 
compound event

c)                                                                            Extremely low fish biomass can

be driven by either an 
extreme or compound event

i.e. a compound 
moderate event, where all 

variables are moderate

i.e. a univariate 
extreme event

16% 37% 20%

27%0%

be driven by a 
moderate event 

event

a)                          Extremely low fish biomass can

only be driven by 
an extreme event

70% 30%

be driven by a 
univariate event

only be driven by a 
compound event

78% 22%

b)                                 Extremely low fish biomass can

Figure A7. Spatial distribution of each category of LFB drivers. The legend indicates the fraction of global mean fish biomass (%) comprised

within the area occupied by each category.
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Chapter 6

Discussion

6.1 Summary and discussion of the main results

The principal objectives of this thesis were (1) to characterize compound marine heatwave
(MHW) and low net productivity (NPPX) events over the satellite period, (2) to assess the
ability of Earth system models (ESMs) to correctly represent these compound events and (3) to
identify their physical and biogeochemical drivers, and finally, (4) to assess the risk posed by
these compound events on marine ecosystems.

(1) Distribution of compound MHW-NPPX events over the satellite period

We characterized the distribution of compound MHW-NPPX events over the satellite period
using satellite-based sea surface temperature, chlorophyll concentration as a proxy for NPP, as
well as five different satellite-derived NPP products. From 1998 to 2018, we found compound
events to be frequent in the low latitudes, especially in the center of the equatorial Pacific, in the
Arabian Sea and along the borders of the subtropical gyres. These are nutrient-limited regions
(Hayashida et al., 2020a), where SST and NPP are negatively correlated (Chapter 5), and where
chlorophyll concentration and NPP are typically low during MHWs (Sen Gupta et al., 2020).
These regions are particularly exposed to compound MHW-NPPX events. In contrast, compound
MHW-NPPX events are rare in the high northern latitudes and in the northern part of the
Southern Ocean, where MHWs rarely co-occur with NPPX events. Along Antarctica, there is low
agreement across satellite-derived estimates of compound MHW-NPPX event frequency (Le Grix
et al., 2022). Disagreement arises from divergent satellite-derived estimates of NPP. NPP is
estimated as a function of various ocean variables available from satellite observations, such as
chlorophyll concentration and carbon biomass, using various algorithms (Behrenfeld & Falkowski,
1997; Behrenfeld et al., 2005; Westberry et al., 2008; Silsbe et al., 2016; Gregg & Rousseaux,
2014). These different algorithms yield divergent NPP estimates. In addition to structural
uncertainty in satellite-derived NPP estimates, uncertainties are also inherent to the satellite
observations these estimates are based on. Sea-ice and clouds cause gaps in satellite observations,
which are artificially filled in by interpolation and entail biases. Biases can be corrected using
in-situ NPP measurements, yet they are relatively rare in the sea-ice-covered waters of the high
latitudes (Del Castillo et al., 2019). Increased sampling of in-situ NPP measurements in recent
years in the high latitudes (Boutin & Merlivat, 2009; Roemmich et al., 2009; McMahon et al.,
2021; Su et al., 2022) may help to constrain satellite-based NPP estimates and to gain confidence
in satellite-derived estimates of compound MHW-NPPX event frequency along Antarctica.

The frequency of compound MHW-NPPX events varies on seasonal to interannual timescales.
At the seasonal timescale, most compound events occur in spring in the mid latitudes and in
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summer in both hemispheres. These are the seasons with highest SST and NPP variability,
resulting in most exceedances of the MHW and NPPX event threshold. Note that the use
of a seasonally-varying percentile threshold for the definition of MHWs and NPPX events
would, however, yield to uniform MHW, NPPX event, and compound MHW-NPPX event
frequency throughout the year (Chapter 2). At the interannual timescale, the frequency is
strongly modulated by large-scale modes of climate variability such as the El Niño–Southern
Oscillation (ENSO). During the positive phase of ENSO, i.e., during El Niño events, compound
MHW and low chlorophyll event frequency is multiplied by a factor ≥ 5 in the eastern equatorial
Pacific and in the Indian Ocean, whereas during the reverse phase, i.e. during La Niña events,
compound MHW and low chlorophyll event occurrence is suppressed over these regions. This is
consistent with the results of Holbrook et al. (2019), who assessed statistical links between
climate modes and MHW frequency. Previous studies also linked NPP variability to climate
modes (Barber & Chavez, 1983; Behrenfeld et al., 2001, 2006; Saba et al., 2010; Racault et al.,
2017). For example, Saba et al. (2010) reported positive correlation between the North Pacific
Gyre Oscillation (NPGO) index and in-situ NPP measurements at the Hawaii Ocean Time series
(HOT) station. There, we would expect NPP to be generally low during the negative phase
of NPGO. Holbrook et al. (2019) also found enhanced MHW frequency during the negative
phase of NPGO around Hawaii. These results are consistent with increased compound event
frequency during the negative phase of NPGO (Chapter 3). The phase of such climate modes
may ultimately be used to predict the likelihood of compound MHW-NPPX events (see section
6.3.5).

(2) Representation of compound MHW-NPPX events in ESMs

We evaluated the representation of compound MHW-NPPX events in large ensemble simulations
(LES) by two ESMs: the GFDL ESM2M and the CESM2. LES provide a large dataset from
which to sample and analyse rare compound MHW-NPPX events. We removed uncertainties
arising from internal climate variability by averaging our results over all ensemble members of
each LES. Thereby, differences between the ensemble mean results of each LES only account for
structural differences between the GFDL ESM2M and CESM2 (Bevacqua et al., 2023). This
method enables to identify similarities and divergences in how the models simulate compound
events.

We found that compared to satellite-derived observations, both models correctly simulate
frequent compound MHW-NPPX events in the low latitudes. However, in the high latitudes, the
GFDL ESM2M and CESM2 simulate divergent compound MHW-NPPX event frequency. There,
low agreement across satellite-derived estimates of compound MHW-NPPX event frequency
prevents knowing which of the two models better simulates compound events. Recent deployment
of a multitude of sensors, including gliders (Henson et al., 2023) and Argo floats (Boutin &
Merlivat, 2009; Roemmich et al., 2009; Su et al., 2022), collects valuable NPP data, which could
help to constrain satellite-derived NPP estimates, improve our understanding of NPP variability
and thus model representation of NPP. Improved representation of NPP in ESMs is necessary
before they can be used in the high latitudes to simulate NPPX events and their combination
with MHWs.

(3) Drivers of compound MHW-NPPX events

In the low latitudes, the GFDL ESM2M and CESM2 correctly simulate frequent compound
MHW-NPPX events and may be used to identify their physical and biogeochemical drivers.
Previous studies already identified the drivers of MHWs, specifically Holbrook et al. (2019),
Amaya et al. (2020), Sen Gupta et al. (2020), and Vogt et al. (2022). Most subtropical MHWs
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Figure 6.1: Summary of NPPX drivers during compound MHW-NPPX events (a) in the
GFDL ESM2M and (b) in the CESM2 in the high northern, low, and high southern latitudes.
NPPX can be driven by (1st column) nutrient limitation on phytoplankton growth, (2nd column)
light limitation on phytoplankton growth, or (3rd column) low phytoplankton biomass. A cross
indicates that a process contributes to driving NPPX during compound MHW-NPPX events.
Larger cross size indicates dominant NPPX drivers per region. Red box colour indicates that
nutrient limitation in the low latitudes, as well as low biomass, are expected to co-occur with
surface warming. Blue box colour indicates that light limitation in the high latitudes is not
expected to co-occur with surface warming. The maps show the compound MHW-NPPX event
frequency (%) over 1998-2018. The more/less likely NPPX drivers are to co-occur with surface
warming and thus with a MHW (in red/blue), the higher/lower the compound MHW-NPPX
event frequency.

are triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds,
associated with increased insolation, driving reduced ocean heat losses towards the atmosphere
(e.g., Sen Gupta et al. (2020)). Tropical MHWs are associated with locally reduced vertical
mixing and enhanced heat diffusion (Vogt et al., 2022). In this thesis, we rather investigated
the drivers of an extreme reduction in NPP, which associated with a MHW, would drive a
compound MHW-NPPX event. Fig. 6.1 summarizes these drivers. We found that in both the
GFDL ESM2M and CESM2, nutrient limitation on phytoplankton growth increases during
MHW-NPPX events, especially in the low latitudes in the GFDL ESM2M, which contributes to
driving low NPP (Fig. 6.1, first column). In addition, phytoplankton biomass is low due to a
relative increase in phytoplankton loss compared to phytoplankton production. As grazing,
mortality, and aggregation are all enhanced by high temperatures (Dunne et al., 2013; Long
et al., 2021b), a MHW may itself enhance phytoplankton loss and contribute to driving low NPP
during compound MHW-NPPX events in the two models.

In the high latitudes, high nutrient levels (Hayashida et al., 2020a; Le Grix et al., 2022)
imply that phytoplankton growth is limited by light and temperature rather than by the
nutrient supply. During MHWs, temperature is high and light may be the only limiting factor of
phytoplankton growth. In the GFDL ESM2M, enhanced light limitation on phytoplankton growth
is a dominant driver of reduced NPP during compound MHW-NPPX events (Fig. 6.1a). This
result may be counter-intuitive, as in the high latitudes, MHWs are mainly driven by radiative
heating due to reduced cloud cover (Vogt et al., 2022). Namely, MHWs are expected to co-occur
with relieved light limitation, yet for an NPPX event to occur, it must generally be driven by
enhanced light limitation. Therefore, compound MHW-NPPX events are rare in the GFDL



130 6. DISCUSSION

ESM2M in the high latitudes (Fig. 6.1a), and when they do occur, they uncharacteristically
combine a MHW with enhanced light limitation. In contrast, in the CESM2, compound
MHW-NPPX events are associated with relieved light limitation, and mostly driven by a relative
increase in phytoplankton loss compared to its production, resulting in low phytoplankton
biomass (Fig. 6.1b).

Overall, the likelihood of compound MHW-NPPX events in each model depends on how
likely a MHW is to co-occur with these NPPX event drivers. A MHW is expected to co-occur
with nutrient limitation in the low latitudes as well as with low phytoplankton biomass (red
boxes on Fig. 6.1), which may explain frequent MHW-NPPX events in the low latitudes in both
models and relatively frequent MHW-NPPX events in the high latitudes in the CESM2. In
contrast, a MHW is not expected to co-occur with light limitation in the high latitudes (blue
boxes on Fig. 6.1), which may explain the rare compound MHW-NPPX events in the high
latitudes in the GFDL ESM2M. Divergent NPPX drivers and therefore divergent likelihood of
compound MHW-NPPX evens in the GFDL ESM2M and CESM2 imply the need to improve
model representation of NPP – and therefore of the processes driving NPPX – before the models
can adequately represent compound MHW-NPPX events, especially in the high latitudes. As
discussed in subsection 6.1, the rise in NPP measurements, as well as zooplankton grazing
activity measurements, would help improve our understanding of the factors controlling NPP
and thus NPP representation by ESMs.

(4) Impacts of compound MHW-NPPX events

We assessed the severity of the threat posed by compound MHW-NPPX events on pelagic
ecosystems (Chapter 5). Enhanced surface temperature and reduced NPP are both drivers of
extreme impacts on pelagic fish biomass in the equatorial Atlantic, the central and eastern
equatorial Pacific, in the northern part of the Indian Ocean, and in the northeastern Pacific.
There, pelagic ecosystems may be particularly vulnerable to compound MHW-NPPX events.

In the following, we present several biological mechanisms through which compound MHW-
NPPX events may drive impacts on pelagic organisms and ecosystems.

(4.1) Shifts in plankton community structure:

Small phytoplankton are characterized by a high surface-to-volume ratio and a thin cell
boundary layer compared to large phytoplankton (Raven, 1998). Their small size supports
efficient nutrient and light absorption and offers an advantage in nutrient or light limited waters.
As MHWs tend to be associated with surface stratification and low nutrient levels (e.g., Wyatt
et al. (2022)), they favor small phytoplankton such as cyanobacteria (Mousing et al., 2014;
Fu et al., 2016; Peña et al., 2019; Schmidt et al., 2020) (Fig. 6.2b compared to Fig. 6.2a). In
particular, low levels of silica during MHWs have been associated with a decline in diatoms
and a shift towards smaller phytoplankton in the Gulf of Alaska (Arteaga & Rousseaux, 2023).
NPPX events may also be associated with light limitation in the high latitudes (Le Grix et al.,
2022), and thus favor small phytoplankton. Reduced phytoplankton size during MHW-NPPX
events affects the amount of energy transferred to higher tropic levels (Brander & Kiørboe,
2020), as small phytoplankton are sometimes too small to be grazed by the larger zooplankton
(Cheung et al., 2011) and lack essential biomolecules such as omega-3 polyunsaturated fatty acids
and sterols (Schmidt et al., 2020). Fig. 6.2b illustrates the poor food supply provided by small
phytoplankton to its grazers, with negative repercussions on the marine food web.

(4.2) Too little food supply:

In addition to poor food quality during MHW-NPPX events, synergistic effects between the
MHW and NPPX event may also reduce food quantity. Indeed, high temperatures enhance
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Figure 6.2: Phytoplankton community structure impacts the transfer of organic carbon through
the marine food web, as well carbon export efficiency. (a) High nutrient levels, e.g. due to
intense vertical mixing, are associated with a high proportion of large phytoplankton. Large
phytoplankton provide quality food to grazers, with positive repercussions on higher trophic
levels. They also favor downward carbon export by forming aggregates that are heavy enough
to sink, and through production of particulate organic carbon. (b) Low nutrient levels due
to stratification and weak vertical mixing – e.g., during MHWs – are associated with a high
proportion of small phytoplankton. Small phytoplankton provide less quality food to grazers,
and tend to remain in the surface ocean, where they are degraded.

metabolic growth costs (Barneche et al., 2021) and thus food demand, whereas low phytoplankton
production impairs the transfer of energy through the food chain, which ultimately limits food
supply (Pauly & Christensen, 1995; Chassot et al., 2010; Blanchard et al., 2012; Marshak & Link,
2021). High food demand combined with low food supply may negatively impact the growth,
reproductive success, and survival rate of certain species (e.g., Piatt et al. (2020)).

(4.3) Deoxygenation:

High temperature and low NPP are both correlated with low oxygen levels in the surface
waters of the low and mid latitudes (e.g., Chapter 5). Most compound MHW-NPPX events are
therefore combined with extremely low oxygen in these regions (Fig. 6.3). Low oxygen during
compound MHW-NPPX events negatively impacts marine organisms, e.g., by limiting their
growth and maximum body size (Pauly, 1980), with repercussions at the ecosystem level (Wu,
2002).

(4.4) Species migration and changes in species interaction:

Changes in ocean conditions cause the dispersion of species looking for more suitable
habitats (e.g., Cavole et al. (2016)). For example, ocean warming triggers the northward
migration of warm-water copepods in the northern Atlantic (Beaugrand et al., 2002) and in the
northeastern Pacific (Cavole et al., 2016). Warm-water copepods are smaller and contain lower
quantities of fatty acids and wax esters than their cold-water counterparts, whose diversity and
abundance decrease in response to warm-water copepod invasion, with negative implications for
the ecosystem (Leising et al., 2015; Cavole et al., 2016). Compound MHW-NPPX events, such as
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the ‘Blob’ (Chapter 1, section 1.4), were also associated with the migration of numerous ma-
rine species toward higher latitudes, where they disrupted species interactions (Cavole et al., 2016).

Overall, altered phytoplankton community structure, enhanced competition for food, additional
stressors such as deoxygenation, and changes in species interactions during compound MHW-
NPPX events may have compounding effects on pelagic ecosystems, resulting in decreased
pelagic fish biomass over certain regions.

6.2 Limitations

In the following section, we discuss the caveats and limitations of this thesis.

6.2.1 Low confidence in NPP estimates

First we discuss our limited confidence in satellite-derived NPP estimates. We used chlorophyll
concentration as a proxy for NPP in Chapter 3, as chlorophyll is more directly available from
satellite ocean colour than NPP. However, chlorophyll variability alone is insufficient to explain
the complete NPP variability over time and space (Behrenfeld & Falkowski (1997); Chapter 2).
Chlorophyll would be a proxy for phytoplankton carbon biomass only if the chlorophyll to
carbon ratio in phytoplankton was constant, yet it varies with light and nutrient conditions
(Geider et al., 1997). Changes in phytoplankton community structure, e.g. from diatoms to
dinoflagellates, also affect chlorophyll concentration (Arteaga & Rousseaux, 2023), as certain
phytoplankton types are more concentrated in chlorophyll than others. Besides, changes in
phytoplankton biomass do not exactly mirror changes in phytoplankton NPP, namely the rate of
new biomass production. Low phytoplankton biomass may co-occur with high NPP simply due
to low phytoplankton grazing, and vice-versa.

In Chapter 4, instead of using chlorophyll as an imperfect proxy for NPP, we used NPP
estimates derived from satellite observations using various algorithms. Nevertheless, uncertainties
remain, due to structural and parametric uncertainty in these algorithms and to uncertainties in
the satellite observations themselves (see Section 2.1.3).

Another limitation of satellite-derived chlorophyll and NPP estimates is their reliance on
satellite ocean color measurements which only survey the upper layer of the ocean, i.e. about 10
meter deep (Brewin et al., 2016; Groom et al., 2019), although the euphotic layer can extend up
to about 200 meters (Encyclopedia Britannica, 1998; Lee et al., 2007). As nutrients tend to
be more concentrated at subsurface than at the surface, NPP is highest at the base of the
euphotic layer in nutrient-depleted regions (Smith, 1981). Therefore, satellite observations tend
to underestimate chlorophyll and NPP in the nutrient-depleted subtropical gyres (Sigman,
D & Hain, M, 2012). Long et al. (2021a) also highlighted discrepancies between float and
satellite-based NPP data caused by various depth resolutions.

6.2.2 2D perspective

The 2D perspective from which we approached ocean biogeochemical extremes in this thesis
neglects their 3D structure (Gruber et al., 2021). Following the common and widely-used
definition of MHWs as surface MHWs (Hobday et al., 2016), we conveniently identified MHWs
using the sea surface temperature estimated by satellites or extracted from the upper depth
level of ESM outputs. Holbrook et al. (2019) justify the restriction of MHW studies to the
surface ocean by stating that subsurface temperature data are sparse and that MHWs are
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most likely to cause ecological impacts in the upper ocean where biological productivity is
highest. Nevertheless, MHWs can extend to depth, and even remain there long after they have
dissipated at the surface (Scannell et al., 2020; Koehn et al., 2022), with potential repercussions
on marine organisms that dwell below the uppermost layer of the ocean. Similarly, we neglected
the vertical structure of NPP by integrating it over the top 100-meter layer before defining
NPPX events. However, depending on the vertical structure of its NPP anomaly, an NPPX event
may be more or less likely to co-occur with a MHW, it may be driven by different physical
and biogeochemical processes, and it may have different impacts on marine life. Lastly, in
Chapter 5, we only considered surface ocean conditions as potential drivers of extreme impacts
on pelagic fish biomass, although pelagic fish are not restricted to the surface ocean and can also
be impacted by anomalous ocean conditions at subsurface.

6.2.3 Imperfect representation of ocean biogeochemical extremes in ESMs

Like any model, the GFDL ESM2M and the CESM2 are an incomplete representation of the
Earth’s climate. For example, their relatively low resolution does not allow them to resolve
mesoscale eddies and submesoscale fronts, and their significant impacts on nutrient levels,
phytoplankton diversity and productivity (Lévy et al., 2015; Couespel et al., 2021). NPPX events
may be driven by mesoscale and submesoscale processes unresolved by the GDFL ESM2M and
by the CESM2. Similarly, low resolution models tend to underestimate SST variability and thus
the intensity of MHWs, as well as the severity of their biological impacts in western boundary
current regions (Pilo et al., 2019; Hayashida et al., 2020b; Guo et al., 2022).

As discussed in Chapter 4, model representation of NPP is subject to large uncertainties,
especially in the high latitudes, where the GFDL ESM2M and the CESM2 disagree on the
factors controlling phytoplankton NPP. Phytoplankton growth and decay are represented
using a set of equations associated with both structural and parametric uncertainties (Balaji
et al., 2022). Moreover, the GFDL ESM2M and the CESM2 simplify the high diversity of
phytoplankton species and functions by representing three phytoplankton types only (small
phytoplankton; large phytoplankton; and diazotrophs, which we omitted from our analysis due
to their negligible contribution to NPPX events) (Dunne et al., 2013; Long et al., 2021b). Still,
ocean biogeochemical modules in ESMs are valuable tools to apprehend NPP variability and its
drivers. Improved understanding of phytoplankton processes gained from observations and
in-situ studies would help improve ESMs representation of NPP, so they could be used to study
NPPX and compound MHW-NPPX events also in the high latitudes.

ESMs do not represent all components of the Earth’s climate. For example, the GFDL
ESM2M omits the role of ice sheets in providing fresh water to the surface ocean (Dunne
et al., 2012). It has been shown that warming induces ice sheet melting, which may enhance
stratification (Madsen et al., 2022) and therefore nutrient limitation on phytoplankton growth
(Sarmiento & Gruber, 2006), potentially driving low NPP (Le Grix et al., 2022). Locally, the
calving of ice sheets into icebergs may also interact with ocean productivity by providing
iron from aeolian dust to the marine environment and promoting NPP (Wu & Hou, 2017).
Although the GFDL ESM2M and CESM2 fail to represent numerous processes that may affect
the likelihood of compound MHW-NPPX events, sacrificing accuracy in one part of the climate
system, such as ice sheets, allows them to remain of relatively low complexity (Balaji et al., 2022),
so computation costs are reasonable. Indeed, the study of ocean compound events requires a large
sample size (Deser et al., 2020; Zscheischler & Lehner, 2022), and large ensemble simulations by
the GFDL ESM2M and CESM2 can be run in a reasonable amount of time given realistic
computing resources.
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6.2.4 Imperfect representation of the drivers of extreme impact on fish in
global marine fish models

The DBEM is also an imperfect representation of pelagic ecosystems’ response to changes in
ocean conditions (Chapter 5). The discussion of Chapter 5 lists the main caveats of this model.
We mentioned that the DBEM only considers surface ocean conditions as ecosystem stressors of
pelagic species, although pelagic species also dwell at subsurface. Besides, the DBEM simulations
that we use in Chapter 5 omit the impact of acidity changes on marine organisms (Melzner et al.,
2009; Munday et al., 2009; Cheung et al., 2011), as well as the additional impact of human
activities (Watson et al., 2013; Cheung et al., 2018).

Our results are highly dependent on the DBEM’s representation of pelagic species. An
intermodel comparison study would allow us to determine whether the drivers of extreme impacts
on pelagic fish, which we identified in Chapter 5, are robust across models (Tebaldi & Knutti,
2007; van der Wiel et al., 2020).

6.3 Outlook

6.3.1 Describe the spatio-temporal structure of compound MHW-NPPX
events

In this thesis, we limited the study of compound MHW-NPPX events to the surface ocean,
where satellite observations are available (Le Traon et al., 2015). However, outputs from the
GFDL ESM2M and CESM2 also include information about the vertical structure of compound
MHW-NPPX events. Sea water temperature and NPP fields are available up to at least 100-meter
depth, at a vertical resolution of about 10m. These model outputs could be evaluated using
in-situ data collected by ships, Argo floats, or moorings, which all provide measurements at
depth.

Depending on their vertical extent, one might expect compound MHW-NPPX events to be
more or less persistent over time (Koehn et al., 2022), with implications for marine ecosystems’
resilience (Gruber et al., 2021) Impacts from ocean extremes also depend on their vertical and
horizontal extent as ocean extremes compress the habitat of marine organisms into a smaller
volume (Gruber et al., 2021). Habitat compression can disrupt species interactions, increase food
competition, and fisheries pressure (e.g., Santora et al. (2020)). Therefore, I would suggest
considering the 4D structure of compound MHW-NPPX events across the horizontal, vertical,
and time axes when investigating compound MHW-NPPX events impacts on marine ecosystems.

Compound MHW-NPPX events are also bound to evolve under climate change as the ocean
is getting warmer (Frölicher & Laufkötter, 2018; Oliver et al., 2018; Gruber et al., 2021). In the
low latitudes, ESMs successfully represent present-day compound MHW-NPPX events (Le Grix
et al., 2022) and could be used to project them into the future, just as Burger et al. (2022)
projected future compound MHW and high acidity extremes. In the high latitudes, however,
ESMs are not yet ready to project compound MHW-NPPX events into the future.

6.3.2 Further investigate the impacts of compound MHW-NPPX events

In Chapter 5, we differentiated the drivers of extreme impacts across oceanic regions (Chapter 5).
However, a certain driver, such as a compound MHW-NPPX event, may drive more or less
severe impacts depending on its duration, depth and horizontal extent. In addition, impacts may
also correlate with the timing, intensity and recurrence rate of compound MHW-NPPX events
(Gruber et al., 2021). Lastly, impacts depend on the resilience and resistance strategies of an
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ecosystem (Gruber et al., 2021). Improved understanding of all factors controlling the severity of
impacts from compound MHW-NPPX events is a necessary step towards better prediction of
their future impacts.

In this thesis, we assessed impacts on the total biomass of pelagic fishes. We could also assess
impacts on singular species, including demersal fishes which account for a large proportion of the
marine fish biomass relevant to fisheries (Pauly D. & Palomares M.L.D., 2020), as well as on the
species composition of an ecosystem. Species react differently to changes in ocean conditions,
depending on their habitat preferences (Cheung et al., 2008) and adaptive ability (Gruber et al.,
2021). The response of an entire ecosystem to compound MHW-NPPX events likely depends
on its species composition and on their interactions. In turn, compound MHW-NPPX events
may alter the structure and functioning of an ecosystem, just as previous MHWs triggered
profound ecosystem reconfiguration (Smith et al., 2021), thereby rendering that ecosystem more
vulnerable to subsequent events and to climate change in general (Urban et al., 2012; Gruber
et al., 2021). We could therefore quantify the impacts of compound MHW-NPPX events on
ecosystem composition and structure using various complementary metrics, such as species
richness and Simpson’s evenness (Supp & Ernest, 2014; Elahi et al., 2015; Henson et al., 2021).
We could also investigate the impacts of compound MHW-NPPX events on species distribution.
Indeed, extreme events trigger species migration (e.g., Cavole et al. (2016); Santora et al. (2020);
Smith et al. (2021)) and maybe also redistribution across depth (as under climate change; e.g.,
Santana-Falcón & Séférian (2022)), with implications for fisheries (Cavole et al., 2016; Smith
et al., 2021). Lastly, impacts on human societies could also be considered, as MHWs and NPPX
events both limit fisheries performance (Cavole et al., 2016; Smith et al., 2021; Marshak & Link,
2021), and may trigger biodiversity loss (Gruber et al., 2021), impairing ocean ecosystem services
(Worm et al., 2006).

6.3.3 Implications for the carbon pump

In the Introduction of this thesis, we introduced phytoplankton NPP and its role in the biological
carbon pump. Any reduction in NPP may reduce the amount of carbon transferred to depth
(Bopp et al., 2001; Moore et al., 2013). However, there is no direct relationship between NPP and
the associated carbon export (e.g., Henson et al. (2019); Fan et al. (2020); Lacour et al. (2023)).
Carbon export depends for example on phytoplankton community structure (Dunne et al., 2005;
Moore et al., 2013; Fan et al., 2020), i.e. on the type of phytoplankton responsible for NPP.
The larger the phytoplankton, the more efficient the carbon export generally is (Dunne et al.,
2005) (Fig. 6.2a compared to Fig. 6.2b). Indeed, large phytoplankton produce abundant sinking
material and are grazed by multicellular zooplankton which also produce sinking material such as
fecal pellets (Sigman, D & Hain, M, 2012). In contrast, small phytoplankton are directly grazed
by unicellular zooplankton, which lack a digestive tract and do not produce fecal pellets (Sigman,
D & Hain, M, 2012). The shift towards smaller phytoplankton during compound MHW-NPPX
events (e.g., in the high northern latitudes; Le Grix et al. (2022)) mirrors the long-term shift in
phytoplankton communities under climate change, which results in a less efficient carbon export
(Bopp et al., 2005; Fu et al., 2016). In addition, MHWs have also been associated with reduced
carbon sequestration (Arias-Ortiz et al., 2018; Smith et al., 2021). Compound extreme events
such as compound MHW-NPPX events are thus likely to impact carbon uptake by the ocean.

Although compound MHW-NPPX events are typically short (Le Grix et al., 2021), they
provide a window into a potential future and could inform changes in oceanic carbon uptake
under climate change.
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Figure 6.3: Percentage of compound MHW-NPPX events co-occurring with a low O2 event over
the preindustrial period in the GFDL ESM2M. Here, compound MHW-NPPX events correspond
to days when the SST is higher than its 99th percentile and the vertically-integrated NPP is
lower than its 1st percentile, relative to their respective preindustrial climatology. Low O2 events
correspond to days when surface O2 is lower than its 1st percentile relative to the preindustrial
climatology. Compound MHW-NPPX and low O2 events are sampled from a 500-year-long
preindustrial simulation, where atmospheric CO2 concentrations are set to 286 ppm.

.

6.3.4 Other types of ocean compound events

In this thesis, we focused on one type of ocean compound event: a multivariate compound event
consisting of two co-occurring extreme events, i.e. a marine heatwave and an extremely low NPP
event. However, in Chapter 5, we found that extreme impacts on pelagic ecosystems might also
be driven by compound moderate events, which consist of moderate anomalies in multiple
variables. Moreover, temporally compounding events, such as persistent low NPP over multiple
years, may also drive extreme impacts in the subtropics (Chapter 5). Therefore, I would suggest
extending the study of ocean compound events to other types of compound events.

The increase in extreme event frequency under climate change (e.g., Frölicher et al. (2018);
Oliver et al. (2018); Guo et al. (2022)) implies higher likelihood that marine ecosystems will
experience multiple extreme events in short succession. Temporally compound events may alter
the ecosystems’ resistance and resilience over time, and aggravate impacts (Gruber et al., 2021).
For example, as corals need a recovery window in between bleaching events (Hughes et al., 2018),
successive MHWs would impair successful recovery. Marine ecosystems’ vulnerability to oceanic
events also depends on their preconditionning; e.g., exposure to warm temperatures alters the
response of diatoms and macrophytes to subsequent MHWs (Saha et al., 2020; Samuels et al.,
2021). Spatially compounding events may also be worth investigating, as multiple events combined
over an extended region may compound and aggravate impacts on marine life (Zscheischler
et al., 2020). Finally, multivariate compound events combining more than two ocean ecosystem
stressors potentially aggravate impacts on marine life and therefore warrant investigation. For
example, compound MHW-NPPX events may often be associated with low O2 levels, e.g., due to
reduced O2 solubility (Garcia & Gordon, 1992) and reduced mixing with subsurface waters
(Sarmiento et al., 1998) during MHWs. Indeed, we find that over the preindustrial period, more
than 80% of the compound MHW-NPPX events simulated by the GFDL ESM2M in the mid
latitutes co-occur with extremely low O2 (Fig. 6.3). Deoxygenation puts marine ecosystems
under additional stress (Wu, 2002). Future work could therefore describe the distribution and
impacts of such trivariate MHW-NPPX and low O2 events.
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6.3.5 Impact prediction and mitigation

This thesis provides insights into strategies to predict, prevent or moderate future impacts from
ocean compound events.

First, Chapter 5 revealed the key role of compound events in driving severe declines in pelagic
fish biomass. We identified potentially harmful combinations of ocean conditions, such as high
temperature and low NPP in the low latitudes. These findings motivate the monitoring of multiple
ocean ecosystem stressors, including temperature and NPP, as a means to predict impacts on
pelagic ecosystems. Operational forecast systems, such as those developed by the Copernicus
Marine Center (https://marine.copernicus.eu/), the Copernicus Climate Change Service
(https://climate.copernicus.eu/seasonal-forecasts), or the NOAA Center for Weather
and Climate Prediction (https://www.weather.gov/ncep/), provide readily available ocean
analysis and forecast data. These data could be used to detect or forecast compound ocean events
and to send an early warning to ocean stakeholders who could act to mitigate potential impacts
on ecosystems. For example, over regions where compound MHW-NPPX events negatively
impact marine ecosystems, measures could be implemented whenever SST and NPP forecasts
jointly exceed a certain variable-specific threshold. Thresholds would be defined as a trade-off
between the risk of inaction and the risk of unnecessary action (Jacox et al., 2022). In addition,
we investigated in this thesis the physical and biological drivers of compound MHW-NPPX
events. For example, in the low latitudes, surface warming is associated with nutrient limitation
which contributes to driving compound MHW-NPPX events (Chapter 4). SST and nutrient levels
could inform the prediction of compound MHW-NPPX events, similarly as to how Jacox et al.
(2022) use SST forecasts to forecast MHWs. Alternatively, the state of large-scale climate modes
of variability, which modulate compound MHW-NPPX event likelihood (Chapter 3), could also
be used to inform their prediction. Jacox et al. (2022) show that MHW forecast skill is improved
by considering the state of large-scale climate modes such as ENSO at the time when forecasts
are initialized. Similarly, the observed and predicted state of ENSO could well be used to predict
compound MHW-NPPX events, e.g. in the eastern equatorial Pacific and Indian Ocean, where
El Niño events are associated with increased compound MHW-NPPX event likelihood.

Early prediction of harmful compound events allows mitigating measures to be quickly
implemented to prevent impacts. In particular, measures could alleviate additional pressure from
fisheries (Smith et al., 2021; Jacox et al., 2022), e.g., by applying fishing quotas, which might be
especially low for forage species (Pikitch et al., 2012; Watters et al., 2020)), or by forbidding
harmful fishing practices (e.g., bottom trawling ; Hiddink et al. (2011)) and access to certain
regions.

Marine protected areas are designated reserves that exclude fishing and have been shown to
promote abundance, size, and diversity of marine species (Gaines et al., 2010; Brito-Morales
et al., 2022). Promoting biodiversity within an ecosystem generally increases its resistance to
perturbations (Worm et al., 2006) such as compound MHW-NPPX events. Marine protected
areas could also be designed after harmful oceanic events as a means to restore biodiversity and
ecosystem functioning (Sala et al., 2021).

Critically, anthropogenic emissions must be curbed to prevent increasing impacts from
compound MHW-NPPX events on marine ecosystems. Climate change has been associated
with long-term changes in ocean conditions, which cause a rise in extreme event frequency,
intensity, duration and extent (Frölicher et al., 2018; Oliver et al., 2018). A low emissions pathway
moderates climate change and ensures a moderate rise in extreme and compound extreme events
(Seneviratne et al., 2012; Burger et al., 2022) such as compound MHW-NPPX events.

https://marine.copernicus.eu/
https://climate.copernicus.eu/seasonal-forecasts
https://www.weather.gov/ncep/
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6.4 Conclusion

This thesis provides a first understanding of the distribution, drivers, and impacts of compound
marine heatwave and low net primary productivity events in the ocean. Our results highlight the
need to further study these impactful compound events, and to extend compound event research
to other types of oceanic compound events. They also inform potential strategies to predict,
prevent and moderate impacts. Finally, compound MHW-NPPX events provide a window into a
potentially warmer and less productive ocean from which to investigate the response of marine
ecosystems to climate change.
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and low-chlorophyll extremes in the ocean over the satellite period, Biogeosciences, 18(6), 2119–2137.

Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R., & Frölicher, T. L., 2022. Hotspots and drivers of
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Abstract. In 2016, northern France experienced an unprecedented wheat crop loss. The cause of this event is
not yet fully understood, and none of the most used crop forecast models were able to predict the event (Ben-Ari
et al., 2018). However, this extreme event was likely due to a sequence of particular meteorological conditions,
i.e. too few cold days in late autumn–winter and abnormally high precipitation during the spring season. Here
we focus on a compound meteorological hazard (warm winter and wet spring) that could lead to a crop loss.

This work is motivated by the question of whether the 2016 meteorological conditions were the most ex-
treme possible conditions under current climate, and what the worst-case meteorological scenario would be with
respect to warm winters followed by wet springs. To answer these questions, instead of relying on computa-
tionally intensive climate model simulations, we use an analogue-based importance sampling algorithm that was
recently introduced into this field of research (Yiou and Jézéquel, 2020). This algorithm is a modification of a
stochastic weather generator (SWG) that gives more weight to trajectories with more extreme meteorological
conditions (here temperature and precipitation). This approach is inspired by importance sampling of complex
systems (Ragone et al., 2017). This data-driven technique constructs artificial weather events by combining daily
observations in a dynamically realistic manner and in a relatively fast way.

This paper explains how an SWG for extreme winter temperature and spring precipitation can be constructed
in order to generate large samples of such extremes. We show that with some adjustments both types of weather
events can be adequately simulated with SWGs, highlighting the wide applicability of the method.

We find that the number of cold days in late autumn 2015 was close to the plausible minimum. However, our
simulations of extreme spring precipitation show that considerably wetter springs than what was observed in
2016 are possible. Although the relation of crop loss in 2016 to climate variability is not yet fully understood,
these results indicate that similar events with higher impacts could be possible in present-day climate conditions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

France is one of the highest wheat producers and exporters
in the world thanks to yields that are roughly twice as high
as the world average (FAO, 2013). Given the prominent role
of wheat production in France, crop failures can impact the
national economy. When an unprecedented disastrous har-
vest was registered in 2016, especially in northern parts of
France, with a loss in production of about 30 % with respect
to 2015 (Ben-Ari et al., 2018), France registered heavy losses
in farmer income and a loss of approximately USD 2.3 billion
in the yearly trade balance (OEC, 2020).

Interestingly, the extreme crop failure of 2016 was not pre-
dicted by any forecasting model, which all strongly overesti-
mated yields even just before the harvesting period (Ben-Ari
et al., 2018). Thus, classical crop yield forecasting models,
based on a combination of expert knowledge and data-driven
methods (Müller et al., 2019; MacDonald and Hall, 1980),
could not anticipate this unprecedented event because it was
outside their training range. To overcome these limitations
Ben-Ari et al. (2018) developed a logistic model that links
the meteorological conditions in the year preceding the har-
vest with the probability of a crop failure.

In their study, Ben-Ari et al. (2018) attribute the crop loss
to a combination of two meteorological events: an insuffi-
cient number of cold days in the December preceding the
harvest and an abnormally high precipitation during spring.
It was argued that this low wheat yield was a preconditioned
event wherein a mild autumn and winter favoured the build-
up of biomass and parasites, which in combination with ex-
cess precipitation in late spring resulted in favourable con-
ditions for root asphyxiation and fungus spread (ARVALIS,
2016). There could also be a direct influence of the meteoro-
logical conditions on plant development. For both potential
mechanisms it is crucial to study the meteorological condi-
tions leading to the crop loss as a compound event, as only
the combination of a warm winter and wet spring had this
unprecedented impact on wheat yields (Zscheischler et al.,
2020).

The research question we want to address is what a worst
case meteorological scenario would be for this kind of crop
loss event under the current climate with enhanced winter
temperatures and spring precipitation? This question arises
from the fact that we only experienced one possible real-
ization of our climate. Even under unchanged climate con-
ditions, unprecedented extreme events would occur as time
goes on. Thus, to be able to put in place effective preven-
tive measures, it is important to understand how severe an
extreme event could be.

To estimate how extreme a crop loss similar to the 2016
event could be, we need tools that all come with their as-
sumptions and caveats. A standard approach would be to use
large ensemble simulations based on circulation models of

current climate conditions (Massey et al., 2015a). If the en-
semble was large enough and physical mechanisms are ade-
quately reproduced in the circulation model, one would find
the most extreme possible version of the 2016 crop loss event
and could even estimate its occurrence probability. This ap-
proach has two main drawbacks: the often huge computa-
tional cost associated with a large number of simulations and
the possibly flawed representation of physical processes in
climate models that could introduce a systematic uncertainty
that cannot be overcome easily (Shepherd, 2019).

A second approach relies on the analysis of historical data.
There are many statistical methods that could be used in
this context. Specifically, copula-based techniques (Jaworski
et al., 2010) can be used to study the dependence between
two or more climate hazards, while models based on extreme
value theory (Cooley, 2009) are suited for analysing particu-
larly rare events. These methods have the merit of being com-
putationally cheap and of relying only on observed data, but
dealing with non-stationarity can be challenging with these
methods.

As another data-driven alternative, the so-called storyline
approach has emerged recently. The idea is to construct a
physically plausible extreme event that one can relate to
without necessarily focusing on the statistical likelihood of
such an event (Hazeleger et al., 2015; Shepherd et al., 2018;
Shepherd, 2019). Rather than asking what the most likely
representation of the climate would be, one could ask how
some extreme realizations of climate could be like. It has
been argued that for adaptation planning the latter question
could be more relevant (Hazeleger et al., 2015). This kind
of “stress-testing” based on the use of scenarios has been
standard practice in catastrophe analysis and emergency pre-
paredness, even outside of the context of climate change (see,
for example, de Bruijn et al., 2016).

In this paper, we construct a climate storyline of a warm
winter followed by a wet spring that is likely to lead to ex-
tremely low wheat crop yield in France. This storyline is
based on an ensemble of simulations of temperature and pre-
cipitation with a stochastic weather generator that we nudge
towards extreme behaviour.

Here, we adapt analogue-based stochastic weather gen-
erators (SWGs) presented by Yiou (2014) and Yiou and
Jézéquel (2020), which simulate spatially coherent time se-
ries of a climate variable, drawn from meteorological obser-
vations. Those SWGs were mainly tested on European sur-
face temperatures. A version was developed to simulate ex-
treme summer heatwaves (Yiou and Jézéquel, 2020). This
paper optimizes the parameters of the SWG of Yiou and
Jézéquel (2020) to simulate extreme warm winters (espe-
cially December) and extreme wet springs.

The goal is to construct a large sample of extreme climate
conditions and assess the atmospheric circulation properties
leading to those conditions of high temperatures and precipi-
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tation. The rationale of ensemble simulations is to determine
uncertainties in the range of values that can be obtained.

Section 2 details the data that is used in this paper and
explains the methodology of importance sampling with ana-
logue simulators. Section 3 describes the experimental re-
sults of the simulations of temperature and precipitation. Sec-
tion 4 provides a discussion of the results.

2 Methods

2.1 Data

We use temperature and precipitation observations from the
E-OBS database (Haylock et al., 2008). The data are avail-
able on a 0.1×0.1◦ grid from 1950 to 2018. As an estimate of
temperature and precipitation in northern France we average
these two fields over a rectangle spanning 45.5–51.5◦ N and
1.5◦W–8.0◦ E (see Fig. 1). This region also includes parts of
the UK, Germany, Belgium, and Switzerland and therefore
does not exactly match the studied area of (Ben-Ari et al.,
2018). The seasonal meteorological conditions we study here
are related to large-scale events, and averaging over a larger
rectangle therefore seems appropriate.

We use the reanalysis data of the National Centers for En-
vironmental Prediction (NCEP) (Kistler et al., 2001) for the
analysis of atmospheric circulation. We consider the geopo-
tential height at 500 hPa (Z500) and mean sea level pres-
sure (SLP) over the North Atlantic region for computation of
circulation analogues and a posteriori diagnostics. We used
the daily averages between 1 January 1950 and 31 Decem-
ber 2018. The horizontal resolution is 2.5◦ in longitude and
latitude. The rationale of using this reanalysis is that it covers
70 years and is regularly updated.

One of the caveats of this reanalysis dataset is the lack
of homogeneity of assimilated data, especially before the
satellite era. This can lead to breaks in pressure-related vari-
ables, although such breaks are mostly detected in the South-
ern Hemisphere and the Arctic region (Sturaro, 2003) and
marginally impact the eastern North Atlantic region.
Z500 patterns are well correlated with western European

temperature and precipitation because those quantities and
their extremes are related to the atmospheric circulation
(Yiou and Nogaj, 2004; Cassou et al., 2005). Since Z500
values depend on temperature, we detrend the Z500 daily
field by removing a seasonal average linear trend from each
grid point. This preprocessing is performed to ensure that the
analogue selection is not influenced by atmospheric trends.

2.2 Stochastic weather generators and importance
sampling

The idea behind importance sampling is to simulate trajecto-
ries of a physical system that optimize a criterion in a com-
putationally efficient way. Ragone et al. (2017) used such an

algorithm to simulate extreme heatwaves with an intermedi-
ate complexity climate model.

The procedure of importance sampling algorithms, say to
simulate extreme heatwaves with a climate model, is to start
from an ensemble of S initial conditions and compute trajec-
tories of the climate model from those initial conditions.

An optimization “observable” is defined for the system. In
this case, it can be the spatially averaged temperature or pre-
cipitation over France. The trajectories for which the observ-
able (e.g. daily average temperature) is lowest during the first
steps of simulation are deleted and replaced by small pertur-
bations of remaining ones. In this way, each time increment
of the simulations keeps the trajectories with the highest val-
ues of the observable. At the end of a simulation, one obtains
S trajectories for which the observable (here average temper-
ature over France) has been maximized. Since those trajec-
tories are solutions of the equations of a climate model, they
are necessarily physically consistent (given that the perturba-
tions are small).

Ragone et al. (2017) argue that the probability of the simu-
lated trajectories is controlled by a parameter that weighs the
importance to the highest observable values: if one trajectory
is deleted at each time step, the simulation of an ensemble of
M-long trajectories has a probability of (1− 1/S)M . Hence,
one obtains a set of S trajectories with very low probability
after M time increments at the cost of the computation of S
trajectories.

For comparison purposes, if one wants to obtain S trajec-
tories that have a low probability (p) observable, then the
number of necessary “unconstrained” simulations is of the
order of M/p, so that most of those simulations are left out.
Systems like weather@home (Massey et al., 2015b) that gen-
erate tens of thousands of climate simulations are just suffi-
cient to obtain S = 100 centennial heatwaves, and the num-
ber of “wasted” simulations is very high. Therefore, impor-
tance sampling algorithms are very efficient ways to circum-
vent this difficulty. The major caveat of this approach is that
one needs to know the equations that drive the system and
be able to simulate them. We use an alternative method that
does not require such knowledge of the system.

We use two SWG-based circulation analogues (Yiou and
Jézéquel, 2020) to simulate events of either warm temper-
ature in December or high precipitation in spring. These
SWGs resample daily weather observations in a plausible
manner to simulate new weather events (Yiou, 2014).

Circulation analogues are computed on SLP (or detrended
Z500) from NCEP between 1950 and 2018. For each day in
1950–2018, K = 20 best analogues are determined by mini-
mizing a spatial Euclidean distance between SLP (or Z500)
maps.

As explained by Yiou and Jézéquel (2020), the SWG ran-
domly samples analogues by weighting the analogue days
with a criterion that favours high temperatures or high pre-
cipitation. Hence, the importance sampling is summarized
by the procedure of giving more weight to analogues that
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Figure 1. Regions used to identify circulation analogues for December temperatures (blue) and spring precipitation (red). The black rectangle
indicates the region over which temperatures and precipitation are averaged in northern France.

yield temperature (or precipitation) properties. There are two
types of importance sampling for the analogues, which are
illustrated in Fig. 2.

The two main types of analogue SWGs are described by
Yiou (2014) and Yiou and Jézéquel (2020) are as follows:

1. A “static” weather generator replaces each day with one
of itsK circulation analogues or itself. With this type of
SWG, simulated trajectories are perturbations (by ana-
logues) of an observed trajectory.

2. A so-called “dynamic” weather generator has a similar
random selection rule, but the “next” day to be simu-
lated follows the selected analogue, rather than the ob-
served actual calendar day. A probability weight ωcal
that is inversely proportional to the distance to the cal-
endar day is introduced:

ωcal = Acale
−αcalRcal(k), (1)

where Acal is a normalizing constant, αcal ≥ 0 is a
weight, and Rcal(k) is the number of days that separate
the date of kth analogue from the calendar day of time t .
This rule is important to prevent time from going “back-
ward”. This type of SWG generates new trajectories by
resampling already observed ones. They are not just per-
turbations of observed trajectories.

Those random selections of analogues are sequentially re-
peated until a lead time T .

An importance sampling is applied while selecting an ana-
logue at each time step by weighing probabilities with the
variable to be optimized (temperature or precipitation). The
K = 20 best analogues and the day of interest are sorted
by daily mean temperature or precipitation. The probability
weights are determined by Yiou and Jézéquel (2020). If R(k)
is the rank (in terms of temperature or precipitation) of day
k in decreasing order and ωk the probability of day k to be
selected, we set

ωk = Ae
−αR(k), (2)

where A is a normalizing constant so that the sum of weights
over k is 1. The α parameter controls the strength of this im-
portance sampling for temperature or precipitation.

The useful property of this formulation of weights is that
the values of ωk do not depend on time t because the rank
values R(k) are integers between 1 and K + 1. The weight
values do not depend on the unit of the variable either, and
thus this procedure is the same for temperature or precipita-
tion. If α = 0, this is equivalent to a stochastic weather gen-
erator described by Yiou (2014).

Combining the weights of the calendar day and the inten-
sity of the climate variable, the probability of day k to be
selected becomes

ω′k = Ae
−αR(k)e−αcalRcal(k). (3)

The generators thus give more weight to the warmest or
wettest days when computing trajectories of December tem-
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Figure 2. Illustration of the analogue-based importance sampling. (a) The static SWG replaces each day in the observed trajectory (black
dots) with one of its analogues (red dots). (b) The dynamic SWG replaces the first day in the observations (black dot) with one of its
analogues, reads the following day of this analogue, and repeats the procedure until creating a new trajectory (red dots).

perature or spring precipitation. We thereby simulate extreme
events, e.g. warm Decembers and wet springs (May to July).

2.3 Experimental set-up

The parameters of the SWG depend on the variables and the
seasons to be simulated. We determine those parameters ex-
perimentally and detail them hereafter. Table 1 lists all pa-
rameters used for the simulation of December temperature
and spring precipitation. These parameters were set after per-
forming a number of sensitivity tests that are going to be dis-
cussed in Sect. 3. Table 2 lists all values tested for α and
αcal. Most figures related to these tests can be found in the
Appendix.

The procedure we follow is as follows.

– Start and end day of simulations. For each year from
1950 to 2018, 1000 simulations are started indepen-
dently for temperature in December and precipitation
in spring. The temperature simulations start on 1 De-
cember and end on 31 December. Precipitation simula-
tions start on 1 April and end on 31 July. This results in
68 000 independent simulations of December tempera-
tures and spring precipitation.

– Identification of circulation analogues. Weather ana-
logues are identified by evaluating the similarity of
weather patterns of an atmospheric variable in a cho-
sen region. For December temperature, analogues are
based on detrended geopotential height at 500 hPa
(Z500) over a region covering most of Europe (70–
23◦ N, 10◦W–40◦ E) (see Fig. 1). Jézéquel et al. (2018)
showed that Z500 is better suited to simulate tempera-
ture anomalies than SLP and that rather small domains
lead to better reconstitutions. This result is supported by
sensitivity tests we performed on the choice of variable
for the computation of the circulation analogues used
to simulate December temperature. For spring precipi-
tation, we use analogues of SLP over a zone covering

30–70◦ N and 50◦W–30◦ E, as shown in Fig. 1. This re-
gion includes large parts of the North Atlantic where
rain-bringing storms usually come from.

– Number of days before selecting a new analogue. For
the simulation of long-lasting precipitation events the
consistency of day-to-day variability is important to en-
sure a plausible water vapour transport. We therefore
adapt the stochastic weather generator (both static and
dynamic). Instead of choosing a new analogue every
day, we stay on an observed trajectory for a number
of days (ndays) before choosing a new analogue (see
Fig. 3). For the analogue selection we weight the ana-
logues based on the accumulated precipitation of the
analogue and the following ndays days, giving more
weight to analogues that bring more precipitation in the
following ndays days.

– Selection of circulation analogues by the generators.
The α-parameter controls the strength of the importance
sampling on either temperature or precipitation, while
αcal controls the influence of the calendar date when
selecting an analogue. For temperature simulations, we
use α = 0.75 and αcal = 6. Note that we thus strongly
condition the calendar day to restrict the SWGs to win-
ter and late autumn days. For precipitation, we set both
α and αcal to 0.5.

3 Results

A lack of cold days in December 2015 and an exception-
ally wet spring caused the 2016 crop loss in northern France.
Although the interplay between these two meteorological
events is crucial for the resulting crop loss, the two events
(warm December and wet spring) seem to have happened in-
dependently from each other: the correlation between tem-
perature in December and precipitation 4 months later is not
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Table 1. Parameters used for the static and dynamic SWG to simulate warm Decembers (second column) and wet April–July periods (last
column).

Parameter Choice for warm Decembers Choice for wet April–July periods

Start day 01/12 01/04
End day 31/12 31/07
Variable for analogues Z500 SLP
Region for analogues 70–23◦ N, 10◦W–40◦ E 30–70◦ N and −50◦W–30◦ E 30–70◦ N
Weighting of temp. or precipitation (α) 0.75 0.5
Weighting of calendar day (αcal) 6 0.5
Number of days before
selecting a new analogue (ndays) 1 5

Table 2. Performed sensitivity tests for the parameters used to simulate warm Decembers (first three rows) and wet April–July periods (last
three rows). The second column lists the parameters of which the sensitivity is assessed. The third column indicates at which levels all other
parameters are fixed for the test. The fourth column lists all tested values and the last column indicates the figure where the results of the test
are shown.

Experiment Tested parameter Fixed parameters Tested values Figure

December variable for analogues α = 0.5, αcal = 6, ndays = 1 Z500, SLP Fig. A1
December αcal α = 0.5, ndays = 1 0, 0.2, 0.5, 1, 2, 4, 6, 8, 10 Fig. A2
December α αcal = 6, ndays = 1 0, 0.1, 0.2, 0.5, 0.75, 1 Fig. A3
April–July ndays α = 0.5, αcal = 0.5 1, 2, 3, 4, 5, 7, 9 Fig. A4
April–July α αcal = 0.5, ndays = 5 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1 Fig. A5
April–July αcal α = 0.5, ndays = 5 0, 0.2, 0.5, 1, 2, 5, 10 Fig. A6

significantly different from zero and we cannot reject the hy-
pothesis that both variables are not correlated (p value of
the Pearson correlation > 0.6). In addition, from an energy
point of view, the characteristic timescale of the atmosphere
does not exceed 35 d (Peixoto and Oort, 1992, Sect. 14.6.2).
This implies that it is unlikely to find links between climate
variables in December and the following May. We therefore
consider that it is reasonable to simulate warm Decembers
and wet springs independently.

3.1 December temperature simulations

The winter preceding the 2016 crop loss was abnormally
warm, with only a few cold days. Here, cold days are de-
fined as days with daily maximal temperatures between 0 and
10 ◦C. This December was the hottest in the observational
record and also the December with the fewest cold days.

Figure 4a shows the observed averages of daily maximal
temperatures and the results from static and dynamic SWG
simulations. The observed December temperatures fluctu-
ate around 6 ◦C, with a small warming trend of 0.2 ◦C per
decade over the whole time series (p value= 0.03). Simu-
lations from the static SWG are consistently around 3.5 ◦C
warmer and follow the year-to-year variability of the obser-
vations. With an average of 12 ◦C, the dynamic SWG sim-
ulations are significantly warmer than the static SWG simu-
lations, and inter-annual variability is strongly reduced. This
is to be expected as the dynamic SWG evolves freely from

the starting day and is therefore less bound to each year’s
circulation.

In years with higher December temperatures, the num-
ber of cold days with maximal temperatures between 0 and
10 ◦C is reduced (see Fig. 4b). Over the period 1950–2018 no
trend in the number of cold days is observed and the number
of cold days fluctuates around 25 d. As the SWG simulates
warmer Decembers the number of cold days is on average
8 d lower in the static SWG and 16 d lower in the dynamic
SWG. Nearly half of the simulations of the dynamic SWG
thus have fewer cold days than what was observed in De-
cember 2015.

December 2015 was unprecedented in terms of missing
cold days, and we simulate a number of warm Decembers
with even fewer cold days. To estimate the probability of
such an extreme December, we fit a beta-binomial distribu-
tion (Jézéquel et al., 2018) to the observations and find that
2015 was a 1-in-4000-year event and that 25% of our dy-
namic SWG simulations are 1-in-1000-year events or even
rarer (see Fig. A3).

As shown in Fig. 5, December 2015 was characterized by
a persistent anticyclonic circulation with its centre over the
Alps. The circulation in the coldest December (1969) was
the opposite of 2015, with negative Z500 anomalies over Eu-
rope and positive anomalies over the Atlantic. In 2008, the
December with most cold days in the observations, the data
resemble 1969 but have less pronounced anomalies.
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Figure 3. Adapted dynamic weather generators. (a) The adapted static SWG selects a new analogue every nth day (4 d in this illustration)
and follows the observed trajectory (dotted black line) of that day for 3 d. The resulting simulation combines observed 4 d chunks into an
artificial trajectory (red line). (b) The adapted dynamic SWG replaces the first day of the observations with one of its analogues and follows
the observed trajectory of that analogue for 3 d. Following this, a new analogue of the following day in the observed trajectory is chosen.

For all example years, the circulation in the static SWG
simulations exhibits the same features as the observed cir-
culation. The dynamic SWG always simulates high-pressure
anomalies over France irrespective of the starting conditions.
These anomalies are, however, more pronounced in 2015
where the starting circulation favours the anticyclonic pat-
tern over France.

The simulations of warm Decembers are most sensitive to
the weighting of the calendar date. If this parameter is chosen
too loosely, simulations would include days from other sea-
sons, which are generally warmer. As shown in Fig. A2, for
αcal ≥ 6 over 70% of all days in the simulations are sampled
from the November–February period. Increasing the weight-
ing of the calendar day further does not show a significant
effect.

The simulations are also sensitive to the weighting of daily
maximal temperatures α (Fig. A3). For α ≥ 0.75 we simu-
late a large number of Decembers that are more extreme than
2015.

Finally, the choice of geopotential height or mean sea level
pressure to classify circulation analogues does not influence
the simulations (see Fig. A1).

3.2 Spring precipitation

An extremely wet period from April to July 2016 followed
the warm December in 2015, with an average precipitation
of 2.7 mm per day and 332 mm for the whole period. This is
more than the long-term 75th percentile, but it is topped by
some years including 1983, 1987, and 2012.

Figure 6 shows the daily mean precipitation for April–July
periods over 1950–2018. Accumulated April–July precipi-
tation fluctuates around 256 mm with a strong year-to-year
variability. Over the observed period no trend is detected.

Simulations from the static weather generator (blue box-
plots in Fig. 6) also show a strong inter-annual variability but
have significantly larger amounts of precipitation. The aver-
age seasonal precipitation for all simulations and all years
is around 487 mm–190 % of the observed average. Single

simulations even reach daily mean precipitation of 6 mm for
April–July, which is 3 times as high as the observed precipi-
tation in 1983.

April–July periods simulated by the dynamic SWG are
even wetter than the simulations of the static SWG, with an
average seasonal precipitation of 590 mm. As expected, the
inter-annual variations are smaller in the dynamic SWG sim-
ulations than in the static SWG simulations because the dy-
namic SWG evolves freely, with the starting conditions their
only link to the observed circulation.

We estimate the return periods of our simulated events by
fitting a normal distribution to the observed April–July pre-
cipitation events. As we average over a quite large region and
over 4 months, a normal distribution represents the observa-
tions well (even though the analysed variable is precipita-
tion). We find that the 2016 April–July period was a 1-in-17-
year event, while the majority of our SWGs simulations are
1-in-10 000-year events.

In April–July 2016, the atmospheric circulation was char-
acterized by a moderate low-pressure anomaly north of
France and north of the Azores (Fig. 7a). The North Atlantic
Oscillation (NAO) index switched from slightly positive to
negative in May and remained negative until the end of June
(NOAA, 2020).

We next analyse the large-scale atmospheric circulation
patterns that characterize our SWG simulations by compar-
ing them to a few examples of observed events. Figure 7a–
d shows the mean sea level composites of 2016, the driest
(1976), the median (1986), and the wettest (1983) April–July
periods. The main feature in the median event (Fig. 7c) is
a low pressure anomaly north-westward of the British Isles.
The wettest event (Fig. 7d) is characterized by a strong dipole
over the North Atlantic with low pressure in the east and high
pressure in the west. In the driest event (Fig. 7b) this dipole
is reversed and slightly shifted to the east.

For all four events, the static SWG tends to create events
with stronger low pressure anomalies over northern France
(Fig. 7e–h). Similarly, the simulations from the dynamic
SWG all show a strong low-pressure anomaly over north-
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Figure 4. (a) Daily maximal temperature in December from 1950
to 2018. The black line shows E-OBS observations. The boxplots
represent the ensemble variability of the simulations of the static
(blue) and the dynamic (red) SWG for each year. The boxes of
the boxplots indicate the median (q50) and lower (q25) and up-
per (q75) quartiles. The upper whiskers indicate min[max(T ),1.5×
(q75− q25)]. The lower whisker has a symmetrical formulation.
The points are the simulated values that are above or below the de-
fined whiskers. Panel (b) is the same as (a) but for the number of
cold days. The coloured vertical lines indicate the coldest Decem-
ber (green), a median December (yellow), a December with 31 cold
days (cyan) and the warmest December (purple).

ern France (Fig. 7i–l). For the dynamic SWG simulations,
even in 1976, which was the driest April–July period, a low-
pressure anomaly is simulated for northern France where a
high-pressure system had been observed. In the static SWG,
the high-pressure anomaly is relocated to the west, also lead-
ing to a low-pressure anomaly over northern France.

Besides a general tendency towards low-pressure anoma-
lies over northern France, the 2016 April–July period was
characterized by an increased daily pressure variability west
of France (compare Figs. B1a and c). This indicates an en-
hanced storm track activity downstream of our region of in-
terest and could explain the increased precipitation observed

in 2016. In contrast to the persistent anticyclonic anomaly
that led to a continuously warm December in 2015, the wet
April–July period was favoured by a number of storms pass-
ing over northern France.

Our simulations of April–July periods combine 5 d chunks
of observed weather into one coherent time series. By using
5 d chunks instead of combining single-day observations, we
constrain our simulations to observed day-to-day variations
that appear to be crucially important for precipitation events.
This ensures that in our simulations storms predominantly
travel eastwards and that the moisture transport in the simu-
lations is reasonable – at least during the 5 d in question (see
the animated .gif files in the Supplement).

Sensitivity tests indeed show that simulations where a new
analogue is chosen every day result in significantly higher
precipitation, with 7 mm per day for the dynamic SWG sim-
ulations (see Fig. A4). The amount of precipitation steadily
decreases with the length of the observed chunks that are
assembled by the SWGs (ndays). This is to be expected, as
with longer assembled chunks and fewer analogue choices
the simulated weather events resemble the observations more
and more. There is an especially strong decrease in simulated
precipitation from 1 to 3 d, which suggests that when ana-
logues are chosen more frequently than every third day po-
tentially unreasonable weather events are created. Note that
taking 5 d windows is a heuristic choice and that window
sizes between 4 and 7 d give similar results.

The simulations are by definition sensitive to the weight-
ing of the amount of precipitation α. As shown in Fig. A5,
with a relatively small weight of 0.1 most dynamic simu-
lations already bring more precipitation than what was ob-
served in 2016. This could be due to the length of the simula-
tions: it is rather unlikely that extreme weather endures over
4 months. However, with a weak weighting of wet weather
simulations can already result in a long-lasting consistent wet
periods. This increase in precipitation saturates after α ≈ 0.5,
and increasing α further has no effect on the final results.

As for the other free parameters of the SWG, this sensitiv-
ity test does not directly justify the choice of the parameter
α. It instead gives guidance on the values that would be ap-
propriate choices for our application. In the end the parame-
ter is heuristically chosen considering the trade-off between
creating high-precipitation events and keeping as much ran-
domness as possible in our simulations.

As shown in Fig. A6, the weighting of the calendar day has
limited influence on the amount of precipitation in northern
France simulated by our SWGs.

For precipitation in northern France the weighting of the
calendar day is less relevant as there is no pronounced sea-
sonal cycle in precipitation (see Fig. A6).

Finally, one feature in the simulations of April–July de-
serves some more attention: for both static and dynamic
SWG simulations precipitation is exceptionally high in 1994
and 1998. Although observed precipitation in these years was
relatively high, this cannot explain the amount of precipi-
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Figure 5. Geopotential height anomaly at 500 hPa (Z500) composites for a year with 31 cold days (2008), the coldest December (1969), the
median (1978), and the warmest December (2015): (a–c) mean Z500 from NCEP reanalyses, (d–f) static SWG simulations, (g–i) dynamic
SWG simulations. Isolines are shown with 100 m increments. Positive Z500 anomalies are shown with continuous purple isolines, negative
anomalies are shown with dashed cyan lines, and the 500 hPa isoline is shown with a continuous thick black line.

tation in the simulations. One explanation for these outlier
years could be a loop in the simulations leading to an exces-
sive repetition of the same (wet) sequence of days. As shown
in Fig. A7, in 1998 one date is indeed repeated 10 times in
both the static and dynamic weather generator. In most other
years, repetitions of single dates are rare. As our results do
not rely on simulations of single years, this feature does not
affect the overall findings of the study.

These simulations show that there are many possible
April–July periods that would be significantly wetter than
what was observed in 2016 and also wetter than the observed
record precipitation (1983).

4 Discussion

In 2016 northern France suffered an unprecedented crop loss
that can be related to an abnormally warm December in
2015 and a following wet April–July period in 2016 (Ben-
Ari et al., 2016). Here we investigated how extreme these
meteorological precursors of the crop loss could be in the
current climate. Using stochastic weather generators (SWG)
we simulate warm Decembers and wet April–July periods
independently.

The warm December in 2015 resulted in very few cold
days with temperatures between 0 and 10 ◦C. Our simula-
tions show that substantially warmer Decembers would be
possible. However, in terms of cold days, which is a more
relevant indicator for wheat phenology in that season (Ben-
Ari et al., 2018), December 2015 was already extreme, and
only a few simulations show lower numbers of cold days.

For April–July precipitation, we find that much wetter pe-
riods than what was observed in 2016 would be plausible.
The simulated events bring more than twice as much precip-
itation than in 2016.

If crop yields responds to the number of cold days in win-
ter and to the precipitation rate in spring, as shown in Ben-Ari
et al. (2018), then we have shown here that in the current cli-
mate an even worse crop loss event would be possible. The
April–July period in particular could be significantly wetter
than what was observed in 2016.

We used stochastic weather generators to simulate extreme
but plausible weather events. While the method is estab-
lished for summer heat waves (Yiou and Jézéquel, 2020), the
weather events we studied here brought new challenges: al-
though the circulation pattern of the warm December 2015
was similar to a summer heat wave with an anticyclonic pat-
tern over France, special care was required to assure that our
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Figure 6. Daily precipitation averages for April–July from 1950 to
2018. The black line shows E-OBS observations. The boxplots rep-
resent the ensemble variability of the simulations of the static (blue)
and the dynamic (red) SWG for each year. The boxes of boxplots
indicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ),1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers. The
coloured vertical lines indicate the driest April–July period (1976),
the wettest period (1983), a median period (1986), and 2016.

simulated events are actually realizations of winter weather.
Here we assured for this by strongly weighting the calendar
date when selecting analogues.

The wet April–July 2016 period was characterized by a
series of passing storms that brought considerable amounts
of precipitation. The main feature of this wet spring season
was therefore not persistence and simulating plausible day-
to-day variations with SWGs was a major challenge. SWGs
that select a new analogue every day tend to simulate persis-
tent rainfall events over spring, with little day-to-day varia-
tion.

As a first attempt to simulate plausible long lasting wet
periods, we propose to reassemble 5 d windows of observed
weather instead of single days. This ensures that low- and
high-pressure systems predominantly travel eastward at a
speed that is tightly linked to observations. An alternative ap-
proach could be to switch trajectories on dry days instead of
switching after a fixed number of days. This would addition-
ally avoid changing trajectories during precipitation events.

Evaluating the plausibility of our simulations remains a
challenge: although sensitivity tests and an analysis of the
simulated circulation patterns reveal the robust and clearly
interpretable behaviour of SWGs, further tests would be re-
quired to assess whether all simulated events could really
happen in our climate. It could, for instance, be interesting
to analyse the simulated wet April–July periods with respect
to more climate variables (e.g. relative humidity) to evaluate
whether the water transport is physically plausible through-
out the simulated period.

To further evaluate the plausibility of our simulations one
could also compare them to extreme events simulated by
large ensemble climate modelling experiments. In a study
using a near-term climate prediction model, Thompson et al.
(2017) found that for England there is a considerable chance
of unprecedented winter rainfall. Replicating a similar study
for northern France spring precipitation would not only pro-
vide an alternative estimate of extreme spring precipitation
but would also allow us to further evaluate the circulation
features of our weather simulations.

Finally, our simulated extremes could be used as input for
the regression-based yield model of Ben-Ari et al. (2018).
These results should, however, be interpreted cautiously as
our simulated weather extremes lie outside of the observed
range and therefore also the range within which the yield
model was trained. They could also be used in process-based
crop models as a worst-case meteorological scenario.

5 Conclusions

This paper is a proof of concept for the importance sampling
for a simulation of a compound event (warm autumn-winter
and wet spring) that would have an impact on crop yield. It
relies on a data-resampling approach to maximize tempera-
ture and precipitation over extended periods of time.

The simulations are based on the a priori knowledge (from
expertise on crop failures in northern France) that warm au-
tumns and winters followed by wet springs have detrimental
effects on crops.

The first application of SWGs to warm winter periods and
wet springs is an important advance in this research field. It
also shows that with only a few adaptations SWGs can be ap-
plied to new weather phenomena, highlighting the merits of
the method. Moreover, the SWG parameters can be adapted
to other types of crops (with other phenological parameters
and key dates).

This approach is rather flexible and could be adapted to
simulate compound extremes using climate model outputs
based on different scenarios of climate change. This could
lead to the first evaluation of the impact of climate change
on worst-case scenarios of crop yields. This type of analy-
sis has some limitations related to the uncertainty of models
and scenarios, and it fails to take into account non-climatic
drivers of crop yields such as pests, supply chains, or eco-
nomical concerns. However, we believe it could be useful to
estimate what could be plausible in terms of purely meteoro-
logical events in a changing climate.
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Figure 7. SLP anomaly composites (Pa) for April–July 2016, the driest period, the median (1986), and the wettest period (1983): (a–d) mean
SLP from NCEP reanalyses, (e–h) static SWG simulations, (i–l) dynamic SWG simulations. Isolines are shown with 100 Pa increments.
Positive SLP anomalies are shown with continuous purple isolines, negative anomalies are shown with dashed cyan lines, and the mean SLP
isoline is shown with a continuous thick black line.
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Appendix A: Sensitivity tests

A1 December temperature

Figure A1. Distribution of the daily maximum temperature in De-
cember averaged in observations (white) and in simulations com-
puted by the static (blue) and dynamic (red) generators using circu-
lation analogues computed using the SLP or Z500. The horizontal
dotted line corresponds to the daily maximum temperature observed
in December 2015. The boxes of boxplots indicate the median
(q50), lower (q25), and upper (q75) quantiles. The upper whiskers
indicate min[max(T ),1.5× (q75−q25)]. The lower whisker has a
symmetrical formulation. The points are the simulated values that
are above or below the defined whiskers.

Figure A2. Percentage of days sampled between November and
February by the dynamic generator when running 100 simulations
of December temperatures as a function of the parameter αcal. The
dotted red line is for αcal = 6 (which is the value used in the analy-
sis).
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Figure A3. Distribution of the number of December days with max-
imal temperatures between 0 and 10 ◦C in observations (white) and
in simulations computed by the static (blue) and dynamic (red) gen-
erators as a function of α. The axis on the right indicates the prob-
ability of occurrence, assuming a beta-binomial distribution of the
number of winter days with parameters estimated from white box-
plot. The horizontal dotted line corresponds to the observed num-
ber of days in December 2015. The boxes of boxplots indicate
the median (q50), lower (q25), and upper (q75) quartiles. The up-
per whiskers indicate min[max(T ), 1.5× (q75− q25)]. The lower
whisker has a symmetrical formulation. The points are the simu-
lated values that are above or below the defined whiskers.

A2 Spring precipitation

Figure A4. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of the number of days before
selecting a new analogue ndays. The axis on the right indicates the
probability of occurrence, assuming a normal distribution of daily
precipitation with parameters estimated from white boxplot. The
horizontal dotted line corresponds to the observed daily precipita-
tion in April–July 2016. The boxes of boxplots indicate the median
(q50), lower (q25), and upper (q75) quartiles. The upper whiskers
indicate min[max(T ), 1.5× (q75− q25)]. The lower whisker has a
symmetrical formulation. The points are the simulated values that
are above or below the defined whiskers.
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Figure A5. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of α. The axis on the right
indicates the probability of occurrence, assuming a normal distri-
bution of daily precipitation with parameters estimated from white
boxplot. The horizontal dotted line corresponds to the observed
daily precipitation in April–July 2016. The boxes of boxplots in-
dicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ), 1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers.

Figure A6. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of αcal. The axis on the right
indicates the probability of occurrence, assuming a normal distri-
bution of daily precipitation with parameters estimated from the
white boxplot. The horizontal dotted line corresponds to the ob-
served daily precipitation in April–July 2016. The boxes of boxplots
indicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ), 1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers.
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Figure A7. Maximal number of times a single date is repeated for each simulated year. The boxplots indicate the range of this maximal
repetition number for the 1000 simulations for simulations of the static (blue) and dynamic (red) stochastic weather generator. The boxes of
boxplots indicate the median (q50), lower (q25), and upper (q75) quartiles. The upper whiskers indicate min[max(T ), 1.5× (q75− q25)].
The lower whisker has a symmetrical formulation. The points are the simulated values that are above or below the defined whiskers.
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Appendix B: Circulation details

Figure B1. Standard deviation of daily SLP anomalies (Pa) for April–July 2016, the driest period, the median (1986), and 2018: (a–d) SLP
from NCEP reanalyses, (e–h) static SWG simulations, (i–l) dynamic SWG simulations. For the SWG simulations the average of all 1000
runs for the given year is presented.
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Leiter der Arbeit: Prof. Thomas Frölicher and Prof. Jakob Zschleischler
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