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Abstract

Hail is one of the costliest atmospheric hazards in Switzerland, causing substantial damage to

crops, cars, buildings, and infrastructure every year. Currently, the Swiss population is warned

operationally about thunderstorms, but no information is given on specific hazards such as hail,

severe wind gusts and lightning. One reason is the gap in ground-based hail observations, with-

out which predictions could not be verified. To address these gaps, this dissertation presents a

multi-approach advancement to hail prediction. Three projects explore crowdsourced hail reports,

create hail nowcasting models and characterize large- and local scale atmospheric conditions of

multi-day hail clusters.

To close the gap in available ground-based hail observations, the first part of this dissertation

uses crowdsourced hail size reports submitted via mobile application of the Swiss Federal O�ce

for Meterorology and Climatology (MeteoSwiss). The reporting function was added in May 2015

and has collected more than 100’000 reports since. These reports are explored, filtered using

an automatic plausibility filtering method based mainly on three criteria, and compared to two

operational radar-based hail algorithms. The most important criterion guarantees a minimum

proximity of reports to thunderstorms. Other criteria remove duplicate reports and artificial pat-

terns and limit the time di↵erence between the event time and the report submission time. If “no

hail” reports are excluded, 53 % of reports collected until September 2020 remain after filtering.

The comparison of crowdsourced hail reports with the algorithms probability of hail (POH) and

maximum expected severe hail size (MESHS) indicates that some hail events were missed by the

algorithms. While there is significant variability between size categories, the matched reports and

radar-based algorithms correlate positively. MESHS values are typically 1.5 cm larger than the

reported sizes. This study shows that the crowdsourced reports are invaluable for hail research

and suggest that crowdsourcing could be applied to other atmospheric hazards.

In the second part of this dissertation, extreme gradient boosted tree (XGBoost) models are

developed to nowcast the occurrence and size of hail for individual thunderstorms. Statistics

of environmental variables from radar, satellite, lightning, topography and numerical weather

models serve as features (also called predictors) to predict the maximum POH and MESHS, in

5-minute time steps, up to 45 minutes in advance. For each lead-time, binary XGBoost mod-

els predict the occurrence of hail (POH � 10 %, MESHS � 2 cm) and, subsequently, linear

XGBoost models predict the non-zero maximum POH and MESHS values. Additional models

with a reduced number of input features assess how many features are needed to reach the same

nowcast quality as models using all features. The binary XGBoost models predict the occurrence

of hail better than the Lagrangian persistence for all lead-times � 10 minutes. For a lead-time

of 5 minutes, both predictions skills are equal. About 500–1000 features are necessary to reach

a similar skill to models that used all features. Although all data sources are present in the

top 100 features, radar-based features are the most important. Features indicating an intense
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thunderstorm activity at the most recent time step increase the probability of POH � 10 % and

MESHS � 2cm. The Lagrangian persistence predict the POH values with a smaller standardized

centered root-mean squared error than linear XGBoost models, up to a lead-time of 25 minutes.

A likely reason is the smaller sample size used to train and test linear XGBoost models. This

chapter demonstrated the e↵ectiveness of machine learning in nowcasting and will serve as a base

for future projects.

Multi-day hail clusters cause significant damage in a short time. To increase their predictabil-

ity, the third part of this dissertation explores the large- and local-scale atmospheric conditions

during and up to three days before multi-day hail clusters and isolated hail days. Hail days

between 2002–2019 are defined for two regions, north and south of the Alps, within 140 km of

the Swiss radar network. The conditions are described using a weather type classification, re-

analysis data, objectively identified fronts and atmospheric blocks. For both regions, composite

atmospheric variables indicated a more stationary and meridionally amplified atmospheric flow

during multi-day hail clusters. North of the Alps, blocks are more frequent over the North Sea

and surface fronts are located farther from Switzerland on clustered hail days than on isolated

hail days. Furthermore, clustered hail days are characterized by significantly higher convective

available potential energy (CAPE) values, warmer daily maximum surface temperatures, and a

higher atmospheric moisture content than isolated hail days. South of the Alps, these di↵erences

in CAPE, temperature and moisture are not as significant. However, the mean sea level pressure

is significantly deeper on isolated hail days. For both regions, the Rossby waves are already more

amplified three days before multi-day hail clusters, than before isolated hail days. Furthermore,

prior to more than 10 % of clustered hail days, atmospheric blocks occur over Scandinavia, which

is not the case for isolated hail days. This chapter shows that the temporal clustering of hail days

is coupled to specific large- and local-scale flow conditions, providing an added value for short-

to medium-range forecasts of hail in Switzerland. Furthermore, the conditions during multi-day

hail clusters north of the Alps raise the question, whether multi-day hail clusters may occur more

frequently with global warming.

Altogether, this dissertation explores a way of closing the hail observation gap, creates nowcasting

models for hail, which could lead to an operational hail warning system, and characterizes the

atmospheric conditions during and before multi-day hail clusters and isolated hail days. The

latter provides an added value for hail forecasts. This dissertation makes a further step towards

warning the Swiss population of hail and preventing its damage.
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Chapter 1

Introduction

1.1 Motivation

This motivation focuses mainly on the activities related to severe weather and hail in Switzerland.

A plethora of key literature on hail from other regions in the world are presented in more detail

in the individual chapter’s introductions.

Hail regularly occurs in the summer season and is among the costliest natural hazards in Switzer-

land (VKF, 2013; FOEN, 2016). It destroys crops, threatens aviation and damages cars, buildings

and infrastructure. The cost of hail damage has increased over the past decades, because the

number of buildings has increased and because new infrastructure is more valuable and vulnerable

(FOEN, 2016). The increased vulnerability stems from the rising pressure on building envelopes

to be more performant, combined with a significant decrease in uncertainty around structural

safety margins in the past decades. This development has essentially enabled the use of building

materials with safety factors closer to the minimum allowable levels (Madsen et al., 2006; Stucki

and Egli, 2007; Maydl and Schulter, 2013). Roller shutters, solar panels and more delicate fa-

cade insulations are typical examples of newer building components that are vulnerable to hail

(Donner, 2020).

A state of the art operational hail warning system can contribute to reducing damage. Such warn-

ing systems prevent damage, for example by rolling up roller shutters automatically and alerting

the population to the hailstorms. Developing hail warning systems is, however, not straightfor-

ward. Modern high-resolution numerical weather prediction systems struggle with simulating the

exact location and time of thunderstorms correctly (e.g., James et al., 2018). Reasons are that

the onset location and time of convection is stochastic and can depend on small variations in

boundary layer- and surface temperature and moisture (Crook, 1996; Trefalt et al., 2018). Like

the butterfly e↵ect (Lorenz, 2000), small di↵erences in initial conditions may determine whether

a thunderstorm develops and creates large hail, or no hail at all. Complex orography further

enhances, reduces or anchors storms in a way that is very specific to the storm’s location, time,

severity and movement (e.g., Lean et al., 2009; Barrett et al., 2015; Trefalt et al., 2018; Bachmann

1
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et al., 2020; Heim et al., 2020).

Thunderstorms are detected in real-time in data from five weather radars, located in di↵erent

regions in Switzerland (Fig. 1.1). The thunderstorm radar tracking algorithm (TRT; Hering

et al., 2008) automatically tracks thunderstorms and estimates their intensity in real-time. The

thunderstorms are extrapolated forward in time in the direction of their recent movement (e.g.,

Fig. 1.1). Since 2005, warnings are issued for the future thunderstorm positions (Panziera et al.,

2016, e.g., 1.1). Since 2020, these warnings are provided fully automatically and operationally

to the end users via mobile application (app) of the Swiss Federal O�ce of Meteorology and

Climatology (MeteoSwiss; see Hering et al., 2015). So far, these warnings have not provided any

information on specific hazards such as wind gusts, lightning or hail.

Figure 1.1: Radar image composite from the Swiss radar network for August 1 2020 at 17:35 UTC.

Shown are the precipitation intensity (colored contours), the thunderstorm location as tracked by

TRT and their future locations (colored filled ellipses) forward extrapolated along the vectors of

motion (red arrows). Numbers inside TRT tracked cells indicate the maximum vertically inte-

grated liquid content in kg m�2, black stars show the locations of the five Swiss radar stations and

the light blue ellipses the three Swiss hail hotspot regions as detected by Nisi et al. (2016) and

NCCS (2021).

Thanks to measurement campaigns in the 1970s (Federer et al., 1986) and 90s (Treloar, 1998),

radar-based algorithms were developed as proxies for hail and its size at the ground. Two such

algorithms have been operational at MeteoSwiss since 2008 and 2009 and were reprocessed for the

years 2002 and after (Nisi et al., 2016). The algorithm probability of hail (POH; Waldvogel et al.,
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1979) was developed in the 70s from hail data gathered during the field campaign Grossversuch

IV in central Switzerland with hailpads. POH provides an estimate of the probability that hail

will occur at the ground. Since its implementation at MeteoSwiss, POH is estimated in quasi

real-time from data provided by the Swiss radar network on a 1 by 1 km grid over Switzerland.

The second algorithm, Treloar’s Maximum Expected Severe Hail Size (MESHS; Treloar, 1998)

provides an estimate of the largest hail diameter expected within each 1 by 1 km area.

Nisi et al. (2016), (2019) and (2020) used these algorithms to create climatologies of hail size and

hail streaks, i.e. the hail accumulations at the ground, and analyzed their diurnal cycle over the

period 2002–2017. The national project “Hail climate Switzerland” (see www.hailclimatology.ch)

updated these maps and added new hail climatology products adapted to user needs (NCCS,

2021). The climatologies indicate three hail hotspot regions in Switzerland: in the Jura, in

Entlebuch, and in southern Switzerland (Fig. 1.1).

Until recently, developing any hail warning system in Switzerland was a challenge, because no

systematic, direct hail observations had been available since the Grossversuch IV. Yet observa-

tions of hail at the ground are essential to validate radar-based hail estimates and model-based

hail predictions. Importantly, these observations need to be contemporary to the analyzed data

period. Insurance damage claims (Bider, 1954; Willemse, 1995) have given valuable evidence that

hail of a moderately certain size occurred at the ground. Morel (2014) used car damage claims

to validate POH. Furthermore, hail damage to crops can be detected in satellite images (Gallo

et al., 2012; Bell and Molthan, 2016; Bell et al., 2020). However, all these damage-based methods

only give an imprecise estimate of hail size.

In 2015, the MeteoSwiss and the Mobiliar Lab for Natural Risks of the University of Bern initi-

ated two projects to fill the hail size observation gap. First, a hail crowdsourcing function was

added to the MeteoSwiss app, with which users could report the occurrence and approximate size

of hail. Since May 2015, > 100’000 reports have been submitted, mostly from populated locations

in and close to Switzerland. Second, a pilot network of 11 automatic hail sensors (Lö✏er-Mang

et al., 2011) measured hail stone impacts in 2015–2017. Noti (2016) conducted a first comparison

of radar-based algorithms with MeteoSwiss crowdsourced reports and hail sensor data collected

in 2015 and 2016. Noti found a positive correlation between the radar-based hail algorithms and

the reported size. The sample size of crowdsourced hail reports at that point was, however, too

small for stable statistical results on large hail diameters. A more comprehensive comparison of

crowdsourced hail reports with radar-based hail algorithms is needed to better understand the

reports and the algorithms. The pilot hail sensor network has been extended with 80 new sensors

installed in the hail hot spot regions in 2018 (Mobiliar Lab for Natural Risks, 2021). These sen-

sors have successfully captured several hail events and are likely to provide a promising dataset

for future hail research.

Past studies have conveyed the importance of atmospheric conditions and processes across dif-

www.hailclimatology.ch
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ferent scales to characterize and predict hail in Switzerland. Nisi et al. (2020) found that the

topography in Switzerland strongly influences the frequency of hailstorms and the diurnal cycle

of convection initiation. Trefalt (2017) documented significant di↵erences in diurnal cycle of the

local environmental characteristics between non-hail days, hail days, small hail days and large

hail days, north and south of the Alps. On the synoptic-scale, hail in Switzerland preferentially

occurs when the flow over central Europe is westerly or southwesterly (Nisi et al., 2018) and up

to 45 % of all detected hail cells in northeastern and southern Switzerland form in pre-frontal en-

vironments (Schemm et al., 2016). The strong year-to-year variability in hail occurrence suggests

that it is strongly controlled by large-scale weather patterns (Nisi et al., 2016). Furthermore,

a case study on a severe alpine hailstorm in June 2015 highlighted the interplay of large-scale

atmospheric patterns and local processes (Trefalt et al., 2018). Moreover, Madonna et al. (2018)

used a Poisson regression approach to model monthly hail occurrences in Northern Switzerland

using large-scale environmental variables. The di↵erences in hail environments across the Europe

and the Atlantic connected with hail day rich and hail day poor months suggest that large-scale

dynamics influence hail day clustering. These studies indicate that hail prediction needs to in-

corporate processes that are relevant at di↵erent scales.

A method that incorporates variables from di↵erent scales and sources in prediction models is

machine learning (ML). In contrast to numerical weather prediction models, ML uses statistical

tools to uncover patterns and knowledge that has not been explicitly programmed (Samuel, 1959;

Koza et al., 1996). It is typically used to discover patterns and linear- and non-linear interactions

in large data. ML has become very popular in severe weather research for several reasons. The

rise in computational power availability and amount of data has made ML more accessible and

necessary (Chen and Lin, 2014). Furthermore, convective hazards are typically associated with

sub-grid spatial scales and, therefore, implicitly parametrized in conventional operational weather

prediction models (e.g., Goyette, 2008; Pennelly et al., 2014; Cassola et al., 2015; Adams-Selin and

Ziegler, 2016; Stucki et al., 2016). Parameterization of sub-grid scale phenomena remains one of

the greatest challenges in numerical weather modeling (Pielke, 2013). ML provides the option of

“learning” to predict convective phenomena using both model simulations and observations (e.g.,

Miyoshi et al., 2016; McGovern et al., 2017; Bouttier and Marchal, 2020). The use of machine

learning in weather modeling is still relatively new but the uptake is accelerating. Marzban and

Witt (2001) and Manzato (2013) were among the first to apply ML in hail prediction. Later,

several studies have used ML to detect and predict hail (e.g., Gagne et al., 2015, 2017, 2018;

McGovern et al., 2017, 2019b; Czernecki et al., 2019; Pullman et al., 2019; Flora et al., 2020; Hill

et al., 2020; Yao et al., 2020) and other natural hazards (e.g., Lagerquist et al., 2017, 2020; Her-

man and Schumacher, 2018a,b; Zhou et al., 2019). In Switzerland, ML methods have been applied

to nowcast foehn wind events (Sprenger et al., 2017) and to predict the growth and decay of pre-

cipitation (Foresti et al., 2019). However, ML methods have not yet been applied to nowcast hail.
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1.2 Aims and outline of this thesis

These projects, past analyses and available methods motivated me to conduct three hail research

projects, presented in self-contained articles:

1. The first part of this thesis (chapter 2, Barras et al., 2019) explores the MeteoSwiss

crowdsourced hail reports until 2018. Plausibility filters are developed, and the reports

are compared systematically to POH and MESHS. Chapter 3 contains an update of the

analysis to 2020. The research questions are:

– What are the characteristics of MeteoSwiss crowdsourced hail reports? How large is

the fraction of reports remaining after applying plausibility filters?

– What is the utility and what are the limitations of the MeteoSwiss crowdsourced

reports?

– How do crowdsourced hail reports compare to the radar-based hail algorithms POH

and MESHS?

2. The second part (chapter 4) makes a direct step towards developing automatic hail warnings.

The machine learning algorithm XGBoost (extreme gradient boosted trees) is applied to

nowcast POH and MESHS for individual thunderstorms. The machine learning models

detect interactions between the target variables (POH and MESHS) and more than 10’000

predictor variables extracted from multiple data sources along thunderstorm paths in 2018.

This chapter answers the following questions:

– For which lead-times between 5 and 45 minutes do machine learning models predict

the probability and maximum size of hail in Switzerland better than the Lagrangian

persistence?

– How many features are necessary for these XGBoost models to perform well?

– Which data sources do the XGBoost models use and which features are most impor-

tant?

– Which information on thunderstorm environments can we gain using the Shapley Ad-

ditive Explanations (SHAP) interpretation method?

3. Finally, the third part (chapter 5; Barras et al., 2021 (in review)) focuses on improving the

hail prediction through process understanding. The large- and synoptic scale atmospheric

conditions during and before multi-day hail clusters are contrasted to the situations during

and before isolated hail days. This chapter, addresses the following questions:

– Which atmospheric conditions are associated with and di↵erentiate multi-day clusters

and isolated hail days in Switzerland, north and south of the Alps during 2002–2019?

– Which atmospheric conditions occur on days before multi-day and isolated hail events?
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Besides chapters 2, 3, 4 and 5, the remainder of this thesis is structured as follows: In chapter 6,

I summarize the main findings, give some concluding remarks and suggest some ideas for future

research avenues. Supporting information to chapters 2, 4 and 5 are presented in Appendices A,

B and C.



Chapter 2

Experiences with >50,000

crowdsourced hail reports in

Switzerland

This chapter contains an article that was written together with Alessandro Hering, Andrey Mar-

tynov, Pascal-Andreas Noti, Urs Germann and Olivia Martius. It was published in 2019 with

the title ”Experiences with >50,000 crowdsourced hail reports in Switzerland” in the Bulletin

of the American Meteorological Society (Barras et al., 2019). The subsequent chapter 3 gives a

short update on the crowdsourced reports that were collected until September 2020. Chapter A

in the Appendix compares the MeteoSwiss crowdsourced hail reports with other available hail

data sets. This comparison was done in response to reviews during the publication of the article.

2.1 Capsule Summary

Fifty-nine thousand crowdsourced hail size reports, gathered in Switzerland since May 2015, are

presented, assessed, and compared to two operational radar-based hail detection algorithms.

2.2 Abstract

Crowdsourcing is an observational method that has gained increasing popularity in recent years.

In hail research, crowdsourced reports bridge the gap between heuristically defined radar hail

algorithms, which are automatic and spatially and temporally widespread, and hail sensors,

which provide precise hail measurements at fewer locations. We report on experiences with and

first results from a hail size reporting function in the app of the Swiss National Weather Service.

App users can report the presence and size of hail by choosing a predefined size category. Since

May 2015, the app has gathered >50,000 hail reports from the Swiss population. This is an

unprecedented wealth of data on the presence and approximate size of hail on the ground. The

reports are filtered automatically for plausibility. The filters require a minimum radar reflectivity

value in a neighborhood of a report, remove duplicate reports and obviously artificial patterns, and

7
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limit the time di↵erence between the event and the report submission time. Except for the largest

size category, the filters seem to be successful. After filtering, 48% of all reports remain, which

we compare against two operationally used radar hail detection and size estimation algorithms,

probability of hail (POH) and maximum expected severe hail size (MESHS). The comparison

suggests that POH and MESHS are defined too restrictively and that some hail events are missed

by the algorithms. Although there is significant variability between size categories, we found a

positive correlation between the reported hail size and the radar-based size estimates.

2.3 The hail observation gap

Hail fall in Switzerland at a specific location is infrequent, typically very localized, and charac-

terized by a high spatial variability in hailstone sizes. That said, in the hail hot spots, hail occurs

about 2–3 times per square kilometer per year (Nisi et al., 2016; Punge and Kunz, 2016). As

a consequence, ground observations require a very dense observational network and are there-

fore very expensive. Similar challenges exist for hail observations worldwide. Since the 1990s,

researchers have attempted to fill the gap by involving the general public in gathering weather

observations. Examples include the Community Collaborative Rain, Hail and Snow Network

(CoCoRaHS) in North America (Cifelli et al., 2005; Reges et al., 2016), the European Severe

Weather Data Base (ESWD, Dotzek et al., 2009), the European Weather Observer application

(app) (EWOB, Groenemeijer et al., 2017), and the Mobile Precipitation Identification Near the

Ground Project (mPING) mostly in North America (Elmore et al., 2014). Ground observa-

tions are essential for developing, verifying, and improving indirect hail detection and hail size

estimation algorithms based on remotely sensed data such as weather radar observations.

In Switzerland, two radar-based hail algorithms have been in operation since 2008: the probability

of hail (POH) and the maximum expected severe hail size (MESHS). They are used for nowcasting

applications and for insurance loss estimates, and they were used to create the first Swiss radar-

based hail climatology (Nisi et al., 2016). Recently, the algorithms were used to analyze the

initiation and lifetime of hail cells and their swaths in complex topography (Nisi et al., 2018). A

first verification of POH in Switzerland by Nisi et al. (2016) is based on insurance car loss data.

Insurance loss data primarily provide information on the presence or absence of hail in areas with

insured assets; the hail size is estimated from the damage type. However, the claims are often

georeferenced to a ZIP code rather than to the actual hail event location. Spatially widespread

information regarding the size of hail on the ground has so far been missing in Switzerland.

In May 2015, the Swiss Federal O�ce of Meteorology and Climatology (MeteoSwiss) started

to fill this observational gap by simultaneously launching a pilot network of 11 automatic hail

sensors and a hail size crowdsourcing function in the MeteoSwiss app. These hail sensors record

the impact of individual hailstones on a Makrolon disk using piezo-electric microphones. The

signal correlates positively with the kinetic energy and momentum of the hailstone, and thus,

the hailstone diameter can be estimated from these measurements. For more information on the

hail sensors, see Lö✏er-Mang et al. (2011). As of 2018, this pilot network is being extended to

include a total of 80 automatic sensors that will measure the kinetic energy and momentum of
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hailstones for at least 8 years in the three hail hot spot regions of Switzerland (see Nisi et al.,

2016).

The crowdsourced reports, the radar-based hail algorithms, and the automatic hail sensor net-

work combine three sources of hail data that are of great complementary value. The radar hail

algorithms provide automatic, spatially and temporally continuous estimates of the likelihood

and size of hailstones at the ground. Automatic hail sensors have the advantage of measuring

hail at the ground in a precise manner, but only at their exact location. The crowdsourced re-

ports are numerous and account for much larger areas than automatic hail sensors, but provide

subjective and less precise information of the true size of hail.

Trefalt et al. (2018) combined these hail data sources, as well as a newly developed dual-

polarization radar-based hydrometeor classification (Besic et al., 2016, 2018), in a case study

of an intense hailstorm in the northern Prealps. This case study showed good agreement between

POH, MESHS, and the hailstone sizes sourced from the MeteoSwiss app. Kunz et al. (2018) and

Wapler et al. (2015) emphasized the benefit of combining multiple data sources in similar case

studies on hail storms in Germany.

This article will introduce the MeteoSwiss crowdsourced hail reports, demonstrate a strategy to

automatically filter them for plausibility, comment on their utility and limitations, and present

a comparison to the two radar-based hail algorithms, POH and MESHS.

2.4 Radar and crowdsourced data

2.4.1 Radar-based hail products

We compare the reports with two operational radar-based hail algorithms, i) POH [Foote et al.

(2005b) based on Waldvogel et al. (1979)] and ii) MESHS [Joe et al. (2004) based on Treloar

(1998)]. POH is a measure for the likelihood of hail occurrence, ranging from 0% to 100%.

MESHS estimates the largest expected hail diameter in units of centimeters, starting at 2 cm.

In Switzerland, POH and MESHS are used operationally and derived by combining freezing-

level height information from the analysis (in real-time applications from the forecast) of the

Consortium for Small-Scale Modeling numerical weather prediction model COSMO with the

maximum height (echo top or ET) at which a radar reflectivity of at least 45 dBZ for POH

(50 dBZ for MESHS) is detected (Donaldson, 1961). Both algorithms are described in detail

in sections 3.1 and 3.2 in Nisi et al. (2016). MESHS di↵ers from the maximum estimated size

of hail (MESHS; Witt et al., 1998), a radar-based hail product that is commonly used in North

America and that integrates the reflectivity greater than 40 dBZ above the melting layer. The ET

information stems from the Swiss radar network which consists of five dual-polarization Doppler

C-band radars. The radars scan the atmosphere at 20 elevations from -0.2�to 40�every 5 min

(Germann et al., 2015, 2016). POH and MESHS 2D mosaic fields are available in real time every

5 min on a 1 x 1 km2 Cartesian grid covering Switzerland and surrounding areas.
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Figure 2.1: (a) Screenshot of the animation with radar-based precipitation rates (mm h�1, colors)

and the crowdsourced reports (blue and white dots) on 7 May 2018. The blue dots indicate hail

reports for the shown time, white dots indicate past reports. (b) Screenshot of the hail size category

scheme in spring 2018.

2.4.2 Crowdsourced data

The hail reporting function is part of the app of MeteoSwiss. It is included in the page that

shows the radar precipitation fields in animated form, which is one of the most popular pages

of the app (Fig. 2.1a). After passing a simple plausibility check, the hail reports are displayed

seconds after they are submitted, overlaid on the radar echoes, and can be animated in time

over the past 24 h. Users who observe hail can submit information on the time, location, and

size of the hailstones. When a user submits a report, the current time and location of the phone

are suggested as default input values, but both parameters can be adapted manually. The loca-

tion information stems from position tracking by the smartphone. A manual adaptation of the

location name and/or ZIP code will reduce the spatial accuracy by several hundred meters (de-

pending on the size of the ZIP code area). The user can manually adapt the time by choosing the

minute of the event. Knowing if the location and/or time were reported manually is important

for filtering the reports. The user then chooses a size from a predefined hailstone size category

scheme (Fig. 2.1b). Between May 2015 and September 2017, users could choose between the size
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Table 2.1: Original and current crowdsourcing hail report size category scheme, the corresponding

approximate diameters, and range of diameters they cover.

Size category Diameter (mm) Diameter range (mm)
Original

Co↵ee bean 5-8 >0–15
One Swiss Franc coin 23 15-27
Five Swiss Franc coin 32 27-32
Larger than five Swiss francs coin >32 >32

Current
Smaller than a co↵ee bean >0-5 >0-5
Co↵ee bean 5-8 5-15
One Swiss Franc coin 23 15-27
Five Swiss Franc coin 32 27-37
Golf ball 43 37-55
Tennis ball 68 >55

categories “no hail,” “co↵ee bean,” “1 Swiss Franc coin (CHF),” “5 CHF,” and “>5 CHF” (see

Table 2.1 for the corresponding diameters in millimeters). This original size category scheme

was updated in September 2017 to include a “smaller than co↵ee bean” category, and the “>5

CHF” size was replaced with two categories, “golf ball” and “tennis ball” (see Table 2.1). The

“smaller than a co↵ee bean” category was added to di↵erentiate between graupel (<5 mm) and

hail (�5 mm). The other two categories extend the range of categories to one that replaces “>5

CHF” and another larger size that mainly serves to catch suspicious reports. In spring 2018, an

instruction was added requesting the users to report the largest hailstone size that they see. In

addition to the location, the event time [time indicated by the user; in CEST (UTC + 2 h) in

summer and CET (UTC + 1 h) in winter], and the hailstone size, the app stores the submission

time (time at which the user presses “send”; Fig. 2.1b) and an anonymous user ID.

Note that users can also report “no hail.” The “no hail” reports provide valuable information

in close proximity of a thunderstorm to delineate hail from no-hail areas. However, we do not

include the “no hail” reports in this statistical analysis because we cannot use it to count false

alarms, since we cannot dismiss the possibility that hail did occur within the radar grid box (1 x

1 km2) and 5-min time step corresponding to a “no hail” report. To simplify reading the article

hereafter, we will refer to the reported categories in terms of hailstone diameter (Table 2.1). Note

that each category spans a wider range of diameters that varies according to the chosen category

scheme.

2.5 Successful data acquisition

From 1 May 2015 to 31 October 2018, 59,020 MeteoSwiss crowdsourced hail reports were sub-

mitted by 39,733 di↵erent user IDs on 1,203 days over an area of 12,375 km2 (with at least one

report per square kilometer), which corresponds to a quarter of the Swiss territory. The dataset
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has 17,739 reports in the “no hail” category and 41,281 reports that indicate the presence of hail.

More than 10 reports were submitted each day on 718 days, and more than 100 reports were

submitted each day on 140 days. These are impressive numbers when compared to the small

size and population of Switzerland. Crowdsourcing hail with the MeteoSwiss mobile app has

been successful for several reasons. First, hail is a rare natural phenomenon that fascinates many

people, is easy to recognize, and often interrupts people’s activities. Second, the crowdsourcing

function is embedded in the radar animation of the MeteoSwiss weather app. This app is widely

used, with an average of about 500,000 active users per day (of a population of approximately 8

million). Third, the MeteoSwiss mobile app has been downloaded more than 8 million times and

is therefore the most popular weather app in Switzerland. The high number of users provides an

unprecedented spatial and temporal observational coverage that could not be acquired di↵erently

given today’s observational methods, knowledge, and monetary restrictions. Last, MeteoSwiss

deliberately publishes blog posts about the reporting function in the spring, at the beginning of

the hail season, to encourage usage. The blog is part of the app and is popular.

An example of the crowdsourced data submitted on 31 May 2017 in the region of Thun is shown

in Fig. 2.2. The 86 reports were mainly submitted from densely populated areas. Almost all of

the 86 reports are located inside the POH >80% area. There are some reports of the largest size

category collocated with MESHS values >60 mm. On this day, several reports were submitted

within the same 1-km2 grid box. From one grid box (see coordinate 614.5/178.5 in Fig. 2.2), 17

reports were submitted within 26 min; the maximum number of reports per individual grid box

ever recorded within 1 h. There is quite some variability in the reported hailstone sizes among

the 17 reports, which points to subgrid-scale variability in the hailstone size, as well as to the

uncertainty of the size estimates submitted by the app users.
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Figure 2.2: Maximum values of MESHS (blue grid boxes, mm), POH (green contours, %), and

the crowdsourced hail reports (red dots, see also Table 2.1) for 31 May 2017 in the region of

Thun, Switzerland. The dashed dark gray lines contour the areas with more than 2,000 residents

per 1 km2 in the year 2017 (Federal Statistical O�ce of Switzerland, 2017). The light gray area

shows the Lake of Thun. The 32-mm report on the lake was probably submitted from a boat. The

axes indicate the Swiss Coordinate System (km, tick marks every 5 km). The image is centered

at approximately 46.802�N, 7.655�E.

2.6 Crowdsourced data acquisition using a government app ver-

sus a custom app

While the wide distribution of the MeteoSwiss app is a huge advantage for the dissemination

of the app and hence the number of reports, working with the government weather app has

implications for the hail reporting options. The app is one main warning channel for the Swiss

authorities and, therefore, the stability of the app has precedence over the reporting function.

Every additional function imperils the stability and has to meet strict requirements. Hence,

working with a custom app (e.g., mPING, EWOB) dedicated solely to gathering information on

hail (or thunderstorms) would have the advantage of a substantial extension of the reporting

options. The MeteoSwiss app is continuously being updated and improved, and one next step
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will be to provide an o�cial Internet page informing on the hail reporting function. Suggestions

for expanding the hail reporting function include the option of submitting photos and reporting

the hail cover thickness, hail shape, hail size distributions, hail density, hailstone temperatures,

event duration, or the damage caused. Such information would be very valuable; for example,

Brimelow and Taylor (2017) verified the MESH algorithm with hail sizes estimated from photos

posted in social media. In addition, quality control measures could be included in a custom app,

such as the option to submit an email address to contact people who submit reports for later

verification.

2.7 Quality control of the crowdsourced reports

2.7.1 Plausibility filters

The crowdsourced reports are influenced by human perception and sense of humor. This is why

the crowdsourced data need to be quality controlled. Particularly for the comparison to the radar

algorithms, erroneous reports need to be removed. We apply a multistep procedure to the 41,281

MeteoSwiss crowdsourced hail reports (excluding “no hail” reports) that is applicable in real

time. First, we only keep the reports within an area that includes Switzerland and approximates

the area that is well covered by the Swiss radar network (between 45.5�N, 5.6�E and 47.9�N,

10.7�E). This removes 479 (1%) reports. Second, any duplicate of the same anonymous ID, time

(rounded to 5 min), coordinate (rounded to 1 km), and size is removed, in case the same user

repeats the same report within a few seconds. This criterion accounts for 724 (2%) reports.

We then apply a time filter and discard reports with more than 30 min di↵erence between the

submission time and event time. The reasoning behind this filter being that when people report

hail hours after the event happened, they might not remember the size of the hailstones and/or

the time of the hail event very accurately. This is also one of the reasons why the app suggests

a size category scheme rather than allowing people to directly estimate the size in centimeters.

This removes 3,195 (8%) reports.

Next, reports that are implausible due to the meteorological conditions are removed. This re-

flectivity filter requires a minimum radar reflectivity of 35 dBZ, that is, a convective cell, to be

located in the neighborhood of the report. The neighborhood method follows the so-called single

observation neighborhood forecast verification (Ebert, 2008) and filters the reports as follows:

we consider all radar grid boxes, for all time steps between 15 min before and 15 min after the

reported time, whose centers are within a radius of 4 km from the exact report location. In most

cases, this temporal space includes six time steps. Fig. 2.3) shows an example for two reports,

using a radius of 2 km and for two time steps. Depending on the location of a report within

its grid box, the spatial radius will include a di↵erent number of neighborhood grid boxes. The

neighborhood accounts for the up to 2–4-km wind drift of hailstones (Schiesser, 1990; Schmid

et al., 1992; Hohl et al., 2002) and for a margin of error in the reporting time. This filter is

based on radar information, as are the POH and MESHS products, and hence not fully indepen-

dent. Unfortunately, there is no fully independent validation information available in Switzerland.
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Figure 2.3: Example radar grids at two time steps with two crowdsourced reports (R1, R2). The

blue grid boxes indicate nonzero radar values. The circles delimit the areas that are within a

radius of 2 km around each report and the dotted lines show which grid boxes are within the

neighborhoods defined by the circles.

However, the 35-dBZ threshold is smaller than the thresholds used to define POH and MESHS.

This filter removes 16,892 reports, that is, 41% of the reports.

Next, reports by individual users with an unusual reporting pattern are removed. This includes

reports from users with at least three reports of at least three di↵erent sizes, including the largest

size category, within an hour. Furthermore, we filter reports if a user submits more than three

reports on the same day and chooses a di↵erent, manually adapted location for each report. The

last filter removes reports in which the same user submitted <5–8- or 5–8-mm reports and the

largest size category within 2 min. These filters remove 327 (1%) reports.

Note that the quality control is not based on the number of reports for an individual event.

Indeed, there are many cases in which single reports from lightly populated, remote areas are

plausible and even confirmed by independent reports. There are also several cases in which the

reflectivity filter identifies implausible reports clustered in a populated area.

Table 2.2: Number of matches between the filtered reports and POH and MESHS for each re-

ported category, considering the radar gridbox value containing the report (A) and a 2-km and

5-min neighborhood window around the report (B). Numbers in rows 2–5 are absolute numbers

(percentage of filtered reports).

5-8mm 23mm 32mm >32mm Total
Number of filtered reports 12,136 3,171 653 610 16,570
Matches with POH (A) 4,506 (37%) 1,598 (50%) 263 (40%) 60 (10%) 6,427 (38%)
Matches with POH (B) 6,593 (54%) 1,971 (62%) 317 (49%) 101 (17%) 8,982 (54%)
Matches with MESHS (A) 1,139 (9%) 719 (23%) 157 (24%) 29 (5%) 2,044 (12%)
Matches with MESHS (B) 2,717 (22%) 1,306 (41%) 231 (35%) 49 (8%) 4,303 (26%)

The e↵ect of the filters on the number of reports for each size category is shown in Fig. 2.4.
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Figure 2.4: Number of reports per size category with (a) the original size category scheme that

were valid from May 2015 to Aug 2017 and (b) the current size category scheme (valid since Sep

2017). “No hail” reports are excluded. The fraction of reports that were filtered out are given as

percentages above the bars and indicated by the dark blue color. Note the di↵erent y-axis ranges.

Considering both size category schemes, 19,664 or 48% of all reports remain after filtering. For

the original size category scheme (Fig. 2.4a), 16,570 or 40% of the reports remain. We refer to

the remaining reports collected with the original size category scheme as the filtered reports.

Of the 16,570 filtered reports, 12,136 (73%) are 5–8-mm, 3,171 (19%) are 23-mm, 653 (4%) are

32-mm, and 610 (4%) are >32-mm reports (see Table 2.2, top row, and Fig. 2.4a). The filters

mainly reduce the number of >32-mm reports. This is expected, as the largest size category

(until September 2017, >32 mm) might be chosen as a joke. Figure 4b shows the filter e↵ects

for reports submitted using the new size category scheme. Since the sample size is small and

because of the change in category scheme, we do not compare the two histograms any further.

The e↵ects of altering hail reporting thresholds are discussed by Allen and Tippett (2015).

The large fraction of filtered reports for the large size categories (43 and 68 mm) suggests that

the filters are e�cient, particularly since these reports were mostly submitted during the winter

half year, when such large hailstones are almost impossible. However, more tennis ball (68 mm)

reports than golf ball (43 mm) reports remain in the sample after filtering, which indicates that

the filters do not remove all untrustworthy reports.

Almost 81% (13,420) of the filtered reports were submitted on 100 hail days. The number of

reports is greatest in the late afternoon and evening (Fig. 2.5), which reflects the typical thun-

derstorm diurnal cycle (e.g., Mandapaka et al., 2013; Nisi et al., 2018). The radar-based hail

climatology (Nisi et al., 2016) indicates a second hail maximum at night that likely develops

through down-valley winds and thunderstorm outflows converging in moist and unstable pre-

Alpine air masses. This second maximum is not visible in the number of reports, most probably
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Figure 2.5: Number of crowdsourced hail reports per hour of the day and per size category after

filtering. The legend also shows the number of reports per size category.

due to the general population being indoors. The spatial report density (not shown) primarily

reflects the population density rather than the spatial hail frequency (see also Fig. 2.2) and there-

fore reflects the locations at which people and/or assets may be exposed, which is an advantage

for hail risk studies.

2.7.2 Comparison of the MeteoSwiss crowdsourced hail reports with indepen-

dent hail information

The network of hail sensors under construction already captured five events with graupel or very

small hailstones and three events with maximum hail diameters >20 mm. During three of the

five graupel/very small hail events, 1, 9, and 16 co↵ee bean reports (no reports of larger sizes)

were recorded within a 2-km radius around the hail sensors. The MeteoSwiss crowdsourced hail

reports submitted during the three hail events with hail diameters >20 mm, within 2 km of the

sensors, were mostly equal to or larger than the diameters measured by automatic hail sensors.

More events are needed to make a quantitative comparison.

Between May 2015 and July 2018, 110 filtered MeteoSwiss crowdsourced reports could be matched

with 25 ESWD reports. For 21 cases, we found at least one MeteoSwiss report of the same size as

the ESWD reports within the time uncertainty given by ESWD and within 2 km of the ESWD

report. The MeteoSwiss crowdsourced reports for the remaining four cases indicated smaller hail

diameters than the ESWD reports. In two cases, MeteoSwiss crowdsourced reports suggested

larger hail sizes than indicated by ESWD. While the number of compared reports is too small

for a conclusive statement, the results point toward the filtered MeteoSwiss crowdsourced reports

being in good agreement with independent crowdsourced data.
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2.8 Comparison with radar-based hail algorithms

2.8.1 Matching the reports to POH and MESHS

We match the filtered reports to nonzero POH and MESHS values. We use the 16,570 filtered

reports received with the original size category scheme, as they constitute 84% of the sample.

Again, we use a space and time neighborhood to match the reports with radar fields. Aside

from the horizontal drift of hailstones, arguments can be made to allow for a margin of error

in reporting time. Users might need to move themselves, a car, or flowers to safety before they

report the hail fall, or they might not remember the time of the hail event. In addition, hail

remains on the ground for some time before it melts and users might report hail on the ground

rather than the hail fall. It therefore might be important to consider a spatial and temporal

neighborhood to match the reports to the radar fields. To illustrate the sensitivity of the match

to the chosen spatial and temporal neighborhoods, two methods are used to match the reports

to the radar-based fields.

Method A assumes no spatial drift, an accurate reporting time, and uses the POH and MESHS

values of the grid box and the 5-min time step closest to the reporting location and time. Method

B uses the maximum POH or MESHS value within a spatial neighborhood radius of 2 km and

a temporal neighborhood of 5 min centered around the exact reporting location and time. This

neighborhood method is identical to the method applied in the reflectivity filter, but with a

di↵erent neighborhood size (Fig. 2.3). Note that with the neighborhood method several reports

might be matched with the same radar value. Of all filtered reports (including both size category

schemes and excluding “no hail” reports), 86% (16,815 out of 19,664) are single reports within

the respective grid box and 5-min time step. In 61% of cases with more than one report within

the same grid box and 5-min time step, one unique size category was reported. Most of the

cases (72%) where at least two sizes were reported within the same grid box and 5-min time step

are combinations of <5–8-, 5–8-, and/or 23-mm reports. Repeating the analysis with only the

maximum reported sizes does not significantly alter the results, which is why we conducted the

analysis with all reports and not just the maxima. Table 2.2 shows the number of matches with

POH and MESHS per size category for both methods. As expected, method B produces more

matches than method A. The reports matched with method B but not with method A include

cases in which hail drifted.

A sensitivity study that considered neighborhoods ranging between 2 and 6 km and between 5

and 30 min revealed little sensitivity of the results. The largest changes in the results occur

when going from no neighborhood (method A) to a small neighborhood (method B; Table 2.2).

Compared to the number of additional radar grid boxes that are considered with a larger neigh-

borhood size, the increase in fraction of matches is relatively small (Table 2.3).

Only 9% of the filtered 5–8-mm reports are matched with MESHS using method A (Table 2.2).

Since MESHS includes only hailstones �2 cm, a very low number of MESHS matches is expected

for the smallest size class. POH estimates the probability of hail for hailstones of all sizes. Using
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Table 2.3: Fraction of matches between the filtered reports and POH and MESHS considering

di↵erent neighborhood sizes and the median number of grid boxes per neighborhood.

Neighborhood radii
2 km and 5 min
(method B)

4 km and 5 min 4 km and 15 min

Matches with POH 54% 60% 67%
Matches with MESHS 26% 33% 41%
Median No. of grid boxes
within the neighborhood

26 100 300

method A, 37% of the 5–8-mm reports are matched with a POH signal, and using method B,

54% are matched. For the 23-mm category, 23% of the reports are matched with MESHS using

method A, and 24% are matched for the larger 32-mm class (41% and 35%, respectively, with

method B). Interestingly, the fraction of matched reports decreases substantially for the largest

size class (5%, method A and MESHS). This fraction is also very low for POH and when using

method B, which suggests that there is still a significant number of reports in this category that

are likely “joke” reports.

Between 46% (method B) and 72% (method A) of the filtered reports cannot be matched with

POH larger than zero (74% and 88% for MESHS). There are several possible explanations for

this. First, the neighborhood used to match the reports (i.e., 2 km and 5 min) is much more

restrictive than the one used to filter the reports (i.e., 4 km and 15 min). However, increasing

the matching neighborhood size does not greatly increase the number of matched reports (see

Table 2.3). If the spatial neighborhood radius was doubled to 4 km, which quadruples the num-

ber of considered grid boxes, the total fraction of matched reports increases from 54% to 60%

for POH and from 26% to 33% for MESHS. If the temporal neighborhood radius is additionally

increased from 5 to 15 min, the fractions further increase to 67% (POH) and 41% (MESHS),

which still leaves 33% (POH) and 59% (MESHS) unmatched filtered reports.

Second, recall that POH and MESHS are defined using reflectivity thresholds (45 dBZ for POH

and 50 dBZ for MESHS). There is therefore a 10-dBZ di↵erence between the minimum reflectiv-

ity of the filter (35 dBZ) and the required reflectivity for a POH signal. For 43% of the filtered

reports that were not matched with POH using method B (39% for MESHS), the maximum re-

flectivity in the neighborhood was below the 45-dBZ threshold (50 dBZ for MESHS; not shown).

It is therefore likely that hail (or graupel) can develop in Switzerland even if the radar reflectivity

does not reach the threshold values of 45 or 50 dBZ. Third, the freezing-level height derived from

the model influences the POH signal. The model may simulate a locally high freezing-level height

stemming from the diabatic heating in a simulated thunderstorm cell. As a consequence, POH

would be smaller or zero, since the distance between the freezing-level height and the maximum

height with 45 dBZ would decrease. The same applies analogously to MESHS.

Fourth, the radar algorithms were fitted for convective thunderstorms happening during the sum-

mer season, and may miss events with graupel and/or small hail in the winter half year. The

fraction of unmatched reports is much higher between October and April (88% for POH, 98% for

MESHS with method B) than between May and September (38%, 71%). Another reason for the
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large fraction of unmatched reports in the winter half year may be that users mistakenly report

sleet. Finally, despite the filters, we likely still have an unknown number of erroneous reports in

our sample (see Fig. 2.6).

2.8.2 Evaluation of the MeteoSwiss crowdsourced hail reports

The POH values of the matched reports increase with increasing reported size (Fig. 2.6a). Note

that POH is not intended to provide any hailstone size information. In an ideal setting, POH

would be independent of the hail size. However, given how POH is defined, we expect POH to

be higher for large hail sizes and lower for smaller hail sizes. Figure 4b suggests that the original

5–8-mm category includes reports of graupel. In the original scheme, “co↵ee bean” (5–8 mm) was

the smallest available size category; the large fraction of “smaller than a co↵ee bean” reports in

the current category scheme strongly suggests the presence of graupel in the original “co↵ee bean”

category. This is consistent with the POH values for this category being significantly lower than

the POH values for the larger hailstone size categories (Fig. 2.6a). Since the notches of the POH

boxplots do not overlap when comparing the 5–8-, 23-, and 32-mm size categories, the increase

in median POH with the reported size is significant. There is a significant di↵erence between the

medians of the method A and method B POH values when comparing the 5–8-, 23-, and 32-mm

categories (nonoverlapping notches and Mann–Whitney U test with p value of 0.05, not shown).

Only a small fraction of reports are matched with small POH values. Using method A, only a

quarter of the matched POH values are below 70% for the 23- and 32-mm reports. Using method

B, only a quarter of the values are below 80%. Last, more than 50% of the matched POH values

for the 23- and 32-mm reports and for method B have values >98%. The large interquartile and

notch range of the POH values matched with >32-mm reports reflect the much smaller sample

size and might indicate that this sample potentially still contains some incorrect reports despite

the filtering.

MESHS values increase with increasing reported size (see Fig. 2.6b). This increase in the median

is significant (Mann–Whitney U test, p value of 0.05) in all cases except when comparing the

medians of 23 and 32 mm with >32 mm (for both methods A and B). This increase in median

values (except for >32 mm) shows that the MESHS correctly recognizes the relative maximum

expected size of hail above 2 cm. The interquartile ranges (IQRs) of MESHS span 1.5–2 cm.

They approximate the size range that would be assigned to the reporting categories using the

nearest neighbor (see Table 2.1). The constant IQRs suggest that the variance in MESHS is

constant throughout the reported sizes.

When considering the 23- and 32-mm reports, MESHS is roughly 10–15 mm larger than the

reported size, depending on whether method A or B is used for matching. The >32 mm and

method B matching boxplot has lower quartile values than the boxplot of the MESHS values

matched with 32-mm reports. As previously discussed, we assume that the matched sample

likely still contains reports in which users exaggerated the reported size. However, the lack of

additional fully independent data prohibits a definitive statement if the users systematically over-

estimate the hail size of the largest reporting category or MESHS systematically underestimates
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Figure 2.6: Boxplots of (a) POH vs reported size and (b) MESHS vs reported size considering no

neighborhood (light) and a neighborhood radius of 2 km and 5 min (dark). The numbers at the top

of the plots indicate the number of values (matches) that contribute to each boxplot. The boxplots

are Tukey-style whiskers with notches showing the 95% confidence interval for the median m,

given by m ±1.58 x IQR/
p
n (McGill et al., 1978). IQR is the interquartile range and n is the

sample size (see also Krzywinski and Altman, 2014).

the size. Since the sample of matched reports for >32 mm is very small in comparison with the

other reporting categories, the incorrect reports have a larger influence. We therefore expect the

quartiles to be larger once the sample size has reached several hundred reports. Once more 32-,

43-, and 68-mm reports are gathered, the IQRs for 32 mm and these larger categories can be

meaningfully compared.

2.9 Summary and Conclusions

The crowdsourced hail reports gathered with the MeteoSwiss app constitute an extremely valu-

able observational dataset on the presence and approximate size of hail in Switzerland. This

dataset has the advantage of unprecedented spatial and temporal coverage, and the automatic

real-time processing and visualization is very convenient for nowcasting applications. Beside the

scientific value of the dataset, we hope that the crowdsourcing function serves as a bridge between

the general population and the world of research. This requires feedback from the scientists to

the app users, which is currently provided through blog posts linked to the app and in newspaper

articles. It will be extended in the future to include information on a dedicated website.

The reported hailstone sizes indicate that hail with a size close to the size of co↵ee beans is most

abundant (note that this size category likely contains also reports of graupel). The number of

reports follows the typical diurnal cycle of thunderstorm activity, with most reports being sub-

mitted in the early evening and evening. The spatial distribution of the reports primarily reflects

the population density.

While the crowdsourced dataset dramatically increases the number of hail observations, they need
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to be quality controlled. Our reflectivity filter requires reports to be close to a radar reflectivity

area of at least 35 dBZ. Overall, the plausibility filters remove approximately half of the reports

in the dataset.

Our analyses suggest that except in the largest size category, enough false reports are filtered

out for them to not substantially influence statistical analyses. The dense spatial and tempo-

ral coverage of the filtered reports allowed us to carry out a systematic comparison to the two

operational, single-polarization radar-based hail algorithms, probability of hail (POH) and max-

imum expected severe hail size (MESHS). The fraction of unmatched reports between May and

September (38% for POH and 71% for MESHS; using method B) suggest that POH and MESHS

are too restrictive in identifying hail areas. Of these unmatched reports, 43% (39% for MESHS)

were submitted in an area with a maximum reflectivity between 35 and 45 (or 50 for MESHS)

dBZ. Using a lower reflectivity threshold in the algorithms may therefore improve their quality.

However, adapting the radar-based algorithms should entail a quantification of the false alarm

rate, which cannot be achieved with the crowdsourced reports alone.

The positive correlation between reported sizes and the values of POH and MESHS suggest that

the filters adequately separate plausible reports from improbable reports, except for the largest

hail size category. Furthermore, the comparison of MESHS with the reported size shows that

MESHS can be used as an estimate of the maximum size of hail >2 cm in terms of relative

comparisons. Absolute MESHS values matched with the 23- and 32-mm categories exceed the

reported hailstone size on average by 1.5 cm when a spatial neighborhood is considered to match

the crowdsourced reports with MESHS values (method B). This di↵erence merits further inves-

tigation using data from the hail sensor network. If the measurement campaign with the 80 new

automatic hail sensors is successful, we will be able to test this conclusion and further improve

the hail algorithms.
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Chapter 3

Update on the MeteoSwiss

crowdsourced hail reports until

September 2020

Motivated by two additional summers since the analyses presented in Barras et al. (2019), this

short chapter gives an update on the characteristics of the MeteoSwiss crowdsourced hail reports

until September 2020. By then, a total of 119’549 reports were registered. The years 2015–2017

each had > 17’000 reports. This number dropped to a few thousands in 2018 and 2019 (Fig. 3.1,

see also Table 3.1). This drop is most likely due to an update in the MeteoSwiss app in September

2017. In a successful attempt to reduce the fraction of false reports, the hail reporting function

was concealed by an additional button. While less reports were registered, the fraction of filtered

reports increased to > 70 % in 2018 and 2019 (Table 3.1; columns ”after filtering”) and the

total number of filtered reports did, therefore, not decrease as drastically as the total number of

reports.

The opposite idea of not concealing, but revealing the reporting function is being tested since

July 2020. Since the recent update the ”report hail” button and previous reports done in the

previous 24 hours are immediately visible when opening the subpage leading to the hail reporting

function (equivalent to (Fig. 2.1a)). The number of reports in 2020 exploded to 54’084, of which

almost 31’000 were sent only in July (Fig. 3.1). Within almost only three months, the previous

number of filtered reports increased by 70 % to a total of 41’191 filtered reports.

The right columns in Table 3.1 present the contribution of each of the three main filter criteria

to filtering the reports each year. The fraction of reports filtered out by the reflectivity filter (>=

35 dBZ, see Barras et al., 2019) has decreased considerably in 2015–2019, to only a third of the

initial value. The reason why much less reports were filtered out in 2018 and 2019 is probably

the concealment of the reporting function. Since a large fraction of the general user community

did not know about the reporting function, only people that were shown the reporting function

or who found it by chance would send reports. The other two filter criteria limiting the temporal

distance between event and submission time to less than 30 minutes (”< 30 min”) and detecting

strange reporting behaviours (”blacklist”) do not contribute as much to filtering the reports. The

23
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Figure 3.1: Number of MeteoSwiss crowdsourced hail reports per month before and after applying

the filtering criteria, between May 2015 and September 2020.

fraction of reports filtered out by these criteria have decreased from 2015 to 2020. The numbers

in the brackets in the right columns in Table 3.1 indicate which fraction of reports would not

have been filtered out if not for that specific filter criterion. For the < 30 min criterion, the

reports counted in the fraction within the brackets have a bigger likelihood of being correct after

all, since the reflectivity filter did not filter them out. For the blacklist criterion, the numbers

in the brackets show which reports with strange reporting patterns were likely made during a

hail event. The di↵erences between the number outside and within the bracket for the latter two

filtering criteria in Table 3.1 suggest that in the initial years, users were more likely to trigger

these filters during weather conditions that did not produce hail.

Table 3.1: Total number of MeteoSwiss crowdsourced hail reports, excluding the size ”no hail”;

the total number as well as the fraction of these reports remaining after filtering each year; the

fraction of ”total” that each filter criterion would filter out if applied independently of the other

filter criteria. The numbers in brackets indicate the fraction of reports in which the given filter

criterion is solely responsible for filtering out a report.

total after filtering filter criteria [%]
year # # % of total >35dBZ <30min blacklist

2015 10754 3692 34 61 (54) 9 (3) 4 (1.2)

2016 12030 5421 45 50 (42) 9 (4) 4 (0.7)

2017 13245 7705 58 37 (32) 7 (4) 2 (0.7)

2018 4236 2950 70 25 (22) 6 (4) 2 (0.6)

2019 6163 4521 73 22 (19) 5 (4) 2 (0.8)

2020 31729 16902 53 44 (42) 4 (3) 1 (0.4)
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The remaining paragraphs of this chapter repeat the matching and comparison of crowdsourced

hail reports with POH and MESHS using the two neighbourhood methods A and B presented in

section 2.8.1. Method A matches the reports with the radar grid box closest to the report and

Method B considers the maximum radar value within 2 km and within 5 minutes of the report

(more details in Barras et al., 2019). The number of matches between the radar-based hail algo-

rithms and the reports from the current size category scheme is shown in Table 3.2 (equivalent

to Table 2.2). Compared to Table 2.2, a 4 % larger fraction of reports is matched with POH and

a 1 % smaller fraction of reports is matched with MESHS (both matching methods). However,

the fraction of <5–8 mm reports matched with MESHS is only 2 % (A) and 9 % (B) (Table 3.2).

If <5–8 mm reports are ignored in the calculation, then the total fractions of reports matched

with MESHS are 14 % (A) and 31 % (B), 2 % (A) and 5 % (B) larger than the fraction of reports

matched with MESHS in Table 2.2.

Table 3.2: Number of matches between the filtered reports from the current category scheme and

POH and MESHS for each reported category, considering the radar gridbox value containing the

report (A) and a 2-km and 5-min neighborhood window around the report (B). Numbers in rows

2–8 are absolute numbers (percentage of filtered reports).

<5–8 mm 5–8 mm 23 mm 32 mm 43 mm 68 mm Total

# filtered reports 7285 11728 3699 805 307 762 24586
POH (A) 1793 5882 2104 397 109 29 10314

(25%) (50%) (57%) (49%) (36%) (4%) (42%)
POH (B) 3016 8049 2539 466 135 68 14273

(41%) (69%) (69%) (58%) (44%) (9%) (58%)
MESHS (A) 171 1267 895 231 70 10 2644

(2%) (11%) (24%) (29%) (23%) (1%) (11%)
MESHS (B) 671 3288 1632 359 102 17 6069

(9%) (28%) (44%) (45%) (33%) (2%) (25%)
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Figure 3.2: Boxplots of (a) POH vs reported size and (b) MESHS vs reported size considering no

neighborhood (light, in text called Method A) and a neighborhood radius of 2 km and 5 min (dark,

in text called Method B) with the reports from the current size category scheme. The numbers at

the top of the plots indicate the number of values (matches) that contribute to each boxplot. See

Fig. 2.6 for further details.

Similarly as in Fig. 2.6, matched POH and MESHS values in Figure 3.2 increase with an increas-

ing reported size and results mostly confirm the findings in Barras et al. (2019). The additional

categories in the current scheme give more detail on the ranges of POH and MESHS associated

with graupel (< 5–8 mm) vs. hail (5–8 mm and larger size categories). Furthermore, the addi-

tional categories for bigger hail as well as the larger number of reports increases the robustness

of the results for the categories 23 mm, 32 mm and 43 mm.

Figure 3.2a suggests that at least 75 % of POH values associated with < 5–8 mm and 5–8 mm

are smaller than 100 % and at least half of the POH values matched with < 5–8 mm are smaller

than 60 % (Method A, Figure 3.2a). The category 68 mm has few reports and behaves similarly

like the category > 32 mm in Fig. 2.6; the large interquartile and notch range reflect the smaller

sample size and are a potential indicator for incorrect reports despite the filtering. The median of

MESHS values matched with 32 mm are roughly 3–8 mm larger than the reported size (depend-

ing on the matching method). Median values matched with 43 mm are roughly 5 mm smaller

(Method A) or equal (Method B) to the reported size.



Chapter 4

Nowcasting of hail with XGBoost

4.1 Abstract

In this chapter, extreme gradient boosted tree (XGBoost) models predict the maximum proba-

bility of hail (POH) and the maximum expected severe hail size (MESHS) in steps of 5 minutes,

for lead-times of 5 to 45 minutes and for individual thunderstorms in Switzerland. Thunderstorm

and storm environmental variables from the summer of 2018 are extracted along cell paths, up

to 45 minutes before each thunderstorm tracked location. Data sources are the Swiss radars,

the numerical weather prediction model COSMO-1, Meteosat satellites, lightning, topographi-

cal information and other meta data. For each past cell position, 12 statistics (mean, median,

standard deviation, sum and 7 percentiles) of the predictor variables are calculated within circles

of 23 km around the cell positions. The statistics serve as features (also called predictors) with

which models predicting the maximum POH and MESHS are trained and tested. Tow types of

XGBoost models are created for each lead-time and target variable. The binary XGBoost models

predict the occurrence of hail (POH � 10 %, MESHS � 2 cm) and the linear XGBoost models

predict the non-zero POH and MESHS values. This project focuses on determining the e↵ect of

hyper-parameter tuning and on the e↵ect of reducing the number of features to the top 5 to 1000

most important features. Furthermore, the models are interpreted with the Shapley additive

explanations (SHAP) method.

Binary XGBoost models successfully predict the occurrence of hail equally well as the Lagrangian

persistence for lead times of 5 minutes. For larger lead-times, XGBoost models perform better.

Out of >10’000 features, 500-1000 top features are necessary to reach the same model perfor-

mance as models using all features. The top 100 features contain variables from all data sources.

The most frequently used sources are radar data, followed by COSMO-1 and satellite data. The

number of radar-based features in the list of top 100 features decreases with an increasing lead-

time. For all lead-times, the majority of the top 100 features are statistics from the most recent

observation (t0 = t). Time steps between t-5’ and t-45’ are, however, used as well. The SHAP

model interpretation method suggests that feature values indicating intense thunderstorm ac-

tivity at t0 increase the probability of hail occurring. This chapter shows the e↵ectiveness of

using machine learning to predict hail and may lead to an operational hail warning system in the

27
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future.

4.2 Introduction

In Switzerland, the currently operational thunderstorm radar tracking algorithm (TRT, Her-

ing et al., 2008; Rotach et al., 2009) detects thunderstorm cell by searching for local maxima

in the radar reflectivity. Simultaneously, TRT ranks the thunderstorm severity using a fuzzy

logic scheme. The future location of each thunderstorm cell is determined through forward ex-

trapolating past cell movements and the severity is assumed constant (see Fig. 1.1). Using this

information, automatic warnings are issued to the Swiss population (Panziera et al., 2016). While

the TRT severity ranking provides a rough indication for the probability of hail, Switzerland does

not have an operational, automatic nowcasting estimate for the future presence or size of hail up

to 45 minutes in advance yet. Today’s available data and statistical methods allow to improve

the currently operational procedure.

Numerical weather prediction models, diverse observational systems, statistical methods as well

as rising computational powers have increased the skill in nowcasting hail in the past decades.

Initially, hail was not predicted directly, nowcasts predicted larger-scale convective phenomena.

Browning et al. (1982) and Wilson et al. (1998) summarizes nowcasting techniques used between

the 1960s and 90s, such as extrapolations of radar data, knowledge based expert systems and

numerical forecasting models that are initialized with radar data. In the 2000s a multitude of

nowcasting models were developed, some of which were tested in Forecast Demonstration Projects

(FDP) e.g. during the Olympic games in Sydney in 2000 (Keenan et al., 2003; Ebert et al., 2004)

and in Beijing in 2008 (Wilson et al., 2010). Nowcasting models included new data sources,

such as lightning, satellite and surface data (e.g., Eilts et al., 1996; Pierce et al., 2000; Bonelli

and Marcacci, 2008; Kober and Ta↵erner, 2009), tracked objects in radar data, such as con-

vective storms (e.g., Dixon and Wiener, 1993; Hering et al., 2004; Mueller et al., 2000; Kober

and Ta↵erner, 2009) and boundary layer convergence lines (Mueller et al., 2000) and combined

characteristics of thunderstorm cells recognized in radars with a life cycle model (Pierce et al.,

2000). Blending techniques combined radar and numerical weather prediction (NWP) models

(e.g., Golding, 1998; Liang et al., 2010; Li and Lai, 2004; Wong and Lai, 2006). In NWP models

with convection-allowing resolutions, new components simulate convective hazards, such as the

hail diagnostic HAILCAST(Brimelow et al., 2002) implemented in the Weather Research and

Forecasting (WRF) model by Adams-Selin and Ziegler (2016) (WRF-HAILCAST). This hail di-

agnostic has been implemented in the Swiss NWP model COSMO-1 and its operational use will

be tested in summer 2021.

Another promising nowcasting method is machine learning (ML). Instead of resolving the ex-

act processes in a complex model, ML methods can diagnose linear and non-linear relationships

between variables describing the storm and its environment (predictors) and the thunderstorm

hazards (predicted variables). These relationships may help to understand better which condi-
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tions and interactions of environmental processes are responsible for which size of hail at the

ground, at any location and time. At MeteoSwiss, this idea lead to a project called Coalition-3,

which had the aim of nowcasting storm severity using ML and which was extended to this part

of this doctoral thesis. In this chapter, ML models are developed to predict the likelihood and

maximum size of hail at lead-times from 5 to 45 minutes for any existing thunderstorm within

the range of the Swiss radar network.

Previous research projects have demonstrated the potential for ML-based hail prediction. Marzban

and Witt (2001) successfully used neural networks to predict the maximum size of severe hail per

storm. Manzato (2013) applied an ensemble of neural networks to predict the occurrence and size

of hail in northeast Italy. The US annual Hazardous Weather Testbed Spring Experiment tests

every year the newest technology in an operational setting with forecasters (Gallo et al., 2017).

The WRF-HAILCAST diagnostic (Adams-Selin and Ziegler, 2016) has been compared to the

Thompson hail size diagnostic (Thompson et al., 2004, 2008 in Gagne et al., 2019), the Gagne

Machine Learning Method (Gagne et al., 2017, 2018) and storm surrogate variables extracted

from the WRF and Data Assimilation and Research Testbed (DART; Anderson et al., 2009)

models, such as the updraft helicity (Sobash et al., 2016; see McGovern et al., 2017 for more

details). Results showed that ML based models had higher skill to nowcast hail than the other

methods (McGovern et al., 2017). Gagne et al. (2015) initially predicted the daily maximum hail

size up to one day ahead using statistics of variables from ensembles of WRF models. Three ML

methods were tested, random forests, a combination of logistic classification model and ridge re-

gression and gradient boosting regression trees. Out of the three, the gradient boosted regression

trees performed statistically significantly better for most of the model ensembles. Building on

that model, Gagne et al. (2017) matched storms simulated in convection allowing models with

radar-observed storms and then predicted the spatial distribution of hail sizes by synthesizing

storm properties and pre-storm environmental variables. Hill et al. (2020) generated probabilistic

predictions of severe weather for day 1–3, including hail for day 1, using random forests (RF;

Breiman, 2001). Models were created for di↵erent regions in continental United States, using

atmospheric fields from the NOAA Second Generation Global Ensemble Forecast System Re-

forecast (GEFS/R) dataset as predictors and Storm Prediction Center (SPC) storm reports as

targets. A weighted blend of SPC and RF outlook was shown to have the highest predictive

skill. Zhou et al. (2019) used convolutional neural networks (CNN; LeCun et al., 1990) to infer

di↵erent thunderstorm hazards, including hail, in Global Forecast System (GFS) forecasts. Fi-

nally, Flora et al. (2020) predicted the occurrence of tornadoes, severe hail (hail diameter > 1 in

(1 in=2.54 cm)) and severe winds with ML models, using the Warn-on-Forecast System (WoFS)

ensembles of the WRF model. The ensembles predicted the occurrence of severe hail with a

normalized critical success index (NCSI1 ) of 0.3 (0.2) for the first (second) hour (Flora et al.,

2020). Not predicting hail, but also applying ML to nowcast short lead-times, Lagerquist et al.

(2017) combined several ML techniques to nowcast damaging straight-line convective winds and

Lagerquist et al. (2020) predicted the next-hour tornado occurrence probability using CNN.

1CSI normalized by the CSI of a no-skill system; see Flora et al. (2020)
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ML applications in weather and climate sciences have been criticized in the past for generating

black-box models that do not improve the understanding of the involved physical and dynamical

processes. However, model interpretation methods are giving insight into the patterns discovered

by ML models. McGovern et al. (2019b) have synthesized and analyzed multiple approaches

to model interpretation and visualization in meteorology. Gagne et al. (2019), for example,

demonstrate it through the CNN based discrimination of di↵erent storm morphologies being

associated with extreme hail or no hail. I use another method that is based on game theory

(Shapley, 1953), the Shapley Additive explanation (SHAP, Lundberg and Lee, 2017), which is

able to determine in which way each predicting feature contributes to each predicted value. While

this method does not guarantee causality, it can help with designing targeted hypotheses that

could be tested in the future.

This project aims at answering the following questions:

• For which lead-times between 5 and 45 minutes do machine-learning models predict the

probability and maximum size of hail in Switzerland better than the Lagrangian persistence?

• How many features are necessary for a ML model to perform well?

• Which data sources do the ML models use and which features are most important?

• Which information on thunderstorm environments can we gain using the SHAP interpre-

tation method?

This chapter continues with a presentation of Coalition-3 and its connection to this part of the

doctoral thesis (section 4.3). Some ML terminology is clarified in section 4.4). Section 4.5)

describes the used data sources. The methods giving details on this projects choices (section

4.6)) are followed by the results (section 4.7)) which are further discussed in section 4.8). Finally,

this chapter ends with some conclusions (section 4.9)) and an outlook (section 4.10)).

4.3 This projects connection with Coalition-3

This ML project is partially embedded in a MeteoSwiss project called Coalition-3 (Hamann

et al., 2019). Coalition-3 developed from two earlier projects, Coalition-2 (MeteoSwiss, 2020a)

and Coalition-1 (Nisi et al., 2014). Coalition stands for Context and Scale Oriented Thunder-

storm Satellite Predictors Development and was initially an operational ‘expert system’ that

provided cell-based 0-60 min nowcasts of thunderstorm severity. Coalition-1 predicted the storm

severity using the concept of energy conservation, knowing that storm intensification is indicated

by rapid cooling of cloud tops and increasing vertical column liquid content. A conceptual Eu-

lerian model and a Hamilton’s equations based formulation integrated information from radar,

satellites, numerical weather prediction models, climatological data and a digital terrain model.

The variables were used in pairs, so called modules, e.g. the evolution of the cloud top temper-

ature was used as predictor for the liquid water content. Coalition-1 has 8 such modules, 5 of

which predict the vertically integrated liquid content and 3 predict the cloud top temperature.
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However, Coalition-1 could not skilfully predict the storm severity for lead-times greater than 30

minutes (Nisi et al., 2014). The Coalition-2 project focused on exploiting satellite observations to

detect the early stages of thunderstorms, before the onset of rain. The infra-red channels of the

Meteosat SEVIRI instrument were used to determine the cloud top glaciation, cloud top lifting

and cloud optical thickness.

In Coalition-3, the conceptual, Eulerian model approach was replaced with a Lagrangian ML

approach. The aim of Coalition-3 was to develop a ML-based nowcast of storm severity (in Table

4.1 called “TRT Rank”) for the next 45 minutes with an update cycle of 5 minutes, starting

from the TRT cell locations. Data from several data sources (see Table 4.1) describing histor-

ical thunderstorm cell properties and environments for the period April-September 2018 were

extracted and assembled into a data table of samples and features (see also section 4.6.1). The

prediction models were created using the extreme gradient boosted tree algorithm XGBoost

(Chen and Guestrin, 2016, see section 4.6.2). This same dataset and ML method were used

in this hail nowcasting project, except that the target variables were replaced. Furthermore,

while the data extraction and models predicting storm severity were written in python 2.6 (see

https://github.com/meteoswiss-mdr/coalition-3), this author’s ML models, accompanying anal-

yses and pre- and postprocessing scripts were written in R.

A new project, Coalition-4 (MeteoSwiss, 2021) is ongoing since autumn 2020 and is planned to

end in September 2023. This project will take a step further in using deep learning methods to

predict the onset and development of thunderstorms and their hazards, such as lightning, hail,

and heavy precipitation. It uses data from the new geostationary satellite generation GOES-R

to prepare a European version using Meteosat Third Generation. Furthermore, plans are to issue

automatic warnings directly to the public, clients in aviation and civil protection.

4.4 Machine Learning terminology

This section introduces some basic terminology related to ML that was used throughout this and

the Coalition-3 projects. Specific choices of parameters and model setup procedures are explained

in the methods.

Machine learning: Machine learning is a group of methods aiming to discover and learn previ-

ously unknown patterns in data “without being explicitly programmed” to do so (Samuel,

1959 in Koza et al., 1996). To build a ML model, a data sample of observations or instances,

in which patterns can be recognized, is required. These observations have attributes, also

called features or predictors, used as inputs to the models. The target variable (also called

reference or predictand) is the object that the model tries to predict. Finally, the model it-

self is a complex mathematical operator that estimates the relationship between predictors

and target variable in the dataset (Quinto, 2020).

Supervised machine learning: A supervised ML model detects patterns in a dataset in which

the “right answer” (target variable) is already provided (Shavlik et al., 1990). For example,

https://github.com/meteoswiss-mdr/coalition-3
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a supervised model may classify new data into known classes of which the model has

previously learned to recognize distinctive patterns.

Data splitting: Typically, a full dataset is split into a training, validation and test dataset.

The training data set usually comprises the largest fraction of the data and is the base on

which the model is fitted. The validation data set is optional and is used to evaluate the

model and tune hyper-parameters during the fitting process. The test dataset assesses the

performance of the final model. When using k-fold cross-validation (Anthony and Holden,

1998) to tune hyper-parameters, the validation data set is not defined beforehand. Instead,

the training dataset is split into k folds and during each training iteration, each fold is held

out and used once as a validation data set.

Decision trees: In ML, decision trees (Shavlik et al., 1990) are a series of threshold tests, seeking

to divide the dataset into sections. If the target data set contains classes, one typically uses

classification trees. For these trees, the sections contain samples belonging to a class. If the

decision tree is meant to predict a continuous target variable, regression trees are applied.

For regression trees, the sections contain samples, with which a linear regression with the

target is well fitting. The series of threshold tests is typically depicted as a tree drawn

upside down, with the roots at the top. Like a natural tree, the trunk splits into branches,

based on a condition that splits the data. The splitting point is also called node. Each

branch can either lead to another node or, if the branch does not split anymore, a leaf.

A sample of the dataset is therefore associated with one leaf or another, depending on

the feature values of that sample. The complexity of trees can be further defined using

hyper-parameters.

Hyper-parameter tuning for decision trees: Hyper-parameters determine the characteris-

tics of the ML model and its training procedure. A di�culty of ML models is that the

hyper-parameters leading to the best model solution are often unknown. This is why hyper-

parameters are tuned during the training process. For decision trees, hyper-parameters

define among others the complexity of trees, such as for example the maximum number of

possible consecutive nodes (max depth) or the degree of target purity in a leaf at which the

tree will stop splitting further (min child weight). The target purity in a leaf describes the

fraction of samples that belong to the same class (for classification) or simply the number

of samples in a leaf (for regressions). Other hyper-parameters aim at preventing overfitting

(subsample, etc. see below).

Over- and Underfitting: Initial training iterations are typically characterized by an improve-

ment of the fit with both the training and testing dataset. However, once the fit with the

validation dataset proceeds to deteriorate, the model starts to overfit. Overfitting can be

avoided by tuning hyper-parameters and/or by using k-fold cross-validation. If the models

are trained with too few iterations, then the model underfits, meaning that an improvement

of the model performance is still possible.

(Stochastic) gradient boosted trees: This algorithm builds ensembles of decision trees such
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that each new tree corrects the errors made by the previous one (Friedman, 2001). The

error is measured using a loss metric. The learning rate (a hyper-parameter called eta)

determines how fast one tries to move in the direction of lowering the loss. The objective

function is the quantity being optimized (Kuhn and Johnson, 2013); in a binary problem, it

can be a logistic regression function and the output of a prediction therefore a probability.

The stochastic part of gradient boosting consists of not using the entire data sample in

each iteration, but to randomly sample a fraction of the data (Friedman, 2001 in Kuhn and

Johnson, 2013). The hyper-parameter defining the size of that fraction is called subsample.

Another similar hyper-parameter (colsample bytree) does not reduce the number of data

samples (as subsample) but the number of features by a specific fraction.

Extreme gradient boosted trees (XGBoost): Compared to stochastic gradient boosted trees,

XGBoost has the capability of building several nodes within each depth of each tree in paral-

lel and, therefore, is a faster algorithm. This parallelization is further supported by sparsity

aware algorithms. Finally yet importantly, the objective function in XGBoost includes two

regularization terms that penalizes the complexity of a model and further helps to avoid

overfitting (Chen and Guestrin, 2016).

4.5 Data

Several data sources that capture properties of thunderstorms and their environments are used

to train the models for each of the 30’675 time steps and locations of hailstorms that occurred

during 37 days between May and September 2018. The choice of time range is related to the

close collaboration of this project with MeteoSwiss’ project Coalition-3. The diurnal and seasonal

distribution of the analyzed time steps are shown in Fig. 4.1. Observations of radar and satellite

instruments, NWP forecasts and other auxiliary data (see Table 4.1) are used. Radar and satellite

data (using the rapid scan service) are observed with a temporal resolution of 5 min. COSMO

data is available hourly and interpolated to the desired time. The plan was to test di↵erent

methodical approaches on the 2018 data set. Final nowcasting models would then be calculated,

once a larger data set was available. Unfortunately, due to reasons that were outside of my

influence, it was impossible to extend the training dataset to the entire convective seasons of

2018, 2019 and 2020. That is the reason why the models are trained with data from the 2018

convective season only.

4.5.1 Radar

Single-polarisation radar variables from the Swiss radar network (Germann et al., 2015) provide

the information on location and intensity of thunderstorms. These variables are available every

5 minutes on a Cartesian 1 x 1 km2 grid. The thunderstorm radar tracking algorithm TRT

uses the radar reflectivity to detect, track and nowcast thunderstorms. The target variables

of the statistical models in this work are two radar-based hail products: the “probability of

hail” (POH) and the “maximum expected severe hail size” (MESHS). POH is derived from the
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Figure 4.1: Number of data samples per day and time of the day in the year 2018, used to train

and test the XGBoost hail nowcasting models.

height di↵erence between the maximum altitude with a 45 dBZ reflectivity (echo top 45) and

the freezing level height. The freezing level height information stems from the operational NWP

model COSMO-CH. POH values vary between 0 % and 100 % and indicate the probability at

ground-level (Foote et al., 2005b based on Waldvogel et al., 1979). MESHS is derived from the

di↵erence between the freezing level height and the 50 dBZ echo top. It provides estimates of the

maximum hail diameter per km2 at the ground for hailstones � 2 cm (Joe et al., 2004 based on

Treloar, 1998).

Additional radar variables were used as input for the statistical model. These include gridded

2-D radar variables such as e.g., the precipitation intensity and storm cell-averaged characteristics

obtained using the TRT algorithm (see Table 4.1 for a full list of all variables).

4.5.2 Satellite

Several infrared and water vapor channels from the Meteosat Second Generation Satellites (MSG;

Schmetz et al., 2002) provide information on cloud properties and upper-level dynamics (see Table

4.1 for details). For this work, only channels without a solar component were used, to guarantee

a consistent performance during day and night. The so called window channels, e.g. the 10.8 µm

channel, are absorbed little by the atmosphere; hence they are useful to observe the surface or

cloud top temperatures and their temporal derivative represents the cloud top cooling. Channel
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combinations with di↵erences in absorption of water and ice are used to estimate the cloud

top phase or the cloud optical thickness, particularly the channel di↵erence 12.0 µm – 10.8 µm

(CG3). The water vapour channels (6.2 µm and 7.3 µm) provide information about the water

vapour concentration and dynamics in the middle and upper atmosphere. The satellite data

has a subsatellite resolution of 3 km, which translates into 3 x 5 km in Europe. The data was

regridded to 1 km resolution. While the satellite data has a lower spatial resolution, developing

thunderstorms can be detected up to ten minutes before they are detected by the radar (Nisi

et al., 2014).

4.5.3 Numerical weather prediction model COSMO-1

The Consortium for Small-Scale Modeling (COSMO)-Model is a non-hydrostatic, limited-area,

numeric weather prediction model that is based on primitive, thermo-hydrodynamical equations

describing compressible flow in a moist atmosphere (see http://cosmo-model.org/). The basic

version of the model was developed by the German Weather Service and further adapted for

Switzerland by MeteoSwiss. COSMO-1 is a deterministic model simulated every 3 hours, with

a spatial grid-resolution of 1 km and model output is available hourly (MeteoSwiss, 2020b).

Convective variables, such as CAPE, the surface lifted index (SLI) or the level of free convection

(LFC) and other characteristics of the atmosphere at di↵erent vertical levels are extracted from

the analysis of COSMO-1 (see Table 4.1).

4.5.4 Lightning

Lightning measurements from the Météorage lightning detection network (EUCLID, see www.euclid.org)

exploit possible increases in predictability for example from lightning jumps (see e.g., Nisi et al.,

2020, for more details). All types of lightning (cloud to ground, intra-cloud) are considered (see

Table 4.1).

4.5.5 Topographical information and other data

Topographical data from the COSMO-1 model describing the complex topography and measuring

the e↵ect of thunderstorms passing over hills and mountains are measured through the aspects,

slopes and altitudes. Other data such as the sunshine angle, optical motion speed in u and v

directions, the cell locations and propagation speed are taken into account (see Table 4.1).

http://cosmo-model.org/
www.euclid.org
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Table 4.1: List of variables as well as their source, abbreviations and processing method (more

about last column in section 4.6.1). The bold words in the ”source” column are the names of the

data sources when mentioned in the results.

sources abbreviations names units statistics

radar

POH probability of hail %

all +

nonmin +

pixc

VIL vertically integrated liquid kgm�2

MESHS maximum expected severe hail size mm

ET15, ET20,

ET45, ET50

Altitude of maximum reflectivity for

15 dBZ, 20 dBZ, 45 dBZ and 50 dBZ
m

precipitation 5-minute precipitation intensity mmh�1

MaxEcho maximum column reflectivity dBZ

all +

nonmin +

pixc

RADAR

FREQ

QUAL

radar frequency quality dimensionless all

radar +

Cosmo-1

TRT Rank thunderstorm radar tracking severity dimensionless single

values
TRT Rank di↵

thunderstorm radar tracking severity

di↵erence to the rank at t0
dimensionless

satellite

(MSG)

IR 087
MSG IR channel 7 (8.7 µm); helps to

discriminate ice and water clouds

K all

IR 097

MSG IR channel 8 (9.7 µm; ozone

absorption band; indicates areas

with tropopause folding)

IR 108

MSG IR channel 9 (10.8 µm;

particularly sensitive to

high thin Cirrus clouds)

IR 120 Infrared channel 10 (12 µm)

IR 134 Infrared channel 11 (13.4 µm; CO2)

WV 062

Water vapour channel 5 (6.2 µm;

high altitude (⇠350hPa) water

vapor content of atmosphere)

WV 073

Water vapour channel 5 (7.3 µm;

mid altitude (⇠500hPa) water

vapor content of atmosphere)

CD1
cloud depth indicator 1

(WV 062-IR 108)

continued . . .
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. . . continued

sources abbreviations names units statistics

CD2
cloud depth indicator 2

(WV 062-WV 073)

CD4
cloud depth indicator 4

(WV 073-IR 134)

CD5
cloud depth indicator 5

(WV 062-IR 097)

CG1
cloud glaciation indicator 1

(IR 087-IR 120)-(IR 120-IR 108)

CG2
cloud glaciation indicator 2

(IR 087-IR 108)

CG3
cloud glaciation indicator 3

(IR 120-IR 108)

Cosmo-1

model

TWATER total column water content kgm�2

all

tropopause

height

tropopause height m

tropopause

temperature

tropopause temperature K

tropopause

pressure

tropopause pressure Pa

FF 10M wind speed 10 m above ground ms�1

VMAX 10M wind gust speed 10 m above ground ms�1

CAPE MU
most unstable convective available

potential energy (CAPE)
Jkg�1

CAPE ML mean surface layer CAPE Jkg�1

CIN MU most unstable convective inhibition

(CIN)

Jkg�1

CIN ML mean surface layer CIN Jkg�1

SLI surface lifted index K

LCL ML
lifting condensation level

(mixed layer)
m

LFC ML
level of free convection

(mixed layer)
m

T SO soil temperature K

T 2M
air temperature

2 m above ground
K

TD 2M
dew point temperature

2 m above ground
K

GLOB global radiation Wm�2

PS surface pressure (not reduced) Pa

continued . . .
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. . . continued

sources abbreviations names units statistics

MSLP surface pressure reduced to msl Pa

MSLP ten-

dency

sea surface pressure tendency Pa h�1

HZEROCL freezing level height m

WSHEAR 0-

3km

bulk wind shear (surface - 3 km) ms�1

WSHEAR 0-

6km

bulk wind shear (surface - 6 km) ms�1

PV 300 hPa,

500 hPa, 700

hPa

ertel potential vorticity at 300 hPa,

500 hPa and 700 hPa
Km2kg�1s�1

THETAE 300

hPa, 500 hPa,

700 hPa

equivalent potential temperature at

300 hPa, 500 hPa and 700 hPa
K

MCONV 300

hPa, 500 hPa,

700 hPa

moisture convection at 300 hPa,

500 hPa and 700 hPa
gpm

RELHUM 300

hPa, 500 hPa,

700 hPa

relative humidity at 300 hPa,

500 hPa and 700 hPa
%

U OFLOW,

V OFLOW

u and v components of

optical cell motion
ms�1

lightning

THX densIC lightning density inter/intra-cloud km�2

THX densCG lightning density cloud to ground km�2

THX curr abs lightning absolute current kA

THX curr neg lightning negative current kA

THX curr pos lightning positive current kA

THX dens total lightning density km�2

topo-

graphical

data

Topo Aspect

topographic aspect (negative dot

product of local aspect and

optical motion vector)

Topo Altitude topographic altitude m

Topo Slope topographic slope dimensionless

Cosmo-1

model

SOLAR

TIME SIN

sine component of

solar declination angle
dimensionless

single

values

(only t0)

continued . . .
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. . . continued

sources abbreviations names units statistics

SOLAR

TIME COS

cosine component of

solar declination angle
dimensionless

TRT

cell

properties

CG
number of cloud to ground (CG)

lightning in cell; past 5 min
dimensionless

CG minus
number of negative CG lightning

in cell; past 5 min
dimensionless

Dvel x
spread of cell velocity

in East West direction
kmh�1

Dvel y
spread of cell velocity

in South North direction
kmh�1

ET15 maximum ET15 in cell km

ET15m mean ET15 in cell km

ET45 maximum ET45 in cell km

ET45m mean ET45 in cell km

POH maximum POH in cell km

RANK TRT rank [0:4] dimensionless

RANKr detailed TRT rank (0:40) dimensionless

VIL maximum vertically integrated liquid kgm�2

angle
ellipse angle of ellipse

delimitating TRT cell
degrees

area area of the TRT cell km2

det detection threshold of TRT cell dBZ

ell L ellipse, semi-major axis km

ell S ellipse, semi-minor axis km

ich zonal cell position in Swiss coordinate

system

dimensionless

jch meridional cell position in Swiss coor-

dinate system

dimensionless

lat latitude of cell center degree

lon longitude of cell center degree

maxH maximum MaxEcho within TRT cell km

maxHm mean MaxEcho within TRT cell km

perc CG plus percentage of positive CG lightning in

cell, past 5 min

%

vel x velocity of cell in East West direction kmh�1

vel y velocity of cell in South North direction kmh�1
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4.6 Methods

4.6.1 Data retrieval and preprocessing

The following data retrieval methods were implemented in the course of the Coalition-3 project.

The thunderstorms that pass through the radar coverage area of the Swiss radar network are

tracked using the TRT algorithm. While in an operational setting this distinction would not

be made, in our dataset we regard only the cells with a minimum lifetime of 15 minutes. Each

5-minute TRT cell position is treated using the following procedure: First, a circle with a diam-

eter of 23 km is placed on top of the TRT cell at t0 (t0 = t; t0 being the moment of the last

measurement; Fig. 4.2). The size 23 km is chosen such that there is no influence from changing

cell sizes along their lifetimes and such that potentially important processes from thunderstorm

inflow regions are taken into account (Gagne et al., 2017 and Lagerquist et al., 2017 in Gagne

et al., 2019). Second, the likely position of this circle is extrapolated backward and forward every

5 minutes until t-45min and t+45min. The motion vectors are determined using the software

package pySTEPS (Pulkkinen et al., 2019). The algorithm is applied only to the strongest 1%

reflectivities (over all timesteps and the entire radar space) to avoid any influence of weak pre-

cipitation areas and to concentrate on the movement of the cell rather than the movement of the

background flow. Then, well suited targets are chosen for tracking with the algorithm of Shi and

Tomasi (1994). These movements are translated into 1 x 1 km2 gridded motion vectors using

the Lucas and Kanade (1981) algorithm. Each motion vector represents the optical cell motion

between two consecutive 5-minute radar time steps. Finally, the three motion vectors between

t-15min and t0 (t0 — t+15min) associated with the current cell position are averaged to yield

the vector �!vp (�!vf ), in which direction the initial circle at t0 is translated backward (forward).

In an operational setting, �!vf would be unknown and the last derived �!vp would be used instead.

This deviation from the potential operational setting was made to increase the likelihood of the

cells staying within the circles of the future positions and thus to decrease the chance of a good

model skill being attributed to the future cells not truly being within the circles. Furthermore,

the reason for not using known past cell positions as the centers of circles is to avoid issues related

to cells splitting and merging.

Within all circles, 12 statistics are calculated for each variable describing the thunderstorm and

its environment: sum, mean, standard deviation, minimum, maximum, the 1st, 5th, 25th, 50th,

75th, 95th and 99th percentile. Each statistic of each variable of each time step between t-45

and t0 is a feature and is used to predict the target variables. Some ML methods require the

features to be further preprocessed, e.g. through normalization (e.g., Manzato, 2013), however

this is not necessary for XGBoost.

The radar fields may contain many zeros or low values. Therefore, for all nine radar variables

(Table 1), statistics are calculated once on all values (all) and again on all values excluding the

minimum (nonmin). In addition, the number of grid-boxes with non-minimum values (“pixc”) of

each radar variable are used. For the maximum radar reflectivity (CZC), the number of grid-boxes
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t0t-45 – t-5

t+5 – t+15

𝒗𝒑

𝒗𝒇

t+25
t+35

t+45

Figure 4.2: Visualization of past (grey) and future (green) cell positions for one thunderstorm, of

which the features are extracted and for which nowcasts are produced. The example thunderstorm

position is shown within the black circle at t0. The dark blue line indicates this thunderstorms’

example TRT track and the vectors �!vp and �!vf indicate the average optical cell motion that deter-

mines the forward and backward extrapolated circle positions. The circles have a diameter of 23

km.

with values larger than 57 dBZ is also counted. For all count features, only the sum is used as a

statistic. The 12 statistics are calculated on all the other variables with grid-data as well. The

TRT cell properties are calculated within TRT cell contours (see Hering et al. 2008). Overall,

the total number of features is 10’610. In total 30’675 samples of cell histories are calculated in

this way.
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Figure 4.3: Chart presenting the XGBoost model building process, starting at a) and ending at

i).

4.6.2 XGBoost: models and configurations

Figure 4.3 summarizes the steps taken for creating the nowcasting models from the initial as-

sembled data table to the evaluation. These choices were made independently from Coalition-3.

After initially splitting the full data set into 70% training and 30% test data set (Fig. 4.3a), the

target data sets are defined (Fig. 4.3b). The ML algorithm XGBoost is trained to nowcast the

time steps t+5’, t+10’, t+15’, t+25’, t+35’ and t+45’ after t02. For all lead-times, a first run

uses K-fold cross-validation and BO to determine the optimal hyper-parameters for four versions

of models that use all features (Fig. 4.3c). Subsequently, the models are trained again (without

cross-validation) with the previously determined optimal hyper-parameter configurations (Fig.

4.3d). The tuning and training process is repeated with a reduced number of top features, as

ranked by the first initial model (Fig. 4.3e-h). Finally, all models are evaluated using the test

data set (Fig. 4.3i).

All XGBoost models are created in R using the R-packages “xgboost” (Chen et al., 2020), “Ml-

BayesOpt” (Matsumura, 2019) and “rBayesianOptimization” (Yan, 2016). Unless specified dif-

ferently, the configurations are set to default.

2If approximately 5 minutes were needed to extract all data and run the models, then a t+10’ nowcast would
truly be a t+5’ nowcast.
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4.6.2.1 Defining the target data sets and model configurations

The target variables are the maximum POH and MESHS within the forward extrapolated po-

sitions of the circles. The POH dataset is strongly skewed, with half the values being zero and

a third of the remaining values being greater than 80 %. Other studies have used postpro-

cessing methods, e.g. an isotonic regression to correct highly uncalibrated probabilistic output

(Niculescu-Mizil and Caruana, 2005; Lagerquist et al., 2017; McGovern et al., 2019a; Burke et al.,

2020; Flora et al., 2020). I deal with this issue by splitting the task of predicting whether POH

is < 10 % or � 10 % and predicting the actual POH value between two prediction models. The

binary XGBoost model has the task of predicting the probability of POH being <10 % or �
10 % with a logistic regression as the objective function. The POH values � 10 % are then

predicted using the linear XGBoost model that has a linear regression as the objective function.

MESHS, having the particularity of not being defined for 0 – 2 cm, is also predicted using the

same configuration as POH with two models applied consecutively. The binary XGBoost model

predicts whether MESHS will have a value � 2 cm or = 0 cm and the linear XGBoost model

predicts the � 2 cm MESHS values. Before training the linear XGBoost models, the samples

with zero values in their target variable are therefore removed such as to decrease the influence

of zero values on the resulting prediction. For binary models the loss is measured by the negative

log-likelihood function (logloss) and for linear models by the root-mean-squared-error (RMSE).

4.6.2.2 Hyper-parameter tuning

Tuning hyper-parameters of a model has two main purposes. The one is discovering the best

model configuration as e�ciently as possible and the other is to avoid over- or underfitting the

models. I tune the following set of hyper-parameters. Initial tests (not shown) have framed the

final range of values indicated in the brackets.

• eta (0.1–1): the step size shrinkage, which controls the learning rate

• max depth (4–6): the maximum depth of a tree, which controls the number of consecutive

nodes

• subsample (0.1–1): Which fraction of the original sample of data points should be used at

each iteration

• colsample bytree (0.4–1): Which fraction of features should be used at each iteration

• nrounds (200–750): Optimal number of iterations to reach the smallest testing error; it is

also the number of trees

XGBoost further allows tuning alpha, lambda and gamma. Alpha removes unimportant features,

a process also known as the L1 regularization. Lambda limits the possibility of few, very impor-

tant features being too dominating, also called the L2 regularization. Gamma, also known as the

Lagrangian multiplier, defines the minimum loss reduction needed to make a further partition

on a leaf node of the tree ((Chen and Guestrin, 2016)). The XGBoost models predicting storm
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severity in Coalition-3 were tuned for these parameters, lowering the RMSE by 1–8 % for the

di↵erent lead-times (Ulrich Hamann, personal communication).

To further prevent overfitting, I apply a 3-fold cross validation with early stopping. To profit from

early stopping, the model is tested against the folded validation data sets after each iteration.

Thanks to early stopping, the model stops adding more trees as soon as the test performance has

continuously deteriorated for more than a specified number of iterations that is subjectively set

in advance (called early stopping rounds; in this project subjectively set to 5).

Which hyper-parameter combinations are tested? Default methods to choose configurations are

grid-search, i.e. testing all combinations of a set of parameter values, or random search, i.e.

random parameter combinations are sampled. In this project, I use the Bayesian Optimisation

method (BO, Mockus et al., 1978 in Snoek et al., 2012). BO is more e�cient than the previously

mentioned methods, because it pays attention to the information given by previously tested hyper-

parameter configurations to choose the configuration that will be tested next. The models are first

trained with a randomly sampled set of 15 initial hyper-parameter configurations. Subsequently,

30 additional iterations determine the ideal set of hyper-parameters. See more details on the

applied BO method in the Appendix section B.1.

4.6.2.3 Final training and reducing the number of features

Noticing that BO suggests several di↵erent hyper-parameter configurations with very similar re-

sults (see example in Appendix Fig. B.1), not only the best configuration but the four best

configurations modeled with all features are retrained. Hereafter, these four models are called

v1-v4. These models indicate the robustness of results, with respect to the choice of hyper-

parameters.

In an operational setting, the available computation time is limited. A reduction in number of

input features reduces computing time. Furthermore, fewer features make the algorithm less

susceptible to failures in data delivery. To understand how a reduced number of features a↵ects

the model performance, models with only the most important 5, 10, 30, 50, 100, 500 and 1000

features are trained again (called p5, p10, etc.). The importance of features is measured by the v1

model gain. The gain measures the average gain of all splits of a feature, divided by the amount

of information in the split itself (see Kuhn and Johnson, 2013, p. 378). For the p-models, hyper-

parameters are also first tuned using K-fold CV and BO and later used to retrain the actual final

models.

In summary, this project created for each of the 6 lead-times and 4 model types (POH binary,

POH linear, MESHS binary and MESHS linear) 11 models with distinct configurations (v1-v4,

p5-p1000).
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4.6.3 Model evaluation

Finally, the quality of the models is evaluated using the 30 % of the dataset that had been set

aside as a hold-out test dataset. For the linear XGBoost models predicting non-zero POH, any

prediction smaller than zero or greater than 100 is set to 0 or to 100, respectively. For the linear

XGBoost models predicting MESHS, any predicted value < 2 cm is set to 2 cm. The models are

evaluated with binary, probabilistic and linear verification scores (see Appendix sections B.2 and

B.3 for equations). In all cases, the model performances are compared to Lagrangian persistence

nowcasts and, for the binary models, to the climatological nowcasts. The persistence nowcast

extrapolates the target values at t0 forward in space to the future positions. The climatological

nowcast predicts hail using a randomly perturbed target dataset.

Binary verification methods require probabilistic predictions to be binarized. Unless clearly stated

otherwise, any probability > 0 is converted to 1 (POH � 10 %, MESHS � 2 cm). The dotted

lines in the performance diagrams (Fig. 4.6 and 4.12) explore the e↵ect of altering this threshold

to higher values in decimal steps.

4.6.3.1 Binary and probabilistic verification scores

The binary scores are calculated using the contingency table (Table B.1), which counts the num-

ber of hits, false alarms, misses and correct rejections. The applied binary skill scores include

the symmetric extreme dependency index (SEDI; Ferro and Stephenson, 2011). This index is

base rate independent, complement symmetric and is an index that is commonly used to deal

with the verification of rare events. The SEDI can range between -1 and 1 with 1 being the best

result and 0 indicating no skill. The approximate 95 % confidence interval of the SEDI gives an

estimate of uncertainty of the SEDI based on the number of values (Ferro and Stephenson, 2011).

The probability of detection (POD, also called Hit Rate) measures the fraction of correctly

predicted observed events out of the total events observed. The false alarm ratio (FAR) is the

ratio of the false alarms to the total events forecasted. Note that the SEDI is calculated from

the POD and false alarm rate, which should not be confused with the FAR. The POD and FAR

are used to create a performance diagram (Roebber, 2009). In the performance diagram, the

FAR is hidden in the success ratio, which is calculated with 1 – FAR. A perfect forecast will

have a success ratio and a POD of 1. A point on the performance diagram that is not on the

diagonal between (0,0) and (1,1) indicates a frequency bias. The frequency bias is the fraction of

observed events divided by the predicted events. A point above (below) the diagonal is a sign of

overforecasting (underforecasting); it means that there are more (less) false alarms than misses.

Finally, the critical success index (CSI, also called threat score) is sensitive to both misses and

false alarms and is calculated by dividing the hits by the sum of the number of hits, false alarms

and misses (Roebber, 2009, ; see also Appendix section B.2).
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4.6.3.2 Linear verification scores

Linear verification scores (see also Appendix section B.3) include the mean error (ME, also called

linear bias), the mean absolute error (MAE), which measures the magnitude of the error, and the

root-mean squared error (RMSE), which is similar to the MAE except that it strongly penalizes

the greater errors. Furthermore, the linear correlation measures the linear association between

the prediction and target. The Taylor diagram (Taylor, 2001) graphically represents the cosine-

relationship between the centered RMSE, the correlation and the standard deviations of the

prediction and target data set. Compared to the RMSE, the centered RMSE is debiased as

shown in equation 4.1 with y as the predicted values, x as the target values and N as the lengths

of the vectors x and y.

cRMSE =

vuut 1

N

NX

i=1

[(y � y)� (x� x)]2 (4.1)

In the Taylor diagrams in Fig. 4.7 and 4.13, the centered RMSE and the standard deviations

are normalized by the standard deviation of the target data set such that di↵erent models with

di↵erent target data sets are comparable (Kärnä and Baptista, 2016). The Taylor diagrams

compare the XGBoost model performances to the persistence in two ways: The first evaluation

shows the combined error of nowcasting the occurrence of POH/MESHS and its value (e.g., Fig.

4.7a). The second shows the conditional error, provided that POH/MESHS is non-zero (e.g., Fig.

4.7b). For the second evaluation, the focus lies on evaluating the linear model, independent of

the binary models’ skill.

4.6.4 Post-processing with Probability Matching (PM)

Results of linear prediction models show that when the di�culty of predicting a target increases,

the standard deviation of the prediction decreases and the model tends to predict the value

with lowest cost. This di↵erence in standard deviation and any additive bias can be corrected

using probability matching (Ebert, 2001). This method consists of displacing the predicted

values, as fitted on an empirical cumulative density function (ecdf), to its target ecdf counterpart

(see e.g., Fig. 4.4). This procedure removes any di↵erence in standard deviation and therefore

makes a comparison with the persistence nowcast easier. The results of the probability-matched

predictions have a slightly larger RMSE and lower correlation (see e.g., Fig. 4.7).

4.6.5 Model interpretation

One major criticism of machine learning based weather prediction models is their apparent lack

of meteorological interpretability. While the detected linear or non-linear relationships between

variables may truly have no direct meteorologically explainable background, observing the feature

importance may lead to targeted hypotheses. The SHAP value (Shapley Additive explanation;

Lundberg and Lee, 2017), a method that is based on game theory (Shapley, 1953), derives from

the model the individual contribution of each feature to a particular prediction. The SHAP value

measures the average of all permutations of marginal contributions of each individual feature to
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Figure 4.4: Example of probability matching for the prediction using the t+25’ POH linear model

v1. The XGBoost prediction values (ecdf in red) are corrected such that the new probability

matched ecdf (XGBoost PM; in orange) fits the ecdf of the target data set (in black).

the final model prediction. If we consider N features with S being a subset of N and ⌫(S) the

contribution of the S features to the model prediction, then feature i ’s marginal contribution is

⌫(S [ {i})� ⌫(S). The average of all permutations leads to a SHAP value of:

�i(N, ⌫) =
X

S✓N\{i}

|S|!(|N |�|S|� 1)!

|N |! [⌫(S [ {i})� ⌫(S)] (4.2)

I recommend reading more on SHAP and other model interpretation methods in e.g. (Molnar,

2021).

For binary predictions of POH or MESHS, a positive (negative) SHAP value increases (decreases)

the probability of POH � 10 % or MESHS � 2 cm. For the linear models, a positive (negative)

SHAP value increases (decreases) the predicted values of POH or MESHS. The graphs related

to SHAP values in the results section were made using minimally modified functions from the R

package “SHAPforxgboost” by Liu and Just (2020). The data sources of all features and of the

top 100 features (according to mean absolute SHAP values) of the p1000 models are counted by

lead-time and by which time steps (t-45’,..., t0) the statistics of variables were taken at (Fig. 4.8).

SHAP summary plots show SHAP values and their absolute mean, for the 30 most important

features of the p1000 models.
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4.7 Results

4.7.1 Probability of hail

4.7.1.1 Model evaluation
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Figure 4.5: SEDI (dots) and their 95 % confidence intervals (vertical bars; see eq. B.4) of POH

binary predictions for each model version (x-axis) and lead-time, with the XGBoost test dataset

(dark purple), the climatology (red) and persistence (light purple).

Figure 4.5 shows the SEDI and their 95 % confidence intervals for each model and each lead-time.

As the lead-time increases, the SEDI of the Lagrangian persistence decreases from 0.8 at t+5’

to 0.45 at t+45’. At t+5’, the persistence fares better than all binary XGBoost models, except

model v2. At all larger lead-times, the best XGBoost models produce better nowcasts than the

persistence. The gap between model and persistence increases with increasing lead-time. The

SEDI of the best models stay mostly at 0.76 and the best model for t+45’ has a higher SEDI

than t+35’ or t+25’, with a SEDI of 0.78. The reason why SEDI remains so high, despite the

increasing lead-time is the simultaneous decrease in number of hits and increase in number of

correct rejections. The number of false alarms always remains low and the number of misses

increases slowly up to t+25’ and then decreases again for higher lead-times (see Fig. B.2 and

B.3 in the Appendix). The number of POH < 10 % cases increases with lead-time, since the

likelihood that a thunderstorm has dissolved at t+45’ is higher than at shorter lead-times. While

according to BO, v1 should be the most skilled prediction model, sometimes v2, v3 or v4 yield

higher SEDI scores against the test dataset. For each lead-time, reducing the number of features

of v1 to its top 5, 10 or 30 features has a strongly detrimental e↵ect on the model skill. An ideal

number of features seems between 50–500 features for t+5’ and between 500–1000 features for

larger lead-times.
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Figure 4.6: Performance diagram for binary predictions of POH at di↵erent lead-times (colors)

and for the di↵erent configurations (crosses = Lagrangian persistence, triangles and diamonds

= all binary XGBoost models v1-v4 and p5-p1000, circles = climatology). The y-axis shows

the POD, the x-axis the SR (1-FAR), the curved lines indicate the CSI and the dashed lines

the frequency bias. The colored boxes show the confidence interval (CI) calculated by percentile

bootstrapping the observations and predictions for the XGBoost models v1. The threshold (th)

that separates predicted binary values (0 is POH < 10 % vs. x > th = POH � 10 %) is 0.0. For

v1, the dotted lines indicate the performance values for th between 0.0 and 0.9 in steps of 0.1.

Other models of the same color have similar CI and di↵erent binary thresholds behave similarly

to the examples shown.

The performance diagram in Fig. 4.6 explores the quality of models and persistence according to

the POD, Success Ratio, CSI and frequency bias. While Fig. 4.5 clarified the e↵ect of di↵erent

model versions and di↵erent numbers of features in a model, this diagram focuses more on why
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the model quality decreases with increasing lead-time and reduced number of features. As in

Fig. 4.5, the performance of the best binary XGBoost model is equal (t+5’) or better than the

persistence (other lead-times; Fig. 4.6). For t+5’, the best model has a CSI of 0.75, a POD

between 0.8 and 0.9 and a Success Ratio of 0.85. The persistence (climatology) has a CSI of 0.75

(0.34). As the lead-time increases, the CSI values of the best model versions decrease in steps of

approximately 0.02-0.07. To maximize the CSI, a slightly higher binarization threshold of about

0.2-0.6 needs to be chosen, which shifts the performance of the model to a higher CSI and closer

to the diagonal in this diagram. If the probability threshold is set even higher, the frequency bias

becomes < 1 and the number of misses surpasses the number of false alarms. Despite their POD

rising to 1, models predicting with a lower number of features tend to have a strongly positive

frequency bias between 1.3 and 3, predicting more false alarms than misses (Fig. 4.6).
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Figure 4.7: Standardized Taylor diagram to evaluate POH predictions at di↵erent lead times

(colors) comparing the test data set (triangles) and persistence (crosses). Di↵erent triangles of

the same color are the v1-v4 models for the same lead-time. a) evaluates the combined error of

the binary and linear models and b) shows the linear model performance assuming 100 % correct

binary predictions.

Figure 4.7 shows the Taylor diagram for the linear models predicting the POH values � 10 %,

with and without probability matching. Fig. 4.7b shows what the performance would be if the

binary XGBoost model had perfect skill. For visualization’s sake, only the v1-v4 models and their

corresponding persistences are shown. The reason why the persistence does not have only one

result per lead-time in Fig. 4.7a is due to the binary model influencing which target-prediction

pair is evaluated in the linear predictions. The following statements are made based on Fig.

4.7a, although similar results can be said for Fig. 4.7b. At all lead-times, the models standard

deviations are always 25-50 % smaller than the target standard deviation. Probability matching

(PM) removes this di↵erence in standard deviation, however the correlation decreases marginally
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and the stcRMSE increases by 15-50 %. For the lead-times t+5’, t+10’, t+15’ and t+25’,

the persistence clearly suggests more correct POH values than the models. The standardized

cRMSE (stcRMSE) of the persistence for these lead-times are 0.6, 0.8, 0.9 and 1. For t+25’,

the persistence fares slightly better (stcRMSE = 1) than the probability matched predictions

(stcRMSE = 1.1). Only for t+35’ and t+45’, the XGBoost models predict values that are closer

to the truth than the persistence (stcRMSE 0.9 or with PM 1.1, vs. the persistence stcRMSE

1.2).

4.7.1.2 Model interpretation of binary models

The following XGBoost model interpretations are conducted for the p1000 binary XGBoost mod-

els predicting POH. Despite having 1000 features available, the model for t+5’ uses only 500

features (Fig. 4.8a). The remaining features all have mean absolute SHAP values equal to zero.

The models for larger lead-times use almost all available features. While the top 1000 features

stem primarily from the COSMO model (49 %), radar (21 %) and satellite variables (20 %), all

data sources are present (Fig. 4.8a). With increasing lead-time, the fraction of radar variables

reduces and the fraction of model variables increases (Fig. 4.8a). For the other data sources, the

number of variables per lead-time is close to constant. Fig. 4.8b indicates that radar variables

are most relevant for short lead-times (see also Fig. 4.9). Lightning variables constitute only 1.3

% of the top 100 variables. Of these, half are used for t+5’ predictions and none are used for

t+15’ and t+35’ predictions. Topographical variables slightly increase in number in the top 100

features from lead-times t+15’ to t+45’ (Fig. 4.8b).

The XGBoost models use predominantly the most recent measurements (Fig. 4.8c and d). Other

time steps of the cell histories are used as well, with the time steps t-20’ to t-30’ being used the

least. The radar-based features are dominant at t0, and their number decreases the older they

are (i.e. from t-5’ to t-45’). For satellite and model variables, after initially decreasing from t0
to t-25’, the number of features increases again from t-25’ to t-45’. Compared to the top 1000

features, there are 2 times more statistics taken at t0 vs earlier time steps within the top 100

features (Fig. 4.8c vs. d). The distributions shown in Fig. 4.8c and d look similar if created

separately for each lead-time (see Fig. B.4 in Appendix).

The standard deviation provides � 20 % of all statistics within the top 1000 features at all

lead-times, which is often more than double the frequency of other statistics. The frequency of

the remaining statistics fall close to the range of random sampling ( 8 %), except for the mean,

which tends to have a very low count (see Appendix Fig. B.5). Within the top 100 features,

short lead-times have strongly varying frequencies of statistics, led by the 75th percentile, the

standard deviation and the sum. As the lead-time increases, the standard deviation becomes

more frequent than other statistics.

The models are further interpreted using SHAP summary plots, showing SHAP values for the

30 most important features of the p1000 models. Large statistical values of most radar variables

at t0 increase the probability of POH � 10 % at t+5’ (Fig. 4.9). The SHAP values of the most
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Figure 4.8: For all 1000 features (a and c) and the top 100 features (based on the mean absolute

SHAP value; b and d) of all the binary XGBoost models predicting POH with 1000 features

(p1000), the number of variables per lead-time (a and b) and time step (c and d) at which the

statistics were taken. Colors indicate di↵erent data sources (see Table 4.1).

influential feature, the sum of all POH values at t0 (POH (sum) t0), suggest that the larger the

area with high POH values, the more likely the maximum POH will be � 10 % at t+5’. These

observations suggest that the model recognizes that nowcasting the most recent state of the at-

mosphere has a high skill, in particular for very short lead times. However, there are also some

unintuitive exceptions, e.g. if at t-5’ the sum of ET50 values is high, it decreases the probability

of POH � 10 % (see 16th row ”ET50 (sum) t-5’” in Fig. 4.9). For t+10’ and t+15’, the SHAP

summary plots look similar to Fig. 4.9(see Appendix Fig. B.9 and B.10). For these lead-times,

top features include other statistics but still mostly radar variables and the mean absolute SHAP

values do not decrease as steeply as for t+5’.

At t+45’, feature values suggesting an intense (weak) thunderstorm activity at t0 also increase
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Figure 4.9: SHAP summary plot for the 30 most important features of the binary XGBoost model

predicting POH at a lead-time of 5 min using 1000 features. Numbers on the left side in the graph

are the mean absolute SHAP values. Lime green (dark blue) colors indicate low (high) feature

values (colored by rank for visibility). The vertical spread of dots mirrors the probability density

function. Negative (positive) SHAP values indicate that the feature has a decreasing (augmenting)

e↵ect on the probability that POH � 10 %.

(decrease) the probability of POH � 10 % (see first five rows in Fig. 4.10). Next to radar vari-

ables, the 30 most important features for a t+45’ prediction include more higher altitude atmo-

spheric properties (WV 062, PV, CG3, CD2), topographic features (Topo Aspect, Topo Altitude)

and features describing the vertical temperature profile and energy content of the atmosphere

(CAPE ML, CIN MU, TD 2m). The SHAP values for PV 300 hPa (min) t-35’ (16th row in Fig.

4.10) are positive for very high values and very low PV values. For moderate values, the SHAP

values are negative. It is a good example indicating a non-linear influence of a feature on the
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predicted value.

Next to radar-based features, several variables appear repeatedly within the top 30 features of

XGBoost models predicting POH. These are, for example, the water vapour channel 5 (WV 062;

t+15’, t+25’, t+35’, t+45’), the mean and/or maximum MaxEcho within the TRT cell at t0

(all lead-times), the u and/or v components of the optical cell motion (U OFLOW, V OFLOW;

all lead-times except t+15’) and the topographic aspect (t+15’, t+25’, t+45’; see Fig. 4.9, B.9,

B.10, B.11, B.12 and 4.10).

Figure 4.10: SHAP summary plot for the 30 most important features of the binary XGBoost

model predicting POH at a lead-time of 45 min using 1000 features. Lime green (dark blue)

colors indicate low (high) feature values (colored by rank for visibility). See caption of Fig. 4.9

for more details.
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4.7.2 Maximum expected severe hail size

4.7.2.1 Model evaluation
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Figure 4.11: SEDI (dots) and their 95 % confidence intervals (vertical bars; see eq. B.4) of

MESHS binary predictions for each model version (x-axis) and lead-time, with the XGBoost test

dataset (dark purple), the climatology (red) and persistence (light purple).

We observe a decrease in SEDI with increasing lead-time for both binary XGBoost models and

persistence predicting MESHS (Fig. 4.11). For t+5’, the XGBoost models and the persistence

have SEDI values close to 0.8. These values decrease to 0.73 for XGBoost models and to 0.3

for the persistence at t+45’. The decrease in SEDI value of the binary XGBoost models is slower

than of the persistence and the best XGBoost model SEDI values for t+35’ and t+45’ do not

statistically significantly di↵er. The best predictions are made either by the models v1-v4 (t+10’,

t+25’), or the p100 models (other lead-times). The higher the lead-time, the worse p5 and p10

models fare, compared to models with a higher number of features. Considering computing time

optimization being easier with fewer features, an ideal number of features is likely between 50-100

features for the larger than t+5’ lead-times. For t+5’, depending on the relative importance of

the probability of detection and false alarm ratio (see Fig. 4.12) one may prefer using either the

XGBoost model or the persistence to nowcast MESHS. For binary MESHS predictions, di↵erent

hyper-parameter configurations (models v1-v4) do not exhibit statistically significant di↵erences

in SEDI.

Figure 4.12 shows the performance diagram for the binary XGBoost models predicting MESHS

(triangles v1-v4 and diamonds p5-p1000) as well as the persistence (crosses) for the di↵erent

lead-times (colors). The XGBoost models predict the occurrence of hail with a CSI of 0.5 for

t+5’, of 0.4 for t+10’ and t+15’, 0.38 for t+25’ and 0.34 for t+35’ and t+45’. The persistence

CSI is equal for t+5’, 0.38 for t+10’ and worse than 0.3 for larger lead-times. The climatology
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Figure 4.12: Performance diagram for binary predictions of MESHS � 2 cm vs. MESHS =

0 cm at di↵erent lead-times (colors) and for the di↵erent configurations (crosses = persistence,

triangles and diamonds = XGBoost models v1-v4 and p5-p1000, circles = climatology. See caption

of Fig. 4.6 for more details.

CSI is smaller than 0.05, likely because the observed non-events in the target dataset outnumber

the observed events by a factor > 6 (see Fig. B.7 in the Appendix). If the number of false alarms

and the number of misses should be balanced in XGBoost model predictions, the binarization

threshold assigning the probabilistic predictions to MESHS � 2 cm should be larger than 0.0 for

lead-times up to t+25’, and 0.0 for the higher lead-times (lines with dots in Fig. 4.12). The best

t+5’ model has an equal CSI as the persistence (CSI 0.51). For t+10’ and higher lead-times,

the best binary XGBoost models always show better CSI values than the persistence. Compared

to the 10-minute XGBoost models, the XGBoost models predicting higher lead-times mostly lose

skill in POD, while the Success Ratio stays mostly equal.
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Figure 4.13: Standardized Taylor diagram for linear MESHS predictions (with and without prob-

ability matching) for the models v1-v4, compared to the persistence. See caption of Fig. 4.7 for

more details.

The di↵erence between Fig. 4.13a and b shows the impact of the MESHS binary model prediction:

If the linear model is evaluated after applying the binary model, The MESHS linear models for

lead-times up to t+25’ predict values with larger stcRMSE than the persistence. For all lead-

times XGBoost models predict MESHS values � 2 cm with a stcRMSE of 0.8 or greater and

correlations between 0.2 and 0.5 (Fig. 4.13a). The stcRMSE of the persistence nowcast for t+5’

is 0.7 for the test sample which XGBoost binary models predicted to be � 2 cm (Fig. 4.13a)

and 0.8 for the test sample containing all non-zero values of the target dataset (Fig. 4.13b).

Particularly for large lead-times, the performances of di↵erent model versions di↵er strongly,

probably because of the small sample size (e.g., Fig. B.7).

4.7.2.2 Model interpretation of binary models

The data sources in binary XGBoost models predicting MESHS distribute almost identically as

for POH (Fig. 4.14). The di↵erence between the numbers of radar-based vs. model-based fea-

tures per lead-time in the top 100 features is smaller (Fig. 4.14b vs. Fig. 4.8b). Furthermore, the

fraction of satellite-based features per lead-time is larger and varies more. For binary predictions

of MESHS, t0 is the most used time step. However, the di↵erence in number of features describ-

ing t0 compared to the other time steps is smaller than for POH. The frequency of statistics

in MESHS models is almost equal to POH, with 20 % of the statistics of the top 1000 features

being the standard deviation. Compared to POH models, the statistics of the top 100 features

of MESHS models vary less and follow a similar distribution as the top 1000 features (Fig. B.8).

According to the SHAP values, the 30 most important features to nowcast binary MESHS at



4.7. Results 58

0

100

200

300

400

500

5m
in

10
m

in

15
m

in

25
m

in

35
m

in

45
m

in

lead-time

N

data source
topo
cell
satellite
lightning
model
radar

(a)

0

20

40

5m
in

10
m

in

15
m

in

25
m

in

35
m

in

45
m

in

lead-time

N

(b)

0

250

500

750

1000

t-4
5

t-4
0

t-3
5

t-3
0

t-2
5

t-2
0

t-1
5

t-1
0 t-5 t0

time step

N

data source
topo
cell
satellite
lightning
model
radar

(c)

0

50

100

150

200

t-4
5

t-4
0

t-3
5

t-3
0

t-2
5

t-2
0

t-1
5

t-1
0 t-5 t0

time step

N

(d)

Figure 4.14: For all 1000 features (a and c) and the top 100 features (based on the mean SHAP

value; b and d) of all the binary XGBoost models predicting MESHS with 1000 features (p1000),

the number of variables per lead-time (a and b) and time step (c and d) at which the statistics

were taken. Colors indicate di↵erent data sources (see Table 4.1).

a lead-time of 5 minutes are radar variables (22 out of 30 features), mostly taken at t0 (Fig.

4.15). Satellite-based features are on rank 10 (IR 108), 18 (CG2), 21 (CD2) and 26 (WV 073).

Same as POH, the SHAP values for most features support the indication that the present storm

intensity is likely to persist. For example, a high maximum POH (POH (max) t0 in 4th row)

and non-minimum mean POH at t0 (POH nonmin (mean) t0; 7th row) increase the probability

of MESHS � 2 cm at t+5’.

The top 30 features for the t+10’ XGBoost model using 1000 features are dominated by radar

variables, however with more statistics from VIL and less from rain rates than for the model

predicting t+5’. Other variables, such as the relative humidity (RELHUM), the LCL and the

lightning density (THX dens) are within the top 30 already at t+10’ (Fig. 4.16). As the lead-time

rises, the top 30 feature variables vary more in source and time step and the inclination towards



4.7. Results 59

Figure 4.15: SHAP summary plot for the top 30 features of the binary model predicting MESHS

for t+5’, using 1000 features. Lime green (dark blue) colors indicate low (high) feature values

(colored by rank for visibility). Negative (positive) SHAP values indicate a decreased (increased)

probability of MESHS � 2 cm.

being mostly on the positive or negative side of the SHAP = 0 line decreases – the predictions

loses in strength of conviction (see Fig. B.13 – B.16 in the Appendix).
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Figure 4.16: SHAP summary plot for the top 30 features of the binary model predicting MESHS

at a lead-time of 10 min using 1000 features. Lime green (dark blue) colors indicate low (high)

feature values (colored by rank for visibility). See caption of Fig. 4.15 for more details.

4.8 Discussion

4.8.1 Discussion of methods

Using all available environmental variables and all 12 statistics of all past time steps between

t0 and t-45’ results in 10’610 features. For the presented XGBoost models the results suggest

that at least 100 top features were needed to reach a similar performance as models using all

features. Even 100 features are quite a large number and are probably a challenge in an oper-

ational real-time nowcasting setting, particularly considering that the XGBoost models are (at

the moment) incapable of creating a prediction if any feature misses. Furthermore, the large
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number of features renders model interpretations more challenging. The SHAP method provides

a mean to interpret the XGBoost models, however given the many models, features and possible

interactions, it is di�cult to gain a comprehensive overview of important model choices. One

might prefer to create another ML model that has the task of helping with understanding these

models’ choices in the future.

The question arises, whether the number of variables and statistics are large enough to capture

all interesting thunderstorm environmental processes, despite some thunderstorm environmental

variables missing. These missing variables are, for example, the directional wind shear, the cloud

top divergence, the storm-based helicity and three-dimensional distribution of water and ice con-

tents in the atmosphere. Furthermore, radars in Switzerland provide dual polarization variables

that may give more details on updraft strengths and widths, for example through the di↵eren-

tial reflectivity (ZDR) and specific di↵erential phase (KDP) columns. These dual polarization

variables lead to a hydrometeor classification (Besic et al., 2016), which may also improve the

prediction. At MeteoSwiss, they were not included in nowcasting models yet, because they do

not yet exist in a Cartesian format.

The storms were tracked 45 minutes forward and backward starting at each TRT time step. At

the earliest position (t-45’) before a first TRT position and at the latest position (t+45’) after

the last TRT time step, the hailstorms might not actually exist. The models do not seem to

struggle with that aspect of cell life-time, because the number of false alarms stays relatively low

and the false alarm rate does not rise drastically with an increasing lead-time (see e.g., Fig. B.2,

B.3, B.6 and B.7).

The past and future cell positions were determined using the average of three optical cell motion

vectors close to t0. This method accounts for short-time changes in direction and speed, but does

not detect changes in direction or speed at time steps beyond 15 minutes of t0. Circle diameters

of 17 km, 23 km and 33 km had been tested during the development of the cell motion tracking

method. The diameter 23 km was chosen mainly for two reasons. First, cells were not as likely

to move out of the extrapolated positions at t-45’ and t+45’ compared to using a diameter of 17

km. Second, compared to 33 km, the statistics would not be influenced by neighboring cells as

much.

The Coalition-2 algorithms locating thunderstorms in satellite images could validated the back-

ward extrapolation method beyond TRT. Even though the extrapolation method solves the prob-

lem of thunderstorm cells splitting and merging, knowing about previous splits and merges might

have some predictive value.

In this project, the top features going into the p5-p1000 models were determined with the v1

model, despite the test results suggesting that v1 models do not always yield the best perfor-

mances compared to v2-v4 (see Fig. 4.5 and 4.11). It would have been more elegant to apply
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the feature reduction analysis on the best v1-v4 model available. Other solutions deal with

strongly skewed target variables. Instead of creating two separate models, predictions could be

post processed for example with an isotonic regression (Niculescu-Mizil and Caruana, 2005; see

e.g., Lagerquist et al., 2017; McGovern et al., 2019a; Burke et al., 2020).

4.8.2 Discussion of results

Compared to other studies predicting extreme weather events with samples sizes ranging between

105 to 106 (e.g., Flora et al., 2020; Lagerquist et al., 2017; Burke et al., 2020),a sample size of

3 x 104 seems relatively small. While for binary models, the di↵erent model versions v1-v4 and

p5-p1000 suggest that the sample size was su�cient, the linear XGBoost models su↵ered from the

small sample size. Splitting the task of predicting the targets into two (as a reaction to the skew

of the target variables), with one binary model being followed by a linear model, was, however,

a relative success.

Lead-time steps of 5 minutes represent a relatively high temporal resolution. The model qual-

ity is quite high, considering that no temporal error was allowed in the evaluation. The likely

reason why, compared to the climatology, the MESHS binary models performed better than the

POH binary model, is the distribution of the target variable. POH is calculated using the ET45.

MESHS uses ET50, a more extreme reflectivity value. Furthermore, MESHS � 2 cm has been

likened to POH > 80 % (Nisi et al., 2016), a much higher threshold than POH � 10 %. POH

models thus predict events that occur more frequently. For POH, the number of observed events

(hits+misses) is larger than the number of observed non-events (correct rejections+false alarms),

except at t+45’ (see Fig. B.3). For MESHS and all lead-times, the number of observed non-

events outnumber the observed events by a factor greater than 6 (Fig. B.7). This imbalance

in number of events vs. non-events a↵ects the e↵ect of the random perturbation of the target

dataset, through which the climatological prediction is defined. The much smaller number of

observed events in the MESHS dataset strongly reduces the number of samples used to train and

evaluate linear XGBoost models predicting MESHS. I hypothesize that these could be improved

by increasing the size of the data set.

To which degree these models are applicable on samples from other years has yet to be tested.

The year 2018 was characterized by thunderstorms that had quite atypical tracks; they did not as

often travel across the Swiss plateau in long, straight tracks from the south-west to the north-east

in the same way as, in other years (see Schroeer et al., 2019). Therefore, nowcasting models

that were trained on samples from di↵erent years may result in di↵erent model performances and

di↵erent SHAP feature rankings.

4.9 Summary and Conclusions

In this project, XGBoost models predicted the maximum probability and size of hail (POH and

MESHS), every 5 minutes up to 45 minutes in advance (excluding t+20’, t+30’ and t+40’), us-
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ing > 10’000 statistics of environmental and thunderstorm variables. These variables stem from

radar, COSMO-1, satellite, lightning and stationary data sets such as topographical information.

Cell histories are extracted, starting at thunderstorm positions determined by the TRT algoritm,

up to 45 minutes before the time of the latest observation. Thunderstorm cells are detected with

a temporal resolution of 5 min, which is the operational resolution of the Swiss radar network.

The past and future thunderstorm positions are estimated using vectors of optical cell motion.

Around each past and future position, circles with a diameter of 23 km define the area in which 12

di↵erent statistics of features (input variables) are calculated. Two target variables were defined,

the maximum POH and the maximum MESHS within the 23 km circles. For each target variable,

two types of models were tuned and trained. The two models are applied consecutively. The two

binary XGBoost models predict the probability of POH � 10 % and MESHS � 2 cm. The two

linear XGBoost models predicts the maximum value of POH and MESHS (POH linear, MESHS

linear) once the binary models have determined the presence of POH � 10 % and MESHS � 2cm.

To better understand the e↵ect of hyper-parameter tuning, the four best hyper-parameter configu-

rations are retrained to yield the binary and linear models v1-v4 for each lead-time. Furthermore,

a sensitivity study on the necessary number of features per model is conducted by retuning and

retraining models, which use only the top 5, 10, 30, 50, 100, 500 and 1000 features of the v1

model. Finally, the e↵ect of input variables on the nowcasting result was discussed using the

SHAP method, providing some insight into the choices made by the XGBoost models.

Results show that the binary POH models successfully predict the occurrence of hail with a CSI

of 0.75 for t+5’ and 0.58 for t+45’ (Fig. 4.6). For t+5’, the performance is as good as a

Lagrangian persistence nowcast. For large lead-times XGBoost models fare better (at t+45’ CSI

of persistence is 0.35). The linear XGBoost models for POH predict actual values with a greater

standardized centered RMSE (stcRMSE; RMSE that is debiased and standardized by the target

standard deviation) than the persistence up to t+25’. For t+35’ and t+45’, the XGBoost models

provide a better nowcasts, although with correlation coe�cients of 0.4 and stcRMSE’s close to 1.

MESHS binary models predict the occurrence of maximum MESHS � 2 cm with a CSI of 0.5

for t+5’ and 0.35 for t+45’ (Fig. 4.12). Compared to POH, binary XGBoost models for MESHS

perform much better at larger lead-times than the persistence and climatology (persistence and

climatology CSI at t+45’ are 0.1 and 0.05). The reason is that in the target data set, the

data set contains six times more MESHS = 0 cases than MESHS � 2 cm cases. Because of that

imbalance, the sample used to train and test the MESHS linear models was small and both the

persistence and XGBoost models yielded relatively poor predictions (Fig. 4.13). Furthermore, it

is more challenging to predict an event that occurs even more infrequently.

According to SHAP values, the most important features to predict POH and MESHS are radar-

based, followed by COSMO-1-based and satellite-based features. As the lead-time increases, the

number of radar-based features in the top 100 features decreases and the number of COSMO-
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1-based features increase. However, all data sources are present within the top 100 features for

binary XGBoost models predicting POH and MESHS. Although the statistics are taken predom-

inantly at the latest observation time, the other time steps between t-5’ and t-45’ are used too

(Fig. 4.8 and Fig. 4.14). Approximately 100–500 top features are necessary to reach the same

performance as the models using all features for both binary XGBoost models predicting POH

and MESHS (Fig. 4.5, 4.11). The larger the lead-time, the more important is a larger number

of features. The standard deviation is the most frequently used (20 %) of all 12 statistics within

the top 1000 and top 100 features.

SHAP summary plots (Fig. 4.9, 4.10, 4.15, 4.16; see also Appendix section B.6) suggest that the

models recognize the advantage of persistently predicting the latest observed state. Feature values

characterizing intense hailstorm activity at the latest observation time increase the probability

of POH � 10 % and MESHS � 2 cm at all lead-times. However, XGBoost models are capable

of recognizing other patterns in features, which provide a better prediction than the Lagrangian

persistence.

4.10 Outlook

During the implementation and writing of this project, many open questions and ideas for future

research ventures emerged.

In future projects, hail nowcasting using machine learning could be developed and improved as

follows:

• Extend the full dataset to include data from other years

• Add to the features list dual-polarization radar variables, including width and height of

ZDR and KDP columns. von Matt (2020) has found that ZDR-Columns are very likely

to increase the performance of hail nowcasting models in Switzerland. Furthermore, the

width of thunderstorm updrafts was found to have a strong connection to the amount of

hail growth (Nelson, 1983 and Foote, 1984 in Gagne et al., 2019).

• In this project, the models created with a smaller number of features took the top 5, 10,

etc., 1000 features as ranked by the v1 model. Another solution could first create the p1000

model with the top 1000 features of v1. The p1000 model may rank these 1000 features

di↵erently than the v1 model. The top 500 features going into the p500 model would then

be taken from the ranked features of the p1000 model. This iterative process could be

repeated to produce the remaining p-models.

• Tune the XGBoost hyper-parameters alpha, lambda and gamma (see section 4.6.2).

• Use SHAP values, instead of the gain, to determine the rank of features, determining which

features go into the p5-p1000 models

• Create spatial maps of model performance (e.g. Hill et al., 2020)
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• Analyze the SHAP values in depth for seasonal and diurnal cycles, create spatial maps of

SHAP values to determine regional di↵erences in feature importance and influence, explore

SHAP values by groups of similar features and observe interactions between features. These

analyses could provide more detailed information on hail predictability and help understand

strength and weaknesses of di↵erent features.

• Use for example generative adversarial networks (Goodfellow et al., 2014) to create thun-

derstorms that produce the largest hail for the longest duration as case studies. The case

studies could evolve into story lines to help simulate the hail risk.

• Test models that only use features taken at the latest observation time. If the model

performance were su�cient, we would not need to determine past positions to nowcast hail.

• Try using predicted target variables as input features for longer lead-times

Further ideas:

• Include more features describing the atmosphere at varying altitudes: Gagne et al. (2019)

demonstrated that incorporating both vertical profiles and spatial information into a deep

learning hail size diagnostic model could provide both increased hail size analysis skill and

insight into important factors for hail growth. Idealized modeling studies of supercells

found that small changes in moisture and wind profile could alter storm morphology and

hail growth(Gagne et al., 2019).

• Move towards seamless forecasting by combining the nowcasting result with extended NWP

model prediction e.g. from the module hailcast and extending the nowcast/forecast lead-

time to one or several hours. An example of an ongoing larger project aiming at developing

a seamless prediction system is the SINFONY project by the German Weather Service (see

DWD, 2021 and Blahak et al., 2018).

The MeteoSwiss Coalition-4 project is investigating these further ideas:

• Adapt the available input variable list to the next generation of geostationary satellites,

which are equipped with advanced imagers with increase spatial, spectral and temporal

resolution. Furthermore, space born lightning imagers could complement ground based

lightning observation or provide lightning observations for remote locations. The space

born hyperspectral sounder could contribute to improving the accuracy of temperature and

humidity profiles and the derived atmospheric instability.

• Extent the prediction to other thunderstorm specific hazards, such as heavy precipitation,

lightning, and wind gusts.

• Deep learning algorithms could be applied for the nowcasting of hail. Convolutional neural

networks accept images as input and could therefore interpret spatial structure. Recurrent

neural networks are promising for the interpretation of temporal developments. Generative

Adversarial Networks are capable of creating realistic ensembles with coherent spatial and

temporal statistics.
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Chapter 5

Multi-day hail clusters and isolated

hail days in Switzerland – large-scale

flow conditions and precursors

This chapter contains a manuscript that has been written together with Olivia Martius, Alessan-

dro Hering, Luca Nisi, Katharina Schroeer and Urs Germann. The manuscript has been submit-

ted under the title ”Multi-day hail events and isolated hail days in Switzerland – large-scale flow

conditions and precursors” in Weather and Climate Dynamics (Barras et al., 2021 (in review)).

5.1 Abstract

In Switzerland, hail regularly occurs in multi-day hail clusters. The atmospheric conditions prior

to and during multi-day hail clusters are described and contrasted to the conditions prior to

and during isolated hail days. The analysis focuses on hail days that occurred between April

and September 2002—2019 within 140 km of the Swiss radar network. Hail days north and

south of the Alps are defined using a minimum area threshold of a radar-based hail product.

Multi-day clusters are defined as 5-day windows containing 4 or 5 hail days and isolated hail

days as 5-day windows containing a single hail day. The reanalysis ERA-5 is used to study

the large-scale flow in combination with objectively identified cold fronts, atmospheric blocking

events, and a weather type classification. Both north and south of the Alps, isolated hail days have

frequency maxima in May and August-September whereas clustered hail days occur mostly in July

and August. Composites of atmospheric variables indicate a more stationary and meridionally

amplified atmospheric flow both north and south of the Alps during multi-day hail clusters. On

clustered hail days north of the Alps, blocks are more frequent over the North Sea, and surface

fronts are located farther from Switzerland than on isolated hail days. Clustered hail days north

of the Alps are also characterized by significantly higher convective available potential energy

(CAPE) values, warmer daily maximum surface temperatures, and higher atmospheric moisture

content than isolated hail days. Hence, both stationary flow conditions and anomalous amounts

of moisture are necessary for multi-day hail clusters on the north side. In contrast, di↵erences in

67
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CAPE on the south side between clustered hail days and isolated hail days are small. The mean

sea level pressure south of the Alps is significantly deeper, the maximum temperature is colder,

and local moisture is significantly lower on isolated hail days. Both north and south of the Alps,

the upper-level atmospheric flow over the eastern Atlantic is meridionally more amplified three

days prior to clustered hail days than prior to isolated days. Moreover, blocking occurs prior to

more than 10 % of clustered hail days over Scandinavia, but no blocks occur prior to isolated

hail days. Half of the clustered hail days south of the Alps are also clustered north of the Alps.

On hail days clustering only south of the Alps, fronts are more frequently located on the Alpine

ridge, and local low- level winds are stronger. The temporal clustering of hail days is coupled to

specific synoptic- and local- scale flow conditions, this information may be exploited for short to

medium-range forecasts of hail in Switzerland.

5.2 Introduction

In Switzerland, hail days can occur several days in a row. Such multi-day clusters of hail days can

cause substantial damage in a short time. Multi-day clusters of severe weather and associated

high impacts have also been reported from North America (Shafer, C., Doswell III, 2012; Trapp,

2014; Schroder and Elsner, 2020; Gensini et al., 2019). Although the atmospheric conditions

associated with hail in Switzerland and central Europe are well studied (e.g., Huntrieser et al.,

1997; Madonna et al., 2018; Taszarek et al., 2017; Púčik et al., 2015; Brooks, 2009; Púčik et al., 01

Nov. 2019; Kunz et al., 2020), little is known about the large-scale weather conditions that lead

to multi-day clusters of hail days. Such multi-day clusters are likely the result of the extended

longevity or repeated re-establishment of particular features of weather situations over Europe.

Addressing this research gap is relevant for insurance and forecasting applications. For insur-

ance companies, an important question is whether hail events can be considered as independent

or not. For forecasting, it is relevant to know whether processes and weather situations lead-

ing to isolated hail events and multi-day clusters of hail events di↵er substantially from each other.

Large-scale flow patterns have been linked to the spatial and annual variability of thunderstorms

in Europe (Piper et al., 2019; Mohr et al., 2019), and two case studies highlight two particularly

long-lasting sequences of consecutive thunderstorm days in central Europe (Piper et al., 2016;

Mohr et al., 2020). Piper et al. (2016) compare a 15-day episode of thunderstorms in Germany

in May–June 2016 with the period 1960–2014 and find that this event was exceptional for its

number of days with prevailing extreme precipitation or convection-favoring conditions. Mohr

et al. (2020) investigate a series of severe thunderstorms in May–June 2018 in central Europe and

find a blocking anticyclone that trapped moist and warm air over western and central Europe

and several cut-o↵s on the block’s southern fringe to provide exceptionally persistent low-stability

conditions. Madonna et al. (2018) compared large-scale conditions during June 2006, a month

with above-average hail days (12, average 9.2) with June 2004, where only 2 hail days occurred in

northern Switzerland. June 2006 saw warmer surface temperatures over most of Europe, higher

CAPE values, more moisture, and more unstable local conditions than the climatology. During
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June 2004, reanalysis data indicates increased blocking frequency south and west of Greenland,

less moisture, and more frequent lows and fronts in the Alpine region and north of the Alps.

Whereas these investigations have studied individual cases in detail, an analysis of the synoptic

and large-scale conditions during and leading to multi-day hail clusters in Switzerland has yet to

be conducted.

The first objective of this study is to quantify the occurrence of multi-day hail clusters in Switzer-

land and northern Italy in the period from 2002–2019. The second objective is to identify the

main features of large-scale circulation over Europe during and prior to multi-day hail clusters

and contrast these with those of the circulation on isolated hail days.

More specifically we aim to answer two questions:

• Which atmospheric conditions are associated with and di↵erentiate multi-day hail clusters

and isolated hail days in Switzerland north and south of the Alps during 2002—2019?

• Which atmospheric conditions occur on days before multi-day and isolated hail events?

The paper is structured as follows: Sect. 5.3 presents the data we use in this study. Sect. 5.4

focuses on the methods: how we defined clustered and isolated hail days and the method for de-

termining the statistical significance of the di↵erence between composites. Sect. 5.5 describes the

results, which are discussed and summarized in Sect. 5.6. The article ends with the conclusions

and outlook in Sect. 5.7.

5.3 Data

5.3.1 Probability of hail (POH)

This study uses the radar- and model-based probability of hail product (POH, Foote et al., 2005a

based on Waldvogel et al., 1979) to identify hail days between April and September 2002—2019

in the Swiss radar domain. POH is an operational product that indicates the likelihood of hail at

the ground (zero to 100 %) on a 1 x 1 km Cartesian grid, with radar hail data quality generally

assumed to be highest within a 160 km radius around the five Swiss weather radar stations (Nisi

et al., 2016). Car insurance loss data has verified a threshold of POH � 80 % to indicate the

presence of hail locally (Nisi et al., 2016; Madonna et al., 2018). The extent of the daily area

of POH � 80 % is extracted separately for a domain north of the Alps (Fig. 1, blue area) and

another south of the Alps (Fig. 5.1 green area). The domain south of the main Alpine ridge

contains southern Switzerland and a region of Northern Italy within a 140 km radius of the

weather radar stations (Fig. 5.1).

5.3.2 Car insurance loss reports

Area thresholds for the identification of hail days are defined with hail-related car insurance

loss reports provided by the Swiss Mobiliar insurance company. The insurance loss reports are
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Figure 5.1: The investigation areas south of the Alps (green) and north of the Alps (blue) overlaid

on a topographical map (gray shading). Light grey shading indicates the area within a 140 km

radius of the five Swiss weather radar stations with the highest radar quality (Nisi et al., 2016).

Switzerland is centered at 46.8 �N 8.2 �E.

available for the years 2003—2012 and are described in detail in Morel (2014) and Nisi et al.

(2016). Morel (2014) shows that some car insurance loss dates had to be corrected because of

human error. To increase the robustness of the car insurance loss information, we consider only

days with at least five car insurance loss reports.

5.3.3 Weather Type Classification

This study uses an automatic daily weather type classification (WTC) of the synoptic situation

over Central Europe (Weustho↵, 2011). The WTC has ten classes: eight classes for the eight main

wind directions and two classes for low- and high-pressure situations based on the geopotential

height at 500 hPa. The wind and geopotential data are taken from the ERA-Interim reanalysis.

5.3.4 Reanalyses

The two reanalysis data sets used in this study (ERA-Interim, see Dee et al., 2011, and ERA-5, see

Hersbach et al., 2020) are produced by the European Centre for Medium-RangeWeather Forecasts

(ECMWF). Our analysis considers the period April 2002–September 2019. We extracted ERA-

5 variables at a 6-hourly temporal resolution and a spatial resolution of 0.5�. The large-scale

dynamics are described through the Ertel potential vorticity (PV; in PV units (PVU)), calculated

and interpolated to the 335 K isentrope, and horizontal wind components at 250 hPa (in m

s�1). Daily atmospheric blocking events were calculated as in Rohrer et al. (2018), following the

algorithm developed by Schwierz et al. (2004). Synoptic and local conditions are represented
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by low-level winds (at 850hPa, in m s�1), the daily maximum surface temperature (T2M, in

degrees Celsius), the daily maximum convective available potential energy (CAPE, in J kg�1)

and the daily mean sea-level pressure (MSLP, in hPa). The daily statistics for these last three

variables are calculated from hourly values. Bulk wind shear values are obtained by subtracting

the horizontal wind components at 850 hPa from the wind at 500 hPa. The total precipitable

water (TPW, in mm) provides information on the moisture content of the atmosphere. The front

data stem from the ERA-Interim reanalysis that has been interpolated to a spatial grid of 1�and

has a temporal resolution of 6 hours (see Schemm et al., 2015, for details). These fronts have a

minimum gradient of equivalent potential temperature of at least 4 K per 100 km at 850 hPa and

a minimum length of 500 km. The composites show the percentage of all time steps with fronts.

5.4 Methods

5.4.1 Definition of hail days

We identify hail days by denoting the area where POH equals or exceeds 80 % during a day

as the daily POH footprint. To determine hail days, we need to define a minimum footprint

area. This is because, despite rigorous data quality control in the Swiss operational radar data

processing, some data points still have residual radar artefacts not related to hail. The number

of data points a↵ected is small considering the amount of ground clutter in the raw radar data

for an Alpine country, but we have to take them into account when identifying hail days using

daily POH footprints. We tested minimum footprint area thresholds between the 70th and the

95th percentile of the daily footprint area distribution in the northern and southern domains. We

found that the 80th percentile of the area distribution is best suited to identifying hail days. This

threshold best corresponds to days with car damage reported across Switzerland over 2003–2012

(Table C.1 in the Appendix). If we use the 80th percentile to define hail days, most days with

� 5 car insurance losses occur on hail days, and the number of days with � 5 car insurance

losses occurring on nonhail days are minimized. As a result, we define a hail day as a day with a

footprint greater than the 80th percentile of the POH � 80 % area distribution. This corresponds

to a daily maximum POH � 80 % over an area greater than 580 km2 in the northern domain

and greater than 499 km2 in the southern domain.

This definition produces an average of 26 hail days per hail season north of the Alps; a minimum

of 16 hail days occurred in 2014 and a maximum of 43 hail days in 2009. South of the Alps, it

produces an average of 25 hail days per hail season; a minimum of 15 hail days occurred in 2004

and 2007 and a maximum of 38 hail days in 2019.

5.4.2 Selection of serially clustered versus isolated hail days

To define the clustered hail periods and isolated hail days, we use a counting approach similar to

Pinto et al. (2014) and Kopp et al. (2021). In a period of 5 days we require multi-day clustered

hail periods to have at least 4 hail days and isolated hail periods to have only 1 hail day. To
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ensure independence, all isolated hail days must have a period of at least 3 nonhail days to the

next hail day.

All hail days in 2002–2019 and their assignment to the clustered or isolated hail day category are

shown in Fig. 5.2 and counted in Table 2.1. In total, 308 hail days are identified north of the

Alps and 294 hail days south of the Alps. North of the Alps, the period with clustered hail days

starts on day of the year (DOY) 129 (mid-May) and ends on DOY 238 (end of August). South

of the Alps, the period with clustered hail days starts a month later on DOY 160 (mid-June)

and ends on DOY 230 (mid-August). Isolated hail days occur earlier and later in the season

than clustered hail days (Fig. 5.2). To avoid seasonality e↵ects, all isolated hail days outside

the seasonal range of the clustered hail days are excluded, leaving 69 isolated hail days north of

the Alps and 42 isolated hail days south of the Alps. For significance testing, we separate the

clustered hail days into independent clustering periods of 5 days. We define independent periods

as 5-day periods separated by at least 2 days. In addition, series of hail days that cluster for

more than 11 days, for example in 2003, are split into independent 5-day clustering periods that

each contain at least 4 hail days. This results in 32 independent 5-day periods with a total of

135 clustered hail days north of the Alps and 21 of these 5-day periods with 89 hail days south

of the Alps. About half of all clustered hail days south of the Alps are also clustered hail days

north of the Alps (Fig.5.2). In summary, this article analyzes 204 (135+69) of a total of 308 hail

days north of the Alps and 131 (89+42) of 294 hail days south of the Alps (Table 5.1).

Figure 5.2: All hail days for each year between 2002 and 2019, north of the Alps (top rows,

blue colors) and south of the Alps (bottom rows, green colors); the clustered hail days have dark

circles, and the isolated hail days have light colored circles. Note that isolated hail days are only

considered in the analysis if they occur no earlier or later in the year than the earliest or latest

clustered hail day (marked by vertical dashed lines).
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Table 5.1: Number of hail days north and south of the Alps and the number of days leading to

them. The bold columns indicate how many days enter the composites of the large-scale flow.

clustered events isolated events
total
number
of hail
days

clustered
hail
days

days
before
clus-
tered
hail
days
(d-1,
d-2,
d-3)

clustered
hail
days in
inde-
pendent
5-day
periods

isolated
hail
days

days
before
iso-
lated
hail
days
(d-1,
d-2,
d-3)

isolated
hail
days
in the
DOY
range
of clus-
tered
hail
days

North of the Alps 308 164 31 135 96 69 69
South of the Alps 294 102 21 89 99 42 42

5.4.3 Composites of large-scale flow

Di↵erences in large-scale conditions during clustered and isolated hail days are assessed using

composites of the large-scale flow from reanalysis data. The composites are built for all 135

clustered and 69 isolated hail days north of the Alps and for all 89 clustered and 42 isolated hail

days south of the Alps (Table 5.1). We further build composites of the atmospheric circulation

prior to a hail event on the first (d-1), second (d-2), and third (d-3) nonhail days. For clustered

hail events, the first hail day of the cluster is day 0. For clustered hail events north of the Alps

(south of the Alps), d-1, d-2, and d-3 each include 31 (21) days. North of the Alps, the number of

days is not 32, the number of independent clusters, because in 2003, two independent clustering

periods shared a d-1, d-2, and d-3 day. For isolated hail events, north of the Alps we find 69 days

and south of the Alps 42 days for d-1, d-2, and d-3 (see Table 5.1). Because half of the clustered

hail days south of the Alps are also clustered north of the Alps, we also created composites

comparing hail days that are clustered both south and north of the Alps and compare them to

hail days that are only clustered south of the Alps.

5.4.4 Calculating the statistical significance of the di↵erences

We apply two-sample Kolmogorov-Smirnov (KS) tests (Bonamente, 2017, p.219-221) on 500

series of hail days. These were resampled from the original set of hail days to infer the statistical

significance of the di↵erences between composites of the atmospheric variables during clustered

and isolated hail days. More details on the resampling method are available in the Appendix

Sect. C.2. By applying the KS-test to 500 resample series, each di↵erence between isolated and

clustered hail day composites has 500 significance test results. To reduce the chance of type I

errors in the large number of p-values, we control the probability of rejecting the null hypothesis

with the false discovery rate and limit the probability that a rejected null hypothesis should have

been accepted to ↵FDR = 10 % (Wilks, 2016). In the di↵erence maps presented in the results
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section, we highlight the areas where more than 50 % or 80 % of the 500 tests indicate significant

di↵erences. The binary variables, fronts and blocks, are not tested for significance, and di↵erences

are only discussed qualitatively.

5.5 Results

5.5.1 Seasonality of isolated and clustered hail days

Figure 5.3: The total number of hail days (grey bars), the number of clustered hail days (darker

color), and the number of isolated hail days (lighter color) for 20-day windows across the hail

season for hail events north of the Alps (a, blue colors) and south of the Alps (b, green colors)

between 2002–2019. The numbers on the x-axis indicate the day of the year. In this graph, the

isolated hail days are also shown for the period outside of which clustered hail days are defined.

The seasonality of all hail days, the clustered hail days, and the isolated hail days are illustrated

by showing the total number of hail days per 20-day window across the hail season in the period

from 2002 to 2019 (Fig. 5.3). On both sides of the Alps, isolated hail days occur earlier and later

in the year than clustered hail days. Clustered hail days occur earlier in the hail season north

of the Alps than south of the Alps. South of the Alps, clustered hail days exhibit a pronounced

peak in the middle of the year, whereas isolated hail days are distributed more uniformly across

the hail season. There is a notable year-to-year variability (see Fig. 5.2). Both north and south

of the Alps, 20-day periods without clustered or isolated hail days occur in at least one of the 18

years.

5.5.2 Weather type classifications

We start by comparing the distribution of central European weather types during clustered and

isolated hail days. For all classes of hail days, the two most common weather types are westerly
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Figure 5.4: Relative frequency [%] of weather types per hail day category for hail events a) north

of the Alps and b) south of the Alps. The eight directional weather types are shown in the spider

plot, and low- and high-pressure weather type frequencies are indicated in the inset.

(W) and southwesterly (SW) winds in central Europe (Fig. 5.4). North of the Alps, westerly flow

is more common during isolated hail days (43 % compared to 27 %), and northerly flow is more

common during clustered hail days (22 % compared to 10 %). South of the Alps, the fraction

of days with a northwesterly flow is about twice as frequent (8 % higher) for clustered hail days

than for isolated ones. However, the overall similarity in fraction of weather types for all classes

of hail days suggests that the main wind direction over central Europe is too general an indicator

to di↵erentiate between clustered and isolated hail days, and we therefore present more detailed

composites of the large-scale flow next.

5.5.3 Large-scale weather situation during clustered and isolated hail days

5.5.3.1 Atmospheric conditions over Europe and the North Atlantic on hail days

north of the Alps

The upper-level atmospheric flow is represented by composites of the PV on the 335K isentrope.

In the PV composite for the clustered hail days, a trough is located over western Europe with its

axis at 10�W (Fig. 5.5a). The trough extends meridionally to southern Spain. A downstream

ridge with its axis located at 12�E over Italy tilts anticyclonically. Downstream of the ridge,

an anticyclonically tilted trough extends from the Black Sea to the eastern Mediterranean. The

anticyclonic tilt of the ridge and the trough point to anticyclonic Rossby wave breaking over

central and eastern Europe. During at least 5-10% of clustered hail days, an atmospheric block

is located at 66�N between Scandinavia and Iceland.

In the PV composite for isolated hail days, a trough is present over western Europe with the

trough axis located at 2�W (Fig. 5.5c). The meridional amplification of this trough is slightly
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weaker than the western European trough during the clustered hail days (Fig. 5.5e), but the

trough on isolated days is deeper at 50�N. The axis of the downstream ridge is located at 12�E

(Fig. 5.5c). The ridge does not exhibit a noticeable tilt. A downstream trough is located over the

Black Sea. The meridional amplitude of this trough is smaller than that of its counterpart in the

clustered hail day composite (Fig. 5.5e). Zonal winds at 250 hPa are significantly weaker over

the Mediterranean and central Europe (Fig. 5.5e). In the isolated hail days composite, a stronger

ridge is located upstream of Europe over the Atlantic at 30�W and a trough at 55�W (Fig.

5.5a, c and e). During at least 5-10% of the isolated hail days, atmospheric blocking occurred

over North America at 60-70�N and 50-80�W. The jet over the central Atlantic has a southwest–

northeast tilt during isolated hail days. Hence, the upper-level flow during clustered hail days is

characterized by a longer wavelength of the waves over Europe, by a stronger meridional ampli-

fication of the troughs, by wave breaking, and by a weaker zonal flow over Europe than during

the isolated hail days. All of these factors indicate a more stationary flow situation over Europe

during the clustered hail periods.

The air contains significantly more moisture ( 3-5 mm) over western and central Europe north

of the Alps on clustered hail days (Fig. 5.5b, d and f). On clustered hail days, the winds are

on average weaker than 4m s�1 at 850hPa and flow from SSW over northern Switzerland (Fig.

5.5b). On isolated hail days, the winds at 850hPa are significantly stronger and southwesterly

(Fig. 5.5d and f).

On clustered hail days, maximum daily temperatures are significantly warmer than isolated hail

days (+1 to +4 K) over northern Switzerland (Fig. 5.6a). Furthermore, the sea level pressure

is significantly higher than on clustered than on isolated days over Central Europe and northern

Europe (+2 to >+5 hPa, Fig. 5.6e). The sea-level pressure pattern and the weaker lower tropo-

spheric zonal winds north of the Alps on clustered hail days (Fig. 5.5b) indicate more stationary

conditions north of the Alps. No significant di↵erences in the wind shear are found over Switzer-

land (not shown).

On clustered hail days, cold fronts are less frequent just north of the Alps and over central France

than on isolated hail days (Fig. 5.6b and d) and more frequent over northern France and the

English Channel. Hence, cold fronts are further away from northern Switzerland during the clus-

tered hail days.

On clustered hail days, CAPE values over central Europe and the Mediterranean are larger than

on isolated hail days (Fig. 5.6b and d). The di↵erence over northern Switzerland is significant

and substantial at >400 J kg�1 (Fig. 5.6f). In summary, persistent warmer and more humid con-

ditions north of the Alps during clustered hail days contribute to significantly higher instability.
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Figure 5.5: For hail events north of the Alps, left column: Potential vorticity at 335 K (color

shading; in PVU), wind at 250 hPa (vectors, in m s�1) and atmospheric blocking frequency (dark

green contours for 5 %, 7%, and 10%). a) clustered hail days (n = 135 days), b) isolated hail

days (n = 69 days), e) di↵erence a minus c of PV at 335 K (color shading) and winds (vectors).

Statistically significant di↵erences for more than 50% (lighter contour lines) and more than 80%

of the resample composites (darker contour lines) of all 500 ks-test and FDR-corrected p-values

are shown in e) in green for PV at 335 K and in blue for wind at 250 hPa. Right column: TPW

(filled contours, in mm) and wind at 850 hPa (vectors). b) clustered hail days (n = 135 days),

d) isolated hail days (n = 69 days), f) di↵erence b minus d. Using the same framework as in

e), significant di↵erences are shown in green for TPW and in blue for wind at 850 hPa. The

brackets below the wind vector legends indicate the minimum wind speed that is visualized. The

grey contours show coastlines, and the black contour line shows the border of Switzerland.

5.5.3.2 Atmospheric conditions over Europe and the North Atlantic prior to hail

events north of the Alps

Composites of the days preceding the hail days illustrate the evolution of the upper-level changes

that result in the more meridionally amplified flow over Europe on clustered hail days. These

composites each consist of 31 days (see Table 5.1). Three days prior to the clustered hail events

north of the Alps, the trough over western Europe at 18�W exists, and a ridge is present over

central Europe (Fig. 5.7a). On at least 10% of the days, an atmospheric block is present over

Scandinavia north of that ridge. The flow is highly di✏uent upstream of the ridge, and the
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Figure 5.6: For hail events north of the Alps, left column: a) and c) daily maximum T2M (color

shading; in �C) and daily mean sea- level pressure (black contour lines, labels indicate by how

much the MSLP exceeds 1000 hPa in hPa) a) clustered hail days (n = 135 days), c) isolated hail

days (n = 69 days). e) Di↵erence a minus c. Statistically significant di↵erences for more than 50

% of the resample composites (lighter contour lines) and more than 80 % (darker contour lines)

of all 500 ks-test and FDR-corrected p-values are shown in green for T2M and in blue for MSLP

in e) Right column: CAPE (filled contours, J kg�1) and front frequencies (red, labelled lines) for

b) clustered hail days, d) isolated hail days, f) di↵erence b-d, the areas with > 50 % significant

di↵erences in CAPE are shown in blue hashes (> 80 % almost never present).

zonal flow over Europe is very weak. This di✏uence sustains the meridional amplification of

the upstream trough. One day later, the upstream trough over the east Atlantic widens zonally

(Fig. 5.7d). The ridge over Central Europe starts tilting anticyclonically at d-2 and so does the

downstream trough (Fig. 5.7d and g).

The troughs and ridges over Europe strongly amplify from d-3 to d-1 before isolated hail days

(Fig. 5.7b, e and h). Over the North Atlantic a ridge amplifies at 40�W, and atmospheric block-
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ing is present over the western and central Atlantic (Fig. 5.7b, e and h). The moisture content

of the atmosphere also increases by 2mm from d-2 to d-1 (Fig. 5.8b, e and h).

In summary, the flow is more di✏uent and meridionally amplified over Europe three days prior

to clustered hail days compared to isolated hail days. Prior to both clustered and isolated hail

days, the local atmospheric moisture content increases slightly from d-2 to d-1.
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Figure 5.7: PV at 335 K (colored contours), wind at 250 hPa (vectors) and blocking frequency

(contour lines) for the three days prior to clustered (left column) and isolated (central column)

hail days north of the Alps. The di↵erences are shown in the right column. See caption of Fig.

5.5 for details.
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Figure 5.8: TPW (colored contours) and wind at 850 hPa (vectors) for the three days prior to

clustered (left column) and (central column) isolated hail days north of the Alps. The di↵erences

are shown in the right column. See caption of Fig. 5.5 for details.
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5.5.3.3 Atmospheric conditions over Europe and the North Atlantic on hail days

south of the Alps

Similar to the north side of the Alps, a trough over western Europe is located further west on

clustered days ( 2�W) (Fig. 5.9a) than on isolated days ( 5�E) (Fig. 5.9c). The trough in the

clustered days composite is tilted anticyclonically in the subtropics. The downstream ridge over

Europe is centered at 18�E in both composites, pointing to a longer wavelength and hence slower

propagation of the waves on the clustered days. The ridge over central Europe is more amplified

in the clustered composite (Fig. 5.9e). The downstream trough over the Black sea and the east-

ern Mediterranean tilts anticyclonically in the clustered days composites (Fig. 5.9a). No blocks

are present over Europe during either clustered or isolated hail days.

In the lower troposphere, the winds on clustered hail days are on average weak (< 4 m s�1)

in and around Switzerland (Fig. 5.9b). On isolated hail days, westerly winds are slightly but

significantly stronger north of the Alpine ridge (Fig. 5.9d). The moisture content of the atmo-

sphere is higher over most of Europe during clustered hail days (Fig. 5.9b and d) and marginally

significantly higher (1-3 mm) over southern Switzerland (Fig. 5.9f).

Daily maximum temperatures during clustered hail events are significantly warmer by 2–3K south

of the Alps and by 1–2K over the Mediterranean Sea close to Italy (Fig. 5.10a, c, and e). The

di↵erences in mean sea level pressure between clustered and isolated hail days south of the Alps

show a weaker low-pressure area during clustered days east of Denmark and south of the Alps

(marginally significant, Fig. 5.10e), weaker high-pressure area over the east Atlantic (not sig-

nificant), and hence a weaker north-south pressure gradient upstream of the Alps. The mean

sea level pressure is higher north of the Alps than south of the Alps. Mean sea level pressure is

significantly higher on clustered hail days in a band along the southern edge of the Alps (Fig.

5.10e), and there is hence a stronger pressure gradient across the Alps on isolated hail days. On

clustered hail days, cold fronts are more often present northwest of the Alps (Fig. 5.10b) and

over the Bay of Biscay than on isolated hail days (Fig. 5.10d). In contrast, more cold fronts are

located directly over the Alpine ridge on isolated hail days than on clustered hail days.

CAPE values are statistically significantly larger on clustered hail days over parts of Italy (Fig.

5.10f), the northern Adriatic (di↵erence >800 J kg�1), and the Gulf of Genoa. In the study region

south of the Alps, CAPE values are insignificantly larger by 350-400 J kg�1 on clustered hail days

than on isolated days. No significant di↵erences in the wind shear are found over Switzerland

(not shown).
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Figure 5.9: During clustered and isolated hail days south of the Alps: left column: PV, winds at

250hPa and atmospheric blocking, right column: TPW and winds at 850hPa. In e), significant

di↵erences in 250hPa winds are shown with blue contours and in PV with green contours. In f),

the significant di↵erences in 850hPa winds are shown with blue contours and in TPW with green

contours. See Fig. 5.5 for more details.
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Figure 5.10: During clustered and isolated hail days south of the Alps: left column: T2M and

MSLP, right column: Fronts and CAPE. In e) the significances of di↵erences for MSLP (T2M)

are shown in blue (green) and in f) the significances of di↵erences for CAPE are shown in blue

hashes. See Fig. 5.6 for more details.
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5.5.3.4 Atmospheric conditions over Europe and the North Atlantic prior to hail

events south of the Alps

The Rossby wave pattern over Europe during clustered hail days exhibits a stronger ridge over

central Europe compared to the pattern on isolated hail days. Composites of the days preceding

the hail days illustrate the evolution of the flow resulting in this ridge formation.

Three days prior to clustered hail events, a trough is present at 18�W and a ridge upstream

is centered at 50�W (Fig. 5.11a). The trough at 18�W is tilted cyclonically. Although atmo-

spheric blocking is present over the northeastern Atlantic and Scandinavia on d-3, the blocked

area decreases in the following two days (Fig. 5.11a, d, and g). Over western Europe, the flow is

southwesterly, and a small ridge is present at d-3. A downstream trough is present over Greece.

Both the ridge over the central North Atlantic and the trough at 18�W amplify over the next

two days, and a strong southwesterly flow remains present over western Europe. Over the same

period, the ridge over central Europe amplifies, and the downstream trough over Greece breaks

anticyclonically. Hence, a typical example of downstream wave propagation is visible in the

lagged composites.

The moisture content of the atmosphere over the study region south of the Alps increases by 3

mm between d-3 and d-2 in the composite of the clustered hail days (Fig. 5.12a and d). Over

the study region, the air contains 1–3 mm more TPW prior to clustered days than to isolated

hail days (Fig. 5.12c).
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Figure 5.11: Composites of PV at 335K, winds at 250hPa, and atmospheric blocking frequency

for the three days prior to clustered (left column) and isolated (central column) hail days south

of the Alps. The di↵erences are shown in the right column. See caption of Fig. 5.5 for details.
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Figure 5.12: Composites of TPW (colored contours) and winds at 850hPa (vectors) for the three

days prior to clustered (left column) and isolated (central column) hail days south of the Alps.

The di↵erences are shown in the right column. See caption of Fig. 5.5 for details.
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5.5.3.5 Concurrent clustered hail days north and south of the Alps versus hail days

that are clustered only south of the Alps

During clustered hail days only south of the Alps, the dynamical tropopause (2 PVU contour)

is located over southern France. When clustered hail days also occur north of the Alps, the

dynamical tropopause is located further north (Fig. 5.13a, c, and e). During clustered hail days

on both sides of the Alps, fronts are frequent northwest of the Alps and over the Bay of Biscay.

The frontal frequencies on clustered hail days only south of the Alps are very di↵erent. The

frequency of fronts is highest on top of the Alpine ridge and close to zero northwest of the Alps

(Fig. 5.13b, d, and f). The daily maximum CAPE values are higher (> 800 J kg�1) over most

of the Mediterranean, the di↵erence culminating at >1200 J kg�1 in the gulf of Genoa and west

of Corsica and Sardinia (Fig. 5.13f). When clustered hail days occur only south of the Alps,

thunderstorms seem to be influenced more by convergence zones with stronger southwesterly low-

level winds and nearby fronts. During clustered hail days north and south of the Alps, fronts are

located further away to the northwest of the Alps, and the local instability governs thunderstorm

activity south of the Alps with high values of CAPE.

Figure 5.13: PV at 335K, horizontal winds at 250hPa (left column), CAPE and fronts (right

column) during clustered hail days occurring only south of the Alps (top row), during clustered

hail days occurring both north and south of the Alps (middle row), and their di↵erences (bottom

row; significances not shown). See Fig. 5.5 and 5.6 for details.
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5.6 Summary and discussion

The large-scale and local-scale atmospheric conditions during and prior to multi-day hail clusters

and isolated hail days in northern and southern Switzerland are characterized and compared.

Hail days between April and September 2002–2019 are defined for a region within the range of

Swiss radar stations north of the Alps and for a similar region south of the Alps (Fig. 5.1).

The atmospheric situations are described using a weather type classification and large-scale and

local-scale atmospheric conditions.

Clustered hail days occur only during the summer months, whereas isolated hail days also occur

earlier and later in the year (Fig. 5.2 and 5.3). Di↵erences between isolated and clustered hail

days in the prevailing central European weather types are small (Fig. 5.4).

5.6.1 Atmospheric conditions prior to and during hail events north of the

Alps

Several characteristics of the large-scale flow over the North Atlantic and Europe point to more

stationary flow conditions on clustered hail days than on isolated hail days (Fig. 5.5). The flow

is more amplified meridionally, and Rossby waves break downstream of Switzerland, resulting in

weak upper-level zonal winds over central and eastern Europe and weaker surface zonal winds.

In addition, blocking anticyclones over Scandinavia can contribute to more persistent flow over

central Europe (Mohr et al., 2020). There are fewer fronts over western Europe on clustered hail

days than on isolated hail days, and the fronts are located further from northern Switzerland (Fig.

5.6). This di↵erence in front locations points to thermotopographic winds being more relevant

for convection initiation during clustered hail days (see e.g., Trefalt et al., 2018; Schemm et al.,

2016), whereas prefrontal convergence and prefrontal orographic flow could be more relevant for

the initiation of hailstorms on isolated hail days (Schemm et al., 2016; Nisi et al., 2020). On

clustered hail days, the air is more humid and warmer by > 2–3 K in Central Europe north

of the Alps, and CAPE is on average 400-800 J kg�1 higher than on isolated hail days over a

large area north of the Alps. Hence, instability is substantially higher on clustered hail days, and

the stationary flow allows these conditions to persist. The slow-moving large-scale flow signal

suggests that clustered hail days might be more predictable than isolated hail days (e.g., Trapp,

2014; Dalcher and Kalnay, 1987).

A high atmospheric moisture content across western and central Europe may be needed for sus-

tained convection over several days north of the Alps. Because northern Switzerland is about 600

km away from oceanic moisture sources, evapotranspiration over land is an important moisture

source in summer (Sodemann and Zubler, 2010).

The higher temperatures, higher CAPE values, and the location of blocks during clustered hail

days compared to isolated hail days agree well with the di↵erences in local conditions between a

month with many hail days and a month with few hail days in northern Switzerland described
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in Madonna et al. (2018).

Upper-level Rossby waves over the Atlantic are more amplified meridionally prior to clustered

days than isolated days (Fig. 5.7). In addition, blocking over Scandinavia on days prior to

clustered hail days may contribute to a di✏uent flow over Europe that amplifies the troughs that

reach Europe from upstream (e.g., Shutts, 1983). The local moisture content increases by 3 mm

prior to both clustered and isolated hail days.

5.6.2 Atmospheric conditions prior to and during hail events south of the

Alps

Di↵erences in the large-scale flow conditions between clustered and isolated hail days south of the

Alps are similar to the di↵erences north of the Alps with the distinction that atmospheric blocks

do not occur over Europe. The large-scale flow is more stationary during clustered hail days

than isolated hail days. Locally, the atmosphere is slightly warmer and contains more humidity

on clustered days; however, the di↵erence in local CAPE between isolated and clustered days is

small and not significant (Fig. 5.9 and 5.10). The pressure gradient across the Alps is stronger

on isolated hail days, and slightly more fronts are present south of the Alps on isolated hail days.

Hence, the favorable conditions for hail are more transient on isolated hail days due to a less

stationary large-scale flow, and the stronger cross-Alpine pressure gradients may indicate that

Foehn winds support short-lived prefrontal convergence zones. The trough just west of Switzer-

land and the fronts located directly over the south side of the Alps on isolated hail days typically

produce a low-level convergence with thermal winds over this area. These conditions are known

to last only several hours and to develop severe hailstorms in the southern Prealps (Luca Nisi,

personal communication).

Prior to clustered hail days south of the Alps, the Rossby waves over western Europe have a

larger meridional amplitude than prior to isolated hail days (Fig. 5.11). A trajectory analysis

could assess whether this strong amplification results in the transport of moist air masses from

the subtropics towards the Alps.

South of the Alps, 58 % of isolated hail days are outside of the seasonal window within which

clustered hail days occur. This may be related to the di↵erent convective environments of hail-

storms in the middle of the convective season and in the shoulder seasons. In midsummer, the

supply of humid and unstable air from the Mediterranean towards the Alps ahead of the trough

over the eastern Atlantic may create conditions favorable for hail day clustering. The unstable

air masses do not require additional synoptic forcing for the formation of hailstorms. Given the

slow propagation of the trough eastward, additional moisture and warm air can be advected

towards the Alps on subsequent days. Furthermore, strong radiative heating over the Alps, the

resulting thermo-topographic flows, and the evapotranspiration of moisture may support hail day

clustering. In contrast, at the beginning and end of the hail season, the air masses are not as

unstable to begin with and therefore need stronger triggers to produce hailstorms.
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Even though the flow over the Atlantic on isolated hail days resembles the flow during the nega-

tive North Atlantic Oscillation (NAO) phase, we do not find any significant correlation between

the NAO index and the isolated hail days (not shown). This is in agreement with Piper and

Kunz (2017), who comment that convective activity in southern Switzerland can occur regard-

less of large-scale forcing thanks to the complex orographic mechanisms. More fronts occur over

the Alpine ridge during isolated hail days and northwest of Switzerland during clustered hail days.

Di↵erent atmospheric conditions are associated with clustered hail days on both sides of the Alps

than with clustering only south of the Alps (cf. Fig. 5.13). When clustered hail days occur

only south of the Alps, stronger winds and bulk wind shears combined with lower CAPE values

suggest a stronger dynamic forcing of the thunderstorms. On clustered hail days a↵ecting all of

Switzerland, CAPE values are > 1200 J kg�1 larger over the Ligurian sea, and the winds and

bulk wind shear are weaker. Furthermore, fronts almost never occur directly over the Alpine

ridge and are mostly located over the Bay of Biscay or 400 km northwest of the Alps. In this

situation, both prefrontal convergence zones and orographic heating may well be the more likely

drivers of convective activity.

5.7 Conclusions and outlook

Multi-day hail clusters are a regular phenomenon in Switzerland both north and south of the

Alps. We observe on average 10 clustered days per year in the north and 6 clustered days in

the south. We compared the large- and local-scale conditions prior to and during multi-day hail

clusters and isolated hail days between 2002 and 2019, within the range of Swiss radar stations.

Multi-day hail clusters occur only between mid-May and end of August on the north side of the

Alps and between mid-June and mid-August on the south side of the Alps, whereas isolated hail

days occur during the entire convective season.

For the regions both north and south of the Alps, the large-scale atmospheric flow over the east

Atlantic and Europe prior to and during clustered hail days is more amplified meridionally and

characterized by a trough located in the east Atlantic. The meridional amplification is enhanced

by atmospheric blocks located over Scandinavia prior to clustered hail days. On the north side of

the Alps, furthermore, warmer and more humid local conditions with significantly higher CAPE

values are found during clustered hail days. Fronts northwest of Switzerland are located farther

away than on isolated hail days. Our findings suggest that on the north side of the Alps, thermo-

topographic winds are more relevant for convection initiation during clustered hail days, whereas

prefrontal convergence and prefrontal orographic flow may be more relevant for the initiation of

hailstorms on isolated hail days.

The local conditions south of the Alps are warmer and more humid on clustered hail days; how-

ever, di↵erences in local CAPE between clustered and isolated hail days are not significant. We
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observe a stronger pressure gradient across the Alps on isolated hail days, which may indicate

that Foehn winds support short-lived prefrontal convergence zones south of the Alps. On isolated

hail days south of the Alps, local conditions supporting convection are dispersed faster by the

large-scale flow.

During hail days that are clustered both north and south of the Alps, fronts are frequent over the

Bay of Biscay and 400 km northwest of Switzerland. In contrast, on hail days that are clustered

solely south of the Alps, fronts are almost exclusively located over the Alpine ridge. Furthermore,

low-level winds are stronger south of the Alpine ridge, and CAPE values are lower north of the

Alps and over the Gulf of Genoa. This suggests that when hail days cluster only south of the

Alps, dynamic processes are responsible for maintaining convective conditions over several days.

Future research could compare the characteristics of hailstorms between clustered and isolated

hail days, such as their duration, speed, and direction of movement, and the hour of the day at

which they are most likely to occur in which regions of Switzerland. These characteristics could

provide more insight into the likely trigger mechanisms during and isolated hail days. The results

of this study also pose a question: Do average higher daily maximum temperatures, the weaker

zonal flow, and the meridionally amplified atmospheric waves on clustered hail days mean that

climate warming may increase the frequency of multi-day hail clusters?”
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Chapter 6

Summary, concluding remarks and

outlook

6.1 Summary

This three-part doctoral thesis contributed to a better understanding and nowcasting of hail in

Switzerland and improved surface hail observations. In the first part, crowdsourced hail reports

were validated against the radar reflectivity and compared with radar-based hail algorithms. In

the second part, several machine learning models were assembled to nowcast hail in individual

thunderstorms in a quasi-operational setting. In the third part, synoptic- and local-scale atmo-

spheric flow characteristics during and prior to multi-day hail clusters and isolated hail days were

characterized. Each part contains its own summary and conclusion section, the key points are

summarized in this last chapter again.

Chapter 2 presents the MeteoSwiss crowdsourced hail reports collected between May 2015 and

October 2018. In May 2015, a hail size reporting function was introduced to the MeteoSwiss app.

This function allows users to report the presence of hail and the observed hail diameter through

well-known objects. The categories are “no hail”, “smaller than a co↵ee bean” (< 5–8 mm),

“co↵ee bean” (5–8 mm), “1 Swiss franc coin” (23 mm), “5 Swiss franc coin” (32 mm), “golf ball”

(43 mm) and ”tennis ball” (68 mm). By October 2018, > 50’000 reports had been collected. The

most frequently reported hail category is “co↵ee bean” (5–8 mm) and it is reported most in the

late afternoon. The spatial distribution of the reports reflects primarily the population density

of Switzerland. A comparison to radar reflectivity data reveals that quality control and filtering

using plausibility criteria is crucial for the further use of these reports. The most important filter

requires reports to be close to radar reflectivity areas of at least 35 dBZ. They remove about half

of the reports. Except for the largest size category, enough false reports are filtered out for them

to not substantially influence statistical analyses. A positive correlation was found between the

reported size and POH and MESHS. MESHS values tend to be on average 1.5 cm greater than

the reported size.

93
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Chapter 3 gives an update on the crowdsourced hail reports presented in chapter 2. The ad-

ditional crowdsourced reports confirm the findings in chapter 2. As of the end of September

2020, 119’549 crowdsourced hail reports had been submitted and, excluding the category “no

hail”, 41’191 filtered reports remained for the analyses. Furthermore, the longer time series

of reports revealed the e↵ect of varying the visibility of the crowdsourcing function in the app

and hence the importance of graphical user guidance for app-based crowdsourcing data collection.

In chapter 4 XGBoost (extreme gradient boosted tree) models are created to nowcast the presence

and size of hail for the lead-times t+5’, t+10’, t+15’, t+25’, t+35’ and t+45’ in a quasi-operational

setting. Thunderstorm environmental parameters extracted from radar, satellite, COSMO-CH

model, lightning, topography, and other metadata serve as predictor variables. Twelve statistics

of variables (called features) were extracted within 23 km circles along thunderstorm paths of

the 2018 convective season. The target variables are the maximum POH and maximum MESHS

within 23 km circles of the future cell positions. Results show that binary XGBoost models

(hail yes/no) provide a better performing nowcast of the presence of hail than the Lagrangian

persistence for all lead-times greater than t+5’. For t+5’ both prediction skills are equal. Models

predicting the occurrence of POH � 10 % have higher Critical Success Index ( 0.75 for t+5’

and 0.58 for t+45’) than MESHS ( 0.5 for t+5’ and 0.35 for t+45’), likely because MESHS

values occur less frequently than POH. Sensitivity analyses suggest that 500–1000 top features

are needed to reach the same nowcasting performance as the performance of models using all

features. These top features include variables from all data sources. The most frequently used

data sources are radar, model, and satellite variables. The model interpretation results show that

feature values describing an intense/low storm activity at t0 increase/decrease the probability of

POH � 10 % and MESHS � 2 cm for all lead-times.

Chapter 5 characterizes the synoptic- and local-scale atmospheric flow conditions before and

during multi-day hail clusters and isolated hail days that occurred between April and Septem-

ber 2002–2019. Clustered and isolated hail days are defined for two regions within the Swiss

radar coverage area, north of the Alps and south of the Alps respectively. The large- and local-

scale atmospheric flow characteristics are captured using ERA-5 reanalysis variables, objectively

identified cold fronts, atmospheric blocks, and a weather type classification. In both regions,

composites of atmospheric variables indicate a more stationary and meridionally amplified at-

mospheric flow over Europe during multi-day hail clusters. On clustered hail days north of the

Alps, blocks are frequent over the North Sea and surface fronts are located farther away from

Switzerland than on isolated hail days. Furthermore, CAPE, the daily maximum temperature,

and the total precipitable water are significantly larger than on isolated hail days. On the alpine

south side, di↵erences in CAPE, temperature, and moisture are smaller. On isolated hail days,

the mean sea level pressure is significantly deeper south of the Alps, pointing to Foehn like winds

possibly intensifying convergence zones south of the Alps. Compared to clustered hail days, con-

vective conditions are less persistent. Three days prior to clustered hail days north and south of

the Alps, Rossby waves over the eastern Atlantic are more amplified meridionally than prior to

isolated hail days. Before clustered hail days, atmospheric blocks are present over Scandinavia
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in more than 10 % of cases. This is not the case before isolated hail days.

6.2 Concluding remarks

The results of the first part of this project have revealed that the crowdsourced hail reports

close the surface hail observation gap in Switzerland to a great degree. Their strength lies in

their unprecedented number and spatial coverage, while also giving plausible estimates of the

approximate hailstone diameters. Thus, crowdsourced hail observations are of great value for

hail research. They also serve as a bridge between the general population and the world of re-

search. Thanks to crowdsourced reports, the probability of di↵erent hail diameters occurring in

Switzerland was determined and radar-based algorithms were compared against an observational

data set with several thousand data points. The comparison of crowdsourced reports with hail

algorithms has increased the understanding of POH and MESHS. It gives a more transparent

perspective on the predictions of maximum POH and MESHS developed in the nowcasting chap-

ter (chapter 4). The crowd-sourcing function has had the great advantage of being installed on

a national weather service app that already had on average > 500’000 daily users. Particularly

in urban areas and during daytime, it is very likely that app users capture most hail events. For

these populated areas, crowd-sourced reports could be used to evaluate radar-based algorithms

and predictions of hail categorically. Nisi et al. (2016) attempted it with car insurance damage

claims and Noti (2016) with crowdsourced hail reports. Relatively strict criteria were applied to

filter the crowdsourced reports for the comparison with POH and MESHS. Future projects with

other applications could potentially apply more relaxed criteria.

From the crowdsourced reports and the automatic hail sensors, MeteoSwiss developed a new

radar-based hail algorithm called LEHA (“Largest Expected Hail size on a reference Area of a

given size”; NCCS, 2021). This algorithm was created in the context of the national project

“Hail Climatology Switzerland” (see www.hagelklima.ch). LEHA has the purpose of estimating

the largest expected hail size on any area smaller than 1 km2. It is derived from MESHS and rests

on the idea that, while the maximum expected severe hail size may truly be the given MESHS

value within a square kilometer, the likelihood of observing that diameter within a much smaller

area within that square kilometer is small. As an example, if MESHS estimates the maximum

diameter of hail to be 6 cm within 1 km2, then LEHA estimates the likely maximum size of hail

inside a 100 m2 area to be 3.8 cm. This algorithm is expected to be applied in the context of

damage to buildings, cars, and crops.

To my knowledge, the nowcasting project was the first attempt to predict the hail occurrence

and hailstone diameter for individual thunderstorms and for nowcasting lead-times in Europe

with a machine learning model. This project had the advantage that machine learning methods

use knowledge about the atmosphere that is still waiting to be revealed within measurements

and observations. Local and meso- scale processes that are specific to locations, influencing

thunderstorms and the probability of hail, have likely been captured in the data. These hail

www.hagelklima.ch
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nowcasting models are not yet used operationally. This project serves as a base to do so and

for future similar projects. The large amount of data assimilation and preprocessing that pre-

cedes the actual prediction implies that a good and fast data assimilation system in an operational

setting is crutial. Ideally, the data collection and preprocessing would take at most a few minutes.

The nowcasting project and the analysis contrasting multi-day hail clusters to isolated hail days

have shown the importance of analyzing environmental characteristics at di↵erent spatial and

temporal scales. The di↵erences in large- and local-scale situations during and up to three days

in advance suggest that another level of predictability could be added to hail prediction models.

The locations of fronts within central Europe, the amplitude of Rossby waves over the Euro-

Atlantic sector and knowing whether hail occurred during the previous days could be interesting

predictive factors. This new level of predictability would likely benefit forecasting models more

than nowcasting models. However, the presented nowcasting models did not explore using past

data going beyond 45 minutes before the most recent observations. Whether the multi-day evo-

lution of atmospheric conditions influence are an added value to predicting the duration and size

of hail in existing thunderstorms still needs investigating.

This doctoral thesis has led to a better understanding of crowdsourced hail reports and the

ability to apply them in hail research. The comparison with the two operational radar-based hail

algorithms has made their strengths and weaknesses more transparent. Hail occurrence and size

nowcasting models were developed and may still be implemented in the MeteoSwiss operational

nowcasting system in the future. The results of the nowcasting chapter prove the great value of

using di↵erent data sources and machine learning methods, and serve as an example for future

similar projects. The third part of this thesis made a step towards understanding the atmospheric

conditions before and during multi-day hail clusters. This information is likely to be relevant for

future forecasts. Knowing whether hail is likely to occur several days in a row gives insurances,

event managers, wine growers, farmers and other concerned people a better chance to prepare

and prevent hail-caused damage.

6.3 Outlook

The work presented in this thesis leads to several follow-up research ideas, some of which are

mentioned in the individual chapters. The most important ones are summarized again below.

• It would be interesting to conduct an inquiry with the MeteoSwiss app users to receive feed-

back on the hail crowdsourcing function and to better understand their reporting behavior.

To help with interpreting the reports, it would be helpful to gain a greater understanding on

how well a typical user is capable of estimating the size of an object and mentally comparing

it with another. Could it be, that comparing the hail diameter with an object increases the

reporting error, because the mind may miss estimate the objects that the hail diameter is

compared to? How many users wish to give a more accurate indication on hail size? Users
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could be given the option of estimating the hail diameter in centimeters or millimeters as

well.

• Given the success of crowdsourcing, the same technique could be used to capture other phe-

nomena. Examples within atmospheric science are fog, snow, wind gusts, or also particular

optical weather phenomena such as rainbows, halos, or anticrepuscular rays.

• Once a larger number of crowdsourced hail reports has been collected, they could replace

POH and MESHS as a target variable to train machine learning models for hail nowcast-

ing. Convolutional neural networks could model hail using fields of environmental variables

(instead of statistics within a certain diameter) and predict the probability that a report of

a certain size will be sent. The population bias could be accounted for by incorporating the

population density as a predictor variable. The population density would likely be a par-

ticularly relevant predictor. To attempt a prediction that is independent of the population

bias, the population density could artificially be set to the countrywide maximum in all

grid-boxes. A population bias would remain, because populated areas are in valley bottoms

and flat areas. The great advantage of using crowdsourced reports as a target variable

would be the complete independence from other data sources. Furthermore, predicting hail

in populated areas and on flat grounds is most relevant, since these are the locations where

damage caused by hail are likely most relevant.

• The list of variables used to nowcast hail with machine learning could be extended to

include dual-polarization variables such as the di↵erential reflectivity (ZDR) and specific

di↵erential phase (KDP ) and with the hydrometeor classification introduced by Besic et al.

(2016). ZDR and KDP columns would give the models information on updraft strengths

and widths and the hydrometeor classification detects small and large hail aloft.

• The SHAP method presented in the nowcasting chapter could be exploited much more.

Seasonal and diurnal cycles of feature contributions to predictions could be explored and

spatial maps of SHAP values could determine regional di↵erences in feature importance.

These analyses could provide a better understanding on hail predictability and help under-

stand how the model uses di↵erent features.

• Future thunderstorm and hail prediction projects should move towards allowing seamless

predictions, joining the nowcasting and the forecasting time scales. An example of an

ongoing larger project aiming at developing a seamless prediction system is the SINFONY

project by the German Weather Service (DWD; DWD, 2021; Blahak et al., 2018).

• The characteristics description of multi-day hail clusters and isolated hail days could extend

to thunderstorm properties.

• The third part of this thesis discovered that on multi-day hail clusters Rossby waves are

meridionally amplified, surface temperatures and the moisture content of the atmosphere

are higher, and the CAPE more intense than on isolated hail days. These findings pose
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the question, whether with anthropogenic climate change, the frequency of multi-day hail

clusters will increase.
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Groenemeijer, P., Púčik, T., Holzer, A. M., Antonescu, B., Riemann-Campe, K., Schultz,

D. M., Kühne, T., Feuerstein, B., Brooks, H. E., Doswell III, C. A., et al.: Severe convec-

tive storms in Europe: Ten years of research and education at the European Severe Storms

Laboratory, Bulletin of the American Meteorological Society, 98, 2641–2651, https://doi.org/

10.1175/BAMS-D-16-0067.1, 2017.

Hamann, U., Zeder, J., Beusch, L., Clementi, L., Foresti, L., Hering, A., Nerini, D., Nisi, L.,

Sassi, M., and Germann, U.: Nowcasting of thunderstorm severity with Machine Learn-

ing in the Alpine Region, URL https://repositorio.aemet.es/bitstream/20.500.11765/10617/

1/NTSP5 Hamann 3ENC2019.pdf, 2019.

Heim, C., Panosetti, D., Schlemmer, L., Leuenberger, D., and Schär, C.: The Influence of the

Resolution of Orography on the Simulation of Orographic Moist Convection, Monthly Weather

Review, 148, 2391–2410, https://doi.org/10.1175/MWR-D-19-0247.1, 2020.

Hering, A., Morel, C., Galli, G., Sénési, S., Ambrosetti, P., and Boscacci, M.: Nowcasting thun-

derstorms in the Alpine region using a radar based adaptive thresholding scheme, in: Pro-

ceedings of ERAD, vol. 1, pp. 206–211, URL https://www.copernicus.org/erad/2004/online/

ERAD04 P 206.pdf, 2004.

Hering, A., Nisi, L., Della Bruna, G., Gaia, M., Nerini, D., Ambrosetti, P., Hamann,

U., Trefalt, S., and Germann, U.: Fully automated thunderstorm warnings and op-

erational nowcasting at MeteoSwiss, in: European Conference on Severe Storms

2015, URL https://www.researchgate.net/profile/Luca-Nisi/publication/309817864

Fully automated thunderstorm warnings and operational nowcasting at MeteoSwiss/

links/58246a0608ae61258e3cf68c/Fully-automated-thunderstorm-warnings-and-operational-

nowcasting-at-MeteoSwiss.pdf, 2015.

Hering, A. M., Germann, U., Boscacci, M., and Sénési, S.: Operational nowcasting of thunder-

storms in the Alps during MAP D-PHASE, in: Proceedings of the 5th European Conference

on Radar Meteorology (ERAD 2008), June, 2008.

https://arxiv.org/abs/1406.2661
https://repositorio.aemet.es/bitstream/20.500.11765/10617/1/NTSP5_Hamann_3ENC2019.pdf
https://repositorio.aemet.es/bitstream/20.500.11765/10617/1/NTSP5_Hamann_3ENC2019.pdf
https://www.copernicus.org/erad/2004/online/ERAD04_P_206.pdf
https://www.copernicus.org/erad/2004/online/ERAD04_P_206.pdf
https://www.researchgate.net/profile/Luca-Nisi/publication/309817864_Fully_automated_thunderstorm_warnings_and_operational_nowcasting_at_MeteoSwiss/links/58246a0608ae61258e3cf68c/Fully-automated-thunderstorm-warnings-and-operational-nowcasting-at-MeteoSwiss.pdf
https://www.researchgate.net/profile/Luca-Nisi/publication/309817864_Fully_automated_thunderstorm_warnings_and_operational_nowcasting_at_MeteoSwiss/links/58246a0608ae61258e3cf68c/Fully-automated-thunderstorm-warnings-and-operational-nowcasting-at-MeteoSwiss.pdf
https://www.researchgate.net/profile/Luca-Nisi/publication/309817864_Fully_automated_thunderstorm_warnings_and_operational_nowcasting_at_MeteoSwiss/links/58246a0608ae61258e3cf68c/Fully-automated-thunderstorm-warnings-and-operational-nowcasting-at-MeteoSwiss.pdf
https://www.researchgate.net/profile/Luca-Nisi/publication/309817864_Fully_automated_thunderstorm_warnings_and_operational_nowcasting_at_MeteoSwiss/links/58246a0608ae61258e3cf68c/Fully-automated-thunderstorm-warnings-and-operational-nowcasting-at-MeteoSwiss.pdf


Bibliography 106

Herman, G. R. and Schumacher, R. S.: Money doesn’t grow on trees, but forecasts do: Fore-

casting extreme precipitation with random forests, Monthly Weather Review, 146, 1571–1600,

https://doi.org/10.1175/MWR-D-17-0250.1, 2018a.

Herman, G. R. and Schumacher, R. S.: ”Dendrology” in numerical weather prediction: What

random forests and logistic regression tell us about forecasting extreme precipitation, Monthly

Weather Review, 146, 1785–1812, https://doi.org/10.1175/MWR-D-17-0307.1, 2018b.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
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der kantonalen Gebäudeversicherungen, URL http://www.fluelerpolymer.ch/documents/

Synthesebericht Hagel D.pdf, 2007.
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Appendix A

Comparison of MeteoSwiss

crowdsourced hail reports with other

hail observational datasets

Elaborating on Chapter 2.7.2, the following comparisons compare MeteoSwiss crowdsourced hail

reports to European Severe Weather Database (ESWD, Dotzek et al., 2009) reports and to

measurements from automatic hail sensors. This comparison had been done as a response to

reviews during the publication on the MeteoSwiss crowdsourced hail reports. We had checked

the availability of ESWD, EWOB, mPING and skywarn reports for Switzerland for the time

period May 2015 — July 2018. While we received ESWD reports and managed to access the

mPING reports, we did not receive any reply to our request for data from EWOB or skywarn.

In the entire mPING dataset within the coordinates (5�E, 45�N) and (11�E, 48�N; any time) we

found 4 reports done on March 9, 2015 from the MeteoSwiss building in Kloten, Switzerland.

These four mPING reports were not made during a hail event and could therefore not be further

used.

Independent of the comparison with other observational data sets, there are already signs that

point to the quality of the reports. The first sign is visible as soon as the hail reports appear on

the MeteoSwiss app animation. The reports appear to reflect typical hail swaths, being located

at the centres of heavy precipitation fields and rarely appearing in locations where clouds do not

appear. We cannot prove the validity of each single report. However, in the big picture, a large

number of reports appear at locations and times that, given the radar-based precipitation fields,

are likely true. Furthermore, the results of the comparison with POH and MESHS (e.g. Fig. 2.6),

are in fact both an indication of quality of the radar-based hail algorithms and of the reports. If

there was no positive correlation between the algorithms and the reports, we would indeed need

to assess if it was due to a possibly bad accuracy of the reports or if we would have to redefine

the algorithms. With the statistical tests (and notches) we show that the di↵erences in median

are statistically significant, which suggests that the likelihood of the positive correlation existing

due to chance is very small.
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A.1 MeteoSwiss crowdsourced hail reports versus ESWD

We conducted a comparison with ESWD reports which had a quality control of at least QC0+

or higher, to be sure that they were checked for validity. Within the time period May 2015 to

August 2018, we found 181 reports within the coordinates (5.7�E, 45.5�N) and (10.6�E, 47.9�N),

most of which are located outside of Switzerland (see Fig. A.1) and 108 out of the 181 have

an information on the hail size. Reports that do not have information on hail size often have

information on hail cover thickness. Some reports indicate the hail size “>2cm”. If no hail size

is given but the report says “large hail” and if the description indicates that cars were damaged,

we also attribute a hail size of “>2cm” to the report.

To match ESWD reports with MeteoSwiss hail reports, we apply the neighbourhood matching

method B described in section 2.8.1. When a time uncertainty is given by ESWD, then we

alter the temporal search radius to it. To avoid comparing reports with a great uncertainty

in location, we considered only the MeteoSwiss crowdsourced hail reports which do not have a

manually adapted location. Out of the 108 ESWD reports, we successfully matched 25 with 110

MeteoSwiss crowdsourced hail reports (Fig. A.1).
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Figure A.1: Map of the research area with all ESWD reports between May 2015 and July 2018

(green dots), the locations of matches with MeteoSwiss crowdsourced hail reports (red squares)

and the locations of matches where the ESWD reports has a defined hail size (black squares with

numbers at the top right indexing the situations ordered by longitude). The squares have the size

4 x 4 km2. The grey shading shows the topography.

Figures A.2 and A.3 show for each of the 25 situations POH, MESHS and the crowd-sourced

reports. POH and MESHS are included to add some context on the hail activity as estimated

by radar. Some ESWD reports are so close in time and space that they are matched to the

same MeteoSwiss reports (situations 13 and 14, 16 and 17, 19, 20 and 21, and 23 and 24). The

MeteoSwiss reports either agree with the ESWD reports (the majority of the reports) or indicate

a smaller hail stone size. For only two ESWD reports (2, 15) the reported size in the MeteoSwiss

data is larger than the ESWD report. For all matched situations, within the time uncertainty

and within 2 km of each ESWD report, we find at least one MeteoSwiss report that indicates the

same range of size as ESWD, except for situations 16, 18, 21 and 22 (Fig. A.3). For locations

with several reports (MeteoSwiss or ESWD) we see variation in the hail size estimates. This

points to either observational uncertainty or small-scale hail size variability or both. Within the

25 situations, it happens 5 times that a user reports the size “co↵ee bean” (5mm) and a few

minutes later, a few meters away, the size “1 franc coin” (23mm; on Fig. A.2, the MeteoSwiss

reports which are connected with a thin black line (see situations 13, 14, 16, 17, 20 and 21) or
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which are overlapping (5 and 25)). In these cases, the user apparently observed an increase in

hail size within a few minutes. Before April 2018, the users were not specifically instructed to

report the maximum hail size. Therefore, the reason for the underestimation in size could be

that the MeteoSwiss reports do not indicate the maximum hail size but the average.
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Figure A.2: All 25 situations matching ESWD reports with MeteoSwiss hail reports (numbered

squares as in Fig. A.1), the index number, the date and the temporal uncertainty by ESWD is

shown at the top of each square. The green contours (POH) and blue shadings (MESHS) have

the same legend as in Fig. 2.2. Shown are the maximum POH and MESHS within the matching

period (see legend in Fig. 2.2). The squares are centered on the ESWD report and have the size 4

x 4 km2. The colored numbers show the MeteoSwiss reported size category (in cm). The numbers

are colored following the legend in Fig. A.3. Numbers with asterisks indicate a temporal di↵erence

between ESWD and MeteoSwiss reports >15 min (situations 3, 15). Reports that were done by

the same ID are linked with a thin black line (e.g. situation 14).
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Figure A.3: Same situations as in Fig. A.1 and A.2 but showing the ESWD reported hail size

as numbers and the MeteoSwiss crowdsourced hail report categories as size ranges (see Table 2.1;

grey grid), colored and ordered according to the time di↵erence to the ESWD report as shown in

the legend. Brown (green) colors indicate that the MeteoSwiss reports were done earlier (later)

than the ESWD reported time.
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A.2 MeteoSwiss crowdsourced hail reports versus automatic hail

sensor measurements

The pilot network that existed until 2018 captured five hail and graupel events with between 20

and 50 hail stone impacts and two events with more than 400 impacts. Of the five mentioned

events, two did not have any MeteoSwiss hail reports within 2 km. The maximum diameter of

10–12 mm measured for the other three cases were confirmed by MeteoSwiss hail reports that

were found within 2 km or the hail sensors. One case had one report of 5–8 mm, another case had

nine such reports and one report indicating “no hail” and the third case had 16 5–8 mm reports

and one “no hail” report within 2 km of the hail sensor location. These cases were therefore

mostly graupel or small hail events.

The two events with more than 400 impacts happened on May 27, 2016 in Aadorf and on July 21,

2017 in Konolfingen. The sensor in Aadorf measured 425 impacts between 18:06 and 18:21 UTC

with a mean diameter of 17 mm and a maximum diameter of 27.5 mm. Ninety percent of all

hail stones had diameters between 8 mm (5th percentile) and 22.2 mm (95th percentile). During

the hail fall at the sensor, three MeteoSwiss hail reports of the size 23 mm were submitted less

than 2 km away. Another report of the size 31 mm was submitted within the same time frame at

a distance of 2.5 km from the sensor. The sensor in Konolfingen captured 780 impacts between

14:44 and 15:05 UTC. The mean diameter was 9.9 mm, the maximum diameter was 22.6 mm

and 90% of all impacts had sizes between 5.2 m (5th percentile) and 13.6 mm (95th percentile).

Within the measured time period, 10 (7) MeteoSwiss hail reports were done within 2 km (1 km)

of the hail sensor. All reports had the sizes 23 mm or 31 mm, so mostly larger than the size

measured by the hail sensor.

With the new hail sensor network that started to be deployed in 2018, we captured one hail event

on 6 August 2018 1 . Fig. A.4 shows a map zooming into the location where automatic hail

sensors measured hail on that day. Three out of 15 sensors measured at least 20 impacts of a size

between 1 and 2 cm (dark blue dots) and three other sensors measured 1–3 impacts of smaller

sizes. The vicinity of several sensor that did not measure hail close to the locations where hail

was measured shows nicely how locally hail occurs. Next to the two sensors that measured 20 and

128 impacts, three MeteoSwiss hail reports were submitted. One report indicated a size 23 mm

or larger, in accordance with the hail sensor, and two users reported a size smaller than 23 mm.

In all areas where the hail sensors measured larger than 1 cm hail, the maximum probability of

hail (POH) was between 91–100 %.

These three cases suggest that the MeteoSwiss hail reported diameters tend to be equal or larger,

rather than smaller than the diameters measured by the automatic hail sensors. Such a tendency

is fortunate/positive, since (Smith and Waldvogel, 1989) found that the maximum size of hail

stones within 10 meters of a hail pad tends to be approximately 1 cm larger than the size registered

by the hail pad. However, we based this statement on only three hail events, which makes it

inconclusive and we therefore did not mention these results in the main publication.

1This text was written in January 2019
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Figure A.4: Map zooming on the locations where automatic hail sensors measured hail on August

6 2018. The circles indicate the locations of hail sensors with the number of impacts. The

triangles indicate the MeteoSwiss crowdsourced hail reports done during the event. The colored

tiles show the daily maximum POH on that day as explained in the legend. The background map

is a 1:200’000 map from the Swiss Federal O�ce of Topography (one grid-box has the size of 10

km) (Mobiliar Lab for Natural Risks, 2018).
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Appendix to chapter 4

B.1 Bayesian Optimisation

The purpose of Bayesian Optimisation (Mockus et al., 1978) in this project is tuning the hyper-

parameters by intelligently choosing which hyper-parameters to tune. We assume that the un-

certainty of the loss associated with any value of a hyper-parameter can be modelled as a sample

of a Gaussian Process. The Gaussian Process is a generalization of the Gaussian probability

distribution (Rasmussen and Williams, 2006) and gives a range of likely scenarios of functions

that can pass through a range of optionally predefined points in a space of dimensions. In this

project, these points are the loss values associated with 15 initial hyper-parameter configurations,

with which the models were trained in 15 initial tuning iterations (diamonds in Fig. B.1). The

uncertainty of the function, described with confidence intervals, is reduced close to the predefined

points and increases with the distance to these points. The configuration of the hyper-parameters

to test next is determined by another function, the acquisition function. This function determines

which point is most interesting to evaluate, given the information by the previous steps’ confi-

dence intervals. Several options to define the acquisition function are explained for example in

Snoek et al. (2012) and many example visualizations exist online. The method chosen in this

project, the Gaussian Process Upper Confidence Bound, balances exploration and exploitation.

Exploration searches for new solutions in unexplored areas of the phase space and exploitation

chooses a solution that is expected to be high performing in a promising area with lower uncer-

tainty. The highest value of the acquisition function determines the next point to evaluate. Once

the next configuration is evaluated, the Gaussian Process and acquisition functions are fitted

again to the new set of known loss points. In this project, 30 subsequent iterations were applied

to determine an optimal set up of XGBoost hyper-parameters. Figure B.1 shows the example

loss values for tuning a binary XGBoost model predicting POH. The smallest loss during that

tuning was found on the 44th iteration, although several other iterations showed a very similar

loss value.
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Figure B.1: Logloss for 60 iterations (top) and the tuned hyper-parameters (eta, nrounds, sub-

sample, bytree and max depth) here as an example for the binary POH model using 1000 features

predicting t+5’. The filled diamonds indicate the first 15 iterations, the large filled black tri-

angle is the iteration with the smallest logloss, the other black triangles have a logloss that is

almost identical to the black triangle and the remaining blue triangles indicate the logloss for the

remaining iterations.
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B.2 Verification scores for binary variables

Based on the contingency table (Table B.1), counting the number of matches and mismatches

of binary predictions compared to the target, several scores are calculated. In the following

equations, the square brackets next to the equation indicate the possible range and in bold the

best value of the score.

Table B.1: Contingency table for observed vs. predicted binary hail events

predicted \observed event (hail) non-event (no hail)

event (hail) hits (a) false alarms (b)
non-event (no hail) misses (c) correct rejections (d)

The probability of detection (POD) which is also known as the hit rate (H; Wilks, 2011) measures

the fraction of correctly predicted events out of all observed events.

POD = H =
a

a+ c
; [0,1] (B.1)

The false alarm rate (F) is also known as the probability of false detection (POFD) and determines

the fraction of false alarms out of all observed non-events.

F =
b

b+ d
; [0, 1] (B.2)

The symmetric extremal dependence index (Ferro and Stephenson, 2011) uses H and F and

is a binary performance measure that is suitable for the assessment of strongly skewed binary

classifications, such as rare events. SEDI ranges between -1 and 1, with 1 being the best score

and 0 meaning that the prediction is as good as predicting with a randomly remixed reference

vector.

SEDI =
logF � logH � log(1� F ) + log(1�H)

logF + logH + log(1� F ) + log(1�H)
; [�1,1] (B.3)

The standard error of the SEDI is estimated as in Ferro and Stephenson (2011) using the following

equation. The graphs in the main chapter show the approximate 95 % confidence intervals, which

ranges SEDI ± 2*SEDI.se (Ferro and Stephenson, 2011).

SEDI.se =
2 ⇤ | (1�H)(1�F )+HF

(1�H)(1�F ) ⇤ log(F (1�H)) + 2H
1�H ⇤ log(H(1� F ))|

H ⇤ (log(F (1�H))) + log(H(1� F ))2
⇤

s
H(1�H)

p ⇤ n (B.4)

The false alarm ratio (FAR), which should not be confused with the false alarm rate, determines

what fraction of predicted events actually did not occur (were false alarms).

FAR =
b

a+ b
; [0, 1] (B.5)

The Success Ratio (SR), which is shown on the x-axis of the performance diagram, calculates
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which fraction of predicted events were correctly observed.

SR =
a

a+ b
= 1� FAR; [0,1] (B.6)

Another variable shown in the performance diagram is the frequency bias, which is also known

as the bias scores. It compares the frequency of observed events to the frequency of predicted

events. The perfect score is 1. A value below one indicates that the model has a tendency to

underforecast and a value above 1 indicates overforecasting.

frequencybias =
a+ b

a+ c
= 1� FAR; [0,1] (B.7)

Finally, the critical success index (CSI, also called threat score) measures the fractions of hits

compared to the sum of all observed or predicted events (Wilks, 2011).

CSI =
a

a+ b+ c
; [0,1] (B.8)

B.3 Verification scores for continuous variables

Scores for continuous variables compare the reference vector (O for observed) to the predicted

vector (F for forecast). The mean error (ME, also known as the additive bias) measures the

average forecast error. A perfect score is zero.

ME =
1

N

NX

i=1

(Fi �Oi) (B.9)

The mean absolute error (MAE) measures the average magnitude of the forecast error.

ME =
1

N

NX

i=1

|Fi �Oi| (B.10)

The root mean squared error (RMSE) is similar to the MAE, except that strongly deviating

forecasts are penalized more strongly.

RMSE =

vuut 1

N

NX

i=1

(Fi �Oi)
2 (B.11)

The centered RMSE (cRMSE) compares the di↵erence between debiased observed and debiased

predicted values.

cRMSE =

vuut 1

N

NX

i=1

[(y � y)� (x� x)]2 (B.12)
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The centered RMSE, the standard deviations (�F , �O) and the correlation coe�cient (CC) are

related through equation B.14 and shown in the Taylor diagram (Taylor, 2001).

�F =

vuut 1

N

NX

i=1

(Fi � F̄ )2;�O =

vuut 1

N

NX

i=1

(Oi � Ō)2 (B.13)

CC =
1

�F�O

1

N

NX

i=1

(Fi � F̄ )(Oi � Ō) (B.14)
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B.4 Evaluation and interpretation of models predicting POH
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Figure B.2: POD (dark purple), CSI (purple), FAR (1-Success Ratio, orange) and FARate (yel-

low) and their 95 % confidence intervals (here almost invisible) per each binary XGBoost model

and lead-time predicting POH.
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Figure B.3: Number of hits (a), false alarms (b), misses (c) and correct rejections (d) per each

binary XGBoost model and lead-time predicting POH.
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Figure B.4: Number of variables (y-axes) per data source (colors), lead-time (panels) and time

step (x-axes) for the binary XGBoost model predicting MESHS with 1000 features (p1000). See

Table 4.1) for a list of variables per data source.
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Figure B.5: Fraction per statistic within the top 100 (orange) and top 1000 (red) features used

in the p1000 binary XGBoost models predicting POH. The boxplots show the range of fractions

of all lead-times.
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B.5 Evaluation and interpretation of models predicting MESHS
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Figure B.6: POD (dark purple), CSI (purple), FAR (1-Success Ratio, orange) and FARate (yel-

low) and their 95 % confidence intervals (here almost invisible) per each binary XGBoost model

and lead-time predicting MESHS.
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Figure B.7: Number of hits (a), false alarms (b), misses (c) and correct rejections (d) per each

binary XGBoost model and lead-time predicting MESHS.



Appendix B. Appendix to chapter 4 134

10

20

M
AX

M
EA

N

M
IN

PE
RC

01

PE
RC

05

PE
RC

25

PE
RC

50

PE
RC

75

PE
RC

95

PE
RC

99

ST
D

DE
V

SU
M

statistic

fra
ct

io
ns

 [%
]

 top 100 features top 1000 features

Figure B.8: Fraction per statistic within the top 100 (orange) and top 1000 (red) features used in

the p1000 binary XGBoost models predicting MESHS. The boxplots show the range of fractions

of all lead-times.
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B.6 Additional SHAP summary plots

B.6.1 Binary XGBoost models predicting POH

Figure B.9: SHAP summary plot for the top 30 features of the binary XGBoost model predicting

POH at a lead-time of 10 min using 1000 features. Lime green (dark blue) colors indicate low

(high) feature values (colored by rank for visibility). See caption of Fig. 4.9 for more details.
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Figure B.10: SHAP summary plot for the top 30 features of the binary XGBoost model predicting

POH at a lead-time of 15 min using 1000 features. Lime green (dark blue) colors indicate low

(high) feature values (colored by rank for visibility). See caption of Fig. 4.9 for more details.
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Figure B.11: SHAP summary plot for the top 30 features of the binary XGBoost model predicting

POH at a lead-time of 25 min using 1000 features. Lime green (dark blue) colors indicate low

(high) feature values (colored by rank for visibility). See caption of Fig. 4.9 for more details.
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Figure B.12: SHAP summary plot for the top 30 features of the binary XGBoost model predicting

POH at a lead-time of 35 min using 1000 features. Lime green (dark blue) colors indicate low

(high) feature values (colored by rank for visibility). See caption of Fig. 4.9 for more details.
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B.6.2 Binary XGBoost models predicting MESHS

Figure B.13: SHAP summary plot for the top 30 features of the binary model predicting MESHS

at a lead-time of 15 min using 1000 features. Lime green (dark blue) colors indicate low (high)

feature values (colored by rank for visibility). See caption of Fig. 4.15 for more details.
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Figure B.14: SHAP summary plot for the top 30 features of the binary model predicting MESHS

at a lead-time of 25 min using 1000 features. Lime green (dark blue) colors indicate low (high)

feature values (colored by rank for visibility). See caption of Fig. 4.15 for more details.
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Figure B.15: SHAP summary plot for the top 30 features of the binary model predicting MESHS

at a lead-time of 35 min using 1000 features. Lime green (dark blue) colors indicate low (high)

feature values (colored by rank for visibility). See caption of Fig. 4.15 for more details.
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Figure B.16: SHAP summary plot for the top 30 features of the binary model predicting MESHS

at a lead-time of 45 min using 1000 features. Lime green (dark blue) colors indicate low (high)

feature values (colored by rank for visibility). See caption of Fig. 4.15 for more details.
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Appendix to chapter 5

C.1 Selecting the area threshold to define hail days

The method used to choose the area threshold is shown in Table C.1. The number of days on

which grid- boxes with POH values � 80% cover at least 200 km2 are counted for the region north

of the Alps (top rows) and the region south of the Alps (bottom rows). Di↵erent percentiles (p)

of all nonzero POH values � 80% areas are calculated for each region (area in km2). The days

are divided into whether their area value is greater than the percentile (area � p) or not (area

< p) and whether the days observed at least five car insurance loss reports (� 5 losses) or not

(< 5 losses). In an ideal case, the columns “� 5 losses”- “area � p” and “< 5 losses”- “area

< p” would have very large numbers of days, and the other two columns would have very low

numbers. North of the Alps, 285 days have an area � 80th percentile and 192 days an area <

80th percentile. Of the 285 days, 167 have at least 5 losses, more than the 118 days with less

than 5 losses. Furthermore, the 192 days include only 23 days with � 5 losses, compared to 96

days with < 5 losses. South of the Alps, the 80th percentile also provides the most balanced

numbers of days per category while guaranteeing that more days are defined as “hail days” than

“not hail days”.

143
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Table C.1: Number of days with POH � 80 % area >200 km2 per area percentile (p) and number

of car insurance loss reports (losses).

p Area [km2]
>5 losses <5 losses

# hail days
>5 losses <5 losses

# nonhail days
area >p area <p

N
o
rt
h

70 164 190 224 414 0 0 0
75 319 184 184 368 6 40 80
80 580 167 118 285 23 96 192
85 990 146 72 218 44 152 304
90 1881 120 37 157 70 187 374

S
o
u
th

70 188 119 203 322 0 0 0
75 316 108 164 272 11 39 78
80 499 94 123 217 25 80 160
85 755 76 90 166 43 113 226
90 1330 55 48 103 64 115 230

C.2 Details on resampling considering the seasonality of clus-

tered hail days

Here we describe the methods for determining which hail days we count as within independent

clustered hail day periods. From these, we create the average composites of reanalysis variables

during clustered hail days. We then explain how the isolated hail days are resampled following

the seasonality of clustered hail days. Furthermore, details of the Kolmogorov-Smirnov (KS) test

and the modification of the significance threshold through the false discovery rate (FDR) are

explained.

The clustered hail days are by nature dependent. We therefore apply a 500-times-repeated resam-

pling to all clustered and isolated hail days such that each of the 500 series contains only serially

independent data. Isolated hail days are by nature independent; this category does not need any

additional treatment to ensure independence. However, clusters of hail days that are longer than

11 days are further divided into periods of 5 days that have at least 2 days between each other.

We call these periods independent. For the clustering period in 2004 (Fig. 5.2), some clustered

hail days have the sequence no hail (0) and hail days (1) “11011101”. Although all these hail

days are by our definition clustered, the central 5-day period that starts and ends with no hail

days “01110” contains only 3 hail days, despite being marked as clustered by their attribution

to neighboring 5-day periods. If in such cases the algorithm determining independent periods by

accident selects a sequence containing only 3 hail days, that choice is corrected by displacing the

5-day period to one day earlier. Consequently, the number of hail days per clustering period is

always �4. This criterion of independence has the consequence of not including all potentially

available clustered hail days. North and south of the Alps, this treatment additionally removes

29 and 13 out of 164 and 102 clustered hail days, respectively.
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The resampling vectors north of the Alps each have 32 days and south 21, following the number of

independent clustering periods in each study area. The seasonality following which isolated hail

days are sampled is defined as follows. The number of clustered hail days within independently

clustered hail day periods is counted per 20-day period as shown in Fig. 3, starting at DOY

80–99 and ending at DOY 260–279. Wherever clustered hail days occur, the relative frequen-

cies of clustered hail days per 20-day period are divided by the relative frequencies of isolated

hail days. These values are the probability of sampling per DOY of all isolated hail day during

each 20-day period. Because the number of isolated hail days per DOY varies, the probability of

sampling per each isolated hail day is further divided by the number of isolated hail days per DOY.

The two-sample KS-test measures the largest distance between the two empirical cumulative

distribution functions) of both data samples. It has the advantage of being independent of the

distribution of each individual data set. Hence, for each variable, the KS-test is applied 500 times,

comparing each resampled series of clustered hail days to its isolated-hail-day counterpart (first

resampled vector of clustered hail days with first resampled vector of isolated hail days; second

with second, third with third, etc.). For atmospheric fields, this procedure yields 500 ks-values

and 500 p-values for each grid-point. The p-value indicates how likely it is that the two compared

vectors stem from the same distribution (null hypothesis) and that the di↵erence is statistically

insignificant. Statistical tests typically consider a significance level ↵ of 5%. Following this

method, the null hypothesis is rejected if the chance of accepting it is less than 5%. However,

with N repeated tests and an ↵ of 5%, on average N*0.05 (here 500 ⇤ 0.05 = 25) test results will

falsely reject the null hypothesis (Type I error). That number itself is drawn from a probability

distribution whose mean is N*0.05 and can vary considerably with an increasing N . A solution

is to control the false discovery rate (FDR, Wilks, 2016). The FDR-corrected threshold does not

define the probability of falsely accepting the null hypothesis (p-value) but the probability that

a rejected null hypothesis should actually have been accepted (q-value). In concrete, we follow

the procedure explained in Wilks (2016). The p-values are sorted in ascending order and each

individual p-value pi is compared to a threshold p⇤FDR that varies according to q (in Wilks, 2016,

q is called ↵FDR), N and i. Assuming statistical independence of each of the N local tests p⇤FDR

is the largest pi that is equal or smaller than (i/N)↵FDR:

p⇤FDR = [pi : pi  (i/N)↵FDR] (C.1)
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Ich möchte herzlich Lucile und Jascha für die schönen zwei Jahre in den gemeinsamen Wohnungen

danken. Ich habe die Zeit mit euch sehr genossen. Je souhaite aussi remercier toute ma famille

et surtout mes parents, pour tous vos encouragements, votre soutien et la force mentale que vous
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