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Abstract 

This thesis aimed to explore space-use and movement behaviours of cage-free commercial laying hens 

to quantify consistent individual differences and to explain behavioural variation in response to keel 

bone fractures and various management practices. We monitored the movements of 403 hens 

distributed across two flocks, as they transitioned between five zones: the three stacked tiers of an 

aviary system, the littered floor, and the winter garden, using a herein validated low-frequency 

tracking system. We tracked hens from the day of transfer to the laying barn until nearly the end of 

the production cycle (17-60 weeks of age) and extracted daily behaviours related to various aspects 

of their daily routine, including the sleeping, feeding, nesting, indoor movements, and outdoor usage. 

We found consistent individual differences during the onset of lay (the first two months in the laying 

barn) and during adulthood where consistent differences between individuals explained between 24% 

and 66% of the behavioural variation. These long-term consistencies - together with the identified 

syndrome comprising all behaviours except the one related to the nesting - revealed the potential 

applicability of these behaviours as personality traits and indicated two axes of spatial personalities 

that may be driven by different mechanisms. Alongside consistent inter-individual differences we 

exposed intra-individual variation underscoring the relevance of studying spatial behaviour to better 

understand how animals respond to external and internal changes. Specifically, we found that an 

increase in the severity of keel bone fractures led to a drop in vertical travelled distance and tended 

to be followed by more tiers crossed within a transition. In addition, we exemplified how tracking 

systems could be used to assess long- and short-term influences of different management practices 

on hens' behaviour, including the commercial hatchery process, the transfer to the laying barn, and 

the daily automated delivery of fresh feed. To assess relative benefits further research should evaluate 

how these behaviours correlated with animals’ physiological stress responses and affective state. 

Summary 

Every year, humans raise over 78 billion terrestrial animals for consumption around the world, 

including 70 billion chickens (Gallus gallus domesticus) [1]. There is a general rising social awareness 

of the consumer on farm animal welfare, including an increased welfare concern towards laying hens 

[2]. As a result, the European Citizens’ Initiative End the Cage Age of 15th of April 2021 aimed at 

abolishing the use of cages in Europe animal farming by 2027. Therefore, within Europe, battery cages 

in the laying hen industry should slowly be replaced by cage-free systems, such as free-range and 

multi-tier aviaries [3]. These alternative systems are thought to enhance animal welfare by providing 

greater opportunities for more natural and motivated behaviours [4]. However, despite these clear 

benefits for animal welfare, the health issues that these modern systems have, in particular aviaries, 

remain considerable and can be more challenging to control than in cage-systems [5]. In addition to 
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the practical need of improving husbandry practices for cage-free commercial hens, there is a more 

basic need to change our representation of farm animals as individuals with complex characteristics 

rather than as commodities [6]. Laying hens are often seen as unfamiliar [6] and perceived as 

cognitively simpler [7] with fewer emotions and less differentiated individual personalities [8] 

compared to other farm animals, despite their cognitive, emotional, and social complexity [6]. 

 

Technologies for tracking animal locations have emerged as a promising tool to uncover individuality 

of commercial hens within aviaries [9] but also to study behavioural variation in relation to 

management practices and health issues [10–12]. Yet, compared to other systems (such as free-range 

[13–18]) there are a limited number of studies that have monitored individual movements within 

multi-tier aviaries (but see, [9–11]), conceivably resulting from the challenges associated with tracking 

individuals in the presence of metal equipment and high animal density. This thesis aimed to examine 

space-use and movement behaviours of cage-free commercial laying hens to quantify consistent 

individual differences and to explain behavioural variation in response to keel bone fractures and 

various management practices. In this thesis, we will use the term 'spatial behaviour' to generally 

refer to how animals use and move in their housing systems (e.g., space-use and movement 

behaviours). 

 

To reliably track individual movements within multi-tier aviaries, we customised and validated a 

tracking system (against video observations, 337 hours; Chapter I). We used a system comparable to 

ultra-wideband tracking systems but with lower frequencies, to reduce possible interactions with 

metallic materials and animals [19]. To further facilitate the process of tracking individual in multi-tier 

aviaries, the system was designed to register hens’ transitions between five defined zones (the three 

stacked tiers of the aviary, littered floor, and winter garden) instead of precise individual locations. 

We found that the system accurately determined hens’ presence in each zone but overestimated the 

number of transitions, explaining only 23% of the actual variation. Therefore, we evaluated two 

processing methods (i.e., a deterministic rule and a classifier) to filter false registrations. The two 

resulting processed datasets were representative of hens’ transitions, accounting for 91% and 99% of 

the actual variation, respectively. We concluded that this tracking system is suitable to track individual 

transitions between the stacked tiers of aviary systems, given appropriate data processing.  

 

To explore the significance of spatial behaviours to uncover individuality of commercial hens, we first 

quantified the extent of consistent individual differences in averages of a daily composite movement 

behaviour during the onset of lay (first two month in the laying barn; Chapter II). Then, during 

adulthood, we quantified consistent individual differences over time and across contexts, of five 

behaviours related to the sleeping, feeding, nesting, indoor movements, and outdoor usage (Chapter 
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III). We found consistent individual differences from the onset of lay and throughout adulthood in all 

behaviours, with up to 66% of the behavioural variation attributed to individual differences, providing 

a first quantification of the previously identified differences in spatial behaviours among hens in multi-

tier aviaries [9,11]. These results, not only indicate the presence of animal personalities in our flock, 

but also underscore the complex nature of commercial laying hens. 

 

To explore the significance of spatial behaviours for animal health, we evaluated the bidirectional 

relationship (i.e., the dynamic) between behaviours and keel bone fractures (KBF), considered as one 

of the greatest welfare issues in the egg production industry [20–25] (Chapter IV). By understanding 

such dynamics, we could for instance identify when behavioural variation may lead to feedback loops 

that would exacerbate health issues. Despite their importance, there is a dearth of studies that 

evaluated state-behaviour feedbacks within commercially relevant settings (for other settings see: 

[26]). Keel bone fractures are an excellent candidate to evaluate such feedbacks as there is strong 

evidence that they impair mobility [10,27–29], whereas effects of spatial behaviours on bone fractures 

likely exist [3,20,30–33] but remains poorly understood. We found that an increase in the severity of 

KBF led to a drop in vertical travelled distance and tended to be followed by more tiers crossed within 

a transition. In contrast, we did not find any evidence that spatial behaviours altered the severity of 

KBF. However, similar efforts accounting for the location of fractures could unveil the potential 

influence of spatial behaviours in the formation and maintenance of KBF.  

 

To evaluate the relevance of spatial behaviours in assessing animal responses to management 

practices, we used the standardized commercial hatchery process [34] (Chapter V), the transfer to the 

laying barn (Chapter II), and a daily stimulus in the laying barn (delivery of fresh feed; Chapter III). We 

found that for the first three months post-transfer to the laying barn (~17-30 weeks of age), hens 

hatched in commercial hatchery, on average, transitioned more between the aviary tiers and spent 

more time in the littered floor, suggesting a faster use of all available resources compared to hens 

hatched on-farm in less stressful conditions. We also identified individual differences in temporal 

plasticity of daily movements following the transfer to the laying barn, with hens increasing their 

movements on average for 39 days. Additionally, we identified weak, but long-term, consistent 

individual differences in response to the delivery of fresh feed (repeatability = 0.33 over a period of 6 

months). Overall, these results demonstrated the potential of tracking systems in assessing long-term 

and daily animal responses to management practices.  
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General introduction 

Behavioural variation can facilitate effective responses to a wide range of changes, including internal 

changes like bone fractures and external changes like fluctuations in feed availability. Two important 

aspects of behavioural variation include the notions of consistent individual differences [35] and of 

behavioural plasticity [36]. This general introduction will start by providing a background on these two 

notions before discussing causes and consequences of behavioural variation. Then, I will narrow the 

scope of this introduction to concentrate solely on spatial behaviours, focusing on their significance 

for farm animal welfare. Finally, the commercial laying hen housed in cage-free systems will be 

introduced as an interesting animal model to study behavioural variation and its association with 

animal welfare, particularly to KBF, considered as one of the greatest welfare concerns to over 8 billion 

individuals [20–25,37]. 

 

Behavioural consistency and plasticity 

An animal's sensory receptors, including those in its ears, olfactory system, and eyes, receive inputs 

from its surroundings, which are then processed by the animal and may be translated into internal 

(e.g., physiological) and external responses (e.g., behavioural). Animal behaviour can be broadly 

categorized into several classes, including behaviour used to communicate (e.g., vocalizations, body 

language), reproduce (e.g., nest building, courtship), feed (e.g., foraging, scratching), socialise (e.g., 

grooming), defend (e.g., fighting, hiding), acquire new information (e.g., tool use, observational 

learning), and move (e.g., dispersal, space-use behaviour). Essentially, behaviour serves as an interface 

between an animal and its surroundings [38]. 

 

Phenotypic variability (including behavioural variability) when expressed in response to environmental 

variation within a single genotype is called phenotypic plasticity [39,40]. This ability of a genotype (or 

an individual) to modify its phenotype, such as behaviour, physiology, and morphology, in response 

to environmental variation can result in a selective advantage [40–42], such as increasing survival rate 

[43,44] and reproductive success [45,46]. Two of the most common categories of phenotypic plasticity 

are the developmental plasticity [47] and the phenotypic flexibility [39]. Developmental plasticity 

refers to an organism’s capacity to develop different phenotypes in response to different 

environmental conditions during its development [48]. These permanent differences in the 

developmental trajectory of the phenotype contrast with the reversible phenotypic transformations 

in response to environmental changes, called phenotypic flexibility [39,49].  
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Behaviour is considered as one of the most plastic phenotypic traits [48]. However, this plasticity may 

be limited by consistent individual differences in behaviour (but not necessarily [50]), which are 

prevalent across a wide range of animal taxa [35,51] and explain on average 37% of the behavioural 

variation. Accumulating evidence suggests that behavioural differences between individuals can be 

maintained across time and contexts [52], which is generally referred to as animal personality [53,54]. 

Personality is a multidimensional concept and can be summarized into five axes, namely 

aggressiveness, activity, exploration, boldness, and sociability [53,55]. Correlations among individual’s 

average behavioural expressions, called behavioural syndrome [56], are common between these five 

axes. Typically, more aggressive individuals tend to be more explorative, active, bold, and less social 

[55]. These individuals would commonly be classified as proactive and contrast to more reactive 

animals [55,57,58]. Correlated behaviours play a crucial role in the study of animal behaviour, as they 

can constrain evolution and provide insights into life history strategies (e.g., activity - risk-taking 

syndrome affecting survival [59]) and key ecological processes (e.g., ‘fast’/proactive personalities [60] 

tend to disperse over longer distance [61]).  

 

Causes and consequences of behavioural variation 

By understanding the causes and consequences of individual variation in behaviour, we can 

understand when variation enters a positive feedback loop, leading to increased variation, or when 

variation feedbacks negatively and dampens successively. Positive feedbacks between two processes 

X and Y occur when a change in X leads to a change in Y that reinforces the initial change in X, while 

negative feedback occurs when a change in X leads to a change Y that counteracts the initial change 

in X. By studying the dynamics between animal health and behaviour, we could identify which 

behaviours may lead to feedback mechanisms that amplify or stabilize changes in the health process. 

For example, by studying risky behaviours (such as hazardous landings in multi-tier aviary systems) we 

could assess whether such behaviours exacerbate certain health problems (such as KBF) which in turn 

could increase the propensity to engage in these risky behaviours, resulting in an undesirable positive 

feedback loop. 

 

A wide range of factors has been shown to cause behavioural variation, regardless of whether they 

lead to consistent individual differences. For instance, behavioural variation can stem from variation 

in a range of external factors related to the abiotic environment [43,62], including temperature [63] 

and many other habitat characteristics [64], or related to the biotic environment, including conspecific 

(dominance hierarchies) [65] or heterospecific interactions (predator risk [66] or mixed-species 

resource availability [38]). Furthermore, the salience and importance of an environmental stimulus 

may differ between individuals and depend on motivational factors, such as hunger and the need to 
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engage in enrichment activities or interact with conspecifics. The way animals experience their 

environment is crucial in shaping their behaviour as it can alter their perception of stimuli and provide 

new opportunities to learn. Therefore, individual variation in behaviour can also stem from differences 

in cognition processes including perception, learning, memory, and decision making [67], as well as a 

range of other internal factors [26,68], such as physiology [60], life historic traits [60], health status 

[29], and life cycle stage [69]. 

 

Consistent individual differences in behaviour are generally attributed to differences between 

individuals in genes and environmental conditions. Recent research has shed new light on potential 

mechanisms underlying consistent individual differences in behaviour. For example, a study on 

Amazon mollies (Poecilia Formosa) has found consistent differences in behaviour among genetically 

identical individuals reared in near-identical conditions [70]. The authors suggested amongst other 

explanations, that positive state-behaviour feedback [26] and maternal bet-hedging could explain 

individuality in absence of variations in genetic or environmental backgrounds. They concluded that 

individuality may be an unpredictable and inevitable result of development. Fisher et al. (2018) [71] 

suggested that dynamics that are sensitive to initial conditions and governed by deterministic rules 

(often called chaotic dynamics) may also have contributed to behavioural development in a way that 

could result in long-term individual differences in animals with very similar environmental 

backgrounds and genetics. In other words, this latter explanation proposes that deterministic chaos 

could explain how small initial behavioural differences would cause long-term differences.  

 

Understanding the causes of individual variation in behaviour can provide valuable insights into the 

potential consequences of such variation. For instance, as consistent individual differences in 

behavioural traits can result from genetic differences, these traits could be heritable. Accumulating 

evidence suggests that personality traits are heritable [72–75] and have higher heritability than those 

of other behaviours [74]. Because these traits also relate to animal productivity [76–78], welfare 

[55,79,80], and fitness [81,82], they can have important implications for animals. For instance, natural 

selection of specific behaviours could shape adaptations by helping wild animals to survive and 

reproduce under environmental change, while human selection for specific personality traits could be 

used to breed for more robust farm animals (e.g., in laying hens [83], pigs [84], cows [85]). Another 

example of the potential consequences arising from consistent individual differences in behaviour, 

particularly at the individual-level, is the fact that such personality traits could limit behavioural 

plasticity and thereby prevent optimal changes of a behaviour in certain contexts.  
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The importance of spatial behaviours for farm animal welfare 

Animal welfare is a multidimensional concept that comprises animal health, normal behaviour, and 

affective state [86]. Therefore, in addition to minimal suffering and negative experiences, animals 

should experience positive emotions [86]. Consequently, to assure optimal welfare, animals must be 

able to move freely in their environment and have the choice to perform natural behaviours that 

matter to them [87,88]. However, these conditions are not always met, given that farm animals are 

typically housed in human-designed artificial environments, where the emphasis on productivity was 

often prioritized over animal welfare. Therefore, studying movement and space-use behaviours could 

help identifying features of their environment that could hinder their freedom of movement or the 

expression of natural behaviours at specific times in their lives, such as when dealing with health issues 

or specific management practices.  

 

Studying behavioural variation in response to management practices, such as those related to the 

transfer to new environments, the distribution of fresh feed (e.g., laying hens [89], dairy cattle [90]), 

and the social environments could provide insights into farm animal welfare. For example, given the 

disparities between natural and commercial environments, it is probable that farm animals need 

special guidance and time to effectively use all available resources needed to express all natural 

behaviours upon the transfer to a new environment. Another example comes from a prior study which 

illustrated how the combination of behavioural observations, including space-use, and production 

measurements could inform decisions regarding feeder space for laying hens to reduce agonistic 

behaviour and facilitate access to the feed while maintaining a similar feed conversion [89]. 

Furthermore, considering that the group size of farm animals cannot always self-regulate through 

cost-benefit balance and that individuals cannot join or leave a group as in natural populations [91], 

management practices related to the social environment should also be carefully designed. Previous 

literature showed negative effects arising from social instability, isolation, and crowding [92], 

highlighting the relevance of studying individual spatial behaviours in relation to conspecifics’ spatial 

distributions.  

 

The majority of farm animals, including chickens, cattle, sheep, ducks, goats, pigs, and rabbits, are 

considered prey species. Some prey species may find advantageous to hide any signs of vulnerability 

under health issues, including sickness behaviour, defined as a stereotypical response to injury or 

infection [93]. This tendency to hide vulnerability may weaken the influence of health issues on animal 

behaviour, making it more challenging to study [93]. This underscores the importance of sensor 

technologies that can collect large datasets and models that can account for the potential dynamic 

between an animal's state and its behaviour. These tools may facilitate the detection of subtle changes 
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in behaviour that animals cannot mask. By understanding the interplay between spatial behaviours 

and health indicators, it can, for instance enable the early detection of health issues [94–97]. Given 

that animals can modify their spatial behaviours in response to the presence of illness [97], these 

behaviours could help detecting health issues at an early stage. This has been observed in various 

species such as broilers [98], dairy cows [99,100], pigs [101], and laying hens [102]. Such behaviours 

may also precede the onset of a disease and thereby predict disease susceptibility prior manifestation 

[98,103]. Correlations between spatial behaviours and health indicators can also inform potential 

modification of housing systems to decrease prevalence of health problems [30,104]. For example, 

Stratmann et al. (2015) [30] showed that adding ramps in aviary systems could enable hens to move 

between the stacked areas by walking instead of jumping or flying, which was shown to decrease 

incidence of falls, collisions, and keel bone damage in laying hens. 

 

Studying spatial behaviours of farm animals through more fundamental approaches, such as those 

studying consistent individual differences, could help shift our representation of farm animals as 

individuals with complex characteristics rather than commodities. Traditionally, individual traits are 

assessed in laboratory settings or with standardized assays [105] on a limited number of individuals 

or over short periods of time, and therefore may not reflect all important aspects of behaviours 

expressed within commercially relevant settings [106,107]. Technologies allowing to track animal 

locations are among the few tools capable of automatically registering individual behaviour over long 

periods of time and with minimal disturbances, enabling to expose consistent individual differences 

within commercially relevant settings. Results from two meta-analysis, showed that on average 67% 

of the variation in spatial behaviours within populations could be explained by differences between 

individuals [51], compared to 37% when considering a broad variety of behaviours [35]. These findings 

highlight the general remarkable individual consistency in spatial behaviours across many taxa, also 

referred to as “spatial personality” [51]. This relatively high consistency may be partially explained by 

the fundamental role of spatial behaviour in common personality traits (e.g., activity and exploration 

behaviours) [61] and their association to other personality traits. For instance, bolder animals may be 

more likely to take risks and explore new environments compared to shyer animals which may be 

more likely to avoid risky behaviours and stay in familiar environments.  

 

The relatively high repeatability estimates of spatial behaviours [51] sets a relatively high upper bound 

on their heritability that supports the use of tracking systems to study behavioural traits to breed more 

robust farm animals. Breeding practices of farm animals have long been mostly focused on optimising 

productivity. Research has now proposed the integration of personality traits as phenotypes into the 

breeding process to breed animals that exhibit increased resilience to challenges, such as diseases and 

stressors [55,79,80]. This approach has already been discussed in various farm animals, including pigs 
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[84], laying hens [83,108,109], and cows [85]. Therefore, tracking systems could also have the 

potential to benefit farm animal welfare at a global scale, but future research is needed to assess the 

feasibility. 

 

In conclusion, studying spatial behaviours in relation to management practices and health conditions 

can yield practical benefits for animal welfare, including more appropriate housing design and 

management practices and the development of early warning systems. Additionally, exploring more 

fundamental aspects of behaviours (e.g., related to animal sentience or animal personality) could 

change our attitude towards animals to better account for their needs and to shed light on novel 

breeding practices. 

 

Cage-free commercial laying hen as animal model 

Commercial settings offer researchers a unique environment that combines the real-world complexity 

relevant to farm animals with a certain level of control. For example, factors that are generally partially 

regulated by humans includes those related to the rearing processes, lighting, timing of feed, and 

indoor temperature. Furthermore, these settings are sometimes globally standardized and have 

automated processes, such as for feeding or providing access to areas, which could also be beneficial 

in research. Last but not least, commercial settings provide an opportunity for animals to serve a dual 

purpose by serving commercial and research objectives, aligning with the ethical framework for the 

design of animal experimentation based on the 3R principles (Replacement, Reduction, and 

Refinement) [110]. 

 

Despite the benefit for researchers to study farm animals directly within their relevant settings, there 

are significant expenses and potential challenges associated with behavioural studies within 

commercial settings. It is therefore important to emphasize that conducting research in these 

environments is crucial when the findings are meant to assess relative benefits for the welfare of 

animals. Indeed, not only the intricate design of modern commercial systems increases the 

behavioural repertoire of animals but the social dynamics in larger groups can differ from those in 

smaller groups. For instance, in large groups, hens can't recognize all conspecifics which could limit 

their ability to form social groups [111]. Consequently, behaviours observed in laboratory settings may 

not always extrapolate to commercial settings and conducting research within the latter environment 

is important to understand how farm animals behave.  

 

Every year, humans raise over 78 billion terrestrial animals for consumption globally, including 70 

billion chickens (Gallus gallus domesticus) [1]. As the most common food-producing animals on land, 
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chickens are widespread and could be of great interest to researchers studying animal behaviour due 

to their cognitive, emotional, and social complexity. For example, in a recent review, Marino (2017) 

[6] reported that chickens experience positive and negative emotions, perceive time intervals, 

perform basic transitive inference, and demonstrate a basic comprehension of numerical quantity, 

among other abilities. Laying hens, in particular, also exhibit a fascinating range of behaviours, 

including many vocalisations (20-25 discrete calls already documented [112–116]) and various highly 

motivated behaviours, such as roosting on elevated perches, using nest boxes for egg-laying, and dust 

bathing [4]. Hens' diverse modes of locomotion, including flying and running, further enhance their 

appeal as subjects in scientific studies related to spatial behaviours, allowing to study individual 

differences in the modes of locomotion, in addition to their locations. 

 

There is a rising social awareness of the consumer on farm animal welfare with increased welfare 

concern towards laying hens [2]. The European Citizens’ Initiative End the Cage Age of 15th of April 

2021 aimed at abolishing the use of cages in European animal farming by 2027. Therefore, within 

Europe, battery cages in the laying hen industry should slowly be replaced by cage-free systems, such 

as barn, free-range, and multi-tier aviaries [3]. Multi-tier systems, the system used in this thesis, are 

designed so that the usable area is not limited to ground level [117]. In these systems, hens may have 

access to a maximum of four tiers, though the number of levels the birds can access may be higher 

than the number of tiers (i.e., when tiers have more than one level) [117]. To access all resources in 

multi-tier aviaries, hens must move horizontally and vertically, as resources are distributed throughout 

the stacked tiers reaching up to 3.5 meters in height. These cage-free systems are thought to enhance 

animal welfare mainly by providing greater opportunities for more natural and motivated behaviours. 

However, despite the considerable benefits for animals, the welfare problems that these modern 

systems have, in particular aviaries, remain considerable and can be harder to control than in battery 

cages [118,119]. 

 

Welfare issues in cage-free laying hens are diverse, including bacterial infection (bumblefoot), 

parasites (e.g., red mites), feather pecking, and keel bone fractures, considered as one of the greatest 

welfare issues in the egg production industry [20–25], potentially affecting egg-production 

[28,120,121] and animal welfare. Indeed, compelling evidence indicates that hens with KBF feel pain 

at least for a few weeks [22,122], show behavioural differences in highly motivated behaviours, 

including nestbox use and perching, which could indicate negative affective states [122,123], and face 

restricted mobility. More specifically, increased KBF have been associated fewer vertical movements 

[29], a change in resting location from litter to perches [124], increased latency to fly up or down from 

perches [27,28], more time spent on the top tier [10], and less time spent on the litter floor [10].  
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While the exact cause of KBF remains unclear [125,126], human selection for early sexual maturity 

and high egg productivity (~320 eggs/year compared to 12 eggs/year in the red junglefowl) has 

resulted in an increased demand for calcium for eggshell formation, which in turn increased bone 

fragility and susceptibility to fractures [3,125,127]. Previous literature also suggested that specific 

aspects of the aviary's internal structures, such as perches or more generally structures increasing 

risks of falls and collisions, are contributing factors to KBF prevalence [3,30,31]. In other words, the 

complex design of multi-tier aviaries could exacerbate KBF’s prevalence [20,33]. Additionally, impaired 

mobility within such housings may increase the risk of dehydration, emaciation, and floor eggs [128], 

as hens must move horizontally and vertically to access all resources, distributed throughout several 

stacked tiers reaching up to 3.5 meters in height. Consequently, these systems could also exacerbate 

the consequences of KBF, making multi-tier aviaries particularly interesting when studying KBF, as 

their complex design may intensify both its prevalence and consequences. 

 

In conclusion, commercial laying hens are an interesting animal model to explore behavioural variation 

and its association with animal welfare given their diverse behavioural repertoire, numerous health 

issues, and worldwide presence. Additionally, cage-free housings provide researchers unique 

environments with real-world complexity relevant to farm animals and partially controllable settings. 
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Thesis objectives, hypotheses, and experiments 

This thesis aimed to explore spatial behaviours of commercial laying hens with three specific 

objectives: (1) quantifying consistent individual differences in spatial behaviours (spatial personality), 

(2) examining the dynamics between behavioural responses and the amount of the keel bone affected 

by fractures, and (3) assessing influence of management practices on behaviours. These objectives 

were defined based on the relevance of the existing knowledge gap, introduced above and 

summarized below, that need to be addressed to ultimately enhance the welfare of commercial hens.  

 

To shift our perception of commercial hens as individuals, it is important to underscore their intricate 

nature and better understand their individual need. In 2018, consistent individual differences in spatial 

behaviours of commercial hens within multi-tier aviaries was first identified [9], but the extent of 

individual consistency in spatial behaviour is not yet quantified. As a result, we also do not know how 

individuality persists over time and across context and differs between production phases or across 

different behaviours. Therefore, the first goal of this thesis was to quantify consistent individual 

differences in different spatial behaviours over time and across context, during the onset of lay and 

adulthood. 

 

In addition to the need to change our perception of farm animals, there is the practical need of 

reducing health issues in commercial laying hens, where KBF are considered as one of the greatest 

welfare concerns. In particular, it is important to understand whether KBF may be caused or 

exacerbated by specific behaviours and how such fractures may impair behaviour, particularly in 

multi-tier aviary systems since their spatial complexity could exacerbate both KBF’s prevalence and 

consequences. In 2019, Rufener et al. [10] provided the first evidence of an association between KBF 

and mobility in hens housed within multi-tier aviaries, but the causality has not yet been investigated. 

More generally, while there are clear associations between KBF and mobility with evidence suggesting 

that KBF impair mobility, the effect (whether causing or maintaining fractures) of spatial behaviours 

on KBF remains poorly understood. Therefore, the second goal of this thesis was to evaluate the 

dynamics between KBF and spatial behaviours. 

 

Lastly, there is the practical need of improving husbandry practices for modern cage-free commercial 

hens. Despite the considerable benefits for animals, the welfare problems that these modern housing 

systems have, specifically aviaries, remain considerable and can be harder to control than in battery 

cages. However, there is a dearth of studies that used spatial behaviours to assess individual responses 

to management practices within commercial settings. Therefore, the third goal of this thesis was to 

study behavioural variation in relation to three types of management practices: the standard 
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commercial hatchery practices, the transfer from the rearing to the laying barn, and recurring 

environmental stimulus such as the daily automated delivery of fresh feed. 

 

Objectives 

Previous literature has underscored the significance of spatial behaviours in commercial hens within 

multi-tier aviary systems as a means to study individuality, and to evaluate underlying causes and 

consequences of KBF. However, the extent of individual consistency in spatial behaviour has not been 

quantified, and the two halves of the KBF-mobility association was not investigated in conjunction. 

This thesis primarily aimed to address these two knowledge gaps and, in pursuit of further practical 

implications, also aimed to evaluate behavioural variation induced by three common management 

practices. Therefore, the objectives of this thesis were to explore the significance of spatial behaviours 

in commercial laying hens within multi-tier aviaries to study: 

I. Individuality, by quantifying consistent individual differences in different spatial behaviours 

over time and across context, during the onset of lay and adulthood, 

II. Keel bone fractures, by evaluating the dynamics between the amount of the keel bone 

affected by fractures and spatial behaviours, and 

III. Responses to management practices, by evaluating how the standard commercial hatchery 

practices, the transfer from the rearing to the laying barn, and recurring environmental 

stimulus resulting from management practices can cause behavioural variation. 

 

Hypotheses 

The hypotheses of the thesis were formulated for each objective separately: 

I. Individuality: We hypothesised that commercial laying hens have individual personalities that 

is reflected in their spatial behaviours. Therefore, we predicted that while controlling for some 

variation in health and the environment, a significant part of the remaining variance in spatial 

behaviours would be attributed to repeatable inter-individual variation. 

II. Keel bone fractures:  

• We hypothesized that hens with more severe KBF would reduce their activity and 

spend more time on higher tiers with vital resources. Therefore, we predicted that an 

increase in KBF would lead to a drop in vertical travelled distance, greater time spent 

in the top tier, and more generally to a more uneven usage of the five zones (aviary 

tiers, littered floor and winter garden).  
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• We hypothesized that more transitions between the aviary stacked tiers would lead 

to a higher number of landings and, consequently, increased occurrence of falls and 

collisions. Therefore, we predicted that greater vertical travelled distance and greater 

number of tiers crossed within one transition (leading to longer and potentially more 

hazardous landings), would lead to increased KBF severity. 

III. Responses to management practices: We hypothesized that spatial behaviours play an 

important role in responding to environmental variation in commercial aviaries. We predicted 

long-term influences of early-life stress induced by the standard commercial hatchery 

practices on hens’ spatial behaviours at the population-level (when compared to hen hatched 

on-farm). We also predicted individual differences in temporal plasticity after the transfer 

from the rearing to the laying barn and consistent individual differences in response to 

recurring environmental stimulus resulting from management practices during the laying 

phase (specifically the delivery of fresh feed). 

 

Experiments 

This thesis involved two animal experiments, both conducted with Dekalb white laying hens (Gallus 

gallus domesticus) in the same aviary system over two consecutive years. In brief, our primary 

objective with the first experiment was to track hens’ transitions between five zones in a multi-tier 

aviary from the day of transfer to the laying barn (17 weeks of age) until nearly the end of the 

production cycle (60 weeks of age). In total, we tracked 227 hens for varying durations, primarily 

dependent upon tissue collection for other experiments not pertaining to this thesis. For the purpose 

of objective II, we also conducted five health assessments during the laying phase including the 

assessment of the total amount of the keel bone affected by any fracture (KBF severity) using 

radiography. For the purpose of objective III, we had a treatment group, where half of the hens 

hatched on farm, while the other half hatched in a standard commercial hatchery. The second 

experiment was specifically conducted to augment the sample size to evaluate the dynamics between 

the severity of KBF and spatial behaviours (objective II). Therefore, in this second experiment we 

tracked hens during each week prior to radiography only (7 days of tracking/radiographs, 4 

radiographs, 169 hens). Based on these two experiments, we validated the tracking system (Chapter 

I) and conducted four other studies, i.e., chapters. The first experiment was used for the five chapters, 

while the second experiment was used solely in Chapter IV. In brief, in Chapter II and Chapter III we 

studied spatial behaviour during the onset of lay and the adulthood, respectively. In Chapter IV we 

evaluated the dynamics between spatial behaviours and KBF, and in Chapter V we evaluated the 

influence of standard commercial hatchery practices on spatial behaviour during the laying phase. 
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More precisely, Figure 1 illustrates how the three thesis objectives were explored during hens’ early 

life, onset of lay, and adulthood. Figure 2 illustrates the observational timeframe of each chapter.  

 

 

Figure 1 - Simplified schematic of the three thesis objectives (rows) across the different life stage of the hens (columns) and 

the corresponding chapters. Chapter I is not included in the figure as it was dedicated to the validation of the tracking system. 

 

 

Figure 2 – Simplified schematic of the observational timeframe for each chapter. Red vertical bars indicate tracking data 

collection used to assess daily spatial behaviours. Pink lines represent the three different management practices studied in 

the thesis. Yellow lines denote time when radiographs were taken. 
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Abstract 

Tracking technologies offer a way to monitor movement of many individuals over long time periods 

with minimal disturbances and could become a helpful tool for a variety of uses in animal agriculture, 

including health monitoring or selection of breeding traits that benefit welfare within intensive cage-

free poultry farming. Herein, we present an active low-frequency tracking system that distinguishes 

between five predefined zones within a commercial aviary. We aimed to evaluate both the processed 

and unprocessed datasets against a “ground truth” based on video observations. The two data 

processing methods aimed to filter false registrations, one with a simple deterministic approach and 

one with a tree-based classifier. We found the unprocessed data accurately determined birds’ 

presence/absence in each zone with an accuracy of 99% but overestimated the number of transitions 

taken by birds per zone, explaining only 23% of the actual variation. However, the two processed 

datasets were found to be suitable to monitor the number of transitions per individual, accounting for 

91% and 99% of the actual variation, respectively. To further evaluate the tracking system, we 

estimated the error rate of registrations (by applying the classifier) in relation to three factors, which 

suggested a higher number of false registrations towards specific areas, periods with reduced 

humidity, and periods with reduced temperature. We concluded that the presented tracking system 

is well suited for commercial aviaries to measure individuals’ transitions and individuals’ 

presence/absence in predefined zones. Nonetheless, under these settings, data processing remains a 

necessary step in obtaining reliable data. For future work, we recommend the use of automatic 

calibration to improve the system’s performance and to envision finer movements.  

 

Introduction 

Tracking technologies generate sequences of chronologically ordered location data and offer a way to 

monitor movement of many individuals over long time periods with minimal disturbances. Tracking 

technologies have become valuable for detecting health issues in farm animals at an early stage [94–

97] and in cage-free poultry farming, for their potential to select breeding traits that benefit welfare 

within cage-free systems [108,109] as well as to provide scientific information for optimal 

management [129]. However, cage-free housings are uniquely complex and may introduce numerous 

challenges for tracking technologies. For instance, cage-free housings of laying hens often contain a 

relatively high concentration of material that can interfere with tracking signals, including metal 

hardware (e.g., perches, floor, feeding lines) and multiple stacked horizontal levels that prevent direct 

lines of sight require by some automated tracking technologies (e.g., video tracking, infrared). 

Furthermore, compared to most other livestock, laying hens are relatively small animals that can be 

housed in large groups at very high densities, which would likely alter ultra-high frequency (UHF) radio 
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signals [130]. Compared to most other commonly tracked livestock (e.g., swine, cattle), laying hens 

move differently (e.g., flying, jumping between horizontal tiers) and often faster. These challenges 

might induce measurement errors (as defined by the difference between a measured quantity and its 

true value), both of random and systematic natures [131]. Random errors are often inevitable and 

unpredictable, but their effects can be minimized, for example, by increasing the sample size. On the 

other hand, systematic errors are often predictable with consistent causes (e.g., environmental 

interference, improper calibration), but their effects are harder to compensate for and can lead to 

biases if not appropriately addressed during analysis. 

 

Tracking systems have already been used to examine laying hens within the interior of a 

commercial system [9,10,132]; these tracking systems had to overcome the housing complexities 

described above. However, measurement errors were primarily evaluated within less complex 

settings (e.g., in small interior or outdoor settings) than commercial aviaries but focusing on 

movements of greater precision (i.e., individual location) than the current effort (transitions between 

predefined zones). For instance, using an ultra-wide band (UWB) system, Rodenburg et al. [108] 

reported an accuracy of 85% in detecting individuals’ location, and Stadig et al. [16] reported an error 

of less than 50 cm in 80% of measurements. These results present great potential for tracking systems 

to represent individual positions within free-range areas, as well as a margin to refine the data. 

Systematic errors were also investigated, although only within settings less complex than commercial 

aviaries. For instance, comparing registrations generated by a UWB system against video observations, 

Sluis et al. [133] observed an average overestimation of 40% of in the distance of broilers moving less 

than 15 m and an average underestimation of 15% in the distance of broilers moving more than 30 m. 

Furthermore, Stadig et al. [16] observed a larger error in certain areas of the experimental field and a 

negative influence of rain on the percentage of successful registrations. These results suggest that 

various factors, such as the individual level of activity, specific areas, and weather conditions, could 

cause errors in measurement. Although tracking systems within cage-free housing systems are 

becoming more popular, they still have challenges to overcome. We therefore studied long-term 

tracking in commercial aviaries at the level of visited zones (with five zones) instead of precise 

individual locations. In the current study, we used active tags with low-frequency (LF) tracking and 

UHF communication that distinguished five zones with key resources, including the three stacked tiers 

of a commercial aviary (top floor, nest box, lower floor), the littered floor underneath, and an outside 

covered winter garden. This tracking system is comparable to UWB tracking systems with lower 

frequencies, with the aim of reducing possible interactions with the environment, such as liquid and 

metallic materials [19]. 
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To overcome measurement errors, some studies have mentioned novel placement of tracking 

system components [16,134], filtering of registrations that are not possible [16], or filtering of 

individual positions that do not move more than the 95% confidence interval of the system’s 

positioning errors [63]. When modifying the configuration of the tracking system is not an option, data 

processing may be the only alternative to refine and, in some cases, obtain validated data. 

Furthermore, tracking data often contain metadata associated to each registration, which could be 

used to detect false registrations and increase accuracy. Due to a potentially large number of available 

features and interaction effects, manually defining a rule-based algorithm can be time-consuming and 

suboptimal, whereas machine learning may offer a valuable solution for filtering false registrations. 

Despite potential for data refinement, there are only a few studies on UWB systems and related 

technologies that scrutinize data-processing methods, particularly within the unique settings of 

housings of cage-free laying hens. In the current study, we aimed to contribute to the collective effort 

of evaluating tracking systems for laying-hen farming, with a focus on the interior of a commercial 

aviary system. To achieve this aim, two analysis steps were involved. First, two data-processing 

approaches were applied to filter false registrations, including a simple deterministic approach that 

filters stays of short durations (SD method) and a machine learning approach (ML method) based on 

a tree-based classifier. The two processed datasets and the unprocessed dataset were compared 

against video-observation results (our gold standard). This evaluation was conducted in terms of the 

number of transitions per individual within the predefined zones and individuals’ presence/absence 

in each zone every second. Secondly, to better evaluate the tracking system, we studied the effect of 

filtering false registrations based on the ML method over a two-month period on 144 tracked animals 

under three potential influencing factors: different areas of the aviary, external temperature, and 

external humidity. We selected these factors because they have already shown to be associated, to 

some extent, with tracking-system performance and could introduce biases in our own work and that 

of others using comparable technology if associated with false-registrations.  

 

Materials and Methods 

Ethical Statement 

The study was conducted according to the cantonal and federal regulations for the ethical treatment 

of experimentally used animals and approved by the Bern Cantonal Veterinary Office (BE-45/20). 

 

Animals and Housing 

As part of a larger study examining effects of on-farm hatching, approximately 4800 chicks were 

reared in an Inauen Natura rearing barn previously described by Stratmann et al. [30] and located at 

the Aviforum facility in Zollikofen, Switzerland. At seven days of age, focal animals were selected, and 
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at approximately 16 weeks of age, all animals were transferred to an on-site commercial laying barn 

containing a Bolegg Vencomatic Terrace aviary. The aviary system is split into 20 identical pens 

separated by a vertical grid, with each pen containing 225 animals and an outside, covered winter 

garden that can be accessed through a pop hole (illustrated in Figure 1). Eight of the 20 pens were 

used for the current study, with 18 focal animals per pen (a total of 144). On the same day as the 

transfer to the laying barn, we mounted a tracking tag enclosed within a cloth backpack (mass: 15.6 

g; height: 14.5 cm; width: 13 cm) on the back of each focal hen. These backpacks were identifiable 

from video cameras based on their unique colour combination. 

 

Figure 1. Housing setup, including the pens and aviary location in the barn, winter-garden zone, pop holes, and cameras. 

Tracking System 

To track hens across different areas within a pen, we distinguished five zones with key resources, 

including the three stacked tiers of a commercial aviary (top, nest box, lower), the littered floor 

underneath, and the winter garden, as illustrated in Figure 2A. During the laying phase, transitions 

between the five zones were assessed continuously for each focal hen by means of a customized 

tracking system. For this, three identical stations of a low-power, active tracking system (®Gantner 

Solutions GmbH, Schruns, Austria) were installed within the laying barn, each covering either two or 

three pens (Stations 3–5: pens 3, 4, 5; Stations 8–9: pens 8, 9; Stations 10–12: pens 10, 11, 12). Each 

station involved several components, including five markers (1 per zone) emitting signals through a 

cable (creating separately enclosed fields for each zone; Figure 2B); active tags (mass: 28.1 g) that can 

receive signals; and lastly, a reader that communicates through UHF (868 MHz), with the tags and a 

dedicated computer.  
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Figure 1 – a) Side view of the aviary including a single pen with its three aviary zones (top tier, nestbox, lower tier) and the 
littered floor. b) Simplified representation of the tracking system covering two pens, including the four indoor markers 
(square boxed) and their cables through which the signals are emitted 

The receiving strength of the LF signal (RSS) is used to determine theoretical distance to the 

antenna loop. At almost every position in any zone, the tag can receive the signal of multiple markers. 

This signal last for 50 ms. It is important that during that time, the tag only receives the signal of one 

marker; otherwise, signals would overlap and might not be valid. Therefore, the markers send at 

different transmission intervals (varying from 1.6 to 2.1 s depending on the zone) a fixed low carrier 

frequency signal of 0.125 MHz (LF-signal) that is modulated to allow markers to be differentiated. 

Within a 10-s interval, a tag could theoretically receive between five and six signals per marker, but 

this number will often be lower, as every marker has a maximum range of only two to three metres. 

Every time a tag receives an LF-signal, an algorithm (tag-algorithm) is applied to the registered LF 

signals received within the past 10 s to evaluate whether the tagged hen has transitioned to a new 

zone. The tag algorithm reports a new transition when a tag receives the absolute strongest signal 

value from the same marker twice within 10 s and if the associated zone differs from the last registered 

zone (pseudo-code in the Supplementary Text S1). Following the installation of the tracking-system 

stations, each pen was calibrated under field conditions to ensure a correct interpretation of 

information obtained by the devices. More specifically, a tracking tag was positioned in each of the 44 

predefined critical locations per pen (e.g., where two zones border one another) to evaluate RSS 

against observed distance to the antenna loop and to adjust the LF signal of specific markers as 

necessary. 

 

Individual transitions to a zone registered by the tracking system are hereafter called 

registrations. More specifically, we will refer to correct registrations (CR) for registered zones where 

the animal is located (i.e., true zone as determined by video) and to false registrations (FR) for 

registered zones not consistent with the true zone for the bird (FR). Among CRs, we distinguish two 

types of registrations: (1) registrations that are not associated with a true transition (corrected 

registrations) and (2) registrations associated with a true transition (transitional registrations). Our 

goal was to obtain only transitional registrations, and data processing was used towards this objective. 

 

Video Observations to Detect False Registrations 

Two cameras per pen were placed within the indoor portion of each pen in such a manner that each 

location where an animal could transition between any of the three indoor zones was visible. The view 

did not cover the interior of the pop hole nor the winter garden and thus did not allow transitions to 

the winter garden to be filmed. For the generation of the video-based tracking data as a gold standard, 

video data were collected over the third and fourth weeks for an 11-day period simultaneously with 

the collection of the tracking data. Single animals were visually tracked by two trained observers 
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independent of one another in order to classify each registration as FR or CR. An inter-rater reliability 

test between the two observers for 137 registrations, including four random hens and four different 

days, resulted in an inter-rater reliability of perfect agreement, with all recordings classified correctly 

by both observers. 

 

For the evaluation of the two processing methods (SD and ML) and the unprocessed tracking 

data against video-based tracking data as the gold standard, two sets of registrations were analysed 

through video, generating two datasets: (1) the training dataset used to develop the ML method; and 

(2) the test dataset used to evaluate the two processing methods, as well as the unprocessed tracking 

data, against video-based tracking data. As described in the next section (2.5), the training dataset 

was used in a cross-validation process to split the data into validation and training sets and select for 

the optimal models. 

 

The training dataset was composed of 4274 registrations classified as FR or CR by means of 

241 h of video observations divided into 79 batches, varying from 0.5 h to 7 h, involving 44 tracking 

tags over 11 days. The batches were selected based on the visual representations of individuals’ 

movement across all days to ensure a broad variation of movement sequences and a reasonable 

number of observations across zones, stations, and tracking tags. To avoid introducing noise in model 

training, the training dataset did not contain registrations from the winter-garden zone due to the 

limited camera view in the pop holes described earlier. The training dataset comprised 13% FR and 

87% CR. 

 

The test dataset was composed of 865 registrations classified as FR or CR by means of 96 h of 

video observation. More specifically, 48 batches (six/pen) of 2-hour video (including 47 randomly 

selected tracking tags) were randomly chosen over six days and reduced to 42 batches due to technical 

issues (e.g., backpacks not visible from the cameras). As the test dataset was used to evaluate two 

processing methods, including one that did not require training, the test dataset contained 

registrations from each of the five zones, including the winter garden. However, as the classifiers can 

only be tested on classes included in the training process, all registrations from the winter garden 

were processed solely by the SD method. Registrations in the winter garden were retained in the 

evaluation of both processing approaches for two main reasons: first, to avoid any bias towards 

poorer/greater performance of the SD method, if that zone would be more easily/laboriously detected 

by the tracking system compared to the other zones; second, even if the winter-garden zone is 

processed by the SD method when evaluating the ML method, its performance is still influenced by 

the ML method, typically when the ML method filters a registration to the litter zone reported 

between registrations in the winter-garden zone (as there would be one less transition to the winter 
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garden). When a registration to the winter-garden zone could not be clearly classified through video 

observation (i.e., animal could be either in the pop hole or the winter garden), CR was used for 

biological relevance. We decided to define the pop-hole area (illustrated in Figure 1) as part of the 

winter-garden zone (and not the litter zone), as exposure to natural light in the pop hole is more similar 

to the winter-garden zone than the litter zone. To better evaluate the tracking system, in addition to 

the tracking system’s registrations, the test dataset contained all true transitions observed during 

video observations that were not reported by the tracking system (missed transitions). Missed 

transitions represented 0.6% of the test dataset. The test dataset comprised 5% FR and 95% CR. 

 

Evaluation of the Two Data Processing Methods 

As the tracking system used in this study evaluated the location of a tag every time the tag received 

an LF-signal, longer records have more opportunities for self-correction and therefore are more likely 

to be accurately record the location. Therefore, an intuitive and simple way to process the data is to 

filter all registrations that last for less than a certain threshold (SD method). We used a one-minute 

threshold with the objective of minimizing loss of actual transitions while maintaining a good 

representation of the true data. 

 

To account for more of the available information during data processing, we used a machine 

learning approach (ML method) based on decision-trees, which, in addition to the registration 

duration used by the SD method, employed 13 features of the registrations (detailed in Table 1), 

including the RSS, the zone, and the station identities. The zone identities of the previous and next 

registrations (of the same tag) were also included to account for the movement sequence. The 

durations of the previous and next registrations were also included, as we expected the duration to 

be the most important feature for detecting FR. Our goal was to build a model to process (clean) the 

data rather than generate predictions about hen movement patterns. We aimed to isolate the true 

signal of hen movement, which can be used in future research to evaluate the drivers of hen 

behaviour. As such, our model is independent of external factors that could be of potential interest 

for future investigation (e.g., weather). Three classifiers (random forest, gradient boosting, CatBoost) 

based on decision-trees [135] were used to account for potential non-linearity and interaction effects 

[136]. The gradient-boosting classifier is a greedy algorithm that sequentially trains a shallow decision 

tree in order to correct the errors of the previously trained tree [137], and the CatBoost model is a 

recently developed gradient-boosting algorithm [138,139] that was selected in this study for its ability 

to process categorical features during training (algorithms of the classifiers further detailed in 

Supplementary Text S2). Following hyperparameter selection through a 3-fold cross-validated grid 

search and model training on the training dataset, the performances of the classifiers were evaluated 

on the held-out test dataset using three common classifier performance measures [140]: (1) accuracy, 
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defined as the fraction of predictions correctly classified by the model; (2) precision of class X, defined 

as the proportion of the predicted class X that is correctly classified by the model; and (3) recall of 

class X, defined as the proportion of the observed (true) class X, that is correctly classified by the 

model. To better contrast predictions of the three tree-based classifiers on the test dataset in order 

to select one for the ML method, we used McNemar’s non-parametric test for pairwise binary 

classifier comparison [141] to test the null hypothesis that two models have similar proportions of 

errors. The normalized importance of features was generated for the selected model to understand 

the model’s reliance on each feature when producing its predictions. Finally, the ML method used the 

selected classifier to classify registrations as FR and CR and then filtered FR from the unprocessed 

data. However, due to the limitations of video in covering the pop-hole area, the SD method was 

applied here to filter registrations in the winter-garden zone. 

Table 1. Record features used to train the model and the normalized importance of features in the final CatBoost model. 

Feature Name Description 

previous zone; zone;  

next zone 

zone identity of the previous/considered/next registered record with the 

strongest LF signal, indicating the zone where the individual has transitioned/is 

transitioning/will transition to 

RSS  a measurement of the power present in the strongest received LF signal (dB) 

tracking system ID identity of the tracking-system copy 

previous duration; 

duration; next duration 

reported time of stay in the zone from the previous/considered/next 

registered record 

zone2 second zone identity with the strongest LF signal 

RSS of zone2 
a measurement of the power present in the second strongest received LF 

signal (dB) 

zone3exist 
binary feature that equals 1 if the tag registers a signal of at least three 

different zones during the last 10 s, and otherwise equals 0 

next2zone = zone;  

previous2zone = zone 

binary feature that equals 1 if the registered second zone from the 

next/previous record is the same as the occurring zone, and otherwise equals 

0 

 

We contrasted the two data-processing approaches by applying them to the unprocessed test dataset 

(i.e., including CR and FR). The resulting two processed datasets (ML and SD datasets), as well as the 

unprocessed test dataset, were then compared against the respective gold-standard dataset (i.e., 

registrations identified as CR through video observation). In each case, we evaluated two things: (1) 

the animal’s location (or more specifically, their presence/absence in each zone) and (2) the animal’s 

movement. To evaluate how well these datasets represented individuals’ presence/absence in each 

zone at each second, we compared their associated categorical time series (containing five categories, 

one for each zone). The performance was evaluated in terms of accuracy, macro-averaged recall, and 

macro-averaged precision (where the macro-averaged recall/precision is the average of the 

recall/precision across each zone). To evaluate how well these datasets represented individuals’ 

movement, we compared the total number of individual transitions per batch, per zone in each case. 
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Performance was evaluated with the explained variance score (𝐸𝑉) and the mean absolute error 

(𝑀𝐴𝐸), defined as: 

𝐸𝑉 = 1 −
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑦𝐺𝑆−𝑦̂}

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑦𝐺𝑆}
, 𝑀𝐴𝐸 =  

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑦𝐺𝑆𝑖

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
− 𝑦̂𝑖|   

where 𝒚̂ contains information from a processed dataset and 𝒚𝑮𝑺 contains the respective gold-standard 

information. The 𝑬𝑽 is used to measure the magnitude of the expected effect on the number of 

transitions [142]. The 𝑴𝑨𝑬 is used to measure, in an unambiguous and natural manner, the 

magnitude of the expected average error [143] in terms of the number of transitions (for a two-hour 

batch). This analysis was performed with Python version 3.8.5 using the SciKit Learn package [144] for 

the performance measures and the CatBoost package [138] for the CatBoost classifier. 

 

Investigation of Influencing Factors 

When comparing large datasets with thousands of hours of tracking per animal, comparison with 

video recordings as a gold standard becomes impractical. Therefore, to further evaluate the tracking 

system, we used the tree-based classifier from the ML method to identify FR (IFR) and studied the 

estimated error rate, defined as the number of IFRs against the total number of registrations, in 

relation to specific factors. The estimated error rate had a value of one when all records were filtered 

by the ML method and a value of zero when none was filtered. This approach has some limitations 

due to probable FRs not being detected or some being falsely detected. However, by removing the 

limitation on the number of days and individuals used, a broader investigation of the systems’ 

performance can be conducted. Data processing with the ML method is shown in the Results section 

to filter most of the true FRs (recall of class FR: 93%) and to filter mostly true FRs (precision of class 

FR: 84%). Therefore, IFRs should highlight most of the FRs from the unprocessed data and should be 

composed mainly of FRs. We applied the ML method over a two-month period, involving 144 animals, 

during which the hens were kept under similar management conditions every day, including 15 h of 

artificial light and six hours with access to the winter garden. To avoid biasing the data towards a 

greater error rate when the winter garden was closed, we excluded all registrations of transitions to 

the winter garden for periods when it was closed. We evaluated the estimated error rate in relation 

to different areas by reporting the mean ± SD of the estimated error rate across individuals for each 

of the five zones in each of the eight pens (40 pen-zone areas). We evaluated the estimated error rate 

in relation to external weather variables by fitting a mixed-effects logistic regression (link function: 

logit, R package “lme4” [145]) on the ratio of IFR to the total registrations minus IFR (per hour), with 

pen identity nested in station identity as a random term and hourly external humidity (%) and 

temperature (°C) as explanatory variables. External humidity was rescaled by dividing its values by 10. 

To control for variations barn management and animal behaviour throughout the day, the hour of the 



30 
 

day was also added as a fixed effect. External humidity and temperature were obtained from the LSZB 

weather station (~12 km from the barn) and accessed via the Wolfram alpha API in Python.  

 

Results 

Evaluation of the Two Data Processing Methods 

On the test dataset, the three classifiers showed stable (over 100 random seeds) accuracy, recall, and 

precision (Supplementary Figure S1), and the McNemar’s test showed a similar proportion of errors 

between each classifier (p > 0.05). Thus, with an accuracy of 99%, we selected the CatBoost algorithm 

for the ML method because of its ability to handle categorical variables in Python. Additionally, 84% 

of the time that the model identified an FR, the model prediction was correct (precision of class FR). 

and 100% of the time that the model identified a CR, the model prediction was correct (precision of 

class CR). Additionally, 93% of the FR observations were classified by the model as FR (recall of class 

FR), and 99% of the CR observations were classified by the model as CR (recall of class CR). The zone 

identity, RSS, and the previous registrations’ zone identity were the three most important features, 

accounting for 21%, 19%, and 13% of the overall importance of the features, respectively, while 

duration accounted for 7% (Figure 3A). To further illustrate the importance of the features, Figure 3B 

show the RSS and duration of the test dataset’s registrations, split into CR and FR (from video 

observations). The receiving strength of the LF signal was generally higher for the correct registrations 

of all indoor zones. We also observed longer duration of stay to be more frequent among the correct 

registrations, with the exception of registrations in the lower perch zone, where no difference in the 

duration of stay was observed between correct and false registrations. 
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Figure 3. (A) Normalized importance of features for the selected CatBoost model. (B) Box plots of the RSS (top) and duration 
of stay (bottom) of the test dataset registrations, split into CR (light grey) and FR (grey), as produced by video observations, 
are displayed for each zone. 

The unprocessed, SD and ML datasets all determined an individual's zone (every second), with an 

accuracy of 99%, 98%, and 100%, respectively, and displayed the same values (99%, 98%, and 100%, 

respectively) for the macro-averaged precision and macro-averaged recall. We found the ML and the 

SD datasets to underestimate the number of transitions by an average 0.27 and 0.06 transitions per 

zone, respectively, for a two-hour batch, in contrast to the unprocessed dataset, which overestimated 

the number of transitions by approximately 0.5 transitions per zone, on average, for a two-hour batch 

(average number of transitions per batch, per zone by video observation was 1.8). The percentage of 

variance of the ground-truth data recovered by the unprocessed, SD and ML datasets was 23%, 91%, 

and 99%, respectively, which is further illustrated in Figure 4. 

 

Figure 4. Number of transitions per individual (per batch, per zone) for the unprocessed, SD and ML datasets against video-

based tracking data and associated 𝐸𝑉 and 𝑀𝐴𝐸 scores. Overlapping data points are represented by darker shading. 

Investigation of Influencing Factors 

The estimated error rate across pen-zone areas varies from 0.0 ± 0.0 (e.g., litter area within each pen 

of Stations 10–12) to 0.5 ± 0.19 for Pen 8, suggesting that half of the registrations in the winter garden 

from Pen 8 were filtered by the ML method. The estimated error rate per pen-zone area is further 

detailed in Figure 5. Furthermore, we found a negative effect of humidity (p = 0.003) on the estimated 

error rate, with an odds ratio of 0.96 (95%-CI [0.94, 0.99]), indicating a 4% lower likelihood of obtaining 

a false registration with an increase in humidity of 10%. Additionally, we found a negative effect of 

temperature (p < 0.001) on the estimated error rate, with an odds ratio of 0.97 (95%-CI [0.96–0.98]), 

indicating a 3% lower likelihood of obtaining a false registration with an increase in temperature of 1 

°C. The difference between the unprocessed and the processed data (by the ML-method) is further 

illustrated in Figure 6 through a visual representation of an animal’s transitions over eight consecutive 

days. For instance, observed several transitions filtered by the ML method between the lower-perch 

and top-floor zones. 
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Figure 5. Estimated error rate (mean ± SD) for pen-zone areas. 

 

 

Figure 6. Unprocessed data (yellow) and processed data by the ML method (blue) of a single animal over five consecutive 
days. Each row represents a single 24-hour day, with the zone identities represented on the y-axis (the indoor zones are 
ordered following the aviary order, and the winter garden is represented below the indoor zones). 

Discussion 

We found the presented LF tracking system accurately determined the presence of animals in a given 

zone (at the second level), with macro-averaged precision, and macro-averaged recall of 99% when 

compared against video observations of the test dataset. This good performance might be explained 

by the tag algorithm, which searches for new transitions, on average, every 0.5 s (i.e., each time a tag 

receives an LF signal), thus regularly providing opportunities for correctional records. However, the 

number of transitions in a zone generated by the tracking system was overestimated and only 

explained 23% of the true variance (as observed by video). Therefore, the unprocessed tracking data 

did not constitute a good representation of individual transitions between the five zones, which could 

be emphasized by the observed differences in the estimated error rate within specific pen-zone areas. 
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On the one hand, we observed clear differences in the estimated error rate of a given zone across 

different stations (e.g., winter-garden zones in Stations 10–12, Stations 3–5, and Stations 8–9 had a 

mean estimated error rate varying, across their respective pens, between 0.07 and 0.14, 0.12 and 

0.16, and 0.44 and 0.5, respectively). On the other hand, we observed differences within pens of the 

same station (e.g., nest-box zone in Stations 3–4 had an estimated error rate of 0.05 ± 0.07 in Pen 3, 

0.3 ± 0.19 in Pen 4, and 0.03 ± 0.05 in Pen 5). The observed differences in the estimated error rate 

across different pen-zone areas aligned well with locations described through anecdotal notes made 

during video observations describing precise locations where a tracking tag generated a high amount 

of FR (by repeatedly switching between two, sometimes non-neighbouring zones) while the animal 

was immobile (weak spots). An explanation for the existence of weak spots may be the pen furnishing 

blocking the line of sight between tags and signal cables, which is known to cause signal interference 

in UWB systems [134]. More specifically, metallic materials can absorb the signal and distort the 

electromagnetic field, which could either block or enhance the signal, rendering RSS a poor 

representation of the distance to the signal cable, possibly explain errors between non-neighbouring 

zones. Our tracking system was designed to use a lower frequency than a common UWB system in 

order to avoid possible interactions with metallic materials, although signals may still be affected.  

 

Furthermore, the existence of weak spots may be attributed to the calibration process, a 

manual and time-consuming step performed independently for each station and iteratively through 

each pen. When a tracking tag was detected in an incorrect zone during the calibration process, the 

LF values of specific markers were adjusted. As the pens are steel cages, the LF field generated by each 

marker can be slightly inhomogeneous. As a result, when an LF signal value is adjusted, all 

measurements must be repeated to ensure that the change in the LF value did not lead to further 

detection errors. The difficulty lies in setting the LF values of the markers in such a way that the correct 

zone is detected in all locations of the tracking system. In particular, the nest-box zone is a small zone 

located between two zones (Figure 2), and a change in the LF value of the marker had a greater effect 

on the neighbouring zones because it quickly led to the tracking tag being detected in the incorrect 

zone. Therefore, we recommend the use of an automatic calibration process to improve the system’s 

performance. To achieve this, within each zone, several tags would be placed at predefined locations 

of critical measurement points. Each signal strength received by any tag from any marker would be 

registered. An algorithm would be executed every 10 s (ensuring enough time for adjustment of LF 

signal values to take place in the field) on all RSS registered within the past 10 s. This algorithm would 

identify the most problematic zone, defined, for example, by the zone with the smallest dB difference 

in relation to another zone (across all tags in that zone). If this difference does not exceed the limit of 

1 dB in relation to another zone, the LF signal value of the associated marker is automatically adjusted. 

As soon as 100 consecutive runs induce no adjustment of an LF signal, the calibration is complete. An 
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automatic calibration would save time as only one person would work on the calibration. This would 

also offer new opportunities, such as smaller zones, allowing for registration of finer movements. For 

instance, in our settings, it might be possible to differentiate between the nest boxes and the balcony 

in front the nest boxes (currently, both are registered as the nest-box zone). Furthermore, automatic 

calibration would ensure more homogeneous LF values across markers from the same zone across all 

pens, and consequently, more comparable datasets across different stations and pens would be 

generated. 

 

Our tracking system’s poor performance in representing individual transitions highlights the 

importance of processing automatically generated datasets. Relevant data-processing studies are 

lacking, although they could help to standardize this process to generate comparable datasets across 

different studies. The benefit of this work is most essential in light of rapid development in technology 

in order to manage and improve the welfare of animals within commercial livestock systems 

[94,95,146–151]. We showed that the data processed by a simple filtering of registrations associated 

with short durations (<1 min) of stays was suitable for monitoring the number of transitions per 

individual per zone, accounting for 91% of the actual variance (as observed by video). We further 

reported a gain in performance using a tree-based classifier to filter false registrations, accounting for 

99% of the true variance in the number of transitions per individuals, which could partly be explained 

by the additional information provided to the ML method. Indeed, zone identity and RSS were the two 

main features upon which the tree-based classifier based its predictions, while the SD method was 

based solely on the duration of the stay. Interestingly, this also suggests that our expectation of the 

record’s duration being the most important feature to detect FR was incorrect when other features 

are included. The current study did not allow for this comparison when a single feature is used; 

however, further studies using a simple rule-based approach should consider the RSS addition to the 

records’ duration. The importance of features further suggests that the zone identities of the previous 

and next registered record are of greater importance than the duration of stay from the previous and 

next registrations. Results concerning the importance of can offer direction on how to improve similar 

tracking systems, for instance, by including a threshold of RSS values for each zone based, for example, 

on the result of an automatic calibration. Another possibility would be to include the SD method as 

part of the tag algorithm, although this would eliminate the possibility of registering fast transitions 

between two zones (<1 min). 

 

Compared to the SD method, the ML method required additional efforts such as more video 

observations and statistical modelling and the choice between both methods relies on a compromise 

between time accorded in data processing and precision of the data. In the current study, the SD 

method recovered 8% less of the true variance in the number of transitions per individuals compared 
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to the ML method. To put this value in context, we used simulated sampling to estimate the impact of 

a comparable loss on the effect size (measured by the Pearson correlation) of a simulated movement 

variable, M, on a simulated health variable, H. The two simulated variables (M and H) followed a 

standard normal distribution, with a Pearson correlation coefficient varying from 0.15 to 0.40 to cover 

potentially interesting ranges of effect sizes when studying movements in relation to health[93,152] 

and heritability of behaviour[54,72,153]. By adding noise to M (and calling it M’), we estimated (over 

10,000 simulations per sample size) the percentage of cases where significance would be lost (p > 

0.05), depending on the initial effect size and sample size. Our estimations suggest that a change in 

percentage of the initial variance explained by M’ from 0.99 to 0.91 would change the significance of 

a critical test in 26% (or 25%) of cases when applying a sample size of 80 (or 120) and an initial effect 

size of 0.25 (or 0.2), respectively (see details in Supplementary Figure S2). Therefore, using a tree-

based classifier to filter false registrations can be greater value for studies with small sample and effect 

sizes (e.g., n = 120, effect size of 0.2) than the filtering approach using stays of short duration as 

threshold. For large sample sizes or samples with strong correlations between the measured 

movement and the trait of interest, the SD method might produce equally reliable results as the ML 

method. 

 

Our results further reported a marginal effect of periods of time characterized by higher 

humidity or higher temperature, associated with a lower estimated error rate of transitions to the 

winter garden. Because air is our medium of signal transmission, when humidity is changes, the 

magnetic field is also expected to change. As calibration was conducted in August 2020, the 

performance of the tracking system may be optimized for a period with higher temperature than 

average. Additionally, as Richards et al. [154] reported, associations between daily weather conditions 

and mean pop-hole usage in laying hens, including an increase in mean pop-hole usage associated 

with an increase in temperature, and the influence of the weather conditions on animal behaviour 

may be explanatory. In spite of these results, external environmental factors cannot be controlled for 

and are part of the experiment. However, these results can aid in interpretation and awareness of 

possible limitations for subsequent analyses of these or similar tracking data. 

 

Conclusions 

The active LF tracking system evaluated in this study determined the presence/absence of birds in a 

zone with an accuracy of 99% but overestimated the number of transitions by birds per zone, 

explaining only 23% of the true variation (as observed by videos). However, we showed that filtering 

stays of short durations rendered the data suitable for monitoring the number of transitions per 

individual, explaining 91% of the true variation, and that the use of a tree-based classifier to filter false 
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registrations recovered an additional 8% of the true variation. Simulations further suggested that a 

machine learning approach for data processing could be of greater value than a simple deterministic 

approach in studies with small sample and small effect sizes. Results also suggest that filtering false 

registrations may reduce the effect of systematic errors towards certain pen-zone areas and towards 

periods of time characterized by lower humidity or temperature values. However, results also suggest 

that these factors might, to some extent, remain in the processed data and should be considered 

properly in subsequent analyses. In conclusion, this tracking system is well suited for complex indoor 

housing (similar to commercial aviaries) to measure the transitions of individuals and the 

presence/absence of birds in predefined zones (thus, duration of stays in zones). Nonetheless, under 

these settings, data processing remains a necessary step in obtaining reliable tracking data. For future 

work, we recommend the use of automatic calibration to improve the system's performance and to 

envision finer movements. 
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Abstract 

Measuring intra- and inter-individual variation in movement can bring important insights into the 

fundamental ecology of animals and their welfare. Although previous studies identified consistent 

differences in movements of laying hens within commercial aviaries, the level of consistency was not 

quantified, limiting our capacity to understand the importance of individual movements for welfare. 

We aimed to quantify the scope of intra- and inter-individual differences in movements of commercial 

laying hens and examined their associations with indicators of welfare at the end of production. We 

quantified individual differences in one composite daily movement score for 80 hens over 54 days 

post-transfer to a quasi-commercial aviary. Results showed consistent inter-individual differences in 

movement averages, explaining 44% of the variation, as well as individual variation in predictability 

and temporal plasticity (at the population-level, hens increased their movements for 39 days). Hens 

that were more predictable in their daily movements had more severe keel bone fractures at the end 

of production while we found no such correlation between daily movement averages (individual 

intercept) and welfare indicators. Our findings highlight the importance of inter-individual difference 

in intra-individual variation of movements to improve poultry welfare.  

 

Introduction 

Intra-individual variation in movements of animals result from a dynamic interplay between factors 

such as health [10,29,155], spatial memory [156,157], need for resource acquisition [38], social 

interactions [65] and predation risk [158]. The temporal dynamics of these relationships illustrate the 

complexity of individual variation in movements as well as their importance for the fundamental 

ecology of animals [159] and animal welfare. For instance, intra-individual variation in movements 

could be used as an early warning of health issues in animals [160] but also to protect endangered 

species (e.g. when used as a complementary tool by wildlife managers for anti-poaching efforts [158] 

and for improving reintroduction success [161]). Quantifying biologically relevant behavioural 

variation is achieved using methods that decompose phenotypic variation into intra- and inter-

individual components. The latter component provides information that is particularly relevant at the 

group level. For instance, differences between individuals in movements and space use behaviours 

may facilitate population-level adaptation in animals [51] as well as access to resources of group-

housed animals where not all resources and areas can be accessed by all individuals simultaneously 

[89,162,163]. 

 

Until recently, measuring inter-individual variation in movements has been focused on consistent 

individual differences in averages (personality) or plasticity (i.e. average change in behaviour across a 
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context) [164–166]. Focusing solely on phenotypic averages, however, restricts our understanding of 

important biological variation. By including residual intra-individual variation in behaviour 

(predictability), we obtain a more nuanced and comprehensive understanding of individuals [167–

169]. To the authors’ knowledge, this component of behavioural variation has never been studied in 

hen movements and its underlying mechanisms remain generally unclear and understudied [170]. 

Additionally, we lack quantification of consistent inter-individual differences in both average and 

variability of hen movements. Previous studies have identified consistent individual differences in 

daily movement patterns [9] or space use behaviours [11] within the interior of aviaries, but 

repeatability, a population-level measure quantifying the extent of individual differences, was not 

directly quantified. This gap likely extends from the challenge of monitoring individual movements in 

a densely populated housing containing multiple stacked horizontal levels (such as aviaries) and the 

various types of possible movements (e.g. flying, walking) between areas.  

 

Within Europe, battery cages in the poultry industry are being replaced by cage-free systems (e.g. 

aviaries and free range) that are believed to benefit animal welfare mainly through greater ability to 

move freely and perform more natural behaviours [4]. Despite benefits, these modern systems, in 

particular aviaries, have a higher incidence of severe feather pecking, bacterial infections, and keel 

bone fractures compared to cage-systems [5]. These increased welfare issues in cage-free systems are 

due to a variety of reasons including the complexity of the structure which increases the risk of 

collision, and the large group size where bacterial infections or severe feather pecking are harder to 

detect and control. A better understanding of how individuals acclimate to and behave in this complex 

environment is a first, but important step to tackle these welfare issues. Because individual 

movements are indicative of how individuals interact with their environment, tracking systems are a 

promising tool to identify potential issues in cage-free systems, and improve poultry welfare (e.g. by 

modifying husbandry practices or housing systems to better allow expression of important behaviours 

[171] or reduce prevalence of potentially harmful behaviour [30]). 

 

The transfer from a rearing to a laying barn is a standard practise in poultry farming that may be 

stressful to the animals. In the following weeks, hens will experience substantial environmental and 

internal variability (e.g. new husbandry practices, social settings; bone maturation, onset of lay), likely 

contributing to intra-individual variation in behaviours. Furthermore, these first weeks in the laying 

barn are important for hens’ welfare and producers, due to an increased mortality risk at the onset of 

lay [172]. In this study, we quantified the scope of inter-individual differences in averages and in intra-

individual variability of a composite score reflecting daily movements within a quasi-commercial 

aviary, over 54 days post transfer to a laying barn. We evaluated associations between the hen’s 

welfare assessed at the end of production and both the hen’s average and variability of the movement 
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score. We expected to find individual variation in averages, predictability, and temporal plasticity of 

the daily movement score. We hypothesized that hens showing less behavioural variability would be 

behaviourally more constrained and thus less able to behaviourally cope with environmental changes 

(such as alterations in management practices or social structure). Therefore, we predicted that a high 

level of predictability or a low level of plasticity in movements would be associated with generally 

poorer welfare, including more severe keel bone fractures and feather damage. 

 

Materials and Methods 

Experimental design  

This study involved initially four rearing pens each containing 630 Dekalb White chicks (Gallus 

domesticus, a widespread hybrid across the world within commercial egg production) from the same 

parent flock, housed in a standard rearing facility, containing an Inauen Natura aviary described 

previously [10].  All chicks came from the same commercial hatchery, but, for the purpose of a larger 

study, half of the chicks (housed in two of the four rearing pens) were hatched on-site within the 

mentioned rearing barn (on-farm hatch treatment; were transported 3 days before hatching). The 

other half of the flock underwent standard hatchery processing in the commercial hatchery (standard 

treatment) with transportation at one day of age. We classified all chicks into a more/less explorers’ 

class (Supplementary Text S1). At seven days of age, we selected 96 focal chicks (24 / rearing pen; 

random selection of 10 animals amongst the more exploring class, 10 animals amongst less exploring 

class and four animals amongst the entire population) which we assigned to one of four identical laying 

pens associated with the rearing treatment (eight laying pens in total). We assigned focal hens to have 

equal representation of an individual's class and rearing pen throughout the laying phase. Chicks were 

individually identified with a leg band characterized by a unique color-number combination. At 17 

weeks of age (WOA), we transferred all animals to an onsite quasi-commercial laying barn containing 

a Bolegg Terrace aviary split into 20 identical pens (previously described in Rufener et al. [10]), and an 

outside covered winter garden (WG) accessible by pop holes (barn schedule detailed in Supplementary 

Figure S2). On the day of transfer, we transported focal hens to their pre-selected laying pen with 

additional non-focal hens randomly selected across the same treatment, for a total of 225 hens/pen. 

All barns are located at the Aviforum facility in Switzerland where standard animal husbandry practices 

are used and from which we received pen-level production data. We extracted the average daily 

number of eggs per live hen (laid inside and outside the nest boxes) and the daily number of dead 

hens per pen (illustrated in Figures S3-S4). The WG and the litter area under the aviary are closed 

during the first eight days to encourage hens to use the nest boxes for egg-laying. To control for the 

external temperature (hereafter temperature) we extracted the temperature from the nearest 

regional weather station (LSZB, at Belp Airport, Bern, 10.2km from the barn) via the Wolfram alpha 
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API in python. The study was conducted according to the cantonal and federal regulations for the 

ethical treatment of experimentally used animals and all procedures were approved by the Bern 

Cantonal Veterinary Office (BE-45/20).  

 

Tracking system 

To track individuals across different areas within a laying pen, we distinguished five zones with key 

resources including the three stacked tiers of the aviary (top tier, nest box tier and lower tier), the 

littered floor and the WG. The top and lower tiers contained feed, water and perches, the nest box 

tier contained nest boxes and perches, and the litter floor contained litter. Due to the animal density, 

not all hens can be simultaneously in the nest box tier, top tier or WG. We used a low-frequency 

tracking system with active tags (mass: 28.1 g) enclosed in a backpack mounted on the back of the 

focal hens to register any movement across zones (transitions). The tracking system is composed of 

markers that emits low frequency signals (0.125 MHz) through a cable (creating separately enclosed 

fields for each zone), active tags (mass: 28.1 g) that can receive signals, and readers that communicates 

through ultra-high frequency (868 MHz) with the tags and a computer. The receiving strength of the 

signal is then used to determine theoretical distance to each cable, and in turn to each zone (see 

Montalcini et al. [173] for detailed description and validation). We collected tracking data from the 

first day in the laying barn, although subsequent analysis excluded the day of the transfer to keep only 

fully tracked days (i.e. the first 17h hours of tracking [10]). We stopped collecting data on day 54 

because all focal birds were handled as part of another study which created a stopping point for data 

collection. We excluded 16 of the 96 individuals from our analysis due to equipment malfunction and 

death.  Due to low battery level or equipment malfunction, some days were excluded for certain hens 

so that our analysis included 3,750 hen-days and 80 hens (average of 47 days/hen with a minimum of 

40 days/hen and a maximum of 49 days/hen).  

 

Movement Data 

To quantify individual differences in average and variability of movements over time, it is important 

to use comparable observations throughout. Therefore, we extracted daily movement variables for 

each hen from when WG access was provided (i.e. from the second week onward). While the artificial 

light was on, we extracted the percentage of time spent in each of the five zones, the average number 

of stays in each zone (per hour to account for varying day length), the average travelled vertical 

distance (total number of the indoor zones crossed, e.g. a hen jumping from the top tier to litter 

crosses three zones) per hour and whether the hen entered the WG within 15 min after access was 

provided (scored 0-no/1-yes). While the artificial light was off (i.e., during the hens' night-time) we 

extracted the sleeping height, measured by the number of stacked tiers underneath the zone where 

an animal was for most of the night (value from 0 to 3, e.g. hens sleeping: on the top tier get a 3, on 
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the litter get a 0). Because these movement variables may be intrinsically correlated and we aimed to 

assess how animals differed in their general daily movement without prior assumptions, we reduced 

these daily variables into one aggregate by extracting a linear composite variable from a correlation-

based principal component analysis (PCA) using the psych package [174] in R.  Due to all hens and all 

weeks not having the same amount of observations as a result of technical issues, we only included 

the first day of each week in the PCA for each individual (Supplementary Text S2) to ensure the same 

mass across weeks and individuals while accounting for the variation in movements across time and 

individuals. Three of the PCA’s principal components had an eigenvalue > 1 [175], and explained 

respectively 41%, 20% and 14% of the total variation. Among the variable loadings on the first principal 

component, nine had an absolute value > 0.4 (Supplementary Table S1 a). On the first principal 

component, the percentage of time spent in the top tier loaded strongly in the opposite direction as 

the travelled vertical distance and the number of stays in both litter and lower perch. The loadings 

suggested that this first component reflected general movement throughout the indoor area, where 

a higher score is associated with animals that spent more time on the floor and lower tier but also 

transitioned more between these zones. We projected all observations onto the subspace spanned by 

the first principal component to obtain daily movement scores for each hen (PC1). The loadings of the 

other two principal components (not used in subsequent analysis) suggested two other behavioural 

axes, one mostly determined by the nest box tier usage and the other axis mostly determined by the 

WG usage (both in terms of the number of stays and the percentage of time spent; all loadings are 

detailed in the Supplementary Table S1 a). 

 

 We then used this daily movement score (PC1) to extract individual-level estimates (intercept, 

temporal plasticity, and predictability in movements) by gradually increasing the complexity of a linear 

mixed-effects model and using “best linear unbiased prediction” (BLUPS) to estimate random effects. 

Furthermore, as we could not extract the daily movement score (PC1) for the first week (due to the 

WG being closed for management purposes), we extracted an additional individual movement score 

based on the first week after the transfer to the laying barn, to further investigate the relevance of 

movements during the early laying phase for animal welfare. Because initial pen-level observations 

showed a surprisingly high number of birds not transitioning over entire days (34% of hens with no 

transitions during at least one of the first three days, a value reduced to 1% after 30 days), we 

extracted individuals’ number of days without transitions between any zones (no-transitions-day). 

However, the first unintended interruption of the tracking system happened over several days from 

the 4th day onward, therefore we only used the first three days. 
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Welfare indicators  

Two welfare indicators were assessed on each animal near the end of the production cycle (60 WOA). 

During the assessment, the two observers were blind to the treatment group (standard versus on-

farm hatch), laying pen ID, and hen class. Keel bone fracture severity (KBF) scores (continuous, 0-100) 

were based on latero-lateral radiographs with a scoring methodology described in Rufener et al. [176]. 

The KBF score is an indicator of the total amount of bone affected by any fracture in the keel bone. To 

evaluate inter- and intra-observer reliability, we used the intraclass correlation coefficient with its 95% 

Confidence Interval (CI). Intra- and inter-observer reliability based on 40 radiographs were high, (ICC 

= 0.89, 95% CI = 0.74 – 0.95 and ICC = 0.92, 95% CI = 0.832 – 0.96, respectively). A feather damage 

score (continuous, 0-100) was assigned using the photographs of white laying hens which we rescaled 

to 0-100 and took the complement to 100 so that higher scores are indicative of poorer welfare (score 

1: approx. 100 – 76 depending on the extent of damage; score 2: approx. 75 – 51 ; etc.) for each body 

part[128]. Lin's concordance correlation coefficient was used to assess intra- and inter-observer 

reliability (ICC = 0.92, 95% CI =89 – 94 and ICC = 0.86, 95% CI = 0.82 – 0.89, respectively).  

 

Statistical Analysis 

Quantifying inter-individual differences in movements  

We quantified the extent of inter-individual differences in daily movements (PC1) average response, 

temporal plasticity, and predictability, by gradually increasing the complexity of a linear mixed-effects 

model [177]. To quantify inter-individual differences in averages we fitted a random intercept (RI) 

model to the movement score (PC1) with Hen ID as a random effect to allow the mean response to 

vary among individuals and to extract individual intercepts. We included as fixed effects: treatment, 

explorer class, laying pen identity, temperature (°C), time (number of days post-transfer to the barn 

with starting value 0), and the initial body mass assessed on the day of transfer to the laying barn with 

a digital scale in grams. Because hens may change their movement behaviour non-linearly across time, 

we added a quadratic effect of time in the fixed effects. We also accounted for individual differences 

caused by malfunctioning equipment by adding as a fixed effect hens’ average number of tracked days 

post-transfer (21-24 days after access to the WG was provided). All continuous variables were scaled 

and centred to a mean of 0, except for time which was not centred, so that the individual intercept 

would reflect individual differences in their initial movements (i.e. on the first fully tracked day). To 

avoid convergence issues in more complex models we excluded the class identity (based on a 

likelihood-ratio test, LRT) and the laying pen identity random effect (explaining < 1% of the variance 

not accounted by fixed effects) in subsequent analysis unless otherwise mentioned. To evaluate the 

magnitude and effect of inter-individual difference in averages, we estimated the adjusted 

repeatability [178] by dividing the variance explained by the hen ID by the total phenotypic variance 

and its 95% credible intervals using 1,000 simulations of the posterior distribution of all variance 
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components. For visual purposes, we estimated individual intercept (mean ± sd) with BLUPS by 

generating 1000 repeated samples from the posterior distributions of the RI model. 

 

To analyse whether individuals also differed in their temporal plasticity, we extended the RI 

model to a random slope (RS) model, where hen ID is also able to vary across time [36] (hen ID x time; 

model named RS1). The inter-individual differences in their temporal plasticity were statistically tested 

by performing an LRT with the previous RI model. We extended this model including another random 

slope term allowing individuals to also vary in the curvature of their slope (hen ID x time2; model 

named RS2) and evaluated its significance with an LRT. For RI, RS1 and RS2 models we reported the 

conditional and marginal R-squared and the Akaike Information Criteria (AIC). We checked model 

assumptions (i.e., normality of error and homoscedasticity) by sight. For visual purposes, we estimated 

individual slope (linear, quadratic) (mean ± sd) with BLUPS by generating 1000 repeated samples from 

the posterior distributions of the RS2 model. We fitted RI, RS and RS2 models with the lme4 package 

[145]. 

 

To evaluate individual movement differences in predictability we extended the RS2 model to 

allow estimations of residual intra-individual variation using a double hierarchical model (DHGLM) 

[179]. We included only significant fixed effects from the RS2 model for both the mean and the 

dispersion parts of the model. We used a Bayesian Markov Chain Monte Carlo (MCMC) approach using 

the brms package [180] in R. We ran the model with uninformative priors, 10 Markov chains, 50,000 

MCMC iterations (including 25,000 for burnin), a thinning rate of three and a Gaussian distribution for 

the response variable (PC1). We extracted the mean and standard deviation from the posterior 

distribution for each individual’s intercept. Individual estimates were multiplied by -1 so that 

individuals with higher estimates have a lower estimated residual variance and are considered as more 

predictable in their daily movements than individuals with lower estimates. The significance of the 

variance structure on the dispersion part was statistically tested with an approximate leave-one-out 

cross-validation (Loo-cv) [181], comparing the model with one excluding the dispersion part of the 

model. We quantified the strength of the inter-individual differences in predictability with the 

coefficient of variation in predictability (𝐶𝑉𝑝), a standardized population-level measure comparable 

across studies [177,179]. Specification of the model was assessed with a posterior predictive check, 

trace plots, the Gelman-Rubin's convergence diagnostic [182] and Loo-cv. 

 

Association with welfare indicators 

We fitted two bivariate Bayesian models to evaluate if the identified inter-individual movement 

differences associated with the KBF severity and feather damage scores, assessed at the end of 

production. We fitted two bivariate models, one with movement and KBF score as response variable 
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and one with movement and feather damage score as response variables. As fixed effects for 

movement, we included the time, time2, treatment, and temperature. As fixed effects for the welfare 

indicator, we included the individual predictability estimates and the number of no-transitions-day to 

estimate their associations with the two welfare indicators, as well as the treatment, the class, and 

the initial body mass to account for individual differences. We included hen ID as a random effect for 

both response variables, and individual random slopes (hens ID x time, hens ID x time2) for the 

movement response only. We included laying pen ID as random effect for the welfare response 

variable. Model parameters were estimated using a Bayesian MCMC sampling method with the 

MCMCglmm package [183] for 700’000 iterations with a burn-in phase of 105,000 and a thinning 

interval of 100. As welfare scores do not have repeated measures at the individual-level we did not 

allow the variances of the residuals to covary, and we further constrained the residual variance of 

welfare scores to be fixed and close to zero. Note that to avoid a stats-on-stats issue [184] when 

inferring on individuals’ welfare measured on a single instance, with the individual predictability 

estimate we would need to implement a DHGLM bivariate random regression model with fixed 

variance structure, which is not supported by the brms package, and so beyond the scope of this 

paper. We specified priors for the variance structure of the residuals (𝑅) with scale equals to a diagonal 

matrix with entry 1 for the movement variance and 0.0001 for the KBF variance, and with degree of 

belief equal to 1.002. We specified parameter expanded priors for the variance structures of the 

random effects (𝐺1 for the penID ; 𝐺2 for the HenID) with scale (𝑉) equals to a diagonal matrix with 1 

on the diagonal (𝐼), degree of belief equal to the dimension of 𝑉 (i.e. 1 for 𝐺1, 4 for 𝐺2) and a 

multivariate normal prior specification for the redundant working parameters with null mean vector 

and covariance 𝐼 ⋅ 252. Further details on the linear model for the latent variable can be found in the 

Supplementary Equation S1. Model diagnostics were checked with the trace plots, autocorrelations (< 

0.05 for all parameters), and the Gelman and Rubin's convergence diagnostic with 3 chains having 

over dispersed starting values (𝑅̂ ≤ 0.03 for all parameter) [182]. We deemed a factor or correlation 

significant if the 95% credible intervals excluded 0.   

 

Results 

Quantifying inter-individual differences in movements  

Hens differed in their average movement (repeatability = 0.44, 95% CI = 0.43 – 0.48), meaning that, 

on average, 44% of the remaining variance (after controlling for fixed effects) in movement can be 

attributed to differences between individuals. Hens also exhibited differences in temporal plasticity 

(both linearly and quadratically). Random effects variance estimates for both RI, RS, and RS2 are 

further detailed in Supplementary Table S2. In addition to inter-individual differences in average and 

temporal plasticity, results showed that hens differed in their predictability, exhibiting differences in 
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their within-individual variability of behaviour around the mean, with a coefficient of variation in 

predictability among individuals (𝐶𝑉𝑝= 0.25, 95% CI = 0.20 – 0.30). Modelling the dispersion part in 

addition to the mean part of movement improved the model. We found a negative correlation 

(𝑟𝑚𝑜𝑑𝑒𝑙 𝑛𝑎𝑚𝑒) between individual intercepts and linear random slopes (𝑟𝑅𝑆1 = -0.79,  bootstrap 95% CI 

= -0.82 – -0.78; 𝑟𝑅𝑆2 = -0.69,  bootstrap 95% CI =-0.76  – -0.66 ;  𝑟DHMM = -0.69, 95% CI = -0.80 – -0.55), 

a positive correlation between random intercept and quadratic random slope (𝑟𝑅𝑆2 =  0.41, bootstrap 

95% CI = 0.37 – 0.54 ;  𝑟DHMM = 0.42, 95% CI = 0.21 – 0.60) and a negative correlation between linear 

and quadratic random slopes (𝑟𝑅𝑆2 =  -0.89, bootstrap 95% CI = -0.93 – 0.89 ; 𝑟DHMM= -0.90, 95% CI = 

-0.94 – -0.84). These results suggest that hens with initially lower movement increased their 

movement more rapidly than hens with higher initial movement. We found no correlation between 

predictability and the other individual-level metrics (intercept: 𝑟DHMM = -0.02, 95% CI = -0.26 – 0.23, 

linear slope: 𝑟DHMM = 0.10, 95% CI = -0.16 – 0.34 and quadratic slope: 𝑟DHMM = -0.08, 95% CI = -0.33 – 

0.17). Figure 1 illustrates these results by highlighting four daily time series of hens’ initial movements 

(a), daily PC1 scores with the RI, RS1 and RS2 models predictions, and (b) individual intercepts, slopes 

and predictability estimates relatively to all other hens (c).  

 

In addition to individual-level variation, we found both linear and quadratic effects of time at 

the population level. The population, overall, increased their movement until day 39 in the laying barn, 

at which point, their activity started to decrease (illustrated by the black line in Figure 1b; 

Supplementary Table 3). We also found individuals hatched on-farm moved on average less than 

individuals that were transported at one day of age to the rearing barn, and hens moved generally less 

within the aviary as the temperature outside increased. Results from fixed effects from RI, RS1 and 

RS2 models are detailed in Supplementary Table S3. 
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Figure 1.  Visual representation of four hens’ transitions across the five aviary zones, daily PC1 scores and individual 

estimates. Hen 145 and hen 9 have the smallest and largest intercept estimates, respectively. Hen 109 and hen 69 have the 

smallest and largest quadratic slope estimates, respectively. (a) On the left side we showed a simplified representation of 

the laying barn and the tracking system equipment (dark grey) and on the right side we showed seven (one per week) daily 

time series of the hens’ transitions across the five aviary zones. Each column represents one hen and each row represents 

the first tracked day of a particular week. (b) PC1 daily scores of four hens including a kernel density estimate (top left); the 

daily PC1 score over time (dots); the PC1 predictions from studied models (dashed lines); shaded areas around the prediction 

of two hens to illustrate predictability estimates (represented by a constant value = max
𝑖 ∈ 𝑑𝑎𝑦

(|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖|)). (c) 

Individual estimates (mean ± sd) of studied hens (intercept, linear slope, quadratic slope, and predictability) sorted by the 

smallest to the highest estimates. 
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Association with welfare indicators 

Descriptive statistics of the KBF severity and the feather damage scores are given in Table 1. 

welfare 

indicator 

mean standard 

deviation 

min 0.25 

percentile 

median 0.75 

percentile 

max 

KBF severity 36 15 6 24 36 45 84 

Feather 

damage 

34 11 13 27 34 42 65 

Table 1. Descriptive statistics of the KBF severity and the feather damage scores assessed at 60 WOA on the 80 hens used in 

the models. 

 

Individuals’ predictability of movements had a positive association with individuals’ KBF 

severity (posterior mean = 23.54, 95%CI = 6.57 – 38.70, Supplementary Table S4), individuals that were 

more predictable had greater KBF scores (Figure 2). We did not find correlations between KBF severity 

and individual intercepts (𝑟 = 0.06, 95%CI = -0.22 – 0.26) or individual linear slopes (𝑟 = 0.18, 95%CI = 

-0.05 – 0.44), but did find a weak negative correlation between KBF severity and individual quadratic 

slope (𝑟 = -0.24, 95%CI = -0.51 – -0.04). Furthermore, hens that had a higher number of no-transitions-

day during the first three days had higher KBF severity at the end of production (posterior mean = 

5.12, 95%CI = 1.24 – 8.69, Supplementary Table S4, Figure 2).  

 

We did not find an association between individuals’ feather damage and individuals’ 

predictability nor the number of no-transitions-day during the first week. We also found no 

correlations between feather damage score and individual intercepts, linear, and quadratic slopes (𝑟 

= -0.01, 95%CI = -0.27 – 0.24, 𝑟 = -0.22, 95% CI = -0.42 – 0.11, and 𝑟 = -0.26, 95%CI = -0.06 – 0.45, 

respectively). Estimates from fixed and random effects are detailed in Table S4 and Equations S2-S3 

from the supplementary materials. 

 

Figure 2. Raw data points of KBF severity in relation to individual predictability (a) and the number of days with no transitions 

during the first three days in the laying barn (b), together with the predictions line and its 95% credible intervals from the 

bivariate model. 
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Discussion 

Consistent individual differences in movement behaviour in both wild and domestic species have only 

recently received attention [61,159,177,185]. Previous studies have identified consistent differences 

in daily movement patterns [9] or space use behaviours [11] of laying hens within aviaries. In the 

current study, we extended that understanding by quantifying the extent of inter-individual 

differences in averages (with repeatability) and variability (with the coefficient of variation in 

predictability) of daily movements using two population-level measures that are, to some extent, 

comparable across traits and studies. We believe the current effort is the first to reveal intra-individual 

variability of laying hen movements across time and around their behavioural mean within an aviary. 

We also found associations between these individual movement scores, assessed during the first two 

months in an aviary, and the severity of keel bone fractures at the end of production. Collectively, our 

results highlight the importance of movements during the early laying phase and of the intra-individual 

variation in movements to explain occurrence of keel bone fractures at end of lay. 

 

We found consistent inter-individual differences of hen daily movements within the first two 

months in a laying barn, with 44% of the variation attributed to individual differences (repeatability 

(R) = 0.44). Our study's repeatability is slightly higher than the average reported repeatability of 

behaviours (across eight taxa: R = 0.37) [35] and lower than the average repeatability based solely on 

spatial behaviours (across five taxa: R = 0.67) [51]. Various covariates may explain difference in 

repeatabilities, including individuals’ life stage [51]. For instance, a meta-analysis conducted by Stuber 

et al. [51] found evidence that repeatability increased with increased age, so that difference between 

individuals during adulthood explained on average about 30% more of the behaviours’ variance 

compared to juveniles. In this study, we used a transitional life stage between juvenile and adulthood, 

where individuals are probably still developing cognitively and physiologically as well as gaining spatial 

experience in their new housing and thus adjusting their behaviours. Therefore, individuals in this 

study likely exhibited a higher within-individual variation and thus lower repeatability compared to 

later stages.  

 

After controlling for individual differences in average and temporal plasticity, hens still differed in 

how predictable they were in daily movements with a relatively low degree of variation within our 

population (𝐶𝑉𝑝 = 0.25) but similar to previous results on movement distance (total distance travelled 

of calves Bos taurus: 𝐶𝑉𝑝 = 0.18 [186] and mean daily distance of wild African elephants Loxodonta 

africanus: 𝐶𝑉𝑝 = 0.27 [177]). Quantifying the degree to which individuals vary in their movements 

within commercial aviaries may be particularly important in light of the restricted space and the high 
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density of animals. Further research is required to understand if a high degree of variation in specific 

spatial behaviours among individuals housed together would facilitate access to resources and affects 

animals’ welfare and productivity (such as the timing of nest box usage if it reflects mean oviposition 

time where maintaining variability could limit competition for nest boxes [163]).  

 

In addition to the two population-level measures (R and 𝐶𝑉𝑝) estimating the degree of individual 

variation, we found both linear and quadratic effects of time at the population level. Overall, 

individuals increased their movement until day 39 in the laying barn, that is five days before the last 

change in the light schedule, near the end of the mortality peak (on average 2.6% of hens died in the 

studied pens during the first 54 days in the laying barn) and around the moment hens reached 

maximum production level. It is likely that the egg laying behaviour was an important factor driving 

the temporal plasticity in daily movements (encouraging them to move to the nest box tier) as well as 

stress (suggested by a mortality peak and by the high number of hens not transitioning over entire 

days from the top tier). We also identified differences between individuals in the rate at which they 

adjusted movement in the laying barn (i.e. temporal plasticity), suggesting that the effect of time at 

the population level will not capture all relevant information for each individual. The negative 

correlation between the random intercept and linear slope indicates that individuals with fewer initial 

movements had a more rapid increase in movement over time as compared to individuals with initially 

more movements, which may be explained by a regression towards the mean. 

 

The absence of correlations between individuals’ predictability and the other individual-level 

effects (intercept, linear or quadratic slopes) highlights the relevance of a multidimensional approach 

to study inter-individual differences in movement that would account for intra-individual variability in 

addition to individual average response. We also found that individuals exhibiting higher predictability 

in daily movements had more severe KBF at 60 WOA, supporting our hypothesis that hens with less 

variability in daily movements may be more constrained in their ability to behaviourally adapt to the 

commercial environment and in turn have a reduced welfare, compared to less predictable animals. 

A previous study suggested that space use in the laying barn may be related to differences in spatial 

cognitive abilities, with hens that never went outside showing lower spatial abilities [157]. Animals 

with less predictable daily movements may need greater abilities to maneuver in changing conditions 

(social and environmental) and thus would have greater spatial cognitive ability. Greater spatial 

cognitive ability would in turn allow individuals to navigate better, leading to lower collision rates with 

internal structures, a potential cause of KBF [30,187].  

 

We found no association between temporal plasticity (linear or quadratic) or predictability in daily 

movements and feather damage. These results suggest that greater variability in movements and 
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possibly more behavioural flexibility to adapt to new social constraints, did not allow hens to better 

avoid feather pecking, perform maintenance behaviours, or more generally, avoid feather damage. 

Alternatively, the absence of an association could be explained by the little variation in feather 

damage between individuals (i.e. most animals had low feather damage). The few studies that have 

reported associations between individual movements and feather damage (so that hens with greater 

feather damage used the outside area less frequently [155]) where based on free-range housings 

which have important differences with our study that contained a WG but no free-range area (i.e., no 

access to grass and uncovered areas). Also, the WG usage is not well represented by our composite 

movement score (PC1). More studies are needed to confirm that an animal’s predictability in its daily 

movement routine associates positively with KBF, but not with feather damage, and whether spatial 

cognitive ability could explain the association.  

 

Individuals with greater number of no-transitions-day had more severe KBF at the end of 

production. Every day a hen did not transition between tiers, the hen remained on the top tier, a zone 

with all essential resources, many perching locations but that lacks important resources (litter, nest 

boxes and direct UV sunlight). Although reduced accessibility to all resources may compromise an 

animal's welfare, it is unlikely that this would explain the increased KBF observed at the end of 

production. Baur et al. [21] observed almost no KBF at 22 WOA in hens housed in the same barn, which 

suggest that these days spent on the top tier were not a consequence of KBF but rather expressed in 

response to the new environment. Because Rufener et al. (2019) [10] found an increased duration of 

stay in the top tier with increasing KBF severity, it is possible that the top tier is used to offset stress 

in response to aversive situations such as the transfer to a barn or severe KBF (e.g. by using the perches 

to avoid more dominant bird [188]). Other locations, such as the nest box, are known to be used in 

daytime by hens to hide and escape aggression [188], and the top tier may offer similar refuge as it is 

accessible at any time (while nest boxes are typically closed in the afternoon). 

 

Altogether, our findings support the relevance of hen movements during the early laying phase, 

in terms of predictability in daily movements and the number of days spent without transitioning 

between any aviary’s tiers, to explain later KBF (both movement scores associated positively with KBF 

score), but further research is required to disentangle underlying mechanisms. Previous literature 

suggested that the prevalence of KBF increases with the spatial complexity and height of the housing 

system as well as the presence of perches [23], and reported KBF to be associated with decreased 

mobility [27,28]. Although, hens that did not transition for an entire day remained on the top tier (the 

highest tier with many perching locations) we believe it is unlikely that these movements affect the 

keel bone directly since there is a gap of 250 days between data collections.  
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Instead, we propose that these movement scores are expressed as part of a proactive/reactive 

coping style [80] that remain consistent through an animal’s life, and which would be associated with 

both hens’ behaviours and welfare. From a neuroendocrinological perspective, more proactive 

animals may have less inhibitory control and in turn may be more predictable behaviourally compared 

to reactive animals [189], which would be more flexible and perform better under unpredictable 

environmental conditions [190]. Therefore, hens with less predictable movements may have a 

reactive coping style and as such be more able to adjust their behaviour to the new environment 

compared to hens with more predictable movements, which could explain these long-term association 

to KBF. Further research is required to understand how coping style relate to farm animal welfare, 

such as KBF, though our methods offer a novel approach to aid welfare assessments. 

 

Exploring coping behaviour in farm animals can provide valuable information to improve animal 

welfare [55,80] by optimising husbandry practices and allow individuals to perform effective coping 

behaviour [55] in the laying barn. Our study is in line with previous research showing an increased 

mortality risk at the onset of lay [172], and further suggest that during the early laying phase some 

areas may be overcrowded (here, the top tier) or not fully utilized. These findings provide new 

information that may help to better design and properly prepare hens for inhabiting three-

dimensional systems in the future. Furthermore, exploring proxies of coping style (such as potentially 

predictability in movements) may in the future help to tentatively breed for more resilient farm 

animals [55,80]. However, the heritability of plasticity and predictability of behaviour or stress 

responsiveness is still relatively unstudied [191,192] and will need to be investigated to determine the 

relative benefits.  

 

Conclusion 

The present study revealed the presence of consistent inter-individual differences in average 

movements of hens as well as individual variation in predictability and temporal plasticity within the 

first two months in a quasi-commercial aviary. We found associations of intra-individual variability in 

daily movement with the severity of KBF and observed a mortality peak and a high number of hens 

not transitioning over entire days early on. Altogether, these findings highlight the importance of the 

early laying phase for animal welfare and revealed considerable individual differences providing new 

information that may help to better design and properly prepare hens for inhabiting three-

dimensional systems in the future.  
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Abstract 

Past research has supported the importance of animal personalities for the productivity and welfare 

of farm animals. However, current assessments of personality traits are commonly conducted over 

short periods using standardized assays and may not reflect all important aspects of behaviours in 

commercial settings throughout the production period. This study aimed to evaluate consistent 

behavioural differences between 194 commercial laying hens within an aviary across most of the 

production period (eight months). We used five spatial behaviours related to various aspects of 

commercial hens’ daily routine, including the sleeping, feeding, nesting, indoor movements, and 

outdoor usage. All behaviours were repeatable over time and across contexts, with consistent 

differences between individuals explaining between 24% and 66% of the variation. These long-term 

consistencies revealed the potential applicability of the behaviours as personality traits of commercial 

hens. Moreover, we identified behavioural syndromes comprising all behaviours except the nesting 

related behaviour, indicating two axes of spatial personalities that may be driven by different 

mechanisms. We discussed the significance of such individual differences in using personality traits to 

breed more resilient farm animals. Future research should evaluate associations of these behaviours 

with animal welfare and productivity to inform breeding efforts. 

 

Introduction 

Animal personality is defined as repeatable individual differences in behaviour over time and across 

contexts [53,54]. Personality traits can limit behavioural plasticity and hinder individuals from 

behaving optimally in all situations. That is, if a behaviour is not plastic enough, it will be suboptimal 

in some contexts. For example, high levels of feeding activity will be optimal when predator 

abundance is low but suboptimal when predator abundance is high due to higher predation risk. 

Therefore, studying correlations of a behaviour across contexts could explain suboptimal behaviours 

and identify important trade-offs driving individuals’ fitness [81]. Personality is a multidimensional 

concept and can be summarized into five axes: aggressiveness, activity, exploration, boldness, and 

sociability [53,55]. These axes are often correlated into a behavioural syndrome [56]. More aggressive 

individuals tend to be more active, explorative, bold, as well as less social, and would commonly be 

classified as proactive animals (in contrast to reactive animals) [55,57,58]. Correlated traits can 

constrain evolution and help to understand key ecological processes and life history strategies, such 

as population dynamics and survival (e.g. ‘fast’/proactive personalities [60] tend to disperse over 

longer distance [61] and activity - risk-taking syndrome affecting survival [59]). Importantly, 

behavioural traits can also be correlated to morphological and physiological traits, which is of 

particular importance in farm animals. 
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Indeed, there is a growing interest in farm animal personalities owing to its association with 

individual welfare and productivity. For instance, previous literature suggested that less nervous cows 

produced more milk [76], more exploratory-active calves associated with greater average daily gain 

[77], and calmer temperament in cows were related with greater first lactation milk yield [78]. A 

greater understanding of farm animal personality could help to improve management practices and 

the design of housing systems for increased productivity and welfare. Research suggested another 

critical role of animal personalities for the welfare of farm animals by proposing the integration of 

personality traits as phenotypes into the breeding process to breed for more robust farm animals 

[55,79,80] (e.g., in pigs [84], laying hens [83], cows [85]). Yet, personality traits are commonly assessed 

in laboratory settings or with standardized assays [105] on a limited number of individuals and over 

short periods of time. As a result, these traits may not reflect all important aspects of behaviours 

expressed within commercially relevant settings [106,107], which could lead to important 

misinterpretations that could impact how animals are housed, managed, and bred. Therefore, 

technologies that allow automatic monitoring within commercial settings will be key in assessing farm 

animal personalities. 

 

Following the incorporation of monitoring technology in the study of animal behaviour, how 

animals use their space is garnering increased attention [193]. Movement and space-use are 

fundamental behaviours for common personality traits [61] such as boldness, activity, or exploration 

behaviour. Spatial behaviours are of particular importance in farm settings where animals have to live 

within complex human-made housings and where the high animal density and bounded environment 

constrain freedom of movement. The importance of spatial behaviours is especially true for 

commercial laying hens, where cage-free housing systems are becoming more common. Although 

thought to provide improved welfare over cage housing, cage-free housing is associated with certain 

welfare issues (e.g. severe feather pecking, bacterial infections, and keel bone fractures [5]) that are 

more difficult to resolve with traditional management and genetic interventions. We suggest that by 

using tracking technologies that allow high resolution, individual-level observations over long periods 

of time, we can establish new spatial behavioural traits in laying hens that can in turn be interpreted 

as personality traits, give insights into animal needs and preferences, and offer a promising tool to 

breed more resilient farm animals.  

 

This study aimed to evaluate consistent behavioural variation between commercial laying 

hens within an aviary system across most of the production period. Our objectives were to: (1) 

characterize five spatial behaviours related to a hen’s daily routine including: sleeping, feeding, 

nesting, indoor movements, and outdoor usage, (2) quantify the extent of consistent inter-individual 
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differences (repeatability) over time and within four contexts for each behaviour, (3) evaluate the 

maintenance of these individual differences across contexts, and (4) explore the existence of 

behavioural syndromes. We hypothesised that such behaviours are indicative of personality traits and 

therefore predicted that all five behaviours would be repeatable over time and across contexts. We 

further hypothesized that the underlying personality traits are indicative of proactive and reactive 

strategies, and therefore predicted the behaviours to be correlated into behavioural syndromes. 

 

Materials and Methods 

Study design 

The study was conducted according to the cantonal and federal regulations for the ethical treatment 

of experimentally used animals and approved by the Bern Cantonal Veterinary Office (BE-45/20). As 

part of a larger study, 2’520 chicks (Gallus gallus domesticus) were reared in one of four rearing pens 

(630 chicks/pen), where half of the chicks hatched on farm (OFH treatment) while the other half 

arrived at one day of age from a commercial hatchery (TRAN treatment). Chicks originated from a 

single parent flock from a standard commercial hybrid (DeKalb White). At seven days of age (DOA), all 

chicks were classified into a more/less explorer class. We will not use the class as an exploratory 

behaviour as the measurement could not be validated (Supplementary text 1), but we will control for 

the class in subsequent analysis. At 7 DOA, we selected 160 focal chicks (40/rearing pen; arbitrary 

selection of 10 animals amongst each class and 20 animals amongst the entire population). On the 

same day, we arbitrarily assigned (but not yet transferred) each focal chicks to one of four identical 

laying pens from the same treatment (4 pens/treatment for a total of 8 laying pens, with 20 focal hens 

each), maintaining an equal representation of an individual’s class and rearing pen throughout the 

laying pens. At 17 weeks of age (WOA; September 2020), we transferred all hens, including focals, to 

an onsite laying barn containing a Bolegg Terrace aviary (separated into 20 pens by grids, pens’ indoor 

area: 7 m length, 2.3 m width, 2.69 m height until the top tier grid floor) and an outside covered winter 

garden (WG). Animal density was 8.1 hens per square-meter of permanent accessible area (225 

hens/pen of 27.92 𝑚2).  At five timepoints (127, 173, 243, 313, 417 DOA), we randomly selected 16 

focal hens (2 hens/pen) to be killed as part of the larger study and replaced them with 16 arbitrarily 

selected hens to continuously track the same number of hens (see below for descriptive statistics that 

accounts for technical issues). At five slightly different timepoints (173, 215, 243, 313, 417 DOA), all 

focal hens were weighed and radiographed to produce a latero-lateral image that was then used to 

generate a keel bone fracture (KBF) severity score (continuous, 0-100) based on a tagged visual 

analogue scale [176]. The KBF score is an indicator of the total amount of the keel bone affected by 

any fracture (intra-observer reliability: ICC = 0.89, 95% CI = 0.74 – 0.95, inter-observer reliability: ICC 

= 0.92, 95% CI = 0.832 – 0.96). Both rearing and laying barns are located at the Aviforum facilities in 
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Switzerland where standard animal husbandry practices are used. Hens were kept for commercial and 

experimental purposes until July 2021. 

 

Tracking system  

We tracked focal hens across five zones in the laying pen: the top and lower tiers (both containing 

water, feed and perches), the nestbox tier (with a balcony and nestboxes), the littered floor and the 

outside WG (containing water and litter). The four indoor zones and tracking system are illustrated in 

figure 1 from Chapter I, where a detailed description and validation is described. We used the 

movement data from the point at which the daily number of eggs laid by the flock peaked and the 

management schedule (i.e. timing of lighting and wintergarden access) became stable (i.e. at 25 weeks 

of age), until the end of production (i.e. at 60 weeks of age). During the tracking period, artificial light 

was turned on at 02:00 h and off at 17:00 h. The dataset included 194 hens tracked over 242 days (i.e. 

8 months) resulting in a total of 30,780 observations (after removal of non-functional tags or days), 

amongst which hens had on average 159 days tracked (min = 12, max = 200, sd = 52, 25th percentile = 

120, 50th percentile = 193, 75th percentile= 198 (unit: day)). 

 

Spatial behaviours 

We selected five daily spatial behaviours based on five aspects of commercial hens’ daily routine, so 

that behaviours may be functionally different. We attempted to avoid behaviours that would be 

intrinsically correlated, so that any behavioural syndromes that we identified should arise from 

individual hens’ preferences. We hypothesized that hens with a more proactive personality would: 

travel greater vertical distances, use the WG on more days, have earlier nesting behaviours, spend 

more nights on the highest tier, and express a stronger reaction to the feed being delivered by using 

the tier with feed more when fresh feed is available. Therefore, we predicted positive among-

individual correlations (i.e., behavioural syndromes) between these behaviours. Figure 2 illustrates 

the percentage of focal hens in a zone at specific time of the day, along with the timing of the main 

husbandry practices. 

Figure 2- Black lines correspond to the mean (± SD) percentage of focal hens in a zone at specific time of the day, computed 

over all available days in January (arbitrarily chosen), where focal hens represent ~9% of the hens in each of the 8 pens. The 

main daily husbandry practices are highlighted in coloured vertical lines (orange: collecting eggs on the floor; red: access to 

WG opened; green: fresh feed delivery).  
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Vertical travelled distance 

Because the four indoor zones are stacked on top of each other, we used the number of indoor zones 

crossed as a representation of a hen daily vertical travelled distance. More specifically, we used the 

mean vertical travelled distance per hour excluding the dusk, night, and dawn phases and the time 

when the hen was in the WG to prevent overlap with the sleeping and outdoor usage behaviours. We 

tracked movements between zones but not within them, and thus did not measure hens’ activity. 

However, we hypothesized that hens that travel greater vertical distances would on average be more 

active and thus have a more proactive personality. 

 

Winter garden presence 

The outside covered WG (9.32 𝑚2) could be accessed via the littered floor through a pop-hole (length: 

60cm, height: 38 cm, width: 28 cm) from 10:00 h until approximately 16:00 h on most days. Most of 

its area cannot be seen from the inside and individuals must go to the edge of the pop-hole to see the 

entire WG. Although the WG is screened, it is subjected to more variable environmental conditions 

than the indoor area, which may cause some animals to perceive it with greater uncertainty. Previous 

research in free-range housing found negative association between range-use and fearfulness 

[12,17,194], although free-range area differs from our WG (i.e., no uncovered areas or access to grass). 

We used whether the hen entered the WG on the day (scored 0-no/1-yes) as the daily outdoor usage 

behaviour. We hypothesized that hens using the WG on more days would be less fearful and thus 

would have a more proactive personality. 

 

Nestbox tier timing 

Nesting behaviour is a highly ritualized and internally motivated process [195,196]. In cage-free 

systems, hens should lay their eggs in shared nestboxes that cannot hold all hens simultaneously 

(here: 2.3 𝑚2 of nestbox surface per pen of 225 hens). Therefore, dominance hierarchies may affect 

laying behaviour, with subordinate hens laying their eggs (and potentially also performing nesting 

behaviour) slightly later than dominant hens [197]. Therefore, to account for nesting behaviour, we 

used the period when hens are expected to lay (i.e., 02:00h – 08:00h) and extracted the point in time 

(h) when a hen reached half of its time spent in the nestbox tier (hereafter referred to as nestbox tier 

timing). Because the nestbox tier contains the nestboxes but also a balcony (figure 1a), we used 

several other lines of evidence to show that this likely reflects nesting behaviour. We believe the 

measure reflects nesting behaviour as 1) the high density of hens in the nestbox tier between 02:00h 

and 08:00h (figure 2) likely prevents them from roosting on the balcony and 2) the distribution of the 

interval time between consecutive nestbox tier timing has a narrow spread around 24h that seems 

specific to the morning (95% of the values falling within 23.3-24.9h, compared to 20.1-27.8h for the 

behaviour computed over the following 6h hours (8h - 14h); illustrated in figure S1). We hypothesis 
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that more dominant, aggressive, proactive individuals, would lay earlier in the morning than 

subordinate, docile, reactive individuals would.  

 

Sleeping tier 

Previous literature suggested that hens are highly motivated [198] to roost at night on the highest 

area [199,200], but in commercial aviaries, not all hens can be on the highest tier simultaneously. On 

average across all available days, 69.4 ± 5.1% (mean ± SD) of the hens spent the night on the highest 

tier, 14.1 ± 4.7% on the nestbox tier, 16.2 ± 3.4% on the lower tier, and 0.3 ± 0.7% on the littered floor. 

Therefore, we used a binary variable whether the hen spent most of the night-time on the highest tier 

(yes/no) as a behaviour related to the night-time routine which is hereafter referred to as sleeping 

tier. The night phase is preceded by 15 minute dusk phase, where light is slowly reduced. We 

hypothesized that hens with a more proactive personality would have some traits (e.g. more bold, 

risk-taking, aggressive, or faster and more active behavioural response [57] such as to the reduced 

light) that would enhance opportunities to roost at night on the highest tier.  

 

Feed delivery response  

Feed is delivered automatically six times throughout the day (02:30 h, 06:00 h, 09:00 h, 12:00 h, 14:15 

h, 16:15 h ; figure 2) via an automatic chain feeding system that runs for three minutes at each delivery 

and produces an elevated noise level. Although hens had ad libitum access to feed, the feed delivery 

brings fresh particles of larger size that are generally preferred by chickens [201–203]. Hereafter, we 

will refer to the two tiers where feed is accessible (the lower and highest tiers) as the “feed-tiers”. We 

defined a feed delivery response as a descriptor of the tendency of being in a feed-tier more frequently 

while the fresh feed is delivered than while the feed is not delivered:   

Feed delivery response = 
1

|𝑃|
∑ (

1

50
∑  (

𝑇𝑝 – 𝑇𝑝𝑟

𝑇𝑝 + 𝑇𝑝𝑟 
)50

𝑟=0 )𝑝∈𝑃  . 

where 𝑷 corresponds to the set of periods when the feed is delivered, 𝑻𝒑 the time spent in the feed-

tiers during the period 𝒑, and 𝑻𝒑𝒓 the time spent in the feed-tiers during a random period (𝒑𝒓) of 

same duration and around the same period of the day as 𝒑, but where feed was not delivered. 

Intuitively, the behaviour is similar to:  

(𝑇𝑓𝑑  − 𝑇𝑓𝑛𝑑)/(𝑇𝑓𝑑 + 𝑇𝑓𝑛𝑑), where 𝑇𝑓𝑑 (and 𝑇𝑓𝑛𝑑) represent the daily time spent in the feed-tiers 

while fresh feed is delivered (and is not delivered), but where we controlled for the difference in 

duration between periods with feed delivery and without feed delivery. To do so, we compared each 

feed-delivery period (p) with 50 random periods without feed being delivered, but of the same 

duration and occurring within a 1 h window surrounding p, but disregarding the 15 minute period 

immediately before or after p. We believe 50 periods gave a reasonable representation of the overall 

behavioural patterns around the time of feed delivery (see electronic supplementary material, text S2 
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for further explanation). The feed delivery response varies from −1 to 1, where negative numbers 

indicate a tendency of being in the feed-tiers more frequently while the feed is not delivered, and 

positive numbers indicate a tendency of being in the feed-tiers more frequently while the feed is 

delivered. Because periods with reduced feeder space (as expected after arrival of fresh feed and 

suggested by figure 2) may be associated with increased aggression [89], we hypothesized that hens 

with higher values would generally be bolder as they risk greater aggression to get fresh feed 

compared to others and thus we would deem them to be more proactive. To verify that this behaviour 

relates to the feed becoming available in the feed-tiers, we compared the behavioural responses 

computed with true and false feed delivery timing (defined as 20 min forward and 20 min backward 

in time). When computed with false timing, we found that on average 54±5% or 53±6% (forward or 

backward push, respectively) of individuals per day had a strictly positive response. When computed 

with true timing, we found substantially higher values, with on average 77±4% of individuals per day 

had a strictly positive feed delivery response (illustrated in figure S2 b, d, and f), indicating that the 

defined feed delivery response reflects hens’ reaction to the feed being delivered. 

 

Contexts 

To understand whether individuals varied their spatial behaviour across contexts, we selected two 

commonly occurring situations in commercial settings and two different production stages (for a total 

of four contexts). We chose an early and late production stage defined by the first and last three weeks 

of the tracking period to compare the extent of consistent individual differences from the onset of 

adulthood to the end of production, when animals are more likely to have poor welfare conditions. 

To include a common commercial perturbation, we used three vaccination events spread over 120 

days, with each involving two hours of water deprivation (beginning at 08:00 h), followed by 

vaccination delivery through water, and a three-hour postponement of the WG opening. External 

environmental conditions, such as the temperature, may also influence behaviour, particularly when 

temperatures fall outside of the optimum thermoneutral zone, which in laying hens lies between 19-

22°C [204]. Therefore, we defined a “cold external temperature” context, characterized by days with 

solely negative mean hourly external temperature during hours where access to the WG was provided 

(varying from -1 °C to -4 °C). Throughout the experiment, there were several periods characterized by 

consecutive days with negative temperatures. We chose the first day within each of the first three 

periods to limit habituation effects. Any day that would fit into more than one of the four contexts 

were excluded to avoid overlap between contexts. Days that fit into none of these contexts were 

considered to estimate repeatability over time but, due to possible autocorrelations between days 

close in time and uncontrolled human disturbances, we only used Saturdays (a day with limited human 

non-staff visits). Similarly, Saturdays were used for both the early and late production stage contexts. 

Thus, each context involved three distinct days, with at least 118 hens tracked during all three days. 
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To evaluate the repeatability of behavioural differences across contexts, we used the observation in 

each of the four contexts that we believed was the most representative of the context, while avoiding 

observations close in time (detailed in figure 3). Subsequent analysis involved 194 hens and a total of 

5,047 observations, amongst which hens were tracked on average for 26 days (min = 1, max = 33, sd 

= 1, 25th percentile = 21, 50th percentile = 31, 75th percentile = 33 (unit: day)). 

 

Figure 3. The timeline of the contexts in relation to the DOA, the date, and the DIB. Each vertical bold grey line represents a 

day used in subsequent analysis. All days selected within a context, over time or across contexts are represented here. 

 

Statistical analysis 

Analysis was conducted with Python for data processing and visualisations, and R for the statistics 

(code is given in the supplement). 

 

Repeatability of behaviours 

First, we evaluated individual consistency in each movement behaviours over time and across 

contexts. To evaluate individual consistency over time, we estimated the adjusted repeatability 

(defined as the proportion of the total variance that is accounted by differences among individuals, 

while accounting for known individual differences), hereafter referred as repeatability, of each 

behaviour separately. Before addressing the across contexts consistency, we investigated if individuals 

exhibited consistent behavioural differences within each context by estimating repeatability for each 

behaviour and context separately. Then, we computed the repeatability of behavioural differences 

across contexts. We used the rptR package [178] to calculate repeatability and fit a Gaussian 

distribution for both the vertical travelled distance behaviour and feed delivery response, and a binary 

distribution with logit-link function for both the WG presence and sleeping tier (i.e. went in the WG: 

yes/no; slept in one of the down tiers: yes/no), for which we reported the link-scale repeatabilities. 

We reported the repeatability estimate with its 95% confidence interval (CI) based on 1000 

bootstraps. Because the nestbox tier timing is positively skewed, we used the glmmTMB package [205] 

with a gamma family and log-link function to extract the repeatability as explained in Stoffel et al. 

[206] (with the trigamma function to derive the observation-level variance) and used bootstrapping 

to get a mean estimate with confidence intervals, based on 1000 bootstrap replicates. We checked 

model assumptions (i.e., normality of error and homoscedasticity) by sight. Because consistent 

behavioural differences among individuals could arise from consistent external (environment) and 

internal (health) differences, also known as pseudo-repeatability [207], we accounted for KBF severity 
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(which was already shown related to movement within the aviary [10] and is a prevalent health issues 

in commercial hens within aviaries [20,21]), body mass, class (MEXP/LEXP), and treatment 

(OFH/TRAN). Because there is a general upward trend over time for both the body mass and the KBF 

severity, we interpolated linearly (with monotonically increasing) both the KBF severity and body mass 

for each hen separately to better control for hens' health status between consecutive health 

assessments. To account for variation in the timing of feed delivery between pens due to sets of four 

pens being linked to a common feed delivery time, we controlled for a feed-chain identity in the feed 

delivery response. To facilitate model fit, we added a time effect (number of days since the transfer 

to the laying barn). All continuous fixed effects were scaled and centred to a mean of 0, so that 

intercepts reflect average values. The identity of the pen was previously tested for each behaviour 

separately and removed as the more complex models had greater Akaike information criterion 

(𝛥𝐴𝐼𝐶 > 2) and a same conditional explained variance (𝛥𝑅𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
2 < 0.01). For model 

convergence issues, the class was removed for all models used to compute the repeatability of the 

WG presence (𝛥𝑅𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
2 = 0). In addition to the repeatabilities, we report the trait means as well 

as the within- and the among-individual variance components (see supplemental material) [206]. 

 

Behavioural syndromes 

We evaluated behavioural syndromes, that is, correlations among individual’s average behavioural 

expressions hereafter referred as ‘behavioural type’. We used the observations from all contexts in 

one multivariate model based on a Bayesian Markov Chain Monte Carlo (MCMC) approach using the 

brms package [180] in R. We ran the model with uninformative priors, four Markov chains with 

300,000 MCMC iterations (including 200,000 for burnin), a thinning rate of 50, and with a similar 

distribution for the behaviour responses as in the models used to estimate the repeatabilities. To 

facilitate model fitting we scaled and centred (mean = 0, standard deviation = 1) the two gaussian 

responses (vertical travelled distance and feed delivery response) and scaled the gamma response 

(nestbox tier timing) (standard deviation = 1). All continuous fixed effects were scaled and centred to 

a mean of 0 and standard deviation of 1. Specification of the model was assessed with posterior 

predictive check for each response variable, trace plots, Gelman-Rubin’s convergence diagnostic 

[182], Geweke’s convergence diagnostic [208] and Leave One Out Cross-Validation (Loo-cv). We 

reported the mean and credible interval of each among-individual correlation between any two 

behaviours. Correlations were deemed significant if the credible interval did not include zero [177] 

after rounding to three decimal places. To illustrate the use of these multivariate model to extract a 

behavioural axis that accounts for most of the among-individual variation in correlated behaviours, 

we performed an eigendecomposition of their among-individual correlation (so that all variables are 

given the same weighting even though measured on a different scale) matrix. We used the eigenvalues 

to report what proportion of variation is explained by each eigenvector (principal component) and 
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reported the behavioural trait loadings on the eigenvectors with an eigenvalue > 1 [175]. We used the 

posterior samples to compute the standard deviation of each trait loading as uncertainty measure. 

 

Results 

Repeatability of behaviours 

All behaviours were repeatable over time, within, and across contexts as none of our confidence 

interval approached zero, indicating consistent inter-individual differences in our hen population. The 

most repeatable behaviour over time and across contexts was the vertical travelled distance (R = 0.66 

[0.61, 0.70] and R = 0.48 [0.40, 0.56], respectively). The highest repeatability was for the sleeping tier 

within the late production stage context (R = 0.81 [0.65, 0.98]); the lowest repeatability was for the 

feed delivery response within the vaccination disturbances context (R = 0.23 [0.13, 0.35]). All estimates 

are provided in table 1 and a heatmap of their normalized (row wise and column wise) estimates are 

shown in figure 4a. Normalising each row, i.e. each behaviour separately, highlights for each behaviour 

which context is the most or least repeatable and therefore allows easy comparison of repeatability 

between context (e.g. if a context appeared as generally the least repeatable for all behaviours). 

Similarly, normalising each column, i.e. each context separately, allows visualizing for each context 

which behaviour is the most or least repeatable, and thus allows easy comparison of repeatability 

scores between behaviours (figure 4b). Finally, the general trend of an association between the 

between- and within- individual variances with the mean number of days between any two 

observations (as provided by the last row of table 1) is provided in figure 4c, where we generally 

observe a lower between-individual variance and a higher within-individual variance over longer time 

periods. The trait means, the between- and the within- individual variance components are reported 

in table S1 from the supplementary material. 

 

 
over time 

early production 

stage 

cold external 

temperature 

vaccination 

disturbance 

late production 

stage across context 

vertical travelled 

distance 0.66 [0.61, 0.70] 0.79 [0.74, 0.83] 0.73 [0.67, 0.79] 0.52 [0.43, 0.61] 0.78 [0.73, 0.83] 0.48 [0.40, 0.56] 

nestbox tier timing 0.52 [0.48, 0.56] 0.69 [0.60, 0.78] 0.71 [0.63, 0.79] 0.57 [0.44, 0.70] 0.58 [0.41, 0.75] 0.47 [0.36, 0.59] 

sleeping tier 0.48 [0.38, 0.54] 0.56 [0.34, 0.70] 0.54 [0.31, 0.68] 0.50 [0.27, 0.72] 0.81 [0.65, 0.98] 0.41 [0.22, 0.51] 

WG presence 0.50 [0.41, 0.56] 0.60 [0.39, 0.69] 0.55 [0.33, 0.64] 0.30 [0.10, 0.38] 0.59 [0.35, 0.77] 0.25 [0.10, 0.31] 

Feed delivery 

response 0.33 [0.28, 0.39] 0.36 [0.27, 0.46] 0.42 [0.33, 0.52] 0.23 [0.13, 0.35] 0.37 [0.27, 0.48] 0.24 [0.16, 0.33] 

#observations 3,196 468 471 468 444 613 

#individuals; #days 194; 21 157; 3 159; 3 193; 3 153; 3 190; 4 

#hens with > 95% 

of obs. 103 155 155 118 142 109 
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mean and max #days 

between obs. 62; 168 9; 14 9; 13 85; 128 9; 14 131; 238 

 

Table 1. Adjusted repeatability of the five behaviours over time, within each context and across contexts (in the first five 

rows). In the following rows, we added information on the data used to compute the repeatabilities: the number of 

observations, individuals, days and hens with more than 95% of observations included (in the following three rows); the 

mean and maximum number of days between any two observations (in the last row). 

 

  

Figure 4. (a) Heatmap of the adjusted repeatability estimates from table 1, where each row was normalized (between 0-1) 

to highlight the highest (black) and lowest (light grey) estimates for each behaviour and allow easy comparison between 

contexts. (b) Heatmap of the adjusted repeatability estimates normalized by columns to highlight the highest (black) and 

lowest (light grey) estimates in each of the categories (over time, early and late life stage, cold external temperature, 

vaccination disturbance, and across context) and allow easy comparison between behaviours. (c) Illustration of the among- 

and within- individual variances underlying the repeatabilities, sorted by the “mean number of days between any two 

observations” (from last row of table 1). This visual is intended to highlight the general trend of the individual variances when 

estimated on short or long interval time, the variances are further detailed in Supplementary table S1.  

 

Behavioural syndromes 

Results revealed existence of behavioural syndromes, involving four of the five behaviours. The 

vertical travelled distance was positively correlated with the WG presence (r = 0.50 [0.38, 0.61]) and 

feed delivery response (r = 0.47 [0.35, 0.59]), as well as negatively correlated with sleeping tier 

behaviour (r = -0.23 [-0.39, -0.08]). The feed delivery response and the WG presence were positively 

correlated (r = 0.27 [0.11, 0.41]). The feed delivery response and the sleeping tier were negatively 

correlated (r = -0.21 [-0.36, -0.05]). Correlations between each pair of behaviours and statistically 

significant correlations are illustrated in figure 5.  
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Figure 5. Correlations (±95% credible interval) of each movement behaviours from the multivariate mixed model where 

stars (*) highlights significant correlations (i.e. when 0 is not included in the confidence interval) in a), illustrated by individual 

intercept estimates (±95% credible interval) of each correlated pairs of behaviours: in b) the WG presence and the vertical 

travelled distance, in c) vertical travelled distance and the feed delivery response, in d) the WG presence and the feed 

delivery response, in e) sleeping tier and the vertical travelled distance, and in f) sleeping tier and the feed delivery response. 

The slope from each regression line between these pair of behaviours is represented by a black line and calculated by dividing 

the covariance between both behaviours with the variance of the behaviour displayed on the x-axis. Negative correlations 

are represented by red colours and positive correlations by green colours. 
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At the population-level, the number of days spent in the barn had the largest effect on all five 

behaviours. With increasing days in the barn, hens on average visited the WG on more days, spent 

fewer nights on the highest tier, reduced their vertical travelled distance per hour spent indoor, used 

the nestbox tier later (as measured by a greater response of the nestbox tier timing behaviour), and 

increased their tendency to be in the feed-tiers upon feed delivery feed (the observed behaviours over 

time are illustrated in figure S3). Also, heavier birds used the nestbox tier earlier and hens that 

travelled greater vertical distances had more severe keel bone fracture scores and greater mass. 

Treatment (OFH/TRAN) had no effect. The more/less explorer class effect was statistically significant 

for only one behaviour where more explorative hens were found to spend fewer nights on the highest 

tier compared to hens randomly selected among the entire population. Estimates of population-level 

effects are further detailed in supplementary figure S4.  

 

The eigendecomposition of the among-individual correlation matrix based on the correlated 

behaviours (all behaviours except nestbox tier timing) resulted in two principal components with an 

eigenvalue > 1, and explained 47% and 28% of the total variation, respectively. On the first principal 

component, the sleeping tier weakly loaded in the opposite direction as the feed delivery response, 

the WG presence, and the vertical travelled distance. Behavioural traits loadings (mean ± SD) on the 

first and second eigenvectors of the among-individual correlation matrix were: feed delivery response: 

0.54 ± 0.03 and -0.16 ± 0.09, vertical travelled distance: 0.63 ± 0.02 and 0.03 ± 0.05, sleeping tier: -

0.24 ± 0.09 and 0.83 ± 0.07, WG presence: 0.50 ± 0.04 and 0.54 ± 0.11, respectively. The first principal 

component suggests a behavioural axis that accounts for most of the among-individual variation in 

correlated behaviours. Although individuals varied along a continuum on the axis, the extremes can 

illustrate different “behavioural profiles” within the flock. To illustrate these extremes, we projected 

observed behaviours of each selected day onto the subspace spanned by the first component, and, 

randomly selected three hens among the 15% highest and lowest mean score to visualise their mean 

observed behaviours (figure 6). 
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Figure 6. Illustration of two “behavioural profile” as suggested by the first eigenvector of the among-individual correlation 

matrix. We randomly selected three hens among the 15% lowest (a) and highest (b) mean score to visualise their mean 

observed behaviours, including the nestbox tier timing behaviour, showed to be independent of the other behaviours. 

 

Discussion 

This is the first study to quantify long-term individual consistency in various spatial behaviours of 

commercial hens within an aviary system. The behaviours were selected to represent five aspects of 

commercial hens’ daily routine, and therefore may be functionally different. We found consistent 

individual differences over time and across contexts in the five behaviours. The daily vertical travelled 

distance and the nestbox tier timing behaviours were most repeatable. We also found behavioural 

syndromes involving the sleeping, feeding, indoor movements, and outdoor usage behaviours, but 

interestingly not the nesting related behaviour, suggesting two behavioural axes driven by different 

mechanisms. Altogether, these long-term individual consistencies and behavioural correlations 

revealed the potential applicability of such behaviours as personality traits in commercial hens and 

suggest two main axes of spatial personalities.  

 

Repeatability of behaviours  

Consistent inter-individual differences in behaviour may arise from intrinsic individual (genetic or 

epigenetic) differences, but also from consistent external and internal differences (e.g. bone fractures) 

between individuals. In commercial settings, numerous sources of variation are under strict human 

control (e.g. rearing process, light, and indoor temperature) which may reduce consistent external 

differences between individuals and in turn avoid spuriously high repeatabilities. In addition to 

offering unique conditions for controlling and standardizing environmental conditions, commercial 

settings often have automated processes (e.g., to provide feed or access to areas) that could be 

manipulated and incorporated into the design of experiments. We highlight that animals with known 

genetics, standardized routines, and housed in commercial settings offer an excellent system to study 

behavioural variation at different hierarchical levels. 

 

For the design of future experiments, it is important to understand the effect of interval time 

between observations on the repeatability of behaviour. Our repeatability estimates decreased with 

increasing mean interval time between observations, as expected [35]. The underlying individual 

variances suggest that hens have more variable behaviours (i.e., higher within-individual variance) and 

are behaviourally more alike (i.e., lower between-individual variance) when studied over longer 

periods. The observed trends from figure 4c highlight the two underlying mechanisms by which 



71 
 

repeatability of behaviours generally reduced over longer observational period, though the factors 

driving the mechanisms remain unknown and likely include both internal and external changes. 

 

Repeatability may also vary with respect to an individual’s life stage (e.g. due to ontogeny 

[69]), yet we found similar repeatabilities during our early and late production stages. However, we 

previously found that similar behaviours expressed previous to our early production stage on the same 

hens (during the first two months in the laying barn) were considerably less repeatable (R varying from 

0.38 for the vertical travelled distance to 0.17 for the sleeping tier) [209]. These results show that hens 

were already behaviourally consistent prior to our early production stage, but that repeatability 

increased and stabilized during the first two months in the laying barn and seemed to be maintained 

until the end of production.  

 

We found consistent individual differences in all behaviours over time and across contexts, 

revealing their potential applicability as personality traits of commercial laying hens. Especially the 

daily vertical travelled distance and the nestbox tier timing, for which consistent differences between 

individuals explained more than half of their variation (66% and 52%, respectively) and were 

maintained across contexts (48% and 47%, respectively). In contrast to these moderately high long-

term repeatabilities, consistent differences in both the WG presence and the feed delivery response 

were only weakly maintained across contexts (R = 0.25 and R = 0.24, respectively), suggesting these 

behaviours may be of lesser importance to the hens or harder to maintain (e.g. due to behavioural 

plasticity in response to the outside temperature; or during the vaccination disturbances context). 

Also, because not all hens can be on the feed-tiers simultaneously due to the limited space, it may 

limit hens to express consistent feed delivery responses, which could explain the general low 

repeatabilities of the behaviour. 

 

Although the feed delivery response did not show drastic behavioural differences within our 

population, it may be of particular relevance in commercial settings where animals have to regularly 

respond to external stimuli. It is important to note that as we are unable to control for all internal or 

external drivers, this behaviour may not directly reflect animals’ motivation to feed. However, it is a 

first step towards assessing a potential proxy of the animal's affective state in response to a recurring 

external stimulus based on movement data. Further research should assess how such behaviours are 

indicative of animal wellbeing, for example by testing if hens with higher feed delivery responses also 

have a more optimistic attitude in a judgment bias test [210]. If supported, the behaviour could then 

be used as a daily proxy of the hens’ affective state. 
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Altogether, these long-term repeatabilities demonstrated that tracking technology can be 

used to quantify individual differences in behaviours related to different aspects of commercial hens’ 

routine and for long periods that are rarely accounted for in personality studies. These results 

demonstrated that hens from a single parent flock can differ consistently in spatial behaviours over 

most of the production period, suggesting that individuals have different preferences, or needs. Such 

individual preferences may lead to overcrowding or under-utilized areas, which could affect animal 

welfare (e.g., smothered hens in overcrowded areas [211]) and production (e.g., eggs on the floor due 

to preferred nestbox being occupied [212]). Therefore, by understanding behavioural differences in 

commercial settings we can design appropriate management tools and breeding practices to improve 

animal welfare, such as sensors to detect pilling behaviours [211], practices to encourage earlier 

transitions between tiers after transfer to an aviary [213], and breeding hens for specific behaviour 

[83,212]. 

 

Behavioural syndromes 

In accordance with our predictions, we found that hens that travelled greater vertical distances, on 

average also went in the WG on more days and tended to use the feed-tiers more upon delivery of 

fresh feed. These results support our hypothesis that these behaviours are associated with a pro-

reactive personality axis. We proposed that these behavioural expressions are indicative of a proactive 

personality. Contrary to our predictions, these hens on average also use the highest tier slightly less 

at night (correlation with vertical travelled distance: r = -0.23). Because hens are highly motivated 

[198] to roost on the highest tier [199,200], this result could suggest that more proactive hens are less 

successful in accessing the highest tier at night. For instance, hens that travel greater vertical distances 

may also stay active until later and, therefore, be less able to access the highest tier due to higher 

animal densities. Further research is required to evaluate associations between these behaviours and 

common personality traits to understand the role of pro-reactive personality axis in explaining these 

syndromes. 

 

An alternative, non-mutually exclusive, mechanism to explain these behavioural differences 

and syndromes could be the existence of subgroups, where hens’ location would reflect those of their 

group. In large groups such as ours, hens can't recognize all conspecifics which likely limits their ability 

to form social groups based on individual recognition [111]. Therefore, we believe it is unlikely that 

hens repeatedly associate their locations with the same individuals due to such social groups. 

However, hens may recognize conspecific or relevant traits (e.g. comb size) based on their status [214]. 

Therefore, subgroups could reflect dominance rank and hens’ location would reflect their rank. Future 

research should investigate the social dynamics of these large groups and whether this could explain 

spatial behavioural differences.  
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Interestingly, we found no syndrome involving the nesting behaviour, which suggests that its 

main mechanism is independent of those involved in the other behaviours and could be, for instance, 

the physiological rhythm. Because commercial laying hens are under strong human selection for high 

egg production, we may speculate that the behaviour is more resilient to environmental change and 

could be expressed independently to other needs and their associated behaviours. Altogether, these 

correlations indicate two main axes of spatial personalities: the nesting related behaviour and the 

behavioural axis based on the other behaviours. We used the extreme values from the latter axis to 

illustrate two, probably most dissimilar, behavioural profiles in our flock (figure 6). This figure 

illustrates how this one axis is accounting for most of the among-individual variation and therefore 

may be used to extract relevant phenotypes. 

 

To assess relative benefits of these phenotypes, future research should evaluate not only their 

associations with common personality traits but also with animal welfare and productivity. According 

to Koolhaas [215], proactive animals perform better under highly predictable conditions, or when feed 

is abundant [216], compared to reactive animals. However, in commercial settings, animals often have 

a predictable management daily routine, but unpredictable events such as diseases and vaccinations 

frequently occur. Therefore, it is unclear which of the proactive or reactive personalities would 

perform better in such settings. A greater understanding of how personality traits relate to welfare 

and production could inform on potential phenotypes to integrate into the breeding process for more 

robust farm animals [55,79,80,83]. Our repeatability estimates set a promising upper bound on the 

heritability of these behaviours and the behavioural syndromes highlight some potential constraints 

for selection. In conclusion, this study supports the use of tracking technology to assess behavioural 

traits and potentially breed more robust farm animals.  
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Abstract 

Keel bone fractures (KBF) are prevalent in commercial laying hens and are considered one of the 

greatest welfare concerns in the egg-production industry. While clear associations exist between KBF 

and animal mobility, suggesting that KBF impair mobility, the effect of mobility on KBF remains poorly 

understood. We combined data from three studies that scored the amount of the keel bone affected 

by fractures (KBF severity) and tracked hens’ transitions between different zones (tiers of the aviary 

and the wintergarden) of a multi-tier aviary the week prior to radiograph. Using data from the tracking 

systems, two movement and two space-use behaviours were extracted for each hen. These spatial 

behaviours were the vertical distance travelled, the mean number of zones crossed within one 

transition, the time spent in the top tier, and the unevenness of time spent across zones.  We used 

hierarchical Bayesian continuous time dynamic models to estimate how a change in a behaviour 

predicted a later change in KBF severity, and vice versa. The severity of KBF did not affect space-use 

behaviours, but it did alter movement behaviours. Specifically, increased KBF severity led to decreased 

vertical travelled distance and a tendency to cross more zones within one transition. In contrast, we 

found no evidence that movement or space-use behaviours may predict later change in the severity 

of KBF; however, similar efforts accounting for the location of fractures could unveil the potential 

influence of spatial behaviours in the formation and maintenance of KBF and increase our ability to 

mitigate their effects.  

 

Introduction 

Keel bone fractures (KBF) are recognized as one of the greatest welfare concerns in the egg production 

industry [20–22,24,25]. The concern for the welfare of animals with KBF has global implications, given 

their high prevalence across countries and commercial strains, averaging between 24% and 63% 

depending on the housing system [23]. Keel bone fractures may have a detrimental impact on both 

egg-production [28,120,121] and animal welfare, with strong evidence indicating that hens with KBF 

feel pain for at least several weeks [22,122] and show behavioural differences in highly motivated 

behaviours, including perching and nestbox use, which could indicate negative affective states 

[122,123]. Furthermore, increased KBF associated with impaired mobility, including reduced vertical 

locomotion [29], longer latency to fly from perches [27,28], and increased time spent on the aviary’s 

top tier [10], an area with vital resource and where hens may receive less agonistic behaviours than 

in lower tiers [200,217]. Impaired mobility in hens with KBF is possibly due to pain and physical 

impairment, as the keel is the site of muscle attachment [218] and involved in breathing [219,220].  
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Although there are clear associations between KBF and spatial behaviours, with evidence 

suggesting that KBF impair mobility [27,29], the effect of spatial behaviours on KBF remains poorly 

understood [126]. Previous literature generally suggested movement throughout cage-free housing 

as a potential causal factor for KBF, suggesting that collisions with the housing structures [3,30,31] 

and the complex design of the system [20,33] (including the height and presence of perches [3,32]) 

are contributory factors to KBF. However, recent pathological evidence suggested that collisions may 

not be responsible for the fractures located at the caudal tip of the bone, which account for the 

majority of KBF [126]. Instead, these fractures may be attributed to the internal pressure exerted 

during egg-laying [126,221]. Also, in a recent review the highest average prevalence of KBF was 

reported in single-tier systems (63%), not in the more complex aviary systems (38.3%), though the 

latter relied on palpation which probably underestimate the prevalence of KBF [222] (out of the 27 

observations only two did not rely on palpation and both observations were above 90%) [23]. Even if 

spatial behaviours were not causing new fractures, some behaviours may promote healing while 

others may exacerbate existing fractures (such as walking vs flying). Therefore, while the severity of 

KBF likely affect spatial behaviours, it is also possible that a change in spatial behaviours can predict a 

change in the severity of KBF. Yet, the two halves of this KBF-mobility dynamic are rarely studied in 

conjunction. 

 

Despite the limited understanding of the influence of spatial behaviours on KBF, modifications of 

housing to provide safer mode of locomotion have already been shown to reduce prevalence of KBF 

in cage-free systems. For instance, adding ramps in multi-tier aviaries to enable hens to move between 

the stacked areas by walking instead of jumping or flying, was shown to decrease incidence of falls, 

collisions, and KBF in laying hens [30,104]. Multi-tier aviaries are especially relevant when studying 

KBF, as they are increasingly prevalent in commercial production, and the complex design of the 

system could exacerbate both KBF prevalence [20,33] and their consequences. Indeed, impaired 

mobility in this type of housing could increase the risk of dehydration, emaciation, and floor eggs, as 

individuals may be unable to access all resources across the aviary [128], which may also explain why 

hens with fractures spent more time on the top tier [10], a tier with feed and water (in Switzerland). 

In 2019, Rufener et al. [10] provided the first evidence of an association between KBF and mobility in 

hens housed within multi-tier aviaries, however, whether differences in mobility precede KBF or if KBF 

altered the behaviour, remains to be determined. Thus, in order to address KBF more 

comprehensively, it is essential to better understand the KBF-mobility dynamics in these complex 

cage-free systems. 

 

In this study, we evaluated the potential bidirectional relationships between KBF and spatial 

behaviours of 376 commercial laying hens housed in a multi-tier aviary. To increase robustness and 
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sample size, we used two published datasets in addition to a new dataset that also scored the amount 

of the keel bone affected by fractures (KBF severity) at 3-11 time points per hen and monitored hens’ 

transitions between the aviary tiers during each week prior to radiograph. As spatial behaviours we 

extracted two movement and two space-use behaviours and estimated how a change in behaviour 

predicted a later change in KBF severity, and vice versa. Similar to Rufener et al. (2019) [10], we used 

the vertical travelled distance and the mean number of zone crossed within one transition as two 

movement behaviours, and the proportion of time spent on the top tier as a first space-use behaviour. 

Additionally, to account for the possibility that individuals may select locations other than the top tier 

to spend time over the day in response to KBF, and that the location may also vary across days, we 

also used a measure representing the evenness with which hens utilized the five zones over the day.  

 

We hypothesized that hens with increased KBF severity would reduce their activity and spend 

more time on higher tiers with vital resources. Therefore, we predicted that an increase in the severity 

of KBF would lead to a decrease in vertical travelled distance, greater time spent in the top tier, and a 

more uneven usage of the zones. Also, we hypothesized that more transitions between the aviary 

stacked tiers would lead to a higher number of landings and, consequently, increased occurrence of 

falls and collisions. Therefore, we predicted that increased vertical travelled distance and increased 

number of tiers crossed within one transition (indicating longer and potentially more hazardous 

landings) would lead to increased KBF severity. 

 

Materials and methods 

Study design 

We combined datasets from three experiments with similar spatial behaviours and score of KBF 

severity assessed repeatedly on individual hens (Gallus gallus domesticus) throughout the laying 

period. Dataset1 was published by Rufener et al. in 2019 [10] where they used an infrared tracking 

system. Dataset2 and Dataset3 collected location data using the same low frequency tracking system, 

which was validated and described in [173]). Dataset2 was collected for a previous study [223], while 

Dataset3 was collected for the current study. All hens were housed over different years but in the 

same laying barn containing an aviary system (Bolegg Terrace from Vencomatic, described in 

[30],separated into 20 pens by grids, pen indoor area: 7 m length, 2.3 m width, 2.69 m height until the 

top tier grid floor) and an outside covered winter garden (WG; 9.32 𝑚2, accessible by pop holes for 6h 

on most days). The barn is located at Aviforum facilities in Switzerland where standard animal 

husbandry practices are used. Hens were distributed among three pens for Dataset1 (pens 4-6) and 

eight pens for both Datasets2 and 3 (pens 3-5, pens 8-12). Stocking density was 8.1 hens per square-

meter of permanently accessible area (in each pen: 225 hens / 27.92 𝑚2). In each experiment, hens’ 
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movements were tracked continuously for approximately a week before being radiographed for 

detection of KBF.  

 

Movement data represented individuals’ transitions between any two of the five zones in the 

pen: the top and lower tiers (both containing feed, water, and perches), the nestbox tier (with 

nestboxes and a balcony), the littered floor, and the winter garden (containing litter and water). We 

extracted two daily movement and two daily space-use behaviours described below. We averaged 

each daily spatial behaviours over the week previous to radiograph collection to have one value for 

each hen per radiograph (number of days tracked before being radiographed in Dataset1: 5.80 ± 0.56, 

Dataset2: 5.5 ± 1.77, Dataset3: 6.55 ± 1.02). We excluded hens that only had fewer than three 

observations (74 hens from Dataset1, 6 hens from Dataset2, more details in supplementary materials 

Text S1) as the analysis focus on studying variation over time, including individual variation in trends 

over time (for each behaviour and the KBF severity, with random slope and intercept). In subsequent 

analysis, we had a total of 376 hens (Dataset1: 60 Lohmann Brown hens, Dataset2 and Dataset3: 153 

and 163 Dekalb White hens, respectively) with a total of 1,889 observations of the behaviour and 

corresponding KBF severity score (Dataset1: 593 with 10 ± 1.73 observations/hen; Dataset2: 658 with 

4 ± 0.76 obs./hen; Dataset3: 638 with 4 ± 0.28 obs./hen). The youngest and oldest hens were 148 and 

437 DOA respectively, at the time of being radiographed. The mean interval time between two 

consecutives observations on the same hen is 29.04 ±9.57 for Dataset1, 63.10 ±31.09 for Dataset2, 

and 72.81 ±10.33 for Dataset3. Datasets are further detailed in the supplementary Text S1. 

 

Ethical note 

The research was conducted in accordance with the cantonal and federal regulations for the ethical 

treatment of experimentally used animals. All procedures from the newly collected dataset were 

conducted in accordance with the cantonal and federal regulations for the ethical treatment of 

experimentally used animals, and all procedures were approved by the Bern Cantonal Veterinary 

Office (BE-57/21).  

 

Keel bone fractures 

The same radiograph procedure was performed in each experiment. On the first day after each 

tracking period, the hens were radiographed to detect fractures on the keel bone, using a mobile X-

ray unit previously described by Rufener et al [176]. The hens were hung upside down from a custom 

built shackle for approximately 15-30 seconds to induce immobility during the radiograph procedure. 

Based on the latero-lateral radiographs (examples in supplementary S1 Fig), a KBF score, hereafter 

referred to as KBF severity (continuous, 0-100) was assessed using a scoring methodology described 

by Rufener et al [176]. The score is described as an indicator of the total amount of keel bone affected 
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by any fracture. During assessment, the observers were blind to the hens’ age. The supporting 

information (S2 Table and S2 Fig) provide descriptive statistics of the KBF severity scores for each 

dataset. 

 

Movement behaviours 

Because the four indoor zones are stacked on top of each other, we used the total number of indoor 

zones crossed (per hour to account for different day length over experiments: 14.91 ± 0.85 h) as a 

measure of vertical movements and hereafter referred as “vertical travelled distance”. We used the 

mean number of zones (tiers of the aviary and the wintergarden) crossed per transition as defined by 

[10], hereafter referred as “mean-zone-crossed”. A mean-zone-crossed value equal to one means that 

the hen did not skip zones over the day, while values higher than one indicate the hen skipped zones 

while transitioning from one zone to another. Supplementary table S2 provide the mean and standard 

deviation of the movement behaviours for each dataset. We illustrated the two movement behaviours 

using four hen-days of the raw tracking data (i.e., transitions from one zone to another zone) chosen 

specifically to exemplify low/high vertical travelled distance and low/high mean-zone-crossed (Fig 1a). 

We illustrated the relationship between the two behaviours (Fig 1b) and showed descriptive statistics 

of the behaviours for each timestamp and dataset in chronological order (Fig 1c), where Dataset1 is 

represented in the lightest grey, Dataset2 in darker grey, and Dataset3 in middle grey.  

 

 

Fig 1. Illustration of the two movement behaviours. (a) Four days of the raw tracking data (transitions from one zone to 

another zone) chosen specifically to illustrate a low/high vertical travelled distance and low/high mean-zone-crossed 

(described by the title). (b) Scatter plot of the two behaviours with respect to each other, where overlapping data points are 

represented by darker shading. (c) Boxplots of the two behaviours for each timestamp and available dataset (Dataset1: 

lightest grey, Dataset2: darker grey, Dataset3: middle grey). 
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Space-use behaviours 

As space-use behaviours we used: 1) the proportion of the daily time spent on the top tier and 2) a 

score reflecting the evenness with which hens spent their daily time across zones to account for the 

possibility that individuals may select alternative locations to spend time in response to KBF and that 

the location may also vary across days. For unevenness, we contrasted the hens’ proportion of time 

spent in each zone (represented by a vector x where 𝑂𝑖 is the proportion of time spent in zone i) to 

what would be expected from an equal usage of all surface area (𝐸𝑖). Thus, we accounted for uneven 

daily usage of the five zones, defined by: 

𝑢𝑛𝑒𝑣𝑒𝑛𝑛𝑒𝑠𝑠(𝑥) =
1

5
∑

|𝐸𝑖−𝑂𝑖|

𝐸𝑖

5

𝑖=1
, 

where 𝐸𝑖  is equal to the surface area (𝑚2) of zone i normalized by the proportion of hours available 

to access that zone during the day (i.e., WG: 0.11, littered floor: 0.48, lower tier: 0.17, nestbox tier: 

0.11, and top tier 0.13; detailed in the supplementary table S1). Supplementary table S2 provide the 

mean and standard deviation of the space-use behaviours for each dataset. We illustrated the two 

space-use behaviours providing 100 random examples of the proportion of time spent in each zone 

that corresponds to a low and high unevenness (darker colours represent greater proportion of time) 

in Fig 2a. The relationship between the two behaviours shows that hens with a high daily unevenness 

score, typically spent most of the day on the top tier (Fig 2b). However, we can also observe that some 

hens with relatively high unevenness scores have spent the majority of the day on the lower tier 

without visiting the top tier (Fig 1a). Given that the top and lower tiers are the only two tiers equipped 

with feed and water, these observations are not surprising but underscore the distinctiveness of the 

two space-use behaviours. We also present the descriptive statistics of the behaviours for each 

timestamp and dataset in chronological order, with Dataset1 represented in the lightest grey, 

Dataset2 in darker grey, and Dataset3 in middle grey (Fig 2c).  

 

Fig 2. Illustration of the two space-use behaviours. (a) Examples of the daily proportion of time spent in each zone (darker 

colours for higher values) sorted by the associated daily unevenness (b) Scatter plot of the two behaviours with respect to 
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each other, where overlapping data points are represented by darker shading. (c) Boxplots of the two behaviours for each 

timestamp and dataset (Dataset1: lightest grey, Dataset2: darker grey, Dataset3: middle grey). 

 

Statistics 

We used hierarchical Bayesian continuous time dynamic models to estimate how a change in the two 

movement and the two space-use behaviours predicted a later change in KBF severity, and vice versa. 

More specifically, we fitted four latent dynamic models using one hierarchical Bayesian continuous 

time dynamic model [224] per spatial behaviour with the “ctsem” R package [225]. Because it is 

expected that KBF increases with age [21,23,226] and it is possible that spatial behaviour also changes 

with age, we included smooth trends in the processes (varying by hen) to limit confounding effect of 

age on our estimated dynamics. Therefore, for each model we estimated a trend and a dynamic 

fluctuation for each of the two processes, the KBF and the spatial behaviour. The trends included 

random initial intercepts and random slopes (varying by hen), as well as an estimated auto-effect term 

that varied by process. Specification of such multivariate latent process models (estimating the 

dynamics between two processes around their respective trends, referred in the result section as 

"dynKBF" for the KBF and "dyn*" for spatial behaviors, with "*" representing a spatial behavior 

acronym given in the results section) are described by Driver and Tomasik (2022) [227] and we give a 

more detailed explanation in the supplementary Text S2. Temporal effects are contained in a drift 

matrix, where the cross- (off-diagonal) and auto- (diagonal) effects can be interpreted similarly: a 

positive or negative effect indicates that higher values of the causal process led to rises or drops in the 

caused process. Therefore, the continuous-time auto-effect are expected to be negative, and more 

negative effects indicate a stronger force pushing the deviations back to baseline, implying that 

changes away from the baseline dissipate faster and the process more frequently crosses its baseline. 

To understand these results more intuitively, we extracted the expected auto- and cross-regression 

effects over time (discrete time parameters) to have an estimate of the temporal effect of the KBF 

severity on each spatial behaviour (and vice-versa) for specific time intervals. More specifically, while 

continuous-time temporal effects describe how the process is changing at the moment, discrete-time 

cross-regressions for a time interval of k represent the effect of one variable at earlier time 𝑡 − 𝑘 on 

another variable at later time 𝑡. We created an empty observation row for every hen at the age of our 

earliest observation and set observed variables to NA when no observation was available, so that 

trends over time reflect trends over hens’ age. We scaled and centred the outcome variables and kept 

the default priors. For inference, we used a form of penalized likelihood, that is the maximum a 

posteriori estimation approach of ctsem [228]. We controlled for the two treatments and the data 

source identity by allowing the trend to vary based on these predictors. We used as treatment 

reference group hens that hatched with the standard hatchery practices (TRAN) and were not 

relocated in new housings during production. We used as data source reference group the Dataset2 

as these hens came from a single-strain commercial flock (contrary to Dataset1) and movements were 
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tracked with higher precision than Dataset3. To measure the MZC behaviour accurately, the tracking 

system should be accurately registering all transitions, even when the duration of stay in a zone is of 

few seconds only. For instance, the tracking system should be capable of differentiating between a 

hen moving directly from the top tier to the litter floor and a hen that uses the intermediate zones for 

only a few seconds. Therefore, we could fit the model with the MZC behaviour only using the already 

published dataset by Rufener et al. (2019) [10], that is Dataset1. Dataset2 and Dataset3 relied on 

another tracking system of lesser precision, and would require further validation to use behaviour 

with this level of precision. We verified normality of the observation residuals and plotted them 

against the time, the two observed variables, the predictors, and the predicted values of the six latent 

processes (called “etaprior” in ctsem). Unless otherwise specified, we reported estimates with 95% 

credible intervals, and deem estimates significant when the credible interval does not include zero. 

Results 

Movement behaviours 

To improve readability, in this section we will refer to the vertical travelled distance as “VTD” and the 

mean-zone-crossed as “MZC”. Model estimates are given in the supplementary documents (VTD- and 

MZC- ctSummary_tex_fit and ctSummary_summary). We found a negative continuous-time drift 

cross-effect estimate of the KBF on the VTD (β [95% CI] = -0.19 [-0.36, -0.03]), meaning that a change 

in KBF lead to a change in the opposite direction of the VTD. More precisely, we found that if the 

standardized KBF severity increased by one, this will cause a drop in the slope of the standardized VTD 

by 0.19. The continuous-time drift cross-effect estimate of the KBF dynamics on the MZC dynamics 

was not statistically significant but tended to be positive (β [95% CI] = 0.33 [-0.03, 0.70], [90% CI] = 

[0.05, 0.64]), so a change in KBF tended to lead to a change in the same direction of the MZC. That is, 

if the severity of the standardized KBF increased by one, this will tend to cause a rise in the slope of 

the standardized MZC by 0.33, corresponding to a rise in the slope of the original MZC by 0.02 (= 0.33 

* 0.07, where 0.07 is the SD of the original MZC). In contrast, we found that changes in either 

movement behaviours had no effect on subsequent level of the KBF severity (estimates of the two 

movement behaviour dynamics on the KBF dynamics are relatively close to zero (VTD: -0.07 [-0.18, 

0.03], MZC: 0.07 [-0.12, 0.25]). In summary, the cross-effect estimates indicated that an increase in 

KBF severity led to a decrease in vertical travelled distance and tended to be followed by more tiers 

crossed within a transition (i.e., MZC), but that a change in these movement behaviours did not predict 

subsequent level of KBF severity. 

 

To understand these cross-effects more intuitively we looked at the discrete-time drift cross-

effects, showing how a change in the KBF severity predicts changes in the spatial behaviours after 

specific time intervals (Fig 3a-b) and vice-versa (Fig 3c-d). For instance, if the standardized KBF severity 
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increased by one, this predicts a drop in the standardized VTD by 0.17 two months later (Fig 3a; blue 

line value at x = 2). In other words, we show that if the KBF severity increased by 1 standard deviation, 

this predicts a decrease in the VTD by 0.3 (= 0.17 * 1.79, where 1.79 is the standard deviation of VTD 

from supplementary Table S2) two months later. Because VTD was defined as the vertical travelled 

distance per hour, this decrease in VTD is equivalent to a decrease of 4.5 transitions over the lighted 

period of a typical day (i.e., 15 hours with natural and/or artificial light).  We found that the expected 

effect of KBF severity on the VTD is greatest after approximately 3 months (e.g., Fig 3a, where the blue 

line is at its trough). It is worth mentioning that this result does not imply that any relation between 

the two is changing over time, but instead describes patterns of change accumulation over that time 

interval (Fig 3a), which can be explained by the result showing that changes in KBF and VTD are 

persistent in time (red lines of the Fig 3a-b for the KBF, and blue line of Fig 3c for the VTD). The discrete-

time auto-effects of the MZC dynamic process indicate that unpredictable fluctuations in the MZC are 

expected to remain for a briefer period than those of KBF and of VTD, implying that the MZC dynamic 

process had the least predictive power on itself (Fig 3d blue line). In other words, the steepness of the 

blue line in Fig 3d suggests that the change in MZC (outside that predicted from aging) are relatively 

rapid and thus may not predict MZC at some future time point. 

  

Fig 3 – Discrete-time cross-effect dynamics between the two latent processes implied by the two movement behaviour 

models for specific time interval (VTD: a) and c) ; MZC: for b) and d)). The mean coefficient estimates for each lag are 

represented by the solid line and the 95% credible intervals with the most external dashed lines, so that if the value zero is 
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not included in between these dashed lines the effect is significant. We also included the 90% credible intervals represented 

by the coloured area, to evaluate tendency (when value zero is not included in the dashed area).  

 

Furthermore, the random disturbances influencing the KBF and the VTD dynamics processes 

are close to zero (0.03 [-0.06, 0.13], given in the diffusion matrices from the ctSummary_tex_fit 

documents), suggesting that KBF severity and VTD do not share unmeasured common causes that vary 

with time. A similar result applies for the MZC behaviour (-0.01 [-0.09, 0.07]).  

 

With regard to the trend of each variable over time, we found that the VTD was diminishing 

for the first ~3-4 months at which point the magnitude stabilized, that the MZC followed a similar 

trend in the opposite direction (augmenting over time), and that the KBF increased through time until 

the end of the production period but at a slightly reduced speed over time (Supplementary S3 Fig). 

The KBF severity trend had a substantially larger range (start until end points of the trend) than the 

two behavioural trends, indicative of a stronger age, or time, effect (Supplementary S3 Fig). 

 

Because we specified random intercept and slopes at the individual level, interpreting their 

correlation can also help to understand the nature of a behaviour - KBF association. Hens crossing on 

average more zones per transitions had overall more severe KBF (MZC and the KBF severity continuous 

intercept processes correlation: 0.47 [0.15, 0.71]), supporting the idea that KBF is positively associated 

with MZC. We found no such correlation between VTD and KBF (-0.05 [-0.36, 0.26]). In support of the 

notion that the two movement behaviours are not affecting the severity of KBF, we found that neither 

the initial state of the VTD trend nor the initial state of the MZC trend were significantly correlated to 

the KBF continuous intercept (VTD: 0.33 [-0.12, 0.66], MZC: -0.33 [-0.79, 0.36]). However, if the effect 

from the VTD behaviour was significant, it would mean that higher initial level of VTD associates with 

overall more severe KBF. The initial states of the two behaviour trend processes were not correlated 

to the initial state of the KBF trend process. 

 

Space-use behaviours 

To improve readability, in this section we will refer to the proportion of time spent on the top tier as 

“PropZ5”.  The model estimates are given in the supplementary documents (PropZ5- and Unevenness- 

ctSummary_tex_fit and ctSummary_summary). Results from the continuous-time drift cross-effect 

estimates of the KBF on the behaviours and vice-versa were all close to 0 (KBF on PropZ5: 0.06 [-0.09, 

0.19], KBF on Unevenness: 0.05 [-0.10, 0.20], PropZ5 on KBF: -0.01 [-0.12, 0.11], Unevenness on KBF: 

-0.07 [-0.17, 0.03]). These results suggest that changes in space-use behaviours had no effect on the 

subsequent level of KBF severity and that changes in the KBF severity also had no effect on the 

subsequent space-use behaviours. These results are illustrated by the discrete-time drift effects, as 

for the movement behaviours, in Fig 4.  
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Fig 4 – Discrete-time cross-effect dynamics between the two latent processes implied by the two space-use behaviour models 

for specific time interval (PropZ5: a) and c) ; Uneveness: for b) and d)). The mean coefficient estimates for each lag are 

represented by the solid line and the 95% credible intervals with the most external dashed lines, so that if the value zero is 

not included in between these dashed lines the effect is significant. We also included the 90% credible intervals represented 

by the coloured area, to evaluate tendency (when value zero is not included in the dashed area).  

 

Furthermore, the random disturbances influencing the PropZ5 and the KBF dynamics 

processes were close to zero (PropZ5: 0.00 [-0.08, 0.09]) and suggest that KBF severity and the PropZ5 

behaviour did not share unmeasured common causes that vary with time. A similar result applies for 

the unevenness behaviour (0.03 [-0.04, 0.11])  

 

With regard to the trend over time of each process suggested by the models, we found that 

the proportion of time spent on the top tier was increasing for the first ~3 months at which point the 

magnitude stabilized, and that the unevenness was diminishing for the first ~4 months at which point 

the magnitude stabilized (Supplementary Fig S3). The proportion of time spent on the top tier had a 

substantially larger range (start until end points of the trend) than the unevenness trend, indicative of 

a stronger age, or time, effect (Supplementary Fig S3). 
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There were two significant random effect correlations. First, the proportion of time spent on 

the top tier and the KBF severity continuous intercept processes were positively correlated (0.27 [0.07, 

0.46]), indicating that hens that spent overall more time on the top tier had overall more severe KBF, 

supporting the general idea that KBF is positively associated with the time spent on the tier. Second, 

the unevenness behaviour and the KBF severity continuous intercept processes were positively 

correlated (0.31 [0.08, 0.51]), indicating that hens with a higher unevenness asymptote (suggesting an 

overall more uneven usage of the zones compared to what would be expected by chance) had a higher 

KBF slope, supporting the idea that KBF is positively associated with unevenness. 

 

Discussion  

The primary objective of this study was to gain insights into whether the severity of KBF may be 

affected by specific spatial behaviours and whether such fractures may, in turn, alter these behaviours. 

We believe this study is the first to explore both halves of this potential state-behaviour feedback loop 

within a single analysis framework. We found that an increase in the severity of KBF altered movement 

but not space-use behaviours. Specifically, an increase in KBF severity led to a decrease in vertical 

travelled distance and tended to be followed by a higher average number of zone crossed within a 

single transition. In contrast, we found no evidence that spatial behaviours affected the severity of 

KBF.  

 

The decreased vertical travelled distance after an increase in the severity of KBF support our 

hypothesis that KBF reduce hens’ activity. This result could be explained by the potential mechanical 

impairments in flying and walking and the perception of pain [22,24,122] resulting from such fractures. 

Hens experiencing pain may be less active to facilitate the healing process or to minimize associated 

pain. While a previous study already reported decreased vertical movements in hens with open 

fractures [29], Rufener et al. [10] did not find such an association. This lack of an association is likely 

due to a small sample size, as our study, which includes the data from Rufener et al. [10], did find an 

association. It is important to note that, holding all else equal, if an increase in the severity of KBF 

leads to a decreased vertical travelled distance, then those with more severe KBF will have a lower 

vertical travelled distance. However, due to the long-term consistent differences in spatial behaviours 

observed among hens [9,213,229], hens are not all equal in behavioural expression, and therefore we 

cannot conclude from that result that hens with higher KBF also on average exhibited lower vertical 

travelled distance. Instead, this result suggests that KBF induced behavioural change. 

 

Apart from shedding light on the bidirectional relationships of the KBF severity score and 

animal mobility, these models also provide insights into these effects over time, which allows 
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comparing these temporal effects across studies that used different time intervals between 

measurements. Here, we found that the expected effect of an increase in KBF on the vertical travelled 

distance to be greatest approximately three months after the change in KBF. In other words, a change 

in KBF was most predictive of a change in vertical travelled distance approximately 3 months later. 

The reason for this long-term effect is that changes in both KBF and behaviour were persistent in time. 

In other words, if the behaviour or the severity of KBF changes, we expect it to stay changed. A possible 

explanation for these enduring changes in the behaviour may be provided by the long-term individual 

consistency highlighted by previous studies in similar behaviours [213,229]. The enduring changes in 

the severity of KBF, may be attributed to the long-lasting feeling of pain, likely lasting for at least a few 

weeks [22,122], and healing process, which can require several months to complete [21].  

 

We also found that an increase in the severity of KBF tended to be followed by more zones 

crossed within a transition, providing further evidence of altered vertical locomotion due to fractures. 

By using the same dataset as in Rufener et al. [10], this result reproduced the positive association 

previously found by that study. Additionally, the results provide insights into the causality between 

KBF and vertical locomotion, indicating that a change in the severity of KBF predicted a later change 

in the behaviour, but not vice versa, in opposition to our prediction. As tiers are not connected by 

ramps in our multi-tier aviary system, hens must transition between tiers by jumping or flying. 

Therefore, this result could suggest that hens with fractures attempt to minimize unnecessary stops 

between tiers, or, reduce the frequency of take-offs and/or landings. For instance, a hen at the top 

tier that was motivated to access the litter could make a direct transition without stopping at 

intermediate tiers. Prior research has showed that hens with fractures take a longer time to fly down 

from raised perches [27,28], which could indicate an increased reluctance toward take-offs and/or 

landings due to heightened pain during these movements. Alternatively, hens with fractures may be 

physically impaired, given that the keel is the site of muscle attachment [218] and involved in 

breathing [219,220], which could hinder their ability to stop in specific tiers.   

 

The reduced vertical movements and increased mean number of zones crossed within a 

transition in hens with more severe KBF together indicate that hens may have difficulty in transitioning 

between the tiers in this multi-tier aviary system. Yet, to access all resources within our aviary, hens 

must move vertically, as resources are distributed throughout several tiers reaching up to 3 meters in 

height. Therefore, installation of structures facilitating transitions between stacked tiers, such as 

ramps [30,104], could reduce the prevalence of KBF and support hens to cope with fractures by 

ensuring improved access to all resources within the aviary. Future research could compare 

movement of recently fractured hens in multi-tier aviaries equipped with ramps versus those without 

ramps to assess whether ramps indeed facilitate the healing process of KBF.  
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In addition to reduced activity, we predicted that an increase in KBF would alter space-use 

behaviours. We expected this due to social and resource-related motivations that would lead hens to 

spend more time in the top tier where they would experience fewer agonistic interactions and have 

access to vital resources [200,217]. Results from the random effect correlations suggest that hens with 

overall more severe KBF used the zones more unevenly and spent more time on the top tier (during 

the day). The latter result supports the idea that KBF is positively associated with time spent on the 

top tier, as found by previous literature [10]. However, results from the temporal effects did not 

provide insights into whether KBF altered space-use behaviours, as we predicted, or whether space-

use behaviours affected the severity of KBF. To gain a deeper understanding of the intricate 

relationships between KBF and space-use behaviors, future research should assess within-individual 

dynamics rather than relying on the effects at the population-level. That is, examining within-

individual temporal effects could help determine whether several types of dynamics were at play, 

which could explain why we found no discernible population-level effects. For example, it is possible 

that some hens spent more time in the top tier due to increased severity of KBF, while others initially 

spent more time in the top tier for reasons other than KBF, which led to more severe KBF.  

 

The absence of altered space-use behaviours in response to KBF may reflect different coping 

strategies among hens, which may stem from a variety of factors, including spatial preferences and 

dominance ranking. To investigate the role of individuality in response to KBF, future research relying 

on more observations per hen and ideally with reduced time intervals between consecutive 

observations could estimate within-individual dynamics between behaviours and KBF. For instance, 

using similar models than used in the present study, one could allow for individual variation in the 

temporal effect parameters [230]. Due to the limited number of observations per hen, we were unable 

to estimate within-individual dynamics. More data would also allow to control for additional factors 

that could influence the effect, such as the hybrid and flock, which we could not account for in our 

study. 

 

In contrast to our result suggesting that KBF altered spatial behaviours, we found no evidence 

that spatial behaviours altered the severity of KBF. Specifically, we found no evidence that a change 

in these behaviours led to a change in the severity of KBF and no evidence that the initial level of the 

behaviours was related to the rate of change in the severity of KBF (from the random effects 

correlations). These result align with recent pathological evidence suggesting that collisions with 

infrastructure may not be responsible for the fractures located at the caudal tip of the bone, 

accounting for the majority of KBF. Instead, KBF may be attributed to the internal pressure exerted 

during egg-laying [126,221].  
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These results suggest that movement behaviours in multi-tier aviaries may not cause or 

exacerbate the severity of KBF. Yet, our movement behaviours likely relate to the amount (i.e., vertical 

travelled distance) and height (i.e., mean-zone-crossed per transition) of jumps/flights for which 

previous literature showed a considerable percentage of failed landings (9-21%) [231] that could result 

in KBF [3,30,31]. However, if KBF caused by collisions during failed landings manifest immediately after 

impact rather than developing gradually (e.g., micro-fractures which would gradually weaken the 

overall structural integrity of the bone), our methods could not have detected it. In that scenario, to 

determine if the observed behaviours may cause fractures, future research with smaller time intervals 

between consecutive observations of KBF is needed. Furthermore, we did not account for the location 

of the fractures, which could have hidden the potential influence of spatial behaviours in the 

development of fractures that are not located at the tip of the bone. 

 

To further assess whether spatial behaviour may contribute to the maintenance and/or 

formation of KBF, other behaviours could be examined. For example, by studying the number of failed 

landings we could assess whether these landings can exacerbate KBF as generally thought, and 

whether KBF, in turn, can increase the risk of failing to land properly, resulting in an undesirable, 

positive feedback loop. The hypothesis on the second half of this feedback was stimulated by the trend 

we found indicating that an increase in the severity of KBF increased the likelihood of crossing multiple 

zones within one transition and potentially more hazardous landings. Furthermore, considering the 

possibility that fractures at the caudal tip of the bone may not be caused by collisions but by other 

processes such as egg-laying [221], future efforts should distinguish fractures from the cranial and the 

caudal bone surface. 

 

With the advancements in sensor technology providing longitudinal data on welfare indicators 

and behaviour, we can now delve into their dynamics within commercially relevant settings. For 

example, by using continuous time dynamic models, instead of the common multivariate linear 

models, we can express the response variable of one regression equation as a predictor in another 

equation and thereby assess the mutual influence of the two variables within a single model. In future 

research, this approach could be applied to a wide range of variables extending beyond the current 

study's scope, including heart rate, body mass, and indicators of affective states, as well as other 

behaviours, including those related to social interactions, comfort, and feeding activities. By more 

comprehensively accounting for the existing relationships between various variables, we may better 

understand the long-term consequences of initial behavioural variation on animal welfare.  
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Abstract 

The commercial hatchery process is globally standardized and exposes billions of day-old layer chicks 

to stress every year. By alleviating this early stress, on-farm hatching is thought to improve animal 

welfare, yet little is known about its effects throughout production. This study compared the welfare 

and spatial behaviours during the laying period of hens hatched in an on-farm environment (OFH) to 

those hatched in a commercial hatchery and transferred at one day-old to a rearing barn (STAN). 

Specifically, we assessed how the transfer to the laying barn at 17 weeks of age, a similar stressor 

encountered by STAN hens early in life, affected space use and health, and determined whether 

effects aligned more with the 'silver-spoon' or 'environmental matching' hypothesis. We found that 

for the first three months post-transfer into the laying barn, OFH hens, on average, transitioned less 

between the aviary’s tiers and spent less time on the littered floor. Because OFH hens became 

behaviourally more similar to STAN hens over time, these results suggest that OFH hens required a 

prolonged period to establish their daily behavioural patterns. Furthermore, OFH hens had more 

severe keel bone fractures throughout the laying period but similar feather damage and body mass to 

STAN hens. No differences were found in hen mortality or the number of eggs per live hen. These 

findings support the environmental matching hypothesis and suggest that early-life stressors may 

have prepared hens for later-life stressors, underscoring the importance of both early-life and adult 

environments in enhancing animal welfare throughout production. 

 

Introduction 

Every year, billions [37] of day-old layer chicks are exposed to stress [232] because of the globally 

standardized commercial hatchery process [34]. Chicks in hatcheries, are subjected to loud noise 

during incubation (~90dB), hatched in darkness, prevented from accessing feed, water, or litter, and 

subjected to sexing, vaccination, and transportation to rearing farms at one day of age [232]. The early 

exposure to stressors can be alleviated by hatching chicks on farm, where chicks are transported 

before hatching and have direct access to feed, water and litter.  

 

Exposure to less stressful environmental conditions during development may have a positive 

impact on various aspects of individual fitness later on, a phenomenon called “silver-spoon” effect 

[233] (for a review on birds and mammals, see [5]). The silver-spoon hypothesis suggests that 

individuals who experience relatively better environmental conditions during development, such as 

characterized by reduced stressors or abundant nutritional availability, may be able to cope better 

when confronted with adversity later in life. Accordingly, it is not surprising that on-farm hatching has 

been shown to improve the well-being of broilers and laying hens later in life, in particular throughout 
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development. Specifically, this practice has been shown to reduce total mortality [234] and footpad 

dermatitis [235,236] of broilers, and increase body mass [34,237,238] and reduce feather damage, 

comb injuries, and corticosterone reactivity during restraint [232] of laying hens. 

 

 Alternatively, by experiencing adverse environments during development, one may be 

prepared or adapted to handle similar adversities in the future. The “environmental matching” 

hypothesis suggests that environmental conditions in early life shape an individual phenotype via 

developmental plasticity [47], so that an individual is adapted to similar environmental conditions 

experienced earlier in life [239,240]. Therefore, chicks that hatched in a commercial hatchery and 

subsequently transported on farm could have a phenotype more adapted to aversive environments, 

such as transportation to a new environment, than chicks hatched on-farm. Thus, the benefit of a less 

aversive early life environment would depend on the environmental conditions experienced later in 

life [239–241]. However, studies evaluating the effect of the commercial hatchery process on adult 

laying hens in commercial settings are scarce, limiting our understanding of their long-term effects on 

hen welfare. The limited understanding is especially true for health issues that predominantly arise 

during adulthood or may worsen as hens age, such as feather damage [242,243] or keel bone fractures 

(KBF) [21,23]. Thus, a long-term approach is necessary to understand whether on-farm hatching 

improves hen welfare throughout production, or whether its relative benefits are eventually offset by 

later stressors that they are unable to manage. 

 

In this study, we compared the severity of KBF, feather damage, body mass and spatial 

behaviours of laying hens hatched on-farm (OFH) to those hatched in a commercial hatchery and 

transferred at one day of age to the farm (STAN). Our goal was to determine if, and for how long, these 

two different environments experienced at one day of age could account for variations in animal 

welfare and behaviour during the laying period. We assessed how the transfer from the rearing to the 

laying barn, a similar stressor encountered by day-old STAN chicks, affected space-use and movement 

behaviours, as well as welfare indicators. We aimed to determine whether the observed effects 

aligned more with the 'silver-spoon' or 'environmental matching' hypothesis. The former hypothesis 

would be supported if OFH hens would display overall greater welfare compared to STAN hens, while 

the latter hypothesis would be supported if OFH would display overall worse welfare conditions. 

Better welfare could be here manifested via less severe KBF, reduced feather damage, and greater 

time spent in the littered floor and the winter garden. These areas provide enhanced opportunities 

for the expression of natural behaviours such as locomotion, exploring, foraging, scratching, and dust 

bathing, which are important for laying hen welfare [244,245].  
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Materials and methods 

Ethical note 

The research was conducted in accordance with the cantonal and federal regulations for the ethical 

treatment of experimentally used animals. All procedures were approved by the Bern Cantonal 

Veterinary Office (BE-45/20). 

 

Study design 

All Dekalb white chicks (Gallus gallus domesticus) originated from the same parent flock and began 

incubation off-site using standard hatchery practices. At 18 days of development, three days before 

hatching, 3,300 eggs were arbitrarily chosen as part of the on-farm hatch (OFH) treatment and all 

except 270 clear eggs transported to a commercial rearing barn at the Aviforum facilities in 

Switzerland. The eggs were transported in a commercial vehicle for less than 1.5 hours, which 

maintained a stable environmental temperature at an average of 36.4 °C. Eggs were positioned in 

HatchTech Setter Trays 15 cm above the littered floor, where feed, water, and litter were available. 

We monitored environmental conditions and temperature of 30 eggs every six hours throughout the 

hatching process. Specifically, we ensured that the ambient relative humidity remained above 30%, 

the windspeed below 0.15 m/s, ambient temperature above 32°C, and the eggshells temperature 

between 35-38 °C (see supplementary S1 Fig for eggshell temperature over time). Our methodology 

is similar to a previous study conducted on layer chicks [238]. 

 

At one day of age (DOA), OFH chicks were manually sexed by examining their wing feathers 

for sex-specific patterns and females were vaccinated (IB 4/91). On the same day, 1,200 chicks from 

the commercial hatchery were transported to the rearing barn as part of the STAN treatment. 

Transportation took place in a commercial vehicle over a duration of eight hours, during which a 

consistent environmental temperature around 28 °C was maintained. Unlike the OFH chicks, STAN 

chicks - in addition to being transported to new housing - hatched in darkness and were deprived 

direct access to food, water, or litter after hatching until arrival at the rearing barn. Similar to OFH 

chicks, STAN chicks were vaccinated and manually sexed by examining their wing feathers for sex-

specific patterns at the hatchery facility. Although both OFH and TRAN chicks were manually sexed by 

the same company managing the post-hatch procedures (Prodavi SA, CH), we supervised the sorting 

of OFH chicks and encouraged the sexers to proceed gently, however no objective comparison was 

made of the handling procedures between treatment groups. STAN chicks were used to populate two 

rearing pens and OFH chicks were used to populate the other two pens (600 hens/pen). Males and 

surplus females were returned to the hatchery for humane disposal. At seven DOA all chicks were 

classified into a more/less explorer class. We did not use the class as an exploratory behaviour as the 
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measurement could not be validated (Supplementary Text 1 from chapter III), though we controlled 

for the class in subsequent analysis. Simultaneously, 160 focal birds (40 hens/rearing pen) were 

selected from the 2’400 chicks. Of the 160 focal birds, 80 focal birds were classified as MEXP or LEXP 

(40 / class), while 80 were selected as a representative sample and used for another study that 

collected brain tissues throughout the laying period.  

 

At 119 DOA, all hens were caught, put into a crate, and transported to one of eight laying pens 

on the same site (225 hens/pens, including 20 focal hens, four pens/treatment). Bird density was 8.1 

hens per square-meter of permanent accessible area (225 hens/27.92 𝑚2). The laying barn contained 

a quasi-commercial multi-tier aviary system (Bolegg Terrace separated into 20 pens by grids illustrated 

in Supplementary S2 Fig; indoor length x width x height until the top tier grid floor:  7 x 2.3 x 2.69 m; 

previously described [30]) and an outside covered winter garden (WG ; 9.32 𝑚2) accessible by pop 

holes from 10:00 h to 16:00 h on most days. On the day of transfer to the laying barn the 160 focal 

hens were assigned a tracking device to continuously register their transitions across the indoor aviary 

levels and the winter garden (WG) until near the end of production (tracking period: September 2020 

– July 2021). At five time points during the laying period (DOA: 127, 173, 243, 313, and 418), 16 

randomly selected focal hens were killed (eight hens/treatment) to collect brain tissues as part of a 

separate study. Each of these time points also included welfare assessment (described in the below 

section), except for DOA 127, which was replaced by DOA 215 to capture more variation in animal 

welfare. For each hen killed, another hen from the same pen was arbitrarily selected to continuously 

track the same number of hens, for a total of 227 hens used in the study.  

 

Welfare indicators 

Welfare assessment included feather damage, radiographs for KBF, and body mass (digital scale in 

grams). During the welfare assessment, the observers were blinded to the treatment, laying pen 

identity, and hen class, and shown reliable in a previous effort for both feather damage and KBF 

severity scores [213]. The feather damage score (continuous, 0-100) was assigned using the 

photographs of white laying hens which we rescaled to 0-100 and took the complement to 100 so that 

higher scores are indicative of poorer welfare (score 1: approx. 100 – 76 depending on the extent of 

damage; score 2: approx. 75 – 51 ; etc.) for each body part [128]. More precisely, we assigned a score 

of the breast, tail, and neck, but not the back and wing feathers as these could not be reliably assessed 

because of the backpack containing the tracking tag (described below). We then averaged these to 

get an overall individual feather damage score. We assessed KBF severity (continuous, 0-100) based 

on the latero-lateral radiographs using the scoring methodology described by Rufener et al. [176], 

where the score is described as an indicator of the total amount of keel bone affected by fractures. 
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We excluded the first timepoint of KBF severity and feather damage, as there was little variation, with 

both having a median score of zero. 

 

Spatial behaviours 

We tracked individuals’ transitions across five zones: the four different levels of the aviary (top tier, 

nestbox tier, lower tier, and littered floor) and the outside covered WG. We used a low-frequency 

tracking system with active tags (mass: 28.1 g) enclosed in a backpack mounted on the back of the 

hens (see Montalcini et al. (2022) [173] for the validation and description). Tracking data were 

collected from the first full day in the laying barn (DOA 119) until near the end of production (DOA 

416). We excluded days with known disturbances (e.g., vaccinations or welfare assessments) and 

those with known tracking system malfunctions (e.g., low battery level). Subsequent analysis involved 

a period of 297 days of tracking, during which hens had on average 169 days tracked, with a minimum 

of three days tracked and a maximum of 250 days, involving a total of 227 hens and 38,303 hen-days 

observations.  

 

We characterized the daily movement and space-use behaviours of each hen with six 

behaviours expressed while artificial light was provided. We used the (i) vertical travelled distance, 

defined as the total number of indoor tiers crossed, to account for the level of vertical movement. We 

used the proportion of the indoor time spent on the (ii) top tier, (iii) nestbox tier, and (iv) littered floor 

to account for indoor space-use behaviours, and (v) WG presence (yes/no) to account for the outdoor 

space-use behaviour. Finally, because the nestbox tier is of particular interest within commercial 

settings, we also used the (vi) time when a hen reached half of its nestbox tier duration, accounting 

only for hours where hens are expected to lay, that is between 02:00h and 08:00h, hereafter referred 

to as the nestbox tier timing.  

 

Production traits 

The female hatchability, i.e., the percentage of healthy female hatched, was 40% in the hatchery and 

42.6% on-farm within a hatching window duration of 65 hours (for the on-farm chicks, see 

supplementary S1 Table for the hatching rate over time), was comparable to previously reported OFH 

results [238]. During the rearing period, there was a total of 11 deaths for each treatment (i.e., < 1%). 

We analyse production traits after the transfer to the laying barn, as hens had not laid eggs prior to 

that point. First, we used the number of early deaths per day in each pen during the laying phase. This 

dataset is right censored where the value 1 represents death, and 0 indicates being alive. Second, we 

used the hen daily average (average number of nest eggs per live hen) in each pen. Throughout the 

laying period, eggs laid inside the nestboxes were collected consistently at the same time every day 

and counted at the pen-level. We did not include floor eggs in our analysis as they represent 
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approximately 0.24% of total eggs laid. In addition to the four pens per treatment group (STAN and 

OFH) with focal birds, we also used the data of two additional pens without focal hens but containing 

205 birds from one treatment group with an additional 20 Lohmann LSL hens that hatched in the 

hatchery (called “special pens”).  

 

Statistics  

Welfare indicators 

Statistical analyses were conducted in R version 3.6.1. To evaluate treatment effects on hen’s welfare 

indicators, we fitted one linear mixed-effect model from the ‘lme4’ package per welfare indicator 

(body mass, KBF severity, and feather damage) as a function of date (or health assessment identity), 

treatment, and date-treatment interaction. We controlled for class and included hen identity nested 

in pen identity as a random term. Pen identity was removed when fitting the KBF severity and body 

mass due to low variance leading to convergence issues. We scaled body mass to be within 0-1 within 

each welfare assessment separately prior to the model fit. Model assumptions were checked visually 

(normality and homoscedasticity of residuals). To assess significance of the date-treatment 

interaction, we compared each model with a model that did not contain the interaction variable using 

the function Anova from R. When the date-treatment interaction was significant (p < 0.05), we 

reported results from a post-hoc analysis with adjusted p-values (Bonferroni adjustment, package 

“emmeans”). When the date-treatment interaction was not significant, we removed it from the model 

and assessed significance of the treatment as a main effect by comparing the full and reduced models. 

 

Spatial behaviours 

To evaluate whether treatment groups differed in mean behaviours after the transfer to the laying 

barn, we fitted one generalized linear mixed-effect model from the package ‘glmmTMB’ [205] for each 

behaviour for the first month in the laying barn. To complement the findings and evaluate how long 

treatment groups differed in mean behaviours, we fitted models for each following month as well (10 

months, six behaviours, total of 60 models), as a function of the treatment (with STAN as reference 

group). We chose month as the unit to analyse treatment effect over time, aiming to strike a balance 

between thoroughly estimating mean effects over time and avoiding potential noise linked to shorter 

time intervals like weeks. A previous study on the same hens, studying intra-individual variation in a 

composite behaviour, found that, on average, hens increased their indoor movements for 39 days 

after the transfer to the laying barn [213]. This previous result suggests that the transfer to the laying 

barn could have a long-term effect on hens’ spatial behaviours.  However, we expected that any 

treatment differences in spatial behaviours would appear directly after the transfer to the laying barn 

and diminish over time. Therefore, any statistically significant treatment effect that does not follow 

that pattern was interpreted with care, and the results section emphasized coefficient estimates 
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rather than p-values. We controlled for the class, time (defined as the number of days since the 

transfer to the laying barn), KBF severity, body mass, and number of hours with artificial lights on, by 

including them as fixed effects. We interpolated linearly (with monotonically increasing) both the KBF 

severity score and body mass for each hen separately to better control for their health between two 

consecutive health assessments considering that both scores exhibit an upward trend over time. The 

hen identity nested in the pen identity was included as a random term. To avoid convergence issues 

due to the very low explained variance by the pen identity, we performed a likelihood ratio test with 

and without the pen identity and chose the full model when the p-value was < 0.05. For the WG-

related behaviour, we also controlled for the number of hours the WG was accessible and the average 

daily external temperature (°C), taken from the LSZB weather station (~12 km from the barn) and 

accessed via the Wolfram alpha API in Python. All continuous variables were scaled by two times the 

deviation to obtain coefficients comparable to those of binary predictors (i.e., the treatment) [246]. 

As the first full day in the laying barn coincided with the final day of September, we incorporated that 

day into the models for the first month (October). 

 

The vertical travelled distance was modelled with a gaussian family for months 2-10 and with 

a zero-inflated Poisson model with the rescaled number of days in the barn as the zero-inflation 

parameter for month 1, as model assumption were otherwise not met. The nestbox tier usage was 

modelled with a gamma family (with a log-link function) and the WG presence with a binomial family 

(with a logit-link function). The proportion of indoor time spent on the top and nestbox tiers were 

both modelled with a beta family (with a logit-link function). The proportion of the indoor time spent 

on the littered floor was modelled with a gaussian family for months 2-10 and with a binomial family 

(with a logit-link function) to account for the excess of zeros (19.7% of observations) for month 1. 

Behaviours used in a beta distribution were first rescaled between 0.01 and 0.99. During the first 

month in the laying barn, hens had not reached the peak of production and the artificial light was 

turned on later in the day (days 1-9 at 9h, days 10-16 at 8h, days 17-22 at 7h, days 23-24 at 6h, days 

25-30 at 5h, days 31-32 at 4h). Therefore, we did not analyse the first month in the laying barn for the 

two nestbox tier related behaviours because behaviours expressed during that first month would likely 

not be comparable with behaviours expressed in subsequent months. In addition, we did not use the 

first seven days when fitting the WG presence, as the opening of the WG was delayed until normal 

laying behavior commenced (i.e., the eighth day) as is common for commercial practices. Residuals 

were simulated using the ‘DHARMa’ package to verify model assumptions (normality and 

homoscedasticity of the residuals). We reported the bootstrapped coefficients [247], credible 

intervals, and p-values computed from the ‘parameters’ package using 500 iterations.  
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Production traits 

To analyse daily mortality, we first estimated survival curves per treatments (without the special pens) 

and per pen (with the two special pens) using the Kaplan-Meier method with the ‘survival’ package in 

R [248]. Then, we used the log-rank test to test whether the treatment group (with the two special 

pens) differ in their survival curves. In order to account for the pen identities as a random effect and 

the “special pens” as a fixed effect, we also fitted a Cox proportional hazards models with both fixed 

and random effects, using the ‘coxme' package in R [249]. Because it is a fundamental assumption of 

both the log-rank test and the Cox proportion hazard test that the hazard ratio is constant over time 

[250], we tested the proportional hazards assumption. We found that the effect of both the pen 

identity, special pen effect, and the treatment covariates were not time-dependant (p<0.05). 

However, because there was a trend (p = 0.06) suggesting that the effect treatment had on the time 

until death may not be constant over time, we also split the data into two sets [251], considering the 

first 60 days in the laying barn (when there is a peak of mortality) and the remaining production period. 

The effect of treatment no longer was time dependent, and the effect of treatment remained the 

same. Therefore, we reported the result from the model with the full rather than split time period.  

 

We analysed the daily average number of eggs per live hen in each pen using a sigmoid curve, 

𝑎

1+𝑒𝑥𝑝(
𝑚−𝑡𝑖𝑚𝑒

𝑠
)
 , where time represented by the number of days since being in the laying barn, a as the 

horizontal asymptote, m as the time point at a/2, and s as the steepness of the curve at a/2 [252]. 

Sigmoid curves were fitted using a nonlinear least square algorithm (nls function in R). We fitted a 

sigmoid curve for each pen separately and provided pen-level parameter estimates. More precisely, 

for each pen, we reported a as an indication of the level at which egg-production stabilises and m as 

an indication of the time point with the steepest slope, that is at the inflection point of the curve. We 

did so considering first the entire period and then only the onset of lay (first 60 days in the laying barn) 

as it is an important period in which we might observe the greatest variation between hens. Then, to 

statistically assess treatment effect we fitted a nonlinear mixed-effects model with the ‘nlme’ package 

[253] with treatment as fixed effect and pen identity as random effect on all three parameters (a, m, 

s). We did so when considering the entire period in the laying barn as well as when considering solely 

the first 60 days. 

 

Results 

Welfare indicators 

The date-treatment interaction was neither a predictor of body mass (𝑥6,1121
2  =  9.49, 𝑝 =  0.15), 

feather damage (𝑥2,506
2  =  4.95, 𝑝 =  0.08), or KBF severity (𝑥3,669

2  =  4.34, 𝑝 =  0.23) and was 
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therefore removed from all models. Treatment as a main effect was neither a predictor of body mass 

(𝑥1,1121
2  =  1.95, 𝑝 =  0.16) or feather damage (𝑥1,506

2  =  0.54, 𝑝 =  0.46), but was a predictor of 

KBF severity (𝑥1,669
2  =  6.35, 𝑝 =  0.01).  Specifically, holding all else equal, the KBF severity score of 

OFH hens was, on average, 4.53 ([95% CI] = [0.99, 8.07]) points higher than that of STAN hens. 

Estimated marginal means (±95% CI) are presented in the supplementary information in S2 Table and 

model estimates and p-values are presented in S3 Table. The observed scores of each welfare indicator 

per treatment and date are illustrated in a violin plot (Figure 1), and their means (±SD) presented in 

Table 1. 

 
Fig 1. Violin plot of the raw welfare indicators over day of age per treatment. Red and blue colours represent the treatment 

groups, OFH and STAN, respectively, and feather damage is represented in (a), body mass in (b), and KBF severity in (c).  

 

 Feather damage Body mass (g) KBF severity 

Day of 

age 

OFH STAN OFH STAN OFH STAN 

7   66.04 ±5.17 64.75 ±5.12   

118   1177.75 ±57.88 1157.16 ±64.90   

173   1692.88 ±103.13 1671.03 ±99.26   

215   1780.19 ±118.01 1790.72 ±105.09 18.35 ±14.16 12.72 ±14.57 

243 9.58 ±7.73 9.24 ±7.02 1822.38 ±122.70 1795.32 ±137.46 21.50 ±16.21 16.86 ±13.98 

313 18.57 ±8.92 15.83 ±9.59 1877.29 ±134.15 1855.84 ±160.46 30.20 ±16.26 24.57 ±13.68 

417 33.60 ±11.79 34.09 ±12.31 1888.44 ±139.77 1898.60 ±168.97 38.64 ±16.34 34.94 ±14.25 

Table 1.  Mean (±SD) observed values of raw welfare indicators per treatment groups.  

 

Spatial behaviours 

Model coefficients from the treatment predictor for each behaviour across months are displayed in 

Fig 2 (bootstrapped p-values and coefficients are detailed in supplementary S4 Table). To help further 

interpret the nature of the change, particularly in cases where a treatment effect was found for several 

months only (e.g., determining which, if any, of the treatment group had their behavioural responses 

converging toward those of the other group), the mean observed behavioural scores are presented 

per treatment and month in Table 2.  
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We can interpret exponentiated coefficients from our models with a beta family (i.e., models 

fitting the proportion of time spent on the top tier and the nestbox tier) as odds ratios. For example, 

during the first month in the laying barn, the odds of being on the top tier for OFH hens was 1.49 times 

that of STAN hens (95% CI [1.12, 2.04], p = 0.01; Fig 2a), indicating that on average OFH hens spent 

more time on the top tier. A similar effect was found for month 2 (β [95% CI] = 1.67 [1.14, 2.35], p < 

0.01). Similar interpretations can be made for models with a proportion of time spent on the top tier 

or nestbox tier as response variables, although neither models related to the nestbox tier (figure 2c, 

2f) nor to the top tier (figure 2a) had a significant effect of treatment beyond the second month. 

 

We can interpret the exponentiated coefficients from our models with a binary response (i.e., 

models fitting the proportion of time spent on the littered floor (during month 1) and the WG presence 

responses) as odds ratios. For instance, during the first month in the laying barn, our results indicate 

that OFH hens were less likely to go to the littered floor compared to STAN hens. More specifically, 

we found an odds ratio of 0.30 (95% CI [0.12, 0.67], p < 0.01), meaning that the odds of going on the 

littered floor at least once during the day (during the first month) in OFH hens were 0.30 times the 

odds in STAN hens. A similar effect was maintained during months 2 and 3 (with a gaussian family; Fig 

2b). More specifically, compared to STAN hens, OFH hens spent 7% and 5% less of their daily indoor 

time on the littered floor during months 2 and 3, respectively (month 2: β [95% CI] = -0.07 [-0.11, -

0.02], p = 0.008; month 3: β [95% CI] = -0.05 [-0.11, -0.00], p = 0.04). Treatment was not a significant 

predictor of WG presence (see Fig 2d). 

 

Furthermore, we found that OFH hens moved less vertically during the first three months (see 

Fig 2e). More specifically, hatching on farm was associated with a reduction of 31% in the vertical 

travelled distance during month 1 (exp(β) [95% CI] = 0.69 [0.59, 0.82], p < 0.001, Poisson distribution). 

The treatment effect persisted up to month 3, with OFH hens crossing on average 11 and 9 fewer 

zones per day than STAN hens during months 2 and 3, respectively (month 2: β [95% CI] = -10.62 [-

16.13, -4.35], p < 0.001; month 3: β [95% CI] = -9.19 [-16.13, -2.50], p = 0.012, Gaussian distribution).  

 

Lastly, OFH hens, on average, were slightly earlier in their nestbox tier timing during the 

second month than STAN hens (β [95% CI] = 0.96 [0.92, 0.99], p < 0.05; Fig 2f). The treatment showed 

no effect in subsequent months in the nestbox tier timing, and we found no effect of treatment on 

the proportion of time spent on the nestbox-tier.  
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Fig 2. Coefficient estimates of treatment (with STAN as reference group) for each behaviour across months after the 

transfer to the laying barn. We interpreted significance whenever the confidence interval did not cross the dashed line. If 

the point and confidence interval lie to the right of the dashed line, it indicates that the model estimates higher behavioural 

response in OFH hens compared to STAN hens. Bootstrapped outputs (estimates and p-values) are detailed in supplementary 

S4 Table. 

 

 

 proportion of indoor time spent      

month in laying 

barn  top tier littered floor nestbox tier WG presence 

vert. travelled 

distance 

nestbox tier 

timing 

month1 0.53 vs. 0.42 0.26 vs. 0.32  0.44 vs. 0.51 28.51 vs. 39.02  

month2 0.41 vs. 0.30 0.31 vs. 0.39 0.07 vs. 0.07 0.62 vs. 0.65 47.03 vs. 58.67 5.00 vs. 5.31 

month3 0.34 vs. 0.28 0.36 vs. 0.41 0.07 vs. 0.07 0.66 vs. 0.67 55.43 vs. 63.99 4.24 vs. 4.29 

month4 0.33 vs. 0.27 0.38 vs. 0.42 0.08 vs. 0.08 0.62 vs. 0.69 61.64 vs. 68.68 4.19 vs. 4.14 

month5 0.33 vs. 0.28 0.37 vs. 0.42 0.08 vs. 0.08 0.61 vs. 0.70 63.03 vs. 68.94 4.16 vs. 4.18 

month6 0.30 vs. 0.24 0.40 vs. 0.44 0.09 vs. 0.09 0.65 vs. 0.73 66.50 vs. 72.47 4.46 vs. 4.52 

month7 0.31 vs. 0.28 0.40 vs. 0.41 0.09 vs. 0.09 0.62 vs. 0.69 61.38 vs. 65.76 4.59 vs. 4.62 

month8 0.30 vs. 0.29 0.41 vs. 0.41 0.08 vs. 0.08 0.69 vs. 0.72 58.36 vs. 58.61 4.78 vs. 4.74 

month9 0.28 vs. 0.26 0.43 vs. 0.43 0.08 vs. 0.09 0.71 vs. 0.83 57.11 vs. 58.38 5.05 vs. 5.18 

month10 0.27 vs. 0.26 0.43 vs. 0.43 0.08 vs. 0.08 0.68 vs. 0.80 52.95 vs. 53.14 5.34 vs. 5.36 

Table 2.  Mean observed values of raw behavioural data per treatment groups. We highlighted in bold the months and 

behaviours for which we found a significant treatment effect. 
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Production traits 

The survival probability for each treatment with 95% CI and per pen are represented in Figs 3a and 

3b-c, respectively. Results from the log-rank test revealed no statistically significant difference in the 

survival curves between the two groups is (𝑥2 = 1.5, df = 1, p = 0.20). Similarly, results from the Cox 

proportion hazard model revealed no statistically significant difference in the hazard between the 

treatment groups (coefficient estimates = - 0.21, p = 0.21). The sigmoid curve fitting the daily average 

number of eggs per live hen for the first 60 days in the laying barn and over the full laying barn period 

are represented per pen in Fig 3d and 3e, respectively. Parameters are illustrated in green in Fig 3d. 

We provided the parameter estimates of each curve per pen in the supplementary S2 Fig. For example, 

from these estimates, we can observe that the levels at which the average number of daily eggs per 

live hen stabilised during the first 60 days in the laying barn (as measured by the a estimate) for OFH 

pens was between 0.948 and 0.964, and slightly lower for STAN pens (0.926 - 0.956). The time point 

(i.e., number of days since transfer to the laying barn) at the inflection point of the curve (as measured 

by the m estimate) is between 24.05 and 25.79 for OFH pens and slightly earlier for STAN pens 

between 23.71 and 25.00. However, we found no treatment effect on any of the sigmoidal parameters 

(a, m, s) when considering either the first 60 days or the entire period in the laying barn 

 

Fig 3. Survival probability and average daily number of eggs per live hens, over time and per treatment. Survival probability 

of OFH and TRAN hens over time in the laying barn (a), and per pen (STAN pens: (b) and OFH pens: (c), including the two 

special pens containing 205 animals of the one treatment group but also an additional 20 Lohmann LSL hens, highlighted in 

grey). Average daily number of eggs per hen (data points), with the fitted sigmoid curve for each pen, during the first 60 days 

in the laying barn (d) and the full period in the laying barn (e). Their associated parameters a (as an indication of the level at 

which egg production stabilise), m (as an indication of the time point at the inflection point of the curve), and s (steepness 

of the curve at a/2) are illustrated in green (d), and estimates given in the supplementary S2 Fig. Red and blue colours 

represent the treatment groups, OFH and STAN, respectively.  
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Discussion  

In this study, we found that on average, OFH hens had more severe KBF throughout the laying period, 

transitioned less between the aviary tiers and spent less time on the littered floor and more on the 

top tier compared to STAN hens. We found no treatment effect on the daily presence in the WG, 

almost none on the two nestbox tier related behaviours, and none in body mass, feather damage, 

survival probability, and number of egg per live hens. To our knowledge, this study is the first to 

investigate the potential effects of the standard commercial hatchery process throughout the laying 

period on commercial hens’ welfare and spatial behaviour, and in particular to assess the effect on 

KBF. These findings suggest that early-life stressors associated with the commercial hatchery 

environment – here, transport-related stressors and temporary post-hatch resource deprivation – 

may have prepared hens for their adult environment and thereby support the environmental 

matching hypothesis. 

 

Welfare indicators 

According to the environmental matching hypothesis, early-life stress can prepare an individual for 

similar adversities encountered in adulthood [240]. The adulthood of commercial laying hens is 

typically accompanied by aversive situations, including the transfer to the laying barn [254]. The 

potential stressors associated with this transfer, such as being transported to a new housing with new 

conspecifics, echo those encountered by STAN chicks. Therefore, the adult environment of 

commercial hens may better match with the environmental conditions experienced by day-old STAN 

chicks rather than those of day-old OFH chicks. 

 

The result showing less severe KBF in STAN hens across the laying period compared to OFH 

hens provides support for the environmental matching hypothesis. Although KBF are considered as 

one of the greatest welfare issues in the egg production industry [20–25,123], effects of early-life 

stressors induced by commercial hatchery on KBF was to our knowledge not yet investigated. Various 

factors are thought to contribute to the prevalence of KBF, including genetic predisposition [255], 

nutrition [255], de-mineralized bone aggravated by the high egg laying rate [127,256,257], inactivity 

compromising bone health [125], and certain physical elements of the housing system that may cause 

pressure on the bone when hens are perching [32] or lead to trauma resulting from impact collisions 

[3,30,31,125]. Given that the STAN and OFH hens originated from the same parent flock, it is unlikely 

that genetic predisposition could explain this result. Moreover, apart from the nutritional differences 

after hatching, where OFH chicks had immediate access to feed and water, which is unlikely to 

negatively impacted their bone health, both STAN and OFH hens received the same nutrition. Because 

we observed minor differences in egg-production during the onset of lay, which, if anything, would 
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suggest that OFH hens had a slower onset of lay, it is also unlikely that these differences would explain 

the result.  

 

Given the limited amount of genetic and environmental differences between treatment 

groups outside of the treatment specific differences, we believe behavioural differences in activity 

and/or different usage of the housing system could explain why OFH hens had more severe KBF 

compared to STAN hens. For instance, our finding indicating a 31% reduction in vertical travelled 

distance during the first month for hens hatched on farms, may reflect a more general pattern of 

inactivity among OFH hens which could lead to poorer bone health and in turn higher KBF [125]. 

Additionally, OFH hens spent more time on the top tier, where hard metal perches are more abundant. 

High perch use would result in overall greater pressure on the keel bone leading to deviated keels, 

which in turn can weaken the keel’s overall structural integrity [31]. Overall, we cannot exclude the 

possibility that the treatment difference we observed in the severity of KBF may be an indirect effect 

of the differences we observed in spatial behaviours between the treatment groups. Further research 

is required to replicate this finding and to understand the underlying mechanisms involved. 

 

More recent evidence suggested that factors related to egg production, including internal 

pressure during the egg-laying process [126,221] and an early onset of lay [258], could favour KBF. We 

found no evidence of treatment effect in the average number of egg per live hens, nor did we observe 

treatment effect on the timing of the onset of lay. In fact, a previous study showed that on-farm 

hatched hens had a slower onset of egg-laying than hens hatched in commercial hatchery at 15-20 

weeks of age [232]. Hence, while an early onset of laying may not explain the treatment effect on KBF 

observed in our study, it is plausible that other factors related to the internal pressure during the egg-

laying process could be operating in the current effort. 

 

We found that OFH hens had on average a similar body mass to STAN hens beginning with our 

earliest measurement at 7 DOA. We expected OFH hens to weigh more because of direct access to 

feed after hatching, which previous studies on day-old chicks demonstrated [34,237,238], but also 

because it is possible that animals may gain less weight due to early life stress [259,260]. However, 

beyond one day of age, the effect in previous literature is ambiguous. Studies contrasting on-farm 

hatching to standard commercial practices found no treatment differences at 4 or 7 DOA [34,237], a 

tendency for on-farm hatched chicks to weigh more up to 11 weeks of age [238], and that on-farm 

hatched chicks weighed less at 8, 15, 22 and 29 DOA [232]. Our study provides more evidence that 

treatment effects of body mass are not present during lay.  
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Furthermore, OFH hens had similar feather damage to STAN hens, which supports neither the 

silver-spoon nor the environmental matching hypothesis, but is in line with the inconclusive findings 

in earlier literature that reported both positive [232] and negative [237] effects. The ambiguity 

surrounding these results may stem from the multifactorial nature of feather damage, which includes 

factors such as feather pecking and abrasion resulting from different parts of the structures [118]. 

Therefore, the influences of the physical and social environments on feather damage could outweigh 

or interact with effects from early-life stressors. 

 

Spatial behaviours 

The literature on behavioural differences between hens that hatched on-farm versus in a commercial 

hatchery is sparse and mainly conducted in test arenas [34,232,261–263], hindering the extrapolation 

of the results to commercial settings, typically characterized by more complex housing systems and 

larger groups. In this study, we used tracking technology to monitor movements of hens within a 

quasi-commercial aviary system throughout the laying period.  

 

We found that for the first three months post-transfer to the laying barn (up to 7-month-old) 

STAN hens spent more time on the littered floor and less on the top tier. The top tier has been shown 

to be used more extensively by hens with more severe keel bone fractures [10] and throughout full 

days following their transfer to the laying barn [213] (in a previous study on the same hens). Thus, it 

is possible that hens use this area over the day to offset stress or pain. Unlike the top tier, the littered 

floor promotes a diverse range of natural behaviours, including locomotion, dust bathing, exploring, 

foraging, and scratching. Therefore, these findings could indicate that OFH hens exhibited fewer 

natural behaviours compared to STAN hens in this early laying barn period. Furthermore, as OFH hens 

became behaviourally more similar to STAN hens over time (Table 2), these results further suggest 

that OFH hens required a prolonged period to establish their daily behavioural patterns. Overall, STAN 

hens may have exhibited better abilities in coping with the transfer to the laying barn, which would 

provide further support for the environmental matching hypothesis. Early-life stress can enhance 

behavioural flexibility [264], improve stress coping later in life [265], and facilitate spatial learning and 

memory [264,266], especially when experienced close in time and within the same context that is 

encountered later [267]. Therefore, increased stress induced by the commercial hatchery process near 

the time of transfer to the rearing barn could have induced focused attention and improved the 

memory of relevant information allowing STAN hens to better cope to the laying barn. 

 

In addition to the potential effect of early-life stressors, it is possible that the STAN chicks may 

have exhibited faster acclimatization to their new environment due to the inherent effects of their 

transition from the hatchery to the farm. As suggested by Skånberg et al. [268], it is possible that 
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environmental change during rearing plays a role in enhancing layer chicks' adaptability later in life. 

Specifically, STAN hens may have learned appropriate cognitive and locomotive skills during the 

rearing period, facilitating their adaptation to the aviary system. However, a previous study comparing 

the cognitive ability of layer chicks that had temporary post-hatch resource deprivation and eight-

hour transport, to those that had ad libitum access to feed and water and were not transported, found 

no treatment effect in a cognitive test [238]. Further research is needed to investigate whether STAN 

hens possess better spatial-cognitive abilities in the laying period.  

 

It is also possible that the additional early-life stressors experienced by STAN hens could have 

altered the functional and structural development of the Hypothalamic-Pituitary-Adrenal (HPA)-axis 

[269,270]. Typically, stress induced in the early postnatal period results in HPA-axis hyper-reactivity 

during adulthood [269–272], with enhanced depression-like behaviours and anxiety [273]. Previous 

studies on laying hens generally supports such alterations of the HPA-axis. It was shown that hens 

from a commercial hatchery had a more sensitive HPA-axis and a stronger reaction to stressors during 

the first weeks of life compared to on-farm hatched hens [232,262]. Here, we showed that STAN hens 

spent more time on the littered floor, less time on the top tier, and exhibited their typical behavioural 

patterns earlier after the transfer to the laying barn, in comparison to OFH hens. We believe that these 

behavioural pattern are not indicative of a stronger reaction to the transfer, and therefore believe 

that the additional early-life stressors experienced by STAN hens may not have significantly impacted 

their HPA-axis. Alternatively, it is also possible that the subsequent adversities encountered by all 

chicks in the rearing barn could have triggered the HPA axis of OFH hens to reach conditions 

resembling that of the STAN hens [269]. However, further research is necessary to understand how 

transportation and early life conditions influence the HPA-axis and its relationship to movement in 

laying hens. 

 

We found almost no treatment effect on the two nestbox tier behaviours, which supports the 

idea of limited behavioural plasticity related to the use of the nestbox tier. Given the strong human 

selection for high productivity and the high motivation to use nestboxes [274], it is possible that those 

behaviours are more tightly correlated with physiology or with strong animal needs and thus are less 

plastic than others. That is, these behaviours may be less influenced by external or internal factors 

and more repeatable across different contexts, as suggested by previous findings [10,229].  

 

Production traits 

Until in ovo sexing becomes practical at commercial scale, differences between hatchery and on-farm 

treatments may not have practical effects relevant to animal welfare. However, with the advancement 

of in ovo sexing techniques [275], it is possible that on-farm hatching practices will become a standard 
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method in the future. Therefore, it is important to compare both animal welfare and productivity 

between commercial hatchery and on-farm treatments within commercially relevant settings. We 

found no treatment effect on mortality, despite on-farm practices have already been shown to reduce 

total mortality in broilers [234]. We also found no treatment effect on the average number of egg per 

live hens in terms of both the level at which it stabilized (i.e., parameter a) and the time point at which 

the curve reached its inflection point (i.e., parameter m). To our knowledge, only two studies 

[232,237] have compared egg-production between such treatments, by collecting daily production 

data at the pen-level. The authors found that OFH hens had a slower onset of egg laying than STAN 

hens at 15-20 weeks of age [232] in one study and laid more and bigger eggs at 19-25 weeks of age in 

the second [237]. The absence of a statistical difference in our study may be attributed to the limited 

sample size and further research with substantially more pens or at the individual-level is needed to 

determine whether there are differences in egg-production between on-farm hatched hens and those 

hatched in commercial hatcheries. 

 

Limitations 

This study aimed to assess the potential impact of commercial hatchery practices and potential 

benefits of on-farm hatching for animal welfare within commercially relevant settings throughout 

most of the production period. Some potential early life stressors were in this study uniquely 

experienced by STAN animals, including food and water deprivation [276] and the transportation at 

one day of age to a new environment [254]. Yet, the hatchery-related procedures applied to OFH 

chicks might also have been aversive, including the transportation at 18 days of incubation [277] and 

the vaccination and sexing at one day of age. We designed the experiment so that all hatchery-related 

procedures should be less, or when not possible, equally, aversive for the OFH treatment compared 

to the TRAN treatment. However, our methodology did not allow to determine if the increased 

cumulative adversities encountered by STAN chicks during their development led to higher stress 

responses than those seen in OFH chicks. Hence, to assess the relative benefit of on-farm hatching 

practices for practical applications, future research should compare physiological stress and cognitive 

responses between treatment in the rearing and laying phase and strive to replicate on-farm hatching 

procedures more closely to the envisioned future practices (e.g., integrating in ovo sexing for the OFH 

treatment). 

 

Conclusion  

Hens from both treatments originated from the same parent flock yet produced different phenotypes 

depending on their early-life environments, suggesting the presence of developmental plasticity in 

our commercial hens. By providing nuance to the relative benefit of on-farm hatching for animal 
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welfare described by previous literature, this study highlighted the critical role in designing early-life 

environments in accordance with the adult environment. For laying hens housed in aviary systems, 

our results could suggest that hatching on-farm rather than in commercial hatchery may lead to an 

increased mismatch between the hatching and laying environments that can be detrimental to animal 

welfare. We conclude that future research is needed to determine whether conventional husbandry 

practices, originally designed for hens hatched in commercial hatcheries, need to be adapted for hens 

hatched on-farm, such as implementing smoother transfers between rearing to laying barns.  

  



113 
 

General discussion 

This general discussion will be divided into two sections. Based on the findings of Chapter I, I will start 

by briefly discussing the future use of tracking systems in monitoring individual behaviour in 

commercial settings and of model-based approaches to enhance accuracy while keeping original 

granularity of the registered data. Second, I will discuss the relevance of the findings from subsequent 

chapters for the welfare of farm animal, splitting the findings into the three main objectives of the 

thesis. 

 

Tracking systems and data processing  

To accurately track movements, it is crucial to validate tracking systems thoroughly, particularly when 

used within complex environments that may present challenges, such as aviaries. Although increasing 

sample size can minimize random errors, systematic errors caused by factors like environmental 

interference are more difficult to address and may lead to biases. To address the challenges arising 

from the high animal density and the relatively high concentration of material that can interfere with 

tracking signals, including metal equipment, we trained tree-based classifiers to identify false 

registrations, as observed via video observations (Chapter I). We used the most suitable model to the 

tracking data generated during the first experiment to filter potential false registrations. This model-

based approach enabled us to quantify the daily number of transitions in each zone more accurately, 

explaining 99% of the variation compared to 91% when simply excluding registrations of duration 

smaller than one minute.  

 

In addition to providing more accurate data, the model-based data cleaning approach preserved the 

original second-level granularity, which provided greater flexibility in subsequent analysis compared 

to a minute-level granularity. However, to apply the model-based approach for processing the data 

from the second experiment, it would have been necessary to conduct new video observations due to 

the system re-calibration between the two experiments. As this was not feasible, we simply excluded 

registrations of duration smaller than one minute, resulting in a one-minute-level granularity. This 

limited granularity of the data from the second experiment hindered our flexibility to extract some 

behaviours, such as the response to feed delivery (Chapter III), which required a level of precision 

down to the second due to the short duration of the feed delivery stimuli, lasting only 3 minutes. This 

example highlights the benefits of the model-based approach, despite requiring additional efforts 

including more video observations and statistical modelling efforts.  
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The validation of the tracking system, along with the findings from subsequent studies, underlines the 

efficacy of tracking systems in providing valuable insights into individual differences within 

commercially relevant settings. We used a low-frequency tracking system that is most comparable to 

the common ultra-wide band (UWB) systems (e.g., of usage: [16,108,133]), but that has lower 

frequencies to reduce possible interactions with the environment such as liquid and metallic materials 

[19]. However, a more widespread tracking system in farm animals is the radio-frequency 

identification (RFID) (e.g., [14,18,278]), which was also recently successfully validated in the same 

aviary system as used in this thesis [279]. These RFID systems are particularly attractive to researchers 

due to their low power consumption and operating costs [280], which has contributed to their 

expanding use in monitoring farm animal movements. While this thesis contributed to the collective 

effort of evaluating tracking systems for laying-hen farming, I believe that tracking systems based on 

RFID technology hold more favourable prospects than the tracking system validated in this thesis. 

 

Implications for commercial laying hens  

Spatial personality 

The scientific literature on chicken behaviour is predominantly shaped by applied themes, particularly 

those related to improving animal welfare and productivity [6]. Yet, gaining a more fundamental 

understanding of chickens holds the potential to influence our perception, which could foster a 

positive shift in our attitudes towards these farm animals and ultimately contribute to enhanced 

animal welfare. Chickens (Gallus gallus domesticus) are the most common food-producing animals on 

land yet are often seen as unfamiliar [6]. They are typically perceived as cognitively simpler [7], with 

fewer emotions and less differentiated individual personalities [8] compared to other farm animals. 

However, this perception has already been shown to change when becoming more familiar with these 

animals [8], suggesting that unfamiliarity can negatively influence our perception. Because our 

perception can influence our attitudes towards animals which can in turn reinforce our initial 

perception [6,281], it is critical to become more familiar with chickens and their complex nature.  

 

This thesis revealed long-term individual differences in averages of various spatial behaviours, with up 

to 44% and 66% of the behavioural variation attributed to individual differences, during the onset of 

lay and adulthood, respectively (Chapter II-III). During adulthood we found consistent individual 

differences in five spatial behaviours over time and across contexts, revealing their potential 

applicability as personality traits of commercial laying hens. Furthermore, we found that hens that 

travelled greater vertical distances, on average also went in the WG on more days, used the highest 

tier slightly less at night, and tended to use the feed-tiers more upon delivery of fresh feed. 

Interestingly, we found no syndrome involving the nesting-related behaviour, which suggests that its 
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main mechanism is independent of those involved in the other behaviours and could be, for instance, 

the physiological rhythm. While not unexpected, these findings contribute to a growing body of 

research demonstrating the presence of personality in a number of avian species, including great tits 

(Parus major) [54,282,283], zebra finches (Taeniopygia guttata) [284–286], greylag geese (Anser 

anser) [287], and chickens (Gallus gallus domesticus) [58,288]. While this thesis focused on behaviours 

exhibited within commercial settings, we did not assess common personality traits via behavioural 

tests or video observations, such as aggressiveness, exploration, boldness, and sociability [53,55]. 

Future research should evaluate associations between similar spatial behaviours and these commonly 

studied traits to enhance interpretation. Although Chapter II-III did not have immediate applied 

purposes, they contributed to recognizing that commercial hens may have distinct personalities.  

 

Evaluating how individuals differ in behaviours has been primarily focused on consistent individual 

differences in averages, restricting our understanding of important biological variation. We can obtain 

a more comprehensive understanding of individual differences by including residual intra-individual 

variation in behaviour, that is, behavioural predictability [167–169]. For example, studying individual 

differences in behavioural predictability following environmental changes in addition to their mean 

behavioural responses, may better reflect individual’s coping strategies. This is because during periods 

with environmental change animals may exhibit greater behavioural variation as a result from 

optimizing their behaviours over time and with increased experience. Since many farm animals are 

transferred to new environments multiple times throughout their life, behaviours reflecting coping 

strategies could provide valuable information in farm animal welfare studies [55,80].  

 

In chapter II we found existence of individual differences in predictability and temporal plasticity of 

movements after the transfer to the laying barn. We also found that hens that were more predictable 

in their daily movements had more severe KBF at the end of production. Although future research is 

required to confirm the latter association and explore underlying mechanisms, this result underscores 

the potential of investigating behavioural predictability in animal welfare studies. For example, future 

research could investigate behavioural predictability alongside physiological responses to understand 

how this behavioural component relate to the proactive/reactive coping style [80]. From a 

neuroendocrinological perspective, more proactive animals may have less inhibitory control and in 

turn may be more predictable behaviourally compared to reactive animals [189]. In contrast, reactive 

animals would be behaviourally less predictable, more flexible and perform better under 

unpredictable environmental conditions [190,215]. However, due to the combination of a daily 

routine regulated by predictable management practices and the occurrences of unpredictable events 

such as diseases and vaccinations, it remains unclear which of the proactive or reactive personalities 

would experience higher welfare in commercial settings.  
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Dynamics between spatial behaviours and keel bone fractures 

The state and the behaviour of animals are both dynamic and tightly coupled, influencing one another 

over time. Hence, there are instances where employing continuous time dynamic models may be more 

suitable than the standard multivariate linear models. With these dynamic models we can express the 

response variable of one regression equation as a predictor in another equation and thereby assess 

the mutual influence of the two variables within a single model. By understanding the dynamics 

between animal health and its behaviours, we could better comprehend when state-behaviour 

feedbacks may amplify welfare issues over time. In other words, such knowledge could help 

understanding how small initial differences between individuals could lead to large differences in state 

and behaviour over time.  

 

In Chapter IV, we found that an increase in the severity of KBF altered two vertical movement 

behaviours, which may suggest that hens with more severe fractures may face additional difficulties 

transitioning between the stacked tiers of aviary systems, possibly because of additional pain [22,122] 

or being physically impaired [218]. Yet, to access all the resources within multi-tier aviaries, hens must 

move vertically, as resources are distributed throughout several tiers reaching up to 3.5 meters in 

height. Therefore, this result may suggest that the installation of structures facilitating transitions 

between the stacked tiers, such as ramps, could in addition to reduce KBF prevalence [30,104] be 

important for hens to cope with fractures.  

 

In contrast to our result suggesting that KBF altered spatial behaviours, we found no evidence that 

spatial behaviours altered the severity of KBF. This result aligns with recent pathological evidence 

suggesting that collisions with infrastructure, and thus characteristic of spatial behaviours, may not be 

responsible for the fractures located at the caudal tip of the bone, which account for the majority of 

KBF. Instead, KBF may be attributed to the internal pressure exerted during egg-laying [126,221]. 

However, we did not account for the location of the fractures in the study, which could have hidden 

the potential influence of spatial behaviours in the formation and maintenance of fractures that are 

not located at the tip of the bone. Because previous literature has shown that KBF are associated with 

reduced egg laying performance [28,120,121], improvement of management practices to reduce KBF 

prevalence could be of interest to all pertinent stakeholders, including producers and genetic 

companies.  

 

Spatial behaviours and Management practices 

In addition to studying spatial behaviours in relation to animal health, investigating the effect of 

management practices on these behaviours may also yield practical implications for improving the 
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welfare of commercial hens. In this thesis, we studied the long-term influence of once-in-a-lifetime 

management practices on hens’ spatial behaviour (Chapter V and Chapter II) and the immediate 

behavioural responses to reoccurring environmental stimuli (Chapter III). In this section, I will discuss 

how our findings and similar efforts could be used to improve commercial practices of laying hens.  

 

It is evident that certain aversive events, such as the transfer to a new environment (discussed in 

Chapter II) or stressors during development (discussed in Chapter V), can have long-lasting 

implications for animal welfare. Yet, potential avenues for enhancing animal welfare may also arise 

from studying animal responses to stimuli arising from routine management practices, such as the 

delivery of fresh feed, vaccination, or the daily access to a winter garden (Chapter III). We can deem a 

stimulus as predictable when the animals are, to some extent, able to anticipate it, whereas we can 

deem a stimulus as controllable, when its likelihood of occurrence depends on the behaviour of the 

animals [289,290]. Previous literature generally supports the idea that stress can arise from 

unpredictable or uncontrollable events [291,292]. Therefore, trying to increase predictability and 

controlling of management practices, especially aversive ones, could improve animal welfare. This 

could be investigated, for instance, with studies using positive reinforcement training [293], changing 

time intervals between their occurrences to affect the “temporal” predictability, or introducing 

specific sound cues before each occurrence to affect the “signalled” predictability. However, when 

boredom-like states are caused by a lack of novel stimulation, then it is also possible that reducing 

predictability of certain stimuli would help addressing such states [293]. The study of an ideal 

equilibrium between predictable and unpredictable routine management practices for the welfare of 

commercial laying hens may present an interesting avenue for research using sensor technology 

within commercial settings. 

 

In this thesis, we defined a behaviour reflecting individual responses to a recurrent stimulus, the fresh 

feed delivery (Chapter III). This reflected an animal’s tendency of being on a tier with feeders more 

frequently while the fresh feed is delivered than while it is not delivered. We found the behaviour to 

be repeatable over time and across contexts, with consistent differences between individuals 

explaining 33% and 24% of the variation, respectively. We also found substantially higher values of 

the feed delivery response than expected by chance, with on average 77±4% of individuals per day 

had a positive feed delivery response, indicating that most hens tended to go on a tier with feeders 

more frequently upon feed delivery. Although this behavioural response is based on space use and 

movement behaviours, the responses are expected to be predominantly driven by the presence of 

fresh feed or other characteristic of the stimulus, rather than specific spatial preference. It is important 

to acknowledge that since we cannot control for all internal or external drivers, the observed 

behaviour may not directly reflect animals’ motivation to feed. However, it is a first step towards 
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assessing a potential proxy of the animal's affective state in response to a recurring external stimulus 

based on tracking data. For example, one could explore how this feed delivery response relate to 

optimistic/pessimistic attitude obtained from the judgment bias test [210] and to boredom-like state. 

Indeed, the high level of responsiveness in hens, despite having ad libitum access to feed, could be 

indicative of boredom. Assessing behavioural responses to management practices within commercial 

settings could help understanding effects of these practices at the individual level. Ultimately, these 

responses could aid in promoting positive welfare state while minimizing negative ones (e.g., by 

increasing feeling of reward and reducing feeling of frustration or boredom). 

 

In addition to studying responses to daily management practices, we studied the long-term influences 

of early-life stress induced by commercial hatchery practices on behavioural responses. We found that 

for the first three months post-transfer to the laying barn, which corresponds to approximately seven 

months of age, hens that hatched on-farm, on average, transitioned less between tiers in the aviary, 

compared to hens hatched in commercial hatchery under more stressful conditions. For instance, we 

found that on-farm hatching was associated with a decrease of 31% in the daily indoor transitions 

during the first month. These hens also spent less time on the littered floor, a zone with resources 

enabling the expression of comfort behaviours, and required more time to establish their behavioural 

patterns (observed later on). Altogether, the findings suggested that additional early-life stress (such 

as the transfer at one day of age to the rearing barn) may have prepared hens for the transfer from 

the rearing to the laying barn. Altogether, this thesis supports the use of tracking technologies to study 

daily, but also long-term, influences of human practices on hens within commercial settings. 

 

Perspectives 

In this section, I will discuss two perspectives that could stimulate new research questions and 

encourage the use of diverse analytical approaches on similar tracking data. First, I will discuss an 

alternative method that seeks to represent each hen daily raw tracking data (the hen’s series of 

transitions between the five zones) by a single point in a 3D space. Secondly, I will speak about how 

and why simulations could be considered to leverage similar datasets. 

Exploring alternative behavioural traits through a 3D space  

In this thesis, our selection of spatial behaviours was guided by prior assumptions regarding the 

significance of specific zones at particular times of the day and during specific life phases of the hens. 

However, we may have overlooked important behavioural traits, such as those that best uncover 

individuality or that are most associated with animals’ welfare condition. One reason for relying on 
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these assumptions, was that our tracking system registered hens’ transitions between five defined 

zones (the three stacked tiers of the aviary, littered floor, and winter garden) instead of precise 

individual locations. Consequently, the data could not be treated as numerical time series, which 

would have enabled the computation of spatial behaviours based on distances between registered 

locations (instead of prior assumptions), such as activity levels, or in other set-up, home range size 

and tortuosity. In other words, an alternative approach could have allowed the extraction of 

behavioural traits based on distances without making prior assumptions on the zones.   

 

For example, we could have represented the raw tracking data of each hen-day unique combination 

by a single point in a 3D space, i.e., a space with three numerical axes where distance metrics, such as 

Euclidean distance or cosine similarity, could then be used to measure the similarity or dissimilarity 

between two points’ coordinates in the space. One way to construct such a space, is to first construct 

a graph represented by nodes and links between nodes, where each node would correspond to the 

raw tracking data of a hen-day and each link between two nodes would indicate the strength of the 

spatial association between the two hen-days. For example, naming the two hen-day as hen H1 - day 

D1 and hen H2 - day D2, we could compute the strength of their spatial association as the percentage 

of time hen H1 and hen H2 spent in the same zone, during day D1 and day D2, respectively. Then, we 

could use an algorithm that map the nodes of the graph into a low-dimensional space of features while 

maximizing the likelihood of preserving the nodes neighbourhoods, such as node2vec [294]. This 

approach would also enable to extract centrality measures on the graph, although other methods that 

do not involve the construction of a graph may be computationally more efficient. By representing 

each hen-day tracking data in a space, we could extract other behavioural traits by examining the 

distances between different hen-days. Concepts from other fields, such as tortuosity or social niche 

[295], could inspire exploration of behavioural traits extracted from this 3D space. 

 

To illustrate this approach, I used data from the second experiment (consisting of 1,176 unique hen-

day combinations from 168 hens over a 7-day period) to represent the tracking data of each hen-day 

into a 3D space (Figure 1 a). In this space, I highlighted seven days of seven hens (i.e., a total of 49 hen-

day) and illustrated their daily series of transition (raw tracking data) in Figure 1b using the same 

colour code. From this visualization, we can observe that the yellow hen-day combinations appear 

more isolated compared to the blue, green, and red hen-day combinations. Analysing the proximity 

but also the gaps between hen-days in such a 3D space may provide new behavioural traits that could, 

with no prior assumption on the zones, expose individual differences in their responses to 

environmental or internal changes. 
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Figure 1 – Each of the hen-day is represented as a coloured triangle (the white colour represents hens used to construct 

the 3D space but that are not of interest in this visualization) in a), and the corresponding raw tracking data for each of 

these triangles is illustrated in b). 
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Simulations 

In 1959, Russell and Burch [110] introduced the 3R principles (Replacement, Reduction, and 

Refinement), which are still used as an ethical framework for the design of animal experimentation. 

These principles involve three aspects to be considered when designing experiments, including the 

development of alternative methods allowing to replace animals (Replacement), the design of 

protocols to reduce the number of animals (Reduction), and the application of refinement practices 

(Refinement). Simulations can facilitate the implementation of these principles by generating data 

that may be difficult to obtain otherwise (but that are necessary to study complex systems) and by 

enabling researchers to explore multiple scenarios and hypotheses to improve their experimental 

design.  

 

Throughout the two experiments conducted in this thesis, we have generated a large amount of data 

that could serve as a valuable foundation for simulating hen spatial behaviour in multi-tier aviary 

systems. The data could be used to generate plausible daily movement patterns and to estimate 

parameter ranges that can be used to compare different scenarios. I will briefly discuss two examples 

where simulations may be used to explore traits that may ultimately help breeding for farm animals 

with enhanced welfare. The first example involves the selection of new phenotypes that acknowledge 

hens' dual nature as both individuals and members of a flock. The second example refer to the idea of 

selecting for greater phenotypic variance within the next generation, in addition to targeting specific 

mean values. 

 

Social facilitation occurs when an animal is more likely to engage in a particular behaviour in response 

to other animals engaging in the same behaviour. Social facilitation, as well as social learning, are 

important mechanisms shaping the behaviour of domesticated chickens, such as feeding behaviour 

[296], feather pecking [297], and cannibalism [298]. By using a different tracking system, one able to 

record animal proximity with greater precision than the system employed in this thesis, we could use 

metrics reflecting the tendency of an individual to follow other individuals more than being followed 

by them, such as the leading index introduced by Gómez et al. [299]. Consistent responses could 

emerge from consistent differences between individuals in their tendency to imitate the behaviour of 

others, but also from other mechanisms. For instance, when several individuals respond similarly to 

an environmental stimulus (e.g., heading towards the winter garden when it opens), consistent 

individual differences in their speed of expressing the behavioural response could lead to such 

consistent responses. Therefore, traits reflecting individuals’ tendency to imitate/spread specific 

behaviours should be carefully considered and validated. 
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Considering the role of social facilitation and learning on laying hens’ behavioural expression, the 

inclusion of phenotypes that may reveal highly influential individuals may be an interesting avenue 

when studying novel selective breeding practices. For example, it is possible that selecting a smaller 

proportion of leaders exhibiting desirable behaviours (e.g., is among the first entering the winter 

garden) might prove more effective than selecting a larger proportion of the best-behaving hens (e.g., 

spending a lot of time in the winter garden). That is, in situations where social learning, facilitation or 

imitation plays a key role in shaping a negative or positive behaviour in the flock, it could be more 

effective to select hens not only based on their individual performance (e.g., behaviour and 

productivity), but also based on their effect on the rest of the flock. Because the outcome and risk of 

a strategy will depend on several parameters, simulations could help contrasting different strategy 

and bring preliminary insights into the feasibility and potential benefits of this approach. Parameters 

of interest may include the group size, the distribution of the behaviour (e.g., whether many hens 

occasionally lead the flock or if only a few hens consistently lead the flock), and the heritability of the 

behaviours.  

 

Simulations may also help understanding the potential of selecting for greater phenotypic variance 

within the next generation, in addition to targeting specific mean values. For example, by selecting for 

greater variability in the timing of nestbox usage within a flock, we may reduce overcrowded 

nestboxes (potentially reducing smothered hens [211]) and occurrences where preferred nestboxes 

are occupied (potentially reducing floor eggs [212]). Previous research has already shown that some 

egg laying behaviours were heritable and may be used to select against floor eggs and improve egg 

production, including the nestbox preference, laying duration, oviposition traits, and clutch number 

[163,212]. Therefore, tracking technologies could be used to estimate plausible behavioural pattern 

that may be combined with simulations to contrast different scenarios (e.g., varying nestbox space 

and position of the nestboxes).  

 

Final conclusion 

This thesis provided new insights into the extent of consistent individual differences in averages 

behavioural expression of commercial laying hens housed in multi-tier aviaries. It also shed light on 

behavioural variation caused by variation in the severity of KBF and by management practices. We 

found long-lasting inter-individual differences in five spatial behaviours. We also found intra-individual 

variation underscoring the relevance of studying spatial behaviour to better understand how animals 

respond to environmental and internal changes. We conclude that tracking technologies hold promise 

as valuable tools for investigating individuality within commercially relevant settings, even in scenarios 
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with complex designs like multi-tier aviaries. When integrated with the recognition of behaviours as 

signals encoding welfare-related information, tracking technologies could also allow the development 

of more effective approaches to improve farm animal welfare. However, further research is needed 

to assess relative benefits, for instance by studying similar spatial behaviours in relation to validated 

behavioural test and physiological responses.  
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Supplementary materials 

Chapter I 

 

Figure S1. Precision per class (0: FR; 1: CR), recall per class (0: FR; 1: CR) and accuracy of the three classifiers over 100 random 

seeds. 

 

 

 

Figure S2. Percentage of simulations that lost significance (p>0.05) of its associated initial effect size (measure by pearson 

correlation between two simulated samples from a normal distribution: M’ and H) after a change in percentage of the true 

variance that is recovered by M’ from 0.99 to 0.91, depending on the initial effect size (varying from 0.16 to 0.4) and sample 

size (varying from 80 to 280).  

 

Text S1 - Pseudo-code of the tag-algorithm 

 

START every time a tag receive an LF-signal (=markers signal)  (it can be up to every half 

seconds in average i.e. 2sec/4markers) 

 

List = all received signals sent from any markers of past 10 sec of the associated tracking 

system 

previous-zone-logged = last logged transition 
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previous-dB-zone = dBs of last logged zone 

 

current-dB-of-highest-zone = maximum dB entry in List 

current-highest-zone = zone with maximum dB entry in List (find thanks to the modulated 

signal) 

   

If      current-dB-of-highest-zone is not the unique maximum of the List: 

 Don’t register a new transition and repeat the procedure 

 

current-dB-of-second-highest-zone = second highest dB entry in List  

current-second-highest-zone = zone with second highest dB entry in List 

 

If      current-highest-zone   ≠    current-second-highest-zone: 

 Don’t register a new transition and repeat the procedure 

 

If      previous-zone-logged  ≠   current-highest-zone: 

 Register a new transition to current-highest-zone and repeat the procedure 

 

END 

 

Text S2 - Tree-based classifiers 

In this study we used three decision-tree based classifiers. A decision tree is a non-parametric 

supervised learning method that performs recursive partition of the instance space [135]. 

Typically, a decision tree is an acyclic directed graph and has one node with no incoming edges 

(root node) as well as nodes with one incoming edge. All nodes with at least one outcoming 

edge are called internal nodes and all nodes with no outcoming edge are called decision 

nodes. During training, each internal node aims to split the instance space while optimizing 

the classifier’s performance. The Gradient boosting classifier is a 'greedy' algorithm that 

sequentially trains a shallow decision tree in order to correct the errors of the previously 

trained tree [137]. The Catboost method is a recently developed gradient boosting algorithm 

[138,139] that we selected in this study for its ability to process categorical features during 

training. More specifically, it substitutes each categorical feature with a numerical feature by 

using an ordered target encoding method. Target encoding commonly replace the category 

𝑥𝑘
𝑖  of the 𝑘𝑡ℎ training example of the 𝑖𝑡ℎ categorical feature, with the estimated expected 

target value y conditioned by this category: 𝔼(𝑦|𝑥𝑖 = 𝑥𝑘
𝑖 ). Target encoding is known to suffer 

from target leakage and CatBoost tries to overcome this issue. For that purpose, it adds an 
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artificial timeline to the training dataset by permutating the set of observation in a random 

order and computes each encoding value based on its own artificial history only [139]. As 

samples with a shorter history will have a target encoding value with higher variance, CatBoost 

used several random permutations during training.  

 

Chapter II 

Figure S2 – Daily barn schedule where beige rectangles indicate period where the artificial light was on, red stars indicate 

when the manure belt was activated, and the green rectangles indicate period where the winter garden was accessible. 

 

 

Figure S3 – The black line represents the weekly average of the daily number of dead hens across all pens and days, including 

a total of eight pens (each with 225 hens) and the first 54 days after the transfer to the laying barn (where WOA = week of 
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age). Each point is a specific value for a pen on a specific day. The total number of early deaths was 46 (5 deaths/pen, except 

for three pens which had 6, 9 and 6 deaths respectively). 

 

 

Figure S4 – Pen-level production data (for a total of eight pens), in terms of the average daily number of eggs laid (inside and 

outside the nest boxes) per hen over the first 54 days after the transfer to the laying barn. 

 

Text S1 - More/less explorer chicks’ class  

Focal animals were part of a larger study, which classified chicks as more/less explorative 

(MEXP/LEXP). When chicks were one day of age, a raised platform with blue natural dye was added in 

each pen, so that chicks going onto the raised platform would have their feet painted in blue. We 

added blue dye diluted in water approximately every two hours to prevent the dye from drying out. 

We selected focal animals based on their feet color (blue color: MEXP, no blue color: LEXP) at 7 days 
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of age (this corresponded to when at least 30 animals from each pen had walked onto the raised 

platform. In each pen, 20 focal animals were selected randomly so that half would belong to the MEXP 

class and half to the LEXP class (depending on the number of chicks from each class available, the 

number of animals per class could vary between 6-14). In addition, 20 focal animals were selected as 

a representative sample of the population (hereafter called OTHERS) (balanced randomization 

approach aiming at a same proportion of MEXP as in the overall population of that pen). In parallel to 

the selection process, each selected chick was attributed to a laying pen identity with a balanced 

randomization approach aiming at a uniform representation in each laying pen of the chicks’ 

categories (MEXP, LEXP, OTHERS) and rearing pen identity.  

 

Text S2 - Principal component analysis 

Because not all hens and all weeks have the same amount of observation, to ensure a same weight 

across weeks and individuals while accounting for the variation in movements across time and 

individuals, we included in the PCA each first observation of a week only, for each week and each 

individual. The first three PCA’s principal components had an eigenvalue > 1 [175] and explained 41%, 

20% and resp. 14% of the total variation. We calculated loadings for each variable on a given principal 

component by using the correlations between each original variable and the components [300]. 

Among the variable loadings on the first principal component nine had absolute value > 0.4, and six 

had absolute value > 0.7. Principal component one was characterized by the percentage of duration 

in the top tier, which loaded strongly in opposite direction as the hourly realized travel distance and 

as the number of stay in both litter and lower perch. These loadings reflect general movement 

throughout the barn, with higher score associated with animals that spent more time in the floor, 

lower tier but also transitioned more between these zones. In contrast, PC2 had the greatest positive 

loadings on the number of stay in the nest box tier, which could reflect egg-laying behaviour, while 

PC3 was associated solely with the three WG variables (with loadings > 0.6, all other variables <0.4). 

This further enhances the meaning and validity of the PCA results[301]. We further evaluated the 

validity of the PCA by comparing the loadings of the first three principal components (detailed in Table 

S1 a) with the principal components generated by a PCA based on the full observations set (detailed 

in Table S1 b). 

 

Equation S1 - Bivariate mixed models: 

The linear model for the latent variables of the Bayesian bivariate model is defined as: 𝑋𝛽 + 𝑍𝑢 + 𝑒, 

with 𝑋 and 𝑍 two design matrices relating the fixed and random predictions, respectively, to the data, 

while 𝛽, 𝑢 and 𝑒 (residual) are parameters to estimate. Latter parameters are assumed to follow a 

multivariate normal distribution: 
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(
𝛽
𝑢
𝑒
)~𝑁([

𝛽0
0
0
] , [
𝐵 0 0
0 𝐺 0
0 0 𝑅

])     (S1) 

where the zero off-diagonal matrices imply a priori independence between fixed effects, random 

effects as well as residuals; 𝛽0 and 𝐵 are the fixed effects’ prior means and respectively (co)variances; 

𝐺 the expected variances (𝑉) and covariances (𝐶𝑜𝑣) of the random effects: 

 𝐺𝐻𝑒𝑛𝐼𝐷 =

(

 
 

𝑉𝐾𝐵𝐹 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐼𝑛𝑡) 𝐶𝑜𝑣𝐾𝐵𝐹 𝐼𝑛𝑡,   𝑃𝐶1 𝐼𝑛𝑡 𝐶𝑜𝑣𝐾𝐵𝐹 𝐼𝑛𝑡,   𝑃𝐶1:𝑡𝑖𝑚𝑒 𝐶𝑜𝑣𝐾𝐵𝐹 𝐼𝑛𝑡,   𝑃𝐶1:𝑡𝑖𝑚𝑒2

∗ 𝑉𝑃𝐶1 𝐼𝑛𝑡 𝐶𝑜𝑣𝑃𝐶1 𝐼𝑛𝑡,   𝑃𝐶1:𝑡𝑖𝑚𝑒 𝐶𝑜𝑣𝑃𝐶1 𝐼𝑛𝑡,   𝑃𝐶1:𝑡𝑖𝑚𝑒2

∗ ∗ 𝑉𝑃𝐶1:𝑡𝑖𝑚𝑒 𝐶𝑜𝑣𝑃𝐶1:𝑡𝑖𝑚𝑒,   𝑃𝐶1:𝑡𝑖𝑚𝑒2 
∗ ∗ ∗ 𝑉𝑃𝐶1:𝑡𝑖𝑚𝑒2 )

 
 

,  

𝐺𝑃𝑒𝑛𝐼𝐷 = 𝑉𝐾𝐵𝐹 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐼𝑛𝑡) 

 

and 𝑅 denote the expected variances of the residuals (as health scores do not have repeated measures 

at the individual-level we do not allow the variances to covary, and we further constrain the residual 

variance of health scores to be very close to zero): 

𝑅 = (
𝑉𝑃𝐶1 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 0

0 𝑉𝐾𝐵𝐹 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
).  

 

 

Equation S2 – S3 - Bivariate random effects: 

Random effects and residual output from the Bivariate (movement, KBF severity) model: 

(
𝛽
𝑢
𝑒
)~𝑁 ([

𝛽0
0
0

] , [
𝐵 0 0
0 𝐺 0
0 0 𝑅

])     (S2) 

𝐺𝐻𝑒𝑛𝐼𝐷

= (

213.518 [150.301, 285.914] 0.361 [−3.818, 4.377] 2.491 [−0.908,5.917] −0.867 [−1.734, −0.030]

∗ 1.231 [0.842, 1.640] −0.659 [−0.961, −0.381] 0.092 [0.031, 0.158]

∗ ∗ 0.794 [0.532, 1.091] −0.171 [−0.240, −0.030]

∗ ∗ ∗ 0.047 [0.031,0.064]

) 

𝐺𝑃𝑒𝑛𝐼𝐷 = 2.531 [0.038, 10.16] 

𝑅 = (
0.259 [0.247, 0.273] 0

0 0.001 [0.001, 0.001]
) 

 

 

Random effects and residual output from the Bivariate (movement, feather damage) model: 

(
𝛽
𝑢
𝑒
)~𝑁 ([

𝛽0
0
0

] , [
𝐵 0 0
0 𝐺 0
0 0 𝑅

])     (S3) 

𝐺𝐻𝑒𝑛𝐼𝐷

= (

103.808 [69.970, 143.350] −0.114 [−3.152, 2.849] −1.423 [−3.946, 1.154] 0.453 [−0.163, 1.069]

∗ 1.231 [0.852, 1.653] −0.660 [−0.965, −0.389] 0.093 [0.030, 0.162]

∗ ∗ 0.797 [0.540, 1.105] −0.172 [−0.242, −0.112]

∗ ∗ ∗ 0.047 [0.031, 0.065]

) 

𝐺𝑃𝑒𝑛𝐼𝐷 = 30.59 [0.105,86.08] 

𝑅 = (
0.259 [0.250, 0.272] 0

0 0.001 [0.001, 0.001]
) 
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Table S1 – Summary of the principal component analysis (PCA) based on:  one value per week per hen for the first three 

columns, and the full set of observations for validation purposes, for the last three columns. Loadings with an absolute value 

over 0.4 are highlighted in bold. 

 

 

Table S2 – Variance estimates with their standard deviation, R2 and AIC values for the random intercept (RI) and the two 

random slope models (RS1 and RS2). RS1 is a random slope model where time is linear (hen ID x time), and RS2 includes an 

additional quadratic term of time (hen ID x time2).  

 

 

Table S3 – Estimates, standard errors and p-values for random intercept (RI) and random slope models (RS1 and RS2). RS1 is 

a random slope model where time is linear (hen ID x time), and RS2 includes an additional quadratic term of time (hen ID x 

time2). Significant effects are highlighted in bold. 
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Table S4 – Estimates, 95% credible intervals, and pMCMC for both KBF/PC1 and feather damage/PC1 bivariate models. 

Significant effects are highlighted in bold. 

 

Chapter III 

 

Figure S1 – Illustration of the interval time between two consecutive nestbox tier timing scores, based on the nestbox tier 

timing computed over the morning period 2h-8h (as used in analysis) in (a) and based on the nestbox tier timing computed 

over the following 6h hours (8h - 14h) (b). For the two scenarios, we displayed the interval time over time (left side) and its 

density plot (right side). These visuals are extracted from the full dataset (i.e., not only including days used in subsequent 

analysis)
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Figure S2 – Feed delivery response derived from equation (1) (left side) and from equation (3) (right side), with behavioural responses computed with the true feed delivery timing (blue) and fake feed 

delivery timing (orange and red). The behavioural responses are compared with a density plots (a)(b) the daily mean point estimates over time (c)(d), and the mean hens’ feed delivery response in relation 

to their mean vertical travelled distance during full light (/h) in (e)(f).
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a) 

 
b) 

 
Figure S3 – Illustration of the observed behaviours over time, considering only days selected in the analysis. The timeframe of selected days is given in a). The five spatial behaviours are given in the 

following order (in b) left to right): with boxplots for the vertical travelled distance per indoor hour, the nestbox timing and the feed delivery response behaviours, followed by the two binary behaviours 

represented by the percentage of hens going outside and the percentage of hens staying most of the night-time in the highest tier (i.e. for WG presence and sleeping tier behaviours, respectively). Colours 

highlight the different categories of the selected days (over time ; early and late life stages; cold external temperature and vaccination disturbances). 
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Figure S4. Population-level effects estimates (95% credible interval) of the OFH treatment, the scaled body mass, the scaled keel bone fracture severity score, the number of days in the laying barn since 

transfer on behaviours, and of the more and lees explorer class (in contrast to hens selected randomly), from the multivariate mixed model, which responses are provided in the columns 
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Text 1 – More/less explorer chicks’ class not validated 

We installed one raised platform with blue dye per pen when chicks were one day old, so that more explorer 

chicks would have blue feet. We planned to change the blue dye with a violet dye once at least 30 chicks 

could be classified as “more explorer”, in each of the four rearing pens (600 hens / pen). By testing the dye 

previously on dead hens, we knew that feet colored by the blue dye and then by the violet dye, would have 

been distinguishable to feet colored by the violet dye only. However, there was not enough more explorer 

chicks within a suitable timeframe (< 5 days) to allow for the intermediate class, which we believe was 

needed to reliably differentiate the two classes of interest (more and less explorers). Furthermore, we added 

dye diluted in water approximately every two hours to prevent the dye from drying out, but we noticed on 

some occasions that the dye had already dried out. Therefore, class remained unvalidated, and we included 

it in the variable in our model only to control as we used it to help select individuals. 

 

 

Text 2 - Feed delivery response  

Here, we provide a detailed description of how the feed delivery response was defined. In the present 

manuscript, this behaviour was used to extract a daily behavioural score but note that other time units 

would work the same way. Let 𝑆 be an external stimulus. Let 𝐵 be a behavior of interest under presence of 𝑆 

and which can also occur under the absence of 𝑆. Following a diurnality index defined by [302] (and more 

recently used by [185,303]) we can define a simple descriptor of the tendency of 𝐵 (e.g., number of 

occurrences, time spent) being greater while 𝑆 occurs than while 𝑆 is absent (𝑆𝐴):   

(1) 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =
𝐵𝑆 𝑇𝑆⁄  − 𝐵𝑆𝐴 𝑇𝑆𝐴 ⁄

𝐵𝑆 𝑇𝑆⁄  + 𝐵𝑆𝐴 𝑇𝑆𝐴⁄  
 ,  

where 𝐵𝑆 and 𝐵𝑆𝐴 are the behaviour 𝐵 while 𝑆 occurs and is absent, respectively, and 𝑇𝑆  and 𝑇𝑆𝐴 are the 

corresponding exposure time to 𝑆 and 𝑆𝐴. Hence, when 𝐵 is expressed exclusively in absence of 𝑆, this 

measure takes the value of -1, which changes to +1 when 𝐵 is expressed solely while 𝑆 occurs. Because the 

duration of each period during which 𝑆 occurs can have varying length, the behaviour 𝐵 should be defined at 

a same frequency than 𝑆 (e.g. every minute), so that it is possible to have an aggregated value for behaviour 

𝐵 under S (𝐵𝑠). Note that if the exposure time was the same under presence or absence of 𝑆 for all days, 

then the formula would simplify to (𝐵𝑆  − 𝐵𝑆𝐴)/(𝐵𝑆 + 𝐵𝑆𝐴).  

 

However, when the exposure time is not always the same under presence or absence of 𝑆, then the measure 

will be comparing (subtracting and adding) two ratios that may not share the same statistical properties. 

Therefore, we here propose an alternative but similar measure, which compares 𝐵𝑆 with 𝑁 behavioural 

scores 𝐵𝑆𝐴_∗, each associated to a random exposure time 𝑇𝑆𝐴_∗ that equals 𝑇𝑆 : 

(2) 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =
1

𝑁
∑  (

𝐵𝑆 − 𝐵𝑆𝐴_𝑟

𝐵𝑆 + 𝐵𝑆𝐴_𝑟 
)𝑁

𝑟=0  . 

More generally, when 𝑆 occurs several times over the day, for each such occurrences (called a period p, 

included in a set P), the associated behavioural score 𝐵𝑆𝑝 can be compared with N behavioural scores 𝐵𝑆𝑝𝐴_∗, 

each associated to a random exposure time 𝑇𝑆𝑝𝐴_∗ that equals 𝑇𝑆𝑝 : 

(3) 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =  
1

|𝑃|
∑ (

1

𝑁
∑  (

𝐵𝑆  − 𝐵𝑆𝐴_𝑟

𝐵𝑆  + 𝐵𝑆𝐴_𝑟 
)𝑁

𝑟=0 )𝑝∈𝑃  . 

Note that with this definition, because each period when S occurs is used separately in the formula, one could 

also extract meta-data associated to each period and identify drivers of this behaviour. For example, using the 
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time of the day associated to each period, we could evaluate if the behavioural tendency is in average greater 

in the morning than later in the day. Based on this last behavioural tendency measure, we defined the feed 

delivery response, explained in more detail in the main manuscript. Comparison between equation (1) and 

equation (3) is illustrated in the bellow Figure S1, where blue represent the feed delivery response with the 

real timing, and red and orange represent the feed delivery response based on a feed delivery timing with a 

forward and backward push of 20mn in time, respectively. Both indices differentiate with what is expected by 

chance, especially the one from equation (3). To control results from behavioural syndrome we further 

visualised the mean hens’ feed delivery response in relation to their mean vertical travelled distance during 

full light (/h) in Figure S1 c.  

Additional details on the computation  

We did not consider the first and last period of feed delivery (02:30 h and 16:15 h) to avoid overlap with 

behaviour related to the night. Because hens that are in the WG might not hear the sound associated to the 

delivery of fresh feed to a same extent as hens that are inside, only periods where a hen was not in the WG 

were included.  

 

 

context movement behaviour 

between-individual 

variance 

within-individual 

variance trait mean 

cold external 

temperature sleeping tier 5.457 [2.323, 12.761] 4.730 [4.432, 5.484] 0.696 

across context sleeping tier 3.250 [1.456, 4.953] 4.676 [4.420, 5.293] 0.690 

over time sleeping tier 4.414 [3.021, 5.541] 4.784 [4.454, 5.342] 0.702 

late life stage sleeping tier 17.872 [7.716, 162.859] 4.121 [4.021, 4.515] 0.586 

early life stage sleeping tier 5.797 [2.471, 11.296] 4.642 [4.334, 5.395] 0.686 

vaccination 

disturbance sleeping tier 4.794 [1.825, 15.130] 4.830 [4.529, 5.708] 0.707 

over time WG presence 4.301 [3.049, 5.361] 4.377 [4.147, 4.654] 0.647 

across context WG presence 1.329 [0.479, 1.855] 4.054 [4.002, 4.185] 0.558 

early life stage WG presence 6.341 [2.779, 9.559] 4.234 [4.081, 4.642] 0.618 

late life stage WG presence 6.840 [2.639, 21.463] 4.687 [4.375, 5.271] 0.691 

cold external 

temperature WG presence 5.107 [2.042, 7.220] 4.170 [4.030, 4.486] 0.601 

vaccination 

disturbance WG presence 1.826 [0.513, 2.656] 4.208 [4.058, 4.472] 0.611 

late life stage feed delivery response 0.033 [0.027, 0.040] 0.057 [0.050, 0.066] 0.251 

vaccination 

disturbance feed delivery response 0.015 [0.012, 0.018] 0.050 [0.044, 0.057] 0.201 

across context feed delivery response 0.019 [0.015, 0.022] 0.058 [0.051, 0.065] 0.208 
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cold external 

temperature feed delivery response 0.032 [0.027, 0.039] 0.044 [0.038, 0.051] 0.229 

early life stage feed delivery response 0.027 [0.023, 0.032] 0.048 [0.042, 0.055] 0.207 

over time feed delivery response 0.029 [0.025, 0.032] 0.057 [0.054, 0.060] 0.207 

vaccination 

disturbance nestbox tier timing 0.024 [0.018, 0.031] 0.018 [0.012, 0.024] 4.486 

cold external 

temperature nestbox tier timing 0.028 [0.023, 0.032] 0.011 [0.008, 0.015] 4.242 

early life stage nestbox tier timing 0.024 [0.019, 0.028] 0.011 [0.007, 0.014] 4.366 

late life stage nestbox tier timing 0.023 [0.016, 0.032] 0.016 [0.010, 0.024] 5.329 

across context nestbox tier timing 0.017 [0.013, 0.023] 0.020 [0.015, 0.025] 4.629 

over time nestbox tier timing 0.023 [0.020, 0.026] 0.021 [0.019, 0.023] 4.498 

vaccination 

disturbance 

vertical travelled 

distance 1.624 [1.402, 1.872] 1.472 [1.294, 1.691] 4.312 

cold external 

temperature 

vertical travelled 

distance 2.487 [2.242, 2.767] 0.911 [0.805, 1.044] 4.250 

early life stage 

vertical travelled 

distance 2.100 [1.908, 2.310] 0.571 [0.500, 0.653] 3.883 

late life stage 

vertical travelled 

distance 1.272 [1.155, 1.407] 0.356 [0.316, 0.408] 3.421 

across context 

vertical travelled 

distance 1.412 [1.236, 1.663] 1.535 [1.380, 1.723] 3.867 

Table S1 - Each behavioural trait mean, within-, and among-individual variance within each context, over time and across context.  
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Chapter IV 

 

Figure S1 - Two latero-lateral radiographs, with a KBF severity score of 0 in a) and of 44 in b). 
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Figure S2 - Boxplots of the severity of KBF for each timestamp and dataset (Dataset1: lightest grey, Dataset2: 

darker grey, Dataset3: middle grey). 

 

 

Figure S3 – Latent expectations conditional on the covariates, for the vertical travelled distance, mean-zone-

crossed, uneveness, proportion of time spent in the top tier, and KBF severity trend processes. The KBF 

severity trend process for the four movement behaviour models were similar, and we displayed the one from 

the model with the mean-zone-crossed. 

 

Text S1 

The first dataset (Dataset1) used was published by Rufener et al. in 2019 [10], where they tracked 60 Lohmann 

Brown (LB) and 60 Lohmann Selected Leghorn (LSL) hens using an infrared tracking system. Hens in a pen were 

not single-strain. All dataset tracked over six days previous to assessing the keel bone. Because the two hybrids 

exhibited different space-use behaviours, the authors analysed the hybrids separately and suggested the 

differences could have been caused by a higher susceptibility to stress (due to being part of a phenotypic 

minority) by LSL hens leading to a more uneven usage of the zones. Therefore, we only included LB hens, with 

on average 10 ± 1.73 observations per hen (4-11 observations / hen, total observations: 593).  

We used for the second dataset (Dataset2) data from a larger study (chapter V), where we tracked 

227 Dekalb white hens with a low-frequency tracking system that we previously validated and described in 

[173]. Raw data were processed via the described ML-method, that uses a classifier trained to detected false 

registration. Half of the hens hatched-on-farm and the other half hatched in a commercial hatchery. After 

excluding hens that did not have enough observations for subsequent analysis (i.e. with less than three 

observations), we were left with 153 hens, mostly because of another study that collected epigenetic samples 

on focal hens. Hens from this dataset had on average 4 ± 0.76 observations (3-5 observations /hen, total 

observations: 658). 
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Finally, we used a third dataset (Dataset3) first presented in the current study, where we tracked 169 

Dekalb white hens, with the same tracking system as in Dataset2 and processed the data with the SD-method 

[173], i.e. by filtering all transitions of short duration (less than 1 min). We selected randomly half of the focal 

hens from each pen and relocated them in a new identical pen three times throughout the production period, 

while the other half staid in their home pen during the entire laying phase. After excluding hens that had less 

than three observations, we were left with 163 hens (4 hens died, 2 tags were misfunctioning). Hens from this 

dataset had on average 4 ± 0.28 days tracked (3-4 observations /hen, total observations: 638). 

 

Text S2 

For each model we estimated a trend and a dynamic fluctuation for the two processes (the KBF and the spatial 

behaviour). Specification of such multivariate latent process model is described by Driver and Tomasik 

(2022)[227] but we give some details below: 

Trend processes 

We accounted for the trend of the behaviour and the KBF severity, by incorporating random initial intercepts 

and random slopes, as well as an estimated auto-effect term for the slopes that varied by process. We allowed 

varying initial intercepts across hens, by incorporating two latent “trend” processes (called “BHV” and “KBF”) 

each measured with one manifest indicator (the behaviour and the KBF severity score) and estimated their 

initial latent covariance matrix parameters (T0VAR). We estimated their auto-regression effects of time and 

set their cross-regression effects to 0. To incorporate individual variation in the trend, we specified the 

continuous intercept parameter as random-effects by incorporating two additional latent “continuous 

intercept” processes (called “cintBHV” and “cintKBF”) influencing the respective original latent processes 

(“BHV” and “KBF”, respectively) with a cross-regression effect of 1 and by estimating the initial latent 

covariance matrix parameters.  

Dynamics processes 

To estimate the fluctuations, or dynamics, around the trends, we incorporated two additional latent 

“dynamics” processes, called “dynBHV” and “dynKBF”. We estimated the auto- and cross-regression effects 

of these processes (with system noise) to estimate the speed and dynamic of the fluctuation, respectively. We 

did not allow these two processes to interact or covary with the trend processes and therefore fixed adequate 

elements from the temporal effects and the initial latent covariances to zero. The dynamics processes, dynBHV 

and dynKBF, are measured with one manifest indicator, the behaviour and the KBF severity score, though 

account only for the unpredictable change in the observation (i.e. what is not accounted by the trend 

processes). In other words, the dynamic processes solely estimate the fluctuations around the trend without 

interacting with the trend. 
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depth  
(m) width (m) 

number / 
pen 

prop. time 
accessible 

Space  
(𝑚2) 

normalized 
space 

WG 4.050 2.300 1.000 0.400 3.726 0.110 

litterred floor 7.000 2.300 1.000 1.000 16.100 0.476 

lower tier 2.530 2.300 1.000 1.000 5.819 0.172 

nestbox 1.130 0.510 4.000 0.933 2.152 0.064 

balcony 2.300 0.320 2.000 1.000 1.472 0.044 

top tier 1.970 2.300 1.000 1.000 4.531 0.134 

Table S1 – Characteristics of the laying barn, including the depth (m), the width (m), the number of such 

element per pen, the proportion of time accessible, the space (𝑚2), and the normalized space. Note that the 

nestbox tier is composed of the nestboxes and balconies 

 
 

VTD MZC unevenness PropZ5 KBF severity 

Dataset1 3.42 ±2.17 1.04 ±0.07 1.01 ±0.39 0.30 ±0.31 40.34 ±32.97 

Dataset2 3.95 ±1.59 1.08 ±0.09 0.78 ±0.36 0.29 ±0.25 21.03 ±18.03 

Dataset3 4.11 ±1.51 
 

0.71 ±0.32 0.27 ±0.22 10.21 ±10.40 

All datasets 3.84 ±1.79 1.06 ±0.08 0.83 ±0.38 0.29 ±0.26 23.44 ±25.34 

Table S2 – Mean and standard deviation of the four spatial behaviour and the KBF severity score 

 

Chapter V 

 

S1 Fig. Eggshell temperature over time. We monitored 30 OFH eggs every six hours, for a total of 7 

timestamps, until a significant proportion of the chicks hatched. 
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S2 Fig. Parameter estimates of the sigmoid curve per pen. Parameter a may be viewed as an indication of the 

level at which egg production stabilise. Parameter m as an indication of the time point at the inflection point 

of the curve. These estimates of the curves fitting the first 60 days and the full period in the laying barn are 

given in (b) and (d), respectively.  

 

Time point Pen : 1.1.1 Pen : 1.1.2 Pen : 1.1.3 

1 june 13h 1 0 0 

1 june 18h 1 0 0 

1 june-2 june 00h 1 0 0 

2 june 6h 2 1 1 

2 june 12h 8 26 16 

2 june 18h  -  -  - 

2 june-3 june 00h ~15% ~40% ~25% 

3 june 6h ~75% ~80% ~80% 

3 june 12h >80% >80% >80% 

3 june 18h >80% >80% >80% 

3 june-4 june 00h >80% >80% >80% 

4 june 6h >80% >80% >80% 

S1 Table. Hatching rate over time for the OFH chicks. 
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 Feather damage Body mass (g) KBF severity 

DOA OFH STAN OFH STAN OFH STAN 

7   65.54 

[64.41, 66.67] 

64.70  

[63.58, 65.82] 

  

118   1170.91 

[1158.12, 1183.71] 

1161.00  

[1148.06, 1173.94] 

  

173   1686.78 

[1670.18, 1703.39] 

1673.76  

[1656.97, 1690.54] 

  

215   1792.27 

[1772.30, 1812.25] 

1777.06  

[1756.72, 1797.40] 

17.70  

[14.70, 20.80] 

13.20  

[10.1, 16.3] 

243 9.44  

[6.80, 12.10] 

8.49  

[5.84, 11.10] 

1824.61 

[1795.20, 1854.02] 

1801.59  

[1771.95, 1831.23 

21.30  

[18.20, 24.30] 

16.70  

[13.70, 19.80] 

313 17.43  

[14.79, 20.10] 

16.48  

[13.82, 19.10] 

1884.65 

[1848.58, 1920.71] 

1856.46  

[1820.12, 1892.80] 

29.60  

[26.60, 32.70] 

25.10  

[22.00, 28.20] 

417 34.12  

[31.46, 36.80] 

33.17  

[30.50, 35.80] 

1905.84 

[1877.94, 1933.74] 

1884.41  

[1856.34, 1912.49] 

39.50  

[36.40 42.60] 

35.00  

[31.90, 38.10]  

S2 Table. Estimated marginal means and 95% confidence intervals for welfare indicators.  

 

  severity FeatherDamage weight_norm 

Predictors Estimates p Estimates p Estimates p 

(Intercept) 13.29 *** 

(10.15 – 16.43) 

<0.001 8.88 *** 

(6.53 – 11.24) 

<0.001 0.51 *** 

(0.47 – 0.54) 

<0.001 

CLASS [LEXP] 0.86  

(-4.08 – 5.80) 

0.732 -1.97  

(-5.10 – 1.16) 

0.217 -0.01  

(-0.07 – 0.04) 

0.677 

CLASS [MEXP] -1.17  

(-5.67 – 3.33) 

0.610 0.79  

(-2.07 – 3.64) 

0.588 0.01  

(-0.04 – 0.06) 

0.677 

date2021-02-01 3.56 ** 

(1.39 – 5.73) 

0.001 
  

-0.05 *** 

(-0.08 – -0.02) 

<0.001 

date2021-04-12 11.92 *** 

(9.71 – 14.14) 

<0.001 7.99 *** 

(6.48 – 9.50) 

<0.001 0.08 *** 

(0.06 – 0.11) 

<0.001 

date2021-07-25 21.77 *** 

(19.48 – 24.07) 

<0.001 24.68 *** 

(23.10 – 26.25) 

<0.001 -0.05 *** 

(-0.08 – -0.03) 

<0.001 
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Treatment [OFH] 4.53 * 

(0.99 – 8.07) 

0.012 0.95  

(-1.95 – 3.85) 

0.519 0.03  

(-0.01 – 0.06) 

0.166 

date2020-09-29 
    

-0.01  

(-0.03 – 0.02) 

0.584 

date2020-11-23 
    

0.05 *** 

(0.03 – 0.08) 

<0.001 

date2021-01-04 
    

-0.06 *** 

(-0.09 – -0.03) 

<0.001 

Random Effects 

σ2 101.10 49.72 0.01 

τ00 125.66 HenID 43.07 HenID:PenID 0.02 HenID 

 
  1.73 PenID   

ICC 0.55 0.47 0.58 

N 194 HenID 194 HenID 231 HenID 

 
  8 PenID   

Observations 669 506 1121 

Marginal R2 / Conditional R2 0.244 / 0.663 0.522 / 0.749 0.090 / 0.619 

* p<0.05   ** p<0.01   *** p<0.001 

 

S3 Table. Model outputs for welfare indicators. 
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month 

proportion of time spent in 

top tier (exp()) 

proportion of time spent in 

litter floor 

proportion of time spent in 

nestbox tier (exp()) WG presence (exp()) vertical travelled distance 

mid-nestbox tier usage 

(exp()) 

1 1.49 [1.12, 2.05], p=0.01 
  

0.50 [0.17, 1.22], p=0.13 
  

2 1.67 [1.14, 2.35], p=0.00 -0.07 [-0.11, -0.02], p=0.01 0.96 [0.87, 1.08], p=0.50 0.98 [0.40, 2.37], p=0.96 -10.62 [-16.13, -4.35], p=0.00 0.96 [0.92, 1.00], p=0.02 

3 1.38 [0.90, 2.06], p=0.12 -0.05 [-0.11, -0.00], p=0.04 0.99 [0.87, 1.12], p=0.93 1.03 [0.35, 3.10], p=0.95 -9.19 [-16.13, -2.50], p=0.01 0.99 [0.95, 1.04], p=0.77 

4 1.26 [0.86, 2.02], p=0.26 -0.04 [-0.09, 0.01], p=0.18 0.99 [0.87, 1.13], p=0.86 0.67 [0.23, 1.80], p=0.46 -6.53 [-14.38, 1.07], p=0.10 1.02 [0.97, 1.08], p=0.36 

5 1.44 [0.89, 2.27], p=0.10 -0.04 [-0.09, 0.01], p=0.11 1.04 [0.90, 1.23], p=0.64 0.55 [0.17, 1.87], p=0.36 -4.08 [-11.11, 3.22], p=0.30 1.02 [0.96, 1.09], p=0.60 

6 1.20 [0.82, 1.83], p=0.28 -0.04 [-0.09, 0.01], p=0.14 1.06 [0.91, 1.24], p=0.48 0.57 [0.24, 1.34], p=0.19 -3.87 [-11.33, 3.05], p=0.31 1.01 [0.97, 1.06], p=0.60 

7 1.30 [0.90, 1.90], p=0.20 -0.03 [-0.08, 0.02], p=0.28 1.00 [0.89, 1.14], p=1.00 0.73 [0.33, 1.63], p=0.47 -2.90 [-9.40, 4.00], p=0.41 1.00 [0.95, 1.06], p=0.90 

8 1.01 [0.63, 1.46], p=0.97 0.00 [-0.05, 0.06], p=0.90 0.99 [0.87, 1.12], p=0.88 1.05 [0.41, 3.00], p=0.88 1.22 [-5.44, 8.13], p=0.73 1.01 [0.96, 1.07], p=0.64 

9 1.20 [0.77, 1.84], p=0.40 -0.01 [-0.06, 0.04], p=0.76 0.94 [0.83, 1.05], p=0.29 0.74 [0.25, 1.78], p=0.55 -0.69 [-7.22, 5.49], p=0.82 0.99 [0.94, 1.04], p=0.64 

10 1.03 [0.70, 1.61], p=0.89 -0.01 [-0.05, 0.04], p=0.82 0.94 [0.85, 1.04], p=0.27 0.13 [0.01, 1.07], p=0.07 -0.38 [-5.46, 5.55], p=0.93 1.00 [0.95, 1.05], p=0.97 

 

S4 Table. Bootstrapped estimates and p-values for the model fitting spatial behaviours. * 

 

 

*For simplicity, we summarize here again the statistical models used. The proportion of the indoor time spent on the top and nestbox tiers were both modelled with 

a beta family. The proportion of the indoor time spent on the litter floor was modelled with a gaussian family for months 2-10 and with a binomial family to account 

for the excess of zeros (19.7% of observations) for month 1 (bootstrapped outputs given in main text to avoid confusion due to the different family distribution used: 

0.30 [0.12, 0.67], p=0.0). The WG presence was modelled with a binomial family and the nestbox tier usage with a gamma family (log-link function). The vertical 

travelled distance was modelled with a gaussian family for months 2-10 and with a zero-inflated Poisson model with the rescaled number of day in the barn as zero-

inflation parameter for month 1 (bootstrapped outputs given in main text to avoid confusion due to the different family distribution used: 0.69 [0.59, 0.82], p<0.001). 

The significant estimates are highlighted in bold (p<0.05).
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