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Abstract

Lattice gauge theories in three spacetime dimensions are relevant for condensed matter
physics, but also as a testbed for ideas in particle physics. Here we focus on pure gauge theories
without matter, which, especially in the Abelian case, are often thought to be less interesting; in
this work we hope to demonstrate that they display a very rich physics.

The first theory that we consider is the non-compact integer-valued gauge theory whose
gauge group is Z. This is relevant for the study of vortices, topological excitations which are
found in superfluids. We consider the problem of their construction in a fully quantum theory.
Our novel result is the numerical calculation of a set of critical exponents associated to the
vortices as well as the demonstration that they obey a simple scaling relation.

We then consider the compact gauge theory whose gauge group is U(1). We review the
well-known literature on this topic, as well as the celebrated proof of confinement in this theory.
Our novel contribution is the numerical calculation of its equation of state at finite temperature.
It allows us to probe the spectrum of the theory and discuss some of the peculiar features of
confinement in this theory, such as the existence of inequivalent length scales as well as its
effective description as a scalar theory.

Finally, we consider a novel modification of the U(1) gauge theory which can be constructed
by introducing a topological angle α. This is most natural in the Hamiltonian formalism. We
compute several quantities in the case α = π, and show that this theory displays quite unusual
properties for a gauge theory, such as a broken Z2 symmetry in the continuum limit as well as
fractionalized flux strings.
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Introduction

This doctoral thesis comes as the completion of almost four years of research work. Over the
years I’ve taken part in several research projects, all at the more theoretical side of lattice
field theory, at the interface between particle and condensed matter physics. There are many
philosophies as to how to write a thesis – here I have chosen a subset made of three research
works which share a common thread. Each forms one of the three chapters in this thesis. What
is their common denominator? First of all, they are all Abelian gauge theories, as is obvious
from the title of this thesis. They are also pure gauge theories, i.e. without matter fields. This
choice may seem strange – does anything interesting happen in this case? We hope to convince
the reader that indeed, even such apparently simple theories display very rich physics.

Another aspect of the common thread that is clear from the title is that all three theories
are in three spacetime dimension. A remarkable feature of quantum field theories is that they
have some notion of their own range of validity. Via their renormalization group flow, certain
theories tell us that they shouldn’t be taken too seriously as interacting theories, that is they
are only valid at low energy. This happens generically in high dimensions. But how high is
high? For gauge theories, the critical dimension is four: gauge theories above four dimensions
are free. Thus it is quite natural to study quantum field theories in low dimensions. However,
two spacetime dimensions is a case where very special techniques can be applied. While four
dimensions is most interesting for particle physics, three dimensions is an interesting “in between”
where no special techniques can be applied, while still being relevant both for particle physics
(as toy models) as well as for condensed matter physics.

We can also follow the common thread down its more subtler aspects. In all three chapters,
we will see that a crucial role will be played by topology and topological excitations. Even
though they are subtle non-perturbative effects, they can dramatically alter the properties of
the theories.

Even among Abelian gauge theories, I have chosen to only discuss discuss “standard” quantum
field theories with an infinite-dimensional Hilbert space. This leaves out for example ZN gauge
theories, as well as quantum link models. We also do not discuss topological quantum field
theories such as Chern-Simons theory. This does not leave many options. In Chapter 1 I discuss
the gauge theory with gauge group Z, which is relevant for the study of vortices in superfluids.
In Chapter 2 I discuss the gauge theory with gauge group U(1), which is exceptionally well-
understood at the analytical level. In the first two chapters, it should become apparent why
there’s no chapter devoted to the gauge theory with gauge group R. Finally, in the third chapter
I discuss another gauge theory with gauge group U(1), which has been modified to accomodate
a novel type of topological angle.
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1

Vortices in the O(2) model

This chapter is based on:
[1] A. Mariani, “Vortex condensate and critical exponents in the (2+1)-dimensional O(2) model”, Phys.
Rev. B 108, 134520 (2023), arXiv:2305.13156.

When a gas of Helium 4 is lowered below the critical temperature of 2.17K, it exhibits a
phase transition to a state where it flows with no viscosity. Such a fluid state is known as a
superfluid, and it displays all sorts of funny properties, such as creeping along walls. When
rotation is imparted to a superfluid, rather than rotating as a whole, it prefers to form a lattice
of quantized vortices which absorb the angular momentum. Both the phenomenology and theory
of superfluidity are very rich and here we can only refer the reader to more specialized texts [2].

Superfluidity is a quantum phenomenon which can be intuitively understood as a sort of
Bose-Einstein condensation [2]. Roughly speaking, below a certain temperature, the Helium
4 atoms (which are bosons) undergo Bose-Einstein condensation to a macroscopic state. Here
they all share the same quantum state, whose wavefunction serves as an order parameter of the
transition. In the spirit of Landau-Ginzburg effective theory [3], one then writes down a theory
for a complex-valued field Φ, with Lagrangian

L =
1

2
∂µΦ∂µΦ

∗ +
1

4!
λ
(
|Φ|2 − v2

)2
. (1.1)

This theory includes both a quadratic and a quartic term, which may be thought to effectively
encapsulate the interparticle interactions. This Lagrangian has a global O(2) symmetry, which
is related to particle number conservation.

In this chapter, as we will see in more detail in later sections, we are interested in the
construction of fully quantum topological excitations. In order to study the quantum theory,
one then considers the path integral or partition function,

Z =

∫
DΦ exp

(
−
∫
d3xL

)
. (1.2)

The quantum theory defined by eqs.(1.1) and (1.2) may be interpreted in two different ways:

1. In one interpretation, one studies the statistical mechanics of a three-dimensional system
at thermal equilibrium. In this case L plays the role of a classical Hamilton function,
and the inverse temperature “β” has been absorbed into the couplings. We then study
the system as the equilibrium temperature is varied. In this case, the object of study is
therefore a three-dimensional superfluid and its vortex lines. In this interpretation, the
model is invariant under space rotations and translations.
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1.1. CLASSICAL VORTICES IN THE O(2) MODEL

2. In a different interpretation, the partition function (1.2) describes the Euclidean (Wick-
rotated) action of a (2 + 1)-dimensional quantum field theory. In this case L is the
Lagrangian of a quantum field theory at zero temperature. By varying the couplings, we
then study the quantum phase transition of a two-dimensional system. Here the vortices
are point-like objects living in two space dimensions. In this interpretation, the rotational
symmetry of the model is interpreted as the Euclidean version of Lorentz invariance.

In particular, both systems admit experimental realizations consistent with a description given
by the Lagrangian (1.1). In the statistical mechanics interpretation, this corresponds to Helium
4 near the λ-transition, and its associated vortex lines [3–6], while for the quantum field theory
interpretation the relevant system is a Bose gas in an optical lattice near the superfluid-insulator
transition [7–9], where relativity can be emergent. In what follows, we will reference both the
quantum field theory and the statistical mechanics intepretations.

At this point, the reader may have many questions. For one, this thesis is ostensibly about
gauge theories, but the theory we discussed, eq. (1.1), is a scalar theory. As we will see in
Section 1.2, in three spacetime dimensions scalar theories are exactly dual to gauge theories.
The relevant theory has gauge group Z. In fact, working in the dual representation turns out to
be advantageous to discuss topological excitations such as vortices. Moreover, to discuss the
quantum properties of vortices, it is also important to clearly establish their classical (as well as
semiclassical) properties, so that they can be contrasted properly. This we do in Section 1.1.
Then, in Section 1.4, we discuss the construction of the vortex operator in the lattice theory and
finally in Section 1.6 we discuss the numerical simulations and our results.

Let us mention that the work presented in this chapter is closely related to [10] (on which the
thesis [11] is based) where the vortex mass is computed with the same techniques. The numerical
study of topological excitations using this construction was initiated in four dimensions in [12]
and further studied in [13].

1.1 Classical vortices in the O(2) model

Topological excitations are a phenomenon which exists both at the classical as well as at the
quantum level. In fact, it is a phenomenon first observed classically. The propagation of waves in
a medium can be modelled via appropriate partial differential equations. If the equation is linear,
it is not hard to superimpose various solutions to create localized stable wavepackets which travel
independently from each other. Remarkably, also some nonlinear differential equations admit
so-called “soliton” solutions, which are stable and localized [14]. Their existence and stability
can often be linked to “topological properties”, as we will see in more detail in this chapter. The
study of classical topological excitations has led to a very elegant mathematical theory, which for
example allows exact analytical solutions for many scalar field theories in 1 + 1 dimensions [14].

In our case, we look for classical vortex solutions of the equations of motion given by the
Lagrangian eq. (1.1). In particular we can look for a static solution of the form

Φ(x⃗) = f(r)eiθ , (1.3)

in polar coordinates. The resulting differential equation for f(r) can be solved numerically
[11], and the resulting Φ(x⃗) is pictured in Fig. 1.1. Since a numerical solution can only be
performed in finite volume, appropriate boundary conditions need to be applied. Here C-periodic
boundaries were chosen, where a charge conjugation transformation is performed when crossing
a boundary. We will discuss this choice in more depth in Section 1.5. For more details on
the numerical solution as well pictures of solutions with different vortex number, the reader is
encouraged to consult [11].

10



1.1. CLASSICAL VORTICES IN THE O(2) MODEL
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Figure 1.1: Classical static vortex solution of the (2+1)-d U(1) scalar field theory with C-periodic
boundary conditions. The arrows represent the complex field Φ(x⃗). The right side of the figure
is the C-periodic copy of the left side. Reprinted from [10].

The word “topological” is used in physics in many different senses. Here the function Φ(x⃗)
is “topologically non-trivial” in the sense that it has non-zero winding number. What does
this mean? Suppose that we fix a radius r. With this choice, Φ is then a map Φ : S1 → S1,
where the first S1 refers to the spatial circle defined by fixing r, and the second S1 refers to
the phase of the complex field. Generally speaking the maps Sn → X are classified by the
homotopy group πn(X) [15]. All maps which share the same element of the homotopy group
can be continuously deformed into each other, but maps in different homotopy classes cannot be
continuously deformed into each other. In this case, the relevant homotopy group is π1(S1) ∼= Z.
Therefore to each map S1 → S1 we can assign an integer w ∈ π1(S

1) ∼= Z, called the winding
number. In the case of our classical solution, eq. (1.3), the winding number is w = 1. Therefore
this solution is topologically non-trivial, because it cannot be deformed into a map in the trivial
homotopy class with winding number w = 0. More generally, an example of a map with arbitrary
winding number w is θ → eiwθ. We will also refer to the winding number as the “vortex number”.

Note that eq. (1.3) describes a single vortex. In fact since in principle a solution of the
equations of motion is a map Φ : R2 → C, its winding number depends on which subset S1 ⊂ R2

we pick. In the above discussion, we picked an arbitrary circle ∼= S1 which encircles the origin;
but for any other point of the plane, there is a sufficiently small circle S1 such that Φ restricted
to this circle has zero winding number. Therefore, the above configuration describes a single
vortex with vortex number 1 located at the origin. By examining the winding number of a
configuration Φ for various choices of circles S1 ⊂ R2 around any point x⃗0, we can detect whether
there is a vortex at x⃗0.

More generally, we can detect various other kinds of topological excitations by restricting a
solution to a subset, much like we did in this case. Sometimes, it is also appropriate to compactify
space or spacetime (i.e. R2 → S2), for example when the boundary conditions require that the
field takes the same value at all points at infinity. Alternatively, if one insists that the solution
of the equations of motion has finite energy, then it should have zero potential at infinity. The
set of zeros of the potential forms the vacuum manifold V . Then depending on whether the field
is required to be constant at infinity or not, one can consider either the sphere at infinity Sd−1

or compactify space(time) to Sd. The appropriate homotopy groups to consider are then πd(V)

11



1.2. QUANTUM THEORY

or πd−1(V). This should make it clear that even in the simple case of scalar theories, there are
many ways of detecting topologically non-trivial configurations. In fact since homotopy theory is
well-developed mathematically, we have chosen subsets homeomorphic to spheres; but in general
one can have more complicated topology. The terminology for topological excitations can vary
depending on the context. Generally, they are named according to their codimension (a set of
dimension k embedded in a d-dimensional space has codimension d− k). For example, vortices
are point-like in two dimensions but string-like in three dimensions (i.e. “vortex lines”). One calls
excitations of codimension one domain walls (or kinks), those of codimension two vortices (or
cosmic strings), those of codimension three monopoles, and those of codimension four textures.
For scalar theories, the simplest classification of topological defects follows from homotopy: in
particular, defects of codimension k are associated with non-trivial homotopy group πk−1 [14,
16].

Given the Lagrangian eq. (1.1), we can obtain its Hamiltonian via a standard Legendre
transformation, and therefore compute the energy of a configuration. On a spatial box of size
L× L, this turns out to be [11]

E ∼ πv2 log
L

L0
. (1.4)

The energy of this configuration is therefore logarithmically divergent with the spatial volume
and, in particular, it is infinite in the infinite volume limit. The fact that the vortex in this
theory has infinite mass is actually not at all surprising: a large class of actions in dimension
higher than 1 + 1 only admits topological excitations with infinite energy. This is known as
“Derrick’s theorem” [14, 17–19].

The fact that the vortices have infinite energy would naively seem to forbid their existence
in the real world. An important distinction to make is that eq. (1.4) applies to the vortex
configuration eq. (1.3), which describes a single vortex and therefore in particular a configuration
with overall non-zero vortex number. On the other hand, vortex configurations with overall
zero vortex number, which are formed by pairs of vortices and antivortices, still have finite
energy in the infinite volume limit. Such configurations are therefore “naturally occurring”,
and studying the system without accounting for them would give incorrect results. On the
other hand, configurations with overall non-zero vortex number have infinite mass in the infinite
volume and therefore do not occur naturally. However, they do occur experimentally if they are
somehow forced into the system. In fact, if one imparts an angular momentum to a superfluid,
it prefers to absorb it by producing a configuration of vortices with vorticity pointing in the
same direction to match the imparted angular momentum. The resulting vortex configuration
has overall non-zero vortex number. This is the type of vortex configurations that we study in
this chapter. As we will see, in the quantum theory configurations with different overall vortex
number live in different superselection sectors of the Hilbert space. Working in different sectors
corresponds to different experimental situations.

1.2 Quantum theory

In the previous section, we discussed the classical vortices in the O(2) model. But since, as
we have seen, superfluidity is a quantum phenomenon it is quite natural to ask what are
the quantum properties of topological excitations. This is a difficult topic to study because
topological excitations are often a global phenomenon involving the collective dynamics of the
field configuration. For example, one can detect the presence of a non-zero vortex number
by computing the winding number of the field configuration around an arbitrary closed loop
arbitrarily far away from the vortex. At the quantum level, such topological excitations cannot

12



1.2. QUANTUM THEORY

be obtained by a small perturbation around the vacuum and are therefore, generally speaking, a
strongly-coupled phenomenon. One can attempt a semiclassical approach instead, where one
expands the perturbative series around the non-trivial vacuum of a topological excitation [19,
20]. We give an example of such a calculation in Chapter 2. But this is technically difficult,
especially because analytical soliton solutions are hard to come by in dimension higher than
1 + 1. In general, it is even difficult to understand what one means by topological excitations in
a quantum theory. In the classical case, we could identify topological excitations by looking at
the homotopy class of the solution of the equation of motion. But in the quantum theory, we
instead integrate over all possible fields (even discontinuous ones, for which homotopy is not
defined) and it is not clear how to translate the previous argument. The situation becomes even
more complicated when we discretize the spacetime into a lattice. In this section, we discuss the
non-perturbative construction of the partition function of the quantum O(2) model. Then in
Section 1.3 we discuss the duality transformation in this model, which will be a crucial ingredient
for the non-perturbative construction of the quantum vortices in Section 1.4.

An important feature of quantum field theories is that the coupling constants are not
constants, but rather depend on the energy scale. The change in the couplings is described
by the renormalization group (RG) flow. For the O(2) model in 2 + 1 dimensions with action
eq. (1.1) and partition function eq. (1.2) the RG flow can be computed perturbatively using
the ϵ expansion [21, 22]. It predicts two RG fixed points, a trivial Gaussian fixed point and a
non-trivial “Wilson-Fisher” fixed point [23]. This last fixed point is the one of interest in our
case. Near the Wilson-Fisher fixed point, the coupling λ is irrelevant. This means that for any
value of λ there is a value of v2 (depending on λ) which places the theory on the critical surface.
If we are interested in universal quantities, we can fix an arbitrary value of λ and then drive the
system to the Wilson-Fisher fixed point by tuning v2. Many reasonable choices of λ are possible.
For example, one can choose the λ at which corrections to scaling are smallest [24]. In this work,
we choose the λ which leads to the simplest theory, i.e. λ = +∞. This forces the potential term
to zero, which means that the absolute value of the scalar field is now fixed, |Φ| ≡ v. Thus the
scalar field may be written in terms of an angular variable φ such that Φ = v exp(iφ). The
resulting Lagrangian is then that of the XY model (also known as the compact boson),

L =
1

2
v2∂µφ∂

µφ , φ ∈ [0, 2π) . (1.5)

Once we have an action, as anticipated in the introduction to this chapter, we consider the
appropriate quantum partition function

Z =

∫
DΦexp

(
−
∫
d3xL

)
. (1.6)

Unfortunately, the partition functions of quantum field theories, such as eq. (1.6) are generally
ill-defined. This is because it is not possible to assign a precise mathematical meaning to
the measure DΦ. In fact, it can be shown that there is no Lebesgue measure on an infinite
dimensional space [25] such as a space of functions. While this statement is often considered
merely a technicality, it is actually a fact of great physical significance. In particular, the
symmetries of a classical theory can be broken by quantum effects, a phenomenon known as
a quantum anomaly [26]. The presence of anomalies can be tied to the regularization of the
measure DΦ, and therefore the existence of a naive Lebesgue measure would forbid quantum
anomalies, which is physically incorrect. Moreover, the definition of a quantum field theory is
deeply intertwined with the renormalization group flow (in perturbative language, to regulate
infinities), and thus a rigorous definition of the continuum measure needs to somehow incorporate
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1.2. QUANTUM THEORY

the RG flow. As we see in the next paragraph as well as several times in the rest of this thesis,
this is evident from the way one takes the continuum limit on the lattice.

The only known way to define the partition function of a quantum field theory is via a lattice
discretization. In other words, the infinite spacetime is sampled at a finite set of points; then the
integral in the partition function simply becomes a finite number of ordinary integrals. The finite
lattice also provides a regulator for both UV and IR divergences. Since in the end we want to
recover continuum physics, it is important to understand in general what is the relation between
lattice and continuum physics. A lattice theory is described by a partition function Z(g2, a,N)
which, schematically, is a well-defined function of the lattice spacing a (which appears in the
action), the number of lattice points N and one or more couplings g2. Similarly, on the lattice
one can compute various quantity of interest F which are again well-defined functions of the
same variables, i.e. F ≡ F (g2, a,N). Since N is a pure number, one can take the “infinite
volume” or “thermodynamic” limit unambiguously, to obtain

F (g2, a) ≡ lim
N→∞

F (g2, a,N) . (1.7)

Of course, one needs to make sure that F is appropriately normalized so that a finite limit exists.
Theoretically, proving the existence of the thermodynamic limit is usually not so difficult. In
practice F (g2, a,N) is computed numerically for several values of N and extrapolated to infinite
volume either by fitting to a theoretical prediction for its volume scaling or by going to a large
enough value of N where one observes a plateau. We also note that one can extract interesting
quantities directly from the finite volume behaviour of certain observables [27].

The final limit to take is the continuum limit. There are two different equivalent points of
view for this limit:

1. From the condensed matter point of view, the lattice is physical (for example, it could be
a crystal). Then the lattice spacing a is a fixed physical number, and the continuum limit
is achieved by tuning the coupling g2 to a point in its phase diagram where a continuous
transition occurs. One then constructs appropriate ratios of quantities which are finite
as the limit is taken. In this point of view, the continuum physics is merely an effective
description of the underlying discrete degrees of freedom. In Chapter 1, we will adopt this
point of view.

2. From the high-energy point of view, the lattice is merely a regularization artefact and
one wants to send the lattice spacing a→ 0. On the lattice one can compute a quantity
F (g2, a) (for example, the mass of a particle) and compare it to its real-life physical value
Fphys. This then defines a particular renormalization trajectory where the continuum limit
is taken by sending a→ 0 while the coupling g2 = g2(a) is varied as a function of a such
that F (g2, a) ≡ Fphys remains constant. We will adopt this point of view in Chapter 2.

For a practical example of the two approaches, suppose that our physical theory allows us to
compute the mass of a particle X. On the lattice, we can only access dimensionless combinations
(this is most evident in numerical simulations); therefore the lattice theory allows us to compute
the dimensionless mass m(L)

X (g2, a) as a function of a and g2. In the high-energy point of view,
we would compare the lattice mass with the physical mass by setting

m
(L)
X (g2, a) = am

(phys)
X , (1.8)

which can be interpreted as either a definition of the (dimensionful) lattice spacing a as a
function of g2, or an implicit definition of g2 as a function of a. Note that, since m(phys)

X is fixed,
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1.2. QUANTUM THEORY

taking the continuum limit a→ 0 requires the existence of a point in the phase diagram where
the lattice mass m(L)

X (g2, a) → 0. This is precisely a point where a continuous phase transition
occurs. From the condensed matter point of view instead, one would simply consider the mass
of another particle, say Y . Its ratio with the mass of the X particle is expected to have a finite
continuum limit

lim
g2→g2c

m
(L)
Y (g2)

m
(L)
X (g2)

=
m

(phys)
X

m
(phys)
Y

, (1.9)

as g2 is tuned to a continuous phase transition located at the critical value g2c .
Lattice calculations are usually performed in a Euclidean path integral formulation. In many

cases, this is not a major limitation; as long as the action satisfies certain reasonable assumptions,
Wick rotation back to a theory defined in Minkowski space can be rigorously performed [28, 29].
In practice, numerical simulations are sometimes hindered by the so-called sign problem. We will
see one such example in Chapter 3. Moreover, working in the Euclidean path integral approach
prevents access to the real-time dynamics of the theory. Both these problems can potentially be
solved by simulating such theories with quantum hardware.

In practice, similar to the infinite-volume limit, the continuum limit is typically obtained by
extrapolating via a known theoretical scaling form. However, because of these complexities, the
existence of the continuum limit is hard to prove mathematically. It has been shown for scalar
field theories in two and three spacetime dimensions as interacting theories [30–38] and in four
[39] and higher dimensions as trivial theories [40, 41]. In two dimensions, some fermion-scalar
theories [42] as well as the Abelian Higgs model [43–45] have been constructed. Proving the
existence of the continuum limit (as defined above) for lattice Yang-Mills theory in four spacetime
dimensions is part of one of the Millennium Prize problems [46]. See also [47, 48] for reviews of
these issues, as well as [49–55] for recent developments. Let us also note that these issues do not
only affect the path integral approach to quantum theory; also canonical quantization (at least
in its naive form) is ill-defined [56].

As usual in analysis, the fact that a limit exists does not mean that it is equal to the value
that we expect naively. In particular, it is possible that the continuum limit of a lattice field
theory which naively discretizes a certain continuum action does not reproduce the correct
continuum physics. This problem plagues in particular the lattice discretization of fermionic
fields as the “fermion doubling” problem [57, 58]. In some cases, no lattice discretization is known
which reproduces the correct continuum physics. These include most importantly non-Abelian
chiral gauge theories [59], with some important exceptions [60–62].

Another important fact is that limits are “many-to-one”: different lattice theories may have
the same continuum limit. The different discretizations may have different advantages over each
other. We will encounter this situation many times over this thesis, especially in Chapter 2.
From a Wilsonian perspective, one expects that two different lattice theories with the same
symmetries (or a sufficiently large subgroup thereof) should describe the same continuum physics.
We will discuss this further in Chapter 3.

Going back to the O(2) model, our lattice discretization will involve one angle φx ∈ [0, 2π)
per site x of the lattice. The partition function is a simple discretization of the XY model
Lagrangian eq. (1.5) and takes the form

Z =

(∏
x

1

2π

∫ π

−π
dφx

)
exp

−
∑
⟨xy⟩

s(φx, φy)

 , (1.10)

where ⟨xy⟩ are nearest neighbours. As discussed above, there are several equivalent lattice
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actions s which reproduce the same continuum physics. A natural choice would be

s(φx, φy) =
1

g2
(1− cos(φx − φy)) . (1.11)

Here we choose instead a different action, known as the Villain action, because it will lead to a
simpler dual theory:

e−s(φx,φy) =
∑

n⟨xy⟩∈Z
exp

[
− 1

2g2
(
φx − φy + 2πn⟨xy⟩

)2]
. (1.12)

Here g2 is the bare coupling and periodicity over 2π is enforced by the summation over the n
variable.

The phase diagram of this model is well understood. With the action eq. (1.12), for small g2

the O(2) symmetry is broken, resulting in one massless Goldstone boson. On the other hand,
for large g2 the O(2) symmetry is unbroken. The two phases are separated by a second-order
phase transition. The exact location of the transition depends on the choice of action. For the
Villain action eq. (1.12), it is located at [63]

g2c = 3.00239(6) . (1.13)

1.3 Duality transformation

In order to study this model, it is useful to perform a duality transformation. This is particularly
useful because, as we will see in a moment, computing the properties of the vortex is easier in
the dual formulation. In this context, a duality is a change of variables in the partition function
which relates two apparently different theories. Suppose that we start from a partition function
of the form:

Z =

(∏
x

1

2π

∫ π

−π
dφx

)
exp

−
∑
⟨xy⟩

s(φx − φy)

 . (1.14)

By hypothesis, the action s, and therefore the Boltzmann weight, are periodic with period 2π.
Moreover, they depend only on the difference φx − φy. Therefore the Boltzmann weight can be
expanded in a Fourier series,

e−s(φx−φy) =
∑

k⟨xy⟩∈Z
e−s̃(k⟨xy⟩)ei(φx−φy)k⟨xy⟩ . (1.15)

The coefficients of the Fourier series must be positive by reflection positivity [64], so they can be
written as an exponential. Then it is simplest to use the language of lattice differential forms
(see for example [12, 65] for the details). In this language φx is a 0-form and applying the
derivative operator one obtains the 1-form (δφ)⟨xy⟩ = φx −φy which lives on lattice links. Then,
when plugging the Fourier expansion back into the partition function, we can integrate by parts
to find ∑

⟨xy⟩
(φx − φy)k⟨xy⟩ =

∑
x

φx(δk)x , (1.16)

where δ is the co-differential, which can be thought of as a sort of “divergence”. Therefore the
partition function becomes

Z =

(∏
x

1

2π

∫ π

−π
dφx

)∏
⟨xy⟩

∑
k⟨xy⟩∈Z

e−∑
⟨xy⟩ s̃(k⟨xy⟩)ei

∑
x φx(δk)x . (1.17)
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Now the integration over the φx can be performed directly, and it leads (up to some prefactors)
to a delta function on δk, which is thus forced to be zero everywhere. In infinite volume the
Poincaré lemma guarantees that if δk = 0, where k is a 1-form, then there exists a 2-form A
such that k = δA [66]. The new form A lives on the 2-cells of the lattice, i.e. the plaquettes.
Then we find the partition function

Z =

∏
□

∑
A□∈Z

 exp

−
∑
⟨xy⟩

s̃(δA⟨xy⟩)

 . (1.18)

In this formula, □ denotes the lattice plaquettes. This partition function can be rewritten in
terms of more convenient variables which live on the dual lattice. An n-cell of the original lattice
is dual to a d − n cell of the dual lattice. Therefore in the dual lattice A lives on the lattice
links, and we can therefore write the final dual partition function

Z =

∏
⟨xy⟩

∑
A⟨xy⟩∈Z

 exp

(
−
∑
□

s̃(dA□)

)
, (1.19)

where now all quantities refer to the dual lattice. Here dA□ = A1+A2−A3−A4 is a non-compact
plaquette variable for the four links in plaquette □. This is just the partition function of a
non-compact integer-valued lattice gauge theory.

For the Villain partition function eq. (1.12) of the original theory, the Fourier expansion is
found to be, apart from an overall prefactor,

e−s(φ) ≡
∑
n∈Z

exp

[
− 1

2g2
(φ+ 2πn)2

]
=
∑
n∈Z

e−
g2

2
n2
einφ , (1.20)

and therefore the dual partition function is particularly simple:

Z =

∏
⟨xy⟩

∑
A⟨xy⟩∈Z

 exp

(
−g

2

2

∑
□

(dA□)
2

)
. (1.21)

In general terms, as is clear from the above discussion, exact lattice dualities preserve the
partition function up to constant prefactors. They are simply a rewriting of the same theory
in terms of different variables. It is not however clear what is the relationship between the
original variables φ and the dual variables A. As mappings between quantum states, dualities
are generally not unitary transformations, and not even one-to-one maps [67–69]. This is most
easily seen in the case of the 2-dimensional Ising model, which is self-dual, and the duality maps
the broken phase (where the ground state is degenerate) to the symmetric phase (where the
ground state is unique). Generally speaking, a duality maps a theory consisting of n forms living
in an Abelian group G in d dimensions to a theory consisting of d− n− 2 forms living in its
Pontryagin dual Ĝ on the dual lattice [70, 71]. Intuitively, the Pontryagin dual Ĝ is the space of
the Fourier coefficients of G, which is again an Abelian group if G is Abelian, i.e. Pontryagin
duality relates Abelian groups as follows:

R ↔ R , U(1) ↔ Z , ZN ↔ ZN . (1.22)

Respectively, these are the familiar cases of the Fourier transform, the Fourier series and the
discrete Fourier transform. More generally, for an arbitrary (possibly non-Abelian) group G,
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1.3. DUALITY TRANSFORMATION

the coefficients of the Fourier transform (which appear in the first step of dualization) are
the irreducible group characters, i.e. the traces of irreducible representations of G [72]. The
Pontryagin dual Ĝ may thus also be defined as the space of the irreducible characters of G.
Unfortunately, however, Ĝ only forms a group if G is Abelian. For example, the irreps of U(1)
are of the form einθ for θ ∈ [0, 2π) and integer n and the product of two irreps is again an irrep
i.e. einθeimθ = ei(n+m)θ. Thus for G = U(1) the dual group is again a group, i.e. the integers
Ĝ = Z, as we already saw. On the other hand, for a non-Abelian group like SU(2), the (tensor)
product of two irreps is not an irrep but only a direct sum of irreps. Thus Ĝ does not have a
group structure. This is at least part of the reason why exact duality transformations are not
known for non-Abelian theories. The corresponding notion of duality for non-Abelian groups is
known as Tanaka-Krein duality [73, 74], but it is unclear if it is useful in this context.

Another interesting consideration is to note the fate of the symmetries on the two sides of
the duality. On one side, we had a theory with a global O(2) symmetry and on the other side we
found a theory with a local Z symmetry. There is no obvious relation between the two. This is a
demonstration of the fact that there are important subtleties in saying that a certain theory has
a local symmetry, or even a global symmetry, and that such statements are somewhat ambiguous
[75].

As we noted during the derivation, the duality transformation is exact only in the infinite
volume. In finite volume, the Poincaré lemma is not necessarily true as stated and, depending
on the boundary conditions, may need to be appropriately modified. Also the integration by
parts may pick up some boundary terms. Generally speaking, for a partition function Z in finite
volume, the duality is of the form

Z =
∑
i

Z(i) , (1.23)

where the Z(i) are partition functions for the same theory with different boundary conditions.
However, the finite-volume effects arising from the duality are typically exponentially suppressed
[76]. Dualities in general preserve all local properties (such as expectation values of local operators)
but not global properties such as the ground state degeneracy. For a modern perspective on
dualities, see [67–69].

To give a taste of dualities in finite volume, we sketch the derivation of the above duality in
finite volume. The finite-volume duality in the other direction, i.e. starting from the integer
gauge theory with C-periodic boundaries, has been worked out in [10, 11]. Suppose that we
start from the partition function of the XY model eq. (1.14) on a finite lattice with periodic
boundaries. The first step of the duality transformation, Fourier expansion, is unchanged since
this is performed locally on each link. With periodic boundaries (but not in general), integration
by parts is exact and therefore this step is also unchanged. However, after integrating out the
φ, we obtain the condition δk = 0. In infinite volume, we could solve this by setting k = δA.
This is not true in finite volume. Instead, the Poincaré lemma on a finite periodic lattice states
that a 1-form k such that δk = 0 can be written as k = δA + ∆k, where A is a 2-form and
∆k is a 1-form which is supported only on the boundary of the lattice [77]. The ∆k term is
necessary because configurations on a finite periodic lattice can have non-trivial winding

∑
k,

but
∑
δA = 0. Thus the dual partition function takes the form

Z =

 ∏
□∈boundary

∑
∆k□∈Z

∏
⟨xy⟩

∑
A⟨xy⟩∈Z

 exp

(
−g

2

2

∑
□

(dA□ +∆k□)
2

)
. (1.24)

The underlying dual lattice again has periodic boundary conditions. Alternatively, the shifts
∆k can be absorbed in the boundary conditions for the field. The finite volume dual partition
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0 ∞

∞

g2

κ

Higgs

Coulomb

Figure 1.2: Phase diagram of non-compact 3D scalar QED. The integer gauge theory eq. (1.21)
corresponds to κ = ∞.

O(2) model Integer gauge theory

small g2 Broken Coulomb
large g2 Symmetric Higgs

Table 1.1: Phases of the dual models.

function is then of the general form eq. (1.23). Going through the proof of the Poincaré lemma
in [77] it is possible to work out a more explicit form for the shifts ∆k.

Finally, we note that since the duality is a change of variables within the partition function,
it also allows to relate operators in the original theory to operators in the dual theory. For
example, the massless photon in the Coloumb phase of the integer gauge theory is dual to the
massless Goldstone boson in the broken phase of the O(2) model. As we will see in the next
section, the vortex in the O(2) model is dual to the charged particle in the integer gauge theory.

1.4 The phase diagram and the vortex operator

In order to better understand the integer gauge theory eq. (1.21), it is useful to note that it can
be obtained as a particular limit of non-compact scalar QED. Consider the following lattice
action for a compact scalar Φ ∈ U(1) and a real-valued gauge field A ∈ R:

S[A,Φ] =
g2

2

∑
□

(F□)
2 − κ

∑
⟨xy⟩

Re
(
Φxe

2πiA⟨xy⟩Φ∗
y

)
. (1.25)

Then to recover the integer gauge theory eq. (1.21), we can first choose the unitary gauge Φ ≡ 1.
Then taking the limit κ→ ∞ forces the gauge field to become integer-valued, i.e. A⟨xy⟩ ∈ Z and
one obtains eq. (1.21).

The phase diagram of non-compact scalar QED [78, 79] is shown in Fig. 1.2. In the integer
gauge theory limit κ→ ∞, one then simply has a Coulomb phase for small g2 and a Higgs phase
for large g2. In the Higgs phase, the photon acquires a mass. The duality maps the Coulomb
phase of the integer gauge theory to the broken phase of the original O(2) model and the Higgs
phase to the symmetric phase. This is summarized in Table 1.1. It is important to note that in
the Coulomb phase the O(2) vortex exists as a particle, while it is condensed in the Higgs phase.

It is also interesting to consider the opposite limit, i.e. the limit κ→ 0 where the scalar field
decouples and one is left with a pure gauge theory with gauge group R. This theory is found in
a Coulomb phase for all values of the coupling g2. On the other hand, in the second chapter of
this thesis we will consider the pure gauge theory with gauge group U(1) (i.e. the “compact”
gauge theory). As we will see, this theory is found in a confining phase for all values of the
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coupling [80, 81]. This is again a manifestation of topology: the U(1) theory admits “monopoles”
which are responsible for confinement. We can see this already in the classical theory in the
continuum, with similar arguments to those presented in Section 1.1. Mathematically, a gauge
field should be understood as a connection on a fiber bundle. We can then proceed as in the
previous section; consider a two-sphere S2 ∈ R3 and restrict a classical U(1) gauge field to it.
This defines a U(1) connection on S2, which are classified by the first Chern number c1 ∈ Z [14].
Here c1 is nothing but the magnetic flux through the sphere. Given a classical U(1) gauge field,
we can detect a monopole at a point if a sufficiently small two-sphere surrounding the point has
non-zero c1. Much like vorticity, this also admits a natural analog on the lattice, whereby one
sums the excesses above 2π of the plaquettes belonging to each cube [82].

The importance of topology is a theme of this thesis. It can have striking consequences for
the behaviour of the lattice theory. Nonetheless, from a continuum perspective, only the Lie
algebra is visible and therefore both the R and the U(1) gauge theories have the same naive
continuum limit. How their difference should be understood from a continuum perspective is a
matter of debate [75, 83].

Now the “moral” of the duality is that the vortex in the original picture may be interpreted as
a charged particle in the dual picture [10, 12, 78]. In order to obtain a gauge-invariant operator,
one needs to combine the scalar field with some other term involving the gauge field. Under a
gauge transformation, Φx → e2πiαxΦx and A⟨xy⟩ → A⟨xy⟩ + αy − αx. Even though it may seem
paradoxical, gauge-invariant operators can be obtained by gauge-fixing the scalar field according
to various prescriptions. For example, we can gauge-fix to Landau gauge where δA = 0. Given
an arbitrary starting gauge field configuration A, the Landau gauge-fixing is achieved by the
choice α = −□−1δA where □ ≡ dδ + δd is the three-dimensional Laplacian. Then the scalar
field gauge-fixed to Landau gauge is given by the operator

ΦL(x) = exp
(
−2πi□−1δA

)
Φx . (1.26)

One can check explicitly that the operator in eq. (1.26) is actually gauge-invariant. Therefore, it
has a well-defined expectation value. Nonetheless, other choices of gauge are possible. In fact,
eq. (1.26) may be interpreted as a scalar field, which has been “dressed” with an appropriate
cloud of photons. In eq. (1.26), the photon cloud spreads in the three-dimensional lattice. This
would be an appropriate operator for example for the study of “monopoles”. On the other hand,
in this work we are interested in vortices, which are point-like defects living on a two-dimensional
spatial timeslice. Therefore the correct operator has a photon cloud lying entirely within a single
timeslice. Therefore the correct operator, which we call the “vortex operator”, is equivalent to
gauge-fixing to the Coulomb gauge:

ΦV (x) = exp
(
−2πi∆−1δ2A

)
Φx , (1.27)

where now δ2 is the spatial divergence and ∆ the spatial Laplacian. Again, the operator eq. (1.27)
is gauge invariant and therefore a valid observable. In this case, the prefactor of eq. (1.27)
represents a Coulomb cloud extending in the spatial directions, consistent with its interpretation
as a vortex operator. In the κ → ∞ limit in which scalar QED reduces to the integer gauge
theory, the vortex operator (1.27) becomes

ΦV (x) = exp
(
−2πi∆−1δA

)
, (1.28)

where now A is integer-valued. Rigorous mathematical work has shown that the operator (1.28)
gives rise to topological sectors [78]. Because of its Coulomb cloud, the vortex operator is
non-local in space (but still local in time). In fact, the vortex is an infraparticle [12, 78, 84–86]
which is especially infrared sensitive. We will discuss this further in Section 1.7.
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In our case the various choices of gauge have a physical interpretation and therefore we
simply consider one, gauge-invariant operator (i.e. eq. (1.28)). Nonetheless, the issue of the
choice of gauge has received significant attention in the context of a rigorous interpretation of the
Higgs mechanism [79, 87–89]. Perturbatively, one considers the expectation value of the scalar
field Φ, which is not gauge-invariant. In the Higgs phase, Φ is supposed to acquire a vacuum
expectation value. However since it is not a gauge-invariant operator, this statement is gauge
dependent. For example, it does in Landau gauge [87] but not in axial gauge [89]. In Coulomb
gauge, which is the one corresponding to the vortex operator, a non-zero vacuum expectation
value has been rigorously shown in the relevant phase of scalar QED in four dimensions [78]. In
three dimensions, we are not aware of rigorous results, but our work provides numerical evidence
for a non-zero vacuum expectation value in the Higgs phase.

We note that it is in fact entirely possible to describe the Higgs mechanism in a non-
perturbative gauge-invariant manner [89]. Moreover, the Higgs phase can be distinguished from
a Coulomb phase by the fact that it is massive (i.e. gapped) as opposed to massless. In fact the
Higgs phase is often analytically connected to another massive phase, the confining phase, and
there is therefore no local order parameter distinguishing the two [90]. Very recently, it has been
argued that the two phases can nonetheless be distinguished as symmetry-protected topological
(SPT) phases [91, 92].

In what follows, we will mostly be interested in correlation functions of the vortex operator,

⟨ΦV (x)ΦV (y)
∗⟩ , (1.29)

from which all quantities of interest in this work can be computed. To further understand the
duality correspondence between the vortex and the charged particle, it is then interesting to ask
what the vortex correlation function corresponds to in the original theory.

To this end, we derive a different representation of the partition function of the O(2) model.
See also [11, 78, 93]. In particular, starting from the usual partition function in Villain form,

Z =

(∏
x

1

2π

∫ π

−π
dφx

)∏
l

∑
nl∈Z

 exp

[
− 1

2g2

∑
l

(dφl + 2πnl)
2

]
, (1.30)

we perform a Hodge decomposition of the Villain field nl:

n = δ□−1dn+ d□−1δn . (1.31)

Instead of summing over n we can then instead sum over k = □−1δn and m = dn, as long as
we impose the constraints δk = 0 and dm = 0. Since k is a 0-form, the first such constraint is
trivial. Thus we find,

Z =

∏
x

∑
kx∈Z

1

2π

∫ π

−π
dφx


∏

l

∑
ml∈Z
dm=0

 exp

[
− 1

2g2

∑
l

(
dφl + 2πdkl + 2πδ□−1ml

)2]
. (1.32)

Now we replace Φ = φ+ 2πk. This is a non-compact zero form; summing over l and integrating
over φ is equivalent to integrating Φ over the whole real axis, so the partition function is

Z =

(∏
x

∫ ∞

−∞
dΦx

)∏
l

∑
ml∈Z
dm=0

 exp

[
− 1

2g2

∑
l

(
dΦl + 2πδ□−1ml

)2]
. (1.33)
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The two partition functions actually completely decouple, since (using the inner product between
forms and integration by parts) the cross term vanishes,

(dΦ, δ□−1m) = (Φ, δ2□−1m) = 0 . (1.34)

Thus we see that the partition function factorizes into a “spin wave” part and a “vortex part”,

Z = ZswZvortex , (1.35)

where

Zsw =

(∏
x

∫ ∞

−∞
dΦx

)
exp

[
− 1

2g2
(dΦ, dΦ)

]
. (1.36)

and, simplifying the expression using integration by parts (note that □m = dδm since dm = 0),

Zvortex =

∏
l

∑
ml∈Z
dm=0

 exp

[
−2π2

g2
(m,□−1m)

]
. (1.37)

This decomposition is familiar from the analytical treatment of the BKT transition. We see that
Zsw describes simply a real massless scalar, has no phase transition, and is rather uninteresting.
On the other, the vortex partition function is the partition function for a Coulomb gas. Here
m is a 2-form (thus living on plaquettes) which can be interpreted as the vorticity associated
with plaquettes. Since the φ are angular variables, we have d2φ = 0 mod 2π, while the equality
would have been exact if the φ were genuine non-compact variables. For each link, the excess
above 2π is absorbed by the Villain variable n. Then m = dn is just the sum of the excesses
around a plaquette, and is thus a natural definition of vorticity. This is a lattice analog of the
continuum definition of vorticity, where we integrate the derivative of the angular field around
a small closed loop. The constraint dm = 0 is a conservation law, i.e. there are no sources of
vorticity. In the dual picture, m is a 1-form and is then interpreted as a vortex worldline. The
conservation law is δm = 0, which implies that the vortex lines are closed [11]. It is interesting
that the Villain formulation allows direct access to the vorticity via the auxiliary field n; while
the physics is the same as in the cosine formulation, it is less clear how to define the vorticity in
that case. This property of the Villain action has been used recently to construct novel lattice
discretizations with desirable properties [94, 95].

Since, as we already mentioned, the duality provides a dictionary between the two theories,
we can use it to relate observables on the two sides of the transition. For the vortex correlation
function, we obtain in the vortex gas representation

⟨ΦV (x)ΦV (y)
∗⟩ =

(∏
l

∑
ml∈Z

dm=−dB

)
exp

[
−2π2

g2
((m+B),□−1(m+B))

]
(∏

l

∑
ml∈Z
dm=0

)
exp

[
−2π2

g2
(m,□−1m)

] , (1.38)

where B = Bx̃ − Bỹ and Bx̃ = δ2∆
−1δx̃ is the spatial Coulomb field arising from a point-like

source located on the cube x̃ dual to the dual lattice point x. Thus δx̃ is a 3-form on the
original lattice. Then Bx̃ is a 2-form which satisfies dBx̃ = δx̃. The vortex correlation function
is actually a ratio of partition functions (note that the state space sampled in the numerator
and denominator are different), as is standard with the construction of topological defects via
disorder operators [96]. In the dual interpretation, the vortex correlator introduces an open
vortex worldline in the sea of closed vortex worldlines.
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Finally, an expression for the expectation value of the vortex correlation function can also be
derived directly in the original formulation. One finds again a ratio of partition functions [11]

⟨ΦV (x)ΦV (y)
∗⟩ = 1

Z

(∏
x

1

2π

∫ π

−π
dφx

)∏
l

∑
nl∈Z

 exp

[
− 1

2g2

∑
l

(dφl + 2πnl −Dl)
2

]
,

(1.39)
where D is the defect,

D = 2πδ□−1(B − ω) . (1.40)

In this formula, ω is (the dual of) an integer-valued 1-form (i.e. the “Dirac string”) which
connects x and y. Expanding the square, we can also interpret this as an observable in the
original theory, where the compact scalar couples to the vortex defect D.

Let us also now clarify an important distinction which may be a source of confusion. Our
interest is studying the vortex in the original O(2) model. From the duality, the vortex can
be studied as the charged particle in the dual model, which is the integer gauge theory. On
the other hand the scalar QED theory may also be interpreted as the Landau-Ginzburg theory
describing the superconducting phase transition [63]. In this language, the Higgs phase is the
superconducting phase, where the photon is massive. In this phase there is a superconducting
vortex, which is not the one we are interested in, which is a stable particle with finite energy in
the infinite volume. From the dual point of view, we shall only be concerned with the charged
particle, which corresponds to the O(2) vortex in the original model.

Finally, we also mention that one often encounters in the literature a different kind of duality.
This is known as a “low-energy duality” and cannot be obtained via a change of variables in
the partition function. It is not an exact duality. Rather, it is the statement that two different
continuum theories flow to the same RG fixed point. In this context “particle-vortex duality”
predicts that in three dimensions the O(2) model eq. (1.1) is dual to the Abelian Higgs model
(i.e. scalar QED) with gauge group U(1) [97–99]. There is some numerical evidence for this
duality, as long as one is extremely close to the phase transition [100]. Many other low-energy
dualities have been conjectured [101].

1.5 Boundary conditions and symmetries

To perform numerical simulations, the theory is placed on a finite lattice, which therefore must
be supplemented with appropriate boundary conditions. The most obvious choice is periodic
boundaries, which preserve translation invariance. However, this choice is unsuitable in this case.
As we have seen, we are interested in configurations with overall non-zero vortex number. In the
dual picture, the vortex becomes the charged particle, and we thus care about configurations
with non-zero charge. But the topology of periodic boundary conditions is that of a torus,
which, as a surface, has no boundary. Thus by Gauss’ law, the overall charge on a torus must
be zero. Because of this phenomenon, the vortex operator eq. (1.28) is ill-defined with periodic
boundaries. We can see this explicitly. On 0-forms such as δA, the Laplacian acts as

∆f(x⃗) ≡ (dδ + δd)f(x⃗) =
∑
i

[
f(x⃗+ î) + f(x⃗− î)− 2f(x⃗)

]
, (1.41)

where the sum is over the spatial directions only, since ∆ is the spatial Laplacian. To define the
vortex operator eq. (1.28) we need the inverse Laplacian ∆−1 which can be obtained by solving
for the Green’s function G such that

∆G(x⃗) = δ(x⃗) , (1.42)
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where δ(x⃗) is the Kronecker delta. This equation can be easily solved by going to momentum
space. For periodic boundaries the momentum takes values ki = 2πni

L if the spatial size is L,
where ni is an integer. Then the Green’s function is (for 2 spatial dimensions)

G(k⃗) =
1

2

1∑
i cos ki − 2

. (1.43)

In particular, the momentum k⃗ = 0 is allowed and therefore G(0) is divergent. This means that
the Laplacian ∆ is not invertible, and the vortex operator eq. (1.28) is ill-defined.

To remedy this issue, we modify the boundary conditions. The most general boundary
conditions on the fields which preserve translation invariance are schematically of the form

ϕ(x+ Lµ̂) = Sϕ(x) , (1.44)

where S is a symmetry operation. Among this class of boundary conditions, we choose C-periodic
boundary conditions [12, 102, 103], where we perform charge conjugation C as we go across the
boundary. This acts as

C : Aµ(x) → −Aµ(x) , (1.45)

and therefore, on the vortex operator eq. (1.28), as

C : ΦV (x) → ΦV (x)
∗ , (1.46)

consistent with the action of charge conjugation on a complex scalar. Since the Laplacian is
spatial, we apply C-periodic boundary conditions only in the spatial directions. In the time
direction, we choose to apply standard periodic boundary conditions in order to maintain the
thermodynamic interpretation of the partition function. Thus we work with boundary conditions
such that

Aµ(x+ Lî) = −Aµ(x) . (1.47)

In the time direction all quantities remain periodic. Since the Laplacian is applied to δA, which
sees antiperiodic boundary conditions if we choose C-periodic boundary conditions, then the
expression for the Green’s function eq. (1.43) remains unchanged, but the allowed momenta for
antiperiodic functions are instead ki =

π(2ni+1)
L for integer ni. Thus k⃗ = 0 is not allowed and

the Laplacian is indeed invertible.
We also discuss another technical issue, this time directly with the partition function of

the integer gauge theory. For a thorough discussion of this problem, see [104, 105]. Due to
the non-compactness of the height variables, the partition function is technically infinite, i.e.
Z = ∞, even in a finite volume. This infinity is due in the first place to the gauge symmetry; the
summation over some of the gauge field variables is redundant, and since they are non-compact
they give rise to infinities. One should then appropriately gauge-fix the partition function so
that integrations occur only over a minimal set of gauge fields. However, this is not an issue in
practice when computing gauge-invariant observables, which schematically take the form

⟨O⟩ =
∫
DAe−SO∫
DAe−S

. (1.48)

As long as O is gauge-invariant, the redundant summations are the same in both the numerator
and denominator and therefore simply contribute an irrelevant, even though infinite, constant
prefactor which can be cancelled out. However, even gauge-fixing is not sufficient to make the
partition function finite. In fact, with periodic boundaries the action is invariant under a shift
symmetry

Aµ(x) → Aµ(x) + nµ , (1.49)
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where nµ is an integer which depends only on the direction µ. This symmetry may also be seen
as arising from the fact that the gauge-fixed action is actually independent of one or more gauge
field values (equal to the number of periodic directions). Thus again one has infinite summations
over the integers, leading to Z = ∞. However this is not a problem in practice. First of all,
C-periodicity in a direction forbids the shift symmetry eq. (1.49) in that direction, so the issue
only affects the periodic directions (which is only one in our case). Even then, this will again
contribute simply equal, constant infinite prefactors in the numerator and denominator of any
gauge-invariant, shift-invariant observable which cancel each other. Thus such operators are
thus not affected by this issue. In fact the vortex operator is invariant under the shift symmetry
eq. (1.49). While this is an acceptable resolution of this “zero mode” problem for pure gauge
theories, with the inclusion of matter fields it is not sufficient and one must resort to different
methods [105].

Finally, we discuss the symmetries of the action with our chosen C-periodic boundaries.
The action of the integer gauge theory is in principle invariant under generic Z-valued gauge
transformations, which are the remnant of the original R-valued gauge transformations of scalar
QED after sending κ→ ∞. In the original O(2) model the phase transition is characterized by
the breaking of the O(2) symmetry; on the other hand in the dual theory the same transition is
characterized by the “breaking” of the gauge symmetry (in the sense of a Higgs phase). As is clear
in this case, and as we have already remarked, it is not possible to directly relate symmetries on
the two sides of a duality. In any case, under a Z-valued gauge transformation,

Aµ(x) → Aµ(x) + α(x+ µ̂)− α(x) . (1.50)

But in a finite volume, consistency with C periodic boundary conditions also requires the gauge
transformation αx to be antiperiodic up to a constant integer,

α(x+ Lî) = −α(x) +mi , (1.51)

where mi depends only on the direction. This can be easily seen by translating the gauge
transformation eq. (1.50) and applying the boundary condition eq. (1.47). Of course in the time
direction we have periodic boundaries, so α is periodic up to a constant integer,

α(x+NT 0̂) = α(x) +m0 . (1.52)

Here NT is the number of lattice spacings in the time direction. The antiperiodicity in the
space directions implies that the global part of the gauge symmetry is rather different with
periodic vs C-periodic boundary conditions. In the C-periodic case, the only constant gauge
transformations allowed are those which are half-integer valued, α(x) ≡ α ∈ 1

2Z. It is easy to
check that under such a transformation,

ΦV → −ΦV . (1.53)

Therefore we call this Z2 symmetry “vortex field reflection”. In fact, as we will see, the two
phases of the model can be characterized in terms of this Z2 symmetry. In the Coulomb phase,
where the vortices exist as particles, the Z2 symmetry is unbroken and the vortex operator has
zero vacuum expectation value. On the other hand, in the Higgs phase the vortex operator
acquires a vacuum expectation value and therefore the vortices are condensed, and the Z2 vortex
field reflection symmetry is broken. This does not mean that the phase transition is in the Z2

universality class. By the duality, it is clear that it is in the O(2) universality class and in fact
the Z2 vortex field reflection symmetry is really only a finite volume effect. Interestingly, from
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the point of view of the dual theory, even in infinite volume (where one has the full Z gauge
invariance), it would not be clear that the transition is in the O(2) universality class.

As we mentioned before, it is not possible to directly relate symmetries on the two sides
of the duality. However, given its action on the vortex field eq. (1.53), it is quite natural to
identify the global part of the Z symmetry with vortex number. After all, the vortex is dual to
the charged particle whose charge is determined by the Z symmetry.

We end this section by noting the following fact. We’ve seen that under charge conjugation
the vortex field transforms by complex conjugation

C : ΦV → Φ∗
V . (1.54)

Therefore, its real and imaginary parts transform differently,

C : ReΦV → ReΦV , ImΦV → − ImΦV . (1.55)

Therefore with C-periodic boundary conditions, ReΦV sees periodic boundaries, while ImΦV

sees antiperiodic boundaries. Therefore the allowed momenta for the real part of the vortex field
are of the form 2nπ/L for n ∈ Z, while for the imaginary part they are instead (2n+ 1)π/L for
n ∈ Z. As such, the lowest momentum state one can form with the real part of the vortex field
has momenta (0, 0) in both spatial directions; on the other hand, the lowest momentum state
one can form with the imaginary part of the vortex field has momenta (π/L, π/L), assuming
that both spatial directions have L sites.

1.6 Numerical calculations and results

We simulated the integer gauge theory with a standard Metropolis algorithm on lattices with
L2NT sites, with equal size in the space directions. In this work, we focused on the zero-
momentum sector and we thus projected the vortex operator according to the prescription in
the previous section,

ΦV (t) ≡
1

L2

∑
x⃗

ReΦV (t, x⃗) , (1.56)

where x = (t, x⃗). Then all quantities of interest can be extracted from the correlation function
of the vortex operator,

C(t) ≡ ⟨ΦV (0)ΦV (t)⟩ . (1.57)

At the theoretical level, in Euclidean space, correlation functions of operators can be expanded
in the so-called spectral decomposition,

⟨ΦV (0)ΦV (t)⟩ =
1

Z

∑
n,m

|⟨n|ΦV |m⟩|2e−tEm+(t−NT )En . (1.58)

This can be obtained by writing ΦV (t) = etHΦV (0)e
−tH and then inserting appropriate energy

eigenstates. The partition function itself can be expanded in a similar manner, i.e.

Z =

∞∑
n=0

e−NTEn . (1.59)

In particular, the correlation function C(t) of eq. (1.57) is computed numerically via Monte
Carlo simulations, and then fitted to eq. (1.58) (truncated to a certain order) in order to extract
quantities of interest such as matrix elements or energies. Importantly, one only has access to
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states whose corresponding matrix elements are non-zero. As we will see in a moment, these are
mostly determined by symmetry.

In the Coulomb phase the vortices exist as particles. Thus, we expect a unique vacuum
state with vortex number zero (i.e. no vortices). The same sector with zero vortex number
also contains states which correspond to vortex-antivortex pairs. However, we are interested
in states with overall non-zero vortex number. As explained in the previous section, in finite
volume the boundary conditions break vortex number down to Z2 vortex field reflection, and
it is therefore only conserved modulo 2. In particular, the vortex operator ΦV is odd under
vortex field reflection and therefore it couples only to states with non-zero vortex number. For
example, by symmetry all matrix elements ⟨n|ΦV |0⟩ where 0 is the vacuum and |n⟩ is Z2-even
are zero. Thus, in this phase, the lowest-lying state in the vortex field reflection-odd sector can
be naturally identified with the state corresponding to a single vortex. Since the operator Φ(t)
has zero momentum, the corresponding energy can be naturally identified with the vortex mass
mV . This calculation was performed in [10] (see also [11] for more details) and it was found
that the mass behaves as

mV ∼ |t|νV log
L

L0
, (1.60)

where t = g2 − g2c is the distance from the phase transition. In particular, much like in the
classical theory, the vortex mass is logarithmically divergent with the spatial volume. In the
continuum limit, it scales with a critical exponent νV which is found to be numerically equal to
the critical exponent for the ordinary field, νV = ν [10].

Here we are mostly concerned with the behaviour of the vortex in the Higgs phase. In
particular, since the vortices are condensed, the natural quantity to study is the vortex condensate.
In this phase the Z2 vortex field reflection symmetry is spontaneously broken and therefore
the structure of the Hilbert space is more complicated [106, 107]. In infinite volume, one
expects two exactly degenerate ground states |0±⟩ related by the Z2 symmetry. These define
two superselection sectors, where all matrix elements between the two sectors are zero. In
finite volume, however, there is no true spontaneous symmetry breaking. In particular, the
vacuum is always unique and invariant under the symmetry. One expects that on top of the
finite-volume ground state |+⟩ (which is Z2 even) one finds another almost degenerate state |−⟩
which is Z2-odd. Their energy difference is exponentially small in the volume. One can then
form appropriate linear combinations which are finite-volume versions of the infinite-volume
ground states,

|0+⟩ =
|+⟩+ |−⟩√

2
, |0−⟩ =

|+⟩ − |−⟩√
2

. (1.61)

As expected, under vortex field reflection |0±⟩ → |0∓⟩. Since the gap between |±⟩ is exponentially
small in the volume, |0±⟩ become degenerate in infinite volume. In infinite volume, one would
want to compute the vortex condensate

⟨0+|ΦV |0+⟩ = −⟨0−|ΦV |0−⟩ , (1.62)

as the two states are related by the Z2 symmetry. However, in finite volume |0±⟩ are not energy
eigenstates and therefore they are not accessible from the spectral decomposition eq. (1.58).
Therefore, we work with |±⟩ instead. By symmetry,

⟨+|ΦV |+⟩ = ⟨−|ΦV |−⟩ = 0 . (1.63)

On the other hand, one has

⟨−|ΦV |+⟩ = ⟨0+|ΦV |0+⟩+
1

2
⟨0+|ΦV |0−⟩+

1

2
⟨0−|ΦV |0+⟩ , (1.64)
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where we used eq. (1.62). Because of the superselection structure, the mixed terms are exactly
zero in infinite volume and exponentially small in finite volume. Thus ⟨−|ΦV |+⟩ may be taken
as the definition of the vortex condensate in finite volume. To avoid issues with the sign, we
define the vortex condensate to be

ΣV ≡ |⟨−|ΦV |+⟩| , (1.65)

which can be extracted from the spectral decomposition eq. (1.58).
As we will see in a moment, in order to renormalize the vortex condensate we will need to

compute another quantity in the Coulomb phase. This is the vortex susceptibility

χV ≡ 1

2L2NT

∑
x,y

⟨ReΦV (x)ReΦV (y)⟩ , (1.66)

where L2NT is the spacetime volume. This was defined in analogy with the susceptibility of
the ordinary O(2) field [24]. In the Coulomb phase the vortex has zero vacuum expectation
value. Therefore its dynamics is roughly a random walk, which has variance of order volume.
Thus the order volume prefactor of eq. (1.66) ensures that the susceptibility is finite in the
infinite volume limit. Plugging in the spectral decomposition eq. (1.58) into the expression for
the vortex susceptibility, eq. (1.66), one finds in the infinite time extent limit NT → ∞ (or zero
temperature limit)

χV → L2

2

∑
n>0

|⟨n|ΦV |0⟩|2 coth
(
En

2

)
. (1.67)

In the infinite volume limit, the vortex mass is divergent and therefore En → ∞, so that
cothEn → 1. Therefore the fact that the vortex has infinite mass in the Coulomb phase
does not make the susceptibility χV ill-defined (note that the matrix elements |⟨n|ΦV |0⟩|2 are
L-dependent).

As we have noted several times, the vortex operator is non-local. Most of the theory of
statistical mechanics relies on the locality of operators, and it is therefore a priori unclear if one
can assume that the vortex operator behaves in the same way as standard local operators. In
what follows, we will assume functional forms typical of the scaling theory of local operators,
and we find that the vortex operator, despite being non-local, can be adequately fitted with
this choice. In particular, after performing an infinite volume extrapolation, one can fit the
condensate and susceptibility to the scaling forms

ΣV ∼ |t|βV , (1.68)

and
χV ∼ |t|−γV , (1.69)

where t = g2 − g2c is the distance from the phase transition and βV , γV are critical exponents
associated with the vortex.

These exponents are related to each other by scaling relations. In particular, our theory can
be driven to a continuous phase transition by tuning one appropriate coupling t. Suppose that
we are interested in the behaviour of an observable which is coupled via a coupling h. Then the
free energy of the system is a function f(t, h) of the two couplings. In the simplest examples
h is a magnetic field coupled to the system’s magnetization, but in principle it could be any
local operator. Again it is a priori not clear if standard scaling theory applies to the vortex
operator, which is non-local. But as we will see, if we do apply it, its predictions are in excellent
agreement with the numerical data. Therefore in this case we choose h to couple to the vortex
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operator. Now, according to the scaling hypothesis [108], the free energy near the transition is
assumed to be a homogeneous function of the two couplings, i.e. for any positive λ one has

f(λ∆tt, λ∆hh) = λdf(t, h) . (1.70)

Here d is the (spacetime) dimension of the system and ∆t and ∆h are the scaling dimensions of
the two couplings (the scaling dimensions of the corresponding operators are then simply d−∆t

and d−∆h). Homogeneity implies that f can be described in terms of a function g of a single
variable, i.e.

f(t, h) = td/∆tg

(
h

t∆h/∆t

)
. (1.71)

Then, for example, the expectation value of the operator coupled to h can be obtained by
differentiating. So if h couples to the vortex operator, we find

ΣV ∼ ∂f

∂h

∣∣∣∣
h=0

∼ t
d−∆h
∆t . (1.72)

Therefore the critical exponent for the condensate is

βV =
d−∆h

∆t
. (1.73)

On the other hand, for the susceptibility one has

χV ∼ ∂2f

∂h2

∣∣∣∣
h=0

∼ t
d−2∆h

∆t , (1.74)

so that
γV =

2∆h − d

∆t
. (1.75)

Finally, as usual the free energy at h = 0 scales as f ∼ ξ−d where ξ is the correlation length (i.e.
the inverse mass) [21] so that

νV = ν =
1

∆t
. (1.76)

Therefore, the three critical exponents can be determined in terms of only two quantities, the
scaling dimensions of the two operators. Equivalently, the critical exponents satisfy the “scaling
relation”

γV + 2βV = νd . (1.77)

As we will see in a moment, the numerically computed critical exponents γV and βV indeed
satisfy this scaling relation. Thanks to this scaling relation we can construct a quantity which is
finite as we approach the transition. This is the universal amplitude ratio

RV ≡ Σ2
V (t)ξ(t)

3

χV (−t)
, (1.78)

which is finite as we take the continuum limit by tuning the coupling to the critical point.
Here ξ is the usual (second-moment) correlation length in the symmetric phase of the original
O(2) model, which scales as ξ ∼ |t|−ν . We choose to work with ξ because it is finite in the
infinite volume limit, unlike the vortex mass mV . The correlation length can be computed to
a high precision using the Wolff cluster algorithm [109]. As the transition is approached, i.e.
t→ 0, the universal amplitude ratio eq. (1.78) becomes a universal number characterizing the
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Figure 1.3: Finite volume scaling of the condensate (left) and susceptibility (right), at couplings
in the two phases at the same distance from the phase transition, with

∣∣g2 − g2c
∣∣ = 0.015103.

The dotted line is the exponential fit. Reprinted from [1].
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Figure 1.4: Continuum scaling for the condensate (left) and susceptibility (right) on a logarithmic
scale, together with a linear fit (dotted line). Reprinted from [1].

behaviour of the vortex near the Wilson-Fisher fixed point. In particle physics language, it may
also be interpreted as a renormalized vortex condensate. We note that an attempt to obtain
a renormalized condensate for monopoles in four-dimensional U(1) gauge theory was made in
[13] using similar techniques. In that case, a renormalized condensate could not be obtained,
possibly because in four dimensions U(1) gauge theory only has a first-order phase transition
and therefore no continuum limit.

The parameters and results of the numerical simulations are given in Table 1.2. The couplings
in the two phases were chosen to lie at the same distance from the transition. For each coupling,
the simulations were performed at fixed time extent NT and increasing spatial sizes L. Note
that for the condensate we found a small but significant error from the finite NT extrapolation;
therefore we repeated each simulation for five increasing values of NT and included the difference
in the error budget. Note that more statistics were required in the Coulomb phase in order to
sufficiently resolve the finite-volume behaviour.

For the determination of the condensate, one has to keep in mind the more complicated
structure of the Hilbert space due to symmetry breaking. In particular, the presence of almost-
degenerate states needs to be accounted for. For the susceptibility, no fitting is required. Thus
both quantities were determined for each spatial size L and coupling g2. They were then
extrapolated to infinite volume by fitting to an exponential form, as shown in Fig. 1.3. As is clear
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Figure 1.5: Continuum scaling of the amplitude ratio eq. (1.78), together with a constant fit
(dotted line). Reprinted from [1].

Both Coulomb Higgs∣∣g2 − g2c
∣∣ Lmax g2 sweeps χV g2 sweeps ΣV ξ

0.042051 64 2.960331 2 · 106 83(2) 3.044449 5 · 105 0.67(1) 6.36(2)
0.030270 80 2.972112 2 · 106 138(4) 3.032668 5 · 105 0.626(6) 7.97(3)
0.023123 80 2.979259 2 · 106 223(13) 3.025521 5 · 105 0.60(1) 9.59(3)
0.018407 112 2.983975 4 · 106 285(9) 3.020805 1 · 106 0.55(1) 11.20(4)
0.015103 112 2.987278 4 · 106 419(22) 3.017502 1 · 106 0.53(1) 12.80(4)
0.012683 128 2.989699 8 · 106 541(24) 3.015081 2 · 106 0.51(1) 14.41(5)

Table 1.2: Parameters and results of the simulations in the Coulomb and Higgs phases. The
couplings in the two phases are chosen so that they are at the same distance from the phase
transition, which is located at g2c = 3.00239(6). The maximum spatial lattice size is the same
for corresponding couplings. The quoted values for ΣV , χV and ξ refer to their extrapolation to
infinite volume.

from the figure, the susceptibility overall has much stronger finite volume effects. Unfortunately,
no theoretical predictions are available for the finite-volume scaling, but we found good agreement
with the exponential fits. Other fitting forms, such as power laws, were found to be incompatible
with the data.

Finally, the quantities were extrapolated to the continuum limit by fitting to the assumed
scaling forms (1.68) and (1.69). This is shown (on a logarithmic scale) in Fig. 1.4. As is clear
from the plots, the data fit accurately the predicted scaling form, with χ2/d.o.f. ≈ 0.59 for the
condensate and χ2/d.o.f. ≈ 0.93 for the susceptibility. On the other hand, the amplitude ratio
is shown in Fig. 1.5. Again, the result is consistent with the prediction of the scaling relation
eq. (1.77).

The final results are therefore found to be

χV = Cχ|t|−γV , Cχ = 0.61(7) , γV = 1.55(3) ,

ΣV = CΣ|t|βV , CΣ = 1.40(9) , βV = 0.23(2) ,

RV = 1.44(3) . (1.79)

The critical exponents and amplitudes in eq. (1.79) represent the main novel results of our work,
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together with the fact that the critical exponents indeed satisfy the scaling relation eq. (1.77).
For completeness, we also list the critical exponents for the ordinary field of the O(2) model

[110]
ν = 0.67169(7) , γ = 1.378(1) , β = 0.34864(5) . (1.80)

Note that in principle there’s no reason why the critical exponents for the condensate and
susceptibility should be the same for different operators. Within numerical precision, the vortex
critical exponents satisfy the predicted scaling relation (1.77):

2βV + γV = 2.01(3) , (1.81)
3ν = 2.0151(2) . (1.82)

From standard scaling theory, as we have seen, one then obtains the scaling dimension of the
vortex operator,

∆V =
β

ν
= 0.34(3) . (1.83)

1.7 Infraparticles

As we have seen, the vortex, much like charged particles in general, cannot be created by a
local operator [78, 85]. Such non-local operators, which have been referred to as “infraparticles”
[78, 85, 86], are especially sensitive to the boundary conditions. In fact, already for simple
electrodynamics in four spacetime dimensions, charged particles exhibit peculiar properties. It
is clear that some non-locality is present in the theory, since by Gauss’ law the total charge of
the universe can be detected by an integral at infinity,

Q = lim
R→∞

R2

∫
S2

dS n⃗ · E⃗ , (1.84)

where S2 is the sphere at infinity. The total charge Q is also conserved. However, it is not only
the integral of the electric field at infinity (i.e. Q) which is conserved, but also the value itself of
the electric field at infinity [85, 111],

Q(θ, φ) = lim
R→∞

R2n⃗(θ, φ) · E⃗(R, θ, φ) . (1.85)

In classical field theory, showing that the charges Q(θ, φ) are conserved is not hard. In particular,
using Maxwell’s equations we find,

∂Q(θ, φ)

∂t
= lim

R→∞
R2n⃗(θ, φ) · ∂E⃗(R, θ, φ)

∂t
= lim

R→∞
R2n⃗ ·

[
∇× B⃗ − J⃗

]
. (1.86)

The second term is strictly zero because we’re taking the infinite R limit and we can assume
that the current distribution J⃗ is localized. On the other hand, in four spacetime dimensions the
electric and magnetic fields decay to infinity at most as fast as 1/R2. Thus ∇× B⃗ is at most
O(1/R3) and therefore the corresponding term vanishes in the limit. Therefore the electric field
at each point at spacelike infinity is conserved.

Importantly, this gives rise to two qualitatively different cases: if the overall charge of the
universe is zero, then the electric field decays faster than 1/R2 (for example an electric dipole
has E ∼ 1/R3) and all the charges Q(θ, φ) are zero (in particular, replacing R2 with a higher
power would spoil charge conservation). On the other hand, if the overall charge of the universe
is non-zero, then the electric field at each point at infinity is a conserved quantity. The charges
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Q(θ, φ) are certainly not rotationally invariant, but they are not even invariant under a Lorentz
boost. In particular, starting from electric and magnetic fields E⃗ and B⃗ and boosting to a frame
with velocity v⃗ with respect to the original frame leads to an electric field

E⃗′ = γ(E⃗ + v⃗ × B⃗)− (γ − 1)(E⃗ · v̂)v̂ , (1.87)

which does not leave the charge Q(θ, φ) invariant.
These results (in an appropriate sense) can also be established in the quantum theory [85,

111]. Then the charges Q(θ, φ), being defined at infinity, commute with any local operator.
Thus, in particular, no local operator can change the charge distribution at infinity, which means
that operators which create charged particles must necessarily be non-local. Moreover, in a
Lorentz-invariant quantum theory only local operators are allowed observables. For example, the
operator which projects onto (say) the 42nd eigenstate of the Hamiltonian [75], despite being
Hermitean, is not an observable. A restriction on the allowed operators leads to the concept of
superselection sectors for the Hilbert space. In particular, two sectors A and B of the Hilbert
space are different superselection sectors if, for any observable O,

⟨ψA|O |ψB⟩ = 0 , ψA ∈ A , ψB ∈ B . (1.88)

This is a very strong condition. If the allowed observables had not been somehow restricted,
then this condition would have been impossible. Since no observable can have a non-zero matrix
element between different superselection sectors, no measurement can distinguish between a
quantum superposition and a mixed state for two states in different superselection sectors.
Therefore, morally speaking, superposition of states in different superselection sectors are
forbidden. Since in a Lorentz-invariant theory only local operators are allowed (i.e. supported in
a finite region of spacetime), and the charges Q are defined at spatial infinity, no observable can
change the values of the charges. As we have seen, a Lorentz boost modifies the electric field at
infinity and therefore the distribution of generalized charges. This means that to construct a
state which transforms covariantly under Lorentz transformations, one must superimpose states
belonging to different superselection sectors. But by definition of superselection, this should not
be possible, thus one speaks of “spontaneous breaking of Lorentz symmetry” [78, 84–86, 112].
More generally, it is also not possible to construct a state which is simultaneously an eigenstate
of both the charge operator and the mass operator [85, 86, 112]. Of course, this is mostly a
theoretical issue, in that it manifests only in a situation where the overall charge of the universe
is non-zero. Physically, every time that we extract a charge, we also leave behind one which is
equal and opposite. Thus, as long as “initially” the charge of the universe is zero, it will remain
zero at all times in the future and the issue is not a problem for our description of the physical
universe.

As we have seen, the vortex is a non-local infraparticle. In fact, the impossibility of finding
simultaneous eigenstates of charge and mass is also present in our case already at finite volume
[12]. Under charge conjugation, a charged state is mapped to a state with opposite charge. We
can construct a state by acting on the vacuum with the vortex operator, for example ReΦV |0⟩.
This is a momentum eigenstate, however it is not a charge eigenstate, as it is invariant under C.
On the other hand, for example the states (ReΦV ± ImΦV ) |0⟩ are related by charge conjugation
and are thus charged, but they are not momentum eigenstates. In fact it is not possible to
construct a state with definite momentum and charge simultaneously.
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1.8 Conclusions

In this chapter, we have discussed the fully quantum non-perturbative construction of vortices in
the O(2) model. As we have seen, both these aspects are non-trivial. Along the way, we’ve also
learned an important lesson. Despite the fact that the vortex operator is non-local, it can be
treated via standard scaling theory much like local operators. We have obtained results on the
critical exponents of the vortex which can in principle be checked experimentally. From a more
theoretical perspective, we have obtained the scaling dimension of the vortex operator at the
Wilson-Fisher fixed point. It would be interesting to understand whether the vortex operator
admits a reasonable intepretation in the context of conformal field theories. In principle, similar
calculations could also be performed in the context of other models which support topological
excitations, such as the U(1) Abelian Higgs model or the quantum XY model.
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Confinement in U(1) gauge theory

This chapter is based on:
M. Caselle, A. Mariani, M. Panero and A. Smecca, “Equation of state of U(1) gauge theory in three
dimensions”, to appear.

In this chapter, we study the standard U(1) gauge theory in three dimensions. This theory is
well-understood both analytically and numerically. In particular, it has been rigorously shown to
be confining at all values of the coupling [80, 81]. The analytical predictions have been validated
numerically [113–116]. Several studies have also been performed at finite temperature [117–122].
We first discuss the confining string and its description in terms of effective string theory. We
then discuss the known results on the three-dimensional U(1) gauge theory, which will also be
useful in Chapter 3.

Our main novel result is the computation of the finite temperature equation of state in this
theory. By comparing it with the prediction for a gas of glueballs, we can learn some interesting
facts about confinement in this theory.

As we have seen in Chapter 1, several possible lattice discretizations are possible for each
continuum action. In the case of U(1) gauge theory, the two main actions are the Wilson and
Villain actions, which describe the same continuum physics [93, 123, 124]. We have seen a rather
similar situation in Chapter 1. In both cases, the partition function takes the form

Z =

( ∏
l∈links

∫ 2π

0

)
exp

[
−
∑
p

s(dφp)

]
. (2.1)

Here φ is a U(1)-valued 1-form, i.e. it lives on lattice links, and dφp is the associated plaquette
variable on plaquette p. The Wilson action takes the form

s(φp) = β(1− cosφp) , (2.2)

while the Villain action is given instead by

e−s(φp) =
∑
n∈Z

e−
β
2
(φp+2πn)2 . (2.3)

In both cases β is a dimensionless coupling, which may be expressed as β = 1/e2 with e2

dimensionless (which we will use in Chapter 3) as well as β = 1/(ag2) where g2 is a dimensionful
coupling with dimensions of energy (this will be useful later in this chapter).
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Dualization proceeds much in the same way as in Chapter 1, and we will not repeat the
details. The crucial step is the expansion of the Boltzmann weight in its Fourier series. In
Chapter 1, we’ve seen already how this works for the Villain action. For the Wilson action, the
corresponding expression is

eβ cosφ =
∑
n∈Z

In(β)e
inφ , (2.4)

where In(β) is a modified Bessel function of the first kind. The dual theory corresponding to
the Wilson action then has partition function

Z =

∏
x

∑
hx∈Z

 ∏
l=⟨xy⟩

I|hx−hy |(β) , (2.5)

where the product is over links l connecting sites x and y. The absolute value is not strictly
necessary because in fact In = I−n. On the other hand, with the Villain action the dual partition
function is given by

Z =

∏
x

∑
hx∈Z

 exp

− 1

2β

∑
⟨xy⟩

(hx − hy)
2

 . (2.6)

In this chapter, we will make use of both actions. In the original formulation, it is easier to
use the Wilson action, and in fact most finite temperature studies in the literature have been
performed with this choice of action. On the other hand, in the dual picture the Villain action
is simplest, and in fact this is the action most commonly used for analytical manipulations.

Let us also note here the crucial fact that this is a U(1) gauge theory, rather than an R gauge
theory. In fact, the partition function for the dual Villain model contains a simple quadratic
term. It is only non-trivial because the scalar fields take values in the integers Z; if instead they
took values in the reals R, then the theory would have been simply a free massless scalar field.
Suppose in fact that we were considering an R gauge theory; an appropriate choice of action
would have been

S[A] =
β

2

∑
p

(dAp)
2 , (2.7)

where dA is the plaquette variable for the non-compact real valued variable gauge field A ∈ R.
Then dualization of the corresponding partition function leads to a scalar field theory with a
real valued scalar field Φ ∈ R and action

S̃[Φ] =
2π2

β

∑
⟨xy⟩

(Φx − Φy)
2 . (2.8)

This is indeed simply the theory of a free massless scalar, which is mostly uninteresting. We had
already seen this in Chapter 1 in the context of scalar QED. Thus in this case the difference
between U(1) and R is crucial: in the former case the theory is, as anticipated, always confining,
while in the latter case it is always in a Coulomb phase. This may seem particularly strange from
a continuum point of view, where the distinction between U(1) and R is immaterial. How can an
Abelian theory, which is not self-interacting, be confining? Much like in Chapter 1, the crucial
difference between the two is that U(1) admits topological excitations known as “monopoles”,
while R doesn’t. Due to this non-perturbative effect, the U(1) theory is actually self-interacting
via monopoles. In fact, in Chapter 1 we had already seen how monopoles arise classically in this
theory. We will see this in more detail in the rest of this chapter. It is also interesting to note
that the situation is rather different in four dimensions: in that case, while the R gauge theory
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is still free, the U(1) gauge theory admits two phases, a confining phase where monopoles are
relevant and a Coulomb phase where they are irrelevant. Since one is interested in this latter
phase, calculations with either gauge group lead to the same results in the region of interest.
Finally, we note that as we have already seen in Chapter 1, the three-dimensional R gauge
theory can still be interesting when coupled to matter fields.

2.1 The confining string

Pure gauge theories without matter only describe gauge bosons. Nonetheless, one can introduce
static external charges and study the behaviour of the gauge bosons in their presence. A natural
choice is to insert a pair of charges with equal and opposite charge. Due to confinement, the
electric field will only be appreciably different from the vacuum in a small region between the
static charges. In particular, it will take the shape of a “flux tube” connecting the two static
charges. The flux tube is also known as a “confining string”. The existence of the confining
string can be seen quite clearly in the Hamiltonian picture in the strong coupling limit [125].

Another intuitive explanation for the formation of the flux string is the “dual superconductor
model” [126, 127]. Ordinary superconductors exhibit the so-called Meissner effect, whereby
they expel magnetic fields in the bulk [2]. More quantitatively, an external magnetic field can
penetrate only an exponentially small region of a superconducting sample. If one imagines
placing a monopole-antimonopole pair inside a superconductor, most of their magnetic field
would be expelled, leaving simply a thin magnetic flux string between the two monopoles. In
the context of gauge theories, (chromo)electric charges are confined instead, so this is referred to
as a “dual” superconductor. In the three-dimensional U(1) gauge theory, as we will soon see in
more detail, confinement is indeed due to monopoles. However, in non-Abelian theories (due to
the fact that exact dualities are not known) it is less clear if these ideas can be made precise.

As explained in detail in Chapter 3, it is possible to define a local version of the electric field
as well as a local energy, associated to each lattice link. Both quantities can be measured via
Monte Carlo simulations. This way, one can measure the local energy distribution in the presence
of static charges for the three-dimensional U(1) gauge theory. The results are shown in Fig. 2.1.
From the pictures, it is clear that in all three directions the energy is highly concentrated in a
string-like region between the two charges. Similarly, the electric field is on average non-zero
only in a small region connecting the two charges, and virtually parallel to the line connecting
them.

Mathematically, a static unit charge located at a spatial position x⃗ is described by a “Polyakov
loop”, i.e. a product of the gauge field variables at x⃗ across all timeslices, in the time direction,

P (x⃗) =

NT−1∏
t=0

eiφ(t,x⃗)0 . (2.9)

A pair of static charges of equal and opposite charge located at x⃗ and y⃗ is then described by the
Polyakov loop correlator P (x⃗)P (y⃗)∗. Its expectation value is actually a ratio of two partition
functions,

⟨P (x⃗)P (y⃗)∗⟩ = Zq,−q

Z
. (2.10)

This can be seen as follows [128]. As we will see in more detail in Chapter 3, in the Hamiltonian
formulation of gauge theories one needs to project onto the appropriate Gauss law sector. In
fact the usual partition function can be written in terms of the Hamiltonian H as

Z = tr
(
e−NTHP

)
, (2.11)
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Figure 2.1: Time-averaged local energies and electric field on a spatial L×L lattice with L = 64
measured in the presence of two static charges, for β = 1.0. The first figure (top left) shows the
field lines of the electric field E⃗ defined in eq. (3.57). The last three figures (top right through
bottom right) show the local energy defined in eq. (3.55) in the three spacetime directions.

where P is the projector onto the Hilbert space sector where all states are invariant under the
Gauss law. Inserting static charges at locations x⃗ and y⃗ corresponds to violating the Gauss
law at those two lattice points. Thus the theory with static charges is defined by the same
Hamiltonian, but a different projector Pq,−q which projects onto the sector where the Gauss law
is satisfied everywhere except at x⃗ and y⃗ where it is violated by the appropriate charge amount.
Thus

Zq,−q = tr
(
e−NTHPq,−q

)
. (2.12)

Each partition function can be expanded in terms of energy eigenstates in the appropriate sector,
for example

Z =

∞∑
n=0

dne
−EnNT , (2.13)

where in both cases the coefficients dn are positive integers, since they are the degeneracy of
eigenstate n. In particular on general grounds one expects in finite volume that the ground state
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NT

R

Figure 2.2: A cross-section of the lattice showing the two Polyakov loops (thick lines) together
with the minimal surface in between, as well as the links in the dual lattice dual to each plaquette
(the dots).

is non-degenerate, d0 = 1. Thus the ratio of partition functions can be expanded as a series of
the form

⟨P (x⃗)P (y⃗)∗⟩ = Zq,−q

Z
=

∞∑
n=0

wne
−ẼnNT , (2.14)

where the wn are integer-valued and Ẽn are some coefficients. Most importantly, Ẽ0 = Eq,−q
0 −E0

is the energy difference between the ground state energy in the sector with static charges and the
ground state energy with no static charges. This can be interpreted as the potential energy V (R)
between the static charges, where R = |x⃗− y⃗| (assuming rotational invariance for simplicity).
Since we expect w0 = 1, we can extract the potential directly without fits,

V (R) = − 1

NT
log ⟨P (x⃗)P (y⃗)∗⟩ . (2.15)

This expression is correct up to exponentially small corrections in NT .
The expectation value of the Polyakov loop correlator can be nicely expressed in the dual

theory. As we have seen in Chapter 1, the duality provides a dictionary between observables
in the two theories. The dualization is not hard and we quickly show it for the Wilson action.
Each Polyakov loop can be written as

P (x⃗) = ei(φ,γx⃗) , (2.16)

where γx⃗ is a lattice 1-form equal to one on the links belonging to the non-contractible loop
defining P (x⃗) and zero otherwise. The Polyakov loop correlator can then be written as

P (x⃗)P (y⃗) = ei(φ,γx⃗−γy⃗) . (2.17)

Since the action of the gauge theory depends only on plaquette variables, we want to rewrite
the Polyakov loop correlator also in terms of plaquette variables only. To this end, we pick an
arbitrary surface S (i.e. a connected collection of plaquettes) bounded by the Polyakov loops and
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define a 2-form s by setting sp = ±1 if p ∈ S (depending on the orientation) and zero otherwise.
The surface S is arbitrary and the result is independent of the choice of S. The natural choice
is the “minimal” surface (i.e. the R×NT rectangle between the Polyakov loops), as shown in
Fig. 2.2. We then tile the surface with plaquettes. In practice, we have γx⃗ − γy⃗ = δs, so that
the Polyakov loop observable can be written as (using integration by parts)

P (x⃗)P (y⃗) = ei(dφ,s) . (2.18)

The dualization then proceeds very easily for any observable of this form (which includes for
example also the plaquette). The end result is that one simply replaces each hx − hy with
hx − hy + s⟨xy⟩ where s is the dual of the s field on the original lattice, i.e. it equals ±1 on the
links of the dual lattice dual to a plaquette in S and zero otherwise. With the Wilson action we
find

⟨P (x⃗)P (y⃗)∗⟩ = 1

Z

∏
x

∑
hx∈Z

 ∏
l=⟨xy⟩

I|hx−hy+s⟨xy⟩|(β) =
〈 ∏

l=⟨xy⟩

I|hx−hy+s⟨xy⟩|(β)
I|hx−hy |(β)

〉
, (2.19)

while with the Villain action,

⟨P (x⃗)P (y⃗)∗⟩ = 1

Z

∏
x

∑
hx∈Z

 exp

− 1

2β

∑
⟨xy⟩

(hx − hy + s⟨xy⟩)
2

 =

=

〈
exp

− 1

β

∑
⟨xy⟩

(
s2⟨xy⟩ + s⟨xy⟩(hx − hy)

)〉 . (2.20)

In both cases, we have reinterpreted the ratio of partition functions as an observable in the
theory without Polyakov loops.

From eq. (2.20) it is clear that since s⟨xy⟩ is non-zero only on links dual to the surface S, the
Polyakov loop correlator scales as exp (−const×A(S)) where A(S) is the area of the surface
S. Thus it makes sense to pick the surface with the least area, i.e. the minimal surface, which
is simply the R × NT rectangle bounding the Polaykov loops (note that this is the minimal
surface only if R < L/2, so we restrict to this case; otherwise the minimal surface would be the
one which wraps around the boundary). Nonetheless, even with this choice, the Polyakov loop
correlator is exponentially small in RNT , which is typically large. This leads to a signal-to-noise
problem which makes the correlator hard to measure. To circumvent this problem, one can
employ the so-called “snake algorithm” [129–131]. Let Zq,−q ≡ Z(R) if the Polyakov loops are
separated by a distance R. We are interested in computing Z(R)/Z for several values of R, so
that we can extract the potential V (R) according to eq. (2.15). The ratio of partition functions
can be factored as

Z(R)

Z
=

R−1∏
r=0

Z(r + 1)

Z(r)
. (2.21)

With this factorization, one could compute each ratio Z(r + 1)/Z(r) as an observable in the
ensemble generated according to the partition function Z(r). This is certainly an improvement,
since now the observable is exponentially small in NT rather than RNT , but not resolved. Thus
we perform a further factorization of each factor. In particular, define the intermediate partition
function Z(r,M) defined as above, but where the surface S is chosen as in Fig. 2.3, i.e. the last
column of plaquettes is not complete. More concretely, suppose that we are on a L2NT lattice
and the two Polyakov loops are located at spatial positions (x0, L/2) and (x0 +R,L/2). Then
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NT

M

R

Figure 2.3: Illustration of the snake algorithm. A cross-section of the lattice at y = L/2. The
dots denote dual lattice links in the y direction piercing the plaquettes between the two Polyakov
loops. The M links represent an unfinished column of links.

the links dual to plaquettes in S are those in the y direction starting at (t, x, y) where y = L/2
and x0 ≤ x < x+R and t satisfies{

0 ≤ t < M x = x0 +R ,

0 ≤ t < NT otherwise .
(2.22)

This is illustrated in Fig. 2.3. Note that Z(r + 1) = Z(r + 1, 0) = Z(r,NT ). Then we can
perform the further factorization,

Z(r + 1)

Z(r)
=

NT−1∏
M=0

Z(r,M + 1)

Z(r,M)
. (2.23)

Now each factor Z(r,M + 1)/Z(r,M) can be expressed as an observable in an ensemble
generated by Z(r,M) which is supported only on one single link. Therefore each of these ratios
can be efficiently evaluated via an arbitrary algorithm (for example, Metropolis). Then the
potential can be reconstructed as

V (R) = − 1

NT

R−1∑
r=0

NT−1∑
M=0

log
Z(r,M + 1)

Z(r,M)
(2.24)

Since each measurement is independent, the total error on V (R) can be computed as the mean
squared error of each factor, which in itself can be computed by error propagation. Note also
that one does not need to recompute V (R) for each R, but rather one can fix an Rmax and by
summing over fewer elements we get all the V (R) for 0 ≤ R ≤ Rmax.

In practice, however, to avoid the accumulation of errors in eq. (2.24) it is better to work
directly with the force

Q(R) = − 1

NT
log

Z(R+ 1)

Z(R)
= − 1

NT

NT−1∑
M=0

log
Z(R,M + 1)

Z(R,M)
. (2.25)
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In this case, the advantage is that the sum contains always an equal number of independently
computed quantities, so that the error on Q(R) is roughly independent of R (on the other
hand, the error on V (R) rises roughly linearly with R). The two quantities are connected as
Q(R) = V (R+ 1)− V (R).

The final step is to express each ratio as observables which can be measured. We do this
only for the Wilson action, as the expressions for the Villain action can be obtained by simply
replacing the Bessel function with the appropriate Boltzmann weight. Suppose that Z(r,M) is
described by an auxiliary field s, while Z(r,M + 1) is described by s′. Then their ratio is given
by

Z(r,M + 1)

Z(r,M)
=

∑
{h}∈Z

∏
⟨xy⟩ I|hx−hy+s′xy|(β)
Z(r,M)

= (2.26)

=

〈∏
⟨xy⟩

I|hx−hy+s′xy|(β)
I|hx−hy+sxy |(β)

〉
r,M

=

〈
I|hx̃−hỹ+1|(β)
I|hx̃−hỹ|(β)

〉
r,M

(2.27)

where the expectation value is taken with respect to the partition function Z(r,M). The last
equality follows because by construction s and s′ differ only on one link and therefore most
terms in the above ratio cancel out. This is the link in the y direction starting from (t, x, y)
where t =M , x = x0 +R, y = L/2, which we call l̃ = ⟨x̃ỹ⟩. On this link s′

l̃
= 1 (in the standard

orientation), but s
l̃
= 0.

2.2 Effective string theory

Since, as we have seen, the energy flux in the presence of static charges forms a confining string,
it is quite natural that the dynamics of the system can be described as a string theory. This
should be understood as an effective theory which describes the long-range dynamics of the
confining string, whose fundamental behaviour is determined by the underlying gauge theory.
Effective string theory is useful because it provides analytical predictions for various quantities,
which can be compared with the results of lattice simulations.

While effective string theory has many features in common with the (bosonic version of)
its more famous sister, string theory as a fundamental theory of nature, the two should not be
confused. In particular, while it is famously known that bosonic string theory is only consistent
in d = 26 dimensions [132], since our string theory is only an effective theory we can unashamedly
use it in d = 3 or d = 4. See also [133] on this point.

Effective string theory was introduced in [134, 135]. Mathematically, the fluctuations of a
string can be described by a “displacement vector” Xα(z) with α = 1, 2, . . . , d − 2 which is a
function of the worldsheet coordinates z = (z0, z1) and describes the transverse components of
the string fluctuations. The worldsheet parametrizes time z0 and position along the string z1
(so that 0 ≤ z1 ≤ R). In the time direction, one imposes periodic boundaries (0 ≤ z0 ≤ NT ).
The string action is written in terms of an infinite series,

S = σRNT + µNT + S0 + S1 + · · · , (2.28)

where the first two terms correspond the “classical” case where the string does not fluctuate.
The first correction to the linear behaviour is Gaussian,

S0 =
σ

2

∫
d2z ∂aX

α∂aX
α , (2.29)
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Figure 2.4: Potential V (R) (left) and force Q(R) (right) between two static charges in the
three-dimensional U(1) gauge theory with the Wilson action, at β = 1.7 and NT = L = 32.
The force Q(R) was fitted against the Nambu-Goto prediction (the best fit is shown dotted)
eq. (2.34).

for a = 0, 1. The higher-order corrections can be organized in terms of a derivative expansion
[128]. Then the string partition function

Z =

∫
DX e−S[X] , (2.30)

is expected to be proportional to the partition function with the static charges inserted Zq,−q

[128]. For example, with the Gaussian correction term S0 one can compute the lowest-order
correction to the potential, which is (up to a constant)

V (R) = σR− π(d− 2)

24

1

R
+O(1/R3) . (2.31)

The 1/R correction is known as the Lüscher term. Interestingly, it is universal, in that it is
independent of any low-energy constants which enter the partition function, including the string
tension. In particular, as is usual in effective theories, higher-order terms enter the action with
appropriate coefficients known as low-energy constants. These can be constrained in various
ways, such as symmetry, but are otherwise not predicted by the effective theory. To lowest
order, the only low-energy constant is the string tension, which is not predicted by the effective
theory. It can be extracted by determining V (R) numerically for the system of interest (for
example using the snake algorithm which we discussed in the previous section) and fitting to
the analytical prediction from effective string theory, for example eq. (2.31).

Interestingly, while the value of the low-energy constants such as the string tension depends
on the gauge theory and the dimension of spacetime, the general form of the prediction is
independent of other details of the underlying system. In SU(N) gauge theories, the value of the
string tension actually depends only on the N -ality of the representation of the static quarks
[136], although higher-order corrections generally involve low-energy constants which may have
a more complicated dependence on the representation. Attempts to further understand string
tensions have been made recently in the context of non-invertible symmetries [137, 138].

Later, it was been realized that the requirement of Poincaré invariance of the underlying
theory strongly constrains the various low-energy constants appearing in the effective string
action [133, 139–142]. See also the reviews [143, 144] as well as [145] for effective string theory at
finite temperature. The various corrections are related to the induced metric on the worldsheet

gab = ∂aXα∂bX
α . (2.32)
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In particular, all terms which depend solely on the string tension and contain no other low-energy
constant can be organized as the Nambu-Goto action,

SNG = σ

∫
d2z

√
det g , (2.33)

which to lowest order in a derivative expansion reproduces the linear potential as well as the
Gaussian correction eq. (2.29). The resulting potential with the full Nambu-Goto action can be
computed exactly [146],

V (R) = σR

√
1− π(d− 2)

12σR2
. (2.34)

A fit of snake algorithm data to the Nambu-Goto prediction for U(1) gauge theory in three
dimensions is shown in Fig. 2.4. Note that the string tension is the only fit parameter. There are
two types of corrections to the Nambu-Goto action: bulk terms and boundary terms. The bulk
terms can be organized in terms of geometric quantities in an expansion familiar from general
relativity. In d = 3 target dimensions, one finds [147]

S =

∫
d2z
√

det g
[
σ + γ1R+ γ2K

2 + γ3K
4 + · · ·

]
. (2.35)

Here R is the Ricci scalar and K is the extrinsic curvature. The integral of the Ricci scalar is a
topological invariant in two dimensions and therefore does not contribute to the potential (since
we do not expect large, topology-changing fluctuations). The K2 term introduces a “rigidity” in
the confining string. This term is exponentially small in R in principle and can therefore also be
neglected, unless its coefficient is unusually large. In fact this is exactly what happens in the
three-dimensional U(1) gauge theory [116]. An extrinsic curvature term for the confining string
in 3D U(1) gauge theory was in fact first proposed in [148], where it was argued that γ2 ∼ σ/m2,
where m is the mass gap of the theory [148, 149]. As we will see in the next chapter, this ratio
is divergent in a continuum limit where the string tension is held fixed. Thus in this case the
string is dominated by the K2 term. From the expansion eq. (2.35), bulk corrections beyond
Nambu-Goto arise at order 1/R7. Apart from bulk terms, one should also consider contributions
localized at the boundaries. The lowest order such contribution turns out to lead to a correction
in the potential of order 1/R4 [150], and is therefore much larger than the lowest order bulk
correction. Interestingly, boundary corrections are suppressed at finite temperature, where it is
then possible to detect the bulk corrections [147, 150].

2.3 Known results on the 3D U(1) gauge theory

Based on the dual partition function in the Villain formulation, it is possible to perform a
sequence of analytical manipulations which lead to an effective theory for the three-dimensional
U(1) gauge theory near the continuum [80, 81, 93]. With this formulation, it has been rigorously
shown that the theory is confining for all values of the coupling g2 [81]. In the rest of this section,
we review this calculation and discuss its consequences. We follow in part [137] for a simpler
presentation of the results in [81]. We start from the dual Villain partition function,

Z =

∏
x

∑
hx∈Z

 exp

− 1

2β

∑
⟨xy⟩

(hx − hy)
2

 . (2.36)

The main idea is to attempt to replace the discrete variables h with real-valued variables σ, and
attempt to control the error that one introduces by doing so [151]. Initially we simply introduce
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δ functions,

Z =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
hx

δ(σx − 2πhx)

 exp

− 1

8π2β

∑
⟨xy⟩

(σx − σy)
2

 . (2.37)

Exploiting the Poisson summation formula, we find∑
hx∈Z

δ(σx − 2πhx) =
∑
qx∈Z

eiqxσx , (2.38)

apart from some prefactors. Therefore the partition function becomes

Z =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

− 1

8π2β

∑
⟨xy⟩

(σx − σy)
2 + i

∑
x

qxσx − i
∑
x

qxBx

 .
(2.39)

Here we have introduced a “magnetic field” Bx which couples to the q. This will turn out to be
useful for a calculation which we perform in Chapter 3. For the standard U(1) theory Bx ≡ 0,
but its presence barely affects the calculation.

It is important to note that the partition function for the height model eq. (2.36) is invariant
under a global integer shift of the height variables, hx → hx + n, with n ∈ Z. We call this the
“global” Z symmetry. In particular, it should be understood as a sort of redundancy in our
description of the system. The overall height around which the height variables fluctuate should
not matter and therefore all observables are required to be invariant under the Z symmetry
[81]. Note further that the global Z symmetry is related to a zero-mode problem, similar to
the one encountered in Chapter 1. In particular the partition function eq. (2.36) is infinite, i.e.
Z = ∞, even in finite volume. This is because, with open or periodic boundaries, the integrand
in the partition function is actually independent of one of the height variables, which manifests
itself by the presence of the global Z invariance. This can be seen most easily by considering
the one-dimensional case with one or two links. One therefore has an unconstrained sum over
the non-compact space Z, which leads to the infinity. Again, this is very similar to the problem
encountered in Chapter 1. Several resolutions are possible; in particular, one could fix one of the
height variables to an arbitrary value, or alternatively employ C-periodic boundary conditions.
Here we note that, similarly to Chapter 1, the infinity of the partition function does not translate
to observables (in which case the infinity cancels between numerator and denominator). Therefore
we simply choose periodic boundaries; as long as we only consider observables which are invariant
under the global Z symmetry, no issue arises. The global Z invariance has implications for
the real scalar field σ that we just introduced. In particular, physically we should identify
configurations which differ by a global 2π difference, i.e. σx ∼ σx + 2π. Thus, while σ ∈ R, it is
in some sense compactified.

To proceed, we want to integrate out the σ, whose action is basically Gaussian. To this end,
for ease of notation we rewrite the expression in terms of lattice differential forms, in which case
the above action may be rewritten as

Z =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

[
− 1

8π2β
(dσ, dσ) + i(q, σ)− i(q,B)

]
, (2.40)

where σ, q,B are 0-forms and dσ⟨xy⟩ = σx−σy, while (·, ·) is the inner product on k-forms. Then
note that, using integration by parts,

(dσ, dσ) = (σ, δdσ) = (σ,□σ) , (2.41)
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where □ = dδ + δσ is the three-dimensional lattice Laplacian and δσ = 0 since σ is a 0-form.
Standard Gaussian integration then gives (up to constant prefactors)

Z =

∏
x

∑
qx∈Z

 exp
[
−2π2β(q,□−1q)− i(q,B)

]
. (2.42)

For the relevant case B ≡ 0 this is the partition function for a Coulomb gas of monopoles
interacting via a Coulomb force. This expression should be compared with the very similar
expression for the vortex gas which we obtained in Chapter 1.

Now the monopole partition function receives both short-ranged contributions and long-range
contributions; for an effective theory near the continuum we’re interested in the latter. To
separate the two we perform a Pauli-Villars regularization, setting

□−1 = □−1 − (□+M2)−1 + (□+M2)−1 =

= □−1(1 +□/M2)−1 + (□+M2)−1 ≡ □−1
PV +□−1

M (2.43)

where the mass M is arbitrary. Here the massive propagator □−1
M corresponds to the short-

range contributions, while the regularized Pauli-Villars propagator corresponds instead to the
long-ranged physics. The partition function then becomes

Z =

∏
x

∑
qx∈Z

 exp
[
−2π2β(q,□−1

PVq)− 2π2β(q,□−1
M q)− i(q,B)

]
. (2.44)

Now we reintroduce the scalar field σ, but only for the long-range degrees of freedom; the short
range contributions will be integrated out. Undoing the transformation simply leads to

Z =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

[
− 1

8π2β
(σ,□PVσ) + i(q, σ −B)− 2π2β(q,□−1

M q)

]
.

(2.45)
Finally, we sum away the short-ranged contributions given by the remaining q variables. First
of all, note that the mass M in the Pauli-Villars regularization is arbitrary. However, it must be
chosen to scale appropriately with the other quantities in the system in order to obtain a valid
limit. In particular, if a is the lattice spacing and m is the physical mass of the system (or any
other quantity which is taken as the standard of length), one must choose M to scale such that
M/m→ ∞ while aM → 0 in the continuum limit a→ 0 [81].

In particular, the massive propagator □−1
M ≡ vM (x − y) scales as e−M |x−y|. If the

mass m is taken as the standard of length, then as one approaches the continuum,
vM (x− y) ∼ e−(M/m)(m|x−y|). Since we have chosen M/m large, then as the continuum limit
is approached the propagator is exponentially peaked around x ≈ y and therefore (q,□−1

M q)
can be approximated by (q,□−1

M q) ≈ vM (0)
∑

x(qx)
2. But since aM → 0, in lattice units

vM (0) ≈ v(0) + O(aM). The inverse lattice Laplacian was computed in Chapter 1 in two
dimensions. On a d-dimensional infinite hypercubic lattice, the formula is quite similar,

v(x− y) =
( a
2π

)d ∫
BZ

dd k⃗
eik·(x−y)

2
(
d−∑µ cos(kµ)

) (2.46)
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where the Brillouin zone is [−π
a ,

π
a ]

d. Therefore in three spacetime dimensions at zero separation
it takes the value [152]

v0 ≡ v(0) =
1

2π3

∫ π

0

∫ π

0

∫ π

0

du dv dw

3− cos(u)− cos(v)− cos(w)
=

=

√
6

192π3
Γ

(
1

24

)
Γ

(
5

24

)
Γ

(
7

24

)
Γ

(
11

24

)
≈ 0.252731 . . . (2.47)

Note that this part of the argument is crucially connected to three spacetime dimensions [153].
For example, in two dimensions the corresponding integral is divergent [154],

1

2π2

∫ π

0

∫ π

0

du dv

2− cos(u)− cos(v)
= ∞ . (2.48)

More precisely, vM (0) diverges as vM (0) ∼ log (aM) [153]. Therefore, as stated, the argument
fails in two dimensions. Interestingly, the fact that the inverse Laplacian at zero separation is
divergent on a square lattice but finite on a cubic lattice is responsible for the fact that random
walks are recurrent on the square lattice, but transient on the cubic lattice [155].

At this point we can integrate out the short-range monopole contributions. For large β, the
monopoles with |qx| > 1 are subleading, thus one can make the “dilute gas approximation” where
qx = 0,±1. Then we find∏

x

∑
qx∈Z

 exp
[
i(q, σ −B)− 2π2β(q,□−1

M q)
]
≈
∏
x

 ∑
q=0,±1

exp
(
iq(σx −Bx)− 2π2βv(0)q2

) =

=
∏
x

[
1 + 2e−2π2βv(0) cos (σx −Bx)

]
=

≈
∏
x

exp
[
2e−2π2βv(0) cos (σx −Bx)

]
. (2.49)

Therefore the partition function becomes

Z =

(∏
x

∫ +∞

−∞
dσx

)
exp

[
− 1

8π2β
(σ,□PVσ) + 2e−2π2βv(0)

∑
x

cos (σx −Bx)

]
. (2.50)

As we approach the continuum, we can replace the Pauli-Villars Laplacian □PV with the standard
Laplacian; then canonically normalizing the kinetic term and setting Bx ≡ 0 for the standard
U(1) theory, one finds

Z =

(∏
x

∫ +∞

−∞
dϕx

)
exp

−1

2

∑
⟨xy⟩

(ϕx − ϕy)
2 + 2e−2π2βv(0)

∑
x

cos (2π
√
βϕx)

 . (2.51)

Note that this expression is valid for large β. Therefore, this analytical method cannot show
the absence of phase transitions in other regions of coupling space. This possibility is however
excluded numerically.

From here we can take the continuum limit where one sends β → ∞. For clarity, we restore
the lattice spacing a. Let ϕ̃ = ϕ/

√
a be a dimensionful field with the correct dimensions for a

scalar field in three dimensions (this is dictated by the kinetic term in the action). Defining a
dimensionful coupling β̃ = aβ, as we approach the continuum the action can be written as

S ≈
∫
d3x

[
1

2
∂µϕ̃∂µϕ̃− 1

a3
2e−2π2βv(0) cos

(
2π

√
β̃ϕ̃x

)]
. (2.52)
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Now we need a renormalization prescription for the running of the coupling β as the continuum
limit is taken. One possibility is to fix a mass m and let

a2m2 = 8π2β exp
[
−2π2v0β

]
. (2.53)

This provides a prescription for the continuum limit, with a different trajectory for each fixed
value of m. As a→ 0, am→ 0 and since the effective theory assumes β large, this then forces
β(a) → ∞ as a→ 0. A more precise relationship can be obtained by inverting eq. (2.53) (using
the Lambert W function) whereby one finds,

β(a) ∼ − log a→ +∞ =⇒ β̃(a) ≡ aβ(a) ∼ −a log(a) → 0 . (2.54)

as the continuum limit a → 0 is taken. Substituting the mass definition eq. (2.53) into the
action, one finds

S ≈
∫
d3x

[
1

2
∂µϕ̃∂µϕ̃− m2

4π2β̃
cos

(
2π

√
β̃ϕ̃x

)]
. (2.55)

Therefore as we approach the continuum, since β̃ → 0, the potential difference separating
different minima of the cosine becomes infinite. The minima are all physically equivalent because
they are related by a global shift of the scalars; thus we expand the field around an arbitrary
minimum. In particular, this also means that the field ϕ decompactifies, and becomes a proper
scalar field as the continuum limit is approached. One can then expand the cosine in a Taylor
series, and since β̃ → 0 only the second-order term survives in the continuum limit (up to a
constant) and one finds,

S ≈
∫
d3x

[
1

2
∂µϕ̃∂µϕ̃+

1

2
m2ϕ̃2

]
. (2.56)

Thus the theory has become a theory of a free real-valued scalar field with a non-perturbatively
generated mass m.

The fact that the continuum physics is described by a massive free scalar has interesting
implications for the spectrum of the theory. Naively, one would expect simply a massless photon.
However, as we’ve seen, due to non-perturbative self-interactions via monopoles the photon is
itself confined. Nonetheless, the situation cannot be simply described as the photon acquiring a
mass, because the effective theory predicts that the long-range physics is described by a scalar
particle. Instead, the intuitive picture is that photons are packed together by monopoles into
forming “glueballs”, or “photoballs”, which are scalar particles. In fact in the continuum the mass
of the lowest glueball coincides with the mass of the continuum scalar [81]. In more general terms,
one can construct glueball states in various microscopic channels and study the scaling of their
masses. One finds that, as the continuum is approached, the glueball masses in various channels
become integer multiples of the mass gap [115]. Thus, the various microscopic glueball states
should be interpreted as excitations of a single non-interacting free scalar, which is precisely the
effective theory description of this model.

The form of the mass gap for the U(1) theory eq. (2.53) is quite reminiscent of the formula for
the mass gap in non-Abelian gauge theories. Nonetheless, interestingly, in that case the coefficient
in the exponent is universal. Here, instead, it is peculiarly dependent on the underlying lattice.
If one discretizes the theory on a different three-dimensional lattice, then one would expect the
mass gap to scale with the v0 corresponding to the zero-separation limit of the Green’s function
for the corresponding lattice.

From the effective theory eq. (2.51) a semiclassical approach allows the calculation of the
string tension σ [80, 81, 156], which is found to scale as

a2σ =
c̃

4π2
am

β
, (2.57)
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where c̃ is a dimensionless constant. These results have found numerical confirmation [113–116,
157, 158], and the constant c̃/4π2 ≈ 0.21 was estimated for the Wilson action in [115]. We
postpone the derivation of eq. (2.57) until the end of this section since it is somewhat involved.

The scaling of the string tension vs the mass is rather peculiar. In non-Abelian Yang-Mills
theories, the string tension and mass are commensurate, in that the ratio

√
σ/m is finite in the

continuum limit [159, 160]. On the other hand, in this case eq. (2.57) predicts the scaling

σ

m2
→ ∞ ,

(a2σ)β

(am)
→ c̃

4π2
. (2.58)

Therefore this theory has inequivalent length scales, in the sense that one can choose to keep
fixed either the mass or the string tension, but not both. Therefore, depending on what quantity
is taken as the standard of length, one can take three different continuum limits:

1. If the mass m is taken as the standard of length, the string tension becomes infinite in the
continuum limit. As we have seen, the theory is equivalent to a free massive scalar (the
“photoball”).

2. If the string tension σ is taken as the standard of length, the mass goes to zero in the
continuum limit.

3. A third continuum limit may also be obtained by noting that the dimensionless coupling
β may also be expressed in terms of the usual dimensionful coupling g2 as β = 1/(ag2).
One may then take g2 as the standard of length; with this choice, both the mass and
string tension go to zero. The resulting theory has been rigorously shown to be free
electrodynamics [161].

Because of these three different options, lattice U(1) gauge theory is capable of describing
different continuum theories depending on how the limit is taken. This is an interesting fact
which makes clear the difficulty outlined in Chapter 1 in defining a continuum limit. One
cannot assign an unambiguous meaning to the limit a→ 0, because the result depends on the
renormalization prescription that is chosen. Because of this ambiguity, it is even unclear what a
continuum path-integral measure “should” even mean if it were possible to rigorously define it.

The existence of the three continuum limits also has consequences for the finite temperature
physics in this model. In particular, as we will see, even the existence of the finite temperature
deconfinement transition depends on how the limit is taken.

A fact which to our knowledge has gone unnoticed in the literature is that it is actually not
necessary to perform the dilute gas approximation. The monopole sum can be performed to
all orders, leading to a formula for the higher-monopole corrections to the mass gap formula
eq. (2.53). In particular, the monopole sum can be performed exactly, whereby∑

q∈Z
exp

[
iqσ − 2π2βv0q

2
]
= θ(z; τ) , (2.59)

where θ is the Jacobi theta function and{
z = σ

2π ,

τ = 2iπβv0 .
(2.60)

Then the action takes the form

S =
1

8π2β
(σ,□PVσ) +

∑
x

V (σx) , (2.61)
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where the potential is given by exp (−V (σ)) = θ(z; τ). The Jacobi theta function can also be
expressed as [162]

θ(z; τ) =

∞∏
m=1

(
1− e2πimτ

)(
1 + e(2m−1)πiτ+2πiz

)(
1 + e(2m−1)πiτ−2πiz

)
. (2.62)

Therefore

V (σ) = − log θ(z; τ) = −
∞∑

m=1

[
log
(
1− λ2m

)
+ log

(
1 + λ2m−1eiσ

)
+ log

(
1 + λ2m−1e−iσ

)]
(2.63)

where we set λ ≡ e−2π2βv0 . Since λ < 1 we can expand the logarithm in a series, and we find

V (σ) =
∞∑

m=1

∞∑
n=1

λ2mn

n

[
1 + 2

(−1)n

λn
cos (σn)

]
. (2.64)

The first term is simply a constant which we ignore. The lowest order term is obtained for
m = n = 1 and reproduces the cosine potential in the previous case. Again since |λ| < 1 the
series is absolutely convergent and we can therefore swap the two summations, leading to

V (σ) =
∞∑
n=1

1

n

(−1)n

sinh (2π2βv0n)
cos (σn) . (2.65)

From this expression we can extract the mass of the particle by repeating the previous calculation.
In particular, we canonically normalize the kinetic term by setting σ = 2π

√
βϕ. The mass can

be identified by the same procedure as in the standard case (alternatively, simply by Taylor
expansion) and one finds (restoring the lattice spacing a)

a2m2 = 4π2β
∞∑
n=1

1

n

(−1)n−1

sinh (2π2βv0n)
. (2.66)

For large x, sinhx ≈ 1
2e

x and therefore the leading-order term reduces to the standard result
eq. (2.53).

Finally, we describe the semiclassical derivation of the string tension formula eq. (2.57). See
also [80, 93, 156, 163]. The starting point is the partition function with the insertion of a current,

Z[s] =

∏
x

∑
hx

 exp

− 1

2β

∑
⟨xy⟩

(hx − hy + s⟨xy⟩)
2

 . (2.67)

We have seen in eq. (2.20) that this is the form of the partition function with the insertion of
Polyakov loops. Since the derivation of the effective theory is performed in infinite volume, it is
easier to see s⟨xy⟩ as the current arising from the insertion of a rectangular Wilson loop in the
original theory. Then s⟨xy⟩ = ±1 on links dual to plaquettes in the minimal surface bounded
by the Wilson loop and 0 otherwise. One can repeat the derivation of the effective theory in
the presence of the current s. Since the calculation is rather similar, we skip most steps and
highlight only the differences. Again we replace the discrete h ∈ Z with real σ ∈ R and get

Z[s] =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

− 1

8π2β

∑
⟨xy⟩

(σx − σy + 2πs⟨xy⟩)
2 + i

∑
x

qxσx

 .
(2.68)
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Expanding the quantity in the square and writing everything in form notation (also integrating
by parts) leads to

Z[s] =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

[
− 1

8π2β
(σ,□σ)− 1

2β
(s, s) +

(
iq − 1

2πβ
δs, σ

)]
.

(2.69)
It is now rather simple to perform the Gaussian integration over σ and obtain the monopole gas
representation

Z[s] =

∏
x

∑
qx∈Z

 exp

[
2π2β

((
iq − 1

2πβ
δs

)
,□−1

(
iq − 1

2πβ
δs

))
− 1

2β
(s, s)

]
. (2.70)

This is the partition function for a Coulomb gas of monopoles in the presence of sources. The
sources δs are a 0-form which is non-zero on the sites directly on the two sides of the Wilson
loop, equal to +1 on one side and −1 on the other. Thus the monopoles arrange themselves
in order to screen the electric charge. This partition function is actually rather similar to the
partition function for the gas of vortex lines which we encountered in Chapter 1. Now expanding
the quantity in brackets, using Pauli-Villars regularization, reintroducing the σ field for the
long-range contributions and summing over the qs in the dilute gas approximation, we arrive at

Z[s] =

(∏
x

∫ +∞

−∞
dσx

)
exp

[
− 1

8π2β
(σ,□σ) + 2λ

∑
x

cos (σx −Bx) +

− 1

2β
(s, s) +

1

2β
(δs,□−1δs)

]
, (2.71)

where λ = e−2π2βv0 and B = 2π□−1δs is the Coulomb potential due to the monopole sources
δs. The leading-order contribution to the partition function is due to the classical solution of
the equations of motion. This is the semi-classical approximation. We are only interested in
extracting area-law terms in the ratio Z[s]/Z.

The first observation is that while the two terms in the second line of eq. (2.71) are individually
proportional to the area of the Wilson loop, their combination is actually only proportional to the
perimeter, and can thus be discarded in the calculation. In fact, from the Hodge decomposition,
we have s = d□−1δs+ δ□−1ds so that, using integration by parts,

(s, s)− (δs,□−1δs) = (ds,□−1ds) . (2.72)

Now ds is a 2-form and thus lives on plaquettes. It is only supported on plaquettes on the border
of the Wilson loop, and it is thus reasonable that the corresponding term is perimeter-behaved.

Now we turn to the two terms in the first line of eq. (2.71). Since the effective theory is valid
near the continuum, we approximate the action in terms of continuum variables:

S ≈
∫
d3x

[
1

8π2β
(∂µσ)

2 + 2λ(1− cos(σ −B))

]
, (2.73)

where we added a constant to ensure that the final results are finite. When going to the
continuum, we need to be careful not to introduce divergences. From the lattice definition of δs,
it is clear how to define it in the continuum. Suppose that the Wilson loop (assumed to be very
large) is located on the plane y = 0. Then in the continuum δs = −δ′(y)θW (x, t) where δ′ is the
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derivative of the Dirac delta function and θW (x, t) = 1 if (x, t) is inside the Wilson loop (i.e.
0 ≤ x ≤ R and 0 ≤ t ≤ NT ) and zero otherwise. The classical equations of motion arising from
the above action are

∂2µσ = 8π2βλ sin(σ −B) . (2.74)

Defining χ = σ −B and recalling that m2 = 8π2βλ, we find

∂2µχ = 2πδs+m2 sinχ . (2.75)

This is just the three-dimensional Sine-Gordon equation. We solve it by setting (recall that the
Wilson loop is in the y = 0 plane)

χ(t, x, y) = θW (t, x)ξ(y) . (2.76)

Ignoring the effect of the boundary, the equation of motion reduces to

ξ′′(y) = −2πδ′(y) +m2 sin(ξ(y)) . (2.77)

For y ̸= 0 this is simply the one-dimensional Sine-Gordon equation, which is one of those
theories admitting exact soliton solutions. In this case, we have the kink (domain wall) solutions
ξ(y) = 4 arctan(e±my) [14, 19]. Note that since this is a non-linear equation, the normalization
(apart from the overall sign) is not arbitrary. To avoid mistakes, it is important to take a
step back. Assuming that sin ξ is well-behaved, we can integrate eq. (2.77) once to obtain
(schematically)

ξ′(y) + 2πδ(y) = m2

∫
sin(ξ(y)) . (2.78)

This tells us that ξ′ has a delta function singularity at y = 0, and it is only the combination
ξ′(y) + 2πδ(y) that is well-behaved around y = 0. Integrating once more around a small domain
near y = 0 then implies that ξ jumps by −2π across y = 0 (note that under the jump, sin ξ
remains continuous). The other boundary condition is simply that ξ → 0 at infinity. To achieve
both conditions, we can combine two kinks [80],

ξ(y) =

{
−4 arctan(e−my) y > 0 ,

4 arctan(emy) y < 0 .
(2.79)

Miraculously, this solution correctly jumps by −2π at y = 0 (since arctan(1) = π/4) and solves
the Sine-Gordon equation.

We can then go back to evaluate the action on the classical solution. Note that
cos(σ −B) = cos(χ) is actually continuous across y = 0, so this term poses no issue. On the
other hand, the evaluation of the kinetic term requires the calculation of the derivative of χ,
which, as we have seen, contains a δ singularity. In fact for y ̸= 0,

ξ′(y) =
4memy

e2my + 1
. (2.80)

On the other hand, ξ′ is divergent at y = 0 due to the discontinuity. Then from eq. (2.78) we
see that for all y,

ξ′(y) + 2πδ(y) =
4memy

e2my + 1
. (2.81)

Plugging back into the action, we then see that θW gives rise immediately to the area law, and
we find

S ≈ Area

∫ +∞

−∞
dy

[
1

8π2β
(ξ′(y) + 2πδ(y))2 + 2λ(1− cos ξ)

]
. (2.82)
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Both integrals are elementary and equal to m/(π2β) so that

S ≈ 2m

π2β
Area . (2.83)

Therefore, to leading order in the semiclassical calculation, the Wilson loop shows area-law
behaviour

Z[s]

Z
∼ exp (−σArea) , (2.84)

with the string tension

σ =
2m

π2β
. (2.85)

Restoring lattice units, this is just the string tension prediction eq. (2.57) with an explicit
constant c̃/(4π2) = 2/π2 ≈ 0.20.

The semiclassical scaling of the string tension is lent further credit since it can be rigorously
shown to be a lower bound for the string tension. For sufficiently large β, one has [81]

a2σ ≥ const× am

β
. (2.86)

Moreover, a similar upper bound has also been shown [164],

a2σ ≤ const× am√
β

(
1 +O

(
log β

β

))
. (2.87)

The semiclassical calculation also makes it clear that in the dual picture the string tension
should be interpreted as an interface tension. The presence of a Wilson loop in a certain plane
is captured by the insertion of the current s; however, it can be equivalently captured by a
boundary condition, whereby the field jumps by 2π across the Wilson loop plane. In fact the
presence of the source δs in the Sine-Gordon equation of motion (2.77) precisely enforces this
boundary condition. Thus the string tension can be seen as the interface tension for the global
Z symmetry across the Wilson loop. This method has also been explicitly used to compute the
string tension in a lattice calculation [113].

2.4 U(1) gauge theory at finite temperature

The Euclidean partition function of a quantum field theory with periodic boundary conditions
in the time directions can be interpreted as the partition function of a thermal system in the
canonical ensemble with temperature

T =
1

aNT
. (2.88)

Suppose that we perform a simulation with spatial extent L and time extent NT . To perform
a simulation at zero temperature, a simple prescription would be to take NT = L and then
extrapolate to the thermodynamic limit L → ∞. Then one takes the continuum limit as
explained in Chapter 1 by tuning the system to a continuous transition.

On the other hand, to perform a simulation at finite temperature the infinite volume limit is
taken only in the space directions. One performs simulations at fixed NT and increasing L with
L ≫ NT . Then the continuum limit a → 0 is taken together with the limit NT → ∞, while
holding fixed the temperature T in eq. (2.88). In practice, one expresses the temperature as a
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dimensionless ratio which can be determined on the lattice. Usually, one considers a ratio with
the string tension σ (computed at zero temperature), i.e.

T√
σ
=

1√
a2σNT

. (2.89)

In particular, the right-hand side can be determined on the lattice, as NT is a parameter of the
simulation and the string tension in lattice units a2σ can be determined by numerical simulations
as discussed in the previous sections. However, as we have seen, in the three-dimensional U(1)
gauge theory one has three possible continuum limits. Measuring T in units of

√
σ and then

taking NT → ∞ corresponds to a continuum limit where the string tension is taken as the
standard of length. Note that this requires tuning the theory to a point where a2σ → 0, which
is simply a point where a continuous transition takes place. On the other hand, if the mass gap
m (at zero temperature) is taken as the standard of length, then one considers a ratio

T

m
=

1

(am)NT
. (2.90)

A third continuum limit may be obtained where the dimensionful coupling g2 is taken as the
standard of length. The corresponding temperature ratio is

T

g2
=

β

NT
, (2.91)

where β = 1/(ag2) is the dimensionless coupling which appears in the action.
At sufficiently high temperature, gauge theories undergo a deconfinement transition. An

order parameter for deconfinement is the Polyakov loop expectation value ⟨P ⟩, typically averaged
over space:

P =
1

L2

∑
x⃗

P (x⃗) . (2.92)

An argument for why this is an order parameter of the deconfinement transition goes as follows.
On general grounds, one expects that the expectation value of the Polyakov loop correlator
factorizes at large distances,

lim
R→∞

⟨P (x⃗)P (y⃗)∗⟩ = |⟨P ⟩|2 , (2.93)

since ⟨P (x⃗)⟩ = ⟨P (y⃗)⟩ by translational invariance. But we know that the Polyakov loop correlator
is related to the interquark potential as

⟨P (x⃗)P (y⃗)∗⟩ = e−NTV (R) . (2.94)

In the confining phase, the interquark potential takes the form

V (R) = σR+ const +O(1/R) . (2.95)

This we have seen from the effective string theory, and in fact it can be rigorously shown that
V (R) cannot grow faster than linearly [165]. In the confining phase the string tension is non-zero
and therefore V (R) → ∞ as R→ ∞.

In the deconfined phase the theory is massless and one expects static charges to interact
via a Coulomb potential. In four spacetime dimensions, this goes like V (R) ∼ 1/R, so that
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V (R) → const as R → ∞. Thus seeing |⟨P ⟩|2 as the R → ∞ limit of the Polyakov loop
correlator, we see that

confinement =⇒ ⟨P ⟩ = 0 , (2.96)
deconfinement =⇒ ⟨P ⟩ ≠ 0 . (2.97)

Thus the Polyakov loop is an order parameter for the finite-temperature deconfinement transition.
In three spacetime dimensions, the situation is more complicated, because (at least for

electrodynamics) the Coulomb potential is logarithmic, V (R) ∼ logR. Then in both phases
V (R) → 0 as R→ ∞, although the rate of decay is different:

confinement =⇒ ⟨P (x⃗)P (y⃗)∗⟩ → 0 exponentially , (2.98)
deconfinement =⇒ ⟨P (x⃗)P (y⃗)∗⟩ → 0 as a power law . (2.99)

In this case, the “deconfined” phase is really another confined phase, but only logarithmically
so. The string tension is therefore zero in this phase. Even though the Polyakov loop does not
acquire a vacuum expectation value, it can still be used to identify the location of the phase
transition. In fact at the transition the functional form of the decay changes abruptly; thus one
expects a sharp rate of change in ⟨P ⟩ at the transition point. The decay of the Polyakov loop
correlator eq. (2.98) is reminiscent of the decay of the spin correlator on the two sides of the
BKT transition in the two-dimensional XY model. As we will see in a moment, this is not by
chance.

As long as the Polyakov loop acquires a vacuum expectation value, the deconfinement
transition may also be interpreted as the spontaneous breaking of a symmetry. In fact, the
action of pure gauge theories is actually invariant under a 1-form symmetry known as “center
symmetry” which acts by multiplying all gauge field variables on links in the time direction in
one timeslice by a center element z ∈ Z(G). Under such a transformation, the Polyakov loop
transforms as

P → zP . (2.100)

Thus the deconfinement transition is associated with the spontaneous breaking of the center
symmetry. This also leads to a heuristic argument which predicts the universality class of the
deconfinement transition. The relevant variables for deconfinement are the Polyakov loops P (x⃗).
Since they extend across all timeslices and at finite-temperature L ≫ NT , the system can be
thought of as being effectively dimensionally-reduced to one dimension less. The Polyakov
loops can then be thought of as spin variables which interact via nearest-neighbour interactions
(intuitively, since the underlying theory has plaquette interactions) and global symmetry group
Z(G). This then leads to the prediction, known as the Svetitsky-Yaffe conjecture [166], that
the deconfinement transition of a gauge theory with gauge group G in d spacetime dimensions
should be in the same universality class of the transition of the spin model with symmetry Z(G)
in d− 1 dimensions. This should be true at least if the transition has universal features, i.e. it
is continuous. Thus, for example, SU(2) gauge theory in three spacetime dimension is expected
to have a deconfinement transition in the two-dimensional Ising universality class. Moreover,
since a crucial role in this argument is played by the center of the gauge group, we also mention
that it is especially interesting to study gauge groups without a center [167, 168].

A heuristic for the order of the deconfinement transition is that the transition will be
continuous if the mismatch between the number of degrees of freedom on the two sides is small
[169]. For U(1) in three dimensions, on one side we have a massless photon, and on the other a
massive photoball. Thus one expects a continuous transition. Moreover, the center of U(1) is
simply U(1), so by the Svetitsky-Yaffe conjecture the transition should be in the BKT universality
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NT Lmax βpc
4 80 2.11(1)
6 80 2.35(5)
8 104 2.55(1)

Table 2.1: Location of the deconfinement transition for NT = 4, 6, 8. The pseudo-critical
coupling βpc refers to the peak of the Polyakov loop susceptibility for the largest volume that we
considered.

class. Lattice calculations provide support to these statements [114, 117, 120–122]. In fact, as we
have seen in eq. (2.98), gauge theory arguments predict that the Polyakov loop correlator behaves
in the same way as the spin correlator in the two-dimensional XY model, with the confined
phase mapped to the disordered phase and the deconfined phase mapped to the quasi-long range
ordered phase. Therefore in the 3D U(1) case, the deconfinement transition is not associated
with spontaneous symmetry breaking. Intuitively, the at finite temperature the U(1) gauge
theory monopoles are “squashed” in the time direction and become the two-dimensional BKT
vortices. These arguments are also supported by RG calculations [166, 170]. In three dimensions,
it is also interesting to contrast the U(1) gauge theory with the SU(2) gauge theory. Naively,
in the deconfined phase of SU(2) gauge theory one might expect again a logarithmic Coulomb
potential (much like in U(1)) due to the deconfined plasma of gluons. This would then again
imply the absence of a vacuum expectation value for the Polyakov loop and thus no spontaneous
symmetry breaking. However, the Svetitsky-Yaffe conjecture predicts that the transition in
SU(2) gauge theory is in the two-dimensional Ising universality class. This is characterized
by the spontaneous breaking of the Z2 symmetry and by a spontaneous magnetization in the
broken phase (which corresponds to the deconfined case). Presumably, this then implies that the
potential between static charges due to the SU(2) gluon plasma is not logarithmic, but rather at
most a power law.

In practice, in any numerical simulation at finite volume, ⟨P ⟩ = 0. Thus one often considers
⟨|P |⟩ instead. For each NT , L, the pseudocritical coupling βpc can be identified as the location
of the peak of the Polyakov loop susceptibility

χP = L2
(〈

|P |2
〉
− ⟨|P |⟩2

)
. (2.101)

In our case, there is no spontaneous symmetry breaking, but χP peaks at the location of
sharpest change in the Polyakov loop, which is the phase transition. As usual, one then needs to
extrapolate βpc to infinite volume in order to obtain the critical coupling βc. Due to the BKT
nature of the transition, large lattices are required to obtain reliable data. The critical coupling
also depends on the details of the infinite-volume extrapolation. Previous studies have found
that to leading order the critical coupling scales as βc = O(NT ) [118, 120, 121], which is also
expected on theoretical grounds [115]. However, there is some disagreement over the actual
values of βc. This issue is not central to our work and we have therefore chosen to simply work
with the pseudocritical couplings computed at the largest volume we considered. An example
of the Polyakov loop susceptibility for NT = 6 and increasing L is shown in Fig. 2.5, and the
computed pseudocritical couplings are given in Table 2.1.

The above scaling of the critical coupling has important implications for the continuum limit
of the theory. In particular, as NT → ∞ we have that βc → ∞ and therefore both am→ 0 and
a2σ → 0 exponentially in NT . Thus from eqs. (2.90) and (2.89), we find

Tc
m

→ ∞ ,
Tc√
σ
→ ∞ . (2.102)
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Figure 2.5: Polyakov loop susceptibility for NT = 6 as a function of β, for increasing spatial
extents L.

Therefore if either the mass or string tension are held fixed in the continuum, the deconfinement
transition disappears and even at finite temperature the theory is always confining. On the other
hand, if g2 is held fixed, since βc = O(NT ), from eq. (2.91) in the continuum limit one finds

Tc
g2

= constant . (2.103)

Therefore in this case, there is a deconfinement transition. This is somewhat surprising, because
in this limit the theory reduces simply to ordinary free electrodynamics.

2.5 The equation of state

The equation of state is the dependence of the pressure p(T ) on the temperature T . It can
be computed via the so-called “integral method” [171], which is rather simple. From standard
thermodynamic identities, one can express

p(T ) = −∂F
∂V

∣∣∣∣
T

= T
∂

∂V
logZ

∣∣∣∣
T

= T
logZ

V
as V → ∞ . (2.104)

Here the free energy F is related to the canonical partition function Z by Z = exp (−F/T ) as
usual. Note that the last equality is a non-trivial identity valid in the infinite (spatial) volume
limit V → ∞.

For the Wilson action eq. (2.2), we can differentiate logZ with respect to the coupling to
obtain,

∂ logZ

∂β
=

〈∑
p

cos θp

〉
≡ 3L2NT□ , (2.105)

where we denoted the average plaquette expectation value as □, and 3L2NT is the number of
plaquettes in a three-dimensional lattice. In particular, □ can be computed on the lattice via
numerical simulations. Integrating this equation between two points β0 and β, we find

logZ|β− logZ|β0= 3L2NT

∫ β

β0

dβ′□(β′) . (2.106)
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A natural choice is to set β0 = 0, where it is possible to compute the partition function exactly,

Z|β0= (2π)3NTL2
. (2.107)

Here 3NTL
2 is the number of links on a three-dimensional cubic lattice. The spatial volume V

is given by V = a2L2, while the temperature is T = 1/(aNT ), thus

p(T ) =
T

V
logZ|β(T )=

3 log (2π)

a3
+

3

a3

∫ β(T )

0
dβ′□(β′) , (2.108)

where β(T ) is the value of β at which one has temperature T according to the definition of the
temperature; in this case either eq. (2.90), (2.89) or (2.91). In practice one simply computes
the right-hand side as a function of β and then rescales the x-axis so that it is expressed as a
function of T instead (with the chosen length standard).

We are actually interested in the pressure p(T ) above the zero-temperature contribution
p(0). Then we see that the integration constant cancels and

p(T )− p(0) =
3

a3

∫ β(T )

β0

dβ′
(
□T (β

′)−□0(β
′)
)
, (2.109)

where □T is computed at temperature T , while □0 is computed at zero temperature. In fact the
subtraction is necessary because p(0) is divergent. In what follows we will drop p(0) and simply
refer to the above quantity as p(T ). Expressing the equation in terms of dimensionless ratios
which can be computed on the lattice, we find

p(T )

T 3
= 3N3

T

∫ β(T )

0
dβ′(□T (β

′)−□0(β
′)) . (2.110)

On the lattice, we compute □T (β
′) on a NT × L2 lattice with L ≫ NT and □0(β

′) on a L3

lattice with the same L and β. The plaquette expectation values have weak finite volume effects
and therefore their difference is independent of L even for relatively small values of L. Thus
the infinite volume extrapolation is not difficult. With this method, we obtain various pressure
curves for different values of NT ; we then repeat the calculation for increasing NT to reach the
continuum limit.

Gauge theories are expected to deconfine at large T . For a pure gauge theory, the degrees
of freedom are then massless gauge bosons. The equation of state for a non-interacting gas of
massless bosons can be computed via elementary methods [172]. The partition function for a
single massless boson of frequency ω is given by

Zω =
∞∑

N=0

e−βℏωN =
1

1− e−βℏω . (2.111)

The full partition function is then given by integrating over all frequencies,

logZ =

∫ ∞

0
dω g(ω) logZω , (2.112)

where g(ω) is the density of states. Then extracting the pressure from the partition function is
elementary, and one finds in three dimensions

p(T )

T 3
=
ζ(3)

2π
≈ 0.1913 , (2.113)
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where ζ is the Riemann zeta function. Since for U(1) gauge theory, the only degree of freedom in
the deconfined phase is the massless photon, this is the result of interest in our case. The limit in
which the equation of state reduces to eq. (2.113) is referred to as the “Stefan-Boltzmann limit”.

For finite NT , only the “Matsubara frequencies” ωn = 2πn/NT are allowed, so one replaces
the integral over ω with the appropriate summation, which leads to the finite-NT correction to
the Stefan-Boltzmann law [145]

p(T )

T 3
=
ζ(3)

2π

[
1 +

7

4

1

N2
T

ζ(5)

ζ(3)
+

227

32

1

N4
T

ζ(7)

ζ(3)
+

8549

128

1

N6
T

ζ(9)

ζ(3)
+ · · ·

]
. (2.114)

On the other hand, in the confined phase the equation of state can be compared with the
prediction of a gas of non-interacting massive bosons, which in three dimensions is [173]

p(T )

T 3
= 2
( m

2πT

)3/2 ∞∑
n=1

1

n3/2
K3/2(nm/T ) , (2.115)

where Kν is a modified Bessel function of the second kind. This formula applies to each species
of glueball of mass m (computed at zero temperature); if the glueballs are non-interacting,
then one can simply add the contribution from each glueball species. The expression on the
right-hand side can be computed on the lattice, since m/T = (am)NT where am is computed
at zero temperature at β = β(T ). In the zero mass limit m → 0, eq. (2.115) reduces to the
Stefan-Boltzmann law eq. (2.113) as expected.

It has been argued that the density of hadrons in QCD increases exponentially with the mass
[174, 175]. Such a phenomenon is known as “Hagedorn spectrum”. There is some evidence that
this is true at least at large Nc [176, 177]. A Hagedorn spectrum arises naturally in string theories
[132]. In pure gauge theories, we’ve seen that an open string connects two static quarks. On the
other hand, glueballs are associated with closed flux strings [178, 179]. Thus it is conceivable
that a Hagedorn spectrum might arise in pure gauge theories.

A direct comparison of the prediction of a Hagedorn spectrum with lattice measurements of
the spectrum of the theory is quite difficult. On the other hand, one can compare the equation of
state computed via the integral method with the prediction for a gas of non-interacting glueballs,
including the first few glueball states. From eq. (2.115) we see that the contribution of a glueball
of mass m is exponentially small in m. Thus one expects to find good agreement between the
two methods, unless the density of glueballs itself increases exponentially with the mass. This
method was employed for SU(2) and SU(3) gauge theories in both three and four spacetime
dimensions, where it was found that the contributions of the first few glueballs lead to much
smaller values of the pressure compared to the integral method [173, 180–184]. This provides
evidence that non-Abelian pure gauge theories may indeed have a Hagedorn spectrum.

In our work, we perform the same comparison for U(1) gauge theory in three dimensions.
The simulations were performed with the Wilson action for NT = 4, 6, 8 and various values of L
with L ≤ 80 for NT = 4, 6 and L ≤ 104 for NT = 8. The simulations were performed directly in
the original theory with a heat bath algorithm combined with overrelaxation. The values of the
mass and string tension were taken directly from the literature [115].

The equation of state, together with a comparison with the glueball gas prediction, is shown
in Fig. 2.6 for NT = 4, 6, 8 as a function of β. The three curves are shown in the same plot in
Fig. 2.7. For small β the theory is in the confining phase and the pressure is essentially zero. For
large β, on the other hand, the theory is deconfined and saturates quickly to a plateau in excellent
agreement with the finite-NT correction to the Stefan-Boltzmann limit eq. (2.114). Already
at NT = 8, the pressure is quite close to the continuum Stefan-Boltzmann limit eq. (2.113).
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Figure 2.6: Equation of state p(T )/T 3 as a function of β for NT = 4 (top left), NT = 6 (top
right) and NT = 8 (bottom). In each of the three cases, the lattice results are indicated as
dots with error bars. The continuous curve (blue) is the prediction for the gas of one glueball
species, eq. (2.115). The horizontal dashed line (grey) is the Stefan-Boltzmann limit, eq. (2.113),
while the horizontal dotted line (pink) is the finite-NT correction to the Stefan-Boltzmann limit,
eq. (2.114). Finally, the vertical line indicates the location of the pseudocritical point, together
with its uncertainty (green band).
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Figure 2.7: Comparison of the equation of state for NT = 4, 6, 8. See also the caption of Fig. 2.6.
In particular the pseudocritical coupling increases with NT .
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Figure 2.8: Equation of state for NT = 8 together with the comparison including only one
glueball species, or two glueball species. See also the caption of Fig. 2.6.

This is already an interesting result, which highlights the difference between this theory and
standard non-Abelian gauge theories. In that case, in fact, the equation of state saturates only
for extremely high temperatures [145, 181, 184].

As for the comparison with the glueball gas, it is clear that already at NT = 8 the glueball
gas with only one glueball species (with mass equal to the mass gap) is in excellent agreement
with the equation of state computed with the integral method. This is another striking difference
with non-Abelian gauge theories. In this theory, we therefore see no evidence of a Hagedorn
spectrum. To further convince ourselves that this is the case, we can add the contribution from
the second-largest glueball (which belongs to a different microscopic channel), which is shown
in Fig. 2.8. But in this case, the prediction from the glueball gas is significantly larger than
the pressure curve already in the confined phase where agreement would have been expected.
In fact, as previously discussed, in the continuum limit the various microscopic glueball states
arrange themselves in integer multiples of the mass gap [115]. Thus they should be interpreted as
excitations of a single free massive particle, which is also predicted by the analytical treatment of
the theory [81]. Then all glueball contributions are already accounted for by the lowest glueball
state.

In order to avoid making a choice among the various continuum limits, we have made our
plots with the bare coupling β on the x-axis. However, to discuss the continuum limit one needs
to consider the temperature as defined according to eqs. (2.90), (2.89), (2.91). The plots where
the mass and string tension are taken as the standard of length are given in Fig. 2.9. Since
T/g2 = β/NT , the plots where g2 is taken as the standard of length correspond to a simple
rescaling of the previous plots and are thus omitted. In both cases, the Stefan-Boltzmann limit
is saturated in a very large region, with the pressure being zero only close to zero temperature.

The interesting question is what happens to the equation of state in the continuum limit. We
have seen that as NT increases, the glueball gas prediction eq. (2.115) is in excellent agreement
with the equation of state. Assuming that this remains true for larger NT , we can use this
information to extrapolate the equation of state to the continuum. In particular, it implies
that the equation of state is a function of m/T only. The simplest case is the continuum limit
where the mass is held fixed. Since the glueball gas prediction eq. (2.115) is independent of NT

when expressed as a function of T/m, then the curve is shown already in Fig. 2.9. In this case,
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Figure 2.9: Equation of state p(T )/T 3 for NT = 8 when either the mass (left) or the string
tension (right) are held as the standard of length. See also the caption of Fig. 2.6. For clarity,
several points at large β have been removed compared to the Fig. 2.6.

we’ve seen that Tc/m→ ∞, so the theory is always confining. Nonetheless, we can identify two
different regimes which are separated by a simple crossover. For large T , which means T ≫ m,
the theory is effectively massless and therefore saturated at the Stefan-Boltzman limit. On the
other hand, for small T one has T ≪ m and the theory is effectively confined with very small
pressure.

In the other two continuum limits, on the other hand, the glueball gas prediction eq. (2.115)
does depend on NT . In particular, we see that

m

T
=
m/

√
σ

T/
√
σ
. (2.116)

To plot p(T )/T 3 as a function of T/
√
σ we fix T/

√
σ = 1/(

√
a2σNT ) and then send NT → ∞.

This requires a2σ → 0, which in terms of its scaling with the bare coupling eq. (2.58) means
β → ∞. But according to eq. (2.58) in this limit m/

√
σ → 0, therefore according to the above

formula, m/T → 0. This means that p(T )/T 3 is always saturated at the massless limit, which
is just the Stefan-Boltzmann limit eq. (2.113), independently of T/

√
σ. In other words, in

the continuum p(T )/T 3 is constant as a function of T/
√
σ. In this case, we have the puzzling

situation of a gauge theory which is always confining (since Tc/
√
σ → ∞) yet it is massless and

saturates the Stefan-Boltzmann limit.
A similar situation occurs if g2 is held fixed in the continuum. In that case the appropriate

ratio to consider is
m

T
=
m/g2

T/g2
. (2.117)

Again we take the limit NT → ∞ while fixing T/g2 = β/NT . This again requires β → ∞, which
implies that m/g2 = (am)β → 0. Thus again p(T )/T 3 is constant independent of T/g2 and
saturated at the Stefan-Boltzmann limit. This is less surprising since the continuum limit in
this case is free electrodynamics with a simple massless photon. Yet this theory does not cease
to amaze, since in this case we have a deconfinement transition at finite Tc/g2, yet the equation
of state is identical on both sides of the transition.
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2.6 Conclusions

In this chapter, we have studied the three-dimensional U(1) gauge theory, which is interesting
as a toy model for particle physics, but also in condensed matter physics as an effective gauge
theory [185–190]. This theory is quite remarkable in several different ways. It can be treated
analytically [80, 93, 156] and confinement has even been proven rigorously [81]. In fact, while
this theory is confining, it displays remarkably different properties compared to non-Abelian
gauge theories. As we have discussed, it has inequivalent length scales and therefore several
continuum limits. Moreover, its confining string receives peculiarly large contributions from a
“rigidity term” which is usually small [116, 143, 150].

Our contribution is the calculation of the finite-temperature equation of state of three-
dimensional U(1) gauge theory, which also displays peculiar differences compared to non-Abelian
gauge theories. In particular, the Stefan-Boltzmann limit is saturated very quickly and we find
no evidence of a Hagedorn spectrum. In terms of the three possible different continuum limits,
only one leads to a non-trivial equation of state. Our results are in agreement with the analytical
understanding of this theory, which predicts that, in one of the continuum limits, it is described
by a free massive scalar field.
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A new type of gauge theory

This chapter is based on:
[191] A. Banerjee, D. Banerjee, G. Kanwar, A. Mariani, T. Rindlisbacher, and U.-J. Wiese, “Broken
symmetry and fractionalized flux strings in a staggered U(1) pure gauge theory”, Phys. Rev. D 109,
014506 (2024), arXiv:2309.17109.

In this chapter, we again investigate a three-dimensional gauge theory whose gauge group
is U(1). However, contrary to Chapter 2, where we considered two standard actions in the
literature, here we choose a novel action. This is interesting for many reasons. A new action
may describe the same continuum physics as other actions (for example, this is the case for
the Villain and Wilson actions [93, 123, 124]), or, describe a different continuum limit. Lattice
actions describing the same continuum limit are useful because different actions may have
different advantages, such as, for example, a better approach to the continuum, or they could
be easier to simulate numerically, or be more suitable for theoretical manipulations, or even
represent symmetries in a more useful manner. On the other hand, if the action turns out to
have a different continuum limit, it is still interesting theoretically, both to map out the space of
quantum field theories, but also practically for phenomenological purposes.

Generally speaking, from the Wilsonian point of view, an action is mainly determined by a
choice of symmetries. Then one in principle includes all terms consistent with these symmetries.
Of course, on the lattice there are several possible equivalent or inequivalent discretizations of
continuum quantum field theories. In this chapter, we construct and study an alternative possible
pure gauge lattice action with exact U(1) gauge invariance in three spacetime dimensions. This
theory can be naturally compared with the standard U(1) gauge theory in three dimensions
which we studied in Chapter 2.

The construction of the new theory has a most natural starting point in the Hamiltonian
formulation. We then construct a Euclidean path integral via Trotterization, paying special
attention to Lorentz invariance. We then study the properties of this theory, in particular its
phase diagram, its mass gap and its confining string.

3.1 The new gauge theory action

As anticipated in the introduction, in this chapter we study a novel action with local U(1) gauge
invariance in three dimensions. Actually, we consider more precisely a family of actions indexed

64

https://doi.org/10.1103/PhysRevD.109.014506
https://doi.org/10.1103/PhysRevD.109.014506
https://arxiv.org/abs/2309.17109


3.1. THE NEW GAUGE THEORY ACTION

by an angular parameter α ∈ [0, 2π). The partition function is given by

Z =

(∏
l

∫ 2π

0
dφl

)∏
p

[∑
m∈Z

e−i
α
2π (dφ)p exp

(
− 1

2e2
((dφ)p − 2πm)2

)
eiαm

]
, (3.1)

where we integrate over U(1) variables φl on each link of the three-dimensional cubic lattice and
(dφ)p is the plaquette variable associated to plaquette p. Here e2 is a dimensionless coupling.

Several comments are in order. First of all, this is the partition function of a theory with
local U(1) gauge invariance. For α = 0, it reduces to the Villain partition function eq. (2.36) for
the standard U(1) gauge theory, which we encountered in Chapter 2. Moreover, it is Lorentz-
invariant, or rather, it is invariant under the “cubic group” of Lorentz transformations on the
finite lattice. In what follows, we focus specifically on the case α = π, which enjoys further
symmetries. In particular, at this special point the theory is also invariant under parity P and
charge conjugation C, which makes it especially interesting.

This partition function is rather complicated. It is not at all clear why one would consider
writing down such a theory. As anticipated in the introduction, motivation for this theory comes
naturally from a Hamiltonian picture. In the next section, we therefore discuss the Hamiltonian
formulation of U(1) gauge theory and its natural modifications which lead to the partition
function eq. (3.1).

Another obvious problem for the partition function in eq. (3.1) is that it is not positive. In
particular, the Boltzmann weights are in general complex; such an action is said to be affected
by a “sign problem” and is hard to simulate. At this point of this thesis, it should not come as
a surprise that the solution to this issue is dualization. As we have now seen several times, a
three-dimensional gauge theory with local U(1) gauge invariance is dual to a scalar field theory
with a global Z symmetry. As usual, the first step in the dualization is expanding in a Fourier
series, which gives

Z =

(∏
l

∫ 2π

0
dφl

)∏
p

[∑
n∈Z

ei(dφ)pne−
e2

2
(n+ α

2π
)2

]
. (3.2)

Now, again as usual, we use integration by parts to write
∑

p(dφ)pnp =
∑

l φl(δn)l. Integration
over φl then simply gives δ functions which force δn ≡ 0. In infinite volume, this constraint is
simply solved by writing n = δh where h is a Z-valued 3-form, therefore living on the cubes of
the lattice. Finally, going to the dual lattice, h now lives on the sites of the dual lattice (the
centers of each cube of the original lattice) and the partition function is given by

Z =

∏
x

∑
hx∈Z

 exp

−e
2

2

∑
⟨xy⟩

(hx − hy + α/2π)2

 , (3.3)

where all terms are now in the dual lattice. Now we note that the partition function eq. (3.1)
is ambiguous in that it is not invariant under a change of orientation of each plaquette. In
particular, changing the orientation of a plaquette p leads to (dφ)p → −(dφ)p, but the obvious
change of variables m→ −m does not restore the partition function to its original form. This
is not an issue in principle, as one simply requires a prescription defining what orientation
one must use for the plaquettes. In the dual picture, one has the same ambiguity in that the
partition function eq. (3.3) requires a choice of orientation for each link; it is not invariant when
swapping the source and target site for each link. We choose to fix the ambiguity directly in the
dual picture as follows. Each site x = (x0, x1, x2) is said to be even or odd based on the parity
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Figure 3.1: A subset of the three-dimensional dual lattice, depicting the staggered integer (black
dots) and half-integer (white dots) height variables associated respectively with even and odd
dual sites. Reprinted from [191].

of x0 + x1 + x2. We then choose to orient each link ⟨xy⟩ so that x is always an odd site, and
therefore y is always an even site. This choice preserves lattice rotational symmetry as well as
translations by an even number of lattice spacing. With this choice, it is convenient to absorb
the α/2π term in the scalar field on the odd sites, which leads to the partition function

Z =

∏
x odd

∑
hx∈Z+ α

2π

 ∏
y even

∑
hy∈Z

 exp

−e2
2

∑
⟨xy⟩

(hx − hy)
2

 . (3.4)

This partition function is well-defined and does not suffer from ambiguities. Note that, impor-
tantly, the staggering of the height variables on even/odd sites is the same in all directions; this
should be contrasted with the case of quantum link models, where the staggering is only realized
in the space directions [192–195]. The staggering of the height variables is depicted in Fig. 3.1.

As mentioned above, in this work we will focus on the case α = π. In this case, the height
variables are integer (on the even sites) and half-integer valued (on the odd sites), and the
partition function is

Z =

∏
x odd

∑
hx∈Z+ 1

2


 ∏

y even

∑
hy∈Z

 exp

−e2
2

∑
⟨xy⟩

(hx − hy)
2

 . (3.5)

Note that the only difference compared to the standard U(1) gauge theory is the nature of the
height variables on the odd sites.

The partition function for α = π enjoys the following symmetries:

1. Global Z-invariance: hx → hx + c for any constant integer c.

2. Z2 charge conjugation C: hx → −hx.

3. Z2 single-site shift symmetry S: hx → hx+µ̂ + 1
2 where µ is any spacetime direction.

4. Translations by an even number of lattice spacings.

5. Lattice Lorentz symmetry, i.e. the action is fully isotropic and therefore invariant under
the group of Euclidean cubic rotations and (for α = π) also reflections.

Note that all symmetries are required to preserve the nature of the height variables h. In
particular, integer and half-integer height variables must be mapped to height variables of
the same kind. Both the global Z invariance and charge conjugation naturally respect this
prescription. On the other, translations by one lattice spacing in any direction (S) would
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naturally swap integers and half-integers; the extra 1/2 is added to restore the nature of the
height variables. On the other hand, no such problem arises with translations by an even
number of lattice spacings. Invariance under even translations is expected to be sufficient
to recover full translational invariance in the continuum. Similarly, invariance under lattice
Lorentz transformations is expected to be enough to recover full Lorentz invariance in the
continuum. Note that while S, as defined, is not technically a Z2 symmetry (rather it squares
to an even translation), it can be made so by appropriately combining it with parity P and
charge conjugation C, i.e. for example CPS : hx → −h−x+µ̂ − 1

2 is a proper Z2 symmetry which
squares to the identity.

The staggered theory enjoys almost exactly the same lattice symmetries as the ordinary U(1)
theory. The only difference is the special role of the single-site shifts, which now mix with an
internal transformation.

The special role played here by single-site shifts is analogous to the case of staggered
fermions [125]. In that case, the fermion degrees of freedom are spread over multiple sites
and, like in this case, single-site shifts are only a symmetry if combined with an appropriate
internal transformation [196]. The single-site shift symmetry of staggered fermions can break
spontaneously [197]. Other systems whose phase diagram is characterized by the breaking of
charge conjugation C and single-site shifts S include quantum link models [192–195], as well as
the quantum spin ladder regularization of CP(N − 1) models [198, 199]. In Section 3.4.1 we will
investigate the breaking of these symmetries in our model; we will find that C remains unbroken,
while S is always spontaneously broken.

Finally, we note that again we have a global Z symmetry much like in the standard U(1)
theory. We therefore remand the reader to the discussion of this symmetry in Chapter 2. In
particular, it should be understood as a redundancy in our description of the system (the overall
height over which the height variables fluctuate is irrelevant). Therefore all observables are
required to be invariant under the Z symmetry.

In the next chapter, we introduce the Hamiltonian formulation of U(1) gauge theory and its
natural modification which leads to the new gauge theory action in eq. (3.1). In the rest of the
work, we study the new gauge theory in the α = π case. In particular, we extend to this case
the effective theory for the standard U(1) gauge theory which we discussed in Chapter 2 and
discuss its predictions. We also perform numerical simulations to study the phase diagram of
the theory, as well as its mass and its confining string.

3.2 Motivation for the new gauge theory

In this section, we explain the motivation for introducing the new gauge theory action. This
is most natural in the Hamiltonian formulation, which we review. We then discuss a natural
modification of the Hamiltonian and the Trotterization which leads to the partition function
eq. (3.1).

Until now, we have considered lattice gauge theories in the Euclidean path-integral formula-
tion, where spacetime is discretized as a hypercubic lattice. Alternatively, lattice gauge theories
may also be formulated in the Hamiltonian picture [125]. The Euclidean path integral and
Hamiltonian formulations are related by the transfer matrix formulation in temporal gauge,
A0 = 0 [200, 201]. In the Hamiltonian picture, the lattice theory may be thought of as a
quantum mechanical system (with some caveats, see for example [202]). In particular, only space
is discretized, while time remains continuous. Time evolution is dictated by a Hamiltonian,
which acts on a Hilbert space. Classically, a gauge field configuration is given by an assignment
of a group-valued variable Ul ∈ U(1) to each spatial lattice link. In the quantum theory, then the
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Hilbert space consists of wavefunctions ψ : C → C from the space of classical configurations C
which assign to each classical configuration its probability amplitude in a quantum measurement.
Thus the Hilbert space is a tensor product space

Htot =
⊗

l∈links
Hl , (3.6)

where each link factor Hl is isomorphic to the space of square-integrable functions on U(1), i.e.
Hl

∼= L2(U(1)).
Introducing coordinates on U(1), we can write on each link Ul = exp (iφl) ∈ U(1) in terms

of an angular variable φl ∈ [0, 2π). On each link, the wavefunction ψ(φl) is, first of all, required
to be square integrable, i.e. ∫ 2π

0
dφl |ψ(φl)|2 <∞ . (3.7)

Moreover, they are required to have period 2π, i.e.

ψ(2π) = ψ(0) . (3.8)

This last condition is actually somewhat suspicious. In quantum mechanics, an overall phase of
the wavefunction is actually irrelevant. Therefore it makes sense to require 2π-periodicity not of
the wavefunction itself but only of the absolute value squared of the wavefunction,

|ψ(2π)|2 = |ψ(0)|2 . (3.9)

This then implies the general condition that the wavefunction comes back to itself up to a phase,
i.e.

ψ(2π) = eiαψ(0) . (3.10)

Such a modification is familiar from the quantum mechanics of a rotor (see for example [203]). In
other words, the wavefunction need not be a linear representation of the U(1) symmetry, but it
could equally well be a projective representation. The angle α here is the one which will appear
in the partition function for the new gauge theory eq. (3.1). We can already see that charge
conjugation is broken for α ̸∈ {0, π}. In particular, C maps Ul → U∗

l . Therefore the condition
eq. (3.10) is consistent with C only if eiα = e−iα, which, up to periodicity, implies α ∈ {0, π}.

The choice in eq. (3.10) may also be understood in a more mathematical way as a self-adjoint
extension [204, 205]. Consider the electric field operator El = −i∂/∂φl defined on the interval
[0, 2π]. It is a well-known issue in quantum mechanics that such an operator, while Hermitean,
cannot be self-adjoint as long as one insists that the endpoints of the interval are distinct [206,
207]. The theory of self-adjoint extensions allows one to classify the possible choices of boundary
conditions for the wavefunction ψ which make E self-adjoint; the most general choice is precisely
eq. (3.10). Self-adjointness is important because (unlike Hermiticity) it ensures existence of an
orthonormal basis of (generalized) eigenfunctions and real eigenvalues. This is necessary so that
the Hamiltonian and the Gauss law have their expected properties.

The partition function can be obtained from the Hamiltonian by appropriately Trotterizing
the expression

Z = tr
(
e−ϵNTH

)
, (3.11)

where ϵ is the lattice spacing in the time direction. Modifying the Hilbert space by changing
the conditions satisfied by the wavefunctions leads to a different trace and therefore a different
partition function even with the same Hamiltonian (this is most obvious by expanding the
trace in an eigenbasis of H; the eigenvalues can certainly change with the boundary conditions).
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While this is part of our construction, it is not all that is required. In particular, the resulting
partition function is not Lorentz invariant. As we will see in a moment, in order to restore
Lorentz invariance, we also appropriately modify the Hamiltonian.

The Hamiltonian of standard U(1) gauge theory is given by

H =
e2

2

∑
l∈links

E2
l +

1

2e2

∑
p∈plaqs

B2((dφ)p) . (3.12)

Here (dφ)p is the plaquette variable for spatial plaquettes p, while the electric field El is defined
on each link as the operator

El = −i ∂
∂φl

. (3.13)

On each link, the theory is therefore analogous to the quantum mechanics of a particle on the
circle [97, 203]: the U(1) variable Ul = exp(iφl) plays the role of “position” on the circle, while
the electric field El plays the role of “momentum” (i.e. the conjugate momentum to position).
The magnetic Hamiltonian couples the links together as a potential term. As should be familiar
in this thesis by now, it may be chosen in several different ways which are equivalent in the
continuum; for example one could choose the Wilson term

B2((dφ)p) = 1− cos((dφ)p) , (3.14)

or the Villain term

exp
(
−B2((dφ)p)/2e

2
)
=
∑
n∈Z

exp

(
− 1

2e2

∑
p

((dφ)p − 2πn)2

)
. (3.15)

The last ingredient in the definition of the theory is the gauge symmetry. Among the states
in the total Hilbert space Htot only a subset should be considered as physical. In particular, a
state |ψ⟩ belongs to the physical Hilbert space Hphys if it satisfies the Gauss law constraint

Gx |ψ⟩ = 0 , Gx =
∑
i

(
Ex,i − Ex−î,i

)
, (3.16)

where the sum over i runs over all spatial directions and î is the unit vector oriented in the i-th
spatial direction. Note that, as expected, the Hamiltonian commutes with the Gauss law.

In the above description, we have chosen to introduce the angle α in eq. (3.10) as a twist of
the 2π periodicity of the wavefunction on each link. With this choice, all operators, such as the
electric field and the Hamiltonian are affected only via their domain of definition. However, for
simplicity, we map the Hilbert space of twisted wavefunctions eq. (3.10) to the ordinary Hilbert
space of 2π-periodic wavefunctions eq. (3.9) by sending

ψ(φ) → e−iφα/2πψ(φ) . (3.17)

Under this transformation, the magnetic Hamiltonian is invariant, while the electric field is
modified as

El → El +
α
2π . (3.18)

Therefore the family of theories indexed by the angle α can be identified with theories over the
usual Hilbert space, with a modified electric field (and therefore a modified electric Hamiltonian).
Note that eq. (3.18) makes it clear that the introduction of the angle α is still consistent with
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the Gauss law constraint in eq. (3.16). Under the transformation eq. (3.18), the Hamiltonian is
mapped to

H =
e2

2

∑
l∈links

(
El +

α

2π

)2
+

1

2e2

∑
p∈plaqs

B2((dφ)p) . (3.19)

The introduction of the angle α can be compared with another kind of topological angle, the θ
angle. In particular, in (1 + 1) dimensions, there is no magnetic field and the Hamiltonian only
includes the electric part. Then the substitution in eq. (3.18) is equivalent to introducing a θ
angle with θ = α (or −α depending on the conventions). Therefore in two spacetime dimensions
the α and θ angles are equivalent. On the other hand, in higher dimension this is not the
case. In (3 + 1) dimensions the θ term is introduced in the Hamiltonian by the replacement
E⃗ → E⃗ − θ

8π2 B⃗, which preserves Lorentz-invariance [97]. In this sense the α angle represents
one possible higher-dimensional generalization of the two-dimensional θ term. Note further that
in dimension higher than (1 + 1) eq. (3.18) only makes sense on the lattice, since E is a vector
and α a scalar.

We can now discuss the Trotterization of the theory, with which we can pass from the
Hamiltonian to the path-integral formulation. To this end, on each link we expand the states in
the orthonormal “position basis”{|U⟩} indexed by the elements U = eiφ ∈ U(1)

|ψ⟩ =
∫ 2π

0
dφψ(φ) |U⟩ . (3.20)

We can further introduce a dual basis {m} with m ∈ Z which makes the electric field diagonal,

⟨U |m⟩ = 1√
2π
eimφ , E |m⟩ =

(
m+

α

2π

)
|m⟩ . (3.21)

On the whole lattice, the position basis is given by all tensor product states of the form

|{U}⟩ ≡
⊗

l∈links
|Ul⟩ . (3.22)

The partition function can be written in terms of the Hamiltonian as

Z = tr
(
e−ϵNTH

)
, (3.23)

where ϵ is the lattice spacing in the time direction and NT is the number of lattice sites in the
time direction. Then the Trotter formula gives for fixed ϵNT ,

e−ϵNT (HE+HB) =
(
e−ϵHEe−ϵHB

)NT
+O(ϵ2) . (3.24)

We can then insert decompositions of the identity in terms of the |{U}⟩ states between each
of the NT factors. The magnetic Hamiltonian is diagonal in this basis and is therefore easily
computed. The electric Hamiltonian, on the other hand, has non-trivial matrix elements. Since
HE is a sum over all links, these can be reduced to matrix elements on each link. By inserting
{|m⟩} states and applying Poisson summation one finds

〈
U ′∣∣ e−ϵ e

2

2
E2 |U⟩ = 1√

2πe2ϵ
e−i

α
2π (φ′−φ)

∑
m∈Z

exp

(
− 1

2e2ϵ

(
φ′ − φ− 2πm

)2)
eiαm . (3.25)

Here U and U ′ are interpreted as link variables in two different timeslices referring to the same
link; the variable φ′−φ is naturally associated with the plaquette variable in the time directions,
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where the links connecting the two timeslices have been set to zero (corresponding to the choice
of the temporal gauge). Undoing this choice, one then finds a partition function where the
plaquettes connecting different timeslices have a Boltzmann weight equal to∑

m∈Z
e−i

α
2π (dφ)p exp

(
− 1

2e2
((dφ)p − 2πm)2

)
eiαm , (3.26)

where we set ϵ = 1 since we’re interested in the isotropic limit where the lattice spacing is equal
in the time and space directions. On the other, the weight of plaquettes lying entirely in the
space directions is given simply by e−ϵB2((dφ)p), since B2 is diagonal. It is clear that choosing
either the Villain or Wilson form will lead to a Bolztmann weight for the spacelike plaquettes
that is different from the Boltzmann weight of timelike plaquettes eq. (3.26). The resulting
theory breaks the Euclidean cubic symmetry and is non-relativistic. In particular, it should be
clear that no choice of B2 operator will ever lead to a Boltzmann weight matching the one for
timelike plaquettes. In fact the Boltzmann weight eq. (3.26) is complex-valued, and it therefore
cannot take the form e−ϵB2((dφ)p) with Hermitean B2. Since we are interested in constructing a
Lorentz invariant theory, we therefore simply choose the Boltzmann weights for all plaquettes
to match those of timelike plaquettes. This results in the partition function for the new gauge
theory in eq. (3.1), i.e.

Z =

(∏
l

∫ 2π

0
dφl

)∏
p

[∑
m∈Z

e−i
α
2π (dφ)p exp

(
− 1

2e2
((dφ)p − 2πm)2

)
eiαm

]
. (3.27)

In particular, as we have seen, this partition function does not match any choice of magnetic
Hamiltonian. In fact it does not admit a single-timeslice transfer matrix but only a two-timeslice
transfer matrix; this is most evident in the dual formulation due to the staggering of the height
variables, and in fact also in similar cases (such as staggered fermions) it is only possible to
construct a two-timeslice transfer matrix.

3.3 Analytical treatment

As we have seen in Chapter 2, the standard U(1) gauge theory in three dimensions is confining
for all values of the coupling [81]. We have reviewed the crucial ingredient of the proof of
confinement, which involves the derivation of an “effective theory” valid near the continuum.
While reviewing that case, we introduced the possibility of an extra “magnetic field” with an eye
towards the case that we will discuss now. Starting from the partition function of the staggered
theory,

Z =

∏
x odd

∑
hx∈Z+ 1

2


 ∏

y even

∑
hy∈Z

 exp

−e2
2

∑
⟨xy⟩

(hx − hy)
2

 , (3.28)

we proceed much like in Chapter 2 by replacing the discrete variables h with continuous variables
σ. On the even sites, where the height variables are integer-valued the situation is the same as
for the ordinary U(1). On the other hand, on the odd sites, we set hx = mx +

1
2 so that∑

hx∈Z+ 1
2

δ(σx − 2πhx) =
∑
mx∈Z

δ(σx − π − 2πmx) =
∑
qx∈Z

eiqx(σx−π) (3.29)

71



3.3. ANALYTICAL TREATMENT

x

x− 1̂

x+ 1̂

x− 2̂ x+ 2̂

Figure 3.2: A two dimensional slice of the cubic lattice with even (black) and odd (white) points
highlighted. The variables connected by a thick link are joined together into sum and difference
variables (here µ = 1). The superimposed dotted lattice is a slice of the tetrahedral-octahedral
lattice formed by the even lattice points of the cubic lattice.

Therefore the partition function becomes

Z =

(∏
x

∫ +∞

−∞
dσx

)∏
x

∑
qx∈Z

 exp

− e2

8π2

∑
⟨xy⟩

(σx − σy)
2 + i

∑
x

qxσx − i
∑
x

qxBx

 , (3.30)

which is the same as for the ordinary theory with the exception of the “magnetic field” Bx, which
is given by

Bx =

{
0 x even

π x odd
. (3.31)

We had already anticipated this possibility in the calculation in Chapter 2. Substituting this
form of Bx in the final expression that we had obtained for the effective theory, we find that the
staggered theory with α = π is described for small e2 (near the continuum) by the theory of a
real compact scalar field ϕx in a staggered potential,

S[ϕ] =
1

2

∑
⟨xy⟩

(ϕx − ϕy)
2 − 2λ

∑
x

(−1)x cos

(
2πϕx√
e2

)
. (3.32)

where λ ≡ 2e−2π2v0/e2 . For ease of calculation, in what follows we replace 2πϕx√
e2

→ ϕx, leading to
the equivalent action

S[ϕ] =
e2

8π2

∑
⟨xy⟩

(ϕx − ϕy)
2 − 2λ

∑
x

(−1)x cosϕx . (3.33)

Much like in the standard case, the scalar field is in some sense compact because in the original
model we are required to identify height configurations which differ by an overall integer; therefore
we should identify ϕx ∼ ϕx + 2π where 2π is an overall shift at all sites.
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A non-relativistic version of eq. (3.32) provides an effective descriptions of quantum antiferro-
magnets [188]. Due to the staggering of the cosine model, which is a discontinuous, “high-energy”
feature, it is not clear how to take the continuum limit of the staggered scalar theory. To do
this, we first need to appropriately modify the field variables. Following [188], we define the sum
and difference variables on neighbouring sites,

χx =
ϕx + ϕx+µ̂

2
, ξx =

ϕx − ϕx+µ̂

2
, (3.34)

defined to live only on the even lattice sites. Note that this mapping is one-to-one and has
unit Jacobian. The resulting theory will then live on the lattice formed by the even sites of
the original hypercubic lattice. Note that the definition of these variables requires an arbitrary
choice of direction µ which disappears in the final result. The construction of the sum and
difference variables is illustrated in Fig. 3.2 on a two-dimensional slice of the lattice. To make
use of these variables, we note that∑

x

(−1)x cosϕx =
∑
x even

cosϕx −
∑
x odd

cosϕx =

=
∑
x even

[cosϕx − cosϕx+µ̂] =

= −2
∑
x even

sin

(
ϕx + ϕx+µ

2

)
sin

(
ϕx − ϕx+µ

2

)
=

= −2
∑
x even

sinχx sin ξx . (3.35)

Now we need to deal with the kinetic term. This calculation is much more complicated and we
skip most of the details. The key point is that, as we will see in a moment, the field ξx actually
has a mass of the order of the lattice spacings. Therefore we may ignore its fluctuations over its
mean-field value [188]. In particular, we ignore its gradients. This is a reasonable approximation,
even though not fully justified.

The lattice formed by considering only the even sites of a cubic lattice is known as the
textrahedral-octahedral honeycomb. The unit cells alternate between tetrahedrons and octahedrons.
Calling three directions in the original lattice 1̂, 2̂, 3̂, the nearest neighbour directions for each
even site are α̂ = 1̂ + 2̂, β̂ = 1̂− 2̂, γ̂ = 1̂ + 3̂ and α̂+ β̂ − γ̂ = 1̂− 3̂. Thus we may write∑
⟨xy⟩

(ϕx − ϕy)
2 =

∑
x even

∑
ν

[
(ϕx − ϕx+ν)

2 + (ϕx − ϕx−ν)
2
]
=

=
∑
x even

∑
ν

[
(χx + ξx − χx+ν−µ + ξx+ν−µ)

2 + (χx + ξx − χx−ν−µ + ξx−ν−µ)
2
]
.

(3.36)

From this expression we can already see that ξ acquires a mass term of the form 24ξ2x, which,
as anticipated, is therefore of the order of the lattice spacing once units are restored. Then
proceeding as discussed above, we ignore all gradients in ξ and, moreover, we also ignore
next-to-nearest neighbour terms, resulting in∑

⟨xy⟩
(ϕx − ϕy)

2 ≈
∑
x even

[
24ξ2x + (∆−

αχx)
2 + (∆−

β χx)
2 + (∆−

γ χx)
2 + (∆−

α+β−γχx)
2
]
, (3.37)

where the lattice backwards derivative in a direction ρ̂ is defined as

∆−
ρ χx = χx − χx−ρ̂ . (3.38)
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Note that in eq. (3.37) we get one extra derivative because the chosen basis is not orthonormal,
but the resulting kinetic term is isotropic. Thus we expect to recover a standard Lorentz-invariant
kinetic term for χ in the continuum. Putting everything together, we find

S =
∑
x

[
e2

8π2

(
(∇⃗χx)

2 + 24ξ2x

)
+ 4λ sinχx sin ξx

]
, (3.39)

where (∇⃗χx)
2 summarizes the four derivative terms in eq. (3.37). The mass of the field ξ can

be inspected by canonically normalizing the kinetic term, in which case we find that the mass
squared of ξ is 24 in lattice units. Restoring units, ξ therefore has a mass of the order of the
lattice cutoff. It is therefore reasonable to expect that ξ is fixed on its mean-field value (i.e. its
minimum) which is given by

ξx ≈ −2π2

3

λ

e2
sinχx , (3.40)

which we substitute back into the action to find

S[χ] =
∑
x

[
e2

8π2
(∇⃗χx)

2 +
2π2

3

λ2

e2
cos (2χx)

]
. (3.41)

Now this model admits a continuum limit as a scalar field theory. In particular the main
difference between the effective action for the staggered theory eq. (3.41) compared to that of
the ordinary U(1) theory eq. (2.51) is the presence of a double cosine instead of an ordinary
cosine, and the prefactor which is roughly ∼ λ2 rather than ∼ λ.

The harmless-looking factor of 2 is actually responsible for significant differences in the
physics of the two models. In particular, as is clear from tracing the effect of the global Z
invariance through eqs. (3.32) and (3.39), configurations of the χ field differing by an overall
integer multiple of 2π should be identified. This is true for both the α = 0 and α = π. But
while in the ordinary case the cosine potential is of the form cos(χ), so that its minima are all
identified, in the staggered case the potential cos(2χ) admits two inequivalent minima located
at χ = ±π/2. Note that ξ could acquire a mass term only because it is invariant under global Z
transformations.

On top of the global redundancy, the effective theory in eq. (3.41) has a Z2 × Z2 global
symmetry structure given by the transformations

C : χx → −χx + π S : χx → χx + π . (3.42)

One has C2 = S2 = 1 and CS = SC : χx → −χx. The labels for this symmetry are not chosen
arbitrarily. In fact, we have seen several times that complicated transformations of the partition
function (such as dualities or the manipulations to reach the effective theory) do not allow a
direct tracing of symmetries across the transformations. Nonetheless, we have seen that the
microscopic theory also has a Z2 × Z2 symmetry structure generated by charge conjugation C
and the single-site shift symmetry S. By choosing the labels to match, and therefore identifying
these symmetries, in both cases we find that C is unbroken, while S is spontaneously broken.
This is most obvious from the effective theory point of view, since the double cosine potential
has minima at χ = ±π/2 which are preserved by C and interchanged by S. From the point of
view of the microscopic theory, numerical simulations show that this is the case, as we will see
in Section 3.4.

Finally, we can discuss explicit continuum limits for the staggered theory. Much like we’ve
seen in Chapter 2 for the ordinary theory, in this case one can define a mass (restoring the
lattice spacing a)

a2m2 =
32π4

3

1

e4
exp

(
−4π2v0/e

2
)
, (3.43)
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where e2 is the dimensionless coupling. Then taking the continuum limit a→ 0 while holding the
mass fixed again requires e2 → 0 as expected. Then again the height of the potential separating
the two physical minima becomes infinite and one therefore finds that in the continuum limit
the theory consists of a single scalar field of mass m, which describes the fluctuations around
one of the broken symmetry vacua.

For the string tension σ, similarly to the ordinary theory, a semiclassical approximation [156]
leads to a scaling of the form σ ∼ me2 (the same as for the ordinary theory). In this picture,
the string tension corresponds to the interface tension between different minima of the potential.
Unlike the ordinary theory, the staggered theory has physically inequivalent minima. Then
a continuum limit where the string tension is held fixed corresponds to a non-trivial theory
where tunneling between the Z2 minima is allowed, as well as domain walls separating different
spontaneously broken vacua. As we will soon see, this picture of the string tension as the
interface tension between broken symmetry vacua is also quite clear from the pictures produced
during the numerical simulation, see in particular Fig. 3.8.

3.4 Numerical simulation

In order to further investigate the new gauge theory, as well as connect the microscopic description
of the theory to the effective theory derived in Section 3.3, we performed numerical simulations of
the staggered height model of eq. (3.5). In particular, we construct and investigate appropriate
order parameters for the investigation of the possible breaking of charge conjugation C and
single-site shift S. We also study other properties of the theory such as its mass and its string
tension, as well as qualitative features of the confining string.

The numerical simulations were mostly performed with cluster Monte Carlo algorithms
[109, 208, 209]. When Polyakov loops are inserted, we used either standard Metropolis or the
snake algorithm discussed in Chapter 2. We always chose isotropic lattices of size L3 where L
ranges from 32 to 256. We investigated values of the coupling in the range [0.3, 2.0]. On general
grounds, as well as following the effective theory prediction, we expect the continuum limit to
be approached as e2 → 0, similarly to the ordinary U(1) theory.

3.4.1 Order parameters

To investigate the possible breaking of the C and S symmetries, we constructed appropriate
order parameters. These need not only to appropriately transform under the symmetry, but
they also need to satisfy general principles of quantum field theory such as locality. Similar
order parameters were previously constructed in other settings [192–195, 198, 199].

For the C symmetry, we consider the order parameter

OCS =
∑
x

(−1)xhx =
∑
x even

hx −
∑
x odd

hx , (3.44)

which is sensitive to both C and S, and in particular it changes sign under either. Note that
OCS is a sum of local operators, and it is also invariant under the global Z symmetry.

The other order parameter is sensitive to S only, and it is given by a sum over all lattice
cubes,

OS =
∑

c∈cubes

∑
x∈c

(−1)x(hx − h̄c)
2 , (3.45)
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Figure 3.3: Left: Histogram of the operator OS normalized by the volume V at e2 = 0.70. Right:
Susceptibility of OS normalized by V 2 as a function of e2 for several volumes, with a fit of
the large-volume data to the form A exp

(
−B/e2

)
. The vertical line is located at the coupling

e2 = 0.70 where the histogram is shown. The double-peaked structure at large volume (left) and
scaling as V 2 (right) indicates spontaneous breaking of the S symmetry. Reprinted from [191].

where the average height variable within the cube is defined as

h̄c =
1

8

∑
x∈c

hx . (3.46)

This somewhat cumbersome construction is necessary in order to ensure that OS is local, as well
as invariant under the global Z symmetry.

The results of the numerical simulations for the two order parameters are shown in Figs.(3.3)
and (3.4). We can look first at the data for the OS observable, shown in Fig. (3.3). In particular,
we have plotted on the right side the normalized susceptibility O2

S/V
2 where V = L3 is the

lattice volume. We see that for a wide range of couplings O2
S/V

2 is roughly independent of
the volume, showing that the operator OS acquires a vacuum expectation value. This is also
confirmed by the histogram of OS/V on the left taken at e2 = 0.8, which shows two well-defined
peaks which become sharper at increasing volume. For small couplings, closer to the transition,
the susceptibility O2

S/V
2 develops volume dependence. However, this effect occurs at smaller

and smaller couplings as the volume is increased. Thus it is likely a finite-volume effect, where
the simulations where performed on lattices too small to display spontaneous symmetry breaking.
Moreover, a fit of the susceptibility to a function of the form f(e2) = A exp

(
−B/e2

)
(inspired

by the scaling of quantities in the ordinary U(1) theory) for the largest volume in the range
e2 ∈ [0.50, 0.80] is also shown on the right side of Fig. 3.3. The function provides an excellent fit
to the data and would predict that the OS operator acquires a vacuum expectation value for all
values of the coupling. One can also test a functional form f(e2) = A exp

(
−B/(e2 − e2c)

)
with a

small offset, to test whether the data is consistent with the symmetry being restored at some
non-zero coupling. The fit gives e2c = 0.04(11), consistent with zero.

Overall, we interpret the data as evidence that the S symmetry is broken for all values of
the coupling. Note that even though single-site shifts are spontaneously broken, translations by
an even number of lattice spacings remain unbroken.

On the other hand, the data for the OCS observable is shown in Fig. 3.4, with a similar
presentation as in the previous case. The normalized susceptibility O2

CS/V
2 shows a consistent

decrease with the volume V for all values of the coupling. This means that OCS does not acquire
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Figure 3.4: Left: Histogram of the operator OCS normalized by the volume at e2 = 0.70. Right:
Susceptibility of OCS normalized by V 2 as a function of e2 for several volumes. The vertical
line is located at the coupling e2 = 0.70 where the histogram is shown. A single histogram
peak at large volumes (left) and scaling smaller than V 2 (right) indicates that either the C or S
symmetries are unbroken. Reprinted from [191].

a vacuum expectation value. In the region e2 ∈ [0.7, 0.8], the decrease is not as clear, but the
histogram on the left (taken at e2 = 0.8) shows that while two peaks may appear to form for
small volumes, they join together in the center for large volumes. Therefore the observable OCS

does not acquire a vacuum expectation value at any value of the coupling, which means that
at least one of C or S remains unbroken. Since data for the OS observable implies that S is
broken, this means that charge conjugation C remains unbroken for all values of the coupling.

3.4.2 Mass and string tension

Other quantities of interest are the mass and string tension, especially in light of the analytical
predictions derived in Section 3.3. The mass may be measured from the exponential decay of
the correlation function (hx − hy)

2 after appropriate momentum projection and subtractions
[151, 208]. This choice of observable may be understood as a globally Z-invariant version of the
standard two-point function hxhy.

The results of the numerical simulations for the mass are shown in Fig. 3.5 for a range of
couplings and various volumes. As we know from the discussion of the OS observable, for small
couplings finite-volume effects restore the S symmetry; it is important that all measurements
are taken in the correct phase. We see that the mass suffers from finite volume effects for the
smaller volumes, but at least in the range e2 ∈ [1.1, 2.0] the larger volumes agree. In this range,
we have therefore tested various hypothesis for the mass scaling. All of them take the form

f(e2) = Ag(e2) exp
(
−B/e2

)
, (3.47)

where we chose various options for the prefactor g. In particular, we considered g(e2) = 1 (simple
exponential decay), g(e2) = 1/e2 (effective theory prediction, eq. (3.43)), and g(e2) = 1/

√
e2

(behaviour of the standard theory, eq. (2.53)). All three choices provide acceptable fits to the data,
with χ2/d.o.f ≈ 0.80, 0.95, 0.78, and exponent B = 4.85(7), 6.33(7), 5.59(7) respectively. The
analytical prediction for the fit form is slightly preferred, but our data is insufficient to exclude
the other options. For the ordinary U(1) theory, the exponent is predicted to be π2v0 ≈ 2.49
as in eq. (2.53). For the α = π theory, our analytical prediction is instead B = 2π2v0 ≈ 4.99
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Figure 3.5: Mass m of the α = π theory for various values of the coupling e2, given in lattice units.
Finite volume effects can be seen from the measurements at smaller volumes diverging from
larger volumes as e2 is taken small. The fit is performed with data in the range e2 ∈ [1.1, 2.0],
with the fit form motivated by our effective theory for α = π (eq. (3.43)). Reprinted from [191].

(eq. (3.43)). This is reasonably close to the value obtained with a simple exponential fit, but
relatively far from the value obtained with the full analytical prediction. All three fits are in
reasonable qualitative agreement with the fact that the α = π theory should have a faster decay
to zero as the continuum is approached, compared to the standard theory. Again, testing for
whether the transition occurs at finite e2 leads to a value consistent with zero.

The string tension, on the other hand, can be measured in multiple ways. One of the
techniques is a variation on the snake algorithm which we presented in Chapter 2. The other
technique we adopt is based on the direct measurement of the system’s energy with the static
charges inserted, which also allows to “picture” the confining string [192, 210, 211]. With this
method, the goal is to derive an expression for the expectation value of the Hamiltonian ⟨H⟩
which may be evaluated directly in the dual theory. As explained in Chapter 2, static charges can
be inserted into the partition function as a Polyakov loop correlator. Let Z[s] be the partition
function of the system with the static charges inserted. Then in terms of the Hmailtonian H,
we have

Z[s] = tr
(
e−ϵNTH

)
. (3.48)

The expectation value of the Hamiltonian can then be extracted as

⟨H⟩ = 1

Z[s]
tr
(
H e−ϵNTH

)
= − 1

Z[s]NT

∂

∂ϵ
Z[s] . (3.49)

The partition function Z[s] can be expressed in terms of the height variables, where it takes the
form

Z =

 ∏
x∈sites

∑
hx

 exp

−e2
2

∑
⟨xy⟩

(hx − hy + s⟨xy⟩)
2

 . (3.50)

To properly take the derivative in terms of the timestep ϵ we also restore the lattice spacing a in
the space directions. At the end we will take again the isotropic limit ϵ = a. To correctly restore

78



3.4. NUMERICAL SIMULATION

10 20 30 40 50

R

776.7

776.8

776.9

777.0

777.1

E
(R

)

Fit: 777− 0.69/R+ 0.0079R
σ = 0.0079± 0.0004
χ2 = 7.59 , χ2/dof = 0.84

Figure 3.6: Energy E(R) vs charge separation R obtained via the direct measurement method,
together with a fit to eq. (3.53), on a 643 lattice at e2 = 1.2.

units, we note that the sum over links discretizes a spacetime volume integral which comes with
units of ϵa2. On the other hand hx − hy discretizes a derivative and therefore comes with a
factor of 1/a for links in the space directions and 1/ϵ for links in the time direction. Overall
therefore the action can be written as

S =
a2e2

2ϵ

∑
⟨xy⟩time

(hx − hy + s⟨xy⟩)
2 +

ϵe2

2

∑
⟨xy⟩space

(hx − hy + s⟨xy⟩)
2 , (3.51)

where ⟨xy⟩time and ⟨xy⟩space denote links in the time and space directions respectively. The
derivative can now be taken explicitly, and restoring ϵ = a = 1 one finds

⟨H⟩ = e2

2T

〈
−

∑
⟨xy⟩time

(hx − hy + s⟨xy⟩)
2 +

∑
⟨xy⟩space

(hx − hy + s⟨xy⟩)
2

〉
. (3.52)

This expression can be computed via Monte Carlo simulation directly in the dual theory. Note
that this expression is only valid up to Trotterization errors; since we set ϵ = a, we then see that
this expression is valid only in the continuum limit a→ 0. Moreover, from this expression it is
clear that one can associate an energy locally to each link. One may then plot the contribution
to the energy of each link individually, thus obtaining a “picture” of the confining string.

From the energy E(R) of static quarks separated by a distance R, one can extract the string
tension σ by fitting to a potential inspired by the theoretical prediction of effective string theory
[135, 146, 212–214]

E(R) = A+ σR− B

R
+O(1/R2) . (3.53)

As we have seen in Chapter 2, effective string theory predicts a specific value for the coefficient
B, but in this case we chose to keep it as a free fit parameter. As shown in Fig. 3.6, this form of
the energy provides an excellent fit to the data obtained via the direct measurement method.
This confirms that the α = π theory is confining. However, we observed a statistically significant
dependence of the resulting string tension on the interval chosen for the fit. In general, for
unclear reasons, measuring the string tension in this theory is challenging. Alternatively, from
the snake algorithm one extracts directly the energy differences

E(R+ 1)− E(R) = σ +O(1/R2) , (3.54)
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Figure 3.7: String tension σ of the α = π theory for various values of the coupling e2, given in
lattice units. Statistically significant finite-volume effects can be observed over the entire range
of couplings, potentially reflecting the more diffuse structure of the double-stranded confining
string in this theory. Reprinted from [191].

from which σ can be extracted directly. The results of the snake algorithm simulation for the
string tension are shown in Fig. 3.7. These results agree with the direct measurement method
on the couplings closest to the transition, as expected. Nonetheless, as is clear from the figure,
significant finite volume effects are present for the whole range of couplings studied.

With the direct measurement method, one can also measure the local energy of the string in
each direction, which is defined as

u0(x) =
〈
−(hx − hx+0̂ + s0(x))

2
〉
,

ui(x) =
〈
(hx − hx+î + si(x))

2
〉
,

(3.55)

which together define the Hamiltonian energy eq. (3.52),

⟨H⟩ =
∑
x

[u0(x) + u1(x) + u2(x)] . (3.56)

A local version of the electric field is given by

E⃗(x) = (hx − hx+2̂ + s2(x),−hx + hx+1̂ − s1(x)) . (3.57)

The results of the local measurements are shown in Fig. 3.8 at the largest coupling e2 = 2.0.
The same qualitative structure is visible for all couplings studied, but e2 = 2.0 gives the clearest
pictures. The energy densities are most interesting. In particular, they depicts a string which is
qualitatively different from the standard confining string. In particular, it is fractionalized into
two different strands. One should compare this picture with the equivalent one for the standard
theory Fig. 2.1 which we discussed in Chapter 2; in that case, the confining string has a single
strand as expected. Similar fractionalization of the confining string was observed in quantum
link models [192–195], but as far as we’re aware this is the first time that it has been observed
in a gauge theory with an infinite dimensional Hilbert space.

It is also interesting to study the interplay between the confining string and the phases of
the theory. In particular, we define local versions of the OS and OCS in the presence of static
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Figure 3.8: Time-averaged local energies and electric field on a spatial L×L lattice with L = 64
measured in the presence of two static charges at coupling e2 = 2.0. The first figure (top left)
shows the field lines of the electric field E⃗ defined in eq. (3.57). The last three figures (top
right through bottom right) show the local energy defined in eq. (3.55) in the three spacetime
directions. In all three figures, the brightest pixels corresponding to contact energy terms are
masked. The energy distributions clearly depict fractionalization of the flux string into two
strands. Reprinted from [191].

charges. In particular,

OCS(x) =
(−1)x

12

∑
µ̂∈{±0̂,±1̂,±2̂}

(hx − hx+µ̂ + sµ(x)) . (3.58)

For OS(x) a similar, but more complicated expression may also be written down. The basic
idea is to rewrite it in terms of link variables of the form hx − hx+µ and then replacing
hx − hx+µ → hx − hx+µ + sµ(x). It is important to include the Polyakov loop variable s so that
the resulting observables are invariant under deformations of the surface bounding the Polyakov
loops. In the case s = 0 one recovers the usual order parameters by summing over the lattice,

OCS =
∑
x

OCS(x) , OS =
∑
x

OS(x) . (3.59)
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Figure 3.9: Local OS (left) and OCS (right) observables measured in the presence of two static
charges on the ensemble with coupling e2 = 2.0 and lattice size L = 64. Shown are the
Euclidean-time-averaged measurements over the spatial L× L lattice. The OS observable shows
that the two string strands separate regions that correspond to the two ground states of the
broken Z2 symmetry, while the OCS observable shows that the two strands themselves break
charge conjugation. Reprinted from [191].

The results of the measurements of the local order parameters are shown in Fig. 3.9. Again,
the two strands of the confining string are readily identified. In terms of the phase structure,
the confining string separates two different ground states of the broken Z2 symmetry S. As
anticipated from the analytical description, the string plays the role of a domain wall between
different broken symmetry vacua, and the string tension is the interface tension. On the other
hand, the OCS observable shows that, as expected, no vacuum expectation value is acquired in
the bulk; on the other hand, OCS takes different non-zero values on the two strands, indicating
the two strands themselves break charge conjugation C. Note that tunneling events between
different vacua may occur during the simulation, which would wash out the pictures. It is
important to ensure that one takes measurements in one phase only.

The analytical treatments of both the ordinary U(1) theory and the α = π theory predict
that the string tension should scale as σ ∼ me2 in lattice units. Unfortunately, strong finite
volume effects, especially in the measurement of the string tension, prevent us from obtaining
reliable data on this prediction. It is not immediately clear why measuring the string tension
in this theory is difficult. It cannot be simply attributed to the fractionalized nature of the
confining string, since the same occurs also in quantum link models, where however the string
tension can be accurately determined.

3.5 Conclusions

In this chapter, we have discussed a novel action with U(1) gauge symmetry in three dimensions
parametrized by an angle α. We have studied in detail the case α = π and used both analytical
and numerical techniques to show that it has a continuum limit with a broken Z2 symmetry
absent in the ordinary theory. We therefore conclude that this action describes different physics
compared to the standard Wilson or Villain actions.

We have further studied other properties of the theory, such as the mass and string tension.
The confining string in this model shows a qualitatively different behaviour compared to the
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standard theory, in that it is fractionalized into two strands. The strands separate different
vacua of the spontaneously broken Z2 symmetry.

After publishing the paper, we became aware that supersymmetric theories can also exhibit
fractionalized flux strings [215–217]. Remarkably, the effective theory for the long-distance
physics of SU(2) Super-Yang-Mills theory on R3 × S1 is the same as the effective theory that
we derived for our staggered height model [217]. This is further confirmation that our model
describes very different continuum physics compared to ordinary U(1) theory.

These results can be extended in many directions. For example, one could study the U(1)
theory with an α angle in four dimensions; or extend the construction to non-Abelian gauge
theories. Studying values of α different from π may also be interesting.
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