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Chapter 1

Introduction

In this thesis, we investigate possibilities of exploiting quantum imaging techniques for
resolution improvements in microscopy beyond the diffraction limit. For their efficient
implementation in applications, a newly developed sensor is presented and applied for the
first time in quantum imaging experiments. Quantum correlations of light are analyzed
for their potential improvement of image resolution in microscopy.

Investigation of the spatial structure of small objects is the main goal of microscopy.
By illumination, this shape is imprinted onto the light via the spatial variation of the ob-
ject’s light transmission or reflection. With an appropriate imaging system, this imprint
is replicated in a distant plane where the object shape can be remotely measured. Even
for perfect, aberration-free imaging systems, spatial resolution is limited. This so-called
diffraction limit was for the first time studied by Abbe in 1873 [1] and by Rayleigh in 1896
[2]. Their results show that the wavelength of the illumination and the size of the imag-
ing system’s entrance pupil give a fundamental limit on the spatial resolution: Two object
points cannot be distinguished if their separation lies below this limit, even for arbitrarily
large optical magnifications. In the case of optimal pupil size, a resolution of at most half
a wavelength is attainable. Rayleigh’s and Abbe’s theoretical treatments laid the founda-
tions for the modern Fourier optical description of imaging which will be used throughout
this work [3].

While one possibility to improve resolution is minimizing the illumination wavelength
by using ultra-violet light, Röntgen radiation or matter waves, e.g. in electron microscopy
where 50 pm resolution can be achieved [4], this approach is not suitable for sensitive ob-
jects. Biological samples would be destroyed and hence could not be studied alive in their
temporal development. Techniques which avoid this problem were developed [5]: Near-
field scanning optical microscopy (NSOM) can surpass the Rayleigh limit and reach 20 nm
resolution using visible light [6]. Its implementation is difficult and invasive not allow-
ing measurement at a distance. Other approaches rely on the fluorescence of the object
under investigation, i.e. self-emission of light by molecules which are previously excited.
For instance in stimulated emission depletion (STED), the Rayleigh limit can in principle
be fully circumvented [7]. The most recent and successful techniques, called PALM or
STORM, rely on the sparsity of the emitting fluorophores in the object where single emit-
ters can be identified [8, 9]. By statistical averaging and thereby precisely locating their
positions, image resolution down to 2 nm was reported. A major drawback of these tech-
niques is the needed fluorescence, i.e. that the object has to be prepared with fluorophores
prior to microscopy.

Quantum imaging is a rather recent field of research [10–13]. While many works are in-
vestigating fundamental aspects of the quantum nature of light like intensity correlations
in ghost imaging [11, 14], entanglement [15, 16], and multi-photon interference effects
[17], a lot of techniques emerged which surpass the limits of classical imaging. In the line
of quantum metrology, weak amplitude and phase objects can be measured with better
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signal-to-noise ratio than classical shot noise allows [10, 13]. Quantum lithography aims
at producing spatial structures beyond the diffraction limit by the use of multi-photon
interference [18]. Quantum microscopy, or super-resolution quantum imaging, employs
techniques to surpass the Rayleigh diffraction limit to obtain higher resolved images [12,
13].

Quantum microscopy uses particular types of illumination sources and, instead of in-
tensity measurement as in classical imaging, multi-photon correlation measurements. For
instance, it was shown that illumination with N spatially correlated photons and coin-
cident detection, the resolution can be improved by

√
N beyond the Rayleigh limit [19].

This scaling with photon number is called standard quantum limit (SQL) [20]. It can be
achieved with classically correlated photons and be explained by a statistical averaging
effect. In contrast, improvements at the Heisenberg limit (HL) have the better scaling of
N, an ultimate optimum [21]. In this case, the N-photon state, consisting of N quantum
correlated photons at wavelength λ, shows effects which would be classically observed
at wavelength λ/N, the de Broglie wavelength of the multi-photon state [22]. This effec-
tive reduction of the wavelength explains the N-fold improved spatial resolution. A few
schemes were theoretically proposed to yield an improvement at the HL but are not at-
tractive in applications due to the lack of high quality multi-photon transmitters [19] or
preparation of the object with single photon emitters [23, 24]. Moreover, the unavailable
scaling to higher N because of not yet existing efficient light sources with the particular
properties hinder their application [25].

The mentioned quantum imaging schemes are relying on temporally and spatially re-
solved single photon detection. While many experiments employed scanning apertures,
the resulting long measurement time, especially for higher photon number correlation
measurements, is not tolerable for real applications. More recently, work on single-photon
sensitive CCD and CMOS cameras which can be temporally gated improved these type of
measurements considerably [26–30]. While these devices allow the measurement of coin-
cident photons, only low fluxes with a low number of photons per exposed frame can be
used in order to correctly asses the spatial correlations of photons. Low frame rates still
prolong measurement time.

In this work, we present two newly developed 2D detector arrays which have sub-
nanosecond time resolution for each individual single-pixel detection event and exceed the
frame rates of cameras by several magnitudes. This allows for higher photon fluxes and
thereby results in more efficient measurements. Glauber’s field correlation functions are
standard expressions to characterize the quantum field of light and are the main quantity
of interest for the majority of quantum imaging experiments [31]. The raw sensor data
has to be processed for inferring this quantity. We derive a general sensor data evaluation
procedure for the measurement of arbitrary-order intensity correlation functions. For the
given detectors, these results are worked out and efficient algorithms presented.

Relying on this measurement apparatus, quantum imaging experiments aiming at
super-resolution are performed. Different standard correlated light sources are used for
illumination while intensity correlation functions are measured. In this case, the physical
improvement is expected to be at the SQL only [19, 32–34]. By employing object recon-
struction algorithms, however, image resolution can in principle be arbitrarily improved
only limited by noise [35, 36]. In contrast to standard computational microscopy meth-
ods like deconvolution [37], we apply the reconstruction on the full high-order correlation
function of large dimensionality which potentially yields statistical advantages over the
standard methods.

The above mentioned results of super-resolution at the HL are well known from quan-
tum metrology where NOON-states exhibit features of the de Broglie wavelength in phase
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measurements [13]. In this work, this characteristic signature is experimentally observed
and exploited for interferometric length measurements. It seems to be a common misun-
derstanding that the illumination with entangled photon pairs is sufficient to yield imag-
ing resolution improvements at the HL [13, 38], while it was shown that this only scales
at the SQL [19]. No advantage due to entanglement is exploited in these schemes [39]. In
an imaging context using entangled photons, the HL was only observed in the far-field
of an object [17] and in the observation of interference fringes of plane waves [40, 41]. To
the best of our knowledge, we present the first multi-mode generalization of these results,
based on the seminal work of Tsang introducing optical centroid measurement [42], allow-
ing for efficient, full visibility near-field imaging of object features with super-resolution
at the HL.

The work of this thesis was performed in the Quantum Optics Group at the Univer-
sity of Bern. This group is a member of SuperTwin1, a project funded by the European
Union within the Future and Emerging Technology (FET) section of the Horizon 2020 pro-
gram. The collaboration consists of nine institutes and companies across Europe. The
goal of the project is the development of a new generation of microscopy technology. By
employing quantum imaging schemes, the classical resolution limit of Rayleigh shall be
surpassed. The key components of the planned microscope are the quantum light source,
the detection unit, and the measurement data processing. Three project partners concen-
trate on the fabrication of a solid-state light source which is based on the physical effect
of super-luminescence. This device is intended to provide an efficient source of photons
with the correlations needed for super-resolution imaging. The above introduced direc-
tions of research are motivated by the group’s responsibilities within the project. The test
and characterization of newly developed detector arrays in quantum imaging experiments
using standard quantum light sources allows to work out the specification for a next gen-
eration device. This is performed in close collaboration with the sensor developers and
project partners at Fondazione Bruno Kessler (FBK). While the light source is not ready for
its application, model quantum imaging experiments using standard sources of low pho-
ton number are designed and implemented. These allow delivering measurement data
to the processing algorithm developers at the Institute of Physics of the Belarus National
Academy of Science (IPNASB) for test and optimization of their approach.

This thesis is structured as follows: Chapter 2 provides a short introduction to quan-
tum Fourier optics, allowing the description of imaging experiments in later chapters. Fur-
thermore, sensor data processing is analyzed. Three different correlated light sources are
implemented for the work of this thesis and are described and characterized in Chapter 3.
The two-photon experiment of Chapter 4 demonstrates the de Broglie wavelength of a
NOON-state in an interferometric metrology application. In Chapter 5, two time-resolving
detector arrays are tested and characterized with the introduced light sources. Conclu-
sions for a new sensor generation are worked out. The quantum imaging experiments of
Chapter 6 provides measurement data to IPNASB’s reconstruction algorithm. Relying on
the chapters before, these experiments are described by the Fourier optics formalism, the
different illumination sources are used, and the sensors and processing algorithms are ap-
plied for the measurement. Preliminary object reconstruction results are shown. Finally,
Chapter 8 presents the theoretical and experimental results of super-resolution imaging at
the HL. Detection is performed by one of the introduced sensor arrays.

1See also project web page http://www.supertwin.eu/

http://www.supertwin.eu/
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The following publications are in preparation, have been submitted, or are published
as a part of this thesis:

Published

• M. Unternährer, B. Bessire, L. Gasparini, D. Stoppa, and A. Stefanov, ”Coincidence
detection of spatially correlated photon pairs with a monolithic time-resolving de-
tector array”, Optics Express 24, 28829 (2016). Ref. [43].

M. Unternährer, B. Bessire, L. Gasparini, D. Stoppa, and A. Stefanov, ”Coincidence
detection of spatially correlated photon pairs with a monolithic time-resolving de-
tector array”, in European CLEO Conference (2017), CD_10_1. Ref. [44].

This publication and conference paper is presented in Sec. 5.1. A.S., B.B., and M.U.
devised the experiment which was implemented by M.U. and B.B. The manuscript
is written by M.U. and B.B. with support from A.S. L.G., M.P., and D.S. developed
the CMOS sensor array and driver software, M.U. the data acquisition and analysis
software. A.S. supervised the project.

• L. Gasparini, B. Bessire, M. Unternährer, A. Stefanov, D. Boiko, M. Perenzoni, and D.
Stoppa (2017), ”SUPERTWIN: towards 100kpixel CMOS quantum image sensors for
quantum optics applications”, in Proc. of SPIE, Vol. 10111 (2017), 10111. Ref. [45].

This conference paper contains our work of Sec. 5.1 and the above mentioned publi-
cation. It is written by L.G., M.P., and D.S. with support from B.B., A.S. and M.U.

• L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. Moreno Garcia, M. Unternährer,
B. Bessire, A. Stefanov, D. Stoppa and M. Perenzoni, ”A 32x32-pixels time-resolved
single-photon image sensor with 44.64-µm pitch and 19.48% fill-factor with on-chip
row/frame skipping features reaching 800 kHz observation rate for quantum physics
applications”, in International Solid-State Circuits Conference, ISSCC’18 (IEEE, 2018,
in press). Ref. [46].

This conference paper is presented in App. D. A.S., B.B. and M.U. devised the ex-
emplary quantum experiment which was implemented by M.U., B.B and L.G. The
manuscript is written by L.G.,M.P. and D.S. with support from A.S., B.B. and M.U.
L.G., M.Z., H.X., L.P., M.M.G., D.S., and M.P. developed this new CMOS sensor array
and characterized it. They also developed the driver software, while M.U. imple-
mented the data acquisition and analysis software for the experiment. M.P. and A.S.
supervised the project.

Submitted

• M. Unternährer, B. Bessire, L. Gasparini, M. Perenzoni, and A. Stefanov, ”Super-
Resolution Quantum Imaging at the Heisenberg Limit”, arXiv:1712.02200 [quant-
ph], (2018). Ref. [47].

This submitted manuscript is presented in Ch. 7. M.U. deduced the formalism and
devised the experiment. M.U. and A.S. wrote the manuscript with support from
B.B., while M.U. and B.B. implemented the experiment. L.G. and M.P. developed
the CMOS sensor array and driver software, M.U. the data acquisition and analysis
software. A.S. supervised the project.
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In Preparation

• M. Unternährer and A. Stefanov, ”Self-Calibrating Optical Low-Coherence Reflec-
tometry using Energy-Time Entangled Photons”, in preparation.

The work of this manuscript is presented in Ch. 4. A.S. and M.U. devised the ex-
periment. M.U. implemented it and wrote this manuscript with support and under
supervision from A.S.

• A. Mikhalychev, A. Sakovich, I. Karuseichyk, B. Bessire, M. Unternährer, A. Stefanov,
and D. Mogilevtsev, ”Piecewise Tomography: Optimizing Reconstruction of Multi-
Parameter Systems”, in preparation. Ref. [48].

This work is a collaboration with IPNASB. In Ch. 6, the theoretical approach of IP-
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Chapter 2

Theoretical Framework

This chapter introduces the theoretical formalism which describes the transformation of
the electromagnetic field by a general experimental setup. Furthermore, field measure-
ments are modeled in this framework and allow to understand and predict experimental
outcomes. Starting with classical optics allows to introduce the tools which can later be
directly applied in the quantum treatment of the electromagnetic field.

In addition to this standard textbook theory, we analyze and describe the measurement
of intensity correlation functions with detector arrays. These functions are the central
quantity of interest for this thesis. Formal expressions for the processing of measurement
data provided by the detectors are derived. Finally, an algorithm is proposed which allows
for their fast implementation in software.

Results for general light sources and optical systems are derived in this chapter. These
are applied to the concrete light sources introduced in Ch. 3 and used for the experiments
of Chs. 4–7.

2.1 Classical Fourier Optics

Fourier optics uses the well elaborated tools of mathematical Fourier analysis to model
and describe optical phenomena [3]. This framework relies on the theory and formalism
of linear systems. The main concepts of Fourier optics and linear systems are introduced
in the following. Thereby, concrete situations like field transmission through objects and
lenses as well as free-space propagation are described within this theoretical framework.
The optical setups of near- and far-field imaging, which are standard and extensively used
in this thesis, can then be described and formalized. This allows to predict the outcomes
of measurements in optical experiments using classical sources of light.

2.1.1 Introduction

In classical physics, the electromagnetic (EM) field is fully described by Maxwell’s equa-
tions [3, 49]. For a given experimental setup and a classical light source, these equations
determine the electric field vector

E(r, t)

at every spatial position r = (x, y, z) and time t. Outcomes of intensity measurements per-
formed in this experiment are predicted by this physical model. For this work, detection is
performed in free-space and the field is locally well approximated by transverse EM plane
waves. Then, the magnetic field is fully determined by E and leads to the intensity

I(r, t) =
ε0c
2
|E(r, t)|2 (2.1)
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with the electric permittivity ε0 and speed of light c in vacuum [3, 49, 50]. For the en-
countered situations of this work, we can assume the absence of free charges. We further
assume aperture areas to be much larger than the wavelength and propagation of the EM
field only through linear, isotropic, homogeneous, nondispersive and nonmagnetic media.
Under these assumptions, Maxwell’s equations reduce to a scalar wave equation which is
satisfied by all vectorial components of the magnetic and electric field independently. It is
therefore sufficient to model only the electric field for calculations of local intensities using
Eq. (2.1). Moreover, for light source of one polarization mode only, the electric field is fully
described by a scalar function whose behavior is determined by scalar diffraction theory
[3].

For the description of coherent transmission of light and its Fourier analysis, it is of
advantage to write this scalar function as sum of two complex conjugate quantities, the
positive and negative frequency parts,

E(r, t) = E(+)(r, t) + E(−)(r, t).

where E(+) = [E(−)]∗ and therefore the intensity I ∝ |E(+)|2. Any electric field distribution
can be decomposed into plane waves via a Fourier synthesis

E(+)(r, t) =
1

(2π)4

∫
d3k dω E(+)(k, ω) eiωt−ik·r.

The angular frequency ω relates to the wavevector k with the free-space dispersion rela-
tion [49]

|k| = k =
√

k2
x + k2

y + k2
z =

ω

c
. (2.2)

If this condition is met, the plane waves and therefore the synthesized E(+)(r, t) fulfill the
free-space Maxwell’s equations and represent a physical solution. With light propagating
mainly in z direction, we define the transverse position ρ and transverse wave vector q as

ρ = (x, y), q = (kx, ky).

This definition and the condition of the dispersion relation allows to write the free-space
solution of the wave equations

E(+)(ρ, z, t) =
1

(2π)3

∫
d2q dω E(+)(q, ω) eiωt−iq·ρ−i

√
k2−|q|2z. (2.3)

This equation shows explicitly, that a given electric field at z = 0 also determines its distri-
bution in all other z planes. For a reference plane Σ1, we can chose the coordinate system
such that z = 0 and write

E(+)
1 (ρ, t) =

1
(2π)3

∫
d2q dω E(+)

1 (q, ω) eiωt−iq·ρ. (2.4)

The field in a plane Σ2 of distance ∆z can then be determined by concluding from Eq. (2.3)

that the transformation E(+)
1 (q, ω) → E(+)

2 (q, ω) = E(+)
1 (q, ω) e−i

√
k2−|q|2∆z yields with

Eq. (2.4) the field E(+)
2 (ρ, t) in Σ2. This phase is called transfer function of the free-space

propagation of distance ∆z and is defined by

HF(q, ω, ∆z) := e−i
√

k2−|q|2∆z. (2.5)
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2.1.2 Linear System Theory

The more general principle of linear system theory allows to model not only free-space
propagation in a similar way, but arbitrary linear transformations of the electric field per-
formed by optical systems. In the following we consider only wavelength preserving or,
equivalently, time-invariant transformations which model time-stationary optical systems.
They are characterized by their impulse response function

h(ρ, ρ′, t− t′).

The arguments of transverse position ρ′ and time t′ can be interpreted as inputs. For these
values fixed, the impulse response function describes the field distribution at the output
in the coordinates ρ and t. Having an input field E(+)

1 , the output therefore becomes

E(+)
2 (ρ, t) =

∫
d2ρ′ dt′ E(+)

1 (ρ′, t′) h(ρ, ρ′, t− t′). (2.6)

For multiple, successive transformations, this equation is applied recursively and allows
the calculation of a total impulse response function.

For the case of space-invariant transformations, the impulse response function can be
written as

h(ρ− ρ′, t− t′)

and Eq. (2.6) simplifies to the convolution

E(+)
2 (ρ, t) =

∫
d2ρ′ dt′ E(+)

1 (ρ′, t′) h(ρ− ρ′, t− t′) =
(

E(+)
1 ∗ h

)
(ρ, t) . (2.7)

Using the Fourier convolution theorem and the field’s Fourier spectrum E(+)
1 (q, ω) given

in Eq. (2.4), it can be shown that this is equivalent to the identity

E(+)
2 (q, ω) = E(+)

1 (q, ω) H(q, ω) (2.8)

in Fourier space, where the function H(q, ω) is called transfer function. It is related to the
impulse response function by the Fourier transform

H(q, ω) =
∫

d2ρ dt h(ρ, t) e−iωt+iq·ρ.

and vice versa with an inverse Fourier transformation.
For simplicity but without loss of generality, we consider in the following monochro-

matic light at wavelength λ and therefore a wave vector magnitude k = 2π/λ and angular
frequency ω = kc. This allows to remove the explicit ω dependence of the transfer func-
tions and the time dependence of the impulse response functions.

2.1.3 Elementary Optical Impulse Response Functions

For the following elementary optical systems, impulse response functions are derived in
[3, 38, 49, 50] and here put in a consistent form.

• The transfer function of free-space propagation was derived in Eq. (2.5). We impose
the paraxial or Fresnel approximation which assumes only wavepackets travelling
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mainly along the z-direction and therefore |q|2 � k2. In this limit, the propagation
transfer function can be approximated by

HF(q, ∆z) = exp
(
−ik∆z + i

|q|2
2k

∆z
)

. (2.9)

With an inverse Fourier transform, it can be shown that the space-invariant impulse
response function reads

hF(ρ1, ρ2, ∆z) = hF(ρ1 − ρ2, ∆z) =
ik

2π∆z
exp

(
−ik∆z− i

k
2∆z
|ρ1 − ρ2|2

)
. (2.10)

• For the transmission trough a thin lens of focal length f , it can be shown that the
non-space-invariant impulse response function is given by

hL(ρ, ρ′) = δ(2)(ρ− ρ′) exp
(

i
k

2 f
|ρ|2

)
. (2.11)

Using Eq. (2.6), this corresponds to a pure spatial phase factor.

• An object aperture of transmission amplitude A(ρ) placed in the electric field, can be
modeled with the impulse response function

hA(ρ, ρ′) = δ(2)(ρ− ρ′) A(ρ). (2.12)

These set of impulse response functions are sufficient to describe the following imaging
setups.

2.1.4 Single Lens Near-Field Imaging

Single lens near-field imaging is composed of the following intermediate steps: Starting
from the initial object plane, the light is freely propagated for the distance so, a lens aper-
ture A(ρ) limits the size of the following lens, then a lens of focal length f refracts and
transmits the field, and finally a free-space propagation to the image plane at the distance
si is performed. The impulse response function of the total system can therefore be written
in terms of the above defined elementary functions as

hNF(ρi, ρo) =
∫

d2ρ′Ad2ρAd2ρL hF(ρi, ρL, si) hL(ρL, ρA) hA(ρA, ρ′A) hF(ρ
′
A, ρo, so).

For near-field imaging, the thin lens imaging condition 1/ f = 1/so + 1/si is fulfilled and
by inserting Eqs. (2.9)–(2.12), we arrive at

hNF(ρi, ρo) =
−k2

(2π)2siso
e−ik(so+si) exp

(
−ik
|ρi|2
2si
− ik
|ρo|2
2so

)
Ã
(

kρi

si
+

kρo

so

)
.

The function Ã(q) is given by the Fourier transform of the lens aperture A(ρ). For a
circular aperture of radius R and unity transmission

Ã (q) = R2 2J1(R|q|)
R|q| = R2 somb(R|q|),
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where J1 is the first-order Bessel function and somb the hereby defined sombrero function,
also known as Airy pattern. Using the imaging system magnification factor m := si/so,
we can write in conclusion

hNF(ρi, ρo) =
−k2R2

(2π)2siso
e−ik(so+si) exp

(
−ik
|ρi|2
2si
− ik
|ρo|2
2so

)
somb

(
Rk
so

∣∣∣ρo +
ρi

m

∣∣∣) .

(2.13)

For neglected prefactors and phase terms, this impulse response function reads

hNF(ρi, ρo) = hNF

(
ρo +

ρi

m

)
= somb

(
Rk
so

∣∣∣ρo +
ρi

m

∣∣∣) (2.14)

and is therefore space-invariant after magnification and inversion/rotation. Applying
Eq. (2.6), for each point source in the object plane at ρo, a patch centered at ρi = −mρo
whose shaped is given by the sombrero function is produced. Accordingly, hNF is called
point-spread function (PSF) and determines the resolution of the imaging system. In the
optimal case of large R,

hNF(ρo + ρi/m)
R→∞−→ δ(2)(ρo + ρi/m)

and the electric field in the object plane is fully replicated, in a magnified and rotated
version, in the image plane.

The field transformation by single lens imaging described by Eq. (2.13) can be split
into several steps: First, the multiplication of the field by a phase factor exp(−ik|ρi|2/2si)
in the image plane. Second, the field transformation with the impulse response function
somb(Rk|ρ− ρ′|/so), or in general

h2(ρ− ρ′) = Ã
(

k(ρ− ρ′)

so

)
with the Fourier transform Ã of the lens aperture. Afterwards, the rotation, magnification
by m, and finally the multiplication by the phase factor exp(−ik|ρo|2/2so) is performed.

The transformation h2 shows explicitly space-invariance as introduced in Sec. 2.1.2.
Therefore, it can be expressed in Fourier space by a transfer function which is here given
by

H(q) = A
( so

k
q
)

.

The lens aperture A(ρ) plays therefore the role of a filter of transverse wave vectors as
evident in the field transformation rule of Eq. (2.8). In cases of small enough object, all
phase factors can be neglected. The only nontrivial transformation is then h2 and the
reduced image resolution is fully described by this filtering.

2.1.5 Far-Field Imaging

The far-field imaging is performed with the following steps: From the initial source plane
the light is freely propagated for the distance d, a lens of focal length f and unlimited trans-
verse size refracts and transmits the light, and finally a free-space propagation of distance
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f to the far-field plane is performed. Therefore, the total impulse response function

hFF(ρ f , ρs) =
∫

d2ρ′Ld2ρL hF(ρ f , ρL, f ) hL(ρL, ρ′L) hF(ρ
′
L, ρs, d).

Inserting the elementary response functions of Eqs. (2.9)–(2.12), we arrive at

hFF(ρ f , ρs) =
ik

2π f
e−ik(d+ f ) e

i k
2 f 2 (d− f )|ρ f |2 ei k

f ρ f ·ρs . (2.15)

For the case of d = f , this result simplifies to

hFF(q, ρs) =
ik

2π f
e−ik 2 f ei q·ρs (2.16)

with the definition q := (k/ f ) ρ f . Using Eq. (2.6), an input plane wave of wave vector
q, given by E(+)(ρ) = exp(−i q · ρ), is with this system focused to a single point at ρ f =
( f /k) q in the far-field plane. And reversely, a point source in the input plane at ρs is being
transformed to a plane wave at the output. In general, for the input field E(+)(ρ) we yield
the Fourier transform E(+)(q) at the output far-field plane by identifying q = (k/ f )ρ f .

In contrast to the near-field case, the far-field lens is not modeled with a finite aperture.
This comes from the fact that this lens can in principle be put arbitrary close to the object
and thereby does not filter by its aperture. This becomes obvious in Eq. (2.15): Only a
phase term occurs in the far-field plane for d 6= f , the response function is otherwise equal.
In addition, the resolution in the object details depends on the measurable q range. This is
not depending on the lens aperture size and therefore not of interest for the investigation
of resolution in this thesis.

2.2 Fourier Optics of Quantum Fields

In order describe non-classical light sources, e.g. sources at a single photon level and ex-
hibiting quantum correlations, the quantum description of the electromagnetic field is in-
troduced in this section. The framework of Fourier optics presented in classical optics can
be adapted to this quantum formalism. The previously discussed intensity measurements
are here generalized to intensity correlations measurements. With this, the framework al-
lows to model the outcomes of these correlation measurements with arbitrary experiments
settings and light sources.

2.2.1 Introduction

In a quantum theoretical treatment of the EM field, under the same conditions as men-
tioned in Sec. 2.1 resulting in a scalar wave equation, the classical electric field E(ρ, t) has
its analogue in the field operator [38, 51, 52]

Ê(ρ, t) = Ê(+)(ρ, t) + Ê(−)(ρ, t).

It represents field measurements in the transverse reference plane Σ. Being hermitian
conjugates of each other Ê(+) = [Ê(−)]†, we can define similarly to Eq. (2.4)

Ê(+)(ρ, t) :=
1

(2π)3

∫
d2q dω e(ω) â(q, ω) eiωt−iq·ρ. (2.17)
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The field operator normalization function is

e(ω) = i

√
h̄ω

2(2π)3ε0c

which establishes the correct units of the electric field. The photon annihilation operator â
removes a photon from the plane wave mode specified in its arguments and fulfills with
its hermitian conjugate, the photon creation operator â†, the commutation relations

[â(q, ω), â†(q′, ω′)] = δ(2)(q− q′)δ(ω−ω′).

The photon number operator

n̂(q, ω) := â†(q, ω)â(q, ω)

determines the number of photons present in the specified plane wave mode.
The physical state of the EM field is in this formalism represented as an abstract quan-

tum state |Ψ〉 ∈ H in the Hilbert space H of all possible states [53]. The above mentioned
operators act on these states and transform them within this space. The vacuum state |0〉
is normalized with respect to the inner product of the Hilbert space, denoted by the Dirac
bracket notation 〈Φ|Ψ〉, and represents the absence of any photonic excitation of the field

〈0|0〉 = 1, â(q, ω) |0〉 = 0, ∀ q, ω.

In a photon number or Fock basis, a N-photon state can be written as

|Ψ〉 = C a†(q1, ω1) . . . a†(qN , ωN) |0〉 = |q1, ω1; . . . ; qN , ωN〉

with an appropriate normalization constant C. A general multi-photon state with a distri-
bution in photon numbers is given with

|Ψ〉 =
∞

∑
n=0

∫
d2q1dω1 . . . d2qndωn Λn(q1, ω1; . . . ; qn, ωn)

n

∏
k=1

a†(qk, ωk) |0〉

where the n-photon wave functions Λn specify the distribution of the photons in the dif-
ferent plane wave modes.

Measurements outcomes are predicted by quantum expectation values [53]. Using the
inner product of the Hilbert space, the expectation value of a general measurement of a
quantity with corresponding operator M̂ for a given physical state |Ψ〉 is

〈M̂〉 = 〈Ψ|M̂|Ψ〉 .

In analogy to the classical result in Eq. (2.1), the expectation value of the field intensity is
given by

〈 Î(ρ, t)〉 = ε0c
2
〈Ê(−)(ρ, t)Ê(+)(ρ, t)〉

In the following parts of this work, we are not interested in the intensity in its SI units
of [W m−2], but in the flux density of photons [m−2 s−1]. This allows to drop this last
equation’s prefactor and the field operator normalization e(ω). In this regime of photon
counting, we get a simplified field operator
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Ê(+)(ρ, t) :=
1

(2π)3/2

∫
d2q dω â(q, ω) eiωt−iq·ρ (2.18)

and accordingly its hermitian conjugate Ê(−)(ρ, t). They can be interpreted as a photon
annihilation and creation operators in position-time coordinates with the commutation
relations

[Ê(+)(ρ, t), Ê(−)(ρ′, t′)] = δ(2)(ρ− ρ′)δ(t− t′). (2.19)

The expectation value of the photon flux density can now be written as

〈 Î(ρ, t)〉 = 〈n̂(ρ, t)〉,

where the photon number operator

n̂(ρ, t) := Ê(−)(ρ, t) Ê(+)(ρ, t) (2.20)

is now defined in direct space.

2.2.2 Transformation of Field Operators

Having a prepared quantum state of the EM field, we want to predict measurement out-
comes of an experiment. The optical setup can be classically characterized by its impulse
response function h(ρ, ρ′, t− t′) which transforms the classical electric field with Eq. (2.6),
see Sec. 2.1. The electric field operator Ê(+)

1 which corresponds to measurements on the
setup input plane Σ1 transforms identically to the classical field [38, 51, 52]. Therefore, the
operator which describes measurements at the output plane Σ2 reads

Ê(+)
2 (ρ, t) =

∫
d2ρ′ dt′ Ê(+)

1 (ρ′, t′) h(ρ, ρ′, t− t′). (2.21)

Similarly, Ê(−) can be transformed using the complex conjugate [h(ρ, ρ′, t− t′)]∗. The pho-
ton flux density is then n̂(ρ, t) = Ê(−)

2 (ρ, t)Ê(+)
2 (ρ, t). This allows to calculate the flux

density distribution in any plane and after any linear optical setup using the impulse re-
sponse functions from Sec. 2.1.

The Heisenberg picture of quantum mechanics is here realized, as operators are trans-
formed but the quantum states are stationary. Equivalent results are gained in a Schrödinger
picture of an propagating wave function but stationary operators. This is possible in the
case of states with fixed photon number N [38]. For non-unitary transformations, lower
photon numbers arise which are not described by pure states anymore. Restricting or pro-
jecting to the N-photon state contribution allows even then the following procedure of
wave function transformation: For a one-photon state

|Ψ〉 =
∫

d2ρ dt Ψ1(ρ, t) Ê(−)
1 (ρ, t) |0〉

this effective wave function can be defined in the plane Σ1 of the field operator E(+)
1 with

Ψ1(ρ, t) = 〈0|Ê(+)
1 (ρ, t)|Ψ〉 .
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It fully characterizes the quantum field. Propagating the field from Σ1 through a system
with impulse response function h(ρ, ρ′, t− t′), we get at the output plane Σ2

Ψ2(ρ, t) = 〈0|Ê(+)
2 (ρ, t)|Ψ〉

= 〈0|
∫

d2ρ′ dt′ Ê(+)
1 (ρ′, t′) h(ρ, ρ′, t− t′)

∫
d2ρ′′ dt′′ Ψ1(ρ

′′, t′′) Ê(−)(ρ′′, t′′) |0〉

=
∫

d2ρ′′ dt′′ Ψ1(ρ
′′, t′′) h(ρ, ρ′′, t− t′′)

= 〈0| Ê(+)
1 (ρ, t)

∫
d2ρ′ dt′

(∫
d2ρ′′ dt′′ Ψ1(ρ

′′, t′′) h(ρ′, ρ′′, t′ − t′′)
)

Ê(−)(ρ′, t′) |0〉

= 〈0|Ê(+)
1 (ρ, t)|Ψ2〉 ,

where we have used field operator propagation and the commutation relations of Eq. (2.19).
Therefore, the same field characterizing result is yielded with a propagated field operator
Ê(+)

2 and a fixed quantum state |Ψ〉 like with a transformed quantum state |Ψ2〉 while us-
ing a fixed measurement operator Ê(+) = Ê(+)

1 . For the normalized effective wave function
of an N-photon state

Ψ(ρ1, t1; . . . ; ρN , tN) :=
1√
N!
〈0| Ê(+)(ρ1, t1) . . . Ê(+)(ρN , tN) |Ψ〉 ,

the here derived transformation rule can be generalized to

Ψ2(ρ1, t1; . . . ; ρN , tN) =
∫

d2ρ′1 dt′1 . . . d2ρ′N dt′N Ψ1(ρ
′
1, t′1; . . . ; ρ′N , t′N)

× h(ρ1, ρ′1, t1 − t′1) . . . h(ρN , ρ′N , tN − t′N). (2.22)

The effective wave function transforms like the product of N classical fields [52].

2.2.3 Field Correlation Functions

Glauber showed in [31], that the coherence and correlation of the EM quantum field can
be characterized by field correlation functions. For this work, we restrict to intensity cor-
relations. This means, that the first-order correlation function

G(1)(ρ1, t1) = 〈Ê(−)(ρ1, t1)Ê(+)(ρ1, t1)〉

reduces to the intensity or flux density measurement in units [m−2 s−1]. The second-order
correlation function

G(2)(ρ1, t1; ρ2, t2) = 〈Ê(−)(ρ1, t1)Ê(−)(ρ2, t2)Ê(+)(ρ1, t1)Ê(+)(ρ2, t2)〉

quantifies the spatial and temporal correlation of pairs of fluxes in units of [m−4s−2]. This
can be generalized to a Nth-order correlation function with

G(N)(ρ1, t1; . . . ; ρN , tN) = 〈Ê(−)(ρ1, t1)Ê(−)(ρ2, t2) . . .

. . . E(−)(ρN , tN)Ê(+)(ρ1, t1) . . . Ê(+)(ρN , tN)〉
(2.23)

in units of [m−2N s−N]. Using the photon number operator of Eq. (2.20), this can be equiv-
alently written as
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G(N)(ρ1, t1; . . . ; ρN , tN) = 〈 : n̂(ρ1, t1) . . . n̂(ρN , tN) : 〉 (2.24)

where : : denotes the normal ordering of the implicit field operators in the expression. This
reorders the operators such that all Ê(−) are left from all Ê(+).

For the case of N-photon states, the Nth-order correlation function is given by the
effective wave function

G(N)(ρ1, t1; . . . ; ρN , tN) = N! |Ψ(ρ1, t1; . . . ; ρN , tN)|2

and transforms therefore according to Eq. (2.22). By construction, the intensity correlation
function of Eq. (2.24) is symmetric under interchange of any of pair, or any permutation of
all, of its spatial and temporal arguments

G(N)(ρ1, t1; . . . ; ρk, tk; . . . ; ρl , tl ; . . . ; ρN , tN) = G(N)(ρ1, t1; . . . ; ρl , tl ; . . . ; ρk, tk; . . . ; ρN , tN).

Reason is the indistinguishability of photons in any other degree of freedom than their
point in space and time owing to the field operator commutation relations of Eq. (2.19).

The normal ordering procedure can be motivated with the following property: Only
the normal ordered expectation value G(N) is proportional to the probability of a joint
N-photon detection event. For a quantum state of maximum photon number M, we can
therefore conclude that G(N) = 0 for all N > M. This, its equivalence with the wave func-
tion for N-photon states and the corresponding transformation behavior, and the proba-
bility interpretation are key properties of the normal ordered field correlation function.

2.3 Field Intensity Correlation Measurements

In this thesis, the central measurement quantity of interest is the field correlation function
introduced in Eq. (2.24). The following sections are dedicated to show how measurements
can be performed and how measurement data are to be processed in order to be able
to relate them to the formal, theoretical values of the correlation functions. For this, the
first discussed continuous variable treatment is discretized in order to be applicable to
concretely used sensor devices. These theoretical results are worked out for the case of a
time-stationary source and a specific assumptions on the detector. Finally, an algorithm
for calculating high-order correlation functions by efficiently processing the measurement
data is presented. The here developed insights and techniques are extensively used in the
experiments of Chs. 4–7.

2.3.1 Sample Averaging and Normalization

Eq. (2.24) defines the Nth-order field correlation function as the quantum mechanical ex-
pectation value of a measurement operator consisting of a normal ordered product of pho-
ton number operators

G(N)(ρ1, t1; . . . ; ρN , tN) = 〈 : n̂(ρ1, t1) . . . n̂(ρN , tN) : 〉.

A measurement on a quantum state of the field at the given temporal and spatial argu-
ments can only be performed once. In order to measure and estimate this theoretical ex-
pectation value, the statistical distribution in photon numbers has to be assessed in order
the build an average. Therefore, many instances of the same quantum state are needed
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for a good estimate of the value of the correlation function. An experiment needs to be
designed to deliver these copies of the state which can then be measured. The average of
many of these measurement outcomes yield an estimate of the desired quantum expecta-
tion value. This means for the measurement of the correlation function, that the sample
average over the measured photon number outcomes n(ρ, t) converges to the theoretical
value of the correlation function in the limit of large sample number NS

〈 : n(ρ1, t1) . . . n(ρN , tN) : 〉Sample
NS→∞−→ G(N)(ρ1, t1; . . . ; ρN , tN). (2.25)

The interpretation of normal ordering in this context will be given in Sec. 2.3.3.
Depending on the experiment, the individual instances of the quantum state are dis-

criminated differently. The common feature of all implementations is the following: By
introducing an abbreviation for the space-time coordinates of the correlation function

x(N) := (ρ1, t1; . . . ; ρN , tN) ∈ R3N ,

there are many x(N) which yield on average the same value of the correlation function.
This equality of space-time points can be captured by an equivalence relation denoted by
≡. All x′(N) ≡ x(N) yield the same theoretical value of the correlation function

G(N)(x(N)) = G(N)(x′(N)), if x′(N) ≡ x(N).

With this notation, a general sample averaging can be formally described with the sam-
pling function

Θ(x(N), x′(N)) :=

{
1, if x(N) ≡ x′(N),
0, otherwise.

The sampling space volume of G(N) at a specific coordinate x(N) is then given with

V(x(N)) :=
∫

Dx′(N) Θ(x(N), x′(N)), (2.26)

where we integrate over all coordinates using Dx′(N) = d2ρ′1dt′1 . . . d2ρ′Nt′N . In the limit
of large enough volume, this sampling space is sufficient and representative for the es-
timation of parameters of the statistical distribution. The parameter of an average value
needed in Eq. (2.25), can be estimated using the sample average over the measurements

G(N)(x(N)) =
1

V(x(N))

∫
Dx′(N)

[
: n(ρ′1, t′1) . . . n(ρ′N , t′N) :

]
Θ(x(N), x′(N)). (2.27)

The normal ordered outcomes of photon flux density measurements are denoted by [ :
n(ρ′1, t′1) . . . n(ρ′N , t′N) : ], see Sec. 2.3.3. Thanks to the normalization by the sampling space
volume, this quantity yields the original units of [m−2N s−N].

For a concrete example of sample averaging, one might conceive spatial parallel in-
put of the quantum state copies. More often, the delivery is in temporal sequence. One
example are time-stationary light sources which emit continuously and whose correlation
function exhibit the symmetry

G(N)(p1, t1; . . . ; pN , tN) = G(N)(p1, t1 + t; pN , tN + t), ∀ t.
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This is given for CW pumped spontaneous parametric down-conversion or pseudo-thermal
light used in later chapters. The sampling function can then be written as

Θ(x(N), x′(N)) =

(
N

∏
k=2

δ
(
(t1 − t′1)− (tk − t′k)

))( N

∏
l=1

δ(2)(ρl − ρ′l)

)

With this and Eq. (2.27), the sample average is therefore given by the time average

G(N)(x(N)) =
1

V(x(N))

∫
dt [ : n(ρ1, t1 + t) . . . n(ρN , tN + t) : ] .

For a pulsed source operation of pulse period Tp, it is possible to formalize the sample
average similarly and one arrives at

G(N)(x(N)) =
1

V(x(N))
∑

k

[
: n(ρ1, t1 + kTp) . . . n(ρN , tN + kTp) :

]
.

2.3.2 Discretization of Detector Arrays

For a model of the measurement, we first have to specify the geometrical detection charac-
teristics. The measurement is to be performed in a plane Σ, which is transverse to the light
propagation direction z. The transverse position in this plane is denoted by ρ = (x, y) ∈ Σ.
For the spatial resolution of the measurement, many individual detectors are needed. As-
sume that an array of single photon detectors, hereafter referred to as pixels, are placed
in the plane Σ. Each pixel is identified by its coordinate index p ∈ N2 and has a sensi-
tive surface Ap ⊂ Σ of area A. This divides the plane Σ and introduces the discrete pixel
coordinate p, while area is measured in units of A. Similarly, the measurement of time
is performed in units of ∆t and discretized in intervals [t, t + 1] which are identified by
t ∈N.

For a specific pixel p with optimal detection efficiency in a time interval t, the number
of detection events is given by the incident photon flux. We can model the measurement
of the number of detection events with the photon number operator of this pixel and time
interval

n̂(p, t) :=
∫

Ap

d2ρ
∫ t+1

t
dt′ n̂(ρ, t′)

using the flux density operator n̂(ρ, t) of Eq. (2.20). In these discrete coordinates, we can
define the Nth-order correlation function

G(N)(p1, t1; . . . ; pN , tN) := 〈 : n̂(p1, t1) . . . n̂(pN , tN) : 〉 (2.28)

in units of [A−N ∆t−N]. Note the equality

G(N)(p1, t1; . . . ; pN , tN) =
∫

Ap1

d2ρ1

t1+1∫
t1

dt′1 . . .
∫

ApN

d2ρN

tN+1∫
tN

dtN G(N)(ρ1, t′1; . . . ; ρN , t′N)

which explicitly shows the discretization of the correlation density of Eq. (2.24). From this
theoretical density which can be calculated for specific experimental situations, we can
therefore calculate the quantity which corresponds to the measurement. This equation il-
lustrates the need of small enough pixels and time intervals in order to resolve the physical
correlation function. Otherwise, temporal or spatial features are averaged out.
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The formalism described above for sample averaging and normalization gets now a
discrete form. The generalized coordinate is

x(N) := (p1, t1; . . . ; pN , tN) ∈N3N .

The sampling function Θ(x(N), x′(N)) is equally defined on this coordinate, while the sam-
pling space volume of Eq. (2.26) becomes

V(x(N)) = ∑
x′(N)

Θ(x(N), x′(N)), (2.29)

and the sample average of Eq. (2.27) is now

G(N)(x(N)) =
1

V(x(N))
∑

x′(N)

[
: n(p′1, t′1) . . . n(p′N , t′N) :

]
Θ(N)(x(N), x′(N)). (2.30)

This discrete average results in units of [A−N ∆t−N].

2.3.3 Normal Ordered Photon Number Correlations

A general intensity correlation function defined in Eq. (2.28) can be easily measured for
(p1, t1) 6= (p2, t2) . . . 6= (pN , tN). In this case, all implicit field operators do commute
thanks to the commutation relations of Eq. (2.19) and the normal ordering is not needed

G(N)(p1, t1; . . . ; pN , tN) = 〈 n̂(p1, t1) . . . n̂(pN , tN) 〉, if (p1, t1) 6= . . . 6= (pN , tN). (2.31)

The expectation value is gained by sample averaging over many measurements, as dis-
cussed in Sec. 2.3.1. Every individual measurement outcome n(p1, t1) . . . n(pN , tN) is sim-
ply the product of the total number of photons n(p, t) measured in the corresponding
pixels and time intervals.

If a coordinate appears multiple times in the argument of G(N), the normal ordering
of field operators constitutes a different measurement value. Every coordinate pair (p, t)
appearing m-times can then be replaced by

: (n̂(p, t))m : =
m−1

∏
k=0

(n̂(p, t)− k) (2.32)

where the normal ordering vanishes for the right expression. This is shown straightfor-
wardly by rearranging the normal ordered field operators using their commutation re-
lations. Therefore, we have to incorporate this rule of processing the measured photon
numbers depending on their coordinate multiplicity m. The normal ordered measurement
outcome

[ : n(p1, t1) . . . n(pN , tN) : ]

used in sample averaging of Sec. 2.3.1 can therefore be expressed in terms of the measured
photon numbers n(p, t) accordingly.

For the simple case of a second-order correlation function G(2), we get the following re-
sult. With the measurement of the photon numbers n(p, t), we identify the normal ordered
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measurement outcome for the sample averaging procedure with

[ : n(p1, t1) n(p2, t2) : ] =

{
n(p1, t1) n(p2, t2), if (p1, t1) 6= (p2, t2),
n(p1, t1) (n(p1, t1)− 1), if (p1, t1) = (p2, t2).

2.3.4 Example of Time-Stationary Sources

This section uses the previously derived general results and applies them to the specific,
often encountered case of time-stationary light sources where the temporally correlated
signal is of interest. This is the case for the spontaneous parametric down-conversion
and pseudo-thermal light introduced in Ch. 3 and used in Chs. 4–7. Characteristics of the
detector arrays used in later chapters are taken into account. This results in explicit expres-
sions for correlation function estimation using measured data. Analytic expression for the
sampling space volume are derived. A correlation algorithm is presented which imple-
ments the results efficiently and allows the calculation of intensity correlation functions of
arbitrary orders.

Detector Assumptions

In order to get concrete results, characteristics of a detector have to be fixed. Here we
assume the measurement in fixed temporal windows, hereafter referred to as frames, con-
sisting of TF ∈ N time intervals. The correlation analysis is performed within this frame.
All frames correspond to measurements of the same quantum state, see the equivalence
defined in Sec. 2.3.1. The acquisition of many frames is therefore used for sample averag-
ing and improvement of statistics.

The detector pixels do not resolve photon numbers. An individual pixel only provides
the presence or absence of a detection event for every time interval within the frame, which
means n(p, t) ∈ {0, 1}. With this, the rule of Eq. (2.32) for processing the measurement
outcomes to get the normal ordered result yields zero if any (p, t) coordinate pair of G(N)

has multiplicity m > 1. Therefore, this part of correlation space is not measurable, the
device gives no information. In order to get an accurate sample average, this non-sampled
regions have to be accounted for in the sampling function and accordingly results in a re-
duced sampling space volume. If this is implemented, the sample average only considers
coordinates with multiplicity m = 1 and we can drop therefore any normal ordering and
use the simple product of photon numbers, see Eq. (2.31). In order to be able to measure
the correlation function correctly despite this detector limitation, we have to make sure
that contributions n(p, t) > 1 can be neglected by appropriately choosing the source’s
parameters, detector pixel size and time interval duration.

Spatio-Temporal Second-Order Correlation

Restricting to the second-order correlations, time-stationary sources exhibit the symmetry
G(2)(p1, t1; p2, t2) = G(2)(p1, t1 + t; p2, t2 + t) as used for sample averaging in Sec. 2.3.1.
Therefore, the function

G(2)(p1, p2, ∆t), with ∆t := t2 − t1,

fully characterizes the correlations. For its measurement, we can define the sampling func-
tion

Θ∆(∆t; t1, t2) :=

{
1, if ∆t = t2 − t1,
0, otherwise.
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In order to account for the above discussed detector assumptions leading to not measur-
able space, we introduce an additional function removing this space with

Θmeas.(p1, t1; p2, t2) :=

{
0, if (p1, t1) = (p2, t2),
1, otherwise.

We arrive at the total sampling function

Θ(p1, p2, ∆t; p′1, t′1; p′2, t′2) := Θ∆(∆t; t′1, t′2) Θmeas.(p′1, t′1; p′2, t′2) δp1,p′1
δp2,p′2

(2.33)

with the Kronecker δ notation to make the pixel coordinates match because no spatially
averaging takes place.

With the results of the detector assumptions discussion and this sampling function, the
normal ordering can be dropped. Using Eq. (2.30), Eq. (2.33), and a number NF of acquired
frames, the coincident correlation function can be estimated with

G(2)(p1, p2, ∆t) =
1

V(p1, p2, ∆t)

NF

∑
k=1

TF

∑
t1=1

TF

∑
t2=1

nk(p1, t1) nk(p2, t2)

×Θ∆(∆t; t1, t2) Θmeas.(p1, t1; p2, t2). (2.34)

The index k runs over all frames, while nk(p, t) denotes the therein measured photon num-
bers. This expression can be used in a measurement data processing algorithm.

With Eq. (2.29), Eq. (2.33), and taking into account the number of frames NF, the sam-
pling space volume can be evaluated to

V(p1, p2, ∆t) = NF

TF

∑
t1=1

TF

∑
t2=1

Θ∆(∆t; t1, t2) Θmeas.(p1, t1; p2, t2)

=

{
0, if p1 = p2 ∧ ∆t = 0,
NF(TF − |∆t|), otherwise.

(2.35)

These results are used in Ch. 5. In Sec. 5.1.6, an illustrated example of the normalization is
shown in a concrete situation with acquired measurement data.

Coincident Spatial High-Order Correlation

The memory for storage of a correlation function increases exponentially with the order
N. Even at a moderate number of pixels, this exceeds practical limits very fast. For that
reason, only spatial correlations of temporally coincident events are considered in the fol-
lowing. The coincidence is given by a time window of length Tc ∈ N and has to be
adapted to the specific source’s correlation time. A natural choice of temporal window-
ing is the maximum time separation and allows to define the sampling function in the
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temporal coordinates t(N) := (t1, . . . , tN)

ΘTc(t
(N)) :=

1, if max
k,l
|tk − tl | ≤ Tc,

0, otherwise.
(2.36)

In order to account for the above discussed detector assumptions leading to not measur-
able space, we introduce an additional function removing this space with

Θmeas.(x(N)) :=

{
0, if ∃ k, l : k 6= l ∧ (pk, tk) = (pl , tl),
1, otherwise.

(2.37)

Using p(N) := (p1, . . . , pN), this yields the total sampling function

Θ(p(N), x′(N)) := ΘTc(t
′(N)) Θmeas.(x′(N)) δp(N),p′(N) (2.38)

with the Kronecker δ notation to make all discrete pixel indices p(N) and p′(N) match. The
input coordinates x′(N) of the measurement data are in space and time, while the output
coordinates p(N) of the resulting correlation function are in space only.

With the results of the detector assumptions discussion and this sampling function, the
normal ordering can be dropped. Using Eq. (2.30), Eq. (2.38), and a number NF of acquired
frames, the coincident correlation function can be estimated with

G(N)(p(N)) =
1

V(p(N))

NF

∑
k=1

TF

∑
t1=1
· · ·

TF

∑
tN=1

nk(p1, t1) . . . nk(pN , tN)

×ΘTc(t
(N)) Θmeas.(x(N)). (2.39)

The index k runs over all frames, while nk(p, t) denotes the therein measured photon num-
bers. This expression can be used in a measurement data processing algorithm. While the
sums are computationally expensive already at moderate correlation order, frame length
and pixel number, sparse density of detection events allow for optimizations, see the pro-
posed algorithm below.

With Eq. (2.29), Eq. (2.38), and taking into account the number of frames NF, the sam-
pling space volume is given by

V(p(N)) = NF

TF

∑
t1=1
· · ·

TF

∑
tN=1

ΘTc(t
(N)) Θmeas.(x(N)). (2.40)

Given a correlation algorithm evaluating the sums of Eq. (2.39), direct comparison of the
equations show that the volume can be computed using this algorithm for input data with
n(ρ, t) = 1 for all ρ and t. While the volume only needs to be computed once, it is very
time-intensive for numerical computation. An analytic solution is therefore desirable.

Analytic Expression for Sampling Space Volume

The specific choice of the coincidence windowing function Θ(N)
Tc

in Eq. (2.36) allows a ana-
lytic evaluation of the sampling space volume in Eq. (2.40). The only factor introducing the
dependence of the volume on specific pixel coordinates p is Θmeas.(x(N)) which removes
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contributions of (p, t) pairs of higher multiplicities m > 1. Summing over all t, this has
the consequence that V(p(N)) is only dependent on the multiplicities of its p coordinates
and not on its specific values.

The multi-coordinate vector p(N) = (p1, . . . , pN) is categorized for its coordinate mul-
tiplicities with the multiplicity vector

m(N) = m(N)(p(N)) := (m1, . . . , mN), with mk ∈N0 and ∑
k

mk = N.

The ordering of the individual multiplicities mk is of no relevance and for this reason not
specified. The special case m(N)(p, p, . . . , p) = (N, 0, 0, . . . , 0), while for all distinct coordi-
nates m(N)(p1, . . . , pN) = (1, 1, . . . , 1) and unit multiplicities are given. Please note that mk
denotes here the multiplicities of the spatial coordinate only, as opposed to the multiplicity
m defined above for the pairs (p, t).

The sampling space volume in the time interval t = 1, . . . , T only restricted by the
measurable region can be shown to yield

Vm(m(N), T) :=
T

∑
t1=1
· · ·

T

∑
tN=1

Θmeas.(x(N)) =
N

∏
k=1

T!
(T −mk)!

(2.41)

which reduces to TN for unit multiplicities where the full space was measurable. The total
sampling space volume, further restricted by the coincidence window Tc and frame length
TF, can be quantified with this intermediate step as

V(p(N)) =
(
[TF − Tc] Vm(m(N), Tc + 1)− [TF − Tc − 1] Vm(m(N), Tc)

)
NF. (2.42)

In the limit of large frame duration TF � Tc, the volume is proportional to TF. If the coin-
cidence window is of comparable size, the frame boundaries introduce significant correc-
tions. These analytic expressions are derived in App. A.

Algorithm for Coincident Spatial High-Order Correlation

For calculation of the coincident correlation function G(N)(p(N)) with the measurement
data using Eq. (2.39), computationally expensive sums have to be evaluated at every point
in the large space of function arguments p(N). The algorithm 1 implements these sums in
an efficient way using the following improvements:

• Measurement data is not provided to the algorithm with an array representing all
entries of n(p, t) ∈ {0, 1}. Instead, the set Data = {(p1, t1), . . .} of detection events
at the corresponding pixel and time are more efficient for sparse events and serve as
input. In other words, the set is defined by: n(x) = 1⇔ x ∈ Data.

• The expression summed over in Eq. (2.39) is not evaluated explicitly. The algorithm
only considers non-vanishing summands, i.e. with sampling function Θ 6= 0 and
measurements n(pk, tk) 6= 0.

• The correlation function’s symmetry under permutation of its arguments is exploited.
This avoids calculating the same result N! times. This symmetry, formally described
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in Sec. 2.2.3, is established for the algorithm output in one step after the main task of
measurement data processing (line 17).

• A recursive method is used to calculate arbitrary correlation orders in one run (line 33).

A concrete implementation of the algorithm, here described in pseudo-code, is presented
in Appendix B using Matlab and C. The algorithm can be checked for consistency by us-
ing detection event input data with n(ρ, t) = 1 for all ρ and t. In this case, the sums in
G(N) of Eq. (2.39) are equal to the sampling space volume V of Eq. (2.40) and therefore
G(N)(p(N)) = 1 at every p(N) and every order N. This is the case for this implementation.
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Algorithm 1 Calculate coincident correlation functions G(N)(p(N)), N = 1, . . . , Nmax.

Input: Detection event data in Data, maximal correlation order Nmax, coincidence win-
dow length Tc

1: global variables
2: t, p, arrays . time and position of detection events
3: ts . current coincidence window start time
4: x, array . positions of events in current coinc. window
5: G(N), N = 1, . . . , Nmax, arrays . correlation functions
6: end global variables

7: initialize all G(N) to zero
8: for all f rm ∈ Data do . go through all frames
9: read arrays (t, p) from f rm . time and pixel position pairs

10: sort (t, p) for increasing time t
11: UPDATEGN(1, 1) . start at correlation order N = 1 with first event
12: end for
13: for N = 1, . . . , Nmax do
14: initialize G(N)

out to zero
15: for all x ∈ {1, . . . , pmax}N do . over all coordinates of G(N)

16: for all i ∈ permutations(1, . . . , N) do . symmetrize in position arguments
17: G(N)

out (x)← G(N)
out (x) + G(N)(x(i1), . . . , x(iN))

18: end for
19: G(N)

out (x)← G(N)
out (x)/V(x) . normalize with V(p) from Eq. (2.42)

20: end for
21: write G(N)

out to output
22: end for

23: procedure UPDATEGN(N, k0) . updates G(N) using data (t, p), start at index k0
24: for k = k0, . . . , length(t) do . loop over detection events
25: if N = 1 then
26: ts ← t(k) . set coincidence window start
27: else if t(k)− ts > Tc then
28: return . cancel if out of coincidence window
29: end if
30: x(N)← p(k) . update position array
31: G(N)(x(1), . . . , x(N))← G(N)(x(1), . . . , x(N)) + 1
32: if N < Nmax then
33: UPDATEGN(N + 1, k + 1) . next correlation order by recursion
34: end if
35: end for
36: end procedure





27

Chapter 3

Light Sources

Various classical and quantum sources of light are used throughout this thesis. This chap-
ter provides their theoretical description, the documentation of the experimental imple-
mentations and their characterization.

3.1 Two-Photon Source

In the following, the theoretical description of two-photon state generation in different
approximations is discussed. A concrete experimental implementation of a two-photon
source is presented. Its output is verified and characterized by appropriate measurements.

The here developed source is used for detector array tests in Ch. 5 and in quantum
imaging experiments of Ch. 6. These rely on the spatial correlation of the emitted photon
pairs. An adapted version of this source will be separately derived for optical centroid
measurement in Ch. 7. In two-photon interferometer experiments of Ch. 4, the temporal
correlations of this source are relevant while only one single spatial mode is used.

3.1.1 Theory

The generation of two-photon states, or photon pairs, relies here on spontaneous paramet-
ric down-conversion (SPDC). It is a nonlinear optical process [54] and is experimentally
exploited by directing a beam of light, called pump, in an optically nonlinear crystal (NLC)
which in turn emits photon pairs at the doubled pump wavelength. SPDC is a very weak
interaction mediated by the optical properties of the NLC between the pump and emission
modes. The relevant property is the response of the dielectric polarization density P of the
NLC medium to an external electrical field E. The electrical susceptibility χ relates these
quantities with

(P)i = ∑
j

χ
(1)
ij (E)j + ∑

j,k
χ
(2)
ijk (E)j (E)k + . . .

for the vectorial components i, j, k ∈ {1, 2, 3} [54]. χ(N) is therefore a tensor which here
appears in tensor products with the electric field. Non-vanishing second-order suscepti-
bilities χ(2) exist for crystal lattices without point symmetry.

For incident light waves E(t) = eiωt, the second-order part produces terms with po-
larization P ∝ χ(2)e2iωt and emits a corresponding electric field oscillating at double fre-
quency. This process is known as second-harmonic generation (SHG) and can be described
classically [54]. SPDC can be seen as inverse process to SHG, or more generally to sum fre-
quency generation. Its weak interaction in comparison to SHG comes about due to its
non-stimulated but spontaneous nature. This allows the generation of individual photons
and needs a quantum description.
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Quasi-Phase Matching

In order to build up a strong enough two-photon signal, the interaction volume of the
modes in the NLC is to be maximized and can be achieved by long NLCs. Every pump
illuminated point in the NLC is a source of the two-photon amplitude. In order to get a
high amplitude of their coherent sum at the output, the sources have to be in phase. This
so called phase matching can be achieved by different means. The method of quasi-phase
matching, originally developed for SHG [55], can be adopted for SPDC. Along the light
propagation axis of the NLC, the crystal domains are periodically rotated by 180◦ and
introduce a modulation of the second-order susceptibility and thereby of the phase of the
two-photon amplitude. These periodically poled NLCs are used in the following.

Assuming the same single polarization for pump and generated fields reduces the rel-
evant second-order susceptibility tensor to a scalar. With this, quasi-phase matching of
periodically poled crystals is modeled with

χ(2)(z) = χ
(2)
0 sign (cos(2πz/G))

varying along the optical propagation direction z with the poling period G. The effective
nonlinearity of the crystal deff =

1
2 χ

(2)
0 . In a Fourier series, we can rewrite

χ(2)(z) =
2χ

(2)
0

π

∞

∑
m=−∞

sin( 1
2 mπ)

m
eikmz, km :=

2πm
G

. (3.1)

Phase matching will only be given for one term in this sum. For highest efficiency, the
maximum amplitude of first-order m = 1 quasi-phase matching is desirable. If the corre-
sponding needed poling period G is not available for manufacturing, higher orders can be
considered.

Two-Photon State of Type-0 SPDC

In 1985, the two-photon quantum state of SPDC was analytically elaborated by Mandel
and Hong for monochromatic pump, a single spatial emission mode, and for the first time
taking into account the geometry of the NLC [56]. Keller and Rubin generalized this result
in 1997 to pulsed pump fields [57]. The spatial degrees of freedom of SPDC emission with
monochromatic but transversally shaped pump beams were formalized by Monken et al.
in 1998 [58].

Considering all temporal and spatial degrees of freedom for pump and SPDC emission,
results are derived in [51]. SPDC of type-0 is assumed where all involved field’s polariza-
tions are identical. Furthermore, quasi-phase matching is implemented in the formalism.
The here presented steps follow the more detailed derivation in [51].

The quantum theoretical description of SPDC is presented in the following. The pump
field originates from a laser source and can therefore be represented as coherent state.
Moreover, the weak SPDC process does not perturb this strong field significantly and can
therefore be treated as a classical field which is undepleted. Similarly as the electric fields
introduced in Sec. 2.1, it can be written as in positive and negative frequency part with

Ep(r, t) = E(+)
p (r, t) + E(−)

p (r, t) = E (+)(ρ, z, t) eiωcpt + c. c.

using the center pump frequency ωcp and the slowly varying envelope E (+)(ρ, z, t) of the
pump pulse. The transverse coordinate ρ = (x, y) is defined in a plane Σ at z normal to
the propagation direction of the light.
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In the following, fields are defined in the dielectric medium of the crystal. Therefore,
the field operators have to take into account the material’s refractive index n(ω). This
results in an adapted normalization function of the free-space field operators of Sec. 2.2

e(ω) = i

√
h̄ω

(2π)3 2ε0c(n(ω))2

while the wave vectors in the crystal obey the dispersion relation

|k| = kc(ω) =
√

k2
x + k2

y + k2
z =

ω

c
n(ω). (3.2)

The nonlinear interaction between the pump and the SPDC emission modes can be
described by the time dependent interaction Hamiltonian

Ĥint(t) =
2ε0

3

∫
VNLC

d3r χ(2)(z) Ê(r, t) Ê(r, t) Ep(r, t)

where the integration volume is performed over the NLC volume. Invoking the rotating
wave approximation, terms can be neglected and the Hamiltonian simplified to

Ĥint(t) =
2ε0

3

∫
VNLC

d3r χ(2)(z) Ê(−)(r, t) Ê(−)(r, t) E(+)
p (r, t) + h. c. (3.3)

The output of the SPDC process can be calculated in the interaction (or Dirac) picture by
the formal solution of the Schrödinger equation

|Ψ(t)〉 = T exp
(

1
ih̄

∫ t

t0

dt′ Ĥint(t′)
)
|Ψ(t0)〉 (3.4)

where time ordering of the Hamiltonians in the evaluation of the exponential is imposed
by symbol T and an input state |Ψ(t0)〉 is given for the emission modes. With the vacuum
state as input |Ψ(t0)〉 = |0〉, the Dyson series of Eq. (3.4) allows to write the first-order
perturbation theory result [53]

|Ψ(t)〉 = |0〉 − i
h̄

∫ t

t0

dt′ Ĥint(t′) |0〉

As the interaction only occurs during the time interval of the pump pulse implicitly spec-
ified in Ep(r, t) (or equivalently the coherence time for CW pump), the integration bound-
aries can be extended to t0 → −∞ and t→ ∞.

A cuboid shaped NLC of length L is assumed with its input surface in plane z = −L
and the end surface in plane z = 0. If the transverse pump beam size in the crystal
Ep(r, t), r ∈ VNLC, is smaller then the transverse crystal dimensions, the latter can be ex-
tended to infinity for calculations. First-order quasi-phase matching for the term m = 1 is
assumed while the other are neglected, see Eq. (3.1). Then, the resulting field state reads

|Ψ〉 = |0〉+
∫

d2qi dωi d2qs dωs Λ(qi, ωi, qs, ωs) a†(qi, ωi) a†(qs, ωs) |0〉 (3.5)

with the photon creation operators a†(q, ω) and the two-photon wave function [51]
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Λ(qi, ωi, qs, ωs) = −
4iε0χ

(2)
0 Le(ωi)e(ωs)

3h̄π(2π)6n(ωi)n(ωs)
E (+)(qi + qs, ωi + ωs −ωcp)

× sinc
(

1
2

∆kzL
)

exp
(
−i∆kz

L
2

)
. (3.6)

The longitudinal wave vector mismatch is

∆kz =
√

k2
c(ωi)− |qi|2 +

√
k2

c(ωs)− |qs|2 −
√

k2
c(ωi + ωs)− |qi + qs|2 +

2π

G
(3.7)

where the dispersion relation of Eq. (3.2) determines wave vector magnitudes kc(ω).
The generated photon pair is entangled because the two-photon function is not factor-

izable into subsystems of the two photons

Λ(qi, ωi, qs, ωs) 6= f (qi, ωi) g(qs, ωs).

The annihilation of one pump photon in the process is not modeled in this approximation,
but a full quantum model would confirm the interpretation of one pump photon being
converted into a pair of photons. Energy and transverse momentum conservation of the
process is explicit in the arguments of the pump field E (+) in Eq. (3.6). The generated
photon pair’s energy sum is equally distributed as one photon of the pump. The same
applies to the transverse wave vector sum.

The phase matching function sinc(x) = sin(x)/x determines the efficiency of pair gen-
eration via the phase mismatch 1

2 ∆kzL in its argument. By appropriately choosing the
crystal poling period G, the phase mismatch can be minimized for the generation of pho-
ton pairs into a emission cone of selected angle and a corresponding energy splitting ratio
[59]. We optimize for collinear emission in this work which maximizes the photon emission
in q = 0 direction along the optical axis of the pump beam. The energy splitting ration is
then close to frequency-degenerate emission where ωs = ωi =

1
2 ωcp.

Spatio-Temporal Factorization

We assume a pump field which factorizes

E (+)(q, ω) = E (+)
q (q) E (+)

ω (ω).

Filtering the SPDC emission in a narrow bandwidth around the frequency degenerate case,
the wave vector mismatch is nearly constant over the frequency range and the two-photon
wave function factorizes to good approximation into

Λ(qi, ωi, qs, ωs) = Λ(qi, qs) E (+)
ω (ωi + ωs −ωcp) f (ωi) f (ωs). (3.8)

with the filter transmission amplitude f (ω) and the spatial two-photon wave function

Λ(qi, qs) := Λ(qi, 1
2 ωcp, qs, 1

2 ωcp).
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This factorization in wave vector and frequency leads, with a Fourier transform to direct
space, to a factorization in position ρ and time t. Therefore, correlations between spatial
and temporal degrees of freedom are absent in this limit.

Under certain conditions, an optical system with an impulse response function (see
Sec. 2.1.2) factorizes into temporal and spatial components

h(ρ, ρ′, t− t′) = hs(ρ, ρ′) ht(t− t′).

This is for example the case for a 4-f imaging system. In good approximation, it is also
valid for single lens near- and far-field systems of Eq. (2.13) and Eq. (2.16) under the as-
sumption of a narrow-band spectrum determined by filter f (ω). In this case, the second-
order correlation function, defined in Ch. 2, of the SPDC state, described by Eq. (3.8),
propagated through this system factorizes

G(2)(ρ1, t1; ρ2, t2) = G(2)(ρ1, ρ2) G(2)
t (t1, t2). (3.9)

In the special case of a monochromatic pump E (+)
ω (ω) = δ(ω−ωcp), this temporal part of

the SPDC state is given by

G(2)
t (t1, t2) = G(2)

t (t1 − t2) = |
(

f̃ ∗ ht
)
(t1 − t2)|2

with the Fourier transform f̃ (t) of the bandpass filter transmission f (ω) and the convolu-
tion with the temporal impulse response function ht(t) of the optical system. It depends
on time differences only. Therefore, detection can occur at any time but is temporally
correlated by a correlation time given by the bandwidth of the used filter.

The limit of spatio-temporal factorization is assumed in the following and allows to
consider the spatial correlation function independently of the temporal degrees of free-
dom.

Monochromatic Plane Wave Pump Approximation

A simpler expression of the derived two-photon state is possible for the case of a monochro-
matic pump field with a collimated beam of sufficient radius to be locally in the crystal well
approximated by a plane wave. The latter is the case for a Gaussian beam with a Rayleigh
length longer then the NLC length L. Assuming a pump of a frequency is ωcp aligned to
the optical axis z, it is approximated by a plane wave with q = 0 given by

E (+)(q, ω) = δ(2)(q) δ(ω−ωcp).

By defining a relative frequency Ω := (ωi − ωs)/2 and q := qi = −qs, the quantum state
of Eq. (3.5) becomes

|Ψ〉 = |0〉+
∫

d2q dΩ Λ(q, Ω) a†(q, 1
2 ωcp + Ω) a†(−q, 1

2 ωcp −Ω) |0〉 . (3.10)

The two-photon wave function reads in this simplified case

Λ(q, Ω) = Λ(|q|, Ω) = C(Ω) sinc
(

1
2

∆kzL
)

exp
(
−i∆kz

L
2

)
. (3.11)

where we absorbed the prefactors of Eq. (3.6) into the function C(Ω). It exhibits a circular
symmetry in q as expected from the rotation symmetry of the physical situation. The wave
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vector mismatch is given by

∆kz =
√

k2
c(

1
2 ωcp + Ω)− |q|2 +

√
k2

c(
1
2 ωcp −Ω)− |q|2 − kc(

1
2 ωcp) +

2π

G

This approximation does not model the finite transverse extension of the pump beam.
A further observation is the perfect anti-correlation in momentum and frequency of the
emitted photons as apparent in Eq. (3.10). This is a consequence of energy and momentum
conservation and the narrow bandwidth of the pump in these degrees of freedom.

Using the spatio-temporal factorization limit from above, we get the spatial two-photon
wave function

Λ(q) = Λ(q, Ω = 0).

Far-Field Correlations

A second-order correlation function in the far-field, using a lens of focal length f , is cal-
culated in the following for the quantum state of Eq. (3.10). As apparent in the definition
of the correlation function in Eq. (2.23), we have to transform the free-space field operator
of Eq. (2.18) with the far-field impulse response function of Eq. (2.16) using the transfor-
mation rule in Eq. (2.21). Furthermore, employing the factorization property discussed for
Eq. (3.9) by spectrally filtering, this yields the spatial correlation function

G(2)(q1, q2) = C |Λ(q1, q2)|2.

We use the position to wave vector relation q = (k/ f )ρ in the far-field plane and all
constants are absorbed into C.

In monochromatic plane wave pump approximation, we get

G(2)(q1, q2) = C δ(2)(q1 + q2) |Λ(q1)|2 (3.12)

which can be interpreted as spatial perfectly anti-correlated photon pairs within the circu-
lar symmetric wave vector emission spectrum |Λ(q)|2. The pump propagation direction,
here assumed to be along q = 0, determines the center point of symmetry.

Near-Field Correlations

A near-field measurement with a lens is described by the impulse response function of
Eq. (2.13). The ideal case of a large lens diameter is chosen because we are interested in
the actual emission of the source, without modification by the limitations of the optical
system. The transfer function becomes a delta function as shown in Sec. 2.1.4. This single
lens imaging system allows to measure correlation functions in different planes. With a
free propagation using the transfer function Eq. (2.5), the spatial correlation function in an
object plane at any position z is given by

G(2)(ρ1, ρ2, z) =
∣∣∣∣C ∫ d2qi d2qs Λ(qi, qs) e−iz

√
k2−|qi |2 e−iz

√
k2−|qs|2 ei(qi ·ρ1+qs·ρ2)/m

∣∣∣∣2
which is essentially a Fourier transform of the propagated two-photon wave function. The
wave vector magnitude k is given by the free-space dispersion relation k = 1

2 ωcp/c. An
optical magnification m is assumed.
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In monochromatic pump approximation, this equation reduces to

G(2)(ρ1, ρ2, z) = G(2)(∆ρ, z) =
∣∣∣∣C ∫ d2q Λ(q) e−2iz

√
k2−|q|2 ei q·∆ρ/m

∣∣∣∣2 (3.13)

and is only depending on the relative position ∆ρ := ρ1 − ρ2. An infinite transverse
extension is given in this approximation. Inserting Λ(q) = Λ(q, Ω = 0) from Eq. (3.11),
using the results of its wave vector mismatch, and defining kc := kc(

1
2 ωcp), we get without

the Fourier transform and constants

sinc
(

1
2

∆kzL
)

exp
(
−i

L
2

√
k2

c − |q|2 − iz
√

k2 − |q|2
)2

.

By employing the paraxial approximation of the free-space propogator as in Eq. (2.9), we
arrive at

sinc
(

1
2

∆kzL
)

exp
(

i
L
2
|q|2
2kc

+ iz
|q|2
2k

)2

where constant phases were omitted. With the dispersion relations Eq. (2.2) and Eq. (3.2),
in the plane at

z = z0 := − L
2 n( 1

2 ωcp)
, (3.14)

the exponential function with quadratic phases in q vanish. In this plane, the two-photon
wave function is therefore a real function and the corresponding Fourier transform of
Eq. (3.13) yields the narrowest correlation in ∆ρ due to this Fourier limited wave func-
tion. Reminding us that in the derivation of the SPDC two-photon state we have chosen
the coordinate system where z = 0 is at output surface of the NLC, the image plane at z0
coincides with central plane in the crystal as we have to take into account the refractive
index of the material in propagation [49].

3.1.2 Experimental Implementation

The NLC is a periodically poled KTiOPO4 (PPKTP) crystal with a poling period of G ≈
3.51 µm and a length of L = 5 mm. For the selected type-0 SPDC, the material’s nonlinear
coefficient de f f = 15.6 pm/V [60]. For the two-photon state calculation with Eq. (3.6), the
wavelength dependent index of refraction n(ω) is needed. This is modeled by a Sellmeier
equation [49], whose coefficients for KTP are experimentally determined in reference [61].
The crystal temperature is influencing n(ω) and yields a correction term to the Sellmeier
equation which is experimentally found in [62]. Thermal expansion, which influences the
poling period, is also given in this reference. The NLC is temperature stabilized within
0.01◦C. This allows to modify the phase matching and is here set for collinear emission
[59].

The optical setup is shown in Fig. 3.1. The pump source is a grating-stabilized CW
diode laser. It emits a polarized, collimated beam at λcp = 405 nm with a bandwidth of
2 MHz at 30 mW power. With a λ/4 and λ/2 plate, the beam is linearly polarized. A
telescope consisting of two lenses focuses the light to a Gaussian beam of waist radius
w0 = 240 µm. Its Rayleigh length of 447 mm is much larger then L and justifies the plane
wave approximation. The NLC is centered on the beam waist position.

The above discussed spatio-temporal factorization is given in good approximation
with the used emission bandpass filter (F2) transmitting 810 ± 5 nm. Numerical analy-
sis shows only negligible variation of the phase mismatch in this spectral region. This
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FIGURE 3.1: Two-photon light source. Photon pairs are generated in SPDC in the NLC. A
longpass filter (F1) blocks the pump, the bandpass filter (F2) transmits 810± 5 nm and selects
the nearly frequency-degenerate emission. The central crystal plane Σ is 1:1 imaged with the
telescope (L1, L2, f = 50 mm) to the output plane Σ′. Here the field is ready for measurement
and manipulation. For characterization of the source, the lens L3 ( f = 60 mm) images Σ′ onto
the detection plane Σd. Two multi-mode fiber coupled detectors scan transverse positions and

detect photon pairs in coincidence.

validates the treatment of the spatial degrees of freedom only and the assumption of fre-
quency degenerate emission in the following. In the filtered spectral range, a total of 2 nW
SPDC light is generated.

A 4- f 1:1 imaging system of two f = 50 mm lenses replicates the electric field of the
crystal center plane Σ in the output plane Σ′. Taking into account the refractive index
n(810 nm) = 1.84, Eq. (3.14) yields the effective position z0 = −1.36 mm of this plane.
The NLC to lens distance x in Fig. 3.1 is therefore x = f + z0 = 48.64 mm. This makes
the central plane, which is of interest due to its strong spatial correlation as discussed
above, available for measurement and manipulation. The here calculated value of x is
experimentally validated in Sec. 5.1 to yield the minimal correlation length.

3.1.3 Characterization

In order to characterize this source depicted in Fig. 3.1, the output plane Σ′ is imaged with
magnification m = 11.6 by a single lens (L3, f3 = 60 mm) to the detector plane Σd. A
beam splitter cube separates photon pairs to two different detectors. These are coupled
to multi-mode fibers of 50 µm diameter whose bare fiber tips are on motorized x-y stages
scanning the Σd plane. Detectors are single photon counters based on silicon avalanche
diodes (Perkin Elmer SPCM-AGR-14). Detection events are timestamped with a time-to-
digital converter (IDQ TDC id800) with 81 ps time resolution. The crystal temperature is
set to 25◦C.

The real-time evaluation of this timestamp data is performed with a LabView program.
It allows to count coincidences, i.e. event pairs with a relative time difference in a window
of Tc = 2 ns. The resulting number of coincidence events at detector positions ρ1, ρ2 ∈ Σd
is given by the second-order correlation function with

C(ρ1, ρ2) =
∫

A1

d2ρ′1

∫
A2

d2ρ′2

∫ ∞

−∞
dt1

∫ t1+Tc/2

t1−Tc/2
dt2

1
2

G(2)(ρ′1, t1; ρ′2; t2)

with the fiber core aperture areas A1, A2 ⊂ Σd and the beam splitter ratio introducing
a reduction of the signal. With the normalization procedure presented in Sec. 2.3, this
quantity allows to get G(2) in appropriate units.

Background light, dark counts and other sources of noise produce detection events
and lead to accidental coincidence events. As the SPDC light source is expected to exhibit a
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temporally correlated signal within the coincidence window, accidentals can be estimated
by measuring pair events at a delay ∆t� Tc where no correlation signal is expected

Cacc(ρ1, ρ2) =
∫

A1

d2ρ′1

∫
A2

d2ρ′2

∫ ∞

−∞
dt1

∫ t1+∆t+Tc/2

t1+∆t−Tc/2
dt2

1
2

G(2)(ρ′1, t1; ρ′2; t2).

Therefore, the accidental corrected counts Ccorr := C − Cacc only include the temporally
correlated part of the signal.

Near-Field Correlation, Poling Period Determination

Fig. 3.2 shows the measurement results. The 1D and 2D detector position scans in panel
(a) and (b) show strong spatial correlation, as expected from Eq. (3.13). Single count rates
in panel (d) show a flat behavior modulated by the pump beam shape. A cross-section of
(b) is shown in panel (c), where a correlation length of the photon pairs of 330 µm FWHM
can be determined. In the source output plane Σ′, this is corresponds to 27.6 µm.

Using Eq. (3.13) of G(2)(∆ρ) in monochromatic plane wave pump approximation, the
measurement data fit in Fig. 3.2(c) determines the crystal poling period to G = (3.51108±
0.00004) µm, which is the only free parameter of the model. The sub-nanometer confi-
dence interval of the fit can be explained by the fact that the measurement is very sensitive
to changes in G. Even at this scale, the SPDC emission along the crystal consisting of
more than one thousand periods adds up a considerable phase difference and leads to a
measurable modification of the correlation function.

The fit of G is very sensitive to the assumed pump wavelength λcp. Within a nanometer
range of this value, we always find an appropriate G which fits the data. If λcp cannot be
determined to sub-nanometer precision, we can treat G as an effective poling period under
the assumption of a coarsely determined, but fixed wavelength λcp.

Far-Field Correlation, NLC Temperature Scan

As shown in Sec. 2.1.5, a lens can be used to perform measurements in the far-field. For
this, the lens L3 in the setup of Fig. 3.1 is replaced with a focal length f3 = 500 mm and
is place in distance f3 in front of the detection plane Σd. For detection, two 105 µm fibers
are used in the following for higher count rates. The longer correlation length in compari-
son with the the near-field measurements from above is fully resolved by this larger fiber
aperture, see Fig. 3.3(a). As expected from Eq. (3.12), anti-correlated emission of photon
pairs is measured. A crystal temperature of 26◦C is used.

By varying the crystal temperature, its refractive index can be slightly tuned. This
allows to change the phase matching. The single count rates in Fig.3.3(b) show the dis-
tribution in photon pair emission angles for different temperatures. Collinear emission is
favored at 26◦C.

3.2 Four-Photon Source

The here presented four-photon source is implemented for its application in detector array
testing of Ch. 5, where the capability of newly developed devices in the measurement of
ultra-fast higher order correlation is to be demonstrated. Furthermore, it is considered for
quantum imaging, but not realized up to this date.
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FIGURE 3.2: Near-field measurement of the SPDC two-photon source. Accidental corrected
1D (a) and 2D (b) coincidences in dependence of (relative) detector positions. The correlation
width in (c), showing 2σ errors, is fitted to the theoretical model and yields a poling period

G = 3.51108 µm. Single count rates in (d) are shown for both detectors.
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FIGURE 3.3: Far-field measurement of the SPDC two-photon source. (a): Accidental corrected
coincidences in dependence of the detector positions. (b): Single count rates at different crystal

temperatures T.
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3.2.1 Theory

In order to realize a source generating four-photon states, the SPDC process described in
Sec. 3.1 is here considered for stronger pump fields. This results in non-negligible double-
pair generation and is theoretically analyzed in the following.

Four-Photon State in Type-0 SPDC

Multi-photon pair generation in SPDC was first studied in 1999 by Ou et. al [63]. This
theoretical analysis only considers temporal degrees freedom. Taking into account spatial
dimensions as well, a discrete spatial mode model is put forward and analyzed in [64, 65].
Continuing with the results of Sec. 3.1 for two-photon SPDC, a SPDC four-photon state
including spatial degrees of freedom can be derived in the following.

Eq. (3.4) describes the quantum state of the SPDC emission modes after the interaction.
The approximation of this expression using first-order perturbation theory yielded the
two-photon state output. Considering in addition second order, the output state reads

|Ψ〉 = |0〉+ |Ψ2〉+ |Ψ4〉 (3.15)

with the vacuum contribution and the two-photon state |Ψ2〉 given in Eq. (3.5). The new
contribution is with second-order perturbation theory [53]

|Ψ4〉 = −
1
h̄2

∫ ∞

−∞
dt
∫ ∞

t
dt′ Ĥint(t′) Ĥint(t) |0〉

where the time ordering required in Eq. (3.4) is fulfilled. The interaction Hamiltonian
given in Eq. (3.3) can be separated into Ĥint = Ĥ(−)

int + Ĥ(+)
int with

Ĥ(−)
int (t) =

2ε0

3

∫
VNLC

d3r χ(2)(z) Ê(−)(r, t) Ê(−)(r, t) E(+)
p (r, t)

and its hermitian conjugate accordingly. With this, we can write the four photon contribu-
tion

|Ψ4〉 = −
1

2h̄2

∫ ∞

−∞
dt Ĥ(−)

int (t)
∫ ∞

−∞
dt′ Ĥ(−)

int (t′) |0〉 .

The contribution to the vacuum state comes from a down- and again up-converted photon
pair and is not considered in the following. The commuting operators allowed to rewrite
the time ordered integral. Using the result of Eq. (3.5), we conclude that

|Ψ4〉 =
1
2

∫
dx1 dx2 dx3 dx4 Λ(x1, x2)Λ(x3, x4) a†(x1) a†(x2) a†(x3) a†(x4) |0〉 (3.16)

with the abbreviation xk := (ρk, ωk) and the two-photon wave function Λ(qi, ωi, qs, ωs) of
Eq. (3.6). This can be identified as a four-photon state and is a generalization of the result
in [63]. Despite its factorization into two pairs, it shows correlation between these due to
photon bunching or, equivalently, stimulated emission effects [63, 64].

The wave function’s linear dependence on the pump electric field results in a quadratic
dependence of this four-photon state. High pump intensities are therefore needed to make
this contribution a relevant part of the total quantum state. This is achieved by employing
pulsed pump fields which allow for high peak intensities.
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Temporal Mode Number

Photon bunching, i.e. the effect of enhanced probability of photon emission in one mode
given that photons are already present in that mode [66], is implicitly present in the state
of Eq. (3.16) and is quantitatively analyzed below. It is responsible for the correlation of
the two pairs which would otherwise be fully independent. For high visibility of spatial
correlation, a number of temporal modes close to unity is required [63–65, 67]. The per
pulse probability to emit a four-photon state is given by

P4 =
(P2)2

2
(1 + χ) (3.17)

with the visibility χ ∈ [0, 1] and the two-photon emission probability P2 [64]. The absence
of photon bunching with χ = 0 corresponds to a purely Poissonian emission statistics, i.e.
of two independent two-photon emissions. At optimal χ = 1, photon bunching allows
a doubling of the emission probability. This is the case if both photon pairs are emitted
in the same spatial and temporal mode pairs. Therefore, detection must be able to dis-
tinguish between different modes in order to achieve the full visibility. While the needed
spatial resolution of the detection is moderate, electronic detectors are much slower than
the coherence time of generated photons, the time scale of the modes, even for narrow-
band filtered SPDC emission. As these temporal modes cannot be resolved in a pulse, the
only possibility to achieve high visibility is to minimize the number of emitted temporal
modes.

The maximum visibility χ = 1/M relates inversely proportional to the number of
temporal modes M in the case of slow detectors. Furthermore, heuristic arguments show
for Gaussian filters and pulses

χ =
r√

1 + r2
, r :=

∆p

∆ f
,

with the filter frequency transmission bandwidth ∆ f and pump pulse bandwidth ∆p [67].
By selecting a broad pump (short pulse) and a narrow filter, the high r value results in a
low mode number where high visibility is achievable.

Fedorov derived analytically the temporal emission modes of SPDC [68]. This result
is more rigorous than the above as it takes into account dispersion effects. On the other
hand, it does not consider the filtering of the emission spectrum. A numerical analysis of
the temporal mode number in the concrete experimental situation gives clarity: A model
of the pump pulse E (+)(t) allows to explicitly calculate the temporal two-photon wave
function. Assuming spatio-temporal factorization discussed in Sec. 3.1, it is sufficient to
analyze one spatial mode. In case of collinear emission, the spectral wave function is
therefore given with

Λ(qi = 0, ωi, qs = 0, ωs) f (ωs) f (ωi).

Its Schmidt decomposition allows to determine the temporal or, equivalently, the spec-
tral modes. Then, the Schmidt number yields the effective number of temporal modes
emitted after filtering [51]. This will be done in Sec. 3.2.2 using the concrete experimental
parameters.

In the following, a single temporal mode per pulse is assumed. It is therefore sufficient
to consider the spatial degrees of freedom only.
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Spectral Signal-Idler Separation

Setting at the SPDC output a bandpass filter not symmetrically for frequency-degenerate
emission but at some off-center wavelength, only one photon of a pair generated in SPDC
is transmitted due to their frequency anti-correlation explicit in the two-photon wave func-
tion in Eq. (3.6). This distinguishability of the photons is formally implemented by assign-
ing an index k ∈ {s, i}, corresponding to signal and idler, to the photon creation and
annihilation operators. With temporal mode assumption from above, we now have a sin-
gle temporal mode for the signal and one for the idler photons. These operators obey the
commutation relation

[âk(q), â†
k′(q

′)] = δk,k′ δ
(2)(q− q′), k, k′ ∈ {s, i}.

Following the SPDC derivations with this, the two-photon state of Eq. (3.5) reads

|Ψ2〉 =
∫

d2qi d2qs Λ(qi, qs) a†
i (qi) a†

s (qs) |0〉

and the four-photon state of Eq. (3.16) accordingly. Due to this distinguishability, it is
therefore possible to measure correlation functions of only the signal photons with

G(1)
s (q1) := 〈Ψ|â†

s (q) âs(q)|Ψ〉

and higher orders accordingly.

Far-Field Correlations

Using a far-field system of Sec. 2.1.5 after the emitting crystal, a fourth-order correlation
function in the far-field plane reads

G(4)(q1, q2, q3, q4) = 16 |Λ(q1, q2)Λ(q3, q4) + Λ(q1, q3)Λ(q2, q4) + Λ(q1, q4)Λ(q2, q3)|2 .

Due to the experimental difficulty of measuring this quantity, simplified measurements
are considered. In the following, we assume that the generated four-photon state is given
by two pairs as derived in Eq. (3.16). Knowing the two-photon state from theory and ex-
periment, see Sec. 3.1, the correlations between the two photon pairs is the only unknown
property of the four-photon state. Under these assumptions, it is sufficient to measure
a second-order correlation function to characterize the source. These are derived in the
following.

For spectral signal-idler separation with an asymmetric bandpass filter as discussed
above, the probability to generate a photon pair, equaling the probability to measure on
signal photon P1s, is given by the first-order correlation function or intensity of the signal
field and can be calculated to be

P1s = G(1)
s (q) := 〈Ψ|a†

s (q)as(q)|Ψ〉 =
∫

d2qi |Λ(q, qi)|2 +O(Λ4).

The first order term originates from the two-photon state |Ψ2〉which dominates the gener-
ation rate. Higher order terms are neglected in the following. The probability to have two
pairs in a pulse, equaling the probability to measure two signal photons P2s, is then given
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by the second-order correlation function of the signal field

P2s = G(2)
s (q1, q2) := 〈Ψ|a†

s (q1)a†
s (q2)as(q2)as(q1)|Ψ〉

= G(1)
s (q1) G(1)

s (q2) +

∣∣∣∣∫ d2qi Λ∗(q1, qi)Λ(q2, qi)

∣∣∣∣2 = A+ E (3.18)

and originates from the four-photon state |Ψ4〉 only. This is the results of [63] in spatial
degrees of freedom. The first summand A can be interpreted as accidental event or spon-
taneous emission of two pairs, while the second term E describes the excess rate due to
photon bunching or stimulated emission. Its integral quantifies the overlap of the emission
modes of two pairs given the detection positions for the signal photons. We can conclude

P2s = (P1s)
2 (1 + χ), χ =

E
A ∈ [0, 1].

For optimal overlap at q1 = q2 we get A = E and a visibility χ = 1. This is the case if
we measure the double-pair generation in the same spatial and temporal mode as stated
above. This equality directly corresponds to Eq. (3.17), where the degenerate case of a
single detection mode q1 = q2 needs the Poissonian prefactor with P2s =

1
2 G(2)

s (q, q).

3.2.2 Experimental Implementation

The experimental setup for generation of four-photon states is shown in Fig. 3.4. A Ti:Sa
femtosecond laser emits pulses at 791 nm with 6.5 nm FWHM bandwidth and approx.
200 fs pulse width, a repetition rate of 85 MHz and 700 mW average power. With lens L1
( f1 = 200 mm), it is focused to a beam waist radius of 50 µm in a first NLC. Via second-
harmonic generation (SHG) in this crystal of 1 mm length, pulses in UV at 395.5 nm are
generated. An average UV power of 35 mW is achieved. The 4-f lens configuration (L2
and L3, f = 50 mm) images these pulses into the second NLC. Filters (F) transmit UV only
and remove laser light at a suppression ratio better than 10−15. NLC2 is 2 mm long and
generates photon pairs in type-0 SPDC. The lens L4 ( f4 = 75 mm) produces this source’s
far-field distribution in plane ΣFF. This plane is imaged to the sensor plane Σ′FF with L5
( f5 = 150 mm) where a magnification m = 0.31 is realized. A narrow bandpass filter
(BP) transmits 1.2 nm FWHM at 795 nm. Its central frequency is tuneable by tilting of the
filter for transmission. It is adjusted to transmit both photons of a generated SPDC pair in
nearly frequency-degenerate emission at 791 nm.

Both NLCs are periodically poled KTiOPO4 (PPKTP) crystals with a poling period of
G ≈ 3.17 µm yielding phase-matching for collinear type-0 SPDC. The material’s properties
of optical non-linearity [60] and temperature dependent index of refraction [61, 62] are the
same as in Sec. 3.1.2. Each crystal is temperature stabilized to 0.1◦C.

The narrow-band filter BP enforces a low number of emitted temporal modes and al-
lows to observe photon bunching effects at good visibility, see Sec. 3.2.1. Assuming a
Fourier-limited pulse emitted by the laser with mentioned spectrum, numerically solving
the coupled-wave equation of the SHG process in the periodically poled crystal in plane-
wave approximation determines the electric field of the output pulse [54]. This yields a
UV pulse width of 1.5 ps FWHM at 0.3 nm FWHM bandwidth. As an input to the SPDC
process, a temporal mode number of M can be calculated using the procedure outlined
above. It yields M = 2.1–2.4, depending on SPDC phase-matching.
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FIGURE 3.4: Experimental setup for the 4-photon generation. A Ti:Sa femtosecond laser emits
pulses at 791 nm which is converted to 395.5 nm via second-harmonic generation in NLC1.
This UV pulses are imaged with the 4-f lens configuration (L2 and L3) into the second NLC2.
Filters (F) only transmit UV. SPDC in NLC2 generates photon pairs. The lens L4 produces the
SPDC far-field distribution in ΣFF. This plane is imaged onto the sensor with L5. A narrow
bandpass filter (BP) only transmits photons at the central frequency of 791 nm. Fiber-coupled

detectors on motorized stages allow to measure G(2) for source characterization.

3.2.3 Characterization

In order to characterize the light source depicted in Fig. 3.4, the source’s output plane ΣFF
is imaged with magnification m = 0.31 by a single lens (L5, f = 150 mm) to the detector
plane Σ′FF. A first- and second-order correlation function is measured in this plane: A beam
splitter cube separates photons to two different detectors. These are coupled to multi-
mode fibers of 105 µm diameter whose bare fiber tips are on motorized stages scanning
the detector plane in horizontal x direction. Detectors are single photon counters based on
silicon avalanche diodes (Perkin Elmer SPCM-AGR-14). Detection events are timestamped
with a time-to-digital converter (IDQ TDC id800) with 81 ps time resolution. The crystal
temperature of NLC1 is set to 47◦C. Collinear SPDC emission, assessed with a CCD camera
in the detector plane, is achieved for NLC2 at the temperature of 44◦C.

The real-time evaluation of this timestamp data is performed with a LabView program.
It allows to count coincidences, i.e. event pairs with a relative time difference in a window
of Tc = 2 ns which are assumed to originate from the same pulse. The thereby measured
coincidence event rate at detector positions ρ1, ρ2 ∈ Σd is given by the second-order corre-
lation function with

C0p(ρ1, ρ2) :=
∫

A1

d2ρ′1

∫
A2

d2ρ′2

∫ ∞

−∞
dt1

∫ t1+Tc/2

t1−Tc/2
dt2

1
2

G(2)(ρ′1, t1; ρ′2; t2)

with the fiber core aperture areas A1, A2 ⊂ Σd and the beam splitter ratio introducing a
reduction of the signal. In addition, the coincidences between two successive pulses are
measured. Given the pulse separation Tp = 12 ns, this rate can be expressed as

C1p(ρ1, ρ2) :=
∫

A1

d2ρ′1

∫
A2

d2ρ′2

∫ ∞

−∞
dt1

∫ t1+Tp+Tc/2

t1+Tp−Tc/2
dt2

1
2

G(2)(ρ′1, t1; ρ′2; t2).

Pump Power Dependence

The measured dependence of the coincidences signal on the pump power is shown Fig. 3.5.
The fibers are adjusted to collect collinear emission at q = 0 in the far-field plane Σ′FF.
Different spectral filtering settings are used in the following.

The bandpass filter BP is tuned for symmetric, frequency-degenerate emission around
791 nm. Therefore, a coincident event within a pulse C0p can be originating either from
two photons of the same or from different pairs. As the single pair generation dominates
at low pump power, its linear dependence on the pump intensity apparent in Eq. (3.6) is
reflected in C0p. This behavior is validated with the linear fit in in Fig. 3.5(a). Coincidences
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FIGURE 3.5: Measured coincidence rate for collinear emission of the four-photon source in
dependence on the average power of the pump pulse. The bandpass filter (BP) centered sym-
metrically around 791 nm (a) allows detection of both photons of a pair. Detuning it to approx.
793 nm in (b) only transmits signal photons. Coincidences of detection events within a pulse
C0p and between successive pulses C1p are shown. The excess C0p − C1p is due to photon

bunching. Purely linear and quadratic fits and Poisson 2σ errors are shown.

between successive pulses C1p are between independent pairs. Their probability is (P2)2

with the pair emission probability P2. The resulting quadratic dependence on pump power
is verified in Fig. 3.5(a).

By tuning the bandpass filter BP for asymmetric transmission at approx. 793 nm, only
one photon of a generated pair can be detected. Coincidences within a pulse C0p are
therefore originating from different pairs and is theoretically described by the double pair
generation probability P2s ∝ C0p in Eq. (3.18). As expected from this equation, the rate
scales quadratically with pump power and is confirmed with the fit in Fig. 3.5(b). Coin-
cidences between successive pulses C1p would be described by a generalized Eq. (3.18)
taking into account multiple pulses. Then, the lack of temporal mode overlap leads to
C1p ∝ P2s = (P1s)

2 and therefore models the independent emission of pairs.
The excess C0p − C1p is due the photon bunching and can be identified as the term

E in Eq. (3.18). By calculating χ = C0p/C1p − 1, a value of the bunching visibility χ =
0.18 ± 0.02 across all pump powers can be determined. This value is smaller than the
theoretical expectation of χ = 1/M ≈ 0.4 but can be explained by different sources of
uncorrelated light causing accidental detection events and a not thoroughly characterized
pump pulse leading to an inaccurate estimate of the temporal mode number.

Spatial Correlation

Fig. 3.6 shows the spatial correlation produced by the photon bunching effect by visualiz-
ing the excess C0p − C1p. Panel (a) and (c) uses a symmetric bandpass filter (BP) at 791 nm
where both photon of a pair are transmitted. The strong anti-diagonal is the expected two-
photon signal, see Sec. 3.1.2. Four-photon generation produces the faint diagonal correla-
tion, which is only visible in the used logarithmic scale. Panel (c) uses a NLC temperature
of 40◦C for slightly non-collinear emission.

For panel (b), the asymmetric setting of the BP filter at 793 nm only transmits signal
photons. The two-photon correlation is therefore suppressed, only photon bunching is
visible. The diagonal allows to calculate the bunching visibility χ = C0p/C1p − 1 in de-
pendence of x separation, see panel (d). Again, a peak visibility of χ = 0.18 is measured.
A Gaussian fit yields a FWHM of 0.26±0.03 mm, while the theoretical value with Eq. (3.18)
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FIGURE 3.6: Measured excess coincidence rates E = C0p − C1p at 25 mW pump power.
Collinear emission is present in (a) and (b), while slightly non-collinear in (c) is due to NLC
temperature change. The bandpass filter (BP) is centered at 791 nm in (a) and (c), while in (b)
it is set to 793 nm only showing the photon bunching signal. Note the logarithmic scale of (a)
and (d). Panel (d) shows the bunching visibility of the measurement in (b) and 1σ errors with

a Gaussian fit.



44 Chapter 3. Light Sources

and the experimental settings is given by 0.20 mm. This discrepancy is due to the detection
fiber diameter of 0.105 mm which does not allow to resolve correlation width.

The correlated signal verifies the generation of four-photon states according to the the-
oretical expectation.

3.3 Pseudo-Thermal Light

Thermal light can be generated by classical means like incandescent lamps. Therefore, the
problem of low detection rates of the above described weak sources is solved by its almost
arbitrary intensity. While it does not provide entangled photon states, it nevertheless ex-
hibits interesting spatial and temporal correlations which allow to test detector arrays for
high-order correlation measurement in Ch. 5. It is also applied for quantum imaging in
Sec. 6, where it allows to improve image resolution due its the well known statistics.

3.3.1 Theory

The statistics and coherence of thermal light is fully described by field correlation func-
tions. We assume in the following the measurement within the correlation time of the
thermal source and can therefore restrict to a time independent description. The quantum
state of thermal light is given by a density operator

$̂ = ∑
{nk}

P({nk})|{nk}〉〈{nk}|

with the summation over the photon numbers nk of all modes plane wave k. Their distri-
bution is given by the Bose-Einstein statistic

P({nk}) = ∏
k

〈nk〉
(1 + 〈nk〉)(1+nk)

= ∏
k

p(nk)

which factorizes into a product of separated mode distributions [66]. The density matrix is
fully diagonal and reflects the absence of any coherence or correlation between the modes.

Instead of the here used Fock basis, the density operator can be expressed in a coherent
state basis [69]. Then, the corresponding distributions p are Gaussian and P is in general
a multivariate normal distribution. Isserlis’ theorem for Gaussian moments, or Wick’s
theorem, states that a correlation function of any order can then be expressed in terms of
first-order correlations. With the first-order field correlation function

G(1)(ρ1, ρ2) = 〈Ê(−)(ρ1)Ê(+)(ρ2)〉 (3.19)

related to the before defined intensity correlation function by G(1)(ρ) = G(1)(ρ, ρ), the
second-order correlation function for thermal light reads

G(2)(ρ1, ρ2) = 〈Ê(−)(ρ1)Ê(−)(ρ2)Ê(+)(ρ1)Ê(+)(ρ2)〉
= 〈Ê(−)(ρ1)Ê(+)(ρ1)〉〈Ê(−)(ρ2)Ê(+)(ρ2)〉
+ 〈Ê(−)(ρ1)Ê(+)(ρ2)〉〈Ê(−)(ρ2)Ê(+)(ρ1)〉

= G(1)(ρ1) G(1)(ρ2) + |G(1)(ρ1, ρ2)|2. (3.20)

The second term

∆G(2)(ρ1, ρ2) := |G(1)(ρ1, ρ2)|2 = |〈Ê(−)(ρ1)Ê(+)(ρ2)〉|2 (3.21)



3.3. Pseudo-Thermal Light 45

can be interpreted as photon bunching leading to an increased two-photon probability in
comparison to coherent light where this contribution is absent. Higher-order G(N) can be
expressed in G(1)(ρ1, ρ2) accordingly [38, 70]. Their maximal bunching is given for

G(N)(ρ, . . . , ρ) = N! |G(1)(ρ, ρ)|N

leading to a normalized Nth-order correlation function g(N) = N!. An increase of N!
in coincidence signal is expected for thermal light in comparison to coherent light where
Poissonian statistics governs the photon numbers [38].

Thermal light propagated through a linear optical system exhibits again thermal statis-
tics [66]. Therefore, it is sufficient to calculate the propagated first-order coherence which
fully characterizes all other correlation orders. For this, the electric field operators in
Eq. (3.19) are transformed by the system’s impulse response function by applying Eq. (2.21).

Far-Field Correlations of a Ground Glass Disc

The correlation time of real thermal sources like incandescent lamps is very short. This
makes an experiment very difficult because a measurement apparatus needs to resolve this
time scale in order the see the spatial correlations described above. It is possible to prolong
correlation time by narrow-band filtering, but at the cost of a strongly reduced signal. A
more convenient approach is to use pseudo-thermal light which artificially generates light
with the same statistics.

The pseudo-thermal source is implemented in the following with a rotating ground
glass disk (GDD) [71, 72]. Its pattern of small feature size imprints random phases onto an
incident illumination beam. It can be shown, that the transmitted light’s correlation func-
tions obey thermal statistics [38]. Furthermore, the correlation time is freely adjustable:
With the rotation frequency of the disk ν, the radial position r of the illuminating beam,
and the beam size w we can determine the characteristic field correlation time

tc ≈
w

2πrν
.

The advantage of using the far-field of a GDD for the source output is that the field
correlation length, or speckle size, is independent of surface details (roughness, correlation
length) of the disc. Furthermore, in contrast to the disk’s near-field, where the rotations of
the disk produces correlation artifacts due to moving speckles, the far-field better agrees
to the theoretical model of truly thermal light. A single lens of focal length f can be used to
obtain a far-field plane, as described in Sec. 2.1.5. This lens has the further benefit, that the
light is not spherically diverging, as it is emanating from the GDD, but collimated. A laser
of wavelength λ and Gaussian beam radius w illuminates the GDD. If the disk’s features
size is sufficiently small, resulting in phase randomization with a correlation length much
smaller than w, the first-order correlation function in the far-field plane can be shown to
read

G(1)(ρ1, ρ2) = I0 e−(ρ1−ρ2)
2/2l2

c , lc =
f λ

πw
, (3.22)

with the average intensity I0 and correlation length lc. Therefore, lc is easily adjustable by
the beam radius w of the illumination. This coherence length corresponds to the size of
speckles which are visible in the instantaneous intensity distribution.

3.3.2 Experimental Implementation

Fig. 3.7 shows the experimental setup. A CW laser beam at λ = 405 nm is focused by lens
L1 onto the GDD. A Gaussian beam radius of w = 240 µm is incident at the radial position
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FIGURE 3.7: Source of pseudo-thermal light. The rotating ground glass disk (GDD) is illumi-
nated by a laser and produces a random speckle pattern. With lens L2, the far-field plane Σ1
of the disk is obtained. It constitutes the source output. For characterization of the light, this

plane is imaged with lens L3 to the SuperEllen detector array.

r = 20 mm of the disk. Lens L2 of focal length f2 = 75 mm establishes the far-field plane of
the disk in Σ1 which serves as output plane. The opaque GDD is mounted on a DC motor
where rotation speeds up to 4000 rpm (rotations per minute) are possible.

3.3.3 Characterization

For characterization of the light in output plane Σ1, it is imaged by lens L3 ( f = 150 mm)
into the detector plane. The detector SuperEllen is a 32×32 pixels time-resolving silicon
photon detector based on SPAD arrays. The pixel pitch (separation distance) is 44.67µm. It
is fully introduced in Sec. 5.2 where we demonstrate its capability to measure high-order
correlation functions using the theoretical results of Sec. 2.3. The sensor is applied here for
measurements, while technical details are avoided and postponed for discussion in Ch. 5.

The implemented pseudo-thermal light source using a CW laser constitutes a time-
stationary source. With the measurement data of the sensor, the results of Sec. 2.3.4 allow
to gain the intensity G(1)(p) and the second-order correlation function

G(2)(p1, p2, ∆t), ∆t := t1 − t2, (3.23)

at the pixel coordinates p = (x, y), x, y ∈ {1, . . . , 32}.

Temporal Correlation and Spatial Artifacts

An imaging magnification m = si/so = 1 from Σ1 to the detector is chosen for the follow-
ing measurements. The illumination beam radius is here changed to w = 150 µm. The
data of Eq. (3.23) provided by the detector acquisition allows to determine a correlation
function

G(2)(∆p, ∆t) := ∑
p

G(2)(p, p + ∆p, ∆t), ∆p := p1 − p2.

In order to assess the correlation time, single-pixel correlation ∆p = 0 is considered in
the following and enforces the measurement within the correlation length lc only. At a
disk rotation speed of 1000 rpm, Fig. 3.8(a) shows a width of the correlation peak of 50 µs
FWHM (theory tc ≈ 70 µs), while at the reduced value of 300 rpm in Fig. 3.8(b) a width
of 140 µs FWHM is measured (theory tc ≈ 240µs). In the latter case, a bunching visibility
of 1.74 can be determined while the theory predicts 2, see Eq. (3.20). This discrepancy
can be explained by regularities of the GDD leading to biased statistics, not considered
polarization effects [69], or background light increasing the uncorrelated signal at higher
∆t and thereby reducing the visibility.

With the above defined G(2)(∆p, ∆t), it is possible to analyze how distant pixel corre-
late in time. Subtracting the constant background, persisting at larger ∆t, allows to isolate
bunching term ∆G(2) of Eq. (3.20). Fig. 3.9 shows this for different horizontal and vertical
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FIGURE 3.8: Temporal second-order correlation function for pseudo-thermal light. A GDD
rotation speed of 1000 rpm is chosen in (a) and 300 rpm in (b). Only correlations within the

same pixel ∆p = 0 are considered, where ∆t = 0 is not available by the detector.
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FIGURE 3.9: Measured excess correlation function ∆G(2) for horizontally (a) and vertically
(b) separated pixels at different distances. A temporal shift of correlation with distance is

observed in (b) and corresponds to the movement of speckles.

separations. While for horizontal shift ∆x in panel (a) only the expected decrease in the
magnitude for larger separation is visible, vertical shifts in (b) show a moving correlation
peak. It was verified that the direction of this spatio-temporal correlation coincides with
the direction of the movement of the GDD relative to the optical axis. We observe there-
fore a moving speckle pattern. In a near-field arrangement, the same magnitude at all ∆y
would be expected, while in this far-field case it decreases fast with separation. While the-
ory does not show moving speckles in far-field, this might be due to imperfect alignment
of the far-field plane.

This observed spatio-temporal correlations can be avoided in measurements by appro-
priately selecting the coincidence window. If it is short enough at around 10-30 µs, these
unwanted contributions can be temporally suppressed as explicit in Fig. 3.9. A longer win-
dow effectively elongates the correlation width, analyzed in the following, in the direction
of speckle movement.
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Spatial Correlation

The spatial correlation are measured in a slightly different setup. A magnification of m =
1.96 is realized and the original source’s illumination beam radius w = 250 µm is present.
A GDD speed of 1000 rpm is set and a coincidence window Tc = 40 µs is chosen for the
evaluation of spatial correlation. Thereby, only events of ∆t ≤ Tc are considered. This
yields the temporally coincident, spatial correlation function

G(2)(p1, p2) :=
Tc

∑
∆t=0

G(2)(p1, p2, ∆t),

by using the raw measurement data of Eq. (3.23), see also Sec. 2.3.4 for a discussion on
coincidence and measurement data processing. This is identified as the theoretical second-
order correlation function of Eq. (3.20) measured within the correlation time. Therefore, it
is possible to subtract the accidental background, being the first term in this equation and
estimated by the measured intensities G(1), and get the excess correlation ∆G(2).

In order the assess the correlation length lc, the background corrected, averaged, rela-
tive correlation function

∆G(2)(∆p) := ∑
p

G(2)(p, p + ∆p)− G(1)(p)G(1)(p + ∆p)

is shown in Fig. 3.10. The x cross-section in panel (b) shows a fitted correlation length of
68 µm, corresponding to lc = 35 µm in the output plane Σ1, while the theoretical value is
38 µm by using Eq. (3.22). This discrepancy can be explained by possible imperfect far-
field alignment as discussed above, or the insufficient characterization of the profile of the
illumination beam.

Fig. 3.11(a) shows the measured intensity distribution. While high dark-count pixels
form a foreground pattern, the background shows a inhomogeneous illumination. This is
also verified in Fig. 3.11(b) with the coincidence signal of a pixel with itself

∆G(2)(p, p) := ∑
p

G(2)(p, p)− G(1)(p)G(1)(p).

This source inhomogeneity is given by regularities of the GDD. Further means of phase
randomization would be required in order to get rid of these artifacts. In the correlation
length measurements above, the procedure to get ∆G(2)(∆p) averages out these spatial
intensity variations.

Note that a third-order correlation measurement of the source is performed in Fig. 5.28
on page 99 where it verifies the detector and processing software. This data nicely agrees
to the theoretical model of the pseudo-thermal source. The inhomogeneity of the source
is there averaged out by only considering relative position and summing over all pixels
triplets.

3.4 Conclusion

In this chapter, three different light source were theoretically described, experimentally
implemented and characterized. The two-photon source shows the photons spatial cor-
relation and anti-correlation in near-field and far-field respectively. At a total power of a
few nanowatt, a photon flux of approx 109 ph/s is generated. In single photon detection
experiments like sensor test and imaging, this is sufficient.
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FIGURE 3.10: Measured spatial correlation of the pseudo-thermal source. A cross-section of
(a) is shown in (b) with a Gaussian fit yielding a correlation length of 68 µm in the detector

plane.
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FIGURE 3.11: Measurements of the pseudo-thermal source. The intensity distribution (a) and
the excess second-order correlation (b) of pixels with itself.
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The four-photon source generates a similar flux of pairs, but the rate of double-pair
generation is measured to be a few dozens to hundreds per second. For less optimal de-
tectors than used in this chapter, with low detection efficiency and more noise, this very
low flux will be difficult to measure. While stronger pump power would increase the four-
photon rate, damaging the crystals is already a problem at the current power. Scaling the
source to higher rates is difficult with the given means. In order generate not only weakly
correlated but truly entangled multi-photon states, higher-order non-linearity are to be
considered.

The thermal light source allows almost arbitrary intensities as it is not restricted by a
weak interaction process for generation. Furthermore, the thermal statistics is not changed
by low detection efficiencies and can be compensated by increasing the source intensity.
This will allow the use of non-optimal detectors and verification of data processing in
high-order correlation measurements in later chapters.

While the discussed light sources are used within this thesis in the following, they are,
together with their appropriate measurement system and software for real-time analysis
and post-process evaluation, ready to be used in possible future experiments.
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Chapter 4

Two-Photon Interferometry

This chapter investigates correlations in the spectral degrees of freedom of the SPDC two-
photon source introduced in Sec. 3.1. While the available detectors neither resolve the
spectrum nor the correlation time of the emitted photon pairs, an interferometer output
nevertheless shows distinct signatures of these correlation in appropriate measurements.
The specific signal features arising in correlation measurements are utilized in an appli-
cation for interferometric length measurement. This experiment is implemented and ana-
lyzed for its accuracy.

The observed effect of two-photon interference shows oscillations periods correspond-
ing to half the photon’s wavelength, the de Broglie wavelength of the photon pair. This
effect is studied in theory and experiment. Thanks to these insights, a spatial multi-mode
case can be constructed in Ch. 7 allowing for super-resolved images.

4.1 Theory

The formal description of an interferometer in the quantum optical framework of Ch. 2 is
introduced in the following. A Michelson interferometer, shown in Fig. 4.1, is described
by its transfer function

HI(q) =
1
2
(HF(q, z) + HF(q, z + cτ))

with the free-space propagation HF from Eq. (2.9), the optical path length z from input
Σ1 to output Σ2 through the fixed arm, and the time delay τ introduced in the scanning
arm. The obvious interpretation is that the field at the output is resulting from a linear
superposition of the two possible paths.

In plane Σ2, a single-mode detection in a Gaussian mode G(q) := exp(−w2
0 |q|2/4)

with waist radius w0 at position z in front of Σ2 is realized. Then, the corresponding mode
field operator is

M̂(+)(ω) =
∫

d2q G(q) H∗F(q, z) HI(q) Ê(+)
1 (q, ω)

expressed in the propagated field operator E(+)
1 in Σ1. See also Eq. (4.7) of Sec. 4.3 for

discussion on SPDC fiber coupling. For a Gaussian of sufficiently large waist w0, we can
approximate

G(q) H∗F(q, z) HI(q) =
1
2

G(q) (1 + H∗F(q, z) HF(q, z + cτ)) ≈ 1
2

G(q)
(

1 + eiωτ
)

.

This is valid if the difference in path length cτ is much smaller then the Rayleigh length
zR = πw2

o/λ of the Gaussian beam [49]. If this is not the case, the Gouy phase introduces
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FIGURE 4.1: Michelson interferometer consisting of a beam splitter (BS) and two arms where
one introduces a relative time delay τ. Photon pairs are produced in the nonlinear crystal
(NLC) and detected in the Gaussian mode of a single mode fiber using a collimator (C). A
fiber beam splitter (FBS) connects two single photon counters (SPC) which allow to measure

second-order correlations G(2).

a correction to this approximation. Furthermore, reduced coupling efficiency becomes
relevant. In the following we assume cτ � zR and therefore

M̂(+)(ω) =
1
2

∫
d2q G(q)

(
1 + eiωτ

)
Ê(+)

1 (q, ω). (4.1)

4.1.1 Intensity Measurement

A SPDC state is generated in plane Σ1. With Eq. (4.1) and the monochromatic plane wave
pump approximation, see Sec. 3.1.1 and its fiber coupling in Sec. 4.3, the total single photon
detection rate in the detection mode measured by a wavelength insensitive detector

R(1)(τ) =
∫

dΩ G(1)
M (Ω) =

∫
dΩ S(Ω) + Re

{
eiωcτ

∫
dΩ S(Ω) eiΩτ

}
(4.2)

with the central emission frequency ωc and the spectral power density

S(Ω) =
∫

d2q |G(q)Λ(q, Ω)|2

where the two-photon wave function Λ(q, Ω) is used. Eq. (4.2) is equivalent to the result
of the output intensity with classical light of the given spectral power density. R(1)(τ) is
given by a oscillating function at frequency ωc which is modulated by the slowly vary-
ing envelope given by the Fourier transform of S(Ω). Therefore, the measurement of
R(1)(τ) allows to extract this envelope and, via an inverse Fourier transform, the spectral
power density coupled into the fiber. This is the Wiener–Khinchin theorem, applied on
the field auto-correlation realized by the interferometer and is used in Fourier-transform
spectroscopy.

4.1.2 Second-Order Correlation Measurement

If detectors neither resolves the wavelength spectrum nor are fast enough to resolve the
correlation time of the photon pairs, the only quantity which can be measured is the coin-
cidence rate given by

R(2) =
∫

dω1 dω2 G(2)(ω1, ω2)
!
=
∫

dt1 dt2 G(2)(t1, t2).
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This quantifies the overall two-photon probability at the output port.
For the case of the SPDC input state in plane wave approximation, see Sec. 3.1.1 and

its fiber coupling in Sec. 4.3, and the Michelson interferometer formalized in Eq. (4.1), the
coincidence rate of two wavelength insensitive detectors coupled to the detection mode
can be derived to read

R(2)(τ) =
∫

dΩ G(2)(Ω) =
1
4

∫
dΩ S2(Ω)

∣∣∣(1 + ei(ωc+Ω)τ)(1 + ei(ωc−Ω)τ)
∣∣∣2 (4.3)

with the two-photon spectral power density

S2(Ω) =

∣∣∣∣∫ d2q G(q) G(−q)Λ(q, Ω)

∣∣∣∣2 .

The coincidence rate R(2)(τ) can be separated into different contributions of interfer-
ence effects. By writing the factor∣∣∣(1 + ei(ωc+Ω)τ)(1 + ei(ωc−Ω)τ)

∣∣∣2 =
∣∣∣1 + ei(ωc−Ω)τ + ei(ωc+Ω)τ + e2iωcτ

∣∣∣2
= |A11 + A12 + A21 + A22|2

in terms of implicitly defined amplitudes Aij corresponding to the propagation paths
where one photon took arm i and the other arm j. Evaluating the squared modulus, we
arrive at

|A11|2 + |A12|2 + |A21|2 + |A22|2 + A11A∗22 + (A11 + A22)(A∗12 + A∗21) + A12A∗21 + c.c.

Interference occurs between two possibilities, described by their amplitudes, in which the
same final state can result. Then, total interference signal

R(2)(τ) = R(2)
0 + R(2)

HOM(τ) + R(2)
SPI(τ) + R(2)

TPI(τ)

is given by the contributions of

• Hong-Ou-Mandel interference: The terms A12 and A21 describe the splitting of the
photon pair into two arms. Both possibilities interfere in A12A∗21 with each other and
yield

R(2)
HOM(τ) = 2 Re {M(2τ)} , M(τ) =

1
4

∫
dΩ S2(Ω) eiΩτ.

This is a slowly varying signal without a fast carrier oscillation.

• Single-photon interference: The terms (A11 + A22)(A∗12 + A∗21) describe the interference
between the two possible path of one photon only, while the second photon has a
definite path without interference possibility. This is made clear with the example
A11A∗12 = |A1|2 A1A∗2 with the single photon amplitudes Ai. The total contribution
reads

R(2)
SPI(τ) = 8 Re

{
M(τ) eiωcτ

}
.

It is oscillating at ωc with a slowly varying envelope given by M(τ). Visibility van-
ishes for τ larger than the single-photon coherence time defined by the spectrum
S(Ω).
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• Two-photon interference: The term A11A∗22 corresponds to the propagation of both pho-
tons together in the same arm. Interference between both arms yield the

R(2)
TPI(τ) = 2 Re

{
M(0) e2iωcτ

}
.

This is a pure sinusoidal oscillation of frequency is 2ωc. Full visibility to large τ is
given, due to the long two-photon coherence time of the SPDC state inherited from
the pump field coherence time.

The single-photon and two-photon interference effects are experimentally investigated
in the following. In the context of the concrete application of low-coherence reflectometry,
the conventions in notation already established in literature are used and lead to slightly
adapted expressions.

4.2 Self-Calibrating Optical Low-Coherence Reflectometry using
Energy-Time Entangled Photons

Manuel Unternährer and André Stefanov

Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland

Optical coherence tomography (OCT) or, equivalently, optical low-coherence reflec-
tometry (OLCR) exploits coherence properties of light to measure a sample’s partial re-
flection layers with a resolution in axial direction. It is a standard tool in medicine and
biomedical applications [73]. Abbourady et al. showed in theory and experiment that the
transition from a classical broadband light source to a quantum light can be beneficial [74,
75]. The frequency correlated photon pairs emitted by SPDC source allows for the com-
pensation of the sample’s chromatic dispersion and thereby undisturbed axial resolution.
Their SPDC emission geometry was non-collinear, while it was later shown that the same
signal can be recovered in a collinear system [76].

Based on these results, we make use of the two-photon interference signal for precise
length measurement. Aiming not at applications with dispersive material but surfaces
separated by free-space, the proposed scheme allows the position measurement with in-
terferometric precision relative to a fixed laser wavelength due to the simultaneous short
and very long coherence times of SPDC light in first- and second-order correlation mea-
surements respectively.

4.2.1 Introduction

OLCR is capable of determining the positions of fully and partially reflective surfaces (e.g.
layered samples, fibers, mirrors). To do so, the sample is inserted in one arm of a Michelson
interferometer while the length of the other arm is scanned. Using a classical broadband
light source, the interferometer output only shows interference oscillations if the arms are
balanced within the short coherence time of the source. Therefore, the relative position
between different surfaces can be determined within an error given by the resolution and
linearity of the delay stage position feedback in the scanning arm.

We propose to replace the classical broadband light source by a photon pair source
with energy-time entangled photons. Its single photon spectrum is broadband, giving rise
to the same interferometer intensity output as for the classical source. The total energy of
the photon pair is narrow-band due to entanglement. Its two-photon interference, visi-
ble in coincident photon detections, has therefore a long coherence time and is visible all
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Laser

BS

PD

τ

samplez

FIGURE 4.2: Classical OLCR setup. The Michelson interferometer consists of a beamsplitter
(BS), a reference arm with delay τ and a sample arm with multiple reflective layers. A broad-
band laser serves as illumination. The reference arm is scanning τ and thereby measuring the

positions z of reflecting layers in a sample.

over the scanning range. The well-defined oscillation period allows to establish a position
scale independent of the delay stage position feedback. This self-calibrating feature per-
mits to measure distances between surfaces in terms of multiples of the wavelength of a
narrowband laser. Sub-wavelength precision can be achieved by proper signal processing
and assumptions about the chromatic dispersion properties of the surfaces and media. In
our experimental implementation, the measurement of a distance of 0.28 mm between two
mirrors is shown to be reproducible within 1.6 nm standard deviation. Furthermore, this
measurement method is verified to have a nearly perfect linearity over different magni-
tudes of distance ranges.

4.2.2 Classical Optical Low-Coherence Reflectometry

A standard OLCR setup is depicted in Fig. 4.2. A Michelson interferometer geometry is
used with a broadband light source for illumination. The sample object in one arm, con-
sisting of reflective surfaces, is measured by scanning the mirror position which introduces
a temporal delay τ in the reference arm. Measuring the intensity I(τ) at the interferometer
output with the photodiode PD allows to identify the positions of reflective surfaces, as
the following treatment will show.

A sample object to be measured by OLCR can be characterized by a transfer function
H(ω) which determines its reflection properties. In the case of n partially reflecting sur-
faces, neglecting multiple reflections, it reads

H(ω) =
n

∑
j=1

rj eiωτj (4.4)

with reflection amplitudes rj ∈ [0, 1] and introduced time delays τj. The surfaces are either
stacked but partially reflective, or fully reflective but cover only a part of the light beam
(detection mode). Assuming free-space propagation without optically dense or dispersive
media between surfaces, the temporal delays are related to the sample surface positions zj
by

τj =
2zj

c
with the speed of light c.

A broadband light source with central frequency ω0 is characterized by the spectral
power density S(Ω) which is defined in terms of the relative frequency Ω := ω−ω0. The
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power measured at the interferometer output is given by [74]

I(τ) = Γ0 + 2 Re
{

Γ(τ) e−iω0τ
}

depending on the time delay τ = 2d/c introduced in the reference arm of length d. Γ0 is a
constant self-interference term depending on the sample H(ω) and light source S(ω). The
cross-interference between sample- and reference-arm reads

Γ(τ) =
∫

dΩ H(ω0 + Ω)S(Ω)e−iΩτ.

With the assumptions made for Eq. (4.4) and surface separations larger than the coherence
time of the light source, we can rewrite

I(τ) = I0 +
n

∑
j=1

rj f (τ − τj) (4.5)

with the single surface interferometer response

f (τ) = 2 Re{s(τ) e−iω0τ}

where the envelope s(τ) is the inverse Fourier transform of S(Ω). The even function f (τ)
is therefore the source electric field temporal auto-correlation. It is peaking at τ = 0 and
has a width given by the coherence time of the source. A broad spectrum or low coherence
time yields therefore narrow interferometer oscillations centered around every surface po-
sition.

In order to reconstruct the surface positions zj from the measurement of I(τ), a digital
signal autocorrelation can be performed in a post-processing step with

A(∆τ) =
∫

dτ I(τ)I(τ + ∆τ) = A0 + ∑
i,j

rirj

∫
dτ f (τ) f (τ + ∆τ + τj − τi).

It shows very distinct peaks at every ∆τij := τi − τj due to the fact that f (τ) has a nar-
row envelope given by the coherence time and that it is oscillatory at a period of one
wavelength. The evaluation of the peaks of this auto-correlation determine the position
differences at sub-wavelength precision via zi − zj = ∆τij/2c. This method shows high
robustness against noise in the measurement of I(τ) because noise, which is uncorrelated
with the reference arm position d (e.g. constant background or shot noise), averages out
by performing the auto-correlation A(∆τ) as this involves all measurement points I(τ) for
every ∆τ.

In this measurement using a classical light source, a motorized delay stage with cali-
brated position d reading is essential. Length measurements are relying on its accuracy.

4.2.3 Quantum Optical Low-Coherence Reflectometry

In quantum optical low-coherence reflectometry (QOLCR), we show in the following how
a narrow-band laser wavelength can serve as length reference and thereby replaces the
delay stage’s calibration. Instead of the broadband laser, a type-0 spontaneous parametric
down-process (SPDC) two-photon pair source is used in the following. The joint quantum
state of the down-converted photon pair, generated with a narrow band laser at frequency
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ωp pumping SPDC, is given by

|Ψ〉 =
∫

dΩ Λ(Ω) |ω0 + Ω, ω0 −Ω〉

where Ω := ω−ω0 is the relative frequency with respect to the central emission frequency
ω0 = ωp/2 [74]. See also the full introduction of this light source in Sec. 3.1. Therefore,
pairs of photons are emitted frequency anti-correlated around ω0. The joint spectral am-
plitude Λ(Ω) can be assumed to be a normalized, even function and leads to the joint
spectral density S(Ω) = |Λ(Ω)|2. Both photons are emitted into the same polarization
mode and, due to collinear emission [76], into the same spatial mode which is selected
by the detection. These degrees of freedom are implicitly treated and not labeled in the
quantum state.

With this as the light source in the Michelson interferometer, an intensity measure-
ment I(τ) at the output port yields exactly the classical result of Eq. (4.5) with the down-
conversion spectrum S(Ω) used.

In a second-order correlation measurement, new features arise. As derived in [76], the
two-photon coincidence rate measured at the output port, using a beam splitter and two
detectors, is given by

M(τ) = M0 + 2 Re{M1(2τ)}+ 4 Re{M2(τ) e−iω0τ}+ 2 Re{M3 e−i2ω0τ} (4.6)

at a reference arm delay τ. The interference terms M1(2τ) and M2(τ), corresponding to
Hong-Ou-Mandel and single-photon interference, are slowly varying at the time scale of
the first-order coherence time corresponding to the width of the Fourier transform of the
spectrum S(Ω). The last term describes two-photon interference (TPI) and is sinusoidally
oscillating at double central frequency ω0 with a constant amplitude M3. This term is orig-
inating from the interference of amplitudes where both photons take either the reference
or the sample arm and is given by M3 =

∫
dΩ H(ω0 + Ω) H(ω0 −Ω) S(Ω) [76]. In the

case of reflecting surfaces with no dispersive media as assumed in Eq. (4.4) and the total
light source power S0, we arrive at

M3 = S0

n

∑
j=1

r2
j e−i2ω0τj

which is usually a non-zero constant. Only for very specific reflection coefficients rj and
separations τj it vanishes. In this equation, we made the simplifying assumption that the
reflecting surfaces are spaced by much more than the first-order coherence time or, equally,
the two-photon correlation time. This suppresses cross-interference terms between differ-
ent sample surfaces at two-photon level. In contrast to the first-order interference fringes
in I(τ) which are only visible close to a sample surface position, the TPI oscillations in
M(τ) are equally present all over the measurement range of τ due to the long two-photon
coherence time inherited from the pump laser.

Self-Calibration Signal Processing

In a interferometer scan, the real value τ at a measurement point is not known. An approx-
imate value τ′ is assumed to be provided by the measurement apparatus. For instance, it
can be measured by a coarse motor encoder of the reference arm mirror position d by
τ′ = 2d/c, or in a fixed motor speed setting by τ′ = 2vt/c with measurement time t and
velocity v.
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FIGURE 4.3: Quantum OLCR setup. SPDC light produced in a CW pumped non-linear crys-
tal (NLC) is inserted into a Michelson interferometer consisting of: Beamsplitter (BS), band-
pass filter transmitting SPDC at 810 nm (BPF), fiber beamsplitter (FBS), single photon counters
(SPC) and scanning reference arm with delay τ. The sample consists of two surfaces at posi-
tions z1 and z2, whose relative distance is interferometrically locked to the pump wavelength
using a control loop with photodiode (PD) feedback measuring pump laser light (dashed line).

In a QOLCR measurement, coincidences M(τ′) are being measured simultaneously
with I(τ′) while the reference arm is scanned over all the measurement range of τ′. As
obvious from Eq. (4.6), the TPI is well separated from the others in terms of oscillation
frequency. It can be extracted from M(τ′) in a post-processing step by applying a digital
high-pass filter. Its very well defined and narrow oscillation frequency 2ω0 = ωp inherited
from the SPDC pump laser serves as a position reference signal.

By knowing the exact value of ωp, the extracted signal TPI(τ′) = 2 Re{M3 ei ωpτ(τ′)} al-
lows with a fitting procedure (e.g. using peak finding and interpolation) to get the relation

τ′ = τ′(τ)

between the exact τ value and its coarse measurement τ′. From the measured classical
intensity signal I(τ′), a calibrated signal

Ic(τ) = I(τ′(τ))

is defined on the exact, calibrated scale τ. Applying the autocorrelation procedure shown
in section 4.2.2 on Ic(τ), measurements of the surface distances are independent of the
approximate length measurement but are directly linked to the known wavelength of the
pump laser.

4.2.4 Experimental Implementation

The QOLCR setup is shown if Fig. 4.3. A non-linear, periodically poled KTP crystal is used
in type-0, collinear SPDC. It is pump by a grating stabilized diode laser of 30 mW power
at λp = 405 nm with less than 2 MHz bandwidth and a collimated beam of 1 mm radius.
The laser wavelength is locked to an etalon cavity. A lock-in amplifier and integrating
control-loop regulates the laser cavity length on the maximum of an etalon interference
fringe. This establishes a long-time wavelength stability.

In the reference arm, a standard motorized delay stage (Thorlabs PT1-Z8) is used. A
retro-reflecting corner-cube mirror guarantees pointing stability during the scan in the
presence of mechanical stage imprecisions resulting in tilting, because a stable mode over-
lap between reference and sample arm is needed for constant interference visibility. The
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delay stage is driven at constant speed of 500 nm/s while the detectors measure continu-
ously.

The detection uses a single mode fiber with an adjustable collimator. The detection
mode is therefore nearly Gaussian and its waist of 0.2 mm radius is positioned at the crys-
tal center and aligned to the pump beam for maximal coincidence signal [33], see also
Sec. 4.3.1. The used reference arm scanning range of 0.3 mm introduces in the detection
mode a negligible Gouy phase corresponding to 0.12 nm position shift. A 50:50 fiber beam
splitter distributes the interferometer output to two fiber-coupled avalanche diode single
photon counting modules. An electric coincidence circuit with 10 ns coincidence window
is used to detect photon pairs. The counts are read at a rate of 100 Hz corresponding to a
resolution of 5 nm in delay arm position at the mentioned velocity.

The sample consists of two reflecting surfaces whose distance is to be measured. As
depicted in Fig. 4.3, the surfaces are mirrors behind the two output ports of a beamsplitter.
One mirror is fixed at distance z2, the other at z1 is on a nano-positioner with 30 µm range
and sub-nanometer accuracy (MCL Nano-OP30). Using the pump light incident into the
sample arm, the relative position between the mirrors z1 − z2 is interferometrically locked
to the pump wavelength. A control-loop measures the pump intensity at sample beam-
splitter output port with the photodiode PD and regulates the nano-positioner accord-
ingly. Different surface distances can be realized by changing the controller set-point.

4.2.5 Results

A continous OLCR scan of the reference arm length d is performed while measuring in-
tensity I(τ) and second-order coincidence M(τ), see Fig. 4.4. The two fringe envelopes
of I(τ) correspond to the surfaces of the sample while almost no interference is visible in
between. M(τ) shows single-photon interference fringes at the surface positions, a Hong-
Ou-Mandel feature centered between them, and the TPI signal which is recovered in all
regions by applying a digital band-pass filter, see also the magnified regions in Fig. 4.5.
In the lower left figure, distortions of the TPI are present in the single-photon interfer-
ence regions as the latter is not fully suppressed by the filter. In the upper right figure,
a unexpected regular oscillation in the intensity I(τ) is visible and can be explained by a
two-photon detection artifact, see Sec. 4.3.2.

The regular TPI is used for realizing the calibrated reference arm position d scale. The
correction of this calibrated scale to the motor stage encoder are shown in Fig. 4.6. The
auto-correlation of I(τ) for identifying the surface distance z1 − z2 is given in Fig. 4.7. A
parabolic fit of the envelope helps to identify the central peak uniquely which allows to
determine the distance z1 − z2 = ∆d = 0.280228 mm.

In order to quantify the measurement precision, 70 successive measurements are per-
formed for a fixed sample. The measured average surface distance is z1− z2 = 0.284459 mm.
The distribution histogram of the measured values are shown in Fig. 4.8 which shows a
standard deviation of 1.6 nm. Four outliers at one wavelength shift, due to misidentifica-
tion of the auto-correlation peak, are ignored.

By changing the sample surface distance with variation of the position z1 using the
nano-positioner, the linearity of the measurement method is studied. Fig. 4.9 shows the
stepwise increase of z1. Single measurements are performed and the above determined
standard deviation used to indicated measurement error. With step sizes of 5 nm, 202.5 nm
and 2025 nm, we observe very good linearity over the full range with deviations of less
than 7 nm from ideal values indicated by lines of unit slope. The 5 nm steps are realized
by changing the set-point of the sample control loop according to the theoretical response
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FIGURE 4.4: OLCR scan with intensity (top) and second-order coincidence (bottom) measure-
ments. In the intensity signal, the two sample surfaces produce interference fringes only for
reference arm positions d in their vicinity. The coincidence signal M(τ) and the extracted

two-photon interference TPI(τ) are shown. The position scale d is calibrated using TPI.

FIGURE 4.5: OLCR scan with intensity (top) and second-order coincidence (bottom) measure-
ments. Two magnified regions of Fig. 4.4. Also in the presence intensity fringes and single-
photon interference in the signal M(τ) (left), a TPI signal can be extracted by band-pass fil-
tering. In the absence of intensity fringes (right), TPI is still visible. The position scale d is

calibrated using TPI.
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FIGURE 4.6: Correction of the motor stage position encoder d′ to the TPI calibrated position d.

FIGURE 4.7: Auto-correlation of measured I(τ) from Fig. 4.4. A parabolic fit (dashed) serves
for identification of the central peak (circle) at ∆d = 0.280228 mm.

FIGURE 4.8: Distribution of the deviation ∆(z1 − z2) of the measured sample surface distance
from the average value z1 − z2 = 0.284459 mm. 70 independent measurements are performed

on the same sample. Ignoring 4 outliers at 405 nm shift, the standard deviation is 1.6 nm.
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FIGURE 4.9: Linearity analysis of the QOLCR method. The distance z1 − z2 is measured for
different sample settings (top row), where z1 is varied in steps of 5 nm steps (left), 202.5 nm
(middle) and 2025 nm (right). The expected linearity of unit slope is shown (lines). Sample
averages and 2σ sample errors are shown. Bottom row: Corresponding deviations of the

average measurements from the expected values.

of the interferometric feedback signal. The two larger steps are multiples of the oscilla-
tion period λp/2 and use the same, constant controller set-point after the nano-positioner
performed this step.

4.2.6 Conclusion

The QOLCR experiment shows very high precision for length measurement. Despite the
wavelength of 810 nm and only one measurement per 5 nm, a measurement precision of
1.6 nm was demonstrated. This can be understood in terms of the implicit averaging hap-
pening in the auto-correlation procedure for finding the distances. Even better results are
expected for faster measurement acquisition. The imperfections of the delay stage were
successfully detected and compensated by the interferometric signal present in second-
order correlation measurement.

The proposed scheme is potentially very robust against background light: The two-
photon interference signal is temporally strongly correlated. A uncorrelated background
can be removed by estimating it with coincidence measurement of events with a time
difference. In a implementation using classical light sources, temporal correlations are
only achieved with more technical effort. Furthermore, the reference oscillation and the
classical OLCR signal are well separable by the measurement and transmitted in the same
spectral bandwidth and spatial mode. This allows to reduce background with appropriate
spectral band filtering. In a classical scheme where an additional narrow-band laser would
provide the reference oscillation, this signal would have to be spectrally separated from
the broadband light for proper discrimination by detection and thereby more complex
spectral filtering and distribution to detectors needed.
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The investigation of linearity in Fig. 4.9 can also be seen from a different, more funda-
mental perspective: As the sample distance is locked to the pump wavelength, the varia-
tion of the sample length is measured in multiples of this wavelength. The good linearity
of the TPI based length measurement indirectly validates the theoretical model of SPDC
where the two-photon phase evolves identically to the pump laser field in free-space prop-
agation. In the scans of Fig. 4.9, this is validated to a relative precision of approx. 10−4.

The coincidence signal of Eq. (4.6) is only depending on the spectral density S(Ω) =
|Λ(Ω)|2 but not any phases of the two-photon wave function Λ. This implies that no
entanglement can be relevant: It would be destroyed by phase randomization while the
coincidence signal stays the same. A source of classically frequency anti-correlated photon
pairs would be sufficient in this experiment. Using two polarization modes of classical co-
herent light with random but anti-correlated frequencies and one detector per polarization
would again yield the same intensity and correlation signal. For other schemes proposed
in literature for quantum coherence tomography [74–76], this replacements by classical
sources is possible as well. Only if strong temporal correlation is required, e.g. for back-
ground suppression in ultra-fast coincidence detection, and at the same time a very well
defined summed frequency for an accurate length reference, entanglement can surpass
classical limits.

In conclusion, the proposed scheme for interferometric length measurement showed
advantages by using quantum light. For real applications, however, these would not com-
pensate the drawback of low photon flux of currently available sources. Nevertheless, the
technique might provide a solution for measurements in very specific environments of
high background noise and at the same time very high requirements on interferometric
precision.

4.3 Appendix

For SPDC two-photon source in a bulk crystal introduced in Sec. 3.1, single-mode coupling
is studied for the optimized experimental implementation of a two-photon interferometer.
Expressions of higher-order correlations functions are derived. Furthermore, detector sig-
nal artifacts due to multi-photon states are explained. Group delay dispersion calculation
is derived App. C but shows no relevance for the here presented experiment.

4.3.1 Single-Mode Coupling

Coupling of light to a single-mode fiber is classically described by an overlap integral [49].
In a quantum field formalism and a plane wave mode basis, it has its analogue in fiber
mode field operator

M̂(+)(ω) :=
∫

d2q E(−)
M (q, ω) Ê(+)(q, ω) (4.7)

with the field operator Ê(+) of Sec. 2.2 and the negative frequency part of the classical
electrical field distribution E(−)

M of the fiber mode [66]. Both are defined in a detection
plane Σd. Restricting to photon counting as done in Eq. (2.18), M̂(+) can be interpreted as
annihilation operator of a photon in the fiber mode. The creation operator M̂(−) is defined
similarly.

A good approximation of a fiber mode is the Gaussian beam [49]. It is fully character-
ized by its beam waist radius w0 and waist position z0. The electric field distribution in a
plane Σd at position z is given by

E(+)
M (q, ω) = G(q) HF(q, z− z0) (4.8)



64 Chapter 4. Two-Photon Interferometry

with the Gaussian beam G(q) := exp(−w2
0 |q|2/4) and the free-space transfer function

HF from Eq. (2.9). We approximated the fiber mode to be independent of the wavelength
which is valid for a small spectral bandwidth.

For a free propagation, we can conclude that a detection fiber in plane Σd at position z
leads to the corresponding measurement operator

M̂(+)(ω) =
∫

d2q G(q) H∗F(q, z− z0) HF(q, z) Ê(+)
0 (q, ω)

=
∫

d2q G(q) H∗F(q,−z0) Ê(+)
0 (q, ω) (4.9)

where the electric field operator Ê(+)
d = HF(q, z) Ê(+)

0 in Σd is expressed as a propagated

Ê(+)
0 from plane at z = 0. The equation shows that the detection mode of the fiber can

be propagated backwards to the source at z = 0. The overlap integral with the local
field distribution of source and detection mode is invariant in the selection of the plane.
A consequence is also that it is sufficient to the characterize the detection mode in any
plane. Fiber collimators or other optics do not have to be taken into account if a backwards
propagated detection mode beam is experimentally characterized in front of such optics.

Correlation Functions

The field intensity in the fiber mode is given by the first-order correlation function

G(1)
M (ω) = 〈M̂(−)(ω) M̂(+)(ω)〉.

A second-order correlation function is accordingly

G(2)
M (ω1, ω2) = 〈M̂(−)(ω1) M̂(−)(ω2) M̂(+)(ω1) M̂(+)(ω2)〉.

For the SPDC two photon state of Eq. (3.5), this reads

G(1)
M (ω) =

∫
d2qs dωs

∣∣∣∣2 ∫ d2qi E(−)
M (qi, ω)Λ(qi, ω, qs, ωs)

∣∣∣∣2
and

G(2)
M (ω1, ω2) =

∣∣∣∣2 ∫ d2qs d2qi E(−)
M (qi, ω1) E(−)

M (qs, ω2)Λ(qi, ω1, qs, ω2)

∣∣∣∣2 .

SPDC Two-Photon Coupling

For the case of a SPDC two-photon state given in Eq. (3.5)

|Ψ〉 =
∫

d2qi dωi d2qs dωs Λ(qi, ωi, qs, ωs) a†(qi, ωi) a†(qs, ωs) |0〉 ,

the measurement of one photon in the fiber mode projects the second photon into the state

M̂(+)(ω) |Ψ〉 =
∫

d2qs dωs

(
2
∫

d2qi E(−)
M (qi, ω)Λ(qi, ω, qs, ωs)

)
a†(qs, ωs) |0〉 .

For SPDC in monochromatic plane wave pump approximation we have

|Ψ〉 =
∫

d2q dΩ Λ(q, Ω) a†(q, ωc + Ω) a†(−q, ωc −Ω) |0〉 (4.10)



4.3. Appendix 65

(a) (b)

FIGURE 4.10: Double-Gaussian model for two-photon fiber coupling. (a): Two-photon cou-
pling efficiency in dependence of the detection waist w0 relative to correlation length lc. Dif-
ferent pump waists wp/lc = 1, 5, 10, 20, 50 in decreasing order of efficiency, are used. (b): The
ratio of single to coincidence counts in dependence of w0/lc. The same pump waists are used

again.

with the relative frequency Ω := ω − ωc and central emission ωc as shown in Sec. 3.1.1.
For this state,

M̂(+)(Ω) |Ψ〉 = 2
∫

d2q E(−)
M (q, Ω)Λ(q, Ω) a†(−q,−Ω) |0〉 .

For a wave function Λ(q, Ω) which is nearly constant over the q acceptance of detection
mode E(+)

M (q, Ω), the single photon state reduces to

M̂(+)(Ω) |Ψ〉 = 2Λ(q, Ω)
∫

d2q E(−)
M (q, Ω) a†(−q,−Ω) |0〉 .

Therefore, the photon is projected into the complex conjugated and 180◦ rotated detection
mode. This corresponds in the interpretation of the Klyshko advanced-wave picture to
a mirror-like reflection of the two emitted photon modes from the flat plane wave pump
[77].

In order the couple this second photon into the same mode, the two-photon detection
probability

G(2)
M (Ω,−Ω) = ‖M̂(+)(−Ω) M̂(+)(Ω) |Ψ〉 ‖2 =

∣∣∣∣2Λ(q, Ω)
∫

d2q E(−)
M (−q,−Ω) E(−)

M (q, Ω)

∣∣∣∣2
is to be maximized. For Gaussian beam given above, this integral is maximal for a van-
ishing free propagation term and therefore the Gaussian beam waist position z0 = 0 at the
central plane of the crystal. Furthermore, the detection mode needs to be well aligned to
the optical axis along q = 0 defined by the pump beam: The rotation property q → −q
reduces the overlap integral for non-symmetric E(−)

M .

Analytical SPDC Coupling Model

A more general analysis without the assumption of a plane wave pump is possible. For
Gaussian beam pumped SPDC in a narrow bandwidth around the central emission wave-
length, the spatial two-photon state can be well approximated by a double-Gaussian wave
function

Λ(qs, qi) = exp

(
−
(qs + qi)

2 w2
p

4
− (qs − qi)

2 l2
c

4

)
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with the pump beam waist radius wp and transverse correlation length lc of the photon
pairs [78]. The latter is mainly determined by the SPDC crystal length. For a Gaussian
detection mode of waist radius w0, single and coincidence count rates can be calculated
with the above defined correlation functions. Fig. 4.10(a) shows the two-photon coupling
efficiency which is fully characterized by the ratios w0/lc and wp/lc. Optimal efficiency is
gained for w0 = lc = wp, i.e. for vanishing spatial entanglement or, equivalently, single
spatial mode emission. In an concrete implementation with two detectors, the ratio of sin-
gle to coincidence events is of importance. While a strong coincidence signal is beneficial,
at the same time a low background of uncorrelated single events is desirable for low acci-
dental rate and thereby good statistics. Fig. 4.10(b) shows this ratio for the same parameter
range. The point of optimal two-photon coupling efficiency shows here strong sensitiv-
ity to w0. It has to be accurately set to the correlation length which is to be determined.
Choosing a larger pump beam waist allows for more robust ratio nearly independent of
the correlation length.

In conclusion, for an insensitive high singles to coincidences ratio, the pump beam
waist wp, correlation length lc and detection mode waist w0 should satisfy

lc < w0 < wp.

This motivates the use of collimated pump beams with large radii where the conclusions
from the discussion above with the plane wave pump assumption apply. A drawback
of large pump waists is the sensitivity of the coincidence rate on detection mode tilt, see
the rotation/mirror property of plane waves pumps discussed above. In contrast to the
narrow-band analysis done here, broad spectrum coupling of SPDC is investigated in [33]
where the optimization is not towards alignment sensitivity or singles to coincidences
ratios but the absolute coincidence rate and thereby arrive at different conclusions.

4.3.2 Two-Photon Artifact in Intensity Measurements

For single mode coupled detection, the intensity measurement is described by G(1) = 〈n̂〉
with the photon number operator n̂ = M(−) M(+), see also Sec. 2.2. For multiple pho-
ton simultaneously incident, an analog photodiode is able to generate the corresponding
proportional signal and is therefore accurately modeled by G(1). A single photon counter
(SPC) is blind to a second photon arriving within the detectors dead-time. SPDC photon
pairs with a correlation time around 100 fs are not resolved by such a device. The detector
therefore generates the same signal for an incident one- or two-photon state.

That means that the photon number operator n̂ does not correspond to the measure-
ment a SPC is performing. One can construct the operator

n̂′ :=
3
2

n̂− 1
2

n̂2

which satisfies for the photon number (Fock) states |n〉: n̂′ |0〉 = 0, n̂′ |1〉 = 1 |1〉 and
n̂′ |2〉 = 1 |2〉. Hence, this new operator’s eigenvalues correspond to the SPC output be-
havior for up to two-photon states.

We can conclude, that the detection rate of a SPC for maximally two-photon states is
given by R(1) = 〈n̂′〉. Therefore, the measurement shows a contribution n̂2 which would
otherwise only be measured in a second-order correlation measurement.
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Chapter 5

Test and Characterization of Detector
Arrays

Any quantum imaging scheme relies not only on the possibility to generate but also to
detect quantum states of light. The relevant features are expected in temporal and spatial
correlations of the photons. Therefore, it is of highest importance to be able to detect these
efficiently and adequately process the detector data. While different camera technologies
based on CCD or CMOS exist for the measurement of temporally correlated photons, their
bottleneck are the restriction to low photon fluxes and their low frame rates for data read
out. Furthermore, they are rather complex technical devices. Potential improvements in
measurement time, as well as the need for less expensive and simpler devices in possible
applications are the main driving forces for introduction of a new sensor technology in
quantum imaging.

Fondazione Bruno Kessler (FBK), a collaboration partner within the SuperTwin project,
is specialized in the development of single-photon sensitive detector pixel arrays with high
temporal resolution. In contrast to the above mentioned devices, every pixel provides the
temporal information for every detection event individually and allows for more general
temporal correlation measurements. Their very high frame rate surpass the mentioned
camera solution by several magnitudes. Manufactured in a integrated circuit in CMOS
technology, they become inexpensive in production of larger units. Two detector arrays,
SPADnet-I and the newly, specifically for quantum imaging experiments developed Su-
perEllen, are here presented, tested and characterized in an exemplary experiment using
different sources.

Key sensor characteristic for a quantum imaging experiments are the following: Pho-
ton detection efficiency is given by the used sensor technology’s detection probability and
the realized fill-factor, i.e. the percentage of light sensitive area which is reduced due to
the data processings electronics and clocks. The measurement duty-cycle, the percentage
of time during which the detector is able to measure, is limited by the amount of data than
can be transmitted to a computer. The dark count rate, false detection events are due to
thermal noise and imperfect pixels. And finally crosstalk, i.e. spurious events triggered by
the detection event of an adjacent detector pixel. These figures strongly influence the pos-
sible advantage over existing measurement solutions. They are discussed in the following
and determined for the sensors.

The theoretical results of Ch. 2 for correlation function measurements are implemented
for the two detectors. Spatial correlations are measured for the two-photon source, the
four-photon source, and the pseudo-thermal light introduced in Ch. 3. Due to these well
known sources, given by well established theoretical models and our prior measurements
using standard detectors, the acquired measurement results allow the characterization of
the detectors arrays in the following.
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5.1 SPADnet-I Sensor

This section consists of the publication [43] in Optics Express of 2016. It introduces the
SPADnet-I detector array, formerly developed for medical applications by FBK, and shows
its ability to measure a spatial second-order correlation function of temporally correlated
photon pairs. Experiences and results of this work went into the specification for the
development of the next generation sensor SuperEllen which is specifically designed for
quantum imaging experiments.

Coincidence detection of spatially correlated photon pairs with a
monolithic time-resolving detector array

Manuel Unternährer,1 Bänz Bessire,1

Leonardo Gasparini,2 David Stoppa,2 and André Stefanov1

1 Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland
2 Fondazione Bruno Kessler FBK, 38122 Trento, Italy

Abstract. We demonstrate coincidence measurements of spatially entangled photons by
means of a multi-pixel based detection array. The sensor, originally developed for positron
emission tomography applications, is a fully digital 8×16 silicon photomultiplier array al-
lowing not only photon counting but also per-pixel time stamping of the arrived photons
with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property
exceeds the capabilities of conventional charge-coupled device cameras which have be-
come of growing interest for the detection of transversely correlated photon pairs. The sen-
sor is used to measure a second-order correlation function for various non-collinear con-
figurations of entangled photons generated by spontaneous parametric down-conversion.
The experimental results are compared to theory.

5.1.1 Introduction

The non-linear interaction of spontaneous parametric down-conversion (SPDC) has be-
come a pervasive process to obtain spatially entangled two-photon states used in experi-
ments addressing fundamental properties of quantum mechanics as well as practical ap-
plications [79]. Double-slit induced interference patterns using transversely entangled
photons were studied in [80–83]. Continuous variable entanglement in the spatial de-
grees of freedom of the photon pairs was demonstrated in [28, 29, 84, 85] and transverse
entanglement in ghost imaging has been shown to create a spatially resolved image of an
object carried by a photon which did not interact with the object itself [86–89]. Finally,
due to their inherent high-dimensionality, the transverse degrees of photons are also a
primary resource to perform quantum information tasks. Entangled d-dimensional qu-
dit states were implemented using transverse spatial correlations [90], in a discrete set
of orbital angular momentum modes in [91–95] or in the intensity profile of Hermite- or
Laguerre-Gauss modes [96–98]. Transverse correlation based protocols for quantum key
distribution and teleportation were realized in [99] and proposed in [100].

By doing so, the detection of transverse photon correlations has been subjected to
change in the last few years. Past experiments resolved these correlations by scanning
apertures in front of single photon detectors while measuring a position dependent corre-
lation function. Such detection schemes were deployed from the very first experiment in-
vestigating the spatio-temporal properties of SPDC photons [101], to the concept of ghost
imaging [102] and to the early detection of Einstein-Podolsky-Rosen (EPR) correlations in
the transverse position and momentum of the entangled photons [15].
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However, to overcome the time consuming scanning process, parallel detection by
multi-pixel arrays has become the preferred method to record coincidences of spatially en-
tangled photons. Thereby, as conventional charge-coupled device cameras (CCDs) cannot
work in the photon-counting regime, mainly due to readout-noise, and are not capable of
sub-nanosecond time resolution, optical and electrical amplification schemes are used. In
both of these systems, time resolution for coincidence detection is determined by the shut-
ter/gating time or pulsing of the light source. Electrical amplification is implemented by
electron-multiplying CCDs (EMCCDs) where an amplifier stage, using avalanche diodes,
enhances the collected photoelectrons before the output amplification and analog-to-digital
conversion. The accompanying drawbacks are the costly cooling needed and the large gat-
ing time window of the order of microseconds [27]. Because of the latter, low SPDC fluxes
were used to investigate spatial correlations [27], photon statistics [26] and EPR-type en-
tanglement [28, 29] by means of EMCCDs. Further, an absolute calibration of an EMCCD
was performed in [30] using spatially entangled photon states. The optical amplification
approach uses an image intensifier, consisting of a photocathode, a multi-channel plate
and a phosphor screen, in front of a CCD. By reversing the voltage on the photocathode,
intensifiers can be gated for sub-nanosecond time windows and therefore are not relying
on low fluxes or pulsed sources. Such intensified charge-coupled devices were used to
study spatial correlations in SPDC [103, 104], spatial entanglement [105, 106] and ghost
imaging [107, 108].

A different type of sensor array is used in [109]. This hybrid detector is a CMOS in-
tegrated circuit developed for electron detection in particle physics and is used in com-
bination with a photomultiplier. It exhibits a high spatial resolution given by 256× 256
pixels which stores the time of the first detection event in a frame with a resolution of
10 ns. Coincidence measurements with SPDC light allowed to determine its detection ef-
ficiency. Further, a monolithic array of single-photon avalanche diodes (SPADs) based
on CMOS technology is used in [110] to spatially resolve second-order intensity correla-
tions in order to measure temporal correlation functions of classical light. Recently, sev-
eral other SPAD-based CMOS sensors have been reported for time-resolved single-photon
applications such as: fluorescence lifetime imaging [111], time-resolved fluorescence spec-
troscopy [112] or 3D time-of-flight imaging [113, 114]. These SPAD-based sensors are good
potential candidates for coincidence detection of spatially correlated photon pairs, how-
ever, they suffer from very low fill factors [111, 113], time-coincidence detection capability
longer than 0.6 ns [111–113], acquisition frame rates below 160 kHz [111–114], limited spa-
tial resolution of the 2D pixel array arrangement [111, 112]. The state-of-the-art in terms
of spatial resolution for a SPAD-based sensor is represented by [115] that reports a QVGA
8-µm pixel pitch with 26.8% fill factor, however its time-resolving performance is in the
order of nanoseconds and not fully reported yet while the sensor frame rate is of 16 kfps.

In this work, we demonstrate coincidence detection of spatially correlated photon pairs
by means of the SPADnet-I sensor, a 8×16 pixel single photon detector based on CMOS-
technology [116]. SPADnet-I converts the SPAD signal from the analog to the digital do-
main at pixel level, thus avoiding spurious correlations due to inductive wire coupling.
The SPADnet-I pixels are individually equipped with time-to-digital converters (TDCs).
This allows for per-pixel timestamping of the detected photons with 265 ps resolution.
Furthermore, the detector frame rate of 500 kfps outperforms conventional CCD based
camera systems by at least three orders of magnitude and surpasses the frame rates of the
aforementioned SPAD-based CMOS sensors in [111–115]. The here presented fill factor
of 42.6% moreover exceeds the fill factors presented in [110, 111, 113, 115]. By means of
non-classical light states generated by continuous wave SPDC we demonstrate the ability
of the here presented sensor to measure a second-order correlation function for various
non-collinear propagation modes of the photons. Thereby, we compare the experimental
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FIGURE 5.1: Architecture of the SPADnet-I sensor. It includes an 8×16 array of pixels, each
including 720 SPADs, photon counters and TDCs. A tree of adders is distributed across the
array to calculate the number of triggering SPADs at 100 MHz. Additional logic units are
present at the periphery of the array for event discrimination and data readout. Operations

are synchronous with a global clock.

results to theoretical predictions.

5.1.2 SPADnet-I sensor

SPADnet-I is a fully digital silicon photonic device based on SPAD arrays implemented in
a 130 nm CMOS technology. It consists of an 8×16 array of pixels of 610.5×571.2 µm2 area,
for a total size of 9.85×5.45 mm2. Each pixel contains 720 SPADs of circular shape with a
diameter of 16.87µm, the electronics required to count photons and two 12-bit TDCs each
having a nominal time resolution of 65 ps. SPAD detection time jitter as well as electronic
jitter reduces the effective resolution to 265 ps. The SPADs can be individually enabled and
disabled due to a dedicated programmable 1-bit memory cell. This is typically done for
those exhibiting a high dark count rate (DCR), i.e. a high rate of avalanche events induced
by thermal generation or tunnelling rather than photon detection. A photon detection
efficiency (PDE) of 19% is achieved at the design wavelength of 450 nm, whereas at the
wavelength of 810 nm used in this work a PDE of 1.1% is reported [116].

The sensor is synchronous with a global clock signal that can be operated at up to
100 MHz. For every clock bin, each pixel generates a photon count (number of the SPADs
triggered in the current bin) and one photon timestamp of the first photon detected in the
bin. At the same rate, a distributed network of adders computes the number of photons
detected globally. Fig. 5.1 shows the architecture of the chip.

SPADnet-I has been specifically designed for gamma ray monitoring in positron emis-
sion tomography (PET) applications and includes additional logic for this purpose [116].
In a PET system, sensors are coupled to crystal scintillators that convert gamma photons
into bursts of visible photons. The capability of recording the photon arrival time with a
relatively high spatial resolution (with respect to analog silicon photo-multipliers), in con-
junction with a high fill factor (with respect to other CMOS SPAD arrays with per-pixel
time-stamping capabilities) of 42.6% makes SPADnet-I suitable for quantum optics appli-
cations. In this context, the sensor is read out using an external trigger at a fixed rate of
up to 250 kHz limited by readout time, see Fig. 5.2. Every data acquisition provides for
all pixels the timestamps of two consecutive clock bins. Therefore, 8×16 maps of photon
timestamps (hereinafter referred to as frames) are generated at up to 500 kfps. A timestamp
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FIGURE 5.2: Timing diagram of the SPADnet-I sensor operation with example data, adapted
to quantum optics experiments, looking for coincident photons (blue arrows in a). During
standard operation (clock bins #1-#3) each pixel generates photon counts (not shown) and
timestamps (c) at the clock rate, while the sensor streams out the number of photons globally
detected (b, light blue area). When the external trigger is provided (vertical red arrows) each
pixel retains the photon time-stamps (c, purple areas), the stream of global counts is inter-
rupted and data are read out of the chip (c, light blue area). Then the process starts over again.

The sensor is read out at the maximum frame rate limited by readout time.

is an integer TDC code which is thereby measured in TDC units of 65 ps. The measurement
or exposure time of one frame is given by the period of the global clock signal.

Crosstalk events are spurious, simultaneous detection events between pixels. Since the
digital signal handling at pixel level prevents electrical crosstalk, mainly photonic cross-
talk is expected: light emitted in a SPAD avalanche event leads to secondary detection
events in neighbouring pixels. The temporal and spatial correlation of these events will be
present in the following measurements.

5.1.3 Experiment

The experimental setup is depicted in Fig. 5.3. Spatially entangled photon pairs are created
by degenerated type-0 SPDC in a 12 mm long KTiOPO4 (PPKTP) non-linear crystal (NLC)
pumped by a quasi-monochromatic laser operating at λp,c = 405 nm with a power of
33 mW. The pump (p) beam is focused into the middle of the NLC with a beam waist of
wp = 0.25 mm. The residual pump beam is afterwards filtered out by a longpass filter and
a subsequent bandpass filter transmits photons at 810 nm with central frequency ωc =
ωp,c/2. The corresponding biphoton state can be derived by perturbation theory under
the assumption of a classical plane-wave pump field and a fixed central frequency ωc. The
first-order order correction to the vacuum state then reads

|Ψ〉 =
∫

d2q Λ(q,−q) |1q〉s |1−q〉i, (5.1)

where q = (qx, qy) denotes the transverse momentum of the signal (s) and idler (i) photon
[79]. The transverse joint momentum amplitude Λ(q,−q) governs the phase matching
condition of the SPDC process and is, for the approximations used to derive Eq. (5.1),
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FIGURE 5.3: Experimental setup. CW continuous wave pump laser at 405 nm, NLC non-linear
crystal movable in z-direction, L1 lens ( f1 = 40 mm), LF longpass filter to reject the residual
of the pump, BF bandpass filter (810 nm, 10 nm FWHM), L2 lens ( f2 = 300 mm), BS 50:50
plate beam splitter, M mirror (the distance between BS and M is 2 cm), OT optically opaque
tube to reduce the effect of stray light, SPADnet-I sensor. The telescope (L1, L2) provides
a magnification of m = 8 from the object plane (OP) to the imaging plane (IP). The inset
shows the arrangement of the two beams on the sensor surface. The magnified beamwaist is

w′SPDC ≈ 2 mm and covers about 3 pixels in radius.

explicitly given by

Λ(q,−q) ∝ sinc
{

1
2

[
∆kz(q,−q, ωc, T) +

2π

G

]
L
}

(5.2)

with the NLC length L and poling period G. The phase mismatch ∆kz(q,−q, ωc, T) =
ks(q, ωc, T) + ki(−q, ωc, T) − kp(0, 2ωc, T) includes the dispersion characteristics of the
NLC through its temperature dependent Sellmeier equation [117]. The minor additional
temperature dependence of Λ due to thermal length expansion of G and L is negligible in
our configuration. In the experiment, the crystal temperature is stabilized to ±0.01◦C and
allows to modify Eq. (5.2) for collinear and non-collinear emission. Additionally, the crys-
tal position can be varied in z-direction by means of a manually driven linear stage. We
experimentally determined a poling period of G = 3.511 µm in a separate measurement
with fibre coupled detectors where the dependence of the near-field coincidence rate on
the NLC temperature T was measured.

In order to better separate the effective coincidence signal from unwanted crosstalk be-
tween adjacent pixels we split the entangled photon beam into two beams which are then
arranged next to each other on the detector. Additionally, this allows to detect coincidence
events between photons which are spatially separated below the size of a single pixel.
To image the entangled photons from the object plane to the SPADnet-I sensor such that
the two adjacent beams cover a large area on the sensor without overlapping we choose
a telescope system using two lenses with focal lengths f1 = 40 mm and f2 = 300 mm.
The measured magnification factor is m = 8. The SPDC photon pairs are spatially dis-
tributed across the transverse pump profile and thus for their waist wSPDC it holds that
wSPDC ≈ wp. Given the magnification of the used telescope, this leads to a beam waist of
the entangled pairs of w′SPDC = mwSPDC ≈ 2 mm at the imaging plane which coincides
with the active surface of the sensor. Therefore, the magnified beam waist of the SPDC
photons covers about 3 pixels in radius in each half of the sensor (Fig. 5.3). The beam
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separation itself is performed by means of a 50:50 plate beam splitter and a mirror in front
of the imaging plane. The length difference of 2 cm of the reflected beam defocuses the
image only to a small extent and is unobservable in our measurements due to the limited
spatial resolution of the sensor given by the pixel size. Additionally, the active area of
the sensor is shielded with an optically opaque tube to reduce the detection of stray light.
The flux of entangled photons impinging on the detector is 2.1 nW which corresponds to
8.6× 109 ph/s. Finally, the sensor is connected to a PC via Ethernet and data gathering is
performed using LabView.

Coincidence events between distant pixels are described by a second-order correlation
function

G(2)(∆$∆$∆$, z) ∝
∣∣∣∣ ∫ d2q Λ(q,−q) Hs(q, z)Hi(−q, z) exp(−iq ∆$∆$∆$/m)

∣∣∣∣2, (5.3)

where ∆$∆$∆$ = $$$1 − $$$2 = (∆x, ∆y) denotes the distance between the transverse positions $$$1
and $$$2. Further, m is the magnification factor of the imaging system. The transfer function
Hj, j ∈ {s, i}, describes an additional free space propagation of the signal (idler) photon
along a distance z which is equivalent to move the crystal in −z direction (Fig. 5.3). The
corresponding transfer function in paraxial approximation is given by

Hj(q, z) = exp
[
−ikz +

iz
2k
|q|2

]
, (5.4)

where k = ωc/c. Note that by our specific choice of coordinates, z = 0 mm fixes the object
plane in the middle of the NLC.

5.1.4 Results

In the following measurements, the SPADnet-I clock signal is operated at 100 MHz leading
to a measurement time of 10 ns per frame. The frame readout rate is set to 330 kfps. This
corresponds to measurement duty cycle of 330 kHz×10 ns = 0.33%. If not stated other-
wise, the acquired data consists of 5.4 M frames corresponding to 1.3 GB raw binary data
which could be acquired in 16 seconds given the mentioned frame rate. At this data rate
(∼0.5 Gbit/s), the limited computational performance of the PC for the real time analy-
sis prolongs the measurement to 45 seconds due to dropped and thereby lost frame data.
The effective measurement time of 5.4 M frames, during which the sensor acquires time-
resolved detection events, is 5.4 M× 10 ns = 54 ms. To reduce the dark counts, 50% of
the highest DCR SPADs are disabled. Crosstalk between pixels is suppressed by further
turning off SPADs in the boundary region between two pixels, leaving a gap of ∼ 70 µm
between them. In total, a fraction of 36% of all SPADs are used in the subsequent measure-
ments.

Single photon detection

Figure 5.4(a) shows the spatially resolved total number of single photon detection events
at maximal SPDC power. The shown maximal photon detection number of the order of
105 per pixel leads to a maximum of 0.02 registered events per pixel and per frame. Tak-
ing into account all pixels we measure an average of 0.56 events per frame. Figure 5.4(b)
depicts a distribution of the number of detection events N per frame where it can be seen
that 55% of the frames contain no event. By taking into account all intervals with N ≥ 1
we obtain a total number of 3.07 M single photon detection events. Measuring the same
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FIGURE 5.4: Single photon counting events. Panel (a) depicts the sensor pixel array with the
number of detection events per pixel. A total of 3.07 M events are registered in 5.4 M frames.
The intensity of the left hand beam is slightly degraded due to the non-perfect 50:50 behaviour
of the beam splitter. Panel (b) shows the distribution of the total number of detection events

in a frame.

number of frames without any incident light, a total of 427 k dark count events are regis-
tered. They are homogeneously distributed across all pixels. Per frame, this translates to
an average of 0.08 events in total and a maximum of 0.0006 events per pixel. At the men-
tioned incident photon flux, the detection number corrected for dark counts, and effective
acquisition time, the photon detection efficiency (PDE) is 0.57%, or 1.6% if we correct for
the amount of disabled SPADs. This is slightly higher then the PDE of 1.1% at 810 nm
reported by [116]. The DCR of all pixels is 7.9 Mcps.

Coincidence detection

All intervals with N ≥ 2 in Fig. 5.4(b) are considered to evaluate coincidence events. A his-
togram of the time differences between all events within every frame is shown in Fig. 5.5.
A coincident detection of a photon pair is expected to appear at small time differences ∆t
due to a coherence time of the entangled photons of about 500 fs. The histogram reveals,
on top of a linear background of accidentals, a peaked signal with a FWHM of 6 TDC units
which corresponds to ∼390 ps. From pixel-to-pixel, the FWHM variation of the TDC unit
of 64.56 ps is ±1.90 ps. For the 10 ns frame interval, the largest TDC code is 155 and thus
the average time uncertainty of an event is 155/2× 1.90 ps≈ 150 ps. Together with the de-
tector timing jitter of 265 ps FWHM, this leads to the measured spread of a time difference
of (2 (265 ps)2 + 2 (150 ps)2)1/2 ≈ 430 ps FWHM.

The linear, triangular background originates from independent, i.e. uncorrelated, sources
which are dark counts and photons from different pairs. Their detection time is uniformly
distributed in the measurement window. The distribution of the time difference between
two of these uncorrelated events is therefore given by the convolution of two uniform
distributions, leading to the triangular shape. By linear fitting and extrapolation, the ac-
cidental events can be removed from the signal of real coincidences (Fig. 5.5, solid line).
The following results are obtained with a coincidence window ∆t = [−4, 4] of 9 TDC units
width and removed accidentals.

The accidental corrected signal in Fig. 5.5 contains not only photon pair coincidences
but crosstalk events between neighbouring pixels as well. To experimentally confine the
crosstalk and to demonstrate temporal resolution, we increase the optical path delay be-
tween the right and the left beam incident on the sensor from 20 mm to 300 mm. The
photon pair detection is therefore expected at ∆t = 15 TDC units. The effective temporal
resolution limited by jitter and TDC variations together with still a high amount of cross-
talk events at this ∆t leads to a masked coincidence signal (Fig. 5.6, blue line). Suppressing
crosstalk by only considering events of pixels in the left half with those on the right half of
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FIGURE 5.5: Histogram of the time difference ∆t between all events within every frame. Pho-
ton pair detections are expected at ∆t = 0 TDC units. The raw data (dashed line) shows a lin-
ear background of accidental events which are also present in a coincidence window around
∆t = 0 TDC units. These accidental events are removed by linear fitting and extrapolation

(solid line). 1 TDC unit ≈ 65 ps.
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FIGURE 5.6: Histogram of the time difference ∆t between all events within each frame. One
beam incident on the sensor is delayed by 300 mm and photon pair detections are expected at
∆t = 15 TDC units. Coincidences between all pixels are considered in the dashed line where
the crosstalk events at ∆t = 0 TDC units rise to 4× 104 events. In order to suppress these, only
coincidences between the left half with the right half of the sensor array are taken into account
in the solid line. Accidentals are removed in both graphs as shown in Fig. 5.5 and 54 M frames

are evaluated.

the sensor (Fig. 5.6, red), a peak at ∆t = 13 TDC units with 5 units FWHM is visible. The
path delay of 300 mm corresponding to 1 ns delay would lead to a TDC code difference of
15 units. A systematic difference of the TDC unit between pixels one the left half of the
sensor with pixels on the right half explains this discrepancy.

Spatial correlations

We now spatially resolve the coincidence events in relative distances between two pixels
using the difference coordinates (∆x, ∆y) in units of pixels (Fig. 5.7(a)). The experimen-
tal configuration is such that z = 0 mm, i.e. the object plane coincides with the middle of
the NLC, and the phase matching temperature is kept fix at T = 25◦C. For ∆x = 8 pix-
els, which corresponds to the horizontal distance between the two beams, a narrow pixel
correlation is observed. By means of the aforementioned values for z and T, the second-
order correlation function of Eq. (5.3) consistently shows a photon pair correlation width
smaller than one pixel (Fig. 5.7(b)). A total of 2,372 events are registered in this region.
This comes close to the theoretical value of 3,770 events which would be expected at the
above measured PDE, the beam splitter ratio and the given photon flux. The discrepancy
can be explained by losses in the optical setup which results in single photons without its
partner.
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FIGURE 5.7: Second-order correlation function G(2)(∆$∆$∆$, 0) of coincidence events in measure-
ment (a) and theory (b). The NLC temperature is 25◦C, a coincidence window of 9 TDC units

is used and accidentals are removed.

The region centered at ∆x = 0 pixels comprises the coincidence events within each
beam individually and includes a total of 11,176 events. The photon pair correlation width
of less than one pixel measured at ∆x = 8 pixels suggests, that photon pairs not separated
by the beam splitter will be incident on the same pixel and therefore rarely lead to co-
incidence events between adjacent pixels. Hence, the central region is expected to show
considerably less events, especially at a separation of ∆x ≥ 2. Therefore, most of the coin-
cidence events have to be attributed to crosstalk between neighbouring pixels. A measure-
ment with uncorrelated, classical light of similar power showed a comparable amount of
events in this region (7,880 counts) and supports this conclusion.

In order to suppress crosstalk events, the same procedure as in Section 5.1.4 is applied.
A path delay of 300 mm between the left and the right beam temporally separates crosstalk
and photon pair detection events. The second-order correlation function in Fig. 5.8(a)
shows strongly suppressed events around ∆x = 0 in comparison to the measurement in
Fig. 5.7(a). The path delay leads to a defocussing and thereby enlarges the correlation
function which results in a slightly broader correlation peak.

FIGURE 5.8: Second-order correlation function G(2)(∆$∆$∆$, 0) of events with ∆t = 13± 4 TDC
units in measurement (a) and theory (b). One beam is delayed by 300 mm. Due to temporal
separation of the coincidence signal and crosstalk, the latter expected around ∆x = 0 is sup-
pressed (Fig. 5.7(a)). The NLC temperature is 25◦C, accidentals are removed and 54 M frames

are evaluated.

The second-order correlation function shown in Fig. 5.7(b) has a width of approxi-
mately 0.3 mm at FWHM which is not resolvable by a pixel of 0.6 mm size. However,
according to Eq. (5.3), the correlation function starts to broaden while moving the cen-
tral plane of the NLC out of focus using the z degree of freedom shown in Fig. 5.3. In
addition, lowering the crystal temperature T allows to modify the SPDC phase matching
from collinear to non-collinear emission of photon pairs which has a similar effect on the
correlation function as changing the crystal’s z-position. By using 54 M frames for better
statistics (corresponding to 540 ms effective measurement time acquired in 165 s), Fig. 5.9
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and Fig. 5.10 show experimental results in comparison with Eq. (5.3) for different settings
of z and T. As above, crosstalk is minimized by considering only coincident events of the
left half with the right half of the sensor. In order to measure the correlation function in a
plane, no path difference is introduced between the left and the right beam to temporally
separate crosstalk as before. Because of that, crosstalk of the same magnitude is present in
all measurements in the region of small ∆x. Its relative strength increases the weaker the
signal density gets from the first to the third column.

5.1.5 Conclusions

In this work, we demonstrate a high signal-to-noise ratio measurement of the spatial
second-order correlation function of a high flux SPDC light source by means of a mono-
lithic, fully digital and high temporal resolution SPAD pixel-array. The data acquisition
time of the here presented measurements is below 3 minutes. Therefore, despite the low
measurement duty cycle of 0.33%, the simultaneous measurement on all pixels outweighs
conventional scanning experiments in terms of mechanical complexity and in measure-
ment time. This is even more the case for multi-photon experiments where higher photon
numbers are involved. With the given 128 pixels and second-order correlation measure-
ments, a time reduction factor of 1282 × 0.33% = 54 is realized compared to a single pixel
scanning experiment with optimal duty cycle.

At a PDE of 0.57% at 810 nm and a total DCR of 7.9 Mcps over all pixels, a high rate
of accidental coincidence events originating from single photons and dark count events
are expected. The photon arrival time resolution of 265 ps allows to realize a small coinci-
dence window which keeps accidentals at a minimum. The remaining accidentals can be
estimated very accurately and removed in a post-processing step.

The presented measurement of the second-order correlation function is currently only
possible by splitting the photon pair and imaging it onto two distant parts of the sensor.
Otherwise, pixel crosstalk would have superimposed and, to a large extent, masked the
signal. Since the digital signal handling prevents electrical crosstalk events, the observed
crosstalk, over distances of more than 100 µm, has to be mainly of photonic origin. Light
emitted in SPAD avalanche events is reflected back by the glass surface of the chip and
thereby leads to secondary detection events. Preliminary measurements with a sensor of
the same type having no glass surface on top support this hypothesis.

The sensor is currently not optimized for quantum imaging experiments, neither for
the used wavelength and, compared to the sensors presented in [111–115], shows a con-
siderably high DCR. Nevertheless, it showed the potential of a planned next generation
sensor where a higher pixel density, a higher PDE and a better measurement duty cycle is
desirable in order to further reduce the measurement time. The latter can be achieved by a
higher frame rate or, to avoid unfeasible high data rates, by a frame readout triggered by
multi-pixel events. To avoid the splitting into individual photon beams in future experi-
ments, particular efforts will be put onto the reduction of crosstalk. This will pave the way
for fast, higher photon number imaging experiments and applications.

5.1.6 Addendum to Publication

The here presented results demonstrate the advantages of the technology. Its parallel de-
tection, thanks to the pixel array, allows a considerable speedup in measurement time.
Furthermore, it opens the way for the measurement of higher-order spatially correlation
function in the following for a new detector. The temporal resolution does not resolve the
photon correlation time, but allows a minimal coincidence window and thereby a good
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FIGURE 5.9: Measurements (upper row) and theory (lower row) of the second-order corre-
lation function G(2)(∆$∆$∆$, z) for different crystal positions z = 0, 5, 10 mm and a fixed crystal
temperatures T = 23◦C. Pixel crosstalk is present at small ∆x and superimposes the light’s
coincidence signal. Every measurement consists of 54 M frames. A coincidence window of

9 TDC units is used and accidentals are removed.

FIGURE 5.10: Measurements (upper row) and theory (lower row) of the second-order correla-
tion function G(2)(∆$∆$∆$, z) for fixed crystal position z = 5 mm and different crystal temperatures
T = 25, 24, 23◦C. Pixel crosstalk is present at small ∆x and superimposes the light’s coinci-
dence signal. Every measurement consists of 54 M frames. A coincidence window of 9 TDC
units is used and accidentals are removed. Note that in the first two measurements, the beam

distance is slighty higher due to realignment.
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FIGURE 5.11: Histogram of the time difference ∆t between all events within a frame. In con-
trast to the figures shown in Sec. 5.1, the normalization of the raw sensor data by the sampling
space volume results in a flat background and a narrow correlation peak. Insufficient statistics

(low sampling space volume) at large ∆t explain the noisy regions.

rejection of uncorrelated background. Residual accidentals can be well estimated and re-
moved thanks to the access to the full temporal correlation distribution. This is a clear
advantage in comparison to gated detectors.

The theoretical results for the measurement and normalization of correlation func-
tions, developed in Sec. 2.3, were not yet acquired at the time of the preparation of this
manuscript. As seen in Fig. 5.11, the normalization of the raw detector data in Eq. (2.34)
with the sampling space volume of Eq. (2.35) removes the pyramidal shape. The latter is
an artifact of the finite observation window of a frame. Therefore we arrive at a proper
G(2)(∆t) measurement, where only detection efficiencies, temporal and spatial resolution
limit the observation.

As expected, a flat background with a peak around ∆t = 0 is given for G(2)(∆t). For
removal of accidental events, the above used and in Sec. 5.1.4 described method of linear
fitting becomes here a fit of the constant background. Accordingly, this allows to estimate
the number of uncorrelated events within the coincidence window.

5.2 SuperEllen Sensor

SuperEllen is a 32×32 pixels, time-resolving silicon photon detector based on SPAD arrays
implemented in a 150 nm CMOS technology [46], see Fig. 5.12. It was developed within
the SuperTwin project by FBK after the aforementioned experiments with SPADnet-I, as
an intermediate development step towards the finally envisioned detector array of larger
size of up to 256×256 pixels. The time resolving capability is implemented with several
technologies in different sections of the same chip for the purpose of evaluation. Hereafter
we will only use the sensor based on a time-to-digital converter.

This sensor has a pixels pitch of 44.67µm and a total sensitive area of 1.4×1.4 mm2.
Similarly to SPADnet-I in Sec. 5.1, it contains for every pixel a dedicated time-to-digital
converter (TDC) which timestamps the first detection event at 205 ps resolution within a
frame of exposure time of up to 50 ns. Using on-chip features for reading empty rows or
frames, an observation rate of 800 kHz is achieved leading to a measurement duty-cycle
of 3.6%. The photon detection efficiency (PDE) reaches 5% at 400 nm and 0.8% at 810 nm.
At room temperature, the median dark count rate per pixel is below 1 kHz over the whole
pixel population. Despite these type of devices exist since 2009 [118], their use in quantum
optics applications were limited by low fill-factor (1-5%). Only recently it was possible to
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FIGURE 5.12: SuperEllen Detector. The sensor board with the chip in its center (left) and a
micrograph of the chip zooming into a single pixel (right).

achieve 19.48% allowing higher detection efficiencies. The full technical publication [46]
of the sensor is shown in App. D.

Many device parameters are set in soft- and hardware, among them the SPAD bias
voltage. It is applied to each diode and influences the PDE and the dark count rate, as
investigated below. A TDC control voltage determines the TDC clock speed and thereby
the linearity of the timestamp code in comparison to actual time. The sensor is operated
at room temperature of 21◦C. SuperEllen acquires frames at a rate of 600 kfps and a frame
exposure time of 30 ns is used.

The hardware is equipped with a sensor controller and read out board based on a
FPGA. It is connected to a computer using USB 3.0 interface, where a driver implemented
in C allows the integration into LabView. This software is developed by FBK and provides
a continuous stream of the detected events and their timestamps. Events belonging to the
same frame can therefore be represented by a 32× 32 map of detection timestamps, here-
after referred to as frames. Therefore, the sensor provides the measured photon numbers

n(ρ, t) ∈ {0, 1}, with ρ ∈ {(x, y)|x, y ∈ {1, . . . 32}}, t ∈N,

at all pixel indices ρ and times t, measured in TDC units of 205 ps, within a frame. Sec. 2.3
describes how to generally process this data in order to arrive at the field intensity corre-
lation functions. For the given time-stationary source and the concrete detector character-
istic, Sec. 2.3.4 worked out the general results in this specific case. A LabView subroutine,
implementing the result of Eq. (2.34), allows for real-time calculation and visualization of
the second-order correlation function

G(2)(ρ1, ρ2, ∆t)

for pixel indices ρ and relative time differences ∆t := |t1 − t2|. Optimizing the LabView
acquisition for speed performance, real-time calculation and visualization of G(2) without
reducing the sensor frame rate is possible. This allows fast and convenient optimization of
the optical setup. Higher-order correlations are evaluated in a post-processing step using
the saved raw event data stream as discussed below.

In the following, SuperEllen is tested in real experimental situations. First, the exper-
iment with SPDC photon pairs already used in Sec. 5.1 is repeated for this detector. The
results allow to evaluate the temporal and spatial resolution, its detection efficiency and
to optimize electrical parameters. Furthermore, for approaching the SuperTwin goal of
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FIGURE 5.13: Experimental setup for the two-photon measurement with SuperEllen. A 30 mW
CW laser pumps a non-linear crystal (NLC), the pump beam is filtered using a longpass (LF),
the SPDC emission is spectrally limited with a bandpass filter (BF) centered at 810 nm and
10 nm FWHM transmission. The lens L1 of focal length fL1 = 45 mm is used for measuring

the far-field of the source.

measuring ultrafast higher-order correlations, a SPDC four-photon state is experimentally
generated and validated. The test results with SuperEllen will serve as source for the spec-
ification of the development of a next generation sensor.

5.2.1 Two-Photon Detection

The experimental setup used in the following is depicted in Fig. 5.13. The two-photon
source introduced in Sec. 3.1 is used: Spatially entangled photon pairs are created by
degenerated type-0 SPDC in a 5 mm long KTiOPO4 (PPKTP) non-linear crystal (NLC)
pumped by a quasi-monochromatic laser operating at λp = 405 nm with a power of
33 mW. The pump (p) beam is focused into the NLC with a beam radius of 0.25 mm. The
pump beam is afterwards filtered out by a longpass filer, a subsequent bandpass filter
with 10 nm FWHM transmits photons at 810 nm with central frequency ωc = ωp/2. The
generated biphoton state can be derived by perturbation theory under the simplified as-
sumption of a classical plane-wave pump field and a fixed central frequency ωc and is
given in Eq. (3.11). In this experiment we use an NLC of length L = 5 mm at a tempera-
ture T = 25.5◦C set for phase-matching the collinear, frequency-degenerate emission, see
also Sec. 3.1. A total power of 0.45 nW is emitted and incident on the sensor. Using a lens
of focal length fL1 = 45 mm and a lens to detector distance s = fL1 allows to measure
the far-field correlation of the SPDC source. As derived in Eq. (3.12), this is given by the
second-order correlation function

G(2)(ρ1, ρ2) ∝ δ(q1 + q2) |Λ(q1)|2 , qi =
k

fL1
ρi, i ∈ {1, 2}, (5.5)

with the wave vector k = ωc/c and the biphoton wave function Λ(q1,−q1) given in
Eq. (3.11). Perfect anti-correlation in position is given in plane-wave approximation, while
the circularly symmetric wave function limits the emission radius through the SPDC phase-
matching. The emitted and transmitted bandwidth trough the bandpass filter (BF) allows
a pair correlation time below 1 ps and cannot be resolved by the detector – perfect tem-
poral coincidence of the pairs can be assumed. This temporal degree of freedom can be
shown to factorize with the spatial correlations of the biphoton state for the given gen-
eration parameters and validates the simplification of monochromatic emission and the
treatment of the spatial degrees of freedom only, see also discussion in Sec. 3.1.1.

Eq. (5.5) exhibits only anti-correlated photon detection events, or equally a fixed cen-
troid position whose center is defined by the optical axis of the pump beam. Spatial corre-
lations in other regions of the G(2) space are not of photonic origin and can be considered
as detector artifacts, e.g. crosstalk. This allows for good discrimination between detected
signal and spurious detector events biasing the measurement data.
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The SuperEllen sensors uses in the following a TDC control voltage of 2.89 V which
determines the clock speed of the TDCs. While for an ideal TDC the generated time codes
increase linearly with the measured time interval, deviations can occur in real implemen-
tations. By using uncorrelated light, every forth TDC code appears in a measured occur-
rence histogram strongly underrepresented and therefore corresponds to a much shorter
time interval. This pattern can be explained by the TDC architecture, see also App. D. The
removal of every fourth code is applied in the following and results in a smooth, uniform
TDC code distribution representing equal time intervals. A SPAD bias voltage of 21.8 V (at
17.8 V threshold) is used if not otherwise mentioned.

Measurement

For this measurement, we acquire 26 million frames (MFrames). The intensity measure-
ment G(1) is shown in Fig. 5.14(a). Detection events are measured at a rate of Rtot =
0.64 events/frame. The circular biphoton beam is weakly visible under the pattern of pix-
els with high dark count rate. Neglecting the spatial information of detection events by
evaluating

G(2)(∆t) =
1
2 ∑

ρ1,ρ2

G(2)(ρ1, ρ2, ∆t), (5.6)

the temporal correlation is shown in Fig. 5.14(b). With the given observation windows of
30 ns and the maximal ∆t value, a TDC unit time step of 245 ps is determined. The raw data
(dotted line) is a histogram of event occurrences, while the normalized plot represents G(2)

in proper physical units without the detector artifact of a linear decreasing trend due to
the finite observation window, see Sec. 5.1.6 and Sec. 2.3. The background of accidentals A
can be estimated by averaging G(2)(∆t) over the region ∆t = 4 to 20 ns. Removing A from
the signal, only temporally correlated events survive (blue line). A correlation feature of
approx. 1 ns width can be observed.

A coincidence window of Tc = 1 ns corresponding to 4 TDC units is used for selection
of temporally correlated events only. With the estimated accidental rate A(ρ1, ρ2) for every
pixel pair, the accidental corrected spatial correlation function

G(2)(ρ1, ρ2) :=
Tc

∑
∆t=0

G(2)(ρ1, ρ2, ∆t)− A(ρ1, ρ2) (5.7)

and is depicted in Fig. 5.15. A linear pixel index p = 1, . . . , 1024 is used for visualization
of this otherwise 4-D object. Two features are prominent: Correlation between adjacent
pixels are shown on the diagonal and have to be attributed to pixel crosstalk, see below.
The anti-diagonal shows correlations between pixel pairs with fixed centroid position and
is therefore the expected photonic signal. Using a comparison with the theoretical variance
of the signal, the regular rectangular background pattern is shown to consist mainly of
statistical noise due to accidentals. The spatial correlation function G(2)(ρ1, ρ2) is used in
the following for further analysis.

Photonic Signal and Detection Efficiency

The biphoton light signal can be made more directly accessible by observing the distribu-
tion of the centroid position ρ+ := (ρ1 + ρ2)/2 of detected events. From the measurement,
we acquire this statistic by calculating

G(2)(ρ+) :=
1
2 ∑

ρ1,ρ2

[ρ1 + ρ2 = 2ρ+] G(2)(ρ1, ρ2)
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FIGURE 5.14: In the intensity measurement G(1)(ρ) (a), pixels with high dark count rate ap-
pear as noise on top of the faint, circular biphoton beam. The temporal second-order correla-
tion G(2)(∆t) (b) is accumulated over all pixels. The detection event counts are shown in raw

form, after removal of uncorrelated accidentals and with normalization.
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FIGURE 5.15: Full spatial correlation function G(2)(ρ1, ρ2) between every pixel pair corrected
for accidentals and in logarithmic scale. The 32× 32 = 1024 pixels are addressed by their linear
index p = 1, . . . , 1024. The diagonal and off-diagonal at 32 pixels displacement are correlations
of pixels with their horizontally and vertically adjacent neighbors. The anti-diagonal signal is
the expected biphoton correlation. Statistical noise from subtracted accidental events remains

as background.
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using the Iversion bracket notation for sampling: [x] = 1 if x is true, [x] = 0 otherwise. The
prefactor compensates for the fact that the interchange of the arguments in G(2)(ρ1, ρ2)
is physically indistinguishable and constitutes the same event, which would have been
counted twice in the summation. The result is shown in Fig. 5.16(a). A prominent, almost
only one pixel spanning centroid peak is visible. A total of

RSignal = 0.83× 10−3 Events/Frame

are registered with a centroid within a 3× 3 pixel region. By considering the anti-correlated
pairs G(2)(ρ,−ρ) where−ρ denotes the anti-correlated partner of ρ, pixels contributing to
the signal can be visualized in Fig. 5.16(b). This shows the extension of the Λ(ρ) function
of Eq. (5.5). For reference, Fig. 5.16(c) and (d) show a measurement at a detuned NLC
Temperature of 23◦C which exhibits non-collinear emission. Note, that these two-photon
distributions do not have to be visible in the intensity measurement. In this case, a poten-
tially present single-photon contribution, or background like dark counts as in Fig. 5.14(a),
could mask the two-photon term.

With the given incident power of photon pairs and assuming no other losses in the
optical setup, a photon flux of Φ = 1.8× 109 ph/s is given. In the 30 ns time of the exposure
of a frame, we expect therefore 54 photons or 27 pairs incident. As the biphoton detection
rate depends on the PDE η and flux Φ with RSignal = η2 Φ/2, using the mentioned total
number of detected pair events, the photon detection efficiency

η = 0.56 %.

This value comes close to the PDE of 0.8% measured with classical light in device charac-
terization experiments performed by FBK.

A comparison of the measurement histogram G(2)(ρ1, ρ2, ∆t) with and without acci-
dental subtraction yields the number of accidentals in the chosen coincidence window.
Here we measure

RAcc = 14.8× 10−3 Events/Frame

summed over all pixels pairs. The rather low detection efficiency allows to make the as-
sumption, that most of the detection events are uncorrelated without a partner. This allows
to infer RAcc from the singles count rate Rtot. Using TDC units of dt = 245 ps, the frame
exposure time is Tfrm · dt = 30 ns and we get

RAcc =
1
2

Tfrm

∑
t1=1

Tfrm

∑
t2=1

[|t1 − t2| ≤ Tc]

(
Rtot

Tfrm

)2

.

The prefactor can be either interpreted as originating from Poisson statistics, or equiva-
lently from the indistinguishability of events of interchanged time arguments similar as
discussed above. This yields a theoretical value of 14.7 × 10−3 events per frame closely
agreeing to the measured value.

Pixel Crosstalk

Crosstalk are undesirable, spurious detection events: A single detection event, triggered
by dark count or a photon, triggers a nearby pixel. This detector artifact is temporally cor-
related and can therefore not be removed with the method of accidental subtraction. Due
to the digital signal processing within a pixel, electrical crosstalk can be excluded. Optical
crosstalk must be present: The physical process of the charge avalanche in a triggering
SPAD is creating photons which in turn can be detected by other pixels via reflection from
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FIGURE 5.16: Second-order measurements with the SPDC biphoton source. (a) and (c): Cor-
relation in the centroid variable ρ+ = (ρ1 + ρ2)/2. The anti-correlation peak expected from
theory is measured. (b) and (d): Visualization of the pixels contributing to the anti-correlation

signal. The NLC temperature is detuned in (c) and (d) for non-collinear SPDC emission.
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FIGURE 5.17: (a): Correlation function in variable ∆ρ = (ρ1 − ρ2). The correlation peak is
due to crosstalk between adjacent pixels. Pixel self-correlation at ∆ρ = 0 cannot be measured.
(b): Visualization of the pixels contributing to the correlated signal. Events between directly

adjacent pixels are considered.
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the sensor surface glass, or even by short distance propagation in the chip. The amount of
crosstalk is analyzed in the following.

Similarly as the photonic signal, detector pixel crosstalk can be measured by consid-
ering the distribution G(2)(∆ρ) of the position difference coordinate ∆ρ = ρ1 − ρ2, see
Fig. 5.17(a). Because only the first pixel detection event in a frame is registered, no events
occur at ∆ρ = 0. The distribution shows clearly the nearest-neighbor crosstalk is most rel-
evant. Because detections at ∆ρ and −∆ρ are physically identical and not distinguishable,
the point symmetry of G(2)(∆ρ) arises. This means that a total of

RXtalk :=
1
2 ∑

∆ρ

[|∆ρ| ≤ 1] G(2)(∆ρ) = 1.42× 10−3 Events/Frame

crosstalk events are recorded within one pixel separation. With the total photon detection
rate of Rtot = 0.64 events/frame, this yields an average crosstalk probability of

pXtalk =
RXtalk

Rtot
= 0.22%

Every single detection event induces with this probability an immediate crosstalk event in
one of its neighbors.

With a similar approach as above, the pixels contributing to nearest-neighbor crosstalk
can be identified. For this, we calculate

G(2)(ρ, ρ± 1) := ∑
ρ2

[|ρ− ρ2| ≤ 1] G(2)(ρ, ρ2)

and is depicted in Fig. 5.17(b).

Time Resolution

In order to evaluate the performance of individual TDCs, the time correlation between si-
multaneously triggered pixels can be used. This is the case for anti-correlated pixel pairs
ρ and −ρ. Therefore, G(2)(ρ,−ρ, ∆t) should show temporal correlation which is indeed
present in the measurement of Fig. 5.18. In (a), the 30 pixel pairs of highest statistics are
selected and show a correlation feature of less than 0.5 ns. In the histogram (b), all anti-
correlated pairs are used and the width of the temporal correlation peak is evaluated by
calculating to distance from the first to the third quartile of the cumulative event distri-
bution in order to be robust against possibly shifted peaks. This can occur for a TDC pair
where one is running faster than the other. While equal time codes should be produced
for coincident photons in the ideal case, this unequal clocks will produce a correlation
maximum at non-zero time code difference ∆t.

SPAD Bias Voltage

Increasing the SPAD bias voltage allows to improve the PDE of the detector, but at the
same time increases the dark count rate. A higher PDE is also expected to increase cross-
talk probability, see the optical model discussed above. For best device performance and
signal to noise ratios, optimal value of this voltage should be set depending on the mea-
surement and light conditions.

Table 5.1 provides the PDE η, dark count rate RDC and crosstalk probabilities pXtalk at
different voltages. Using the determined PDE η, the known incident photon flux Φ and
the measured rate of photon detection events Rtot, a dark count rate RDC = Rtot − ηΦ can
be calculated. This value is provided at different bias voltages.
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FIGURE 5.18: (a): Temporal correlation of anti-correlated pixel pairs located at ρ and −ρ mea-
suring the biphoton signal, 30 high statistics pairs are shown. (b): Histogram of the width of

correlation peaks of all anti-correlated pixels pairs in TDC units of 245 ps.

SPAD Bias Voltage [V] 19.6 19.7 19.8 20.0 20.1 20.2 21.8
Rtot [Events/Frame] 0.31 0.32 0.33 0.36 0.37 0.38 0.56
RDC [Events/Frame] 0.22 0.22 0.23 0.26 0.26 0.27 0.41

RSignal [10−3 Events/Frame] 0.31 0.34 0.37 0.42 0.45 0.47 0.86
RAcc [10−3 Events/Frame] 3.48 3.70 3.94 4.69 4.95 5.23 11.35

RXtalk [10−3 Events/Frame] 0.19 0.23 0.25 0.33 0.35 0.40 1.30
PDE η [%] 0.34 0.36 0.37 0.39 0.41 0.42 0.56

pXtalk [%] 0.06 0.07 0.07 0.09 0.09 0.10 0.22
pXtalk/η [1] 0.18 0.20 0.20 0.23 0.23 0.25 0.41

TABLE 5.1: Measurement with SPDC biphoton light at different SPAD bias voltages. A 1 ns
coincidence window is used for second-order correlation. Only 98% of all pixels with low-
est dark count rate are considered. Shown quantities: The singles detection rate Rtot, dark
counts RDC, biphoton signal RSignal, accidentals RAcc, crosstalk RXtalk, PDE η, and crosstalk

probability pXtalk. The PDE and RDC are inferred quantities as calculated in the main text.
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FIGURE 5.19: Measurement of temporal correlation of crosstalk events (dots) and biphoton
signal (crosses) at different SPAD bias voltages (colors). In increasing order of signal strength,

the voltages are 19.6, 19.7, 19.8, 20.0, 20.1, 20.2, and 21.8 V.

The temporal correlation of crosstalk and the biphoton signal within the small peaking
region summed over all pixels pairs can be measured by evaluating

G(2)
Signal(∆t) := ∑

ρ1,ρ2

[|ρ1 + ρ2| ≤ 1] G(2)(ρ1, ρ2, ∆t), (5.8)

G(2)
Xtalk(∆t) := ∑

ρ1,ρ2

[|ρ1 − ρ2| ≤ 1] G(2)(ρ1, ρ2, ∆t). (5.9)

This results are shown in Fig. 5.19 for different bias voltages.

Discussion

The physical photon pair correlation time of less than 1 ps is broadened to approx. 1 ns
in the measurement. Despite the TDC resolution of 245 ps, this can be explained by the
following factors: (i) Electrical jitter of the signal from the SPAD to the TDC (in SPADnet-I
265 ps), and (ii) pixel-to-pixel deviation in TDC clock rate. The former is present twice in
G(2)(∆t) because two measurements are needed for the relative time. The latter introduces
an apparent shift in the time stamp between two pixels and broadens the correlation peak.
On the other hand, the analysis of individual pixel pairs showed a very good temporal
correlation in the order of two TDC units. This comes close to the optimal case and indi-
cates that a proper characterization and calibration of each TDC would decrease the width
of the correlation peak in Fig. 5.14(b).

A very homogeneous distribution of the pixels contributing in the photonic signal in
Fig. 5.16(b) verifies the uniformity of the pixels in detection efficiency and TDC clock speed
within the frame exposure time and used coincidence window. Furthermore, the cross-
talk sources in Fig. 5.17(b) show peaks for high dark count rate pixels in comparison to
Fig. 5.14(a), and is increased in the region of incident light. This is in agreement with the
assumption of a crosstalk probability per detection event triggered by light or dark counts.

The influence of the SPAD bias voltage is considerable, see Tab. 5.1. The PDE is almost
increased by a factor of two within 2 V increase but introduces a higher amount of cross-
talk. Dark counts RDC, PDE η and crosstalk probability pXtalk can be verified to grow in
good approximation linearly with the bias voltage change over the investigated range. By
observing the ratio pXtalk/η which also exhibits near linearity with the bias voltage change,
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the crosstalk probability increases disproportionately faster than the PDE. Using the op-
tical crosstalk model of emitted photons in a triggered SPAD avalanche described above,
the increase in its strength is not only due to better PDE and thereby higher sensitivity
to these photons. An increase of photons emitted in the avalanche process, linear in bias
voltage change, would explain the excess.

One source of statistical uncertainty in the measured data is the Poisson shot noise of
the signal depending on the PDE, but the main contribution comes from accidentals whose
shot noise is still present after accidental removal. These accidentals and their noise can be
decreased by setting a smaller coincidence window which would be possible with better
temporal resolution. The source of accidentals are temporally uncorrelated events which
are dark counts and single photons without detection of its partner. Reducing dark counts
or increasing PDE would improve signal to noise ratio.

A systematic bias in the measurement data is introduced with crosstalk. At a crosstalk
probability of similar magnitude as the PDE at high bias voltage (see Tab. 5.1), a crosstalk
signal as strong as the photonic signal is expected. Reducing the bias voltage can improve
this ratio by a factor of 5 at the cost of more accidental noise due to lower PDE. As seen in
Fig. 5.19, crosstalk shows a less pronounced temporal correlation than the photonic signal.
This might hint to the possibility of discriminating between these two if an even better
temporal resolution could be established. A different approach would be the characteri-
zation and modeling of the crosstalk between all pixels. This would allow for a removal
of the crosstalk signal.

In conclusion, the detector is suitable for measurements of biphoton correlation. At the
given photon detection efficiency of 0.56%, a measurement duty-cycle of 3.6% , a relatively
strong photon pair beam with a flux of 1.8 × 109 ph/s, and a well confined correlation
feature which nicely discriminates from crosstalk, a second-order correlation function with
similar statistics as presented here can be measured within a few minutes of measurement
time. Having the mentioned parameters fixed, photon correlations which are less confined
in the G(2)(ρ1, ρ2) space than here (c.f. Fig. 5.15) will have a lower signal density in this
space but a constant noise background due to accidentals. These will therefore need longer
acquisitions in order to achieve the same signal to noise ratio.

5.2.2 Four-Photon Detection

In order to demonstrate the sensor’s capability to measure higher-order correlation, the
light source generating four-photon states introduced in Sec. 3.2 is used in this experiment
in exactly the same configuration, but detection is performed by SuperEllen. This light
source was characterized with G(2) measurements of the generated four-photon state us-
ing scanning fiber detectors. Similarly to this, before a four-photon detection in a G(4)

measurement is considered, a G(2) showing correlations of two out of four photons should
be performed here. Identical results as for these source characterization experiments are
expected. A comparison of SuperEllen’s detection rates with this reference will then allow
to estimate possible four-photon detection rates and corresponding measurement times.

The experimental setup is shown in Fig. 5.20. We repeat the introduction of Sec. 3.2:
A Ti:Sa femtosecond laser emits pulses at 791 nm with 6.5 nm FWHM bandwidth, approx.
200 fs pulse width, a repetition rate of 85 MHz and 700 mW average power. With lens L1
( f1 = 200 mm), it is focused to a beam waist radius of 50 µm in a first NLC. Via second-
harmonic generation in this NLC1 of 1 mm length, pulses in UV at 395 nm are generated
with a pulse width of approx. 1 ps. An average UV power of 35 mW is achieved. The 4-f
configuration (L2 and L3, f = 50 mm) images these pulses into the second NLC. Filters (F)
transmit UV and remove laser light at a suppression ratio better than 10−15. The second
NLC2 of 2 mm length generates photon pairs in SPDC. Multiple generated pairs in the
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FIGURE 5.20: Experimental setup for the four-photon generation and measurement with Su-
perEllen detector. A Ti:Sa femtosecond laser emits pulses at 791 nm which is converted to
395 nm via second-harmonic generation in NLC1. This UV pulses are imaged with the 4-f lens
configuration (L2 and L3) into the second NLC2. Filters (F) only transmit UV. SPDC in NLC2
generates photon pairs. The lens L4 produces the SPDC far-field distribution in ΣFF. This plane
is imaged onto the sensor with L5. A narrow bandpass filter (BP) only transmits photons at

the central frequency of 791 nm.

same pulse can constitute a genuine four-photon state. The lens L4 ( f4 = 75 mm) produces
this source’s far-field distribution in plane ΣFF. This plane is imaged onto the sensor with
L5 ( f5 = 150 mm) where a magnification m = 0.31 is realized. A narrow bandpass filter
(BP) transmits 1 nm FWHM at 791 nm. Its central frequency is tuned by tilting of the
filter for transmission of the both photons of a generated SPDC pair in nearly frequency-
degenerate emission. This filter enforces a low number of detected temporal modes and
allows to observe photon bunching effects at high visibility, see Sec. 3.2.

SuperEllen is operated with 45 ns frame exposure time. The SPAD bias voltage is set
to 20 V. This lower value than above reduces crosstalk which is favorable for the following
measurements, see Sec. 5.2.1. A coincidence window Tc = 0.6 ns is used which Fig. 5.19
shows to be long enough to detect coincident photons without signal loss at the given bias
voltage. The TDC control voltage is set to 2.35 V which FBK advised to use for more linear
TDC operation.

Second-Order Correlation Measurements

The correlation function is obtained from the sensor data as described above in Sec. 5.2.1
in the case of a two-photon source. A total of 4.4 × 109 frames are acquired in approx.
3 hours. The described real-time sensor data processing avoids the storage of the large
amount of raw data for these frame numbers, only the second-order correlation histogram
G(2)(ρ1, ρ2, ∆t) of fixed size is saved. An average of Rtot = 0.54 events/frame are detected.

The light source emits pulses at a separation of approx. 12 ns. This is well resolved
by the TDCs within a frame and allows SuperEllen, despite its asynchronous frame ac-
quisition, to distinguish between consecutive pulses via the detection time difference ∆t
statistics of the second-order correlation function. Fig. 5.21(a) shows G(2)(∆t) over all pix-
els, formally defined above in Eq. (5.6). Despite the better long-time linearity of the TDC
with the new control voltage setting advised by FBK, the TDC codes are not equally rep-
resented and therefore do not correspond to equal time steps. A pattern period of four
TDC codes can be observed and is also explainable by the TDC architecture, see App. D.
Averaging over four codes results in the much smoother Fig. 5.21(b). Using the frame ex-
posure time of 45 ns and the maximal TDC codes, an average TDC unit step of 200 ps can
be determined. The normalized G(2)(∆t) shows consecutive pulses at the expected sep-
aration and a strong uncorrelated background. This is removed by the above described
accidental background estimation, where the region of ∆t = 4 to 8 ns is used and no signal
but uncorrelated background is expected.

The temporally coincident spatial correlation function G(2)(ρ1, ρ2), formally defined in
Eq. (5.7), is calculated with the coincidence window of Tc = 0.6 ns and with accidental
events estimated in the mentioned region of ∆t. In order to suppress the crosstalk signal
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FIGURE 5.21: Temporal second-order correlation function using the four-photon source
summed over all pixels. (a) shows non-uniform TDC behavior, which can be corrected by

averaging over every TDC codes in (b). Consecutive pulses are visible.

discussed above in Sec. 5.2.1, a dark reference measurement of blocked light source is per-
formed. A total of 1.4× 109 frames are acquired for this, yielding the accidental corrected,
spatial correlation function G(2)

Xtalk(ρ1, ρ2) consisting only of the crosstalk signal. In the fol-

lowing, corrected correlation functions G(2) = G(2)
meas − G(2)

Xtalk, using the measured G(2)
meas,

are evaluated. This procedure removes crosstalk initiated by dark counts, but photon de-
tection events causing crosstalk will still be present.

This accidental and crosstalk correction results in the spatial G(2)(ρ1, ρ2), see Fig. 5.22.
The SPDC signal is mainly on the anti-diagonal of anti-correlating pixels. The crosstalk
removal described above strongly suppresses the diagonal signal strength in comparison
to Fig. 5.15.

Fig. 5.23(a) shows the two-photon centroid distribution. It is identically calculated like
the same figure in Sec. 5.2.1. A pointing instability of the pump laser causes the horizontal
elongation. At a total photonic coincidence signal

RSignal = 0.122× 10−3 Events/Frame

in a 5× 5 pixel region of the centroid, the total crosstalk is

RXtalk = 0.037× 10−3 Events/Frame

at nearest neighbor level. In comparison to Sec. 5.2.1, much less crosstalk is present at a
similar single count rate. This is explained by a factor of 10 reduction due to the mentioned
crosstalk reference subtraction and almost a factor of 3 due to lower SPAD bias voltage,
see Tab. 5.1. The pixels contributing to the centroid peak are shown in Fig. 5.23(b).

Two-Photon Bunching Signal

In order to simplify analysis in the following, measurement data is reduced to 1-D. Fur-
thermore, the measurements will be directly comparable to the 1-D scans of the source
characterization in Sec. 3.2. The 1-D correlation function is given by

G(2)(x1, x2) := ∑
y1,y2

G(2)(ρ1, ρ2).

Fig. 5.24(a) shows this data. The anti-diagonal shows a strong anti-correlation feature
expected from the detection of two photons of the same pair. The diagonal comprises
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FIGURE 5.22: Full spatial correlation function G(2)(ρ1, ρ2) between every pixel pair corrected
for accidentals and in logarithmic scale. The four-photon source is used. The 32× 32 = 1024
pixels are addressed by their linear index p = 1, . . . , 1024. Accidentals are removed. Crosstalk

initiated by dark counts is removed by the subtraction of a reference dark measurement.
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FIGURE 5.23: Second-order measurements with the four-photon source. (a): Correlation in
centroid variable ρ+ = (ρ1 + ρ2)/2. (b): Visualization of the pixels contributing to the anti-

correlation signal.
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FIGURE 5.24: Second-order measurements with the four-photon source, evaluated in 1-D x-
position correlation only and summed over all pixel rows. Accidentals are subtracted in (a),

but present in (b) for error estimation.

residual crosstalk and might include two-photon detection from different pairs showing
x-correlation due to photon bunching effects. Fig. 5.24(b) shows the same data, but with
accidentals present which is useful for estimation of the measurement error in the follow-
ing.

In Fig. 5.24(a), the anti-diagonal shows a two-photon correlation detection rate of ap-
prox. G(2)

TPC = 4× 10−6 events/frame. In comparison, the fiber coupled detectors showed
there 4000 coincidences/s, while the correlated bunching signal was 50 coincidences/s in
Fig. 3.6(b). This ratio can be used to estimate the expected rate of bunching event with
SuperEllen to be G(2)

bunch = 50/4000 · G(2)
TPC = 0.05× 10−6 events/frame. This very weak

signal is masked by the crosstalk on the diagonal of the data which shows 40 times higher
magnitude.

The statistical shot-noise of the measurement is determined in the following and allows
to estimate the measurement time needed for a signal-to-noise ratio (SNR) which would
allow to see the bunching signal. The data of Fig. 5.24(a) is accidental subtracted. The
mean value of these uncorrelated accidental events A can be well estimated using the
fitting method, see Sec. 5.1.6, but their statistical noise will still be present in the data after
subtraction of their estimated mean 〈A〉. The standard deviation of the measured values

Std
(

G(2)
)
=
√

G(2) + 〈A〉

where Poisson statistics for signal and accidentals is assumed. The accidental uncorrected
event number G(2) + 〈A〉 is given in Fig. 5.24(b). The bunching signal appearing on the
diagonal would therefore yield an error of

Std
(

G(2)
bunch

)
≈ 4× 10−3 Events /

√
Frame.

In order to achieve a minimal SNR =
√

Nfrm G(2)
bunch/ Std(G(2)

bunch) = 1, a total of Nfrm =
6.4× 109 frames would have to be acquired corresponding to three hours of measurement.
This is a very optimistic estimate, as the needed removal of the strong crosstalk signal, see
discussion below, would further degrade statistics.

By using the measurements of Sec. 3.2 with detection rates, its measurement param-
eters (fiber diameter and PDE) and SuperEllen’s specifications (PDE, dark counts, pixel
size and number) given in Sec. 5.2.1, the expected detection rates and their statistics can
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be theoretically estimated. Using the optimistic median dark count value of 300 Hz/pixel
and summation over the all pixel rows for enhancements of the statistics, a SNR = 1
can be reached below one minute of measurement time for the correlations on the anti-
diagonal G(2)(x,−x) of two photons of the same pair. The bunching signal G(2)(x, x) re-
quires 8 hours for the same SNR. This is in rough agreement with the results above where
crosstalk is neglected as well.

Four-Photon Detection Rates

The detection of a real four-photon event of two pairs showing bunching can be estimated
by

G(4)(x, x,−x,−x) ≈ G(2)(x, x) η2.

The rate of generated and detected bunching events is G(2)(x, x) determined for the source
in Sec. 3.2.2. Given such a event, two detections are needed at −x each with PDE η for
the measurement of the fourth-order correlation. Only a total detection rate of one four-
photon event per 30 minutes is expected. The crosstalk problem would be even more
important to address and would considerably prolong the measurement time. At this
fourth-order measurement and the given sensor parameters, accidentals are very weak
and are not relevant anymore for statistics. Shot-noise is dominated by the signal itself.

Discussion

The temporal resolution of SuperEllen is demonstrated again, now with a pulsed source.
Using the new TDC control voltage, a better average TDC unit of 200 ps is achieved. Long-
time linearity (integrated non-linearity) is shown by FBK for this setting. Nevertheless, the
TDC codes do not represent uniform time steps anymore. A more complicated procedure
of calibrating the TDCs could compensate this artifact. But for the determination of co-
incidence and accidental estimation at a small coincidence window, more important than
long-time linearity and a short TDC unit is the uniformity in TDC steps (differential non-
linearity). It has to be reconsidered to go back to the older setting which showed better
performance in that respect in Sec. 5.2.1.

The measurements with the four-photon source shows good agreement with the fiber
scanning experiments of Sec. 3.2 at the level of detection of two photons belonging to
the same pair. Correlations between photons of different pairs was not possible to mea-
sure. While the amount of frames needed for a minimal SNR is considerable, it could be
achieved within several hours measurement time, although the instability of the setup,
mainly in terms of intensity, would make it challenging to realize. Despite the applied
means of crosstalk suppression, residual crosstalk masks the potential region of the pho-
ton bunching with a 40 times stronger signal which cannot be separated from each other.
One possibility to solve this problem is to magnifying the far-field plane and increase the
correlation length of the bunching signal beyond the crosstalk signal. This would further
reduce the weak signal and was therefore not considered. The other possibility is the cross-
talk characterization of all pixel pairs which would allow to remove of this signal at the
cost of again increased statistical noise, see accidental noise discussion above. The success
of this approach would depend on the temporal stability of crosstalk, which for example
dark count rates of SPADs is not given.

In conclusion, this detector is not suitable for the measurement the very weak source
of less than a few dozens coincidences per second in the bunching signal. As it does not
allow for second-order correlation measurements, it is even less suited at higher orders.
The main reason is the limited PDE at the given wavelength and the low photon flux of
the source.
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Laser GDD SuperEllenΣ1

so si

L3L1 L2

f2 f2

.
FIGURE 5.25: Experimental setup for the pseudo-thermal light generation and measurement
with SuperEllen detector. A CW laser at focused onto a rotating ground glass disk (GDD).
With the lens L2, the source’s far-field distribution is given in plane Σ1. This is imaged with L3

to the measurement plane of the SuperEllen detector.

5.2.3 Pseudo-Thermal Light Detection

The main goal of this section is to show the ability of SuperEllen to measure high-order
correlation functions. This is achieved by avoiding the problems of the last section using
pseudo-thermal light, see Sec. 3.3. First, this source is of almost arbitrary intensity. Sec-
ond, the statistics of the light is not influenced by a low PDE and can be fully compensated
by increasing the source intensity. Third, a longer correlation time of dozens of microsec-
onds allows the measurement of pixel self correlation by correlating multiple consecutive
frames. Furthermore, it is possible to discriminate signal from crosstalk due to their mea-
surable difference in correlation time. The here used wavelength for thermal light is much
more optimal and shows a more than six fold increased PDE of the sensor.

For the following measurements, data is acquired in packets of 64 consecutive frames.
The readout time determines the fixed frame separation. For temporal information, the
TDCs are neglected but only the frame position is used. Within a packet, hereafter referred
to as superframe, pixels are correlated among each other. The detector therefore provides
the photon numbers

n(ρ, t) ∈ {0, 1}, with ρ ∈ {(x, y) | x, y ∈ {1, . . . 32}}, t ∈ {1, . . . , 64},

for all pixel positions ρ and times t, measured in units of approx. 10 µs, within a super-
frame. Sec. 2.3 describes how to generally process this data in order to arrive at the field
intensity correlation functions. For the given time-stationary source and the concrete de-
tector characteristic, Sec. 2.3.4 worked out the general results in this specific case.

Temporal Second-Order Correlation Measurement

In order the measure a second-order correlation function G(2)(ρ1, ρ2, ∆t), the sensor data
n(ρ, t) is processed with Eq. (2.34) and Eq. (2.35). A LabView subroutine allowing for its
real-time calculation and visualization simplifies setup alignment.

The measurement is performed with the experimental setup shown in Fig. 5.25. As
introduced in Sec. 3.3, a CW laser at 405 nm is focused with L1 to a beam radius of wp =
150 µm on the ground glass disk (GDD) at a radial position of r = 2 cm. The disk is
rotating at 1000 rpm and produces the pseudo-thermal light. The lens L2 with f2 = 75 mm
produces the far-field distribution in the plane Σ1. This plane is imaged with lens L3 of
focal length f3 = 150 mm onto the SuperEllen sensor. With the object and image distance
so and si, the magnification m = si/so = 1 is set.

A total of 13 M frames (200 k superframes) are acquired with an average of 4.95 detec-
tion events per frame. By using correlations between all pixels for G(2)(∆t) as given in
Eq. (5.6), the temporal correlation of Fig. 5.26(a) is measured. Accidental subtraction as
performed for the previous light sources does remove the flat background at large ∆t. For
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FIGURE 5.26: Temporal second-order correlation function for thermal light. Graph (a) takes
into account all pixels correlations, while (b) only considers correlations of a pixels with itself.

the case of thermal light and G(2), this essentially isolates the ∆G(2) term which is respon-
sible for the correlation peak, see Eq. (3.20). Here, an almost flat correlation line is given
with a weak peak on top of roughly 60 µs width. As explicit in the ∆G(2)(ρ1, ρ2, ∆t) term
for thermal light, temporal correlations are only expected for pixels within the correlation
length. Only considering correlations of the pixels with themselves, which are measurable
for superframes at nonzero time separation, we can evaluate

G(2)(∆ρ = 0, ∆t) :=
1
2 ∑

ρ

G(2)(ρ, ρ, ∆t).

This yields Fig. 5.26(b) and gives a much higher visibility of the correlation peak. The ratio
of the peak to the flat background is theoretically 2, but is here measured to be 1.67. Rea-
sons can be a imperfect source because of not considered polarization effects or regularities
in the ground glass disk. Furthermore, the peak value at ∆t = 0 is for pixel self-correlation
∆ρ = 0 still not measurable and would increase this value closer the theoretical expecta-
tion.

The relevant correlation time is given in Fig. 5.26(b) and is approx. 20 µs. The dis-
crepancy between to aforementioned correlation time is due to the movement of speckles
across the sensor, see Sec. 3.3.3. Distant pixel pairs with |∆ρ| > 0 can be shown to be cor-
related at a time delay and therefore broaden the overall correlation peak in Fig. 5.26(a).

Spatial Higher-Order Correlation Measurements

For the measurement of higher order correlations, temporally correlated events are consid-
ered and only the spatial information retained as discussed in Sec. 2.3.4. Using Eq. (2.39)
and Eq. (2.42), correlation functions can be expressed in the sensor data n(ρ, t). This is ef-
ficiently implemented in the algorithm of Sec. 2.3.4 which yields the temporal coincident
spatial correlation function

G(N)(ρ1, . . . , ρN).

This Nth-order correlation function needs for storage an amount of memory which is scal-
ing with mN where m are the number of pixels. For the given m = 1024, it is already
impractical to store the full correlation function for N ≥ 3. The fact that thermal light
shows the non-trivial correlations for pixel within the correlation length, it is sufficient to
store only a part of the full function. The correlation function

G(N)(ρ1, ∆ρ2, . . . , ∆ρN−1), ∆ρk := ρk − ρ1,
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is in terms of memory much less expensive if we only save |∆ρ| < d. Here, the memory
scales with m d2(N−1) which is more compact for processing and storage.

For the measurements, the setup of Fig. 5.25 is slightly adapted: A pump beam radius
of wp = 250 µm on the ground glass disk and a magnification of m = 1.96 for the imag-
ing of lens L3 are used. For these settings, a correlation time of 100 µs can be measured
at the detector. The coincidence window should be chosen slightly smaller than the cor-
relation time to have good visibility of the bunching signal which would be otherwise be
averaged out. On the other hand, a smaller window lowers the statistics and is therefore
undesirable. A coincidence window of Tc = 40 µs is set. For memory saving, we restrict
the coordinate |∆ρ| ≤ 10 for N = 1 and 2, and |∆ρ| ≤ 4 for N = 3 and 4. This already
yields several hundreds of megabytes correlation data for one measurement.

A total of 20 M frames are acquired. The measurements are shown in Fig. 5.27. Panels
(a-d) are measured with the described optical setup, for (e-h) the imaging lens L3 was
limited in its diameter in order to observe a longer correlation length by the enlarged
PSF of the optical system, see Sec. 2.1.4. Comparing (b) and (c) shows that calculating
the bunching signal ∆G(2) = G(2) − G(1)G(1) removes the uncorrelated background noise
(mostly dark counts), see Sec. 3.3. The smoother signal in (e) is due to the larger speckles in
this lens configuration which smooths non-optimal regularities of the ground glass disk.
∆G(2)(∆ρ) shows in (d) and (f) the correlation length, and as expected from theory it drops
to zero at far enough ∆ρ.The third- and fourth-order correlations in (g) and (h) are noisy
due to shot noise statistics, but show as expected a similar pattern as seen in (e).

For a more quantitative evaluation of a measurement, a third-order correlation is di-
rectly compared to theory in Fig. 5.28. A similar analysis is shown in [119]. The imaging
lens L3 is not limited but uses its 25 mm full diameter. The correlations are analyzed in one
spatial dimension x, while y1 = y2 = y3. The analysis in relative distances ∆x2 := x2 − x1
and ∆x3 := x3 − x1 effectively produces a projection of the 3D space of G(3)(x1, x2, x3)
onto a plane with normal vector (1, 1, 1). Furthermore, the constant background, and with
it uncorrelated events, are removed by subtraction of (G(1))3. This correlation function can
be calculated from the measurement by

∆G(3)(∆x2, ∆x3) :=
1
V ∑

ρ1,ρ2,ρ3

[∆x2 = x2 − x1 ∧ ∆x3 = x3 − x1 ∧ y1 = y2 = y3](
G(3)(ρ1, ρ2, ρ3)− G(1)(ρ1)G(1)(ρ2)G(1)(ρ3)

)
where the sampling space volume

V(∆x2, ∆x3) = ∑
ρ1,ρ2,ρ3

[∆x2 = x2 − x1 ∧ ∆x3 = x3 − x1 ∧ y1 = y2 = y3]

is the normalization in order to get a proper average of all the available pixel triplets of
the given relative distances on the sensor. The theoretical model uses the thermal G(1) and
G(3) from Sec. 3.3 and is analyzed by the same method. A theoretical correlation length
given by Eq. (3.22) is used.

Discussion

The measurements of the pseudo-thermal light source show a spatially inhomogeneous
emission. This can be attributed to regularities of the ground glass disk which are bias-
ing the statistics. Despite this imperfection, the temporal and spatial correlations were
demonstrated using SuperEllen. The formal development for correlation measurement
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FIGURE 5.27: High-order correlation measurements of a pseudo-thermal source. (a-d) used
a large lens diameter for imaging, in (e-h) the lens diameter was limited to 0.6 mm. With
exception of (d) and (f), single-point correlation of pixels with themselves are shown. The

source’s inhomogeneity is responsible for the non-uniform distributions.
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FIGURE 5.28: Spatial third-order correlation function of thermal light with removed back-
ground in measurement (a) and theory (b). Only one dimensional x position correlation in

∆x2 = x2 − x1 and ∆x3 = x3 − x1 is considered while y1 = y2 = y3.

and its normalization developed in Sec. 2.3 is here applied. The success in removal of un-
correlated background with G(N) − (G(1))N verifies the proper signal normalization with
these procedures in practice. Even more convincingly, Fig. 5.28 of measured and processed
data shows a very good agreement to theoretical expectations.

SuperEllen is not developed for the long correlation time of pseudo-thermal light. By
neglecting the TDC’s detection event timing and only using the frame index for temporal
information, SuperEllen is certainly not fully used. For this case without TDC, a differ-
ent sensor architecture with less readout time providing a higher frame rate or long time
exposure but photon number resolution (e.g. CCDs) would be possible and more effi-
cient. Nevertheless, this section demonstrated the possibility of the measurement of a
higher-order correlation function with SuperEllen and will be used extensively in Ch. 6
for imaging.

5.2.4 Conclusion

The first measurements with SPADnet-I sensor clearly demonstrated the usefulness of the
technology for quantum imaging experiments. Its main advantages are spatially parallel
event detection by its pixel array, and the high temporal resolution with the fast TDCs.
This allows the measurement of spatial intensity correlation functions of temporally cor-
related sources, as demonstrated for photon pairs. The temporal resolution was not able to
resolve the correlation time of the photons, but allowed a small coincidence window. This
reduced accidental background to a minimum. Furthermore, in contrast to a gated detec-
tor, having access to the full temporal information permits the estimation and subtraction
of accidental background events within the coincidence window. This technique makes it
robust to background light and dark count events of the detector. Problems spotted dur-
ing the evaluation of this sensor technology was related to low PDE, low duty-cycle and
crosstalk.

Despite the sensor exhibits a rather high dark count noise and a background due to
low detection efficiency, the measurement of temporal correlated signals was possible by
the removal of the uncorrelated noise. While the proposed procedure nicely works to
recover the correlated signal, this noise subtraction would spoil any attempt to verify en-
tanglement in appropriate experiments [120]. Nevertheless, applications not relying on
this aspect can benefit from the sensor technology.
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SuperEllen was developed after these experiences and many of the challenges are ad-
dressed. The number of pixels and the duty-cycle are tenfold increased. Because crosstalk
and PDE are depending on the CMOS manufacturing technique, they are still of similar
magnitude. For the measurements performed here using ultra-fast correlated photons,
these were the main limitation. For improving crosstalk, technical means in the sensor
development are considered: Trenches in the chip architecture providing optical isolation
between the pixels. A different approach could be the characterization and modeling of
the crosstalk behavior which would allow the subtraction in a post-processing step. This
works under the assumption of a time stable behavior. For very weak sources like the
four-photon source or for higher-order correlations, the currently given PDE does not al-
low good statistics in an acceptable amount of measurement time.

In case of a continuously emitting source, the improvement factor in measurement
time by using the sensor array in comparison to scanning detectors can be quantified by

mN

N!
ηN ηduty

with the correlation order N, number of pixels and detector positions m, PDE η and duty
cycle ηduty of the array. Ideal scanning detectors with optimal PDE and duty cycle are
assumed and detector repositioning time neglected in this comparison. For SuperEllen in
a second order correlation measurement N = 2, this evaluates to unity and corresponds
therefore to a vanishing improvement. For N = 3 and N = 4, an improvement of 3 and
7 is found respectively. For low correlation order, the technology looses its superiority
in the given situations in comparison to a scanning experiment. For a pulsed source, an
external gating would improve the effective duty cycle and thereby considerably increase
the advantage. Furthermore, higher pixel number in a next generation sensor can strongly
increase this factor of time saving. In the procedure of setup alignment of quantum imag-
ing experiments, however, not statistics but fast, real-time visualization of the correlation
function is of importance. Then, the sensor is superior due to the here not considered
repositioning overhead not allowing fast update rates in scanning.

As discussed in Sec. 5.1, the time correlated detection with gated EMCCD and ICCD
cameras is possible at very high detection efficiency [27, 28]. While these devices show a
much lower frame rate compared to SuperEllen, their pixel number, detection efficiency,
low noise and optimal duty cycle compensates this drawback. For the here used quantum
light’s wavelength, where CMOS shows reduced detection efficiency, the current gener-
ation of CMOS sensor array technology is not superior to these cameras for detection of
coincident photons. But in contrast to these CCD devices, the detector arrays are not re-
stricted to coincidence measurements. Thanks to the TDCs, more temporal information
is accessible allowing for the observation of more general temporal correlations useful in
other application, see below. In addition, the very high frame rate of up to 800 kHz al-
lows to study fast processes not available to cameras. In contrast to complex CCD systems
which have to be cooled below -75◦C [27], the sensor arrays are technically much simpler
and inexpensive giving advantages in possible implementations.

For a next generation sensor, a higher PDE is most desirable. This is the quantity
with highest influence on the quality and speed of a measurement due to its exponential
dependence on the order of measured correlation. For applications with (pseudo-)thermal
light, PDE and very high temporal resolution is not critical while a higher frame would
improve measurement statistics.

SuperEllen and its following generation has many advantages in other applications.
Its inexpensive fabrication in CMOS technology would allow for its use in consumer de-
vices. For instance in quantum random number generation, the measurement of the two
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degrees of freedom of space and time of a quantum source serve as random variables and
are available with the detector array. Thereby, it is possible to generate higher bit rates
than the traditional single spatial mode approaches. For high photon flux measurements
of a single spatial mode distributed over the sensor, the parallel and independent pixels
can be used multiplexed as one effective detector of a very high maximal count rate and
vanishing dead-time. Imaging in 3D using time-of-flight measurement is possible with
an appropriate illumination source [121]. As a generalization of the experiment shown in
Ch. 4, spatially resolved quantum low-coherence reflectometry (QOLCR) imaging could
be realized.

SuperEllen is applied in a quantum imaging experiments in two chapters. In Ch. 7, it is
used for the measurement of second-order correlation functions of the two-photon source.
The fact that the signal to be acquired is present in pixels of large separation avoids the
crosstalk problem. Nevertheless, several hours of measurement are needed due to the low
PDE and low photon flux density of the source. In Ch. 6, pseudo-thermal light is used
in the here described manner for the measurement of higher-order correlation functions.
The strength of the signal in comparison to crosstalk and the independence of the light’s
statistics on the PDE allows for efficient measurements.
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Chapter 6

Quantum Imaging

As introduced in Ch. 1, the spatial resolution in classical imaging is fundamentally limited
by the Rayleigh or diffraction limit. In order to overcome this restriction, a source of en-
tangled photon pairs as well as thermal light is employed for illumination while intensity
correlation functions are measured. Near- and far-field imaging is considered. As known
from literature, this approach yields a resolution improvement of

√
2 for near-field and

2 for far-field imaging if no data post-processing is performed. In addition to this direct
imaging, a reconstruction algorithm is here applied on the full high dimensional correla-
tion function which allows to yield further enhancements in image resolution beyond the
mentioned improvements.

This chapter presents the theoretical description well known in literature and our ex-
perimental results of imaging with the quantum and thermal light source introduced in
Ch. 3 for illumination. Furthermore, the measurement devices introduced in Ch. 5 are
applied. This work serves as model experiments within the SuperTwin project and are
devised to show the advantage of using the non-standard light sources and measurement
techniques in order to improve spatial image resolution in microscopy applications. For
the time being, the planned source of quantum light, developed within SuperTwin, is not
yet available. The experiments are used for the test of the measurement devices and the
object reconstruction algorithm which is developed by our project partners from the B.I.
Stepanov Institute of Physics of the National Academy of Sciences of Belarus (IPNASB).
This algorithm is planned to be later applied in imaging with the developed quantum
source of light. IPNASB’s theoretical approach and preliminary reconstruction results are
presented in the following together with our measurements.

6.1 Theory

A general Fourier optics description of imaging with entangled photon in different ge-
ometries was studied by Abouraddy et al. [52]. Shih gives an overview of imaging with
entangled and thermal light [11]. While more fundamental aspects related to quantum
correlation motivated these works, Giovannetti et al. studied the improvement in spatial
resolution by using an entangled light source [19]. For thermal light illumination, this is
done in [34, 122]. Its similarity to imaging with entangled photons, also explicit in our fol-
lowing results, is explored in [123, 124]. Motivated by these insights, the following results
are derived from the fundamentals of Ch. 2 and the properties of the light sources in Ch. 3.

In the following, imaging of rather large objects using low resolution imaging systems
are theoretically analyzed. While their experimental implementation is not competitive in
a microscopy application, they allow to demonstrate the spatial resolution advantage by
direct comparison of the non-standard illumination sources and measurement techniques
to classical schemes.
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As imaging is only expected to yield high resolution in a focal plane, we restrict in the
following treatment to 2-D object apertures without axial extension. This object, whose
shape is to be measured by the imaging apparatus, can be described by an amplitude
aperture function A(ρ) in transverse coordinates ρ = (x, y). Illuminating it with light,
the impulse response function of apertures in Eq. (2.12) and the transformation of field
operators in Eq. (2.21) show that the electric field operator after the aperture in the object
plane

Êo(ρ, t) =
∫

d2ρ′ hA(ρ, ρ′) Ê(ρ′, t) = A(ρ) Ê(ρ, t)

given an illuminating field Ê(ρ, t). The goal of any imaging system is to measure this spa-
tially modulated field distribution, with the imprinted object shape, at a distance. Different
approaches to this are considered in the following.

6.1.1 Near-Field Imaging

In near-field imaging, the field distribution given with Êo(ρ, t) is replicated in a distant
plane, where its spatial structure can be measured in a intensity measurement of a stan-
dard camera. The use of a single lens for imaging introduced in Sec. 2.1.4 for replicating
the electric field. A detector in the object plane probes therefore the corresponding electric
field

Êi(ρi, t) =
∫

d2ρo hNF(ρi, ρo) Êo(ρo, t)

with the impulse response function of the near-field setup hNF. By using its explicit ex-
pression from Eq. (2.13), we get

Êi(ρi, t) = C
∫

d2ρo exp
(
−ik
|ρo|2
2so

)
somb

(
Rk
so

∣∣∣ρo +
ρi

m

∣∣∣) Êo(ρo, t) (6.1)

with the illumination light wave vector magnitude k = 2π/λ, lens diameter R, focal length
f , object to lens distance so, and magnification m. All constants and phases not relevant
in the following are absorbed into C. The point-spread function (PSF) given by somb()
is responsible for the non-perfect replication of the field. Rayleigh defined the resolution
limit for distinguishing two points, imposed by the width of the PSF, to read

∆xR = 1.22
λ so

2R

with the illumination wavelength λ [49]. The following light source and measurements
show an narrower PSF and surpass this Rayleigh limit.

The Rayleigh resolution is valid for small R where the paraxial approximation applies
and the resulting resolution ∆xR � λ. Object features smaller than the wavelength result
in evanescent fields which are not transmitted through free-space and therefore are not
available for imaging and measurement at a distance [3, 49]. While individual photon
cannot carry this object information, their correlations can give access to it as seen in the
following.

Two-Photon Illumination

The object is directly illuminated by the SPDC two-photon light source introduced in
Sec. 3.1. The electric field of the crystal central plane Σ is replicated in the object plane
Σ′, see Fig. 6.1. This is done by a 4-f image system with a near optimal PSF, i.e. we can as-
sume a delta function like impulse response function. The electric field in the object plane
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FIGURE 6.1: Two-photon imaging. Photon pairs are generated in SPDC in the NLC. A long-
pass filter (F1) blocks the pump, the bandpass filter (F2) selects frequency-degenerate emis-
sion. The central crystal plane Σ is imaged (L1, L2) to the object plane Σ′ where an object
aperture is placed. In near-field imaging, the lens L3 of reduced radius produces a resolution
limited image of Σ′ in the detection plane Σd. For far-field imaging, L3 produces the far-field
of object plane Σ′ at the detectors. Two multi-mode fiber coupled detectors scan transverse

positions and detect photon pairs in coincidence.

reads therefore

Êo(ρ, t) = A(ρ)
∫

d2ρ′ hF
(
ρ, ρ′, z0

)
Ê(ρ, t), z0 = − L

2n(ωc)
, (6.2)

with the free propagation hF and the field operator Ê(ρ, t) at the output plane of the crystal
as used in Sec. 3.1. The result of Eq. (3.14) for z0 is used for addressing the central plane in-
volving the crystal length L and refractive index n(ωc) at the central emission wavelength.

By appropriately spectral filtering of the collinear, frequency-degenerate emission, spatio-
temporal factorization as discussed in Sec. 3.1.1 is assumed and we only consider tempo-
rally coincident correlation in the following. With Eq. (6.1), we yield in the image plane
the spatial correlation function

G(2)(ρ1, ρ2) =

∣∣∣∣C ∫ d2ρod2ρ′o A(ρo) A(ρ′o)Φ(ρo, ρ′o) h(ρ1, ρo) h(ρ2, ρ′o)

∣∣∣∣2 (6.3)

with the PSF

h(ρi, ρo) := exp
(
−ik
|ρo|2
2so

)
somb

(
Rk
so

∣∣∣ρo +
ρi

m

∣∣∣) (6.4)

and the two-photon correlation amplitude

Φ(ρs, ρi) :=
∫

d2qsd2qi HF(qs, z0) HF(qi, z0)Λ(qs, qi) eiqs·ρs+iqi ·ρi (6.5)

with the two-photon wave function Λ given by Eq. (3.5) and free-space propagation trans-
fer function HF from Eq. (2.9). The light source is described by Φ, while the imaging
system is characterized by h.

In the limit of a thin crystal, the correlation function Φ(ρs, ρi) becomes δ(2)(ρs− ρi), i.e.
photon pairs are perfectly correlated. Then, a resolution improvement is explicit in direct
imaging by the measurement of

G(2)(ρ, ρ) =

∣∣∣∣C ∫ d2ρo A2(ρo) h2(ρ, ρo)

∣∣∣∣2
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FIGURE 6.2: Thermal light imaging. The pseudo-thermal source uses a rotating ground glass
disk (GDD) illuminated by a laser and produces a random speckle pattern. The disk’s far-field
plane Σ1, obtained by the use of L2, serves as object plane of the following imaging. In near-
field imaging, the lens L3 of reduced radius produces a resolution limited image of the object
plane Σ1 at the SuperEllen detector array. For far-field imaging, lens L3 produces the far-field

of the object plane Σ1 at the detector.

as shown in [38]. In this limiting case and the measurement on the G(2) diagonal, resolu-
tion improvement is given by the squared PSF h(ρ, ρo). Approximating it by a Gaussian, it
can be shown to yield a

√
2 improvement [32, 39, 125]. Generally, sources of N entangled

photons would show an advantage of
√

N [19]. In addition to this direct imaging result,
applying a reconstruction algorithm on the full correlation function is expected to yield
further improvements.

Entanglement of the photon pair is explicit due to the coherent integration in the
squared modulus of Eq. (6.3). Multi-photon interference effects can occur. In contrast,
for classically correlated pairs with spatial correlation given by the joint probability distri-
bution |Φ(ρs, ρi)|2, we arrive at the correlation function

G(2)(ρ1, ρ2) =
∫

d2ρod2ρ′o |A(ρo)|2 |A(ρ′o)|2 |Φ(ρo, ρ′o)|2 |h(ρ1, ρo)|2 |h(ρ2, ρ′o)|2 (6.6)

Here again, we have in the limit of a small correlation length a
√

2 improvement in resolu-
tion due to narrowing of the PSF by its squaring. This generalizes to

√
N for a classically

correlated N-photon state [19, 34, 126].

Thermal Light Illumination

In this case, the object is illuminated by the pseudo-thermal light source introduced in
Sec. 3.3 and shown in Fig. 6.2. Thermal light is fully characterized by its first-order cor-
relation function given in Eq. (3.19). With the near-field imaging setup of Eq. (6.1), the
bunching term ∆G(2) of the second-order correlation function defined in Eq. (3.21) be-
comes in the detector plane

∆G(2)(ρ1, ρ2) =

∣∣∣∣C ∫ d2ρod2ρ′o A∗(ρo) A(ρ′o) Γ(ρo, ρ′o) h∗(ρ1, ρo) h(ρ2, ρ′o)

∣∣∣∣2 (6.7)

with the PSF h(ρi, ρo) defined in Eq. (6.4) and the first-order correlation function

Γ(ρ1, ρ2) := G(1)(ρ1, ρ2)

in the object plane. This result is in direct analogy to the two-photon correlation function
of Eq. (6.3). The light source is characterized by the coherence function Γ and the imaging
system by the impulse response function h. This result characterizes the thermal light
source in the detector plane to every correlation order as discussed in Sec. 3.3.
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For a homogeneous thermal source of vanishing correlation length lc, Γ(q1, q2) is well
approximated by δ(2)(q1 − q2) and the measurement of

∆G(2)(ρ, ρ) =

∣∣∣∣C ∫ d2ρo |A(ρo)|2 |h(ρ, ρo)|2
∣∣∣∣2

can be considered as direct imaging. Again, the effective PSF is narrowed by its squaring,
yielding a

√
2 resolution improvement in a Gaussian approximation. Note, that no second-

order correlation measurement would be needed for this improvement in direct imaging.
The intensity measurement already shows the exactly same signal due to (G(1)(ρ))2 =
∆G(2)(ρ, ρ).

While these result are practically identical to the ones above discussed for the source
of two-photon light, the main difference is the signal contrast. In the measurement of G(2),
a background has to be subtracted in order to arrive at the here described ∆G(2) = G(2) −
(G(1))2, see Sec. 3.3. This influences noise of the acquired signal. Furthermore, in contrast
to the above generalization to correlated N-photon sources where we can explicitly show
the resolution scaling with

√
N, all correlations orders of thermal light can be expressed

in products of ∆G(2) and therefore only show the PSF at the power of two. Nevertheless,
the information content in a full G(N) is expected to increase with N. Not only using
the above direct imaging but applying a reconstruction algorithm on the full correlation
function is expected to yield further improvements. This could be measured in terms of
Fisher information for the reconstruction which is an ongoing work of IPNASB.

6.1.2 Far-Field Imaging

In Far-field imaging, the electric field with imprinted object features is not directly trans-
mitted and measured, but essentially its Fourier transform. Signal processing then needs
to invert this transformation in order the reconstruct the object. The measurement can
either be lens-less with sufficient distance from the illuminated object, or with the single
lens far-field imaging introduced in Sec. 2.1.5. Employing the latter, the electric field in the
far-field plane

Êi(q, t) = C
∫

d2ρo ei q·ρo Êo(ρo, t), q :=
k
f

ρ, (6.8)

in terms of the field in the object plane Êo, wave vector magnitude k = 2π/λ and its
transverse part q. Constants and phases are absorbed in C.

In reconstruction of the object, the resolution limiting factor is in this case the accessible
range of q values. A realistic detector will only observe a finite range. The wavelength
dependence is given by the detector position ρ to q relation: Larger wave lengths λ, i.e.
smaller k, allow for a smaller q observation range given a fixed sensor size. A reduction of
the lens aperture by an iris, as in near-field imaging, is not applied here because this can
be shown to be of no relevance for the measurable q range and thereby image resolution.

The ultimate limit of measurable wave vectors is the condition |q| ≤ k because higher
values are non-propagating evanescent fields not available at a distance. This restricts the
spatial resolution attainable in a object reconstruction. The following schemes allow to go
beyond

Two-Photon Illumination

The concrete experimental implementation is shown in Fig. 6.1. The lens L3 is replaced
by a far-field lens in f-f configuration and therefore so = si = f . With the illuminating
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field derived in Eq. (6.2) and the propagated field Eq. (6.8), we can express the correlation
function in the far-field plane in the same as Eq. (6.3) with

G(2)(q1, q2) =

∣∣∣∣C ∫ d2ρod2ρ′o A(ρo) A(ρ′o)Φ(ρo, ρ′o) h(q1, ρo) h(q2, ρ′o)

∣∣∣∣2 (6.9)

with two-photon correlation function Φ from Eq. (6.5) and the far-field impulse response
function

h(q, ρ) := ei q·ρ. (6.10)

This result can also be written in the form

G(2)(q1, q2) =
∣∣(Ã× Ã) ∗Λ)(q1, q2)

∣∣2
with the Cartesian product × and convolution ∗ between the two-photon wave function
Λ(qs, qi) and the Fourier transform of the aperture function

Ã(q) =
∫

d2ρ A(ρ) eiq·ρ.

In the limit of a plane wave pump and a thin crystal, Λ(qs, qi) becomes δ(2)(ρs + ρi),
see Sec. 3.1.1. It can be shown, that in this case

G(2)(q1, q2) =
∣∣(Ã ∗ Ã)(q1 + q2)

∣∣2 = Ã2(q1 + q2) (6.11)

with the Fourier transform Ã2 of A2.
For the case of aperture functions of unit transmission amplitudes A(ρ) ∈ {0, 1}, we

have Ã2 = Ã. The signal along the diagonal q1 = q2, i.e. spatially coincident detection,
the correlation function

G(2)(q, q) = Ã2(2q) = Ã2

(
2

2π

λ f
ρ

)
.

Given a limited measurable ρ range, the measurement of this G(2) gives therefore access
to transverse wave vectors of double magnitude in comparison to standard coherent illu-
mination. Equally, the observed diffraction pattern would be yielded for coherent illumi-
nation of half the here used wavelength [17]. This is directly related to the two-photon
interference effect observed in interferometer of Ch. 4. It can be shown that for a corre-
lated N-photon source, an N-fold larger range can be observed. Therefore, he advantage
of using this light source is the larger space of accessible transverse wave vectors of the
object. A reconstruction algorithm thereby gets more information on the object features.

Using classically correlated light instead of entangled photon pairs would not yield the
described far-field diffraction pattern. In the limit of small correlation length, the pattern
would not contain any object information at all. Only the two-photon interference effect
present thanks to entanglement can yield this effect. Nevertheless, classical techniques
allow for the measurement of the broader wave vector range as discussed in the conclusion
below.

Thermal Light Illumination

In the experimental setup of Fig. 6.2, far-field imaging is achieved with a lens L3 of focal
length f by using the distances so = si = f . Then, the first-order correlation function in the



6.1. Theory 109

far-field plane can be expressed in terms of the first-order correlation in the object plane
by using the propagated field operator Eq. (6.8) and get

∆G(2)(q1, q2) =

∣∣∣∣C ∫ d2ρod2ρ′o A∗(ρo) A(ρ′o) Γ(ρo, ρ′o) h∗(ρ1, ρo) h(ρ2, ρ′o)

∣∣∣∣2 (6.12)

with the PSF h(q, ρ) defined in Eq. (6.10) and the first-order correlation function of the
illumination Γ(ρ, ρ′) := G(1)(ρ, ρ′) in the object plane. This result can also be expressed
with

∆G(2)(q1, q2) =
∣∣((Ã)∗ × Ã) ∗ Γ̃)(q1, q2)

∣∣2
with the Cartesian product × and convolution ∗ with the Fourier transforms of the object
aperture Ã(q). The first order-correlation function of the illumination in a plane wave
basis is given by

Γ̃(q1, q2) := 〈Ê(−)(q1)Ê(+)(q2)〉 =
∫

d2ρ1d2ρ2 Γ(ρ1, ρ2) ei q1·ρ1−i q2·ρ2 .

For a homogeneous thermal source of vanishing correlation length lc, Γ̃(q1, q2) is well
approximated by δ(2)(q1 − q2) and

∆G(2)(q1, q2) =
∣∣∣(Ã∗ ∗ Ã)(q2 − q1)

∣∣∣2 =
∣∣∣(|̃A|2)(q2 − q1)

∣∣∣2 .

with the Fourier transform of the aperture transmission |A(ρ)|2.
For the case of aperture functions of unit transmission amplitudes A(ρ) ∈ {0, 1}, we

have |̃A|2 = Ã. Along the anti-diagonal q1 = −q2, the correlation function yields

∆G(2)(q,−q) =
∣∣∣(|̃A|2)(2q)

∣∣∣2 .

Again, as seen above with correlated photon pairs, the use of this light source allows to
measure a twice broader q spectrum in the correlation data. As remarked above for the
thermal near-field case, signal contrast is the main difference to illumination with photon
pairs. Furthermore, higher order correlation functions are given by products of ∆G(2)

and therefore do not show the same explicit scaling of observable q spectrum width with
correlation order N.

6.1.3 Object Reconstruction Algorithm

In addition to the above mentioned improvements due to photon correlation in direct
imaging where no data processing takes place, a reconstruction algorithm applied on the
full correlation function is expected to yield further improvements. The algorithm de-
veloped by IPNASB reconstructs the object features from this correlation data by using a
model of the source, imaging and detection process. It will be published in a joint work,
where it is applied to the here provided measurements [48]. The algorithm follows data
pattern approach and can be applied to near- and far-field imaging as shown in the fol-
lowing.

The goal of the algorithm is to get a good estimate of the object aperture function A(ρ)
given the measurement G(2)(ρ1, ρ2). It is formulated as nonlinear optimization problem
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where the difference between the measurement G(2)
meas. and model prediction G(2)

A , under
the assumption of an aperture A(ρ), is minimized

min
A(ρ)

∑
ρ1,ρ2

(
G(2)

A (ρ1, ρ2)− G(2)
meas.(ρ1, ρ2)

δG(2)(ρ1, ρ2)

)2

with the estimate of the measurement error δG(2)(ρi, ρj). The aperture is decomposed

A(ρ) = ∑
µ

xµ yµ(ρ)

into basis functions yµ(ρ). A natural choice are pixels, i.e. quadratic regions of unit trans-
mission amplitude. For all light sources and near- or far-field measurements, the common
form of the correlation functions Eq. (6.3), Eq. (6.7), Eq. (6.9), and Eq. (6.12) can be ex-
ploited. These expressions can be written in the discrete form

G(2)
A (ρj, ρk) =

∣∣∣∣∣∑µ,ν
xµ xν Djk

µν

∣∣∣∣∣
2

with the finite number of detector locations ρj. For the case of SPDC light, the constant is
given by

Djk
µν = C

∫
d2ρod2ρ′o yµ(ρo) yν(ρ

′
o)Φ(ρo, ρ′o) h(ρj, ρo) h(ρk, ρ′o)

using the basis functions yµ and the near- or far-field impulse response function h. The
constant D can be formulated accordingly for thermal light imaging. As it does not de-
pend on the object, it can be calculated and adapted in a calibration step prior to the mea-
surement.

The nonlinear optimization is performed over the discrete variables xµ. By taking into
account symmetries of D, IPNASB was able to formulate the optimization in a efficient,
iterative reconstruction algorithm. In addition to the above discussed advantages in the√

2 narrower PSF of direct imaging, further improvements of resolution are expected for
the reconstruction result: (i) As the probed object aperture occurs to its second power in
the measurement signal, low contrast features show improved visibility. (ii) An analysis
of the Fourier spectrum transmitted by the squared PSF of near-field imaging shows that
it is effectively doubled. While these newly accessible values of transverse wave vector
spectrum are suppressed, they are nevertheless measurable and the image can be recon-
structed to double resolution similar to the far-field case [32, 125]. (iii) Given m detector
position, the larger amount of m2 values in a G(2) measurement in comparison to a G(1)

with m values yields more constraints on the result of an object reconstruction algorithm.
A Fisher information analysis of the object reconstruction process will allow the quantify
the full resolution advantage from a statistical perspective.

6.2 Experimental Results

Imaging measurements with the above discussed light sources are here presented. Classi-
cal light sources at the same wavelength are used for resolution comparison and demon-
stration of the advantage. While imaging measurements are shown with a few object in
the following, many more have been performed for the proper evaluation of the object re-
construction algorithm of IPNASB. Its preliminary reconstruction results are shown when
available.
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6.2.1 Near-Field Imaging

For near-field imaging, a single-lens setup is used. Resolution is artificially reduced by
limiting the lens aperture with an iris of radius R. The system’s PSF is thereby made
broader as seen Eq. (6.4).

Two-Photon Illumination

The setup for illumination with correlated photon pairs is shown in Fig. 6.1. The SPDC
light source is fully introduced in Sec. 3.1. The light is generated in the nonlinear crystal
(NLC) whose temperature is set to 25◦C. Its central plane is imaged in a 4-f lens systems
(L1 and L2) to the object plane Σ′. Object apertures to be imaged are placed here. The lens
L3 ( f = 60 mm) is limited in its radius by a iris of radius R. It images the object plane Σ′

to the detection plane Σd with a magnification of m = 11.65.
A beam splitter cube separates photon pairs to two different detectors. These are cou-

pled to multi-mode fibers of 50 µm diameter whose bare fiber tips are on motorized x-
y stages scanning the Σd plane. Detectors are single photon counters based on silicon
avalanche diodes (Perkin Elmer SPCM-AGR-14). Detection events are timestamped with
a time-to-digital converter (IDQ TDC id800) with 81 ps time resolution. The measurement
of coincident pair events and the estimation of accidental events, as shown in Sec. 3.1.3,
allow to determine the background corrected G(2)(ρ1, ρ2).

A sample object aperture, the USAF resolution target is used. The pattern with 31.25 µm
slit width is used in the following. Correlation scans of the detectors are performed in one
dimension across the object’s slit pattern only. Fig. 6.3 shows the imaging result at dif-
ferent iris radii R. While panel (a) shows no resolution degradation but only the finite
correlation length of the SPDC source, see also Sec. 3.1.2, the other panels clearly show the
blurring due to widened PSF. The theoretical plot of panel (d) uses the imaging parameters
of (b), the SPDC light source correlation width determined in Sec. 3.1.3, and the correlation
function derived in Eq. (6.3).

In Fig. 6.4, the diagonals of Fig. 6.3(b) and (c) are compared to coherent illumination
at the same wavelength of 810 nm by replacing the two-photon source with a laser. In
Fig. 6.4(a), both light sources are able to resolve the slits, but SPDC shows higher visibility.
With an imaging lens of smaller iris and broader PSF in panel (b), the individual slits
are only resolved by two-photon light. These is expected due to the narrowing of the
PSF discussed above. The theoretical prediction of Eq. (6.3) is shown together with the
measurements.

Reconstruction results of IPNASB for our measurements with 1-D slit patterns are
shown in Fig. 6.5. In contrast to the intensity signal in panel (d), panel (a) of the cor-
responding reconstructed image shows full visibility of the slits. In comparison to the
indicated Rayleigh resolution (red lines), pixels of more than five times smaller size are
possible to be reconstructed. This is a clear indication of imaging in a super-resolution
regime.

Thermal Light Illumination

For near field imaging with thermal illumination, the setup of Fig. 6.2 is used. The light
source is fully introduced and characterized in Sec. 3.3. A coherent laser beam at 405 nm
is phase randomized using a rotating ground glass disk (GDD). Its far-field, obtained by
lens L2 ( f2 = 75 mm), is used for illuminating the object in plane Σ1. The resolution lim-
ited imaging is performed by lens L3 with a mounted adjustable iris. Using the distance
object and image distance so = 232 mm and si = 455 mm, a magnification of m = 1.96 is
established. A correlation length of 35 µm is determined in Σ1, see Sec. 3.3.
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FIGURE 6.3: Near-Field imaging of a double slit of 31.25 µm slit width using SPDC illumina-
tion. Only 1D correlation scans are performed. Rayleigh resolution is 5 µm (a), 32 µm (b, d)

and 43 µm (c). The theoretical prediction for (b) is shown in (d).
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FIGURE 6.4: Near-Field imaging of a 1D double slit of 31.25 µm slit width using SPDC and
coherent illumination at 810 nm. The diagonal G(2)(x, x) is depicted for SPDC. Rayleigh reso-
lution is 32 µm (a) and 43 µm (b). The two slits are only resolved by SPDC light in (b). Theory

curves are shown for the SPDC measurements.



6.2. Experimental Results 113

FIGURE 6.5: Reconstruction results from G(2) near-field measurements with SPDC illumina-
tion. The objects consist of 3 slits being 15.625 µm (a, b) and 31.25 µm (c) wide. One recon-
structed pixel corresponds to 4.35 µm (a, b) and 8.51 µm (c) in the object plane. Rayleigh
resolution is 13µm (a,d), 21 µm (b) and 32 µm (c) indicated by the red lines. Bars show the
reconstructed transmission function values. The dashed line corresponds to the expected ob-
ject. Vertical error bars (c) show the estimated reconstruction error caused by statistical noise.
The intensity distribution at the image plane for the object in (a) is shown in panel (d) for both

detectors and corresponds to incoherent imaging. (Image courtesy of IPNASB)
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(b)

FIGURE 6.6: Near-field imaging of a triple-slit object with 79 µm slit width using thermal light
illumination. The 1D second-order measurement (a) is used for object reconstruction in (b).
Classical Rayleigh resolution is 140 µm indicated by the red line. (Image courtesy of IPNASB)

For light detection, the SuperEllen sensor array introduced in Sec. 5.2 is used. It is
a 32×32 pixel array of single photon detectors of 44.67µm pixel pitch. By employing the
algorithm developed in Sec. 2.3.4, temporal coincident spatial correlation functions of high
order can be measured.

A triple-slit pattern with 79 µm slit width is used in Fig. 6.6 as object. By using an iris
of radius R = 0.3 mm, the Rayleigh resolution of 190 µm does not allow the easy identi-
fication of three slits in the measurement in Fig. 6.6(a). The reconstruction in Fig. 6.6(b)
successfully recovers the expected object features (dashed line).

An object aperture of digit 5 shape and a size of 275×475 µm is used for imaging.
Fig. 6.7 shows its measurement at different correlation orders. The uncorrelated back-
ground consisting of stray light and detector dark counts can be removed by the subtrac-
tion of G(1) at the according power. This is the reason why the image quality improves
from panel (a), where no such subtraction can be performed, to the other higher-order
measurements. Only correlation of pixels with itself, i.e. G(N)(ρ, . . . ρ), are visualized
for direct imaging illustration. As expected from theory, no increasing resolution with
N is present in this case of thermal light. Note however, that the shown figures are cuts
through high dimensional spaces available to a reconstruction algorithm.

Object reconstruction results for G(2) measurement at different PSF widths are shown
in Fig. 6.8. Again, pixels smaller than the indicated Rayleigh resolution are successfully
reconstructed and demonstrate the super-resolution regime. While data of higher order
correlation is available as shown in Fig. 6.7, the algorithm of IPNASB is not yet ready to
process these.

A direct comparison of imaging with a coherent, collimated laser beam and thermal
light, both at the same wavelength of 405 nm, is shown in Fig. 6.9. The resolution advan-
tage arising from the

√
2 improvement in PSF width as discussed in the theory section is

clearly visible.
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FIGURE 6.7: Near-field imaging with thermal light. Correlation orders N = 1 to 4 are shown
of the same measurement with imaging lens iris diameter R = 0.3 mm corresponding to a
Rayleigh resolution of 190 µm. Only the pixel self-correlations, i.e. ρ = ρ1 = . . . = ρN , are

visualized. Coordinates units are defined in the object plane.

(a) (b)

FIGURE 6.8: Reconstruction results for measured G(2) correlations using thermal illumina-
tion. One pixel corresponds to 22.7 µm in the object plane. Classical Rayleigh resolution is
114 µm (a) and 190 µm (b) indicated by the red line. Compare to the raw measurement of (b)

in Fig. 6.7(b). (Image courtesy of IPNASB)
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FIGURE 6.9: Near-field imaging with coherent (a) and thermal light (b) illumination at 405 nm.
The same imaging lens iris radius with corresponding Rayleigh resolution of 140 µm is used.

(a)

-2 0 2

x
1
 [mm]

-2

-1

0

1

2

x
2
 [

m
m

]

0

10

20

30

C
o
in

c
. 
[1

/s
]

(b)

-2 0 2

x
1
 [mm]

-2

-1

0

1

2
x

2
 [

m
m

]

0.2

0.4

0.6

0.8

1

C
o
in

c
. 
[a

.u
.]

FIGURE 6.10: Far-field imaging of a double slit of 111 µm slit width using SPDC two-photon
illumination in experiment (a) and theory (b). The correlation function is only measured in x

direction transverse to the slit pattern while y1 = y2 = 0 is fixed on the optical axis.

6.2.2 Far-Field Imaging

In the far-field imaging modality, a lens is used to obtain the far-field diffraction pattern of
the object. The iris for restricting the lens aperture is not used, i.e. fully open, as discussed
in the theory section.

Two-Photon Illumination

In the far-field configuration, the setup of Fig. 6.1 is slightly adapted: Lens L3 is changed
to focal length f3 = 500 mm and the object and detector distances so = si = f3 to establish
the far-field, see Sec. 2.1.5. Otherwise, the same light source and measurement is used as
for near-field imaging.

A measurement of the G(2) correlation function is shown in Fig. 6.10. A double slit
aperture with 111 µm slit width is imaged and shows the diffraction pattern on the diag-
onal. The theory in panel (b) is calculated with Eq. (6.9). As the two-photon correlation
length of 27.6 µm is much smaller than the slit width, the discussed limit of a thin is valid
and we therefore have a correlation function given by Eq. (6.11) showing the anti-diagonal
pattern.
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810 nm, coherent
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FIGURE 6.11: Far-field imaging of a double slit of 111 µm slit width using different light
sources. Spatially coherent laser illumination at 810 and 405 nm is used and its intensity dis-
tribution shown. For SPDC two-photon illumination at 810 nm, the coincidence rate G(2)(x, x)
(circles) is depicted with statistical 2σ errors. Theoretical curves for the classical sources are

shown.

FIGURE 6.12: Reconstruction of the object (a) and the diagonal of a far-field G(2) measurement
(b) with two-photon illumination. In (a), the used double slit is reconstructed in pixel 5 to 9.
The measurement in (b) shows the diffraction pattern of this reconstructed object shape (line).

(Image courtesy IPNASB)

Fig. 6.11 shows the far-field measurement of a double slit object using classical and
two-photon illumination. Two-photon illumination shows the expected narrowing of the
diffraction pattern corresponding to imaging at half the wavelength. A larger range of
transverse wave vector information is available by using two-photon illumination. The
theory curves show the diffraction pattern at the corresponding wavelength calculated
using Eq. (6.8). The deviations of the measurement from theory are partially due to non-
perfect object aperture, illumination wave fronts, and interference effects occurring in the
object aperture carrier glass.

A preliminary reconstruction of a double-slit object is demonstrated in Fig. 6.12. While
the main features of the double slit are clearly visible in pixels 5 to 9, some not expected
artifacts occur for pixel 1 to 4. Non-perfect light source characteristics or not modeled
aspects of the system seem the introduce these errors in reconstruction.
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FIGURE 6.13: Far-field imaging of a triple slit of 62.5 µm slit width using thermal light in
experiment (a) and theory (b). The second-order correlation function is only measured in x

direction orthogonal to the slit pattern while y1 = y2 = 0 is fixed on the optical axis.
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FIGURE 6.14: The third-order correlation G(3) for far-field imaging of a triple slit of 62.5 µm
slit width using thermal light in experiment (a) and theory (b). Background is removed. Only
the x direction orthogonal to the slit pattern is scanned while y1 = y2 = y3 = 0. A projection
of the G(3)(x1, x2, x3) 3D space is shown using coordinates ∆x2 = x2 − x1 and ∆x3 = x3 − x1.

Not measurable regions are visible.

Thermal Light Illumination

In the far-field configuration, the setup of Fig. 6.2 is slightly adapted: Lens L3 is changed
to focal length f3 = 200 mm and the object and detector distances so = si = f3 to establish
the far-field, see Sec. 2.1.5. Otherwise, the same light source and measurement is used as
for near-field imaging.

Fig. 6.13 shows the measured and theoretical ∆G(2) for a triple slit object of 62.5 µm slit
width. For theory, the correlation length lc = 35 µm determined in Sec. 3.3 and Eq. (6.12) is
used. The very good agreement to theory shows that the same advantage as demonstrated
in Fig. 6.11 for two-photon illumination is here realized with thermal light.

A projection of the third order correlation function of the far-field measurement with
the same triple slit object is visualized in Fig. 6.14. The chosen projection plane has a
normal vector (1, 1, 1) in the (x1, x2, x3) space. The coordinates ∆x2 = x2 − x1 and ∆x3 =
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FIGURE 6.15: Reconstruction of the triple slit of 62.5 µm slit width from a far-field G(3) mea-
surement using thermal light. The expected object (dashed line) is reconstructed in pixels of

13 µm width. (Image courtesy IPNASB)

x3 − x1 the projection. From the measured G(3)(ρ1, ρ2, ρ3), we get the visualized quantity

∆G(3)(∆x2, ∆x3) := ∑
ρ1,ρ2,ρ3

[∆x2 = x2 − x1 ∧ ∆x3 = x3 − x1 ∧ y1 = y2 = y3 = 0](
G(3)(ρ1, ρ2, ρ3)− G(1)(ρ1)G(1)(ρ2)G(1)(ρ3)

)
Here we used the Iverson bracket notation defined by: [x] = 1 if x is true, and [x] =
0 otherwise. Additional information beyond the second order correlation measurement
is potentially expected in this structure. A reconstruction based on the full third-order
correlation data is shown in Fig. 6.15. The triple-slit can be recovered with good agreement
to the expected pattern (dashed line) while it can be shown, that the classical far-field
measurement at the same wavelength would not allow for this detailed reconstruction.

6.3 Conclusion

We demonstrated in theory that the use of thermal and SPDC light for illumination brings
advantages in terms of spatial resolution of imaging if higher order correlations are mea-
sured in the image plane. This was shown to be the case for optimal light source, i.e. with
very small correlation length in the object plane, where the resolution improvement be-
comes explicit in the derived correlation functions available in a direct imaging scheme
without data processing. In the near-field case, imaging with incoherent light shows the
same resolution advantage of

√
2 as also shown for here used thermal and SPDC light by

the narrowing of the effective PSF [19]. For far-field imaging, twice a broader transverse
wave vector range is observable with both light sources.

Super-resolution object reconstruction was demonstrated in near- and far-field imag-
ing. These results are promising and verified the developed algorithm with real measure-
ment data. This allowed to spot before not modeled aspects like source inhomogeneities
relevant for reconstruction. While the higher dimensionality of the correlation functions
potentially carry more information than a simple intensity measurement, the ongoing
Fisher information analysis performed by IPNASB will have to show the advantage of
our approach over standard resolution improvement techniques, e.g. PSF deconvolution
[37], by comparing it to their fundamental quantum limits imposed by noise [35, 36].

The experimental results agree to the theoretical predictions within expected errors.
Only a minority of the performed experiments are shown. It is demonstrated that the
experimental acquisition of correlation functions is feasible using the results of Sec. 2.3.
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While for the thermal source the SuperEllen detector array is used, the low intensity of the
SPDC source required the use of standard detectors with coupled scanning fibers. These
show optimal detection efficiency (50% vs. 1%), optimal duty cycle (100% vs. 3%), and
no crosstalk. The overhead due to scanning, which is avoided in SuperEllen, does not
compensate for these drawbacks in second-order correlation measurements. Nevertheless,
the exponentially increasing scanning time with correlation order N would put SuperEllen
at an advantage already at moderate N. See also discussion in Ch. 5.

The SPDC two-photon illumination exhibits spatial entanglement, see Sec. 3.1. While
this leads to the coherent integral in near-field imaging of Eq. (6.3), an almost identical ex-
pression is gained for classically correlated photon pairs in Eq. (6.6). It is not expected that
this difference yields an advantage for object reconstruction. An arbitrary higher number
of classically correlated photons can be produced by a randomly scanning focused beam
of a classical light source. In this limit, the technique is related to standard scanning mi-
croscopy but where to scanning process is unknown and random. Measuring Nth-order
correlation functions, the resolutions advantage is

√
N as implemented in [126]. In order

to replace the time-consuming scanning, a non-Gaussian source of chaotic light is under
investigation would allow to generate higher numbers of correlated photons.

In far-field imaging with entangled photons, it can be shown that a classical source
emitting photon pairs in classically anti-correlated plane waves allows to measure a signal
similar to Eq. (6.11) but with lower visibility. By replacing the random process of emis-
sion direction with a scanning direction plane wave illumination, exactly the same signal
with not only two-fold but arbitrary larger observable wave vector spectrum is attainable
while only requiring intensity measurements. This technique is successfully employed in
Fourier ptychographic microscopy [127].

While entanglement is needed in the specific two-photon experiment to explain the far-
field observation by multi-photon interference effects, the mentioned classical schemes in
near- and far-field are equivalent alternatives and show that entanglement is not needed
in order to gain the object information with the discussed improvements.

For application in microscopy, the scaling of the imaging resolution with light source
parameters is of interest. If the physical advantages of narrowed PSF and broader wave
vector spectrum, demonstrated above to exist for optimal light source, are shown to be
of importance for object reconstruction, the following constraints have to be met: It can
be shown that photon correlation length (coherence length for thermal light) in the object
plane has to be smaller than the targeted resolution in order to achieve these advantages.
For imaging with high resolution below the wavelength, the illumination with these cor-
relation (coherence) lengths cannot be transmitted from a source to the object plane using
a standard imaging system as these lengths would be increased to the system’s resolution
limit. An alternative is the generation of light directly in the object plane. Then, the il-
lumination’s evanescent field contribution needed for the sub-wavelength correlation or
coherence length would allow to probe the object at this scale. Note, that for the ana-
lyzed low-resolution imaging systems with small lens apertures, the used scalar field and
paraxial approximations are justified, see also assumptions in Sec. 2.1. For high numerical
aperture lenses in microscopy, these break down. A vectorial field analysis has to show the
advantages in this limit, as performed in [13] for other resolution enhancement techniques.

The scaling of direct imaging resolution with entangled photon number N is shown to
be
√

N in near-field and N in far-field. Classically correlated photons show the same ad-
vantage in near-field and could provide resolution below the wavelength for high enough
photon numbers N as a consequence of the narrowing of the PSF. Again, this only applies if
sub-wavelength correlation lengths are realized in the object plane. Further enhancements
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of statistical nature with a different scaling in N may be found for the object reconstruc-
tion. For thermal light, direct imaging in near- and far-field does not yield improvements
at higher correlation order N > 2. Nevertheless, object reconstruction can potentially
show a scaling in N which will be quantified by the ongoing Fisher information analysis.

The above reported
√

N resolution improvement for near-field imaging is at the so
called standard quantum limit. As discussed, entanglement is not exploited and the same
measurement results are available with classical sources. The scaling can be explained by
a position averaging process and the central limit theorem of statistics, see also Sec. 7.6.4.
While this is the case for the here described application in microscopy, i.e. the measure-
ment of an object, the next chapter’s goal of generating super-resolved structures of light
will explicitly depend on spatial entanglement of photons.
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Chapter 7

Super-Resolution Quantum Imaging
at the Heisenberg Limit

Resolution improvements using quantum light is well-established in interferometric mea-
surements where path-entangled photon states, called NOON-states, show phase sensitiv-
ity increased by the number of entangled photons N [13]. The observed multi-photon in-
terference effects is characterized by λ/N, the de Broglie wavelength of the multi-photon
system in terms of the individual photon wavelength λ. A classical light source would
have to be at the de Broglie wavelength in order to reproduce the same fringe oscillation
period. This N-fold improvement is termed Heisenberg limit. In contrast to the standard
quantum limit with

√
N advantage, usually corresponding to a statistical averaging effect,

the Heisenberg limit requires non-classical correlations to be achieved.
Ch. 6 showed near-field imaging with a spatial resolution improvement of

√
2 at the

standard quantum limit using a two-photon source for illumination. As discussed, it is
possible to show that classical light sources allow to gain the same resolution, even for
higher photon numbers. The following work aims to exploit quantum entanglement of
two-photon states to demonstrate super-resolution at the Heisenberg. In the given exper-
imental conditions of a single-lens imaging system, it is possible to show that a classical
source of light would not allow for the theoretically described and experimentally verified
resolution.

To the best of our knowledge, this is the first quantum imaging experiment of object
features with full visibility and spatial resolution at the Heisenberg limit. The general
theoretical result demonstrates super-resolution for arbitrary photon number N and the
corresponding resolution improvement. Furthermore, it allows to study the mechanism
leading to the advantage and thereby unifies recent approaches to super-resolution imag-
ing. While the experimental scheme for N = 2, intended as exemplary demonstration of
the principle, may not have direct applications in imaging, it nevertheless shows the fun-
damental properties of quantum states of light which could be exploited in future work.
The here presented approach demonstrates the generation of these quantum states which
physically carry super-resolved structures at the Heisenberg limit. In contrast to schemes
for resolution improvement in microscopy which allow to recover information only, the
super-resolution is here physically realized. Thereby, this would allow for lithography at
the Heisenberg limit in contrast to other schemes aiming at super-resolution.

7.1 Preface

The seminal work by Tsang introduced the method of optical centroid measurement (OCM)
[42]. A N-photon state with wavelength λ of the individual photons is assumed. It is
shown, hat the centroid position of the photons X and the total transverse momentum K,
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defined by the single photon transverse positions ρk and wave vectors qk with

X :=
1
N

N

∑
k=1

ρk, K :=
N

∑
k=1

qk,

are conjugate variables. An imaging system limits the transmitted q spectrum by a finite
lens aperture or by the condition |q| < k = 2π/λ for propagating (non-evanescent) waves,
see also Sec. 2.1.4. This transmission bandwidth limit reduces the spatial resolution and
is imposed on every photon individually. Therefore, the total momentum K can achieve
N-times higher maximal values if all qk are correlated appropriately. This N-fold enlarged
K spectrum allows the N-fold increased spatial resolution in transmission of the centroid
position X and corresponds to the Heisenberg limit.

The fact that the variables X and K are conjugates of each other is equivalent to the
statement that a multi-photon wave function Λ(X) in position basis is the Fourier trans-
form of the corresponding wave function Λ̃(K) in wave vector basis. With the remark
above, an image encoded in the centroid distribution given by Λ(X) has therefore access
to Fourier components with N-fold higher magnitude than the transmission bandwidth of
single photons would allow. This motivates the form of the quantum state given by Λ(X)
which is put forward as an ansatz in Eq. (7.2) below.

The following sections show the manuscript released on arXiv [47]. The here presented
version features more experimental measurement results than the official manuscript.

Super-Resolution Quantum Imaging at the Heisenberg Limit

Manuel Unternährer,1 Bänz Bessire,1

Leonardo Gasparini,2 Matteo Perenzoni,2 and André Stefanov1

1Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland
2 Fondazione Bruno Kessler FBK, 38122 Trento, Italy

Abstract. Quantum imaging exploits the spatial correlations between photons to im-
age object features with a higher resolution than a corresponding classical light source
could achieve. Using a quantum correlated N-photon state, the method of optical centroid
measurement (OCM) was shown to exhibit a resolution enhancement by improving the
classical Rayleigh limit by a factor of 1/N. In this work, the theory of OCM is formu-
lated within the framework of an imaging formalism and is implemented in an exemplary
experiment by means of a conventional entangled photon pair source. The expected res-
olution enhancement of a factor of two is demonstrated. The here presented experiment
allows for producing arbitrary super-resolved spatial structures in the photon centroid in
single-shot operation without scanning or iteration. Photon detection is performed with a
newly developed integrated time-resolving detector array.

7.2 Introduction

In metrology, the optimal measurements of a parameter under restricted use of limited
measurement resources are studied [13, 128, 129]. Using N independent particles for prob-
ing a sample, the parameter estimation error is improved by 1/

√
N beyond what can be

achieved using a single particle, and is called standard quantum limit (SQL) [20]. It was
shown that the best possible measurement strategy with N particles is by using quantum
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correlated states. This leads to an 1/N improvement in estimation error [20], an optimum
which is called Heisenberg limit (HL) [21]. In the case of an interferometric parameter esti-
mation using photons, the multi-photon states at wavelength λ exhibit features described
by the de Broglie wavelength λ/N [22]. In imaging, i.e., the transmission of object shape
information to an image plane, the wavelength λ of the used illumination and the nu-
merical aperture (NA) of the imaging system determine the image resolution through the
Rayleigh resolution limit 1.22λ/NA [3]. Quantum imaging makes use of quantum states
of light to go beyond this limit [12]. Schemes such as ghost imaging [11, 13] or thermal light
imaging [11, 34] rely on classical correlations and therefore cannot achieve improvement
beyond the SQL. It has to be noted that in a standard imaging setup, only changing the il-
lumination to a spatially entangled light source, the SQL cannot be beaten [19, 32, 39, 126].
In order to reach the HL, specific schemes are to be designed. Using temporally shaped
classical light and nonlinear multi-photon absorbers systems for detection, measurement
at the HL was shown for interference fringes [130–132]. A scheme using monochromatic
quantum light for super-resolution lithography was proposed in [133, 134] which itera-
tively builds up in principle arbitrary structures.

Despite these advances, no actual imaging of object features at the HL has been per-
formed yet. One reason is the lack of N-photon transmitters. These are shown in [19]
to allow for imaging at the HL but can be omitted by preparing a quantum state which
would be fully transmitted by such a device, as realized in this work. Time-consuming
scanning or iteration in generation of the optical states to build up image structures in the
aforementioned schemes prevented their application. Our experimental implementation
of the state generation operates in a single-shot mode. Moreover, quantum imaging was
hindered by the low speed of correlations measurements using scanning single-pixel de-
vices. A recently developed integrated sub-nanosecond time-resolving 2-D detector array
allows for fast correlation measurements without scanning [46]. Furthermore, the detec-
tion efficiency is highly enhanced by the method of optical centroid measurement (OCM).

Tsang presented in [42] the OCM method and showed its ability to efficiently transmit
the centroid position of a monochromatic, spatially entangled N-photon state beyond the
Rayleigh diffraction limit. He theoretically showed that the resolution enhancement scales
with 1/N corresponding to the HL where the de Broglie wavelength λ/N determines
resolution. OCM was experimentally implemented in [40] for photon number N = 2 and
in [41] for N = 2 to 4. Both groups demonstrate super-resolution at the HL by measuring
oscillation periods of interference fringes of two plane waves.

In this work, the OCM method is used in an imaging setting where actual object fea-
tures instead of interference fringes are observed. The OCM theory is derived in an imag-
ing formalism. Moreover, coherent OCM imaging is implemented for photon number
N = 2, where an experimental setup is presented which allows to generate an entangled
biphoton state containing the super-resolved OCM image. In contrast to resolution en-
hancement techniques by image post-processing or correlation measurements in quantum
microscopy [13], the here generated quantum state of light physically carries spatial struc-
ture surpassing the Rayleigh limit. As a distinctive property to previous works, this would
allow for quantum lithography at the HL.

7.3 Theory

An object can be described by its transmission aperture function A(ρ) in transverse po-
sition coordinates ρ = (x, y). For a monochromatic, spatially coherent and uniform light
source at wavelength λ, the electric field after the object becomes E(ρ) ∝ A(ρ). The goal
of an imaging system is to reproduce the object field distribution in a distant plane where
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it can be measured or exposes a film. For a general imaging system, the field intensity in
the image plane reads

I(ρ) =
∣∣∣∣∫ d2ρ′ A(ρ′) h

( ρ

m
− ρ′

)∣∣∣∣2 =
∣∣∣(A ∗ h)

( ρ

m

)∣∣∣2 (7.1)

with magnification m and the point-spread function (PSF) h(ρ) being specific to that sys-
tem and used wavelength [3, 11]. A translation invariant PSF is assumed. Image resolu-
tion can be then defined by the width of the PSF and an optimal image is achieved with
h(ρ) = δ(2)(ρ).

In order to transmit with an imaging system object features below the size of its PSF,
i.e., the Rayleigh limit, Tsang proposed to replace the classical field distribution at the
object plane by quantum correlated multi-photon states [42]. From these results, an explicit
state can be constructed. For the case of a coherent image of the object A(ρ) and N photons
at wavelength λ, the OCM image state reads

|Ψ〉 =
∫

d2ρ1 . . . d2ρN A
(

ρ1 + . . . + ρN

N

)
|ρ1, . . . , ρN〉 (7.2)

in transverse positions of the photons ρ1, . . . , ρN . Introducing new coordinates simplifies
further analysis. The centroid position X and the deviations ξk are defined by

X :=
1
N

N

∑
k=1

ρk, ξk := ρk − X, k ∈ {1, . . . , N}.

Due to ∑k ξk = 0, the N-tuple (X, ξ1, . . . , ξN−1) forms a complete coordinate system. In
these coordinates, the quantum state encodes the image in the centroid position X. Notice
the infinite extension of the state in all ξk coordinates in this optimal case.

Propagating the electric field from the object plane through the imaging system, the
N-photon detection probability density in the image plane is given by the N-th order cor-
relation function [52]

G(N)(ρ1, . . . , ρN) =

∣∣∣∣∫ d2ρ′1 . . . d2ρ′N A
(
X ′
)

h
(ρ1

m
− ρ′1

)
. . . h

(ρN

m
− ρ′N

)∣∣∣∣2 .

A change to the coordinates X and ξk with k ∈ {1, . . . , N − 1} leads to

G(N)(X, ξ1, . . . , ξN−1) =

∣∣∣∣(A ∗ H)

(
X
m

)∣∣∣∣2 , (7.3)

where the centroid PSF is given by the N-times repeated self-convolution

H(X) = N2 (h ∗ . . . ∗ h︸ ︷︷ ︸
×N

)(NX) (7.4)

and determines the resolution of the image in the centroid coordinate X, see Sec. 7.6.1.
As formally explicit in comparison to Eq. (7.1), the image is formed coherently. With an
appropriate mixed state, an incoherent imaging variant is derived in Sec. 7.6.2. Summing
G(N) over the ξk coordinates in dependence of the X coordinate yields the 2-D image.
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In the following, we consider for the imaging system a single lens with a circular pupil
of radius R determining its NA and Rayleigh resolution limit. The PSF is then given by a
sombrero function h(ρ) = somb(2πR|ρ|/soλ) with the distance so from the object plane
to the lens [3, 11]. By assuming so � |ρ|2/λ for ρ in the object and detector area, the phase
exp(iπ|ρ|2/λso) appearing in the object plane for single lens imaging can be neglected.
This establishes the translation invariance of the PSF. Using Eq. (7.4), it can be shown that

H(X) = C somb
(

2πRN
soλ

|X|
)

, (7.5)

with an appropriate normalization constant C, see Sec. 7.6.1. The additional factor of N in
the argument reduces the width of the PSF, a spatial resolution enhancement correspond-
ing to a Heisenberg 1/N scaling in photon number N.

For discussing the mechanism of resolution enhancement, it is of value to determine
the photon correlations in the plane of the lens pupil. Assuming so to be large, correlations
in far-field can be considered. The OCM state of Eq. (7.2) in a far-field basis is given by

|Ψ〉 =
∫

d2q Ã (Nq) |q, . . . , q〉 (7.6)

where Ã(q) is the Fourier transform of A(ρ) in the transverse wave vector coordinate
q. This coordinate can be related to a position in the pupil plane by ρ = (soλ/2π)q in
paraxial approximation [3]. Strong position correlation is therefore present at the pupil.

7.4 Experiment

Our exemplary experiment generates an OCM state for photon number N = 2. With a
following low NA single lens imaging, its spatial resolution capability can be assessed
and compared to theory and classical light sources. The optical setup for the preparation
of the OCM state given in Eq. (7.2) with N = 2 is depicted in Fig. 7.1. An object aperture
A(ρ) is illuminated by a CW pump laser at 405 nm and 30 mW in the plane Σ′o. A 4-f
lens system, consisting of two lenses L1 and L2 of focal length f = 50 mm, images the
object to the preparation output plane Σo. In the far-field plane between the lenses, a 5 mm
long periodically poled KTiOPO4 nonlinear crystal (NLC) generates photon pairs in type-
0, frequency-degenerate, collinear spontaneous parametric down-conversion (SPDC). This
emission is spectrally filtered by a bandpass filter (BP) transmitting λ = 810± 5 nm.

Using the approximation of a thin crystal and a plane wave pump, the entangled
biphoton state in the output plane Σo is derived in [52] and is given by Eq. (7.2) for N = 2.
In the thick crystal case, it can be shown to read

|Ψ〉 =
∫

d2ρ1d2ρ2 A
(
−ρ1 + ρ2

2

)
sinc

(
∆k L

2

)
|ρ1, ρ2〉 (7.7)

with the NLC length L and wave vector mismatch ∆k(q1, q2) evaluated at qk = (2π/λ f )ρk,
k ∈ {1, 2}, see full derivation in Sec. 7.6.3. The mentioned infinite extension of the ideal
OCM state in Eq. (7.2) is here restricted by the dependence of this phase-matching function
on ξ1 = (ρ1 − ρ2)/2.

The resolution limited imaging is performed from Σo to the image plane Σi with the
lens L3 of 250 mm focal length at a distance so = 355 mm between Σo and the lens. With
the given detector and object sizes, the assumption of a large so in the theory section is
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FIGURE 7.1: The optical setup consisting of OCM state preparation and single-lens imaging
(right). A 405 nm laser source illuminates an object in the plane Σ′o. 4-f imaging from Σ′o
to the output plane Σo is performed by the lenses L1 and L2. The non-linear crystal (NLC)
in the central far-field plane produces photon pairs in SPDC. A bandpass filter (BP) transmits
810 nm. The actual imaging under investigation is performed by the lens L3 from output plane
Σo to image plane Σi. L3 is equipped with a circular pupil to reduce its NA and therefore
the resolution of the imaging system. The 2-D detector array D measures spatial biphoton

correlations.

valid. A magnification of m = 2.4 is measured. A circular pupil of radius R = 1.38 mm in
front of the lens limits the NA.

For resolution comparison, the classical light sources are spatially coherent, monochro-
matic illumination at 405 nm and 810 nm, as well as spatially incoherent light at 810 nm.
The former are implemented using collimated lasers, the latter by a halogen incandescent
lamp spectrally filtered at 810± 5 nm. For imaging with classical light, the setup of Fig. 7.1
is used unaltered and allows comparison with otherwise identical parameters.

The newly developed detector used in the image plane Σi is an integrated, fully digital
32×32 pixel sensor array with single-photon sensitivity manufactured in CMOS technol-
ogy [46]. The size of the pixel being smaller than the PSF of the optical system is thus
not limiting the resolution. This device contains for every pixel a dedicated time-to-digital
converter which timestamps the first detection event at 205 ps resolution in a frame of
45 ns duration. At an observation rate of 800 kHz, a measurement duty-cycle of 3.6% is
achieved. The photon detection efficiency reaches 5% at 400 nm and 0.8% at 810 nm. Cov-
ering a sensitive region of 1.4 × 1.4 mm2, the sensor is capable of efficiently measuring
second-order correlation functions similarly to its predecessor presented in [43]. Despite
these type of devices exist since 2009 [46], their use in quantum optics applications were
limited by low fill-factor (1-5%). Only recently it was possible to achieve 19.48% allow-
ing useful detection efficiencies [46]. For this work, a coincidence window of 1 ns is used
where accidental events including all dark counts can be measured and removed.

In Fig. 7.2(a–e), a 200× 300 µm object aperture is imaged at low NA values with differ-
ent light sources. In the case of OCM, the measurement of the full second-order correlation
function of Eq. (7.3) yields the image of Fig. 7.2(a) by summing over ξ1. This introduces
a vignetting effect in the resulting image due to the finite sensor size which acquires a
broader range of ξ1 values in the image center than at the edges. It can be avoided by
averaging instead of summing over the available ξ1 values but leads to higher statistical
noise at the edges, see Fig. 7.2(e). Because the image is encoded in the centroid position,
the image can be reconstructed at half-pixel precision leading to 63 × 63 pixels images
acquired by the 32×32 pixels sensor. In order to suppress detector crosstalk between ad-
jacent pixels, only events with |ξ1| > 1 pixel are considered. A measurement time of one
hour is used for the high NA in Fig. 7.2(f), while ten hours is used at low NA in Fig. 7.2(a).

For a more objective comparison, cross-sections of a triple-slit object of 70µm line width
imaged at low NA are shown in Fig. 7.3. OCM imaging resolution surpasses coherent and
incoherent light at 810 nm and shows practically identical resolution as 405 nm. Imaging
a point of 25 µm Gaussian waist radius realized by focussing the pump laser and classi-
cal light sources in the object plane Σ′o, the PSF of the single lens imaging at low NA is
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(a) OCM 810 nm (b) 810 nm
0
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(c) 405 nm

(d) 810 nm, incoherent (e) OCM 810 nm, no vi-
gnetting
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(f) OCM 810 nm, high NA

FIGURE 7.2: Imaging of an object using a single lens with different illumination light sources.
Low NA is used in (a–e) to demonstrate the wavelength dependence of resolution. Spatially
coherent laser illumination is used in (b) and (c). The region of 1.4× 1.4 mm2 is acquired by a
32× 32 pixels sensor. Biphoton OCM yields images at half-pixels and achieves a comparable
image resolution at 810 nm as a coherent light at 405 nm. The vignetting effect in image (a) is

removed in (e). For reference, an OCM image at high NA is shown in (f).

compared in Fig. 7.4. The theoretical curves for classical imaging are given by Eq. (7.1)
and the classical PSF of Eq. (7.5) with N = 1. Classically correlated photons pairs of OCM
type would produce a centroid PSF |H(X)|2 = (|h|2 ∗ |h|2)(2X) derivable analogously to
Eq. (7.4), see Sec. 7.6.4. This distribution is shown for comparison (dashed line) and scales
at the SQL. This limit is clearly beaten by the OCM PSF and thereby verifies the quantum
correlation nature of the enhancement.

With the full measurement of the correlation function in Eq. (7.3), spatial correlations
of the OCM state can be analyzed. A double-slit of 200 µm line width is used as object.
The OCM state shows in Fig. 7.5(a) position correlations along the x-direction orthogonal
to the slits. This can be understood in terms of a 1-D version of Eq. (7.3) with N = 2, where
the image is encoded in the centroid X (diagonal) and independence in ξ1 (anti-diagonal)
is present. Both inner slit edges and the central dark separation are visible, vignetted by
the pump beam shape. Replacing the imaging lens by a far-field lens of 400 mm focal
length placed in this distance in front of the detector, far-field correlations of Fig. 7.5(b) are
measured. Strong position correlations are observed in agreement with Eq. (7.6). Further-
more, comparing the diagonal of this biphoton diffraction pattern to a measurement with
coherent light at 405 nm in Fig. 7.5(c) yields almost identical results, confirming the theo-
retically predicted relevance of the twice smaller de Broglie wavelength. A related result
was obtained in [17].
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FIGURE 7.3: A triple-slit object of 70 µm line width (a) is used for resolution comparison. (b)
shows cross-sections of images at low NA using biphoton OCM at 810 nm (orange crosses),
spatially coherent illumination at 810 nm (red squares) and 405 nm (blue circles), and incoher-
ent light at 810 nm (violet diamonds). OCM shows an advantage which is practically identical

to the double resolution given with 405 nm.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

te
 [

a
.u

.]

OCM 810 nm

405 nm

810 nm

classical limit

FIGURE 7.4: Projection of the PSF of low NA single lens imaging at different light sources.
Measurements with coherent light at 810 nm (red squares) and 405 nm (blue circles) are shown
with their theoretical curves. The biphoton OCM PSF at 810 nm (orange dots) closely agrees
with 405 nm and confirms its doubled resolution. Statistical 2σ errors are shown. The OCM
PSF surpasses a theoretical, SQL-scaling PSF of the centroid of two classically correlated pho-

tons at 810 nm (dashed line).
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(a) Near-Field Correlations
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(b) Far-Field Correlations
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FIGURE 7.5: The biphoton OCM state of a double-slit is analyzed in near- and far-field for
position-correlations in x-direction orthogonal to the lines. The high NA near-field measure-
ment in (a) shows the image features on the diagonals and thereby in the centroid position. In
far-field (b), strong correlation is observed. (c) shows the diagonal of this OCM diffraction pat-
tern (orange crosses) and the expected narrowing down to the width produced with coherent

light at 405 nm (blue circles). The theoretical curve for the latter is shown.

7.5 Discussion

The mechanism giving rise to the super-resolution can be understood by considering the
far-field correlations of the OCM state. As evident in Eq. (7.6), it shows strong wave vector
correlations or, equivalently, position correlations in the pupil plane. This situation can
be regarded as a multi-mode NOON-state emanating from the lens and propagating to
the image plane. As shown in [40, 41] for two-mode NOON states, this leads to N-times
narrower multi-photon interference fringes in the image plane. The here presented multi-
mode case allows to build up an image by the coherent superposition of such fringes of
different directions and sizes.

With the current SPDC sources of entangled photons, the here presented method of
generating the OCM state is the most efficient. To avoid the separation between state
generation and imaging, a thin NLC could be placed directly at the imaging lens covering
the full pupil area at the price, however, of lower efficiency. For reaching larger photon
number N, higher order non-linear effects should be used [135].

Furthermore, the non-linearity needed to generate entanglement could in principle
take place in the optical setup instead of the source. For instance, as previously men-
tioned, super-resolution can be achieved by using a spatially correlated light source for
illuminating the object and using a N-photon transmitter (NPT) in front of the imaging
lens [19]. Such devices would transmit spatially correlated N-photon states only, main-
taining the N-photon coherence. Effectively, this filtering projects the incoming state to
Eq. (7.6) or its incoherent imaging analogue and would therefore create an OCM state in
the image plane. This general principle can be extended to an optical system of many
lenses, where a NPT is placed at every lens. Intuitively, this mimics the propagation of a
single photon of the de Broglie wavelength by forcing all N photons to stay together and
tracing the same paths. As efficient NPT are yet not practically available, another approach
was proposed in [11] for N = 2. The object is illuminated by spatially correlated biphoton
light. Ultra-fast temporal quantum correlations of the pair is used through their relative
time-of-arrival in the image plane to post-select on correlated positions on the lens pupil,
where both photon take the same path, thus enabling resolution at the HL. It still has to be
analyzed how temporal and spatial resolution are related and how to extend this scheme
to higher N.

For an imaging system with a number of transmitted modes m [35, 36], the expected
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dimension of the Hilbert space of a transmitted N-photon state is mN . While this corre-
sponds to the information, i.e. number of orthogonal states that could be conveyed, OCM
imaging only uses Nm modes. The reason for this is given by the fact, that in the OCM
result only the correlations in the centroid are relevant and all other degrees of freedom
Ξk are neglected and traced out. This is a natural choice if lithography is targeted where a
multi-photon absorber is sensitive to spatial coincident events and not to long range cor-
relations. But from an information theoretic point of view, the larger Hilbert space allows
in principle for even more transmitted information.

In conclusion, our theoretical and experimental results demonstrate the possibility to
engineer quantum states of light which physically carry super-resolved spatial structure
at the HL. This is investigated in low NA single-lens imaging, where spatial resolution is
compared across different light sources. The OCM biphoton state shows an enhancement
close to a factor of two corresponding to a Rayleigh resolution at its de Broglie wavelength.
For high NA systems, where the classical resolution is mainly limited by the wavelength,
or for higher photon number N, theory suggests the possibility to see sub-wavelength
features. A full vectorial field analysis in contrast to the scalar approximations has yet to
show the advantage in this limit.

The results presented here were made possible by the development of an integrated
single-photon detector array; although the present device has non-optimal detection effi-
ciency at the used wavelength. By optimizing the design and increasing the numbers of
pixel, CMOS detectors will certainly be a key components of any future applications in the
field of quantum imaging.

As elaborated by Tsang in [42] and shown here, the image acquisition efficiency of the
OCM correlations is very high due to the fact that every N-photon event carries image in-
formation. In the case of an N-photon absorbing film in lithography, where only spatially
coincident events (ξk = 0, k ∈ {1, . . . , N}) are registered, the image would be reproduced
at N-fold resolution but at an efficiency which is expected to drop exponentially with N
[19]. Efficiency can be gained by loosening the condition of strong correlation in far-field.
An analysis of resolution and efficiency versus correlation length and photon number has
yet to be performed.

The here developed theory is general and allows for different experimental realiza-
tions. As a concrete example, the presented biphoton experiment serves as a proof-of-
concept, clearly agreeing to the theory and showing the advantage over classical light
sources. Moreover, by unifying the understanding of recent results aiming at super-resol-
ution at the HL, it might stimulate new paths of research.

7.6 Supplementary Material

This section provided together with the main manuscript of the last sections as supple-
mentary material.

7.6.1 Derivation of the OCM Imaging Equation

This section provides a step-by-step derivation of Eq. (7.3) and (7.4). Starting from the
N-th order correlation function in the image plane

G(N)(ρ1, ..., ρN) =

∣∣∣∣∫ d2ρ′1 . . . d2ρ′N A
(

ρ′1 + . . . + ρ′N
N

)
h
(ρ1

m
− ρ′1

)
. . . h

(ρN

m
− ρ′N

)∣∣∣∣2 ,
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where the simplification of setting the magnification to m = 1 does not limit the generality
of the following result. A coordinate change to the centroid and deviation variables

X =
1
N

N

∑
k=1

ρk, ξk = ρk − X, k ∈ {1, . . . , N},

yields for the integral in the modulus

N2
∫

d2X ′d2ξ′1 . . . d2ξ′N−1 A
(
X ′
)

h
(
X + ξ1 − (X ′ + ξ′1)

)
. . . h

(
X + ξN − (X ′ + ξ′N)

)
.

The Jacobian determinant of this coordinate transformation can be readily shown to be
|det J| = |det Jx| · |det Jy| = N2 and is present as a prefactor. By a change of variables to
ξ′′k = ξk − ξ′k, we get∫

d2X ′A
(
X ′
) (

N2
∫

d2ξ′′1 . . . d2ξ′′N−1 h
(
ξ′′1 + X − X ′

)
. . . h

(
ξ′′N + X − X ′

))
.

The term in parentheses is a function H(X − X ′) and serves as an effective OCM PSF.
Therefore

H(X) = N2
∫

d2ξ1h(ξ1 + X) . . .
∫

d2ξN−1 h(ξN−1 + X) h (ξN + X) .

Due to ∑k ξk = 0 we can infer ξN = −∑N−1
k=1 ξk. By defining the notation h∗k := (h ∗ . . . ∗ h)

for the k-times repeated self-convolution of a function h = h∗1, we can deduce

H(X) = N2
∫

d2ξ1 h(ξ1 + X) . . .
∫

d2ξN−1 h(ξN−1 + X) h

(
X −

N−1

∑
k=1

ξk

)

= N2
∫

d2ξ1 h(ξ1 + X) . . .
∫

d2ξ′N−1 h(ξ′N−1) h

(
2X −

N−2

∑
k=1

ξk − ξ′N−1

)
︸ ︷︷ ︸

h∗2(2X−∑N−2
k=1 ξk)

= N2
∫

d2ξ1 h(ξ1 + X) . . .
∫

d2ξN−2 h(ξN−2 + X) h∗2
(

2X −
N−2

∑
k=1

ξk

)
= . . . = N2

∫
d2ξ1 h(ξ1 + X) h∗(N−1) ((N − 1)X − ξ1)

= N2 h∗N(NX) (7.8)

This is the result of Eq. (7.4). The OCM PSF can be written as N-times repeated self-
convolution of the PSF h(ρ) of the optical system. For a general magnification factor m,
we have therefore derived

G(N)(X, ξ1, . . . , ξN−1) =

∣∣∣∣∫ d2X ′ A
(
X ′
)

H
(

X
m
− X ′

)∣∣∣∣2 =

∣∣∣∣(A ∗ H)

(
X
m

)∣∣∣∣2 .

For the single lens PSF h(ρ) = somb(2πR|ρ|/soλ), the result of Eq. (7.8) yields

H(X) = C somb
(

2πRN
soλ

|X|
)
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and can be understood in terms of a Fourier transform version of Eq. (7.8). With the Fourier
transform h̃(q) of h(ρ) in transverse wave vector coordinates q, Eq. (7.8) is equivalent to

H(X) =
N2

(2π)2

∫
d2q

(
h̃(q)

)N eiNq·X .

As h̃(q) is given by the lens pupil function [3], any power of it is of unity transmission
amplitude within its circular region. This results in a N-times narrower but otherwise
equal PSF as for classical imaging. Note that for a Gaussian pupil function (apodization),
the centroid PSF narrows only with 1/

√
N, corresponding to the SQL.

7.6.2 Incoherent OCM Imaging

The OCM state of Eq. (7.2) with a sharp centroid position at location X0 can be gained by
replacing A(ρ)→ Ax(X) = δ(2)(X − X0). This state shall be denoted by

|ΨX0〉 =
∫

d2ρ1 . . . d2ρN δ(2)
(

ρ1 + . . . + ρN

N
− X0

)
|ρ1, . . . , ρN〉 .

For an object aperture function A(ρ), the mixed state given by the density operator

ρ̂ =
∫

d2X |A(X)|2 |ΨX〉 〈ΨX |

contains an incoherent image. It is straightforward to show using the results of sec-
tion 7.6.1 that with this mixed state as an input in plane Σo of setup in Fig. 7.1, the cor-
relation function in Σi will read

G(N)(X, ξ1, . . . , ξN−1) =
∫

d2X ′
∣∣∣∣ A

(
X ′
)

H
(

X
m
− X ′

)∣∣∣∣2 = (|A|2 ∗ |H|2)
(

X
m

)
.

This is formally analogues to classical incoherent imaging. The image is formed point-by-
point, no interferences can occur.

This imaging could be realized in our experimental implementation by focusing the
pump beam in the object plane Σ′o and randomly scanning over the aperture. This classical
randomness would produce the mixed state described above. Tsang proposed in [42] such
a scheme using a quantum “laser pointer” to build up an image incoherently at super-
resolution. A disadvantage is that the single-shot property of the state generation would
be lost in such an approach.

7.6.3 OCM State Generation using SPDC

This section derives Eq. (7.7), the biphoton state at the output plane of the state prepa-
ration. Assuming narrow-band pumping and fixed detection wavelengths realized by
spectral filtering, the generated biphoton state at the central plane of the NLC reads

|Ψ〉 =
∫

d2qsd2qi Ẽp (qs + qi) sinc
(

∆k L
2

)
|qs, ωs〉 |qi, ωi〉 (7.9)

in transverse wavevector coordinates qs and qi for the signal and idler photon at their
corresponding angular frequencies ωs and ωi, and the pump field distribution Ẽp(q) at
angular frequency ωp [58]. Energy conservation imposes ωp = ωs + ωi. The wavevector
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mismatch

∆k =

√(ωs

c
n(ωs)

)2
− q2

s +

√(ωi

c
n(ωi)

)2
− q2

i

−

√(
ωs + ωi

c
n(ωs + ωi)

)2

− (qs + qi)2 +
2π

G

where c is the speed of light and the refractive index n(ω) of the crystal is given by its
temperature dependant Sellmeier equations. The NLC poling period G is fixed at its fabri-
cation and is chosen to achieve ∆k = 0 at the used wavelengths and for collinear emission
q = 0.

Let the function Eo(ρ) define the electric field distribution of the monochromatic pump
of angular frequency ωp in the object plane Σ′o of Fig. 7.1. Propagating it through the first
lens of focal length f to the center of the crystal, the far-field plane relative to Σ′o, the
field distribution is given by Ep(ρ) = Ẽo

(
ωpρ/c f

)
with the Fourier transform Ẽo(q) =∫

dρ Eo(ρ) e−iqρ [3]. Therefore, this pump field incident on the NLC has a Fourier trans-
form of

Ẽp(q) = Eo

(
− c f

ωp
q
)

(7.10)

and can be inserted in Eq. (7.9).
The SPDC state has to be propagated from the NLC through the lens of focal length f

to the output plane Σo. The latter is the far-field plane relative to the NLC central plane.
Plane waves of transversal wavevector q emitted by the NLC are focused to a location
ρ = c f

ω q [3]. Formally, the state propagation can be performed by the transformation
|q, ω〉 → | c f

ω q = ρ, ω〉. Using Eq. (7.10) and Eq. (7.9), we get

|Ψ〉 =
∫

d2ρsd2ρi Eo

(
−ωsρs + ωiρi

ωs + ωi

)
sinc

(
∆k L

2

)
|ρs, ωs〉 |ρi, ωi〉 (7.11)

where ∆k is evaluated at qk = (ωk/c f )ρk, k ∈ {s, i}. For frequency degenerated emission
with ωs = ωi =

1
2 ωp, the biphoton state in the preparation output plane Σo reads

|Ψ〉 =
∫

d2ρsd2ρi Eo

(
−ρs + ρi

2

)
sinc

(
∆k L

2

)
|ρs, 1

2 ωp〉 |ρi, 1
2 ωp〉 .

Finally, uniformly illuminating an object aperture A(ρ) in the plane Σ′o yields Eo(ρ) =
A(ρ).

Eq. (7.11) shows the necessity to filter for frequency degenerate emission in order to
properly reconstruct the image with the centroid. Broadband emission could be conceived
if the detection provides spectral information.

7.6.4 Standard Quantum Limit of Classically Correlated Photons

This section derives a centroid PSF for classically correlated photons with no entanglement
and shows its behaviour at large photon number N. For simplicity, we set first N = 2.
Assuming OCM-like correlations for a point object, in the object plane these are modelled
by a classical, multi-variate probability density function

po(ρ1, ρ2) = δ(2)(ρ1 + ρ2).
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Propagating the photons through the resolution limited imaging system, the process of
blurring by the PSF can be described by adding a random variable N to their original
positions in the object plane

ρk → ρk + Nk, k ∈ {1, 2}.

As both photons are affected by the PSF independently, a separate random spread term
is needed for each. Their probability density function is given by the PSF of the imaging
system with PNk(N) = |h(N)|2. Using elementary statistics, we get for the probability
density in the image plane

pi(ρ1, ρ2) =
∫

d2ρ′1d2ρ′2 po(ρ1, ρ2) |h(ρ1 − ρ′1)|2 |h(ρ2 − ρ′2)|2

=
(
|h|2 ∗ |h|2

)
(ρ1 + ρ2).

This is formally equivalent to independent, incoherent imaging of the photons and there-
fore validates the statistical model assumed. Using ρ− = 1

2 (ρ1 − ρ2), the centroid random
variable Xi in the image plane has a probability density function

PXi(X) =
∫

d2ρ− pi(X + ρ−, X − ρ−) =
∫

d2ρ−
(
|h|2 ∗ |h|2

)
(2X) ∝

(
|h|2 ∗ |h|2

)
(2X).

Generalizing to a classically correlated N-photon state, on can use the fact that the
centroid random variable in the image plane is

Xi =
1
N

(
N

∑
k=1

ρk + Nk

)
.

With the OCM property ∑N
k=1 ρk = 0 of a point object at the origin, we can conclude that

the probability distribution of Xi is given by the sum of N independent noise sources and
reads

PXi(X) =
(
|h|2
)∗N

(NX) (7.12)

using the self-convolution notation from Sec. 7.6.1. This is the PSF of classical OCM imag-
ing and the optimum for any imaging using classically correlated photons.

Because the noise terms are independent, identically distributed random variables, we
can apply the central limit theorem of probability theory. This says, that the probability
density of Eq. (7.12) converges in the limit of large N to a normal distribution

PXi(X)
N→∞−−−→ 1√

2πσ2/N
e−

X2

2σ2/N

with the standard deviation σ of the imaging system PSF |h(ρ)|2. The asymptotic 1/
√

N
decrease in width indicates a resolution enhancement at the SQL.
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Chapter 8

Conclusion

In the thesis, we introduced a novel kind of light detector array with many potential appli-
cations (Chapter 5). Its capability to measure in parallel on hundreds of pixels with single
photon sensitivity and sub-nanosecond time resolution distinguishes it from present de-
tector solutions. In the quantum imaging experiments (Chapter 5, 6 and 7), it showed its
advantage over scanning measurements by fast data acquisition in experiments. Real-time
visualization of the signal considerably simplified setup alignment. The time resolution
allowed to establish a short coincidence window and to thereby keep accidental events at
a minimum. Due to the limited photon detection efficiency at the given source wavelength
and moderate measurement duty cycle of the presented detectors, the advantage of par-
allel measurement nearly vanishes for low correlation order. Crosstalk does not allow to
measure weak, spatially correlated sources. For a next-generation sensor with higher de-
tection efficiency, these drawbacks have to be addressed in order to become a competitive
tool for correlation measurement. Nevertheless, other applications than quantum imag-
ing with less strict requirements on efficiency could already benefit from the very distinct
features of the sensor.

The measurement of Glauber’s correlation functions is theoretically worked out (Chap-
ter 2) and implemented for these new detectors. Experimental results for well known
sources validate the data processing (Chapter 4, 5 and 6). The theoretical results and algo-
rithms are general and can also be used for future detector generations and thereby pave
the way for their application in quantum experiments.

The super-resolution quantum imaging experiments successfully showed the theoret-
ically expected improvements (Chapter 6). Preliminary results confirm the reconstruction
algorithm which operates on measured higher-order correlation functions. However, a
statistical analysis of this approach has yet to prove the superiority to standard recon-
struction schemes. The scaling of the results to high-resolution microscopy applications is
not straightforward and requires further investigation of appropriate light sources. As dis-
cussed, the weak quantum light sources do not show fundamental advantages and could
be replaced by classical measurement and illumination techniques.

The theoretical and experimental results on quantum imaging at the Heisenberg limit
allowed to investigate the mechanism of resolution improvement based on entanglement
(Chapter 7). Furthermore, they unified the understanding of other recent works aiming
for imaging at the HL. It showed the possibility to generate quantum states of light which
carry spatial structure beyond the diffraction limit. In contrast to microscopy techniques
for resolution improvement which are based on data post-processing, the here presented
scheme physically realizes the super-resolved structure and would allow for quantum
lithography at the HL.

Three different light sources were implemented and characterized (Chapter 3). They
were used throughout this thesis for sensor test and in quantum experiments (Chapter 4,
5, 6 and 7). The documentation together with the appropriate measurement apparatus and
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data evaluation software developed in this thesis makes them ready to be used for future
experiments.

The results suggest a fundamental distinction between microscopy and lithography.
The former has the goal to gain information about the structure of an object through the
measurement of light. The amount of object information carried by light in microscopy is
mainly a statistical question: Without noise, arbitrary resolution improvement would be
attainable in reconstruction even with a classical light source [35, 36]. Quantum or corre-
lated light sources might yield an advantage under the assumption of the restricted use
of resources, e.g. the number of photons, as quantified in metrology. Whether this poten-
tially better scaling in the number of resources is really relevant in practical applications is
a different question as classical states of light are much more robust and easier to generate
and detect.

In contrast to microscopy, a lithographic scheme requires a specific spatial structure of
light with highest possible visibility, i.e. no background, for film exposure. This physical
realization is diffraction limited: In a given imaging system, the finite number of spatial
modes with sufficient transmission amplitudes fundamentally limit the complexity of the
image structure, e.g. in terms of the number of distinct pixels which are possible to be
exposed individually [35, 36]. As intuitively obvious, several independent photons allow
by their modal correlation to encode more information than a single photon. Indeed, clas-
sically correlated multi-photon sources were here shown to yield arbitrary resolution im-
provement with full visibility at the SQL. Entanglement of multi-photon states is demon-
strated to transmit super-resolved structures in photon correlations at full visibility and at
the HL in Ch. 7. While thermal light would allow mimicking this result for two entangled
photons [122], it only shows 50% visibility and does not generalize to higher photon num-
bers. Therefore, the benefit of using entangled states for lithography is the full visibility
and the scaling at the HL.

As proposed in Ch. 7, the availability of N-photon transmitters (NPT) would allow us-
ing the OCM result in a microscopy application by using classically correlated N-photon
state for illumination and an NPT in front of the imaging lens. Then, a centroid mea-
surement or, with less efficiency, a spatial coincidence measurement would yield the HL
super-resolved image. It is doubtful whether this apparent improvement really is advanta-
geous in microscopy from a metrological perspective: The NPT filters the joint transverse
wave vector spectrum for strong wave vector correlation and thereby makes the improved
image information available in the simple centroid measurement. In an otherwise equal
experiment but without an NPT, the same information, i.e. the same range of transverse
wave vectors, is present in the joint electric field distribution in the image plane [32, 125].
In this case, we have therefore measurement access to the same and even to additional
regions in the joint wave vector space of the photons. Using an appropriate measurement
and computational methods for image reconstruction, a better image is achievable for a
given number of emitted photons than with the centroid and NPTs! Entanglement, here
generated by the NPT, seems again only to be beneficial for super-resolution lithography
but not microscopy.

In which situations and for what measurements quantum light is superior to classical
light is, in general, an open question. Many quantum experiments were later shown to
be realizable with classical light. Nevertheless, some of these quantum inspired methods
and techniques bring advantages and are used in applications. Thereby, quantum theory
brings insights even into the classical domain. Following this path of research might turn
out fruitful, even in the absence of pure quantum effects. Future work will have to show
whether this proves true for super-resolution quantum microscopy.
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Appendix A

Derivation of Sampling Space
Volume

In the following, the analytic expression for the sampling space volume of the temporally
coincident spatial correlation function, given in Eq. (2.42) and discussed in Sec. 2.3.4, is
derived.

First, we calculate the sampling space volume in the time interval t = 1, . . . , T only
restricted by the measurable region

Vm(m(N), T) :=
T

∑
t1=1
· · ·

T

∑
tN=1

Θmeas.(x(N))

as given in Eq. (2.41). The function indicating measurable space Θmeas., defined in Eq. (2.37),
yields 1 if all space-time points in x(N) are different and vanishes otherwise.

Spatial multiplicities m(N) are given as input. Without loss of generality, we can assume
that positions are ordered such that ρ1 = . . . = ρm1 for the first group of multiplicity m1
and all the others following accordingly. By summing only over the space of t values
which do not lead to a collision and to a vanishing Θmeas., we can write

Vm(m(N), T) =

 T

∑
t1 6=... 6=tm1

1

 T

∑
tm1+1 6=... 6=tm1+m2

1

 . . .

The individual sums are easily evaluated by elementary combinatorics: For the first group
m1, the sum is given by the number of sorted arrangements of m1 elements from the set
{1, . . . , T}. As this is given by T!/(T −m1)!, we can write the result of Eq. (2.41)

Vm(m(N), T) =
N

∏
k=1

T!
(T −mk)!

=
N

∏
k=1

mk

∏
l=1

(T − l + 1). (A.1)

The full sampling space volume in a frame of duration TF, the number of frames NF,
and using a coincidence window Tc is defined in Eq. (2.40) with

V(p(N)) = NF

TF

∑
t1=1
· · ·

TF

∑
tN=1

ΘTc(t
(N)) Θmeas.(x(N))

The sum is over the space of TN
F points is restricted by the measurable space given by

Θmeas. and further narrowed by the coincidence condition by ΘTc defined in Eq. (2.36).
An illustration of the temporal space for a second-order measurement for a single

frame is shown in Fig. A.1. The total sampled space going into the coincidence signal
is shown by colored squares. If the same position is considered, i.e. the same pixel and
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t1

t2

TF1 Tc

TF

1

Tc
Tc+1

FIGURE A.1: Illustration of temporal space sampling in spatial second-order correlation using
a coincidence window Tc. Time is measured in integer units and the frame duration is TF. The
sampling space volume is given by the colored squares. A subset of the total measurable space
does not contribute due to the coincidence requirement imposed by ΘTc (white squares). In
case of two identical pixels, the according spatial multiplicity m = 2 leads to non-measurable

space on the diagonal (light colored squares).

therefore spatial multiplicity m = 2, Θmeas. removes the diagonals (light colored squares).
Furthermore, ΘTc removes temporal events with too large separation (white squares).

Independent of the multiplicity, the green space can be quantified with the result from
above by Vm(m(N), Tc). The red space is therefore given by

Vm(m(N), Tc + 1)−Vm(m(N), Tc).

Due to the fact that the blue area is a replication of the red area, we get for the blue area a
volume of

(TF − Tc − 1)
(

Vm(m(N), Tc + 1)−Vm(m(N), Tc)
)

.

The total space of all colors is therefore

Vm(m(N), Tc) + (TF − Tc)
(

Vm(m(N), Tc + 1)−Vm(m(N), Tc)
)

and we can conclude

V(p(N)) =
(
[TF − Tc] Vm(m(N), Tc + 1)− [TF − Tc − 1] Vm(m(N), Tc)

)
NF (A.2)

by taking into account the number of frames NF. This is the result of Eq. (2.40).
While this heuristic derivation only used a second-order correlation for illustration,

one can convince oneself that the idea generalizes to higher orders with the according
more difficult, higher-dimensional spaces. Even more, it generalizes to arbitrary spatial
multiplicities. The validity can by checked by comparison to the numerical evaluation
of the sum, which is feasible at low frame duration TF and correlation order N, which
successfully verified the expression.
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Appendix B

Implementation of the Correlation
Algorithm

The following program is a concrete implementation of the algorithm 1 in Sec. 2.3.4 for
temporally coincident, spatial high-order correlation measurements. Its time-consuming
measurement data processing part is implemented in C for better performance. Nor-
malization with sampling space volume, symmetrization and analysis is done in Matlab.
These programs are used for thermal light measurement in Sec. 3.3, Sec. 5.2.3, and Ch. 6.
Similar programs are used for second-order correlation measurements of ultra-fast corre-
lated quantum sources in all the other cases.

B.1 Measurement Data Correlation in C

This implementation in C results in a speed improvement of more than a factor of 50 in
comparison to a similar Matlab version. Best performance is gained by setting compiler
code generation optimization options to its highest value. No parallel processing is used,
but can be easily incorporated by running this program on different data files in parallel
and summing their outputs. SuperEllen’s raw measurement data files are assumed as
input, see Sec. 5.2.3. Its measurement frames are grouped in 64 consecutive frames. This
group is called superframe where only the frame position (steps of 10µs) is used for timing
information because of the long correlation time of thermal light (100µs). The TDCs values
are not considered. For simplicity, only one spatial coordinate provided by SuperEllen is
used in the following program.

# include <iostream >
using namespace std ;

# include <fstream >
# include <math . h>
# include < l i m i t s . h>
# include < s t d l i b . h>

# define Nmax 4 / / maximal c o r r e l a t i o n o r d e r
# define Tcoinc 4 / / c o i n c i d e n c e window l e n g t h
# define pixN 32 / / number o f p i x e l s in a r r a y
# define N_SuperFrame 64 / / f r a m e s p e r s u p e r f r a m e

/ / g l o b a l v a r i a b l e s f o r a l g o r i t h m
unsigned i n t ∗GNData ; / / a l l c o r r e l a t i o n f u n c t i o n s
long long GNsize = 0 ; / / s i z e o f GNData
short ∗PixelX , ∗Pixe lT ; / / a r r a y s o f c u r r e n t s u p e r f r a m e e v e n t s
i n t eventN ; / / number o f e v e n t s in c u r r e n t s u p e r f r a m e

/ / main program
i n t main ( i n t argc , char∗∗ argv ) {
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initGNarray ( ) ;

i n t r es = r e a d _ S E _ f i l e ( " RawData . bin " , &frmCtr ) ;

/ / w r i t e t o ou tp ut f i l e
ofstream myfi le ( "GNData . out " , i o s : : binary | i o s : : out ) ;
unsigned short header [ ] = {Nmax, 0 , pixN , Tcoinc } ;
myfi le . wri te ( ( char ∗ ) header , s i ze of ( header ) ) ;
myfi le . wri te ( ( char ∗ )GNData , GNsize ∗ s i ze of (GNData [ 0 ] ) ) ;
myfi le . wri te ( ( char ∗ ) &frmCtr , s i ze of ( frmCtr ) ) ;
myfi le . c l o s e ( ) ;

return 0 ; / / s u c c e e d e d
}

/ / i n i t i a l i z e GNData a r r a y
void initGNarray ( ) {

GNsize = 0 ;
long long pot = 1 ;
for ( i n t i i = 0 ; i i < Nmax; i i ++) {

GNsize += pixN ∗ pot ;
pot ∗= pixN ;

}
/ / a l l o c a t e and i n i t i a l i z e
GNData = new unsigned i n t [ GNsize ] ;
for ( i n t i = 0 ; i < GNsize ; i ++) { GNData[ i ] = 0 ; }

xs = new i n t [Nmax ] ;
ys = new i n t [Nmax ] ;

}

/ / r e a d f i l e o f S u p e r E l l e n raw measurment data , p r o c e s s f r ame by f rame .
/ / r e t u r n number o f f r a m e s in pfrmCtr .
i n t r e a d _ S E _ f i l e ( char∗ name , i n t ∗ pfrmCtr ) {

char∗ b u f f e r ;
long s i z e ;

i f s t r e a m f i l e ( name , i f s t r e a m : : binary| i f s t r e a m : : in| i f s t r e a m : : a te ) ;
s i z e = f i l e . t e l l g ( ) ;
f i l e . seekg ( 0 , i f s t r e a m : : beg ) ;
b u f f e r = new char [ s i z e ] ;
f i l e . read ( buffer , s i z e ) ;
f i l e . c l o s e ( ) ;
cout << " F i l e " << name << " ( " << s i z e /1024 << " kB ) . " ;

long frmCtr = 0 ;
long byteCtr = 0 ;
eventN = 0 ;

PixelX = new short [ pixN∗pixN∗N_SuperFrame ] ; / / e v e n t p o s i t i o n s
Pixe lT = new short [ pixN∗pixN∗N_SuperFrame ] ; / / e v e n t t i m e s

while ( byteCtr < s i z e ) { / / l o o p o v e r f r a m e s
i n t DetN ;
DetN = ( i n t ) b u f f e r [ byteCtr ] +

256 ∗ ( i n t ) b u f f e r [ byteCtr + 1 ] ; / / num . o f d e t e c t i o n e v e n t s
byteCtr += 2 ;

/ / r e a d a l l e v e n t s , s e t t ime t o f rame ID
for ( i n t p i x i = 0 ; p i x i < DetN ; p i x i ++) {

PixelX [ eventN ] = b u f f e r [ byteCtr + 1 ] ;
P ixe lT [ eventN ] = frmCtr % N_SuperFrame ;
i n t dummy1 = b u f f e r [ byteCtr ] ; / / omit Y p o s i t i o n v a l u e
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i n t dummy2 = b u f f e r [ byteCtr + 2 ] ; / / omit TDC v a l u e
eventN ++;
byteCtr += 3 ;

}

frmCtr ++;
i f ( ( frmCtr % N_SuperFrame ) == 0) { / / s u p e r f r a m e r e a d y ?

i f (UpdateGN ( ) != 0) { / / p r o c e s s s u p e r f r a m e
∗pfrmCtr = frmCtr ;
return 1 ; / / e r r o r e n c o u n t e r e d

} ;
eventN = 0 ; / / r e s e t f o r nex t s u p e r f r a m e

}
}

delete b u f f e r ;
delete PixelX ;
delete Pixe lT ;

∗pfrmCtr = frmCtr ; / / r e t u r n num . o f f r a m e s
return 0 ; / / ok , no e r r o r

}

/ / p e r s i s t e n t v a r i a b l e s t o UpdateGN
short T1 ; / / s t a r t o f c o i n c . window
i n t ∗xs ; / / p o s i t i o n s o f c u r r e n t c o i n c . window

/ / u p d a t e s GNData a t o r d e r Ncurr us ing d a t a from : PixelX , P i x e l T
i n t UpdateGN( i n t Ncurr , i n t s t a r t i ) {

i n t found ;
i n t l i n e a r i d x , NdxPowers , Nidx ;
unsigned short val ;

/ / c a l c u l a t e memory s t a r t i n d e x f o r c u r r e n t o r d e r Ncurr
Nidx = 0 ;
long long pot = 1 ;
for ( i n t i i = 0 ; i i < ( Ncurr − 1 ) ; i i ++) {

Nidx += pixN ∗ pot ; / / s k i p a l l l o w e r o r d e r s
pot ∗= pixN ;

}

for ( i n t i i = s t a r t i ; i i < eventN ; i i ++) {
i f ( Ncurr == 1) { T1 = PixelT [ i i ] ; }
i f ( P ixe lT [ i i ] − T1 > Tcoinc ) { return 0 ; }

xs [ Ncurr−1] = PixelX [ i i ] ;

/ / c a l c u l a t e a r r a y i n d e x
l i n e a r i d x = 0 ;
NdxPowers = 1 ;
for ( i n t kk = 0 ; kk < Ncurr ; kk++) {

l i n e a r i d x += xs [ kk ] ∗ NdxPowers ;
NdxPowers ∗= pixN ;

}

val = ++GNData[ l i n e a r i d x + Nidx ] ; / / i n c r e m e n t GN
i f ( val == UINT_MAX) {

cout << " Overflow " << endl ;
return 1 ; / / a b o r t

}

i f (Nmax > Ncurr ) { / / up da t e h i g h e r o r d e r r e c u r s i v e l y
i f (UpdateGN( Ncurr +1 , i i +1) != 0) {
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return 1 ; / / a b o r t i f e r r o r
}

}
}

return 0 ; / / no e r r o r
}

B.2 Normalization and Symmetrization in Matlab

The following Matlab script reads the output data of the previous C program, symmetrizes
the G(N) arrays in their indices, and normalizes by the sampling space volume using
Eq. 2.42.

% r e a d in c o r r e l a t i o n d a t a f i l e from C++ program a b o v e
f i l e I d = fopen ( ’GNData . out ’ , ’ r ’ ) ;
datatype = ’ uint32 ’ ;

% r e a d h e a d e r o f f i l e
header = fread ( f i l e I d , 4 , ’ u int16 ’ ) ;
Nmax = header ( 1 ) ; % h i g h e s t c o r r e l a t i o n o r d e r
pixN = header ( 3 ) ; % number o f p i x e l s
Tcoinc = header ( 4 ) ; % c o i n c i d e n c e window l e n g t h

% r e a d c o r r e l a t i o n f u n c t i o n GN and symmetr i z e
ArrSize = [1 pixN ] ;
GNData = c e l l (Nmax, 1 ) ;
for N = 1 :Nmax

GNcurr = fread ( f i l e I d , pixN^N, [ ’ ∗ ’ datatype ] ) ; % r e a d G^(N)
GNcurr = reshape ( GNcurr , ArrSize ) ;
ArrSize = [ ArrSize , pixN ] ; % f o r nex t o r d e r

GNData{N} = zeros ( s ize ( GNcurr ) , datatype ) ;
pset = perms ( 2 :N+ 1 ) ’ ; % a l l p e r m u t a t i o n s o f i n d i c e s o r d e r s
for p = pset % symmetr i z e by r e o r d e r i n g i n d i c e s

GNData{N} = GNData{N} + . . .
permute ( GNcurr , [1 p ( : ) ’ ] ) ;

end
GNData{N} = squeeze (GNData{N} ) ;

end
c l e a r GNCurr ;
frmNum = fread ( f i l e I d , 1 , ’ i n t 3 2 ’ ) ; % number o f f r a m e s
f c l o s e ( f i l e I d ) ;

% n o r m a l i z e c o r r e l a t i o n f u n c t i o n s
for N = 1 :Nmax

V = Vcalc (N, pixN ) ; % c a l c . sampl ing s p a c e volume o f one f rame
V = frmNum/64 ∗ V; % volume o f a l l f r a m e s
GNData{N} = double (GNData{N} ) . / double (V ) ; % n o r m a l i z e

end

% show c o r r e l a t i o n d a t a
G1 = GNData { 1 } ;
f igure ( 1 ) ;
plot (G1 ) ;
t i t l e ( ’G1 ’ ) ;
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G2 = GNData { 2 } ;
G1 = G1 ( : ) ;
f igure ( 2 ) ;
imagesc (G2 − G1∗G1 . ’ ) ;
t i t l e ( ’G2 − G1∗G1 ’ ) ;
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Appendix C

Group Delay Dispersion Calculation
with Zemax

A source of spatially single mode light is assumed in the following. If this mode propa-
gates through a medium or a whole experimental setup, e.g. a block of glass, free-space
or a prism-compressor, the corresponding transfer function introduces a wavelength de-
pended phase shift Φ(ω) in the original electric field distribution [49]. This is given by

E(ω)→ E(ω) e−iΦ(ω).

Writing the phase in a Taylor series expansion around a center angular frequency ω0

Φ(ω) = c0 + c1(ω−ω0) +
1
2 c2(ω−ω0)

2 + . . . , ck =
dkΦ(ω)

dωk |ω=ω0 .

The constants ck are given by the derivatives and can be expressed in units of [fsk]. While
c1 is the group delay introduced by the system, c2 is the group delay dispersion (GDD).

For a piecewise homogenous system, the phase can be calculated by

Φ(ω) = ∑
i

ki(ω) zi = ∑
i

k0(ω) ni(ω) zi

with the wavelength dependent wave number ki(ω) in the propagation medium i and the
corresponding geometrical path length zi. The wave number can be expressed in terms of
the wave number in vacuum k0(ω) and the medium’s index of refraction ni(ω). Therefore,
we can write

Φ(ω) =
2π

λ
zopt(ω), zopt(ω) := ∑

i
ni(ω) zi

with the defined effective optical path length zopt(ω).
Zemax is capable of calculating zopt(λ) for an arbitrary optical setup with the Zemax

operator OPTH. In addition to the refractive indizes, its ray-tracing also correctly accounts
for different geometrical path lengths introduced for instance by a prism compressor. It is
straightforward to show, that the GDD

d2Φ(ω)

dω2 =
λ3

2πc2

d2zopt(λ)

dλ2 .

and third-order dispersion

d3Φ(ω)

dω3 = − λ4

4π2c3

(
3

d2zopt(λ)

dλ2 + λ
d3zopt(λ)

dλ3

)
.

For their cancellation, a optimization merit function which numerically approximates these
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derivatives can be implemented. Any degree of freedom of a system can hereby be opti-
mized for dispersion.

The following Zemax programming language (ZPL) macro calculates zopt(λ) over the
specified wavelength range. An analysis of this data with a transformation from λ to ω
and a following polynomial fit allows with the determination of the GDD and all higher-
order dispersion coefficients ck.

! c a l c u l a t e s o p t i c a l path length in wavelength range f o r d ispers ion c a l c u l a t i o n

! s p e c i f y wavelength range [um] :
w l s t a r t = 0 . 7 5
wlstop = 0 . 8 5
wlsteps = 100

! add new wavelength
wlnum = NWAV( ) + 1
NUMWAVE wlnum
UPDATE

PRINT " wavelength [um] opt . pathlength z_opt [mm] "

FOR k = 0 , wlsteps , 1
actwl = w l s t a r t + ( wlstop − w l s t a r t )/ wlsteps ∗ k
WAVL wlnum = actwl
UPDATE

! fol low c h i e f ray
RAYTRACE 0 , 0 , 0 , 0 , wlnum
zopt = OPTH(NSUR( ) )

FORMAT 13 .12 EXP
PRINT actwl , " " , zopt

NEXT

! remove wavelength
NUMWAVE wlnum−1
UPDATE
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SuperEllen Technical Publication

In the following, the conference paper [46] appearing in the proceedings of the Interna-
tional Solid-State Circuits Conference (ISSCC) 2018 is reprinted:

A 32x32-pixels time-resolved single-photon image sensor with
44.64-µm pitch and 19.48% fill-factor with on-chip row/frame

skipping features reaching 800 kHz observation rate for quantum
physics applications

L. Gasparini,1 M. Zarghami,1 H. Xu,1 L. Parmesan,1 M. Moreno Garcia,1

M. Unternährer,2 B. Bessire,2 A. Stefanov,2 D. Stoppa1 and M. Perenzoni1

1 Fondazione Bruno Kessler FBK, 38122 Trento, Italy
2 Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland

Entangled photons, beyond the classical physics understanding, show quantum cor-
relations in some of their degrees of freedom. They find application in quantum com-
puting, quantum key distribution, and super-resolution (i.e., beyond the diffraction limit)
microscopy, but they are undistinguishable using conventional image sensors.

The optical process of spontaneous parametric down conversion (SPDC) occurring in
a non-linear (NL) crystal pumped with an intense laser beam is a common way to gener-
ate pairs of photons that are spatially entangled. They show correlations in their emission
location and anticorrelations in the direction of emission (momentum) and are generated
simultaneously (<1 ps). Image sensors with high detection efficiency and time resolu-
tion are needed to detect both the photons and identify them as an entangled pair. [43]
describes a first experiment that combines an SPDC source with a time-resolved single-
photon imager.

This work presents a CMOS imager based on single-photon avalanche diodes (SPAD)
with per-pixel time-to-digital converter (TDC) for the recording of the spatial correlation
functions of a flux of entangled photons, with on-chip features to increase the duty cy-
cle. The 32×32-pixel array (1.69×1.88 mm2), combining a 44.64-µm pitch with 19.48%
fill-factor, was fabricated in a 150-nm 1P6M CMOS standard technology. A current-based
mechanism requiring only 2 transistors per pixel exploits low photon rates to avoid read-
ing empty frames, so allowing the sensor to open 50-ns-long observation windows at up
to 800kHz. An additional transistor per pixel is used to sense the absence of SPAD activity
in each row and reduce the readout time.

Fig.D.2 shows the pixel schematic and the applied waveforms. Initially, the SPAD is
off (VAn = VSPAD − V3V3 < VBreakdown). Then, a 5-ns pulse on CHARGE drives VAn to 0
V, turning the SPAD on, and if it fires due to a photon or a dark count, a voltage step is
observed at VAn. The signal propagates through the clamping transistor M4, separating
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the 3.3 V and the 1.8 V domains. The NOR/NAND gates operate as a pulse generator trig-
gering the START signal if the event occurs while GATEn = L. The TDC has been designed
to aggressively minimize its area (402.7µm2). It is based on a 3-stage ring oscillator (RO),
enabled by START. A sample and hold mechanism controlled by STOP stores the phase
of the RO, which is then encoded into 2 bits (fine timestamp). At the same time, a 6-bit
digital counter of RO periods produces a coarse timestamp.

Noise is mitigated in multiple ways: DISCHn turns off the SPAD at the end of the
observation window to minimize afterpulsing, noisy SPADs are disabled through a pro-
grammable 1-bit SRAM, and no SPAD wells sharing scheme is used to recover fill-factor
as in [121], as it negatively impacts crosstalk and the sensor modulation transfer function
(MTF).

Fig. D.2 shows the overall sensor architecture. Full 1 kpixel readout is performed in
11.20 µs streaming 8-bit digital data at 100 MHz. Additional circuitry is used to speed up
the readout process by skipping empty rows (highlighted in blue in Fig. D.2). Each pixel
in the i-th row shares a ROWEMPTY[i] net which is pulled-up when the pixels are reset.
During the observation, the first firing pixel in the row sets the flag low through transistor
M10 in Fig. D.1. At the end of the observation, the value of the flag is sampled in the row
decoder and is provided at the output to speed up the readout process. E.g., 8 triggered
pixels lead to a readout time < 3.52 µs.

A second mechanism is implemented to skip entire frames when the total number of
triggered pixels is below a user defined threshold. Each pixel in the array contains a tun-
able current source (M11 and M12 in Fig. D.1) sinking a current ISPAD from a global TRIGint
net only when the pixel is triggered (highlighted in red in Fig. D.2). At the periphery of
the array, replicas of the current source generate a reference current Ith that corresponds to
the requested minimum number of triggered pixels and is subtracted to the global current
ISPADarray. The difference IDi f f is provided to a current comparator which outputs a logic
‘0’ or a logic ‘1’ if IDi f f is negative or positive, respectively. The value is then sampled in
TRIG so that the external controller can skip the readout phase and start a new acquisi-
tion. When observing rare events (e.g., groups of 4 entangled photons), the observation
rate approaches the limit of 800 kHz. The timing diagram of Fig. D.2 shows two consec-
utive acquisitions. The first frame is ignored due to an insufficient number of triggered
pixels, while the second one is read out, skipping empty rows.

TDCs have been thoroughly characterized in terms of full scale variation, differential
and integral nonlinearity (DNL, INL) over a 45 ns window for 64 pixels randomly dis-
tributed across the array. Results are shown in Fig. D.3. The TDC resolution is of 204.5±2.7
ps. DNL is in the −0.73.. + 0.77 LSB range. All the INL plots lay in the −0.93.. + 1.24 LSB
range.

The sensor accuracy has been measured for 64 equally-spaced pixels, with a pulsed
470 nm laser source with 70 ps FWHM. Fig. D.4 summarizes the results, including raw
and calibrated data. Calibration includes DNL correction (bin oversampling and resizing)
and offset compensation, caused by device mismatch and propagation of critical timing
signals. The figure shows that the calibration procedure effectively recovers the increasing
spread for longer delays. Single-photon timing precision is of 240 ps rms.

The sensor has been tested acquiring first- (G(1)(ρ)) and second-order (G(2)(ρs, ρi))
correlation functions of a flux of spatially entangled photons. Fig. D.5(top) shows a block
diagram of the experimental setup. A NL crystal pumped with a 405-nm continuous wave
laser generates entangled photon pairs at 810 nm. Being entangled, both photons exit
the crystal with an angle, symmetric with respect to the propagation axis, so that their
barycenter lays on the axis itself. To verify this property, the detector is placed in the far-
field of the photons, thus measuring their direction of emission. A coincidence window of
5 TDC codes has been used to identify entangled photons. Fig. D.5(middle, right) shows
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FIGURE D.1: Pixel high-level schematic with detailed inset for the TDC and timing diagram.

a model of the photon flux, with two photons of a pair, referred to as signal photon and
idler photon, respectively. G(1)(ρ), where ρ = (xρ, yρ) represents the photon position in
the SPAD array, describes the spatial distribution of entangled photons. Fig. D.5(middle,
left) shows the expected G(1), consisting of a circle, and the measured one. The circle is
clearly visible, with hot spots due to dark counts and cold spots due to disabled SPADs.
G(2)(ρs, ρi), where ρs, ρi represent the linearized coordinates (ρs,i = 32xρ + yρ) of the sig-
nal and idler photon, respectively, is obtained by building the 2D histogram of spatial
coincidences for all possible pixel combinations. The expected measured function model
in Fig. D.5(bottom) shows an anticorrelation pattern due to the entanglement. The ob-
tained G(2) shows multiple antidiagonals: since the system is not ideal, given one photon
detection, the other photon may fall in the anticorrelated pixel or in one of its neighbors.
In linear coordinates, pixels in a column laying on adjacent rows become separated by
32 points. The measured histogram shows also correlation diagonals caused by crosstalk
events, which are temporally coincident as entangled photons are.

In typical conditions, less than 8 SPADs trigger for each observation window and the
sensor consumes 11.1 mW at 250kfps. Fig. D.6 summarizes the sensor performance and
compares it with the state-of-the-art.

References: [43, 121, 136, 137]
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FIGURE D.2: Architecture of the imager and timing diagram. The frame and row skipping
mechanisms are highlighted in red and blue, respectively. Externally driven/readable global

signals are bold, while the italic names are for internal signals.
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FIGURE D.3: TDC characterization including histogram of the resolution for 64 randomly
distributed pixels, DNL and INL obtained from a code density test. Typical, maximum and

minimum values are shown.

FIGURE D.4: Sensor accuracy (histograms of pixel mean values) sweeping a 470 nm 70 ps
pulsed laser within a 16 ns time range in 9 steps of 2 ns. 64 pixels have been enabled at a time.
Calibrated data means corrected for DNL and offset. The insets show the laser statistics for a

given pixel.
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FIGURE D.5: Experimental setup (top) and measurements of the first- (G(1)) and second-order
(G(2)) spatial correlation functions of a flux of entangled photon, including: model of the flux
with expected and measured G(1) (middle), and expected and measured G(2), with zoom-in of
the central region (bottom). Anticorrelated diagonals due to entangled photons and correlated

diagonals due to crosstalk events are highlighted in green and sky-blue, respectively.

[136] [137] [121]

FIGURE D.6: Chip performance summary table. * Sharing of SPAD well reduces the dead area
but negatively affects crosstalk and MTF. ** Values have been measured ensuring 8 detected
photons in each frame, which is a worst-case condition for the quantum physics experiment

described in Fig. D.5.
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