
NETWORK CODING ENABLED NAMED

DATA NETWORKING ARCHITECTURES

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Jonnahtan Eduardo Saltarin De Arco

von Venezuela

Leiter der Arbeit:

Professor Dr. Torsten Braun

Institut für Informatik

Original document saved on the web server of the University Library of Bern

This work is licensed under a Creative Commons Attribution-Non-Commercial-No derivative works 2.5

Switzerland licence. To see the licence go to http://creativecommons.org/licenses/by-nc-nd/2.5/ch/

or write to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
0
6
7
7
1

|

d
o
w
n
l
o
a
d
e
d
:

1
3
.
1
1
.
2
0
1
7

NETWORK CODING ENABLED NAMED

DATA NETWORKING ARCHITECTURES

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Jonnahtan Eduardo Saltarin De Arco

von Venezuela

Leiter der Arbeit:

Professor Dr. Torsten Braun

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, November, 2017 Prof. Dr. Gilberto Colangelo

Copyright Notice

This document is licensed under the Creative Commons Attribution-Non-Commercial-

No derivative works 2.5 Switzerland. http://creativecommons.org/licenses/by-nc-

nd/2.5/ch/

You are free:

to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must give the original author credit.

Non-Commercial. You may not use this work for commercial purposes.

No derivative works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must take clear to others the license terms of this

work.

Any of these conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author’s moral rights according to Swiss

law.

The detailed license agreement can be found at:

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Dedicated to my mother. . .

Dedicada a mi madre. . .

Acknowledgements

The work here presented was carried out as part of my doctoral studies at the Univer-

sity of Bern, and it would not have been possible without the guidance and support of

many people to whom I would like to express my gratitude.

Foremost, I would like to thank my thesis supervisor, Prof. Dr. Torsten Braun, for giving

me the opportunity to join the Communications and Distributed Systems lab (CDS)

of the University of Bern, and for guiding me towards the achievement of the doctoral

degree. I am grateful for all the advice, ideas and corrections you have given me, and

which helped me publish my work and complete this thesis. I would also like to thank

you for allowing me the freedom to pursue my own ideas during my doctoral studies,

in the frame of the Swiss National Science Foundation project “Network Coding Based

Multimedia Streaming in Content Centric Networks”.

I would also like to express my deepest gratitude to Prof. Dr. Nikolaos Thomos (Nikos),

for all the patience, support, ideas and motivation he has given me. Thank you for all

the detailed comments and corrections of the papers and this thesis. I have learned

a lot of my writing skills from you. Moreover, without your encouragement during

this four years, the way towards the Ph.D. would have been much more difficult.

Many thanks also for participating in the preparation of the Swiss National Science

Foundation project “Network Coding Based Multimedia Streaming in Content Centric

Networks”, in which I worked during my doctoral studies.

Many thanks also to Dr. Eirini Bourtsoulatze, who was always there to discuss interest-

ing ideas and propose interesting points of view. Your attention to detail saved this

thesis and our previous publications from many mistakes. Thanks!

I would like to extend my gratitude to the Swiss National Science Foundation, which

funded my doctoral studies under grant number 149225.

A big thanks goes to all my CDS colleagues, who have contributed to my good time

at the University of Bern. Ali, thanks for being a nice officemate, always ready to

help. José, thanks for your camaraderie, the nice talks in Spanish, and for being my

i

Acknowledgements

gym companion. Dima, Haider, Islam, Eirini B., Imad, José, thanks for bringing food

from home and making the lunches a nice time. Many thanks to Eryk and André for

having our computer infrastructure in good shape. João, Carlos, Zhongliang, Zan,

Eirini K., Mikael, Mustafa, Matthias, Florian, Almerima, Desislava, thanks for the good

conversations, the advices and for making my time at CDS a wonderful time, even in

the most difficult times. Thank you all!

Special thanks to Daniela Schroth. Thanks for your disposition to help me with

all the administrative procedures from the university and beyond. I really have to

acknowledge your patience in times when I went to your office full of questions and

requests for help. Thanks also for being my voice and writer at times when I needed

to communicate in German. Merci vilmal!

To my friend, Francisco, thanks for encouraging me during the most difficult times as

a doctoral students, and for the good friendship you have always shared with me.

I would like to thank my family for all their support. This has to be in Spanish. Gra-

cias mamá, por tu amor incondicional hacia mí, y por darme las bases que me han

permitido obtener este logro. Gracias por los incontables sacrificios que hiciste para

ayudarme a llegar a donde estoy. Gracias tambien a mis tías y tíos, siempre dispuestos

a ayudarme cariñosamente. No podría estar aquí si no fuese por ustedes.

Last but not least, my best friend and soul-mate, Ana. You are my most important

source of encouragement, knowledge, and love. Thanks for always sticking by my side,

even in the most complicated times, academically and personally. Thanks also for the

technical discussions we had and the writing advice that helped me a lot during this

doctoral journey.

Bern, 15 September 2017 J. Saltarin

ii

Abstract

The volume of data traffic in the Internet has increased drastically in the last years,

mostly due to data intensive applications like video streaming, file sharing, etc.. This

motivates the development of new communication methods that can deal with the

growing volume of data traffic. To this aim, Named Data Networking (NDN) has been

proposed as a future Internet architecture that changes how the Internet works, from

the exchange of content between particular nodes of the network, to retrieval of par-

ticular content in the network. The NDN architecture enables ubiquitous in-network

caching and naturally supports dynamic selection of content sources, characteristics

that fit well with the communication needs of data intensive applications. However,

the performance of data intensive applications is degraded by the limited throughput

seen by applications, which can be caused by (i) limited bandwidth, (ii) network

bottlenecks and (iii) packet losses. In this thesis, we argue that introducing network

coding into the NDN architecture improves the performance of NDN-based data

intensive applications by alleviating the three issues presented above. In particular,

network coding (i) enables efficient multipath data retrieval in NDN, which allows

nodes to aggregate all the bandwidth available through their multiple interfaces; (ii)

allows information from multiple sources to be combined at the intermediate routers,

which alleviates the impact of network bottlenecks; and (iii) enables clients to effi-

ciently handle packet losses. This thesis first provides an architecture that enables

network coding in NDN for data intensive applications. Then, a study demonstrates

and quantifies the benefits that network coding brings to video streaming over NDN, a

particular data intensive application. To study the benefits that network coding brings

in a more realistic NDN scenario, this thesis finally provides a caching strategy that is

used when the in-network caches have limited capacity. Overall, the evaluation results

show that the use of network coding permits to exploit more efficiently available

network resources, which leads to reduced data traffic load on the sources, increased

cache-hit rate at the in-network caches and faster content retrieval at the clients. In

iii

Acknowledgements

particular, for video streaming applications, network coding enables clients to watch

higher quality videos compared to using traditional NDN, while it also reduces the

video servers’ load. Moreover, the proposed caching strategy for network coding

enabled NDN maintains the benefits that network coding brings to NDN even when

the caches have limited storage space.

Keywords: Named Data Networking (NDN), Network Coding, Video Streaming, Caching.

iv

Contents

Acknowledgements i

Abstract iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Research Proposal . 4

1.3 Motivation . 5

1.3.1 Efficient Multipath Content Retrieval 5

1.3.2 Throughput Gains in Case of Network Bottlenecks 9

1.3.3 Resilience to Packet Losses . 10

1.4 Thesis Objective . 11

1.5 Thesis Contributions . 12

1.5.1 NetCodNDN: A Network Coding Enabled NDN Architecture . . 13

1.5.2 Adaptive Video Streaming over Network Coding Enabled NDN . 14

1.5.3 Caching Policy for Network Coding Enabled NDN 16

1.6 Thesis Outline . 17

2 State of the Art 19

2.1 Overview . 19

2.2 Content Retrieval over the Internet . 20

2.3 Information-Centric Networking . 21

2.3.1 Data-Oriented Network Architecture 22

2.3.2 Publish-Subscribe Internet Routing Paradigm 22

2.3.3 Network of Information . 23

v

Contents

2.3.4 Content-Centric Networking . 23

2.4 Named Data Networking . 24

2.4.1 Content Object Partitioning and Naming in NDN 24

2.4.2 Data Structures of the NDN Architecture 25

2.4.3 Interest Processing . 28

2.4.4 Data Message Processing . 29

2.4.5 Multipath Data Delivery in NDN 29

2.5 Fountain Codes . 31

2.5.1 LT codes . 32

2.5.2 Raptor Codes . 33

2.5.3 Fountain Codes in NDN . 34

2.6 Network Coding . 35

2.6.1 Random Linear Network Coding 36

2.6.2 Network Coding in NDN . 37

2.7 Video Streaming . 39

2.7.1 Dynamic Adaptive Streaming over HTTP 39

2.7.2 Dynamic Adaptive Streaming over NDN 40

2.8 Caching in Named Data Networking . 41

3 A Network Coding Enabled NDN Architecture 45

3.1 Introduction . 45

3.2 Network Coding Enabled NDN . 46

3.3 Challenges of Enabling Network Coding in NDN 47

3.4 The NetCodNDN Architecture . 48

3.4.1 Content Object Fragmentation . 49

3.4.2 Data Packet Naming . 50

3.4.3 Data structures in NetCodNDN . 50

3.4.4 Interest Processing . 53

3.4.5 Data Message Processing . 56

3.4.6 Complexity . 57

3.5 Evaluation . 57

3.5.1 Evaluation Setup . 58

3.5.2 Metrics . 59

3.5.3 Butterfly Topology . 60

3.5.4 PlanetLab Topologies . 64

3.6 Conclusions . 67

vi

Contents

4 Adaptive Video Streaming over Network Coding Enabled NDN 69

4.1 Introduction . 69

4.2 The DAS-NetCodNDN Architecture . 71

4.2.1 Video Fragmentation . 71

4.2.2 Adaptive Video Streaming Implementation 72

4.2.3 Improvements to the NetCodNDN Architecture 74

4.3 Evaluation . 80

4.3.1 Implementation . 81

4.3.2 Network Topology . 82

4.3.3 Evaluation Setup . 84

4.3.4 Evaluation Results . 85

4.4 Conclusions . 91

5 Caching Policy for Network Coding Enabled NDN 93

5.1 Introduction . 93

5.2 Caching in Network Coding Enabled NDN 95

5.3 The PopNetCod Caching Policy . 96

5.3.1 Popularity Prediction . 97

5.3.2 PopNetCod Placement . 98

5.3.3 PopNetCod Eviction . 99

5.4 Practical Implementation of PopNetCod 100

5.4.1 Signaling Between Routers . 100

5.4.2 Status Information at Routers . 101

5.4.3 Interest Processing . 102

5.4.4 Data Packet Processing . 106

5.5 Evaluation . 107

5.5.1 Evaluation Setup . 108

5.5.2 Benchmarks . 109

5.5.3 Evaluation Results . 109

5.6 Conclusion . 114

6 Conclusions 115

6.1 Main Contributions . 116

6.2 Future Directions . 117

Bibliography 123

Declaration of Consent 133

vii

Contents

Curriculum Vitæ 135

viii

List of Figures

1.1 NDN content retrieval process. 2

1.2 Devices retrieving Data packets over LTE and Wi-Fi: multi-source single

client. 7

1.3 Devices retrieving Data packets over LTE and Wi-Fi: single-source multi-

client. 8

1.4 Devices retrieving Data packets over LTE and Wi-Fi: multi-source multi-

client (butterfly network). 9

2.1 Forwarding Information Base (FIB). 25

2.2 Content Store (CS). 26

2.3 Pending Interest Table (PIT). 27

2.4 Interest processing in NDN. 28

2.5 A metaphorical example of fountain codes. 31

2.6 Tanner graph produced by LT encoding. 32

2.7 Encoding of non-systematic Raptor codes. 33

2.8 Information coding at each node. 35

2.10 Representation of the Media Presentation Description (MPD) file. . . . 39

3.3 Normalized delivery delay vs. the bandwidth of the bottleneck link in

the butterfly network. 61

3.4 Normalized delivery delay vs. the pipeline size in the butterfly network. 62

3.5 Normalized delivery delay vs. the packet loss rate in the butterfly network. 63

3.6 Normalized delivery delay vs. source Data replication probability in the

butterfly network. 64

3.7 PlanetLab topology used. 65

3.8 Normalized delivery delay vs. the number of clients in the network in

the PlanetLab topology. 65

ix

List of Figures

3.9 Normalized delivery delay vs. the packet transmission error rate in the

PlanetLab topology. 66

4.2 Redesigned NetCodNDN Content Store (CS). 76

4.3 Redesigned NetCodNDN Pending Interest Table (PIT). 77

4.4 Layered topology used in the evaluation. 82

4.5 Clients’ bandwidth distribution. Each client has two faces, the average

bandwidth is µ= 2×4Mbps and the standard deviation is σ=
p

2×1.5. 83

4.6 Representation of the segments received by the clients with respect to

different core links bandwidth, for DAS-NetCodNDN. 85

4.7 Representation of the segments received by the clients with respect to

different core links bandwidth, for DAS-NDN. 86

4.8 Cache-hit rate at the ISP layer. 87

4.9 Cache-hit rate at the IXP layer. 88

4.10 Total data delivered by the source. 88

4.11 Representations requested by the clients with DAS-NetCodNDN. . . . 89

4.12 Representations requested by the clients with DAS-NDN. 90

4.13 Average goodput measured by the clients. 90

5.1 Overview of the caching policy. 96

5.2 Popularity prediction for the name prefix (n, g). 97

5.3 Access to the CS and the Status Information during the Interest process-

ing in a CSM configured with the PopNetCod caching policy. 104

5.4 Access to the CS and the Status Information during the Data packet

processing in a CSM configured with the PopNetCod caching policy. . 105

5.5 Layered topology used in the evaluation of PopNetCod. 108

5.6 Average cache-hit rate in the routers. 110

5.7 Average goodput perceived by the clients. 111

5.8 Percentage of video segments delivered in each of the available repre-

sentations, with the PopNetCod caching policy. 112

5.9 Percentage of video segments delivered in each of the available repre-

sentations, with the LCE+LRU caching policy. 112

5.10 Percentage of video segments delivered in each of the available repre-

sentations, with the LCE+NoLimit caching policy. 113

5.11 Load reduction in the source, measured as the percentage of Data pack-

ets delivered to the clients not sent by the source. 113

x

1
Introduction

1.1 Background

Nowadays, Internet users care more about the attributes of the content that they want

to obtain (e.g., name of the content, quality of the content, etc.) rather than where

this content is located in the network. However, in the current Internet architecture,

each packet is routed based on the network location of the destination host, without

considering the attributes of the content that it carries. To address the mismatch

between the users’ behavior and the Internet architecture, Named Data Network-

ing [38,104] has been proposed. NDN is a new communication paradigm in which the

importance is shifted from where the content is located, to what the content is. In the

NDN architecture, the content is described by its name, which includes the content

attributes (e.g., for video content, it could include the video filename, quality, segment

id, etc.). The users demand content with the help of Interest messages that contain the

name of the requested content. The Interests are transmitted over the network until

they reach a node holding a copy of the content object whose name matches that of

the Interest. This node creates a Data packet that contains a copy of the requested

1

Chapter 1. Introduction

In
te
r
e
s
t

C
o
n
te
n
t

Network

Figure 1.1: NDN content retrieval process.

content object and sends it back to the client. The Data packet follows the reverse

path of that followed by the Interest. As the Data packet is transmitted backwards

to the client, intermediate routers can cache copies of it, so they can reply to future

Interests for the same content. An example of content retrieval in NDN is presented

in Fig. 1.1

One of the main issues that future Internet architectures like NDN will need to face is

the high amount of data traffic, mostly due to the high number of devices connected

to the Internet and to the popularization of data intensive applications (e.g., video

streaming). Nowadays, data intensive applications are the major sources of content

traffic on the Internet, and their predominance is expected to further increase in

the near future [21]. To satisfy the expectations of the end-users (e.g., receiving high

quality video), these applications require a high and stable amount of throughput

between the sources and the clients. However, the following issues may potentially

degrade the throughput seen by the applications.

• Limited bandwidth on links connecting the network nodes may reduce the

throughput seen by the clients to the point where it does not meet the require-

ments of data intensive applications. The use of multiple interfaces to retrieve

content permits the network nodes to aggregate the bandwidth of their multiple

2

1.1. Background

interfaces, increasing the throughput seen by the applications compared to a

using a single interface [81]. In particular, clients with limited access bandwidth

could use their multiple interfaces (e.g., LTE, Wi-Fi, Bluetooth, etc.) to distribute

the Interests needed to retrieve the desired content. In scenarios in which mul-

tiple clients in the network are interested in the same content objects (e.g., a

popular movie), and/or when the Data packets that compose a content object

are distributed across multiple sources for load sharing (e.g., in a multi-cloud

storage system [84]), optimal multipath content retrieval is only attained if the

Data packets are delivered over the optimal set of multicast trees [101]. The opti-

mal set of multicast trees can only be computed by a central entity that is aware

of the network topology and the content demands. However, this requires a high

number of signaling messages to inform the central entity about topology and

content demand changes in a timely manner. Hence, computing the optimal

set of multicast trees is both computationally hard and difficult to implement in

large dynamic networks.

• Bottlenecks in the network limit the flow of Data packets that is transmitted from

the sources to the clients. In-network caching [24] and Interest aggregation [23]

are two NDN characteristics that help to alleviate this issue, by reducing the

number of Data packets transmissions in the network. However, in NDN, both

in-network caching and Interest aggregation only work for exact name matching,

which limits the scope of this solution.

• Packet losses in the network delay the content retrieval process since they require

that clients detect which Data packet has not arrived in order to retransmit the

corresponding Interest. In NDN, Interests have an expiration time, after which

the client considers that the Interest will not be satisfied and can retransmit it.

However, adapting the expiration time of each Interest to the current network

conditions is a complicated task, since it should be short enough to detect

packet losses in a timely manner, and long enough to allow a Data packet facing

acceptable congestion to arrive without triggering a retransmission. Moreover,

the expiration time of the Interests also depends on the requirements of the

application that is requesting the content object. For example, a video streaming

application requires low latency and, thus, it sets short Interest expire times,

while a file download application for software updates may not need low latency,

but prefers to avoid network congestion, thus, it sets long Interest expiration

times.

3

Chapter 1. Introduction

1.2 Research Proposal

It is clear from Section 1.1 that content retrieval in NDN is problematic for data inten-

sive applications, especially when multiple clients and/or multiple sources exist in

the network. In this thesis we argue that introducing network coding [7] into the NDN

architecture improves the performance of NDN-based data intensive applications,

by alleviating the throughput loss for the applications due to limited bandwidth and

inefficient content retrieval over multiple interfaces, network bottlenecks and packet

losses.

Network coding has been proposed in previous works as a possible solution to the

problems presented in Section 1.1, for host-centric Internet architectures [34,101] and

for content-centric Internet architectures [59, 100]. The main idea of network coding

is to allow intermediate routers not only to forward Data packets, but also combine

them before forwarding. This can potentially increase the throughput seen by the

applications by allowing different Data packets of the same content object to use the

full capacity of shared links [7] and facilitating multi-client and multi-source content

retrieval via random network coding [34].

Unlike the original NDN architecture, in which clients sequentially request the Data

packets that compose a content object, in a network coding enabled NDN architecture,

the clients request a set of network coded Data packets that are generated by com-

bining the Data packets that compose the requested content object. When network

coding is enabled in NDN, the network coded Data packets contain information from

all the Data packets that have been combined to generate them. Thus, all network

coded Data packets with a specific name prefix are “equivalent” in terms of contained

information. This reduces the granularity of the information and subsequently of the

content requests, i.e., in a network coding enabled NDN the Interests do not request

specific Data packets but rather any network coded Data packet that belongs to the

requested content object. Moreover, in a network coding enabled NDN architecture,

the intermediate routers can apply network coding operations to the received Data

packets before forwarding them, increasing the Data packet diversity in the network

and allowing information belonging to the same content object that is stored in differ-

ent sources to be combined into a single Data packet in the network. The clients can

retrieve the original content object as soon as they receive a decodable set of network

coded Data packets, i.e., a set of Data packets that has as many linearly independent

network coded Data packets as the number of Data packets composing the content

4

1.3. Motivation

object.

As a result of enabling network coding in NDN, the nodes do not need to forward

each Interest over the particular face that makes it travel over the optimal set of

multicast trees, eliminating the need for coordination among clients. Instead, since

the granularity of Data packets is reduced, the node could forward Interests over any

face that is configured in to forward Interests with the requested name prefix, and still

the data delivery will be optimal. This enables efficient multipath content retrieval,

which enhances the bandwidth utilization. Moreover, since information from multiple

sources can be combined by applying network coding at the intermediate nodes, the

degradation of the throughput seen by the applications caused by network bottlenecks

is alleviated. Additionally, the use of network coding simplifies the design of the clients,

since the client does not need to keep track of the reception of each particular Data

packet, but only the number of received innovative network coded Data packets. This

means that clients can send an adequate number of Interests, taking into account the

measured packet loss rate of the network, to receive the number of network coded

Data packets they need to decode the requested content object, without any delay in

case of packet losses.

1.3 Motivation

In the following subsections, we provide more details of the benefits that network

coding brings to NDN, and illustrate them through motivating examples.

1.3.1 Efficient Multipath Content Retrieval

Nowadays, most client devices, e.g., mobile phones, laptops, etc., have two or more

network interfaces over which they can receive the demanded content (e.g., LTE, Wi-Fi,

Bluetooth, etc.). However, in traditional host-centric networking, support for multi-

path is not extended. Recent efforts to support multipath communications on TCP

(MP-TCP) [28] have been developed by the IETF. The drawback of these proposals

is that they require end-to-end connections to be established for each host, which

complicates load-balancing in the network and the dynamic selection of the sources.

In comparison, NDN provides natural support for multipath content retrieval, without

requiring end-to-end connections. This is achieved by allowing clients to distribute

all the Interests needed to retrieve a video segment over all their available interfaces,

5

Chapter 1. Introduction

without knowing a priori which source or in-network cache can provide the partic-

ular Data packet that each Interest requests. However, despite having the necessary

components for enabling multipath content retrieval, the original NDN architecture

still lacks appropriate mechanisms for the optimal use of the multiple paths available

for content retrieval in scenarios where multiple sources store different parts of the

content (e.g., in-network caches, content distributed in multiple clouds [84], etc.)

and/or multiple clients are interested in the same content (e.g., streaming popular

videos, updating popular software, etc.).

Optimizing multipath content retrieval in multi-source and multi-client scenarios

implies coordinating the forwarding of Interests, so that all the Interests for a specific

Data packet are (i) forwarded towards the source storing the requested Data packet,

and (ii) forwarded on the optimal paths, such that more Interests are aggregated and

the Data packets are cached in optimal points of the network. This can be achieved

if the Data packets are delivered over the optimal set of multicast trees [101]. The

latter implies that each node in the network needs to know where to forward each

Interest, such that the Interests and the Data packets follow the computed multicast

trees, which does not scale in large and dynamic networks. Moreover, the optimal

set of multicast trees can only be computed by a central entity that is aware of the

network topology, which is both computationally hard and difficult to implement in

large dynamic networks.

An alternative solution to the use of an optimal set of multicast trees is to use network

coding [7]. When network coding is enabled, the nodes perform coding operations on

the received Data packets (i.e., combine the Data packets), instead of just forwarding

them, as in traditional networks. The network coded Data packets contain information

from all the Data packets that have been combined to generate them. This reduces

the granularity of the information and subsequently of the content requests. As a

result, clients do not need to request specific Data packets, but rather network coded

Data packets. Therefore, the nodes do not need to coordinate the faces where they

forward Interests, which enables efficient multipath communication without explicit

coordination mechanisms and enhances network bandwidth utilization.

In the following three examples, we illustrate the benefits that the introduction of

network coding into NDN brings to multipath content retrieval.

• Multi-source single-client — Let us consider the case illustrated in Fig. 1.2, where

6

1.3. Motivation

WiFi Network

Pn
s1

Pn
s2

Pn
s3

LTE Network

Pn
s4

Pn
s5

Pn
s6

c1

Figure 1.2: Devices retrieving Data packets over LTE and Wi-Fi: multi-source single

client.

a client is interested in a content object composed of a set of Data packets. Let

us also consider that the Data packets that compose the content object are

distributed across multiple sources, such that each source stores a subset of

Data packets. In this case, the client and the routers need to select properly

the face over which they forward each Interest, so that it reaches the source

that stores the requested Data packet. This can be accomplished by carefully

configuring the NDN forwarding tables, which store information about the

faces that a node could use to forward Interests with a particular name prefix,

of all the nodes, such that each Interest reaches the right source. However,

for content objects comprised of a large number of Data packets, i.e., content

objects for data intensive applications, keeping the forwarding tables of all the

nodes updated for each Data packet does not scale well. Specifically, in large

networks and in the presence of unreliable sources that can become available or

unavailable at any moment, keeping the forwarding tables updated may require

a lot of signaling messages, and thus waste network resources. Differently to

the original NDN, in a network coding enabled NDN architecture, the clients

and the routers do not need to know which sources store each Data packet and

over which interface they can locate it, since the Interests are for network coded

Data packets that are stored at any source rather than for specific Data packets

that are stored at specific sources. This implies that the forwarding tables can

be smaller than those of original NDN. Specifically, only one entry for the name

prefix of the content object is needed in network coding enabled NDN, while

7

Chapter 1. Introduction

WiFi
Network

LTE Network

..
.

c1

c |C|

Pn

Figure 1.3: Devices retrieving Data packets over LTE and Wi-Fi: single-source multi-

client.

in original NDN a distinct entry is required for the name prefix of every Data

packet composing the content object, since they can be located in different

sources.

• Single-source multi-client — Let us now examine the case where a single source

stores the complete set of Data packets that compose a content object, and that

multiple clients are interested in the content object, as illustrated in Fig. 1.3. To

minimize the time needed for each client to receive the complete set of Data

packets that compose the content object, while also minimizing the number

of duplicated Data packet transmissions in the network, the Data packets need

to travel over an optimal set of multicast trees [101], which, as discussed above,

is does not scale well with the network size and dynamics. In the illustrative

example shown in Fig. 1.3, clients are connected to the source through both

LTE and Wi-Fi interfaces. If all the clients send the Interest for a particular

Data packet over the LTE interface, then the requested Data packet will only be

sent through the LTE network. However, if a fraction of the clients decides to

send the same Interest over the Wi-Fi interface, the requested Data packet will

also be sent from the source to the Wi-Fi network, wasting network resources.

When multiple clients send Interests for the same content object in a network

coding enabled NDN, they do not need to coordinate the Interests (i.e., select

the sequence numbers) that they send over each face. This is due to the fact that

the Interests are for network coded Data packets. Thus, they can be aggregated

8

1.3. Motivation

c1

r2

r1

r4

r3

r6

r5

c2

W
iF

i
N

et
w

or
k
 1

W
iF

i
N

et
w

o
rk

 2

L
T

E
 N

et
w

o
rk

Pn
s1 Pn

s2

Figure 1.4: Devices retrieving Data packets over LTE and Wi-Fi: multi-source multi-

client (butterfly network).

at any node, which leads to more efficient network utilization.

• Multi-source multi-client — Another problematic scenario is when multiple

clients are interested in a content object composed of a set of Data packets that

are distributed across multiple sources. In this scenario, multipath data retrieval

in the original NDN suffers from the shortcomings of both the multi-source

single-client and the single-source multi-client scenarios that we previously

discussed. To illustrate this, let us consider the network in Fig. 1.4. In this

network, two clients need to coordinate where to send each Interest, such that

the LTE access router r4 is able to aggregate the Interests for the same Data

packet. Moreover, when each of the sources has a disjoint set of Data packets,

the clients also need to know which Data packets each source stores, to avoid

sending Interests to the source that does not store a copy of the requested Data

packet. With network coding enabled, no coordination is needed at the clients

nor at the routers. This is because the Interests can be satisfied by any network

coded Data packet.

1.3.2 Throughput Gains in Case of Network Bottlenecks

In addition to the throughput gains due to the use of optimal multipath content

retrieval, enabling network coding in NDN can alleviate throughput degradation when

9

Chapter 1. Introduction

bottlenecks are present in the network. In order to illustrate how the throughput is

degraded by network bottlenecks, let us consider the widely known butterfly network

topology shown in Fig. 1.4. In this topology, both clients c1 and c2 are interested in

a content object composed of two Data packets which are distributed across both

sources, with source s1 storing a copy of the Data packet p1 and source s2 storing a

copy of the Data packet p2. It is clear that the clients c1 and c2 can retrieve the Data

packets p2 and p1, respectively, only over the LTE interface. In this case, if network

coding is not enabled, the LTE access node r4 cannot aggregate the Interests sent by

the clients c1 and c2, since they are for different Data packets. This means that the

link between the nodes r3 and r4 becomes a bottleneck for the Data packets p2 and p1

traveling to the clients c1 and c2, respectively. Thus, one of the clients will see a higher

delay in receiving the complete set of packets, which is critical for time-constrained

applications such as video streaming. In contrast, in a network coding enabled NDN

architecture, the node r4 is able to aggregate the Interests sent by the clients c1 and

c2, as these Interests are for any network coded Data packet. If the node r3 applies

network coding to the Data packets received from the sources, the resulting network

coded Data packet will contain information from both sources and thus will be useful

for both clients c1 and c2. In content intensive applications, where the content objects

are formed by a large number of Data packets, the delay reduction that network coding

brings to the clients accumulates over all the Data packets, bringing noticeable gains

to the client’s throughput.

1.3.3 Resilience to Packet Losses

Furthermore, we illustrate how the integration of network coding in the NDN architec-

ture improves the resilience to Interest and Data packet losses. This property has been

widely studied in state-of-the-art host centric content delivery scenarios [82, 88]. Sim-

ilarly to traditional content delivery architectures, in NDN, network coding can deal

efficiently with packet losses by eliminating the need for explicit packet retransmis-

sions. To illustrate this, let us consider an NDN network with Interest and Data packet

losses. Let us also consider that a client is interested in a content object composed

of a set of Data packets, and that one of the Interests sent by the client or one of the

Data packets sent to the client is lost in the network. Hence, one of the Data packets

that the client is expecting will not arrive. If network coding is not enabled, the client

should wait until one of the Interests that it has sent expires before realizing which

Data packet will not arrive. Then, the node should retransmit the same Interest and

10

1.4. Thesis Objective

wait again for the Data packet. In contrast, if network coding is enabled, a proactive

client that knows the average packet loss rate can send a few additional Interests,

where the number of additional Interests sent depends on the packet loss rate and the

finite field where the coding operations are performed. This is possible because, in

the event of an Interest or Data packet loss, any other network coded Data packet will

be useful to the client, even if it is not an exact copy of the missing Data packet. This

reduces the time that the client needs to retrieve the complete set of Data packets,

since it does not need to wait for Interest expiration to send new Interest that will

compensate for the lost packets.

1.4 Thesis Objective

Motivated by the predominance of data intensive applications on the Internet, and by

the promising results presented in previous attempts to integrate network coding into

the NDN architecture [59, 100], the main objective of this thesis is the following:

to investigate how data intensive applications on NDN could benefit from

the use of network coding.

To reach the main objective of this thesis, we have the following specific objectives.

First, we need an architecture that enables network coding in NDN and that supports

data intensive applications. However, the literature lacks a well defined practical

architecture that integrates network coding into NDN. Previous schemes integrating

network coding into NDN [59, 100] were not complete, only providing brief descrip-

tions of simple architectures that consider specific scenarios. Thus, this thesis has the

following specific objective:

to design, implement and evaluate a complete architecture that integrates

network coding into NDN and that supports data intensive applications.

Second, we need to choose a data intensive application that will be the subject of

our study to evaluate the benefits of network coding in NDN. Since video streaming

is the most important data intensive application nowadays [21], the second specific

objective of this thesis is the following:

11

Chapter 1. Introduction

to evaluate the benefits that network coding bring to video streaming ap-

plications over NDN, for end-users and video content providers.

Third, since the default behavior of intermediate routers in NDN is to cache all the Data

packets that they receive, the caches in the intermediate nodes should be extremely

large in order to store the high amount of Data packets that data intensive applications

require. This is unfeasible in real-world scenarios, and for that reason the third specific

objective of this thesis is the following:

to design and evaluate a caching policy that takes into account the par-

ticularities of network coding enabled NDN architectures, and maintains

the benefits that network coding brings to data intensive applications over

NDN.

1.5 Thesis Contributions

As mentioned in the previous Section, one of the objectives of this thesis is to design

a complete architecture that integrates network coding into NDN. Thus, the first

contribution of this thesis is the NetCodNDN architecture, which enables network

coding for data intensive applications in NDN. The design, implementation and

evaluation of the NetCodNDN architecture is provided in Chapter 3.

Based on the proposed NetCodNDN architecture, the next contribution of this thesis

is the study of the benefits that network coding brings to data intensive applications

in NDN. Since video streaming is the most popular data intensive application [21],

this thesis studies video streaming over network coding enabled NDN, in particular,

dynamic adaptive video streaming. Hence, this thesis provides a Dynamic Adap-

tive Streaming architecture for NetCodNDN, called DAS-NetCodNDN. The details of

the DAS-NetCodNDN architecture and the study of the benefits that network cod-

ing brings to video streaming applications over NDN, for both end-users and video

content providers, are presented in Chapter 4.

The two previous contributions of this thesis, namely NetCodNDN and DAS-

NetCodNDN, consider a scenario in which nodes have sufficient storage space to

cache all the Data packets that they receive, which is infeasible in real-life. For this

reason, the final contribution of this thesis is a caching policy called PopNetCod that

12

1.5. Thesis Contributions

complements the design of the NetCodNDN and DAS-NetCodNDN architectures.

The PopNetCod caching policy uses content popularity information to decide which

network coded Data packets routers store in their caches, in order to maintain the

benefits that network coding brings to data intensive applications, even when the

routers have limited caching capacity.

In the following subsections, these contributions are further explained.

1.5.1 NetCodNDN: A Network Coding Enabled NDN Architecture

Motivated by the improvements that network coding brings to content retrieval over

NDN, presented in Section 1.3, and in order to study the benefits that network coding

brings to NDN data intensive applications, the first contribution of this thesis is

NetCodNDN, an architecture that enables network coding in NDN. The NetCodNDN

architecture is based on the NDN architecture [38, 104], with a redesigned PIT table,

and new procedures for Interest and Data packet processing.

Our proposed architecture solves the shortcomings of previous proposals to enable

network coding in NDN [59, 100]. Specifically, previous works propose that each

Interest carries information about the Data packets retrieved by the client that sent

the Interest. Then, nodes holding Data packets that match the name prefix of the

Interest reply only if they can provide a network coded Data packet that is innovative

to the client, based on the information added to the Interest. However, in the presence

of multiple clients, (i) the aggregation of Interests is problematic, since Interests for

the same Data packet but from different clients contain different information about

the Data packets retrieved by each client, and it is not clear how this information could

be aggregated for different clients; and (ii), when a client sends multiple Interests in

parallel to receive multiple different Data packets, it includes the same information

about the Data packets it already has retrieved. This is undesirable, as a node that has

a matching Data packet will reply to these Interests with the same Data packet, which

will be duplicated for the client.

The NetCodNDN architecture (i) eliminates the need to include in the Interests the

information about the Data packets available at the client, thus, simplifying Interest

aggregation; (ii) allows the network nodes to keep information about the Data packets

they have sent on each face, reducing the number of duplicate Data packets; and (iii)

enables clients to send multiple concurrent Interests for different Data packets of the

13

Chapter 1. Introduction

same content object, by modifying the way in which the nodes process the Interest

messages.

The NetCodNDN architecture has been implemented using open-source and well-

known libraries, and follows the NDN project guidelines to simplify its re-usability and

expansion. In particular, it uses the NDN Forwarding Daemon (NFD) codebase [61] as

a base for the NetCodNDN architecture. To enable network coding, it uses Kodo [69],

an industry standard C++ library that implements network coding functionality in an

optimized way.

The experimental evaluation shows that NetCodNDN leads to significant improve-

ments in terms of content retrieval delay compared to the original NDN. Our results

demonstrate that NetCodNDN improves multipath content retrieval which offers

large gains in terms of the time needed to retrieve content objects. This translates

into increased throughput seen by the clients. Moreover, it permits to exploit more

efficiently the available network resources in multi-source and multi-client scenarios,

even when bottlenecks are present in the network. Finally, it also shows increased

robustness to packet losses.

The research work related to this contribution has resulted in the following publica-

tion:

Jonnahtan Saltarin, Eirina Bourtsoulatze, Nikolaos Thomos, and Torsten

Braun. “NetCodCCN: A Network Coding Approach for Content-Centric

Networks”. In: Proc. of IEEE INFOCOM’16. San Francisco, USA, Apr. 2016.

doi:10.1109/INFOCOM.2016.7524382

1.5.2 Adaptive Video Streaming over Network Coding Enabled NDN

The next contribution of this thesis is an architecture that enables adaptive video

streaming over NetCodNDN. As of 2015, video accounted for 70% of consumer Internet

traffic, and it is expected to reach 82% by 2020 [21]. This increase in the volume of

video traffic is fueled by the emergence of applications such as social video, virtual

reality (VR), augmented reality (AR), etc., that have become popular and involve the

delivery of large amounts of video content. For this reason, this thesis focuses on the

study of the benefits that network coding brings to video streaming over NDN, for

both end-users and video content providers.

14

1.5. Thesis Contributions

One of the most popular and efficient approaches available for video streaming is

Dynamic Adaptive Streaming over HTTP (DASH) [37, 85]. The advantage of DASH

compared to previous video streaming methods is that the clients are in control

of the streaming logic. Thus, the clients are able to decide the appropriate bitrate

and resolution of the requested video, among the multiple options offered by the

video content providers. This requires that the sources encode the video in different

representations, i.e., different bitrates and resolutions. Each representation is further

divided into a series of video segments with a duration of a few seconds. This allows

clients to adapt in real-time the demanded video resolution and bitrate in response to

changes in the network conditions.

The client driven video adaptation property has ranked DASH as an attractive option

for video streaming in future Internet architectures [99], in particular for NDN. The

content retrieval mechanism of NDN resembles the video retrieval mechanism of

DASH [46]. In particular, NDN and DASH are both client driven. Hence, clients request

content by sending requests with the names assigned to each piece of content, i.e., a

content object in NDN or a video segment in DASH. It is, therefore, natural to consider

DASH for implementing adaptive streaming in the NetCodNDN architecture.

Thus, to study the benefits that network coding bring to video streaming over

NDN, this thesis proposes a Dynamic Adaptive Streaming over NetCodNDN (DAS-

NetCodNDN) architecture. In comparison to previous works proposing dynamic

adaptive streaming over NDN [25, 45, 46, 73, 98], DAS-NetCodNDN exploits network

coding to efficiently use the multiple paths connecting the clients to the sources.

Moreover, DAS-NetCodNDN enables efficient multi-source video streaming and

improves resiliency to Data packet losses. The performance gains are verified through

simulations in a Netflix-like scenario. The evaluation shows that video streaming

applications over NDN benefit from the use of network coding in the form of reduced

load on the video sources, increased cache-hit rate at the in-network caches and

improved video quality at the clients.

The research work related to this contribution has resulted in the following publica-

tion:

Jonnahtan Saltarin, Eirina Bourtsoulatze, Nikolaos Thomos, and Torsten

Braun. “Adaptive Video Streaming with Network Coding Enabled Named

Data Networking”. In: IEEE Transactions of Multimedia, vol. 19, no. 10,

15

Chapter 1. Introduction

Aug. 2017. doi:10.1109/TMM.2017.2737950

1.5.3 Caching Policy for Network Coding Enabled NDN

The study of the benefits that network coding brings to data intensive applications

presented in Sections 1.5.1 and 1.5.2 assumes that the intermediate routers have

enough caching capacity to store all the Data packets that are transmitted through

them. This allows to focus on studying the benefits that network coding brings to

NDN data intensive applications, without the need to take into consideration the

impact that the different caching policies may have on the proposed architectures.

However, assuming unlimited caching capacity for the intermediate routers is not

realistic.

To study the benefits that network coding brings to data intensive applications in

the presence of intermediate routers with limited caching capacity, we enhance the

design of the NetCodNDN architecture and propose PopNetCod, a popularity based

caching policy for NetCodNDN. In PopNetCod the intermediate routers distributedly

estimate the popularity of the content objects based on the received Interests. Then,

based on this information, each node decides which Data packets it inserts into or

evicts from its cache. The decision to cache a particular Data packet is taken before

the Data packet arrives at the node, while processing the corresponding Interest. Since

the first nodes to process Interests in their path to the source are the edge nodes, this

helps to cache the most popular Data packets closer to the network edges, which

reduces the content delivery delay [24, 26, 87]. To avoid that two independent nodes

cache the same Data packet, when a node decides to cache the Data packet that is

expected as a reply to a received Interest, it informs the nodes upstream in the path by

setting a binary flag in the Interest. This increases the diversity of network coded Data

packets in the caches. When the cache of a node is full and a Data packet should be

cached, the node decides the name prefix and number of Data packets that should be

evicted from its cache based on the popularity information. Since network coded Data

packets with a specific name prefix are equivalent in terms of contained information,

the node does not need to decide which particular Data packets to evict, and can

choose random Data packets with the selected name prefix.

The research work related to this contribution has resulted in the following manuscript,

currently submitted for publication:

16

1.6. Thesis Outline

Jonnahtan Saltarin, Torsten Braun, Eirina Bourtsoulatze, and Nikolaos

Thomos. “PopNetCod: A Popularity-based Caching Policy for Network

Coding enabled Named Data Networks”. Submitted for publication.

1.6 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 provides a background and overview of the existing works in the area of

content retrieval, Named Data Networking, information coding, dynamic adaptive

video streaming, and caching algorithms, which are the base of this thesis.

Chapter 3 presents NetCodNDN, an architecture for enabling network coded content

retrieval over Named Data Networking.

Chapter 4 presents a Dynamic Adaptive Streaming over NetCodNDN (DAS-

NetCodNDN) architecture. Moreover, Chapter 4 presents the results of the study of

the benefits that network coding brings to video streaming over NetCodNDN.

Chapter 5 presents PopNetCod, a popularity based caching policy that complements

the design of the NetCodNDN architecture.

Chapter 6 concludes this thesis and presents future directions for network coding

enabled NDN architectures.

17

2
State of the Art

2.1 Overview

Retrieving content (e.g., files, video streams, personal messages, etc.) over the Inter-

net is intensely growing and expected to continue growing in the near future [21].

Moreover, the way in which users retrieve content over the Internet is changing, from

connecting to a particular network node to obtain the content that it publishes, to

requesting particular content objects, without caring where the content is being

served from. This growth in content transmission and the change in user behavior

have prompted the development of new paradigms for future Internet architectures.

Information-Centric Networking (ICN) is a novel Internet paradigm that gives more

importance to the characteristics of the content than to its location in the network.

Named Data Networking (NDN) is one of the multiple ICN architectures that have

been proposed, and which has became very popular due to its large research com-

munity and its open-source implementations. However, the NDN architecture does

not achieve optimal content retrieval in multi-client and multi-source scenarios in

which bandwidth is limited, bottlenecks exist in the network, and packet losses occur.

19

Chapter 2. State of the Art

One approach to alleviate these issues is to enable information coding in the network.

Fountain coding is a popular class of information coding in which the source is able to

generate a large number of coded Data packets, and the client only needs to retrieve a

subset of those coded packets to decode the original content. However, it has been

demonstrated that by allowing the intermediate nodes to apply coding operations, the

performance of content retrieval increases. For this reason, network coding has been

proposed as an alternative information coding approach. The benefits of network

coding have been demonstrated in traditional Internet architectures, and also a few

studies demonstrate that they could be beneficial to the NDN architecture.

In this Chapter, we provide a detailed description of the concepts that we will use

during this thesis, and an analysis of the most relevant related works. We start by

describing the process of content retrieval over the Internet. Then, we introduce ICN

and its most popular realizations. Among those, in this thesis we use the NDN archi-

tecture, and thus we provide a detailed description of it, including its data structures

and packet processing procedures. Next, we discuss the most relevant information

coding methods that are used to solve the issues of the NDN architecture presented

in Chapter 1. Then, we focus on network coding, the information coding method

that we choose to use in this thesis, and discuss some previous attempts to integrate

network coding into the NDN architecture. Then, since nowadays video streaming

is one of the most popular Internet applications, we present some concepts of video

streaming, in particular dynamic adaptive video streaming and its integration into

the NDN architecture. Finally, since one of the most important features of the NDN

architecture is in-network caching, we discuss some of the most important caching

algorithms for NDN.

2.2 Content Retrieval over the Internet

Content retrieval over the Internet consists in transmitting a copy of a certain content

object from a content provider to a set of end-users that have expressed interest in the

content object. The end-users can use different methods to express interest in one or

more content objects. For example, in the current Internet, the end-users can send

HTTP GET [27] requests to the network address of the server containing the content,

or they can subscribe to a PUSH [92] service, among other methods.

A content retrieval scenario consists of a set of sources S that are associated with

20

2.3. Information-Centric Networking

content providers and that serve content objects, a set of clients C that are associated

with end-users and that request content objects, and a set of routers R through which

the content requests and content objects are transmitted. In this thesis, we consider

that sources are network nodes that reply to content requests with the content data.

Content retrieval in the current Internet, based on the IP protocol [18], requires clients

to know not only what content they desire, but also where the desired content is

located in the network, i.e., the IP address of the source that holds a copy of the

requested content. This requires a system that permits clients to resolve a name into

an IP address, e.g., the Domain Name System (DNS) [57, 58]. In turn, the sources also

need to know the IP address of the client to which they should send each requested

content object. The routers in the network forward the content requests and content

objects based on the IP address of the destination node.

However, content retrieval in the current Internet is not aligned with the behavior of

the Internet users nowadays: users care more about the characteristics of the content

they want to obtain rather than where this content is located in the network. To

address the mismatch between the Internet users’ behavior and the Internet archi-

tecture, new communication paradigms have been proposed in an attempt to define

a future Internet architecture. In particular, Information-Centric Networking (ICN)

is a new communication paradigm in which the importance is shifted from where

the content is located, to what the content is. In ICN, each piece of content has a

name associated to it, which is used to route the content through the network. In this

way, content becomes independent from location, application, storage, and means of

transportation. The benefits of such content-centric approach are improved content

retrieval efficiency, better scalability with respect to information/bandwidth demand

and higher robustness in challenging communication scenarios [71]. In the following

Section, we provide details of multiple ICN proposals available in the literature.

2.3 Information-Centric Networking

Multiple ICN based Internet architectures have been proposed in the literature, such

as the Data-Oriented Network Architecture (DONA) [42], the Publish-Subscribe In-

ternet Routing Paradigm (PSIRP) [29, 94], the Network of Information (NetInf) [6]

architecture, and the original Content-Centric Networking (CCN) [38] and its suc-

cessor Named Data Networking (NDN) [104]. Next, we give a brief description of

21

Chapter 2. State of the Art

the aforementioned ICN architectures. For a more comprehensive description of the

available ICN proposals, the interested reader is referred to [5] and [102] for complete

surveys.

2.3.1 Data-Oriented Network Architecture

In the Data-Oriented Network Architecture (DONA) [42], content objects are published

by principals, and named by a combination of the principal ID and the object ID given

by the principal. The principals register the content name in their local Resource

Handler, which are content routers. Then, the registration message is propagated in

the network, such that other resource handlers know where to find that particular

content object. Clients interested in a certain content object send a Find message to

its associated resource handler, which forwards the request towards the appropriate

resource handler. The content object is delivered to the client following the same route

as the Find message, or an alternative route. Resource handlers can cache content

objects as they are forwarded to the clients.

2.3.2 Publish-Subscribe Internet Routing Paradigm

In the Publish-Subscribe Internet Routing Paradigm (PSIRP) [29, 94] architecture,

publishers are sources that provide content objects to the PSI network. The subscribers

are clients that explicitly express their interest in a particular content object by issuing

subscription messages. Each content object is associated with a scope, which could

be a physical scope, e.g., only available at the campus of the “University of Bern”, or

a logical scope, e.g., only available for users of the social network “Facebook”. Thus,

the scope is used to limit the reachability of the content object to clients that have

access to that particular scope. Moreover, each content object has a unique name

that allows subscriber interests to be matched with the content object. The matching

between subscriber interests and content objects occur in a node called Rendezvous

Point (RP). The RPs are able to store subscriptions for a certain time, until the content

object becomes available. This functionality allows the publication and subscription

operations to be decoupled in time and space, since clients can send subscription

messages for content objects that still do not exist in the network.

22

2.3. Information-Centric Networking

2.3.3 Network of Information

The Network of Information (NetInf) [6] architecture enables two types of content

retrieval. In the first approach, content object requests are routed towards their source

locations based on the names of the requested content objects. The content objects

are forwarded from their source locations to the requesting clients also based on their

name. In the second approach, a name resolution step is introduced, which provides

the location of the content object sources based on the content object names. This

enables a graceful transition between the current location-based Internet architecture

and a purely name-based Internet architecture. Three types of messages exist in the

NetInf architecture: (i) PUBLISH, which is used by sources to announce their available

content objects, such that the requests can be routed towards them and the name

resolution mechanism is able to resolve names into its correct location(s); (ii) GET,

which is used by clients to request content objects; and (iii) SEARCH, which allows

clients to query the network by sending a set of keywords, and receiving specific

names and possibly also locations of content objects that match the query.

2.3.4 Content-Centric Networking

Content-Centric Networking (CCN) [38] is an architecture in which the content is

described by a name and the clients demand content with the help of Interest messages

that contain the name of the requested content. The Interests are transmitted over the

network until they reach a node holding a copy of the content whose name matches

that of the Interest. This node creates a Data packet that contains a copy of the

requested content and sends it back to the client. The Data packet follows the reverse

path of that followed by the Interest. As the Data packet is transmitted backwards

to the client, intermediate routers can store copies of it, so they can reply to future

Interests sent by other clients for the same content.

Based on the CCN architecture, the Named Data Networking (NDN) [104] architecture

has been proposed as part of a large research project [105] conducted by multiple

research institutions, including the authors of the CCN architecture. After a few

years of common design decisions, the NDN architecture has parted away of the

CCN architecture, and evolved in a different direction. For example, NDN routers

perform longest prefix match to identify matching Data packets in the cache, while

CCN routers perform exact matching in order to simplify the forwarding procedures.

23

Chapter 2. State of the Art

A comprehensive list of differences between NDN and CCN could be found at [36].

Nevertheless, both architectures share the same basic principles, e.g., communication

is based on the content name, content is requested with Interests and delivered in

Data packets.

Among the proposals described in Section 2.3, CCN and NDN are the most popular

in the literature, due to their active research community and their open-source im-

plementations. In this thesis, we use a software implementation based on the CCN

architecture for the evaluation presented in Chapter 3, and a software implementation

based on the NDN architecture for the evaluations presented in Chapters 4 and 5.

However, the most prominent features that we use from CCN and NDN are similar in

both architectures. In this thesis, we will focus on the NDN architecture, but the work

presented here could be easily implemented in the CCN architecture. In the following

Section, we provide a detailed description of the NDN architecture.

2.4 Named Data Networking

As presented in Section 2.2, a content retrieval scenario consists of a set of source

nodes S that generate and store content objects, a set of clients C that demand

content objects and a set of intermediate nodes R through which the content objects

are requested and transmitted. Every node ν ∈ S ∪C ∪R is connected with its

neighboring nodes through a set of faces Fν.

2.4.1 Content Object Partitioning and Naming in NDN

Since the size of content objects is usually larger than the Maximum Transmission

Units (MTU), the content objects are divided into smaller Data packets that fit into an

MTU. Therefore, we consider that a content object is composed of a set of Data packets

Pn = {pn,1, . . . , pn,|Pn |}, where n is the name of the content object, which serves as a

name prefix for the Data packets, and |Pn | is the number of the Data packets that

compose the content object Pn . The name of each Data packet pn, j ∈ Pn is generated

by appending the segment ID j to the name n of the content object. For instance,

the name of the Data packet pn,1 is /provider/videos/largevideo.h264/1, where

n =/provider/videos/largevideo.h264 is the name of the content object and

j =1 is the segment ID. To retrieve a content object composed of the set of Data

packets Pn , a client c ∈C should send a set of Interests In = {in,1, . . . , in,|Pn |}, where

24

2.4. Named Data Networking

FacesName

NDN FIB

(n)

(n

(n

f**

f*,f***

f*,f**

Figure 2.1: Forwarding Information Base (FIB).

|In | = |Pn |, i.e., there is one Interest for each Data packet. Note that the actual number

of Interests that the client c should send to retrieve Pn may be higher than |Pn |, since

in a lossy network some Interests and Data packets may be lost. Thus, some of the

Interests in In will need to be sent more than once. Interests have an expiration time,

which is used to define the validity of the content request. When Interest expires, the

client could consider that the Data packet that was supposed to arrive as a reply to

this Interest will not arrive (e.g., because of a packet loss), and retransmit the Interest.

The clients can send multiple Interests of the set In in parallel, i.e., without waiting to

receive Data packets before sending new Interests, to speed-up the retrieval of the set

of Data packets Pn . This process is known as Interest pipelining.

2.4.2 Data Structures of the NDN Architecture

NDN nodes have three tables in which they store information used to facilitate the

content retrieval process. This tables are: the Forwarding Information Base, where

the node stores information about the faces that it can use to forward Interests for

a specific name prefix; the Content Store, where the node caches Data packets that

pass through it, and that could be usefull to reply to future Interests; and the Pending

Interest Table, where the node keeps track of the Interests that it has forwarded and

the faces over which these Interests have arrived. In the following subsections, we

describe these three tables of the NDN architecture.

Forwarding Information Base

The Forwarding Information Base (FIB) is a table in which the node ν stores the faces

F
ν
n over which it can forward Interests with name prefix n to retrieve the correspond-

25

Chapter 2. State of the Art

EntryName

NDN CS

(n,1)

(n,2)

(n,3)

pn,1

pn,2

pn,3

Figure 2.2: Content Store (CS).

ing Data packets. The FIB entries are of the form (n,Fν
n), as depicted in Fig 2.1.

Content Store

An NDN node ν maintains a cache with a set of Data packets P
ν
n that it has received

and are considered useful to store, in order to reply to future Interests for the name

prefix n. Each Data packet pn, j ∈ P
ν
n is stored as an entry in the CS, as depicted in

Fig. 2.2. When a node ν receives an Interest in, j , it looks into its CS to find all the

entries that match the name prefix (n, j) of the Interest. Since the name prefix (n, j)

refers to a specific Data packet, only one entry will match.

The CS provides methods to insert new Data packets and to get Data packets that it

holds. This methods are detailed below.

• GetCS(n, j) – Gets the Data packet pn, j that matches the name prefix (n, j), if it

exists in the CS of the node ν.

• InsertCS(pn, j) – Inserts a new Data packet pn, j into the CS of the node ν, if it

is not already cached in the CS.

Pending Interest Table

An NDN node ν stores the information about the Interest that were forwarded up-

stream in the Pending Interest Table (PIT). The PIT is a collection of entries T =
{tn, j . . . }. Each PIT entry tn, j keeps track of the received Interests with name prefix

(n, j) that were forwarded and are pending, i.e., have not been consumed by a Data

packet. Each entry tn, j has two components for each face f , (i) an in-record t
f (i n)

n, j
that

26

2.4. Named Data Networking

EntryName

(n,1)

f +

 in: 1

NDN PIT

out: 0

f ++

 in: 1

out: 0

f *

 in: 0

out: 1

(n,2)

f +

 in: 1

out: 0

f *

 in: 0

out: 1

f **

 in: 0

out: 1

Figure 2.3: Pending Interest Table (PIT).

takes the value “1” if an Interest with name prefix (n, j) has been received over face f

and it has not been satisfied, or the value “0” otherwise, and (ii) an out-record t
f (out)

n, j

that takes the value “1” if an Interest with name prefix (n, j) has been sent over face f

and the expected Data packet has not arrived, or the value “0” otherwise.

The NDN PIT provides methods to insert information about new Interests, and to get

the PIT entry associated with a particular name prefix. In particular, the following two

methods are provided:

• GetPIT((n, j)) – Gets the PIT entry tn, j associated with the name prefix (n, j).

• InsertInPIT((n, j), f) – Sets to “1” the value of t
f (i n)

n, j
in the PIT entry tn, j

associated with the name prefix (n, j). If the PIT entry does not exist, it is created

by this method.

• RemoveInPIT((n, j), f) – Sets to “0”the value of t
f (i n)

n, j
in the PIT entry tn, j asso-

ciated with the name prefix (n, j). If the PIT entry does not exist, this method

does nothing.

• InsertOutPIT((n, j), f) – Sets to “1” the value of t
f (out)

n, j
in the PIT entry tn, j

associated with the name prefix (n, j). If the PIT entry does not exist, it is created

by this method.

• RemoveOutPIT((n, j), f) – Sets to “0” the value of t
f (out)

n, j
in the PIT entry tn, j

associated with the name prefix (n, j). If the PIT entry does not exist, this method

does nothing.

27

Chapter 2. State of the Art

f ++ f +++

f* f**

(i) Aggregate

Pending

Cached

FacesName

FIB

(n) f*
Not Pending

Not cached

DataName

CS

(n,1) pn,1

(n,2) pn,2

pn,2

f +

Downstream (ii) Replyin,2

(iii) ForwardUpstream

EntryName

(n,1)

f +

 in: 1

PIT

out: 0

f *

 in: 0

out: 1

(n,2)

f +

 in: 1

out: 0

f *

 in: 0

out: 1

Figure 2.4: Interest processing in NDN.

2.4.3 Interest Processing

In NDN, when a node receives an Interest, it either: (i) adds information about the

received Interest to the PIT and waits for the requested Data packet to arrive, if previ-

ously an Interest for the same Data packet has already been forwarded; (ii) replies to

the Interest with a matching Data packet from its CS; or (iii) forwards the Interest to

neighboring nodes, in order to receive the requested Data packet. This procedure is

depicted in Fig. 2.4 and it is further explained below.

(i) Waiting for a new Data packet — Consider a node ν that receives an Interest in, j

over face f . If the node ν finds in its PIT an entry that matches the name in the

Interest, it means that it has already forwarded in, j and hence the Data packet

pn, j is expected. In this case, the node adds face f over which the Interest has

arrived to the respective PIT entry, and does not forward in, j again. In this way,

28

2.4. Named Data Networking

the node reduces the number of Interests in the network, and the number of

duplicate Data packets that it receives. This procedure is also known as Interest

aggregation.

(ii) Replying to an Interest — When the PIT of the node ν does not have any entry

that matches the Interest in, j , it looks for a Data packet with a matching name

in its CS. If a copy of the Data packet pn, j is cached in the CS, the node ν replies

to the Interest in, j .

(iii) Forwarding an Interest — If the CS of the node ν is not caching a Data packet

that matches the name of the Interest in, j , the node ν forwards the Interest to

one or more of its neighboring nodes, according to its FIB. Moreover, the node ν

also updates its PIT table to add the information about the forwarded Interests.

2.4.4 Data Message Processing

Once the requested Data packet pn, j is found in the CS of a router or in a source, it

is sent to the client over the reverse path of that followed by the Interest. When a

node receives a Data packet pn, j over a face f , it first looks up in its PIT for an entry

that matches the name of the Data packet pn, j . If no PIT entry matches the name

(n, j), the Data packet is considered unsolicited and it is discarded. If a PIT entry

matches the name (n, j), the Data packet is forwarded over all the faces specified in

the corresponding PIT entry. Additionally, the Data packet pn, j may be added to the

CS, according to the caching policy of the node. A more detailed description of the

NDN operation is provided in the NFD Developer Guide [4].

2.4.5 Multipath Data Delivery in NDN

As described in Chapter 1, a possible solution to the lack of sufficient bandwidth in

the links connecting the network nodes is the use of multiple paths to retrieve content.

The NDN architecture provides inherent support for multipath content retrieval, by

allowing clients to distribute the set of Interests In needed to retrieve a content object

over all their available faces Fc , without the need to set-up multiple connections,

as in multipath TCP (MP-TCP) [28]. The use of multipath communication in NDN

has been studied by previous works [33, 77, 81]. These works mainly focus on the

design of Interest forwarding strategies that exploit all the available interfaces of the

node to distribute the Interests, without considering a specific application. Rossini

29

Chapter 2. State of the Art

et al. [77] investigated multipath Interest forwarding strategies, showing that the use

of multiple paths simultaneously can increase resilience to network dynamics and

reduce repository load. They also show that naïve multipath Interest forwarding

strategies (e.g., round robin) could reduce the caching efficiency since when multiple

clients decide to send the Interest in, j to retrieve the Data packet pn, j over different

paths, all the caches over the followed paths will cache a copy of the same Data

packet pn, j . Schneider et al. [81] presented novel Interest forwarding strategies that

improve end-user Quality of Experience (QoE) and reduce the clients’ access cost

and power consumption. To accomplish this, a new set of interface estimators are

proposed, which enable fine-grained control and selection of interfaces in a multi-

homed scenario. However, it is not clear how the QoE is affected when multiple multi-

homed clients request the same content. Gomes et al. [33] presented a load balancing

strategy that enables simultaneous utilization of the LTE and Wi-Fi interfaces at the

clients to retrieve Data packets. The proposed strategy takes into account the real-time

interface conditions, i.e., transmission rate, round-trip time, and packet loss rate, in

order to reduce energy consumption and increase throughput at the clients, while

reducing the costs for the operators. The evaluation results showed that by using the

proposed strategy, network resources are more efficiently used. Moreover, clients

are able to retrieve the desired content faster than by using only LTE, or using Wi-Fi

offloading strategies. However, when multiple clients request a particular content

object, each client still needs to coordinate with the other clients the face over which

it sends each Interest, such that the network resources are used optimally.

In this thesis, we argue that optimal multipath content retrieval in multi-client and

multi-source NDN scenarios could be achieved by using network coding [7]. This is

possible because the sources send different network coded Data packets over each

path, increasing the diversity of Data packets that are cached in the network. In this

way, clients do not need to agree where to send each Interest, such that they travel

over the optimal paths in the network.

Before introducing network coding in Section 2.6, in the following Section we intro-

duce fountain codes, one of the most popular coding approaches used in content

retrieval.

30

2.5. Fountain Codes

Fountain
Encoder

...

K

K + ε

Receiver

Source Symbols

Encoded Symbols

Figure 2.5: A metaphorical example of fountain codes.

2.5 Fountain Codes

Fountain codes [15] are a class of channel codes with the property that a very large

number of encoded packets can be generated at the sources by randomly combining

a finite set of source packets by means of XOR operations. This property simplifies the

adaptation to varying loss rates.

Fountain codes can be seen as a source that generates a stream of encoded packets

until the client is able to decode the K original packets. The number of packets that

are combined to generate an encoded packet is determined by a degree distribution

function. The clients can decode the K source packets with high probability after

retrieving a subset of encoded packets with size equal to or slightly larger than the

number of source packets. When the client is able to decode, it sends a signal to the

source to stop the transmission. This should occur after generating K + ǫ packets,

where ǫ is the number of extra encoded packets that should be transmitted. In a system

without decoding feedback from the clients, the value of ǫ is decided in advance so

that the probability to decode a set of packets is close to 1 when the client receives

K + ǫ coded packets. As it is shown in Fig. 2.5, the encoder can be thought of as a

metaphorical fountain and the output packets as drops of water. Once the client, a

metaphorical bucket, has collected K +ǫ encoded packets (i.e., the bucket is filled),

the entire message can be decoded.

31

Chapter 2. State of the Art

Source Symbols Xi

Encoding Symbols ξi

Figure 2.6: Tanner graph produced by LT encoding.

Since the encoded packets are created by randomly combining the source packets, a

small header called Encoding Symbol ID (ESI) is appended to each packet, to inform

the client about the source packets that were used to generate the encoded packet.

The ESI is the seed of the pseudorandom generator used for generating the encoded

packet (degree and source packets to be combined). The size of the ESI depends on

the number of source packets, e.g., for 64K source packets, an ESI header of two bytes

is sufficient.

An interesting property of fountain codes that could be exploited in multi-source

scenarios is that the same K original packets can be encoded at all the sources and, as

the number of encoded packets that can be generated is much larger than K , each

source will generate encoded packets that differ with high probability from the ones

generated by other sources.

Thus, fountain codes can be used to improve the data retrieval process in presence of

multiple sources, multiple paths and lossy communication channels. In the following

Sections we describe two of the most popular practical implementations of fountain

codes. Detailed surveys of fountain codes are given in [56, 91].

2.5.1 LT codes

Luby Transform (LT) codes [50] were the first practical realization of fountain codes.

Their encoding consists in random combinations of the source packets. Each encoded

packet p̂n, j is represented with a vector γn, j containing ones at the positions corre-

sponding to the indices of the source packets combined. All the encoded packets

define the generator matrix Γ= [γn,1γn,2 · · ·γn,K] where K is the number of generated

packets.

The matrix Γ can be represented by a Tanner graph, as shown in Fig. 2.6, in which the

32

2.5. Fountain Codes

Source Symbols Xi

Raptor Symbols ξi

Pre-Coding Symbols

Figure 2.7: Encoding of non-systematic Raptor codes.

packets are referred to as nodes and the edges between source and encoded nodes are

generated taking Γ as the connectivity matrix of the graph. An encoded packet p̂n, j is

said to be covered if there exists an edge between this packet and at least one source

packet.

After transmitting these packets over a lossy network, each client is able to form a

modified generator matrix Γ
′ in which the lost packets have been pruned from Γ.

After collecting enough encoded packets to make Γ
′ full rank, the client can decode

the original source packets using either the Belief Propagation algorithm [68] or by

Gaussian elimination.

2.5.2 Raptor Codes

Raptor codes are an extension to LT codes proposed by Shokrollahi [83] in order to

minimize the overhead (extra packets) needed to decode the encoded source packets..

They are designed to achieve linear encoding-decoding time complexity. The overhead

of Raptor codes tends asymptotically to zero for very large codeblocks (i.e., content

objects), while for short codeblocks, the original content can be recovered with high

probability with a set of packets slightly larger than the set of source packets, i.e., one

or two extra packets are enough.

The encoding procedure consists of two steps: first, the data is pre-coded with codes

like Low Density Parity Check (LDPC) codes [31], Low Density Generator Matrix

(LDGM) codes [76], or Tornado codes [52]. Then, the pre-coded data is encoded with

weakened LT codes [50], i.e., LT codes with very sparse parity-check matrices. Due

33

Chapter 2. State of the Art

to the sparse LT codes generator matrices, linear encoding and decoding times are

achieved. The pre-coding step makes the decoding procedure more robust to erasures,

as the errors remaining after LT decoding can be corrected by the pre-coder. Fig. 2.7

shows a general encoding graph for Raptor codes.

An efficient implementation of Raptor codes has been presented as a 3GPP stan-

dard [1]. In this implementation, the pre-coding step consists of regular LDPC codes

followed by high density Half codes. The 3GPP version of Raptor codes [1] provides a

fast algorithm for solving the equations systems for packet decoding, by employing a

variant of classical Gaussian elimination process.

A more recent extension of Raptor codes is RaptorQ codes [51], which currently are

the closest solution to an ideal fountain code, i.e., with high probability, the clients

are able to decode the K source packets after retrieving K coded packets. It has the

capability of achieving constant per-symbol encoding/decoding cost, and provides

superior support for larger codeblocks.

2.5.3 Fountain Codes in NDN

As discussed in the previous sections, the use of fountain codes alleviates the perfor-

mance drops in case of Data packet losses. Moreover, in architectures where caches

exist in intermediate routers, like NDN, the use of fountain codes brings additional

benefits. In particular, since the number of encoded Data packets that can be gen-

erated is very high compared to the number of original Data packets, the diversity

of Data packets cached in intermediate nodes could be drastically increased, which

reduces the probability of duplicated information being cached at the intermediate

routers. For this reason, Parisis et al. [67] studied the benefits that fountain codes in

combination with in-network caching, bring to multi-source NDN scenarios. The

simulations show that the use of fountain codes reduces the number of duplicate Data

packets in multi-source scenarios, increasing the overall performance of the network.

Anastasiades et al. [8] proposed RC-NDN, a Raptor coding enabled NDN architecture.

Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN

is particularly efficient in dense environments, where retrieval times can be reduced

by 83% and the number of Data transmissions by 84.5% compared to NDN. However,

the evaluation of RC-NDN only considered single-hop communication. The perfor-

mance gains may be drastically reduced in multi-hop communication, in which case

network coding may be required to keep the performance gains. In the next section,

34

2.6. Network Coding

... p1  p2  pK
Network Coding Operation

e.g. XOR

Figure 2.8: Information coding at each node.

p1+p2 p1+p2

p2

c1

p2

p1

c2

s1 s2

p1
p1+p2

m

n

(a)

p1+p2 p1+p2

c1 c2 m

(3)

p2

c1 c2 m

(2)

p1

c1 c2 m

(1)

(b)

Figure 2.9: Wireline (a) and wireless (b) examples of network coding advantages.

we provide more details about network coding and its use in the NDN architecture.

2.6 Network Coding

Network coding has emerged as a paradigm of research in information theory and

data networking. The idea of network coding, first presented by Ahlswede et al. [7],

is to allow the network nodes to perform information coding, besides forwarding

and replication operations like in traditional systems. By information coding we

mean a mapping from inputs to outputs, as shown in Fig. 2.8. Information flows can

therefore be “combined” during the course of routing. In contrast to previous coding

methods, the encoding and decoding operations are not restricted to the terminal

nodes (i.e., clients and sources), and may happen at all nodes across the network.

Allowing intermediate routers to network code the Data packets permits to avoid the

conservative end-to-end policies of traditional schemes, like Forward Error Correction

(FEC), and increase the Data packet diversity in multipath scenarios. The throughput

gains of network coding can be illustrated with two classic examples in the literature,

one for the wireline setting and one for the wireless setting, as shown in Fig. 2.9

35

Chapter 2. State of the Art

The most famous example of the benefit of Network Coding was given by Ahlswede et

al. [7], who considered the problem of multicast in a wireline network. Their exem-

plary network, commonly referred to as the butterfly network, shown in Fig. 2.9(a),

represents a multicast scenario where two sources s1 and s2 transmit two packets

p1 and p2 to the clients c1 and c2. All the links have unit capacity of one packet per

timeslot. If network coding is not allowed, the node m would receive packets p1 and

p2 in the first timeslot and would take two timeslots to transmit them through the

bottleneck edge m−> n, since this link can accommodate either packet p1 or packet

p2, but not both at the same time. At the end, one of the two clients should wait four

timeslots (when m has a cache) instead of three to complete downloading, which

may affect time-constrained applications. Instead, if network coding is allowed, the

node m could encode packets p1 and p2 and transmit only the combination p1 ⊕p2

of the two packets through the bottleneck. Then, at the third timeslot, the client c1

has packets p1 and p1 ⊕p2, and implementing p1 ⊕ (p1 ⊕p2) it can recover p2. The

same occurs in client c2, which can recover p1 as p2 ⊕ (p1 ⊕p2).

Another interesting example, but for wireless networks, is shown in Fig. 2.9(b) where

nodes s1 and s2 are communicating with the help of a relay m. Each of these nodes is

equipped with an omnidirectional antenna; s1 and s2 are too far away from each other

for direct communication, but can both reach the relay m in the middle. Assume

that s1 and s2 wish to exchange a pair of packets p1 and p2 (e.g., a pair of public

cryptographic keys). Without allowing network coding in the system, the exchange

of the pair of packets (p1 from s1 and p2 from s2) requires four timeslots, since the

relay node should receive two packets and retransmit them one at a time. Allowing

network coding in the relay, the exchange is achieved within three rounds, without

interference between concurrent transmissions.

From the above examples, it is clear that network coding offers gains in terms of

throughput and delay, compared to simple routing. Furthermore, the application

of network coding can also be beneficial for robustness to packet erasures, where

network coding permits to exploit efficiently the network diversity.

2.6.1 Random Linear Network Coding

The most common way of implementing network coding is allowing the nodes to

combine the packets with linear operations [34, 35]. In this case, a coded packet p̂ is a

linear combination of the packets stored in the buffer or cache, denoted as p̂ = a ·P,

36

2.6. Network Coding

where a is a vector of coefficients drawn from a Galois field and P is a vector of the

packets in the buffer or cache. Early network coding schemes [39, 41] require the

use of complex algorithms to define the coefficients a. They assume that the sources

have full knowledge of the network topology, which is an unrealistic assumption in

large scale networks. Later works [20] have proposed random selection of the coding

coefficients for generating the packets. If the coefficients are chosen in a large finite

field of size q , random linear network coding can achieve the multicast capacity with

a probability higher than

(1−|C |/q)l ,

where |C | is the number of clients. The parameter l corresponds to the maximum

number of links receiving signals with independent randomized coefficients in any

set of links constituting a flow solution from all sources to any client. If large finite

fields are chosen, the probability of obtaining the multicast capacity tends to one.

The equations system built by the network coded packets is with probability 99.6%

decodable when the computations are performed in a finite field of size 216 [20].

For further reading in network coding, the reader may refer to [9, 30, 48, 91]. In the

next subsection, we present the state-of-the-art for the use of network coding in the

NDN architecture, which is the main idea behind this thesis.

2.6.2 Network Coding in NDN

The application of network coding in ICN has been explored by Montpetit et al. [59]

who proposed an architecture called NC3N. In this approach, Interests have a new

field that contains the Data packet availability information of the client that sends

the Interest, similar to the approach proposed by Sundararajan et al. [88] for TCP-

based content retrieval. Nodes storing Data packets that match the name prefix of

the received Interest, reply only if they can provide a network coded Data packet

that conveys new information to the client. However, when there are multiple clients

requesting the same content, (i) the aggregation of Interests is problematic, since

Interests with the same name but coming from different clients contain different

Data packets availability information; and (ii), the pipelining of Interests, i.e., sending

multiple concurrent Interests for different Data packets, is also problematic, since all

the pipelined Interests have the same Data packets availability information. The latter

is undesirable as a node that has a matching Data packet will reply to multiple Interests

with the same Data packet. These Data packets will be considered as duplicates by the

37

Chapter 2. State of the Art

client, since only one of these will carry novel information with respect to the Data

packets that are already available at the client.

Inspired by NC3N [59], Wu et al. [100] proposed CodingCache, where network coding

is used to replace the Data packets in the cache of the network nodes. Due to the

increased Data packet diversity in the network, the cache hit rate is improved. How-

ever, CodingCache suffers from the same drawbacks as NC3N, namely, the Interest

aggregation and Interest pipelining are problematic. In the work presented by Llorca et

al. [49], multicast delivery in network coding enabled ICN is optimized by finding the

evolution of the Data packets that are cached in the network. However, this approach

needs a central entity that is aware of the network topology and the Interests, which

does not scale well with the number of network nodes because it requires signaling

messages to continuously inform about changes in the topology.

The demonstrated benefits that network coding brings to ICN motivated researchers

to study applications that can take advantage of network coding enabled NDN. Mat-

suzono et al. [55] have proposed L4C2, a network coding enabled mechanism for low

latency, low loss video streaming over CCN. In L4C2, the network nodes estimate the

acceptable delay and Data packet loss rate in their uplinks, adjusting the requested

video quality accordingly. The clients first request non-network coded Data packets,

and only request network coded Data packets when they detect Data packet losses. In

this case, the benefits of network coding are only exploited when Data packet losses

occur.

Bourtsoulatze et al. [14] presented a delivery scheme for scalable video transmis-

sions over NDN. The approach uses Prioritized Random Linear Network Coding

(PRLNC) [90] to account for different video layers that have unequal importance. To

communicate the additional information needed to handle network coded Interests

and Data packets, this approach proposes the use of Bloom filters [11]. Moreover, a

rate allocation algorithm is formulated in order to choose the optimal rates of Inter-

ests sent by clients and routers, and an Interest forwarding strategy that implements

the rate allocation algorithm is proposed. The evaluation shows that the approach

achieves a close to optimal performance.

In Chapter 3 of this thesis we propose NetCodNDN, a network coding enabled NDN

architecture, that enables optimal multipath content retrieval in multi-source and

multi-client scenarios for data intensive applications. Moreover, the NetCodNDN

architecture also solves the shortcomings of the aforementioned approaches. Specifi-

38

2.7. Video Streaming

Media Presentation

Period 3

Period 1

Period 2

Period
id:2 , start: 100s

Adaptation Set 0

Adaptation Set 1

Period 4

Adaptation Set 0

Representation 1
rate: 1Mbps

Representation

Representation 2
rate: 4Mbps

Representation 2
rate: 10Mbps

...
Segment 1

name: ub/video/1

Segment 2
name: ub/video/2

Segment 3
name: ub/video/3

Figure 2.10: Representation of the Media Presentation Description (MPD) file.

cally, (i) it eliminates the need to include in the Interests the information about the

Data packets available at the client, thus, simplifying Interest aggregation; (ii) it allows

clients to efficiently send multiple Interests in parallel (i.e., Interest pipelining), by

modifying the way in which the nodes process the Interest messages; and (iv) it does

not need centralized coordination or complicated inter-node signaling.

2.7 Video Streaming

Due to its predominance in the Internet traffic, in this thesis we choose video stream-

ing as the data intensive application on which we base our study of the benefits that

network coding brings to data intensive applications over NDN. In this section, we

introduce the main concepts that enable dynamic adaptive video streaming over NDN.

First, we describe the operation of Dynamic Adaptive Streaming over HTTP (DASH).

Then, we show the similarities between NDN and DASH.

2.7.1 Dynamic Adaptive Streaming over HTTP

One of the most prominent video streaming techniques used nowadays is adaptive

video streaming, and, in particular, DASH [37, 85]. One of the main characteristics

of DASH is that the clients are in control of the streaming logic, deciding the bitrate

and resolution of the streamed video. To enable the video quality adaptation by the

clients, each video v is encoded with different parameters (e.g., bitrate, resolution,

etc.), creating a set of representations Q. The different representations can be gen-

erated by using any video encoder (e.g., AV1 [65], HEVC/H.265 [86], etc.), as it is not

fixed in the DASH standard. The video data in each representation q ∈Q is divided

into a set of segments Z . Every segment z ∈ Z has the same duration. This allows

39

Chapter 2. State of the Art

clients to request segments belonging to the representation that better adapts to their

current network conditions, display capabilities, etc. Hence, the clients can switch

to a different representation after receiving each segment if the network conditions

change, for example. To inform the clients about the offered video representations, a

file called the Media Presentation Description (MPD) is associated with each video

v . As it can be seen in Fig. 2.10, the MPD file contains information about the periods,

which are fractions of the video that may have a different set of representations, the

adaptation sets, which may have different sets of representations for different devices,

the available representations for each adaptation set, and the segments that compose

each representation. In this thesis we consider that there exists a single period and a

single adaptation set, thus we are only interested in the sets of representations Q and

segments Z available in the MPD file. A client that is interested in receiving the video

v should first request the MPD file associated with this video. Then, after receiving

and parsing the MPD file of the video v , the client knows what representations are

available and what names it should use to request the video segments. Each particular

video segment is identified with a name n ← v/q/z that is composed of the ID v of the

video to which the segment belongs, the representation q in which the segment has

been encoded and the segment ID z.

2.7.2 Dynamic Adaptive Streaming over NDN

The similarities in the content retrieval mechanisms of DASH and NDN have attracted

the attention of the research community [25, 45, 46, 73, 95, 98, 99]. Detti et al. [25] pro-

posed a cooperative adaptive video streaming application for CCN. In this application,

mobile users download video segments from the sources over the cellular network

and also from other mobile users that are connected through the Wi-Fi network. The

results show that by exploiting users’ cooperation, the users can drastically reduce

the amount of data downloaded over the cellular network, which may result in cost

reductions. In a system integrating CCN and DASH [46], the version component of

the CCN content naming is used to name the different representations of a DASH

segment, and the segment component of the CCN content naming is used to divide

segments into Data packets that fit into lower level Maximum Transmission Units

(MTU). Clients request video segments following the same procedures as in the CCN

architecture. However, this DASH-based video streaming proposal [46] uses NDN as

communication protocol, it suffers from the drawbacks for data intensive applications

in NDN presented in Section 1.1.

40

2.8. Caching in Named Data Networking

As presented in Section 1.2, in this thesis we propose to use network coding in order to

alleviate the aforementioned issues. On top of that, in this thesis, we propose a novel

DASH-based video streaming architecture for network coding enabled that enables

optimal video streaming in multi-source and multi-client scenarios. It is worth noting

that the Internet Research Task Force (IRTF) addresses the adaptation of current video

streaming mechanisms to the ICN architecture in the RFC7933 [99]. It also defines

some use cases for video streaming and their requirements, identifying the main issues

associated with these streaming mechanisms in ICN. Moreover, RFC7933 [99] also

recognizes the potential benefits that network coding could bring to video streaming

over NDN, considers its study as an important next step for the ICN community.

2.8 Caching in Named Data Networking

As described in Section 2.4, in NDN the intermediate routers are able to cache the

received Data packets in order to reply to future Interests for the same content. This

pervasive caching concept proposed by NDN has enabled the study and proposal of

multiple approaches to improve the caching efficiency. However, having caches in

all the network nodes is not always necessary to yield the full benefits that caching

brings to the data retrieval process. In particular, it is agued that enabling caches only

at the edge of the network may achieve performance improvements similar to having

caches in every node [24, 26, 87].

The caching process can be divided in two phases: first, a placement algorithm that

decides which Data packets should be cached, and the replacement algorithm that

decides which data packets should be evicted from the cache when it is full and a new

Data packet should be inserted. Some of the basic placement algorithms are Leave

Copy Everywhere (LCE), where all the Data packets received by a router are placed

into the cache, and Leave Copy Down (LCD) [44], where each time a router registers

a cache-hit, it flags the Data packet such that it is cached one hop closer to the user.

A very popular approach is ProbCache [74], where the routers cache Data packets

according to a certain probability that depends on the caching resources available

along the path. In this way, the caching resources are better utilized, reducing the

number of duplicate Data packets cached in the network.

More sophisticated placement algorithms consider content popularity in order to

decide which Data packets a router should place in its cache [3, 10, 19, 47, 97, 98, 103].

41

Chapter 2. State of the Art

MPC [10] is a placement algorithm that proposes the use of a popularity threshold

at each router. As soon as the popularity of a Data packet reaches the threshold, the

router sends a suggestion to its neighbors to cache the popular Data packet. The main

drawback of this approach is the increased traffic in the network due to the suggestion

messages, which can be potentially high, since the granularity is at the Data packet

level.

VIP [103] is a framework for joint Interest forwarding and Data packet caching. This

scheme uses a virtual control plane that operates on the Interest rate, and an actual

plane which handles Interests and Data packets. It is shown that the design of joint

algorithms for routing and caching is important for NDN, and, thus, this scheme

proposes distributed control algorithms that operate in the virtual control plane with

the aim of increasing the number of Interests satisfied by in-network caches.

PopCaching [47] is a popularity-based caching policy in which the popularity is com-

puted online, without the need for a training phase. This makes PopCaching robust

to dynamic popularity settings. However, PopCaching is designed for traditional

caching systems with a single cache in the path, while in this paper we are interested

in networks of caches.

WAVE [19] is a placement algorithm that determines the number of Data packets that

should be cached for a given file with the help of an access counter. The number of

Data packets to cache increases exponentially with the value of the access counter.

The main idea of WAVE, which partially caches a content object according to the local

popularity, is also shared by the caching policy that we propose in this paper. However,

this approach does not facilitate edge caching, since the most popular data is cached

closer to the source and slowly moves towards the edges as the number of requests

increases.

Progressive [3] is another partial caching algorithm, which exploits the content popu-

larity to decide how many Data packets should be cached for each name prefix. The

cache placement decision is taken when the Interests are received, which helps to

cache the most popular content at the network edge. However, this approach lacks a

replacement algorithm, and hence it cannot be deployed when the cache capacity is

limited.

None of the approaches above consider the use of network coding [7], and they are

evaluated in single-path scenarios. Given the benefits that network coding brings

42

2.8. Caching in Named Data Networking

to multipath communications in NDN [59, 75, 78, 80], some approaches have been

proposed to improve the benefits of caching in network coding enabled NDN archi-

tectures [49, 97, 100]. NCCAM [49] and NCCM [97] propose optimal solutions to the

problem of efficiently caching in network coding enabled NDN. However, both ap-

proaches need a central entity that is aware of the network topology and the Interests,

which does not scale well with the number of network nodes. CodingCache [100] is

an eviction policy in which before evicting a Data packet, the routers apply network

coding to the Data packet by means of combining it with other Data packets with the

same name prefix that will remain in the cache. Due to the increased Data packet

diversity in the network, the cache-hit rate is improved. However, in CodingCache the

clients should include into the Interests information regarding the Data packets that

they have received. This (i) increases the size of the Interests, since the Data packet

availability information may be of considerable size, (ii) complicates the Interest

aggregation procedure, since the information about the available Data packets for

each client needs to be aggregated with the Interests, and (iii) complicates the Interest

pipelining procedure, since a client that sends multiple Interests in parallel with the

same Data packet availability information may receive duplicate Data packets.

In this Thesis we propose PopNetCod, a popularity based caching policy for network

coding enabled NDN. PopNetCod is a distributed caching policy, in which each router

measures the popularity of the Interests for content objects that it receives, and uses

this information to decide which Data packets it will cache or evict from the content

store. This naturally enables partial caching of content objects. The placement

decision takes place when processing the Interests. In case that the router decides

to cache the Data packet that will come as reply to this Interest, it signals the other

routers in the path with a flag on the Interest. Taking the placement decision at the

Interest processing stage helps to keep the most popular Data packets closer to the

network edges, which is beneficial [24, 26,87].The replacement decision is taken when

processing a Data packet that should be cached and the content store is full, also using

popularity information.

43

3
A Network Coding Enabled NDN

Architecture

3.1 Introduction

It is clear from Chapter 1 that the integration of network coding into the Named

Data Networking (NDN) architecture presents benefits for data intensive applications.

Specifically, it enhances multipath data retrieval in multi-source and multi-client

scenarios, alleviates throughput degradation at the clients when bottlenecks are

present in the network, and improves the resilience to packet loss.

In order to study in detail these benefits and quantify them, an architecture that

integrates network coding into the NDN architecture is needed. In particular, the

needed architecture should enable network coding in NDN in a way that it can handle

the large number of Data packets that data intensive applications require. Moreover, it

should support multi-client and multi-source scenarios in diverse network topologies,

since these scenarios are becoming more important.

45

Chapter 3. A Network Coding Enabled NDN Architecture

Therefore, this Chapter introduces NetCodNDN [78], a network coding enabled NDN

architecture, based on the CCN/NDN architecture [38, 104]. The proposed architec-

ture enables optimal multipath content retrieval in multi-source and multi-client

scenarios for data intensive applications. Moreover, the NetCodNDN architecture

also solves the shortcomings of the approaches presented in Chapter 2. We have

implemented NetCodNDN by making the necessary changes to the CCNx [17] code-

base, and performed experiments to compare it to unmodified CCNx. The results

demonstrate that NetCodNDN offers large gains in terms of the time needed to re-

trieve the original content object. Moreover, it improved robustness to packet losses

and permits to exploit more efficiently the available network resources in multi-source

and multi-client scenarios. To the best of our knowledge, this is the first practical

implementation that enables network coding in the CCNx codebase.

This Chapter is organized as follows. We start by describing the integration of network

coding into NDN and the challenges it poses. We then describe the generation of

network coded Data packets, the basic transmission unit in our proposed architecture.

Then, we present the core of the NetCodNDN architecture: the data structures and

algorithms used by the routers to process network coded Interests and Data packets.

Finally, we present the evaluation of the NetCodNDN architecture.

3.2 Network Coding Enabled NDN

As discussed in Chapter 1, the shortcomings of the NDN architecture in multi-client

and multi-source scenarios for data intensive applications can be resolved by enabling

network coding [7]. With network coding, the Data packets delivered to the clients are

coded by means of combining the Data packets available at sources and routers prior

to being forwarded. Hence, when network coding is enabled in NDN, the network

coded Data packets contain information from all the Data packets that have been

combined to generate them. The key idea behind introducing network coding in NDN

is that clients no longer need to request specific Data packets, but rather network

coded Data packets, as they all have equivalent information. Therefore, the nodes do

not need to coordinate the faces where they forward the Interests, which enhances

the network bandwidth utilization.

Differently from NDN, where an Interest in, j requests a specific Data packet pn, j with

name prefix n and Data packet ID j , in a network coding enabled NDN, an Interest

46

3.3. Challenges of Enabling Network Coding in NDN

în requests a network coded Data packet p̂n , without specifying the particular Data

packet ID j . In this case, the set of Interests needed to retrieve P̂n is În = {în}, i.e., the

set contains a single Interest. To retrieve the demanded content, each client sends

the Interest în at least |Pn | times. Note that more than |Pn | Data packets may be

needed, as network coded Data packets are generated by randomly combining the

Data packets with name prefix n. Hence, with some small probability when coding is

done in a large finite field, these Data packets can be linearly dependent. Furthermore,

due to packet losses, additional Interests may need to be sent to compensate for the

lost packets. Any node ν can reply to these Interests with network coded Data packets.

The network coded Data packets are generated by combining the set of Data packets

P
ν
n that are available in the CS or the repository of the node ν and that match the

name prefix n.

The Data packet p̂n can be considered as a vector p̂n , where each element of the

vector belongs to a finite field. Then, the set of network coded Data packets Pn can

be expressed as a matrix P̂n where each row corresponds to a Data packet p̂n . The

operations performed by the node ν to generate a new network coded Data packet p̂n

can be expressed as

p̂n = A ·Pν
n , (3.1)

where A is a matrix of coding coefficients drawn uniformly at random from a finite

field, and Pν
n is the matrix formed with the set of Data packets P

ν
n . When the coding

coefficients in A are randomly chosen from a large enough finite field, the generated

Data packets have a high probability of being linearly independent with respect to

the Data packets previously generated, and, thus, being innovative [35]. To decode

the original Data packets that compose Pn , a client should collect |Pn | innovative

network coded Data packets p̂n .

3.3 Challenges of Enabling Network Coding in NDN

As discussed in Chapter 1, enabling network coding in NDN brings benefits that can

potentially improve the performance of content object retrieval under multi-source

and multi-client scenarios. However, some issues arise when the Interests do not

specify the Data packet ID.

47

Chapter 3. A Network Coding Enabled NDN Architecture

One of the issues that arises is that any node that has a single network coded Data

packet p̂n cached in its CS will reply with this Data packet to any Interest în , as

the name prefix in the Interest matches that of the cached Data packet p̂n . This is

undesirable, since the routers will always reply with the same cached Data packet p̂n ,

while clients need to receive |Pn | innovative network coded Data packets in order to

decode the original content object. Therefore, the routers need a way to determine

when they cannot provide a network coded Data packet that is innovative to the client,

and thus a new network coded Data packet has to be retrieved. In the previous work

from Montpetit et al. [59], the authors propose to solve this problem by allowing the

clients to include information about the coded Data packets they have collected so far.

Routers reply to an Interest only if they can provide innovative information. However,

it is not clear how routers can aggregate Interests with different information from the

clients.

Another challenge that emerges when network coding is enabled in NDN is related

to the pipelining procedure, i.e., a client sending multiple concurrent Interests for

different Data packets of the same content object. In the original NDN when a node

receives an Interest that it cannot satisfy with content stored in its CS, the node checks

its PIT. If the node finds an entry in the PIT indicating that an Interest for the same

name has been received previously over the same face, it considers this new Interest

as a duplicate and do not forward it. Since Interests for different Data packets have

different names, as the Data packet ID is appended to the name prefix, pipelining is

supported. However, when network coding is enabled in NDN, concurrent Interests

for different network coded Data packets of the same content object have the same

name. Therefore, pipelining can not be supported trivially, as all Interests with the

same name will be considered duplicated.

3.4 The NetCodNDN Architecture

In this Section, we describe our proposed NetCodNDN architecture, a practical im-

plementation of a network coding enabled NDN architecture, based on the CCN [38]

and NDN [104] architectures. We start by defining the data segmentation and naming

scheme in the proposed architecture. Then, we describe the proposed changes to

the data structures of an NDN node (i.e., the Content Store (CS) and the Pending

Interest Table (PIT)) that render them able to deal with network coded Data packets

and Interests. Finally, we describe how Interests and Data messages are processed in

48

3.4. The NetCodNDN Architecture

NetCodNDN.

3.4.1 Content Object Fragmentation

As in the NDN architecture, in NetCodNDN the content objects are split into smaller

Data packets, Pn = {pn,1, . . . , pn,M }, that fit into a Maximum Transmission Unit (MTU).

As presented in Section 3.2, the Data packet pn, j can be represented as a vector pn,j.

To facilitate the deployment of network coding in practical settings [20], each Data

packet pn,j is prepended with an encoding vector to inform the routers and clients

about the coding operations that the network coded Data packet has been subjected

to. At the sources, the initial value of this vector is set to be the j th unit vector, which

has value 1 in the j th position and 0 otherwise.

Prepending encoding vectors to the Data packets introduces a communication over-

head that consumes network resources, especially when the number of Data packets

|Pn | is large. To limit this overhead, we adopt the concept of generations [20], where

the original set of Data packets that compose Pn is divided into smaller groups of

Data packets, which are known as generations. The coding operations are restricted

only among Data packets that belong to the same generation, in order to reduce the

network coding overhead and make it appropriate for time-constrained applications.

The set of Data packets that form the generation g is denoted as Pn,g , where g is the

generation ID. Thus, Pn =∪G
g=1Pn,g , where G is the total number of generations. To

avoid mixing Data packets from different generations, the generation ID, g , is added to

the name of the Data packet. The size of the generation controls the tradeoff between

the overhead required to communicate the encoding vector and the Data packet diver-

sity. Note that the size of the encoding vectors prepended to each Data packet is equal

to the size of the generation g , i.e., |Pn,g |, as the network coded Data packets may

potentially carry information from all the Data packets in Pn,g . Overall, the encoding

vectors do not pose any limitations to our system as there are approaches to compress

them efficiently [53, 89].

The node ν generates network coded Data packets by randomly combining the set of

Data packets Pν
n,g with name prefix n, g that are stored in their CS. Thus,

p̂n,g = a ·Pν
n,g =

|P̂ν
n,g |
∑

j=1

a j · p̂
(j)
n,g , (3.2)

49

Chapter 3. A Network Coding Enabled NDN Architecture

where a = {a1, . . . , aL} is a vector of coding coefficients randomly selected from a

finite field. Note that the sum and multiplication operations in (3.2) are finite field

operations.

3.4.2 Data Packet Naming

From the discussion above, it is obvious that the naming in NetCodNDN should

have two additional components compared to the NDN architecture, namely the

encoding vector and the generation ID g . For example, let us consider a content

object Pn with name n = /provider/videos/largevideo.h264, that is partitioned

into G generations of four Data packets each. Thus, in NetCodNDN the first Data

packet of the g th generation, associated with the coding vector [1,0,0,0], is named

/provider/videos/largevideo.h264/g/1000. Note that the proposed naming

scheme is compatible with the original NDN and can support the delivery of non-

network coded Data packets.

3.4.3 Data structures in NetCodNDN

Each node in the NetCodNDN architecture has a network layer forwarder, called

NetCodNDN forwarder, that is in charge of (i) routing Interests towards the sources,

(ii) forwarding Data packets back to the clients, and (iii) applying network coding

operations on the Data packets before forwarding them.

In the following, we describe the data structures maintained by the NetCodNDN

forwarder: the Forwarding Information Base (FIB), the Content Store (CS), and the

Pending Interest Table (PIT).

Forwarding Information Base

NetCodNDN uses the FIB model provided by NDN [104], and described in Chapter 2.

Content Store

NetCodNDN uses the CS model provided by NDN [104], and described in Chapter 2,

for both, network coded and traditional Data packets. However, in order to support

the creation of network coded Data packets, the methods to insert new Data packets

50

3.4. The NetCodNDN Architecture

into the CS and to get Data packets that it holds are modified.

As described in Section 3.4.1, when a node ν with a NetCodNDN forwarder receives an

Interest în,g , it can use the set of Data packets P̂
ν
n,g that are stored in its CS to generate

a network coded Data packet and reply to the Interest. Since both, traditional Data

packets pn, j and network coded Data packets p̂n,g are stored as single entries in the

CS, the NetCodNDN CS GetCS(n, g) method returns a set of Data packets that match

the name prefix (n, g), rather than a single Data packet as in the NDN CS described in

Chapter 2. The new methods provided by the NetCodNDN CS are described below.

• GetCS(n, g) – Gets the set of Data packet P̂ν
n,g that match the name prefix (n, g)

that are cached in the CS of the node ν. This function iterates over all the CS

until to find all the Data packets that match the name prefix (n, g).

• InsertCS(pn,g) – Inserts a new Data packet pn,g into the CS of the node ν.

Note that different network coded Data packets with name prefix (n, g) have a

different encoding vector appended to the name, as described in Section 3.4.2,

which makes them unique in the CS.

Pending Interest Table

Recall from Chapter 2 that each PIT entry tn, j has two components for each face f , (i)

an in-record t
f (i n)

n, j
that keeps track of the Interests that arrived over face f and that

have not been satisfied, and (ii) an out-record t
f (out)

n, j
that keeps track of the Interests

that have been forwarded over face f , and that are still pending. Each in-record t
f (i n)

n, j

takes the value “1” if an Interest with name prefix (n, j) has been received over face f

and it has not been satisfied, or the value “0” otherwise. If an Interest with name prefix

(n, j) arrives to a node in which the value of t
f (i n)

n, j
is “1”, the Interest is considered

duplicated and not further processed.

As described in Section 3.3, Interest pipelining is not trivially supported in NetCod-

NDN. This is because, since in the NetCodNDN architecture an Interest în,g request

any coded Data packet p̂n,g from the set of Data packets with name prefix (n, g), where

g is the generation ID, rather than particular Data packets pn, j , the first received In-

terest will set the value of t
f (i n)
n,g to “1”, and all the subsequent pipelined Interests în,g

will be considered as duplicated.

To enable Interest pipelining in the NetCodNDN architecture, the design of the PIT has

51

Chapter 3. A Network Coding Enabled NDN Architecture

EntryName

(n,1)

NDN PIT

f ++

out: 0

f *

Downstream
Faces

f +++

Upstream
Faces

f **

f ***

Received
Interests

i(n,1)
(t1)

time

Forwarded
Interests

time

i(n,1)
(t2)

i(n,2)
(t3)

i(n,1)
(t1)

f +

out: 0

 in: 0

 in: 1

f +

f ++

f * in: 1

out: 1

FWD

AGG

DUP

(a)

EntryName

(n,1)

NetCodNDN PIT

f ++

out: 0

f *

Received
Interests

i(n,1)
(t1)

time

Forwarded
Interests

time

i(n,1)
(t2)

i(n,2)
(t3)

i(n,1)
(t1)

f +

out: 0

 in: 0

 in: 2

 in: 1

i(n,1)
(t3)

Downstream
Faces

f +

f ++

Upstream
Faces

f **

f ***

FWD

FWD

out: 2
f *

AGG

f +++

(b)

Figure 3.1: Comparison of the PIT in (a) NDN and in (b) NetCodNDN.

to be modified with respect to that of the original NDN forwarder. In the redesigned

NetCodNDN PIT, the PIT in-record t
f (i n)
n,g and the out-record t

f (out)
n,g are counters which

can take values higher than “1”, i.e., there could be multiple pending Interests with

name prefix (n, g) for the face f . In this way, NetCodNDN nodes consider all pipelined

Interests as requests for more network coded Data packets, rather than duplicated

Interests.

To illustrate how the NetCodNDN PIT differs from the NDN PIT, let us consider the

example presented in Fig. 3.1. In both NDN and NetCodNDN, the first two Interests

are processed in a similar way: the Interest i (t1)
n,g is forwarded and the Interest i (t2)

n,g

is aggregated. However, the third Interest i (t3)
n,g is processed differently in the two

schemes: in NDN, it is considered duplicated since an Interest for the same name

has been received over face f ++ previously; in NetCodNDN, the Interest is forwarded

since it is considered as a request for an additional Data packet with name prefix (n, g)

from the face f ++.

52

3.4. The NetCodNDN Architecture

The NetCodNDN PIT provides methods to insert information about new Interests,

and to get the PIT entry associated with a particular name prefix. In particular, the

following two methods are provided:

• GetPIT((n, g)) – Gets the PIT entry tn,g associated with the name prefix (n, g),

if it exists.

• InsertInPIT((n, g), f) – Increases by 1 the value of t
f (i n)
n,g in the PIT entry tn,g

associated with the name prefix (n, g). If the PIT entry does not exist, it is created

by this method.

• RemoveInPIT((n, g), f) – Decreases by 1 the value of t
f (i n)
n,g in the PIT entry

tn,g associated with the name prefix (n, g). If the PIT entry does not exist, this

method does nothing.

• InsertOutPIT((n, g), f) – Increases by 1 the value of t
f (out)
n,g in the PIT entry

tn,g associated with the name prefix (n, g). If the PIT entry does not exist, it is

created by this method.

• RemoveOutPIT((n, g), f) – Decreases by 1 the value of t
f (out)
n,g in the PIT entry

tn,g associated with the name prefix (n, g). If the PIT entry does not exist, this

method does nothing.

3.4.4 Interest Processing

Similarly to NDN, in the NetCodNDN architecture the data communication is trig-

gered by the clients who send Interest messages în,g for data with name prefix (n, g).

In the proposed NetCodNDN architecture, the Interests have a NetworkCodingAllowed

field that takes the value “1” when network coded packets are expected, otherwise,

the field is not present or its value is set to “0”. If the NetworkCodingAllowed field is

set to the value “1”, the NetCodNDN Interest processing procedures are invoked. If

the NetworkCodingAllowed field is not present or set to the value “0”, the Interests

are treated following the original NDN procedures [4]. When a node ν receives an

Interest în,g with the NetworkCodingAllowed field activated over face f , it either (i)

replies to the Interest with a network coded Data packet generated by combining the

Data packets in its CS; (ii) forwards the Interest to its neighboring nodes, to receive

an innovative network coded Data packet; or (iii) waits for a new network coded

Data packet to arrive, if a previously received Interest with the same name prefix has

53

Chapter 3. A Network Coding Enabled NDN Architecture

Algorithm 1 Interest Processing in NetCodNDN

Require: în,g , f , Pν
n,g ← GetCS(n, g)

1: if rank(P̂ν
n,g) = |P̂n,g | then (Generation is decodable)

2: ξ
f
n,g = |P̂n,g |

3: else

4: σ
f
n,g = number of Data packets with name prefix (n, g) sent over face f .

5: ξ
f
n,g = rank(P̂ν

n,g)−σ
f
n,g

6: end if

7: if ξ
f
n,g > 0 then

8: p̂n,g ←
∑|P̂ν

n,g |
j=1

a j · p̂
(j)
n,g

9: Send Data packet p̂n,g over face f

10: else

11: InsertInPIT ((n, g), f)

12: tn,g ← GetPIT ((n, g))

13: ǫn,g =
∑F

ν
n,g

f ′ t
f ′(out)
n,g (Total number of Interests în,g forwarded)

14: if ǫn,g ≤ t
f (i n)
n,g then

15: Forward the Interest în,g over face fout .

16: InsertOutPIT ((n, g), fout)

17: else

18: Wait for new Data packets.

19: end if

20: end if

already been forwarded. This procedure is further explained below and summarized

in Algorithm 1.

Replying to an Interest — The node ν replies to an Interest în,g when (i) it has collected

|P̂n,g | innovative network coded Data packets, meaning that the generation g is

decodable (line 1); or when (ii) a network coded Data packet generated by the node ν

has high probability to be innovative for the neighbor node connected through face f

over which the Interest arrived. The number of network coded Data packets that can

be generated by the node ν and that have a high probability to be innovative is given by

ξ
f
n,g = rank(P̂ν

n,g)−σ
f
n,g (line 5). The parameter σ

f
n,g denotes the number of network

54

3.4. The NetCodNDN Architecture

coded Data packets that have been sent over face f . When ξ
f
n,g is greater than 0 (line

7), the node ν generates a new network coded Data packet p̂n,g =
∑|P̂ ν

n,g |
j=1

a j · p̂
(j)
n,g (line

8) and sends it over face f (line 9).

Forwarding an Interest — If the number of network coded Data packets that can

be generated by the node ν and that have a high probability to be innovative, ξ
f
n,g ,

is equal to 0 (line 10), the node ν needs to receive a new innovative Data packet

that increases the rank of P̂ν
n,g before it is able to reply to the received Interest în,g .

Before forwarding an Interest, the node ν checks its PIT. In order to support Interest

pipelining, i.e., sending multiple concurrent Interests for different Data packets of

the same content object, the PIT lookup procedure of the NetCodNDN forwarder is

different from that of the NDN forwarder. First, the node ν increases by 1 the value

of t
f (i n)
n,g in the PIT entry tn,g (line 11). Then, node ν computes the number ǫn,g of

innovative network coded Data packets with name prefix (n, g) that it is expecting to

receive before the Interest în,g expires. To compute ǫn,g , node ν needs to take into

consideration the Interest and Data packet loss rate and delays, among other variables.

For the sake of simplicity, the NetCodNDN forwarder assumes that any forwarded

Interest brings an innovative Data packet before its expiration. This assumption is

similar to the one made by the original NDN forwarder, where received Interests are

not further forwarded if a PIT entry matching the name of the Interest is found, since

the previously forwarded Interest is expected to bring the requested Data packet. This

is because the NDN forwarder also considers that every forwarded Interest will bring

the requested Data packet before its expiration. In this case, ǫn,g is equal to the total

number of Interests with name prefix (n, g) that have been forwarded by the node

ν over all its faces, i.e., the sum of all the out-records in the PIT entry tn,g (line 13).

Finally, the node forwards the Interest în,g if the number of innovative network coded

Data packets with name prefix (n, g) that it is expecting to receive is less than or equal

to the number of Data packets with name prefix (n, g) that are pending to be sent over

face f , i.e., ǫn,g ≤ t
f (i n)
n,g (lines 14 - 16).

Waiting for a new network coded Data packet — If ǫn,g > t
f (i n)
n,g , the node ν does not

forward the Interest în,g and waits for a new network coded Data packet to arrive, as

it expects to receive enough network coded Data packets to satisfy all the pending

Interests, including the received Interest (lines 17 - 18).

55

Chapter 3. A Network Coding Enabled NDN Architecture

Algorithm 2 Data packet processing in the NetCodNDN forwarder

Require: p̂n,g , f

1: tn,g ← GetPIT ((n, g))

2: if t
f (out)
n,g = 0 then (Unsolicited)

3: Discard p̂n,g

4: else

5: RemoveOutPIT((n, g), f)

6: if rank(P̂ν
n,g ∪ p̂n,g) > rank(P̂ν

n,g) then

7: InsertCS (p̂n,g)

8: for all f ′ ∈ tn,g do

9: if t
f ′(i n)
n,g > 0 then

10: p̂∗
n,g =

∑|P̂ ν
n,g |

j=1
a j · p̂

(j)
n,g

11: Send the Data packet p̂∗
n,g over face f ′

12: σ
f
n,g ←σ

f
n,g +1

13: RemoveInPIT((n, g), f)

14: end if

15: end for

16: else

17: Discard p̂n,g

18: end if

19: end if

3.4.5 Data Message Processing

When a node receives a network coded Data packet, it follows the procedure outlined

in Algorithm 2 and described below.

When a node ν receives a network coded Data packet p̂n,g over face f , it first deter-

mines whether this Data packet was expected or if it was unsolicited. The node ν

accomplishes this by looking at its PIT (line 1). If the number of Interests sent over

the face f is 0, i.e., t
f (out)
n,g = 0, the node considers the Data packet as unsolicited and

does not transmit it further (lines 2 - 3). Otherwise, if the Data packet was expected

(line 4), the node ν decreases the value of t
f (out)
n,g by 1 (line 5) and determines if the

56

3.5. Evaluation

Data packet p̂n,g is innovative. The Data packet p̂n,g is innovative for the node ν if it

is linearly independent with respect to all the Data packets in the CS of the node ν,

P̂
ν
n,g , i.e., if it increases the rank of P̂ν

n,g (line 6). If the Data packet p̂n,g is innovative,

the node ν inserts it into its CS (line 7). Then, for each face f ′ indicated in the PIT

entry tn,g (line 7), the node ν determines if any pending Interest should be satisfied,

i.e., t
f ′(i n)
n,g > 0. If an Interest should be satisfied for the dace f ′, the node generates a

new network coded Data packet p̂∗
n,g =

∑|P̂ ν
n,g |

j=1
a j · p̂

(j)
n,g (line 10) and sends it over that

face (line 11). After this, the node updates the number of Data packets that have been

sent over face f ′ (line 12) and decreases by 1 the number of pending Interests for the

face f ′ (line 13). If the Data packet is non-innovative, it is discarded by node ν (lines

16 - 17).

3.4.6 Complexity

It is important to note that network coding adds complexity to both the Interest and

Data message processing in NetCodNDN. Performing algebraic operations on the

Data packets before forwarding them adds, effectively, some complexity to the node.

In particular, as we have seen in Section 3.4.1, a node generates a new coded packet as

p̂n,g =
∑|P̂ ν

n,g |
j=1

a j · p̂
(j)
n,g . If we consider that the symbol size is 28 and that Data packets

are of size |p̂| symbols, each time a node needs to generate a new coded packet, it

performs |p̂| · |P̂ ν
n,g | multiplications and |p̂| · (|P̂ ν

n,g |−1) additions. This complexity

does not pose limitations to our scheme as there are efficient implementations of

network coding [70]. Moreover, it has been shown [106] that a network coding coder

and decoder can operate at wire-speed with rates of up to 1000Mbps.

3.5 Evaluation

In this Section, we evaluate the performance of NetCodNDN in various scenarios, and

compare the results to the performance of the standard NDN. It is worth noting that,

while multiple approaches proposing the integration of network coding into NDN

exist in the literature [49, 59, 97, 100], none of them provides neither a implementation

that could be used in our experiments, nor a detailed description of the architecture

that enable us to implement it. In the remaining of this Section, we first describe the

simulation setup. Then, we evaluate the performance of NetCodNDN in the butterfly

network. This toy network provides a controllable environment which permits to verify

57

Chapter 3. A Network Coding Enabled NDN Architecture

WiFi

LTE

[Interest t1]

[Interest t2]

[Interest t3]

time

(a)

WiFi

LTE

[Interest t1]

[Interest t2]

[Interest t3]

time

(b)

WiFi

LTE

[Interest t1]

[Interest t2]

[Interest t3]

time

(c)

Figure 3.2: Interest distribution across the diffreren faces with the (a) default, (b)

loadsharing, and (c) parallel Interest forwarding strategies.

the expected behavior of NetCodNDN, and facilitates the illustration of its benefits.

Finally, we present the simulation results in a more realistic network topology, which is

generated based on real network measurements taken from the PlanetLab project [72].

3.5.1 Evaluation Setup

We implemented NetCodNDN by integrating the changes to the NDN architecture

described in Section 3.4 into the CCNx 0.8.2 [17] codebase, and we compare its perfor-

mance to that of the unmodified CCNx. The network topology is simulated using the

NS-3 network simulator [63]. The software forwarders for CCNx and NetCodNDN are

installed on NS-3 nodes using the Direct Code Execution framework (DCE) [64].

We consider that the clients are interested in a content object composed of 100 packets,

i.e., |P̂n | = 100. The size of each Data packet is 5KB. The Data packets are stored in

a set of sources that are connected to the clients through a network of routers. We

consider that the routers have sufficient CS capacity to cache all the incoming Data

packets. We assume that the 100 source Data packets comprise a single generation,

i.e., |P̂n,g | = |P̂n | and G = 1. The finite field in which the network coding operations

are performed is of size 28. In order to evaluate our architecture in a challenging

scenario, we consider that all the clients send Interests during the same interval of

time. In this way, we demonstrate that by using our architecture, the nodes are able to

aggregate Interests adequately.

For the evaluation of CCNx, we consider the three main Interest forwarding strategies

implemented in CCNx 0.8.2, and described in [16]:

• The default (DS) strategy “prefers the fastest responding face, and performs

experiments to determine if other faces can provide faster response. This strategy

58

3.5. Evaluation

also operates efficiently in environments where link quality changes or a face

becomes unresponsive, but does not make use of multiple paths or sources” [16].

In the example shown in Fig. 3.2a, the Wi-Fi face is the fastest responsive one,

thus, all the Interests are sent over the Wi-Fi face.

• The loadsharing (LS) strategy “distributes Interests amongst the available faces

based on the unanswered queue size. This strategy operates most efficiently when

there are multiple physical interfaces and the network is the limiting performance

factor.” [16]. In the example shown in Fig. 3.2b, the Interests are distributed

across the Wi-Fi and LTE faces.

• The parallel (PS) strategy “sends Interests to all available faces in parallel. This

strategy attempts to mask unstable links or poorly performing faces by redun-

dantly sending Interests. This increases the overall network load and local process-

ing overhead, and is not recommended when the links are of high quality” [16].

In the example shown in Fig. 3.2c, each Interest is sent over the Wi-Fi and LTE

faces in parallel.

For the evaluation of NetCodNDN, we always consider the parallel strategy, since by

sending a single Interest over all its faces the client can receive multiple useful (i.e.,

linearly independent) Data packets.

3.5.2 Metrics

To evaluate the performance of NetCodNDN, we measure the time ∆tmeasur ed that

a client needs in order to get the |P̂n | Data packets available at the sources. In the

original NDN, ∆tmeasur ed is defined as the elapsed time between the transmission

of the first Interest and the reception of the |P̂n |th missing Data packet. In NetCod-

NDN, ∆tmeasur ed is defined as the elapsed time between the transmission of the first

Interest and the reception of the |P̂n |th linearly independent network coded Data

packet, which permits to decode the whole generation of source Data packets. We

consider that clients can have heterogeneous network resources. Thus, to make a

fair comparison of the delivery delay, we define the normalized delivery delay as

d =∆tmeasur ed /∆tmi n , where ∆tmi n is the theoretical lower bound on the time that a

client would need in order to receive all the Data packets if it was alone in the network

and was able to receive at max-flow rate. Thus, a normalized delivery delay equal to

1 means that the client was able to receive the complete set of Data packets at the

59

Chapter 3. A Network Coding Enabled NDN Architecture

maximum rate. Note that ∆tmeasur ed ≥∆tmi n , or equivalently, d ≥ 1 always holds.

3.5.3 Butterfly Topology

We begin by evaluating NetCodNDN in the butterfly topology. We consider that every

Data packet is stored randomly in at least one of the two sources, and a copy of

the same Data packet is also placed in the CS of the other source with a replication

probability φ ∈ [0,1]. We set the bandwidth of every link in the network to 5Mbps.

In the first set of experiments, we consider that φ= 1, i.e., both sources hold a copy

of each Data packet in their CS. In this case, clients c1 and c2 can reach a copy of any

Data packet over any of their faces. However, as explained in Section 3.2, with the

original NDN architecture the maximum performance can be achieved only if both

clients coordinate and send Interest messages for the same Data packets over the faces

that connect them to the node r4. In contrast, when network coding is employed, the

need for coordination is eliminated, since clients do not send Interests for a specific

Data packet but rather for any network coded Data packet.

Impact on Network Bottlenecks

Fig. 3.3 depicts the normalized delivery delay as a function of the bandwidth of the

bottleneck link between the nodes r3 and r4. We can see that NetCodNDN achieves the

optimal performance in the whole range of link bandwidth values evaluated. This is

due to the fact that network coding removes the need for coordinating the forwarding

of Interest messages. In contrast, the NDN forwarding strategies perform poorly

and only the LS strategy can achieve the performance of NetCodNDN but it requires

significantly higher link bandwidth. When the bottleneck link has the same bandwidth

as all the other links, the average delivery time d of CCNx-LS is approximately 1.2 times

the minimum delivery delay, ∆tmi n . This is caused by the randomness introduced by

the LS strategy when choosing the faces over which Interests are transmitted when

all the faces have the same load. This creates two extreme cases. In one case, all

the Interests sent by both clients to node r4 are the same, thus d tends to 1. In the

other case, all the Interests are different, thus d tends to 1.33. This happens because

each node receives 2/3 of the Data packets through the link connecting them to the

sources, and 1/3 over the face connecting them to the node r4, which means that 2/3

of the total packets travel on the bottleneck link. With the DS and the PS strategies,

60

3.5. Evaluation

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

1

1.25

1.5

1.75

2

Bottleneck link bandwidth [Mbps]

N
o

rm
a

li
ze

d
d

e
la

y
(d

)
NetCodNDN

CCNx-LS

CCNx-PS

CCNx-DS

Figure 3.3: Normalized delivery delay vs. the bandwidth of the bottleneck link in the

butterfly network.

the average delivery time is close to 2, as expected. With the DS strategy, the face

connecting the clients to the sources is chosen as the best, and thus most of the Data

packets are received over that face. With the PS strategy, each client forwards every

Interest over both faces, thus bringing one copy of each Data packet over each face.

Pipeline Size

We now investigate how the number of concurrent Interests that a client can send, also

known as the pipeline size, affects the performance in terms of the average normalized

delivery delay. As shown in Fig. 3.4, the performance of NDN is optimized for a pipeline

size value between 5 and 10, where the normalized delivery delay seen by the clients

is 1.2. This is due to the fact that clients need to send at least 4 Interest messages over

the faces connecting them to node r4 in order to create a continuous flow of Data

packets. Since the LS strategy distributes the Interests over all available faces, a client

has to send 4 Interests over any face while it also has to send 3 or 4 Interests over the

other face, which amounts to 7 or 8 Interests in total. For smaller pipeline sizes, the

continuous flow is not set, while for larger pipeline sizes the number of Interests sent

over the bottleneck link increases, thus worsening the client coordination problem. In

contrast, the performance of NetCodNDN is not affected by the pipeline size, as it can

61

Chapter 3. A Network Coding Enabled NDN Architecture

2 5 10 15 20 25 30

1

1.25

1.5

1.75

2

Pipeline size

N
o

rm
a

li
ze

d
d

e
la

y
(d

)
NetCodNDN

CCNx-LS

Figure 3.4: Normalized delivery delay vs. the pipeline size in the butterfly network.

be verified in Fig. 3.4. This can be explained by the fact that NetCodNDN eliminates

the necessity that the clients request the same packets over the bottleneck link. For

the rest of the experiments, without loss of generality, we choose a pipeline size of 10.

Impact of Packet Losses

In Fig. 3.5, we depict the influence of the packet loss rate on the performance of

NetCodNDN and of the original NDN. We consider losses that are caused both by the

transmission losses and the errors during the processing of the Interests and Data

packets. We consider that the packet losses occur in an uniform manner, according

to the desired packet loss rate. We can see that the performance of NDN with the

LS strategy degrades faster than the performance of NetCodNDN as the packet loss

rate increases. This is caused by the fact that in NDN, the client will be able to react

to a packet loss only when the corresponding Interest expires, since any earlier re-

transmission of an Interest with the same prefix will be prevented by the PIT. Instead,

with NetCodNDN, the clients can send Interests until they have a sufficient number

of network coded Data packets in order to recover the content object. It is important

to note that the maximum amount of concurrent Interests that a client can send is

controlled by the pipeline size.

62

3.5. Evaluation

0 5 10 15 20 25 30
1

1.5

2

2.5

3

Packet loss rate [%]

N
o

rm
a

li
ze

d
d

e
la

y
(d

)

NetCodNDN

CCNx-LS

Figure 3.5: Normalized delivery delay vs. the packet loss rate in the butterfly network.

Source Replication

Finally, we evaluate the performance of NetCodNDN for different values of the repli-

cation probability φ. In CCNx, when φ < 1, the clients should not only coordinate

the requests sent over the bottleneck link as in the previous scenario, but they also

should have the knowledge of the Data packets that each source stores, in order to

avoid sending Interests over the face connecting them directly to the source that does

not hold a copy of the requested Data packet. In Fig. 3.6, we can see that in NDN with

the LS strategy, clients take 3.4 times longer to retrieve all the Data packets, when

each Data packet is stored only in one of the sources. When the PS strategy is used,

the clients do not need to know how the Data packets are distributed in the sources,

since each Interest message is sent over both faces. However, since a copy of every

Data packet crosses the bottleneck link, the traffic over the bottleneck link is doubled

compared to the network coding case. When the probability that the Data packets

are stored in both sources increases, the performance of CCNx with the LS strategy

improves, but eventually saturates at 1.2 times the minimum delay, which is consistent

with the results depicted in Fig. 3.4.

63

Chapter 3. A Network Coding Enabled NDN Architecture

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

Duplication probability φ [%]

N
o

rm
a

li
ze

d
d

e
la

y
(d

)
NetCodNDN

CCNx-LS

CCNx-PS

Figure 3.6: Normalized delivery delay vs. source Data replication probability in the

butterfly network.

3.5.4 PlanetLab Topologies

We now evaluate our architecture in more realistic network topologies captured by the

PlanetLab project [72]. We use the network topology shown in Fig. 3.7 that consists

of one source node, 5 client nodes and 20 routers. The links connecting the nodes

have a capacity of 12Mbps. The topology is generated in the following way. First, a

random source is chosen. Then, the routers are randomly added one-by-one to the

topology, taking into consideration the number of desired routers. Finally, the clients

are connected to the edge routers. Since the selection of routers is randomized, the

routers that cannot be reached by the source and the routers that are not connected

with any client are removed. This procedure is better described in [22]. We measure

the normalized delivery delay d for each client and then compare its average.

Number of Clients

First, we investigate how the performance is affected by the number of clients in the

network. In Fig. 3.8, we can see that with a single client (in this case node 24), NetCod-

NDN and CCNx perform similarly. In this case, network coding does not introduce

any gains since there is only one client in the network and no losses are considered.

64

3.5. Evaluation

Source

23

25

1

2

3
4

5

6

7

9

10

11

13

2021

22

24

8

12
14

15

16
19

17

18

Figure 3.7: PlanetLab topology used.

1 2 3 4 5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of clients

N
o

rm
a

li
ze

d
d

e
la

y
(d

)

NetCodNDN

CCNx-LS

CCNx-DS

Figure 3.8: Normalized delivery delay vs. the number of clients in the network in the

PlanetLab topology.

65

Chapter 3. A Network Coding Enabled NDN Architecture

0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

Error Rate [%]

N
o

rm
a

li
ze

d
d

e
la

y
(d

)
NetCodNDN

CCNx-LS

Figure 3.9: Normalized delivery delay vs. the packet transmission error rate in the

PlanetLab topology.

However, the performance of CCNx starts to degrade with the introduction of more

clients, as they start to compete for the network resources. In contrast, we can see that

the performance of NetCodNDN does not degrade with the addition of new clients

to the network topology. These results show that the NetCodNDN architecture uses

more efficiently the available network resources.

Impact of Packet Losses

We also evaluate how the packet losses in the network affect the performance of the

NetCodNDN for larger topologies. For this evaluation, we choose to keep only one

client, in order to compare the results with the performance of the NDN. As with the

butterfly topology, we consider packet losses that are caused both by transmission

losses and errors introduced during the processing of the packets. In Fig. 3.9, we can

see that NetCodNDN maintains the delivery delay close to the expected one, while

the performance of NDN degrades very fast with the introduction of packet losses. As

in the butterfly topology, this fast degradation is due to the fact that when a packet

is lost, the client needs to wait until the corresponding Interest expires before it can

re-send a new one.

66

3.6. Conclusions

3.6 Conclusions

In this Chapter, we have presented NetCodNDN, an architecture that integrates net-

work coding into NDN. In NetCodNDN, the clients send Interests for network coded

Data packets with a given name prefix, instead of asking for specific Data packets as

in NDN. The network nodes combine the Data packets by means of Random Linear

Network Coding (RLNC) before forwarding them, to take advantage of the benefits

that network coding brings to the data retrieval process. Our architecture is able to (i)

simplify the aggregation of Interests for network coded content; (ii) reduce the num-

ber of duplicate Data packets; and (iii) allow clients to send multiple Interests for the

same content in parallel. The NetCodNDN architecture has been tested in networks

with multiple clients and sources, where we have observed large performance gains

in terms of the time needed to retrieve the demanded content. In the next Chapter,

we use the NetCodNDN architecture proposed in this Chapter to demonstrate and

quantify the benefits that network coding brings to video streaming, a particular data

intensive application, over NDN.

67

4
Adaptive Video Streaming over Network

Coding Enabled NDN

4.1 Introduction

This Chapter studies and quantifies the benefits that network coding brings to data

intensive applications in NDN, using the NetCodNDN architecture proposed in Chap-

ter 3.

Since the volume of video traffic on the Internet is a large proportion of all the traffic

on the Internet [21], in this Chapter we consider video streaming as a data intensive

application that can benefit from the use of network coding in the NDN architecture.

One of the most prominent video streaming techniques used nowadays is adap-

tive video streaming, and, in particular, Dynamic Adaptive streaming over HTTP

(DASH) [37]. One of the main characteristics of DASH is that the clients are in control

of the streaming logic, deciding the bitrate and resolution of the streamed video. The

client driven video retrieval and adaptation property in DASH resembles the content

69

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

retrieval mechanism of NDN and NetCodNDN. In particular, NDN, NetCodNDN and

DASH are all client driven and, hence, clients request content by sending requests

with the names assigned to each piece of content, i.e., a content object in NDN and

NetCodNDN, or a video segment in DASH.

Motivated by the similarities of content retrieval mechanisms of NetCodNDN and

DASH, in this Chapter we propose a Dynamic Adaptive Streaming over NetCodNDN

(DAS-NetCodNDN) architecture [80], which brings the benefits of network coding to

NDN video streaming applications. We propose a new model of a client and a source

that enable dynamic adaptive streaming of video over network coding enabled NDN.

Moreover, we have updated the design of the NetCodNDN architecture presented in

Chapter 3, to make it more efficient for data intensive applications. In particular, we

have redesigned the Content Store (CS) and the Pending Interest Table (PIT), which

now are able to handle a high number of entries in more efficient way.

The updated NetCodNDN architecture has been implemented on top of the

ndnSIM [54] codebase, using the original NDN project codebase [61]. Then, the

DAS-NetCodNDN has been implemented by appropriately modifying the updated

NetCodNDN codebase. We compare the video streaming performance of DAS-

NetCodNDN to the original NDN architecture in a Netflix-like scenario, designed

with parameters available in the literature [2, 12, 62]. Our results demonstrate that

by using network coding, DAS-NetCodNDN exploits more effectively the multipath

communication and attains a higher cache hit rate in the routers. This translates into

lower bandwidth consumption at the sources, as well as higher bitrate seen at the

clients. As a result, clients can reach their desired video quality faster.

This Chapter is organized as follows. We start by describing how the network coded

Data packets are formed, using DASH [37] and NetCodNDN segmentation schemes.

Then, we present the design of the end-point applications, i.e., the clients and the

sources, which run at the application layer of the network. After that, we introduce

a set of optimizations to the content store and the pending Interest table of the

NetCodNDN architecture that render it more efficient when processing Interests and

Data packets. Finally, we present the evaluation of the DAS-NetCodNDN architecture,

showing the benefits that network coding brings to both end-users and video content

providers in a video streaming scenario.

70

4.2. The DAS-NetCodNDN Architecture

4.2 The DAS-NetCodNDN Architecture

In this section, we present DAS-NetCodNDN, an architecture for dynamic adaptive

streaming (DAS) over network coding enabled NDN (NetCodNDN). Our architecture

is based on the NetCodNDN architecture proposed in Chapter 3, which here is ad-

vanced to support dynamic adaptive video streaming. We start by defining the video

segmentation and naming scheme in the proposed architecture. Then, we describe a

new set of changes to the data structures of a NetCodNDN node, i.e., the Content Store

(CS) and the Pending Interest Table (PIT), which improve the processing of network

coded Data packets and Interests.

4.2.1 Video Fragmentation

We consider a set of videos V that are made available by a video content provider to a

set of end-users. One of the main characteristics of adaptive video streaming is that

the clients are in control of the streaming logic, deciding the bitrate and resolution of

the streamed video. To enable the video quality adaptation by the clients, each video

v ∈ V is encoded with different parameters (e.g., bitrate, resolution, etc.), creating

a set of representations Q. The video data in each representation q ∈ Q is divided

into a set of segments Z . Every segment z ∈ Z has the same duration. This allows

clients to request segments belonging to the representation that better adapts to their

current network conditions, display capabilities, etc. Hence, the clients can switch

to a different representation after receiving each segment if their conditions change

in between, e.g., an increase or decrease in the available bandwidth, a change of

the screen conditions, etc.. Each particular video segment is identified with a name

n = v/q/z that is composed of the ID v of the video to which the segment belongs, the

representation q in which the segment has been encoded and the segment ID z.

Since the size of the video segments is usually larger than the Maximum Transmission

Unit (MTU), the DASH segments are divided into smaller Data packets that fit into an

MTU. Therefore, we consider that a DASH segment with name n = v/q/z is composed

of the set of Data packets Pn = {pn,1, . . . , pn,|Pn |}, similarly to the data segmentation

scheme presented in Chapter 3.

To inform the clients about the offered video representations, a file called the Media

Presentation Description (MPD) is associated with each video v . This file contains

information about the available representations Q in which the video v has been

71

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

ClientSource

Router

Video
packetization
and naming

Video Content
Provider

DASH player

NetCodNDN
consumer

NetCodNDN
Forwarder

Repository

NetCodNDN
Forwarder

NetCodNDN
Forwarder

End-user

Figure 4.1: Proposed architecture for adaptive video streaming over network coding

enabled NDN.

encoded and the segments Z that compose each representation, among other param-

eters. A client that is interested in receiving the video v should first request the MPD

file associated with this video. Then, after receiving and parsing the MPD file of the

video v , the client knows what representations are available and what names it should

use to request the video segments.

4.2.2 Adaptive Video Streaming Implementation

In Fig. 4.1, we show a simple network example composed of a source s ∈S , a router

r ∈R, and a client c ∈C , and we illustrate the main components of these nodes. In

the following sections, we discuss the source and client node implementations in

more details.

Source nodes

We consider that a source s ∈ S is a node that persistently stores the Data packets

that form the video segments. In particular, a source s stores the set of Data packets

P
s =

⋃

n,g P
s
n,g . It is worth noting that a source s may not store the whole set of Data

packets Pn,g , but only a subset P
s
n,g ⊂Pn,g .

In order to accomplish this function, each source s contains one or more repositories

where the Data packets are stored. Repositories and content stores have similar

functionalities: (i) when they receive a Data packet pn,g ∈Pn,g , they store it in their

memory; and (ii) when they receive an Interest în,g , they return a network coded Data

72

4.2. The DAS-NetCodNDN Architecture

packet p̂n,g generated with the set of Data packets P
s
n,g that are available in their

memory. However, differently from a CS, a repository is designed to keep the Data

packets for longer time periods, using persistent storage devices.

Before the video segments are requested by the clients, the sources are initialized

following three steps: (i) the source receives from a content provider a set of videos

that it should store, then, (ii) the videos are divided into Data packets and generations

and given a name, as described in Section 4.2.1, and finally, (iii) the Data packets are

loaded into the repository. Then, the repository replies with network coded versions

of these Data packets whenever it receives an Interest that matches the name prefix.

Client nodes

In our architecture, we consider that a client c ∈ C is a node that, upon receiving a

video request from an end-user, generates the Interests needed to collect its Data

packets and assembles the video segments that will be delivered to the end-user.

Our model of a client consists of two main applications: (i) an adaptive video player

that decides the video representation that should be displayed and requests the

appropriate segments, and (ii) a NetCodNDN consumer that receives requests for

segments and generates Interests for network coded Data packets. Moreover, when

the network coded Data packets arrive at the NetCodNDN consumer, it decodes them

and reassembles the original segment before sending it to the adaptive video player.

These components are further described below.

The adaptive video player is the most direct interface between the end-user and the

video communication system. When an adaptive video player receives a request

from an end-user to retrieve a video v , it first requests the MPD file. This file is

typically of a small size, i.e., it usually fits into a small number of Data packets. For

this reason, applying network coding to it will not bring noticeable benefits, and

thus, in our architecture it is requested as traditional NDN content object. Given

the MPD information, the available resources and the configuration parameters, the

adaptive video player decides which representation q ∈Q is the optimal one every

time that it has to request a new segment z ∈Z . The adaptive video player is agnostic

to the protocol deployed in the network for requesting the segment, which can be

either NetCodNDN, NDN or HTTP. It only takes into account the incoming bandwidth

measured in the reception of the previous video segments.

73

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

When the adaptive video player decides to request a video segment with name n =
v/q/z, it sends this request to the NetCodNDN consumer, which then generates and

forwards a set of Interests În that request the set of packets Pn that form the video

segment. Whenever the NetCodNDN consumer collects the complete set of Data

packets Pn that form the requested segment, it assembles the segment and passes it

to the adaptive video player.

Since the network coded Data packets are grouped into generations, the set of Interests

În is also divided in generations, thus În =
⋃G

g=1 În,g , where g is the generation ID

and G is the total number of generations. The total number of generations G can be

obtained as Data packet metadata, or simply by adding a flag to the last generation.

These Interests are passed to the network layer, that forwards them to the node’s

neighbors. The generations are requested sequentially, starting from g = 1 up to the

last generation, G . The client only starts to send the Interests În,g when all the Data

packets Pn,g−1 from the previous generation have been received. The total number of

generations G can be obtained as Data packet metadata, or simply by adding a flag

to the Data packets of the last generation. The NetCodNDN consumer keeps track

of the received innovative Data packets p̂n,g in a matrix P̂c
n,g , where c stands for the

consumer, so that the original set of Data packets can be retrieved by performing

Gaussian elimination when the matrix P̂c
n,g is of full rank, i.e., it contains |Pn,g | linearly

independent Data packets.

4.2.3 Improvements to the NetCodNDN Architecture

While developing and testing DAS-NetCodNDN, we have noticed that the NetCodNDN

architecture explained in Chapter 3 did not scale well with the number of Interests

and Data packets required by data intensive applications, e.g., video streaming. In

this section we present a set of changes to the NetCodNDN architecture that make

it scalable for adaptive video streaming. In particular, we have changed the Content

Store (CS) and the Pending Interest Table (PIT) data structures to deal with the large

number of Interests and Data packets required by data intensive applications, e.g.,

video streaming. Note that the NetCodNDN architecture explained in Chapter 3

utilized the original CS and introduced a few modifications to the PIT, keeping the

model of the proposed NetCodNDN as similar as possible to the model of NDN [38,

104], at the expense of performance. The new CS and PIT models presented in this

section are redesigned to improve the performance of the network coding operations

74

4.2. The DAS-NetCodNDN Architecture

in data intensive scenarios.

Also note that in our architecture, other than the redesigned CS and PIT, the nodes

still have the traditional CS and PIT to process non-network coding Interests and Data

packets.

Content Store

The NetCodNDN architecture presented in Chapter 3 uses the CS model provided

by NDN [38, 104] for both the traditional Interests and Interests for network coded

data. In this case, generating a Data packet p̂n,g requires up to |P̂n,g | lookups to the

CS, since each Data packet is stored as an independent CS entry. Differently, in this

Chapter we propose a new design of the NetCodNDN CS that reduces the complexity

of the creation of new network coded Data packets, with respect to that presented in

Chapter 3. In the redesigned NetCodNDN CS, each CS entry contains a set of network

coded Data packets, P̂
ν
n,g , where all the Data packets belong to the same generation g .

This set of Data packets is stored as a matrix P̂ν
n,g , where each row is a vector p̂n,g that

represents the network coded Data packet p̂n,g . This allows reducing the number of

lookups to the CS needed to generate a network coded Data packet to only one, which

is much more efficient than the CS proposed in Chapter 3.

Moreover, in the redesigned CS, each CS entry also stores a counter σ
f
n,g for each face

f of the node ν. Each counter σ
f
n,g measures the number of Data packets generated

with the matrix P̂ν
n,g that have already been sent over face f , i.e., it measures the

amount of information from the matrix P̂ν
n,g that has been transferred from the node

ν to the neighbor node connected over face f . When a Data packet with name prefix

(n, g) is removed from P̂ν
n,g (e.g., when the CS replacement policy decides that a Data

packet with name prefix (n, g) needs to be removed from the CS), the amount of

information in P̂ν
n,g is reduced by 1. Therefore, the value of σ

f
n,g is also decreased by 1

for all the faces, in order to reflect the current state of the CS in terms of the available

information.

The comparison of the structures of the NDN and NetCodNDN CSs is shown in Fig. 4.2.

In this example, both CSs are storing three Data packets with name prefix n. In the

NDN CS, there are three CS entries, each one storing a single Data packet, as it can be

seen in Fig. 4.2a. Differently, as it can be seen in Fig. 4.2b, in the NetCodNDN CS there

is a single entry that contains a matrix P̂ν
n,g that stores the content of the three Data

75

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

EntryName

NDN CS

(n,1)

(n,2)

(n,3)

pn,1

pn,2

pn,3

(a)

EntryName

NetCodNDN CS

(n,g)

Pn,g

pn,g

pn,g

pn,g
^***

^**

^*

Counters

σf1

σf2

n,g

n,g

^

(b)

Figure 4.2: Comparison of (a) the CS presented in Chapter 3 vs. (b) the redesigned CS

presented in this Chapter.

packets, and a set of counters σ
f
n,g∀ f that store the number of Data packets that have

already been sent over each face.

It is worth noting that not every NetCodNDN router should keep a CS with the Data

packets that it receives. As demonstrated by Fayazbakhsh et al. [26] and Sun et al. [87],

the content delivery performance of an NDN network in which every node has a CS is

not much better than that of an NDN network in which only the edge routers have

a CS, taking into consideration the computing power and storage capacity that a CS

requires. It is also worth noting that not all the NetCodNDN routers need to apply

network coding operations to the received Data packets. In fact, when a NetCodNDN

node does not have a CS, it will not be able to apply network coding operations on the

Data packets before forwarding them, since there will be no other Data packets cached

in the node. If the nodes that are able to apply network coding are chosen carefully, the

benefits that network coding brings to the video delivery remain high, while the overall

computing power and storage capacity of the network can be drastically reduced, as

has been demonstrated by Cleju et al. [22].

Pending Interest Table

To improve the functionalities of the NetCodNDN forwarder in the presence of a

large number of Interests, we have redesigned the PIT in-record with respect to that

presented in Chapter 3.

The redesigned NetCodNDN PIT’s in-record t
f (i n)
n,g is a list that keeps track of the

Interests în,g that arrived over face f . Each element in this list is a tuple of the form

t
f ,ρ(i n)
n,g = (ρ,e), where ρ is the rank that the matrix P̂ν

n,g must have before replying to

76

4.2. The DAS-NetCodNDN Architecture

EntryName

(n,g)

f +

 in: 2

NetCodNDN PIT

out: 0

f ++

 in: 1

out: 0

f *

 in: 0

out: 2

(n,g
f +

 in: 1

out: 0

f *

 in: 0

out: 1

f **

 in: 0

out: 1

(a)

EntryName

(n,g) in
(1, e1)

0

NetCodNDN PIT (v2)

(2, e2)

out

f +

in (1, e3)

0out

f ++

in

2

-

out

f *

(n,g in (5, e5)

0out

f +

in -

1out

f *

in

1

-

out

f **

(b)

Figure 4.3: Comparison of (a) the original NetCodNDN PIT vs. (b) the redesigned

NetCodNDN PIT.

the Interest, and e is the expiration time of the Interest. The size of this list, denoted

as |t f (i n)
n,g |, is the total number of Data packets with name prefix (n, g) that should be

sent over face f .

The comparison of the structures of the original NetCodNDN and the redesigned

NetCodNDN PITs is shown in Fig. 4.3. In this example, both PITs store two pending

Interests with name prefix n. As it can be seen in Fig. 4.3b, the redesigned NetCodNDN

PIT stores information about the rank at which each Interest should be satisfied,

together with the expiration time of each Interest. This information is not available in

the original NetCodNDN PIT in-record, as it can be seen in Fig 4.3a.

The redesigned NetCodNDN PIT provides methods to insert information about new

Interests, and to get the PIT entry associated with a particular name prefix. In particu-

lar, the following two methods are provided:

• GetPIT((n, g)) – Gets the PIT entry tn,g associated with the name prefix (n, g),

if it exists.

• InsertInPIT((n, g), f ,e) – Inserts a new record (ρ+1,e) into the in-record

t
f (i n)
n,g of the PIT entry tn,g associated with the name prefix (n, g), where ρ is the

highest rank that is currently pending in the in-record t
f (i n)
n,g . If the PIT entry

does not exist, it is created by this method.

• RemoveInPIT((n, g), f ,ρ) – Removes the record associated with the rank ρ

77

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

from the in-record t
f (i n)
n,g of the PIT entry tn,g associated with the name prefix

(n, g). If the PIT entry does not exist, this method does nothing.

• InsertOutPIT((n, g), f) – Increases by 1 the value of t
f (out)
n,g in the PIT entry

tn,g associated with the name prefix (n, g). If the PIT entry does not exist, it is

created by this method.

• RemoveOutPIT((n, g), f) – Decreases by 1 the value of t
f (out)
n,g in the PIT entry

tn,g associated with the name prefix (n, g). If the PIT entry does not exist, this

method does nothing.

Interest Processing

In the previous Sections we have presented a series of changes to the NetCodNDN

CS and PIT tables that improve the performance of the network coding operations in

data intensive scenarios. As a consequence of the proposed changes to the CS and PIT,

new procedures to process the Interests at the NetCodNDN nodes. The changes to

the Interest processing procedure that has been described in Section 3.4.4 are further

explained below and summarized in Algorithm 3.

Replying to an Interest — This part of the Interest processing procedure (lines 1 - 8) is

similar to the one defined in Section 3.4.4 of Chapter 3.

Forwarding an Interest — When the number of network coded Data packets that can

be generated by node ν and that have a high probability to be innovative, ξ
f
n,g , is

equal to 0 (line 9), node ν adds a new tuple (ρ+1,e) to the in-record t
f (i n)
n,g , where ρ

is the highest rank on the in-record and e is the expiration time of the Interest în,g

(line 11). Then, node ν computes the number ǫn,g of innovative network coded Data

packets with name prefix (n, g) that it is expecting to receive before the Interest în,g

expires. The value of ǫn,g is computed as the total number of Interests with name

prefix (n, g) that have been forwarded by the node ν over all its faces, i.e., the sum

of all the out-records in the PIT entry tn,g (line 13). Finally, the node forwards the

Interest în,g if the number of innovative network coded Data packets with name prefix

(n, g) that it is expecting to receive is less than or equal to the number of Data packets

with name prefix (n, g) that are pending to be sent over face f , i.e., ǫn,g ≤ t
f (i n)
n,g (lines

14 - 16).

Waiting for a new network coded Data packet — This part of the Interest processing

78

4.2. The DAS-NetCodNDN Architecture

Algorithm 3 Redesigned Interest processing in the NetCodNDN forwarder

Require: în,g , f , Pν
n,g ← GetCS(n, g)

1: if rank(P̂ν
n,g) = |P̂n,g | then (Generation is decodable)

2: ξ
f
n,g = |P̂n,g |

3: else

4: ξ
f
n,g = rank(P̂ν

n,g)−σ
f
n,g

5: end if

6: if ξ
f
n,g > 0 then

7: p̂n,g ←
∑|P̂ν

n,g |
j=1

a j · p̂
(j)
n,g

8: Send Data packet p̂n,g over face f

9: else

10: e ← expire time in the Interest în,g)

11: InsertInPIT ((n, g), f ,e)

12: tn,g ← GetPIT ((n, g))

13: ǫn,g =
∑F

ν
n,g

f ′ t
f ′(out)
n,g (Total number of Interests în,g forwarded)

14: if ǫn,g ≤ t
f (i n)
n,g then

15: Forward the Interest în,g over face fout .

16: InsertOutPIT ((n, g), fout)

17: else

18: Wait for new Data packets.

19: end if

20: end if

procedure (lines 18 - 19) is also similar to the one defined in Section 3.4.4 of Chapter 3.

Data Packet Processing

The Data packet processing procedure has also been changed to adapt it to the re-

designed PIT and CS. The changes are described below and are outlined in Algorithm 4.

Differently from the Data packet processing procedure that has been described in

Section 3.4.5, in the new procedure node ν does not need to care about multiple

appearances of the same face in the PIT entry, since they are organized by rank ρ in

79

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

Algorithm 4 Data packet processing in the NetCodNDN forwarder

Require: p̂n,g , f

1: tn,g ← GetPIT ((n, g))

2: if tn,g =∅ then (Unsolicited)

3: Discard p̂n,g

4: else

5: RemoveOutPIT((n, g), f)

6: if rank(P̂ν
n,g ∪ p̂n,g) > rank(P̂ν

n,g) then

7: InsertCS (p̂n,g)

8: ρ← rank(P̂r
n,g)

9: for all f ′ ∈ tn,g do

10: if ρ exists in t
f ′(i n)
n,g and it is not expired then

11: p̂∗
n,g =

∑|P̂ ν
n,g |

j=1
a j · p̂

(j)
n,g

12: Send the Data packet p̂∗
n,g over face f ′

13: σ
f
n,g ←σ

f
n,g +1

14: RemoveInPIT((n, g), f ,ρ)

15: end if

16: end for

17: else

18: Discard p̂n,g

19: end if

20: end if

the in-record. Thus, in the new procedure, node ν forwards a Data packet to all the

faces where a non-expired pending Interest exists for the current rank ρ of the matrix

P̂r
n,g in the PIT in-record (line 10).

4.3 Evaluation

In this section, we evaluate the performance of our proposed DAS-NetCodNDN ar-

chitecture, and use it to show the benefits that network coding bring to data inten-

sive applications, in particular to video streaming. We compare the performance of

80

4.3. Evaluation

DAS-NetCodNDN with that of an NDN variant without network coding capabilities

(DAS-NDN). In the following sections we first describe the implementation of our

architecture, the network topology used in the experiments, and the evaluation setup.

Then, we show the performance evaluation results of our proposed adaptive video

streaming architecture.

4.3.1 Implementation

We implemented our proposed DAS-NetCodNDN by extending both the NDN layer, to

enable the NetCodNDN forwarder at every node, and the application layer, to enable

adaptive video streaming at the clients and the sources.

• NetCodNDN forwarder — The NetCodNDN forwarder is implemented by inte-

grating the changes to the NDN architecture described in Chapter 3 and the

improvements described in Section 4.2.3 into the NDN Forwarding Daemon

(NFD) codebase [61]. We have modified two main modules of the NFD code to

implement NetCodNDN. First, we have modified the module that implements

the NDN router tables, where two new tables were implemented: the modified

CS and PIT, as described in Sections 4.2.3 and 4.2.3, respectively. In the Net-

CodNDN codebase both the original and the modified versions of the CS and

PIT coexist. The original version is used to process NDN Interests and Data

packets, while the modified version is used in the processing of network coding

Interests and Data packets. We have also modified the Forwarding module, in

order to add a new set of methods to process network coding enabled Interests

and Data packets. The modified Forwarding module uses the original NDN

procedures [4] to process traditional Interests and Data packets. Further, it uses

the NetCodNDN procedures, described in Chapter 3, to process the network

coding Interests and Data packets. We have used the Kodo C++ library [69] to

enable network coding operations in the NetCodNDN forwarder.

• Adaptive video applications — To implement the sources and clients that enable

adaptive video streaming with network coding, as described in Section 4.2.2,

we modified the Adaptive Multimedia Streaming with ndnSIM (AMuSt) code-

base [43]. The AMuSt framework provides a set of applications for producing

and consuming adaptive video, based on the DASH standard [37], but replacing

HTTP with NDN. The DASH functionality is provided by the libdash library [60],

81

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

IXP1

A
u

st
ri

a
 (

A
T

)

ISPAT,1 ISPAT,2 ISPAT,l

B
e

lg
iu

m
 (

B
E

)

ISPBE,1 ISPBE,2 ISPBE,m

S
w

e
d

e
n

 (
S

E
)

ISPSE,1 ISPSE,2 ISPSE,n

IXP10

...

...

...
...

L
a

y
e

r
1

S
o

u
rc

e

Source
 e.g., single server, data center, content delivery network (CDN), etc.

L
a

y
e

r
2

IX
P

L
a

y
e

r
3

IS
P

L
a

y
e

r
4

C
li

e
n

t

...

Figure 4.4: Layered topology used in the evaluation.

an open-source library that provides an interface to the DASH standard. Cur-

rently, libdash is the official reference software of the DASH standard. We

implemented a new set of applications in the AMuSt framework that use the

Kodo C++ library [69] to enable network coding at both the sources and the

clients.

Finally, we have installed the implementations of the NetCodNDN forwarder and the

adaptive video applications into ndnSIM [54] nodes. ndnSIM is an NDN simulator

based on the NS-3 network simulator [63]. This simulator is used to generate the

network nodes, i.e., sources, routers and clients, and connect them with point-to-

point links.

4.3.2 Network Topology

We evaluate our proposed DAS-NetCodNDN in a layered topology, presented in

Fig. 4.4. The design of this topology is inspired by Netflix’s OpenConnect Content

Delivery Network [12], and it is composed of four layers.

The first layer of our topology contains a source that is able to provide all the video

segments that the clients might request. The source can be considered as a server that

stores all the video segments or as a connection to a Content Delivery Network (CDN)

that is able to provide the video segments from any of its servers.

The second layer of our topology contains a set of routers that represent Internet ex-

82

4.3. Evaluation

0 2 4 6 8 10 12 14 16

Total client bandwidth [Mbps]

0.0

5.0

10.0

15.0

20.0

25.0

P
e

rc
e

n
ta

g
e

o
f

c
li

e
n

ts
[%

]

µ= 2×4

σ=
p

2×1.5

Figure 4.5: Clients’ bandwidth distribution. Each client has two faces, the average

bandwidth is µ= 2×4Mbps and the standard deviation is σ=
p

2×1.5.

change points (IXP). In our evaluation, we consider 10 IXP routers, each one connected

directly to the source.

The third layer of the topology is another set of routers that represent Internet service

provider (ISP) routers. Each ISP router is connected to two or three IXP routers.

Moreover, the ISP routers are clustered into 16 groups that represent the European

countries served by Netflix [12]. Netflix deploys video delivery servers in certain IXPs

and ISPs. These servers store the complete or a fraction of the Netflix video catalog.

In our topology, the IXP and ISP routers have content stores that can cache all the

incoming Data packets. When cache space is limited, our architecture needs a cache

replacement strategy to decide the cached content. This is, however, out of the scope

of this Chapter which aims to study the behavior of the proposed adaptive video

streaming protocol. The study of such caching strategies is presented in Chapter 5.

Each country (i.e., cluster) has between 4 and 10 ISP routers.

Finally, the fourth layer of the topology consists of a set of clients, each of them is

connected to two ISP routers that belong to the same country as the client. Each

country has between 10 and 20 clients. We choose to connect each client with two

ISP routers to evaluate multi-path adaptive video streaming, considering that nowa-

days most end-user devices come with multiple interfaces, e.g., LTE and Wi-Fi. The

bandwidth of the links connecting the clients to the ISP routers is based on the values

83

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

reported in the Netflix ISP Speed Index [62]. In detail, the bandwidth of each link

is randomly selected from a normal distribution, with a mean close to the average

ISP speed reported in the Netflix ISP Speed Index, and standard deviation 1.5. It is

worth noting that the standard deviation reported in the Netflix ISP Speed Index tends

to be much lower than 1.5, but we choose this value in order to allow more client

diversity. The distribution of the total bandwidth of the clients used in the simulations,

considering the two interfaces on the clients, is shown in Fig. 4.5.

In average, the used topologies have more than 110 ISP routers and more than 230

clients, additionally to the source and the 10 IXP routers.

4.3.3 Evaluation Setup

We consider that the end-users are interested in a video v that is available in three dif-

ferent representations, Q = {480p, 720p, 1080p} with bitrates {1750kbps, 3000kbps,

5800kbps}, respectively, that are a subset of the ones used by Netflix in the past [2].

Each representation is divided into a set of 50 segments, each of a duration of 2

seconds. These segments are further divided into generations and Data packets, as

presented in Section 4.2.1. When network coding is enabled, the coding operations

are performed in a finite field of size 28.

To select the representation that better adapts to their condition, the clients use an

adaptation logic that considers the throughput measured by the client and the num-

ber of video segments that are buffered. The adaptation logic used in our evaluation

is based on the one used by the DASH reference client, dash.js. As it has been demon-

strated [93] that the simple design of the dash.js adaptation logic performs better than

other more sophisticated adaptation logics available in the literature.

To demonstrate the Interest aggregation capabilities of the NetCodNDN forwarder,

we consider a scenario where all the clients start requesting the video segments

within the first 100ms of the simulation, and then carry on until they receive all

the video segments. It is worth noting that since each client has different access

bandwidth, and its adaptation logic works independently from other clients, the

requested representation and segment IDs may vary across the clients. This means

that at the same moment, different clients may be requesting different segments and

representations, and thus some clients may finish retrieving all the segments earlier

than others.

84

4.3. Evaluation

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Core links bandwidth [Mbps]

0

20

40

60

80

100

S
e

g
m

e
n

ts
re

q
u

e
st

e
d

[%
]

480p

720p

1080p

Figure 4.6: Representation of the segments received by the clients with respect to

different core links bandwidth, for DAS-NetCodNDN.

4.3.4 Evaluation Results

In this section we evaluate and quantify the benefits that network coding brings to

video streaming over NDN. First, we evaluate how efficiently the network bandwidth

is used in DAS-NetCodNDN. Then, we evaluate the cache-hit rate at the routers and

how network coding increases it. Finally, we evaluate the impact that the efficient use

of the network bandwidth and the increased cache-hit rate has for the sources and for

the clients.

Network Bandwidth Usage

We start by evaluating how the bandwidth of the links in the core network, i.e., the

links connecting the sources with the IXP routers, as well as the IXP routers with the

ISP routers, affects the video quality received by the clients. Figs. 4.6 and 4.7 show the

percentage of segments corresponding to each of the available video representations

delivered for different values of the core links bandwidth, with DAS-NetCodNDN

and DAS-NDN, respectively. As it can be seen in Fig. 4.6, the percentage of segments

delivered at the highest representation available (i.e., 1080p) whith DAS-NetCodNDN,

stabilizes at around 70% of the total number of delivered segments for core links

bandwidth higher than 7.5Mbps. However, as it can be seen in Fig. 4.7, with DAS-NDN

85

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Core links bandwidth [Mbps]

0

20

40

60

80

100

S
e

g
m

e
n

ts
re

q
u

e
st

e
d

[%
]

480p

720p

1080p

Figure 4.7: Representation of the segments received by the clients with respect to

different core links bandwidth, for DAS-NDN.

the percentage of segments delivered at 1080p reaches the same stability only for core

links bandwidth higher than 17.5Mbps. This behavior is observed as the use of network

coding alleviates the competition between the clients for the core network resources.

Thus, it is clear from these results that by using network coding, the network resources

are more efficiently exploited. For the remainder of the evaluation, we consider that

core links have a bandwidth of 10Mbps.

Cache-hit Rate

We now evaluate the cache-hit rate at the ISP and IXP layers. In Fig. 4.8, we can see

that at the ISP layer, the cache-hit rate is constantly higher for DAS-NetCodNDN, as

compared to DAS-NDN. After 60 seconds of streaming, the cache-hit rate for DAS-

NDN is around 30%, while for DAS-NetCodNDN is around 50%, i.e., about 20% higher.

The reason for the lower cache-hit rate of DAS-NDN is that, since the clients are

distributing the set of Interests that request a particular video segment over both

of their faces, they need to coordinate the face over which each Interest is sent, so

that they are aggregated at a router closer to the clients. However, due to the high

granularity of the content (i.e., each Data packet is unique and can satisfy only the

Interest with the specific matching name), such coordination is not possible for each

Data packet, as it requires centralized control. Further, it does not scale with the size

86

4.3. Evaluation

0 20 40 60 80 100

Time [s]

0

20

40

60

80

100

C
a

c
h

e
-h

it
ra

te
[%

]

DAS-NetCodNDN

DAS-NDN

Figure 4.8: Cache-hit rate at the ISP layer.

of the network and the length of the video. On the contrary, the need for coordination

is eliminated by introducing network coding, since clients do not send Interests for

a particular Data packet, but for any network coded Data packet. Thus, in DAS-

NetCodNDN an Interest can be satisfied with any innovative Data packet available in

the CS of a node. These results verify our initial motivation for using network coding

to enable a more efficient Interest aggregation and improve the use of the available

bandwidth at the clients through efficient multipath communication.

At the IXP layer, both the traditional and the network coded architectures show a

higher cache-hit rate than the one achieved at the ISP layer. After 60 seconds of

streaming, the cache-hit rate for DAS-NDN is around 75%, while for DAS-NetCodNDN

it is around 95%, as illustrated in Fig. 4.9. The cache-hit rate is high at the IXP layer

because the 10 routers that belong to this layer are receiving Interests from more than

200 clients, meaning that the probability of aggregating Interests at this layer is higher

than at the ISP layer. The increased cache-hit rate of the network coding architecture

has two major performance consequences: (i) the number of Interests that reach the

source is reduced and, (ii) the data bitrate seen by the client increases, since the Data

packets are found closer to them.

87

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

0 20 40 60 80 100

Time [s]

0

20

40

60

80

100

C
a

c
h

e
-h

it
ra

te
[%

]

DAS-NetCodNDN

DAS-NDN

Figure 4.9: Cache-hit rate at the IXP layer.

0 20 40 60 80 100 120

Time [s]

0

200

400

600

800

1000

1200

1400

D
a

ta
d

e
li

v
e

re
d

b
y

th
e

so
u

rc
e

[M
B

]

DAS-NetCodNDN

DAS-NDN

Figure 4.10: Total data delivered by the source.

88

4.3. Evaluation

0 10 20 30 40

Segment

0

20

40

60

80

100

C
li

e
n

ts
[%

]

480p

720p

1080p

Figure 4.11: Representations requested by the clients with DAS-NetCodNDN.

Impact for the Sources

First, let us investigate the impact of using network coding for the source. In Fig. 4.10,

we can see that there is a decrease in the total number of bytes that are provided by

the source, from 1200MB for DAS-NDN to 450MB for DAS-NetCodNDN. This means

that the use of network coding decreases the load on the source by more than 60%,

i.e., NDN imposes almost 3 times more load on the sources that DAS-NetCodNDN.

This source load reduction translates into lower costs for the video content provider,

that can reduce the number of servers at its data centers and reduce the amount of

bandwidth needed.

Impact for the Clients

We now examine the benefits that network coding brings to the clients. The percentage

of clients that decide to request a given video representation is shown in Figs. 4.11

and 4.12, for DAS-NetCodNDN and DAS-NDN, respectively. With DAS-NetCodNDN

more than 70% of the clients are able to retrieve the video in the highest quality

available (1080p), after a short adaptation period of around 8 segments. In contrast,

with DAS-NDN less than 20% of the clients are able to receive the same quality, and

only after a long adaptation period of around 45 segments. The reason for this is that

since more Data packets are served from closer caches, the goodput measured by

89

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

0 10 20 30 40

Segment

0

20

40

60

80

100

C
li

e
n

ts
[%

]

480p

720p

1080p

Figure 4.12: Representations requested by the clients with DAS-NDN.

0 10 20 30 40 50

Segment

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

G
o

o
d

p
u

t
[M

b
p

s]

DAS-NetCodNDN

DAS-NDN

Figure 4.13: Average goodput measured by the clients.

90

4.4. Conclusions

the clients is higher with DAS-NetCodNDN, as illustrated in Fig. 4.13. Specifically,

the goodput measured by the DAS-NetCodNDN clients is around 7.5Mbps, while it

is approximately 4Mbps for DAS-NDN clients. This is inline with the average client

bandwidth of 8Mbps, which after excluding the protocol overhead data, leaves a

goodput of around 7.5Mbps. The increased goodput accelerates the DASH adaptation

towards the highest representation, meaning that the clients are able to receive the

best possible quality earlier.

It is worth mentioning that the DAS-NetCodNDN clients enjoy an increased goodput

compared to DAS-NDN clients and hence improved quality, despite the fact that the

implementation of our DAS-NetCodNDN client introduces a small delay between the

requests of two consecutive generations. This delay is due to the fact that the DAS-

NetCodNDN client needs to wait until a generation is decoded before requesting the

next one, meaning that no Data packets are flowing to the client in the time interval

between the arrivals of the last Data packet of generation g and the first Data packet

of generation g +1. The DAS-NDN client does not suffer from this problem, as it does

not consider generations. The goodput achieved by our architecture can be further

improved by a more advanced client implementation, that would allow the clients to

start requesting the next generation before decoding the current one. This has been

successfully deployed in previous works [13, 90] for video streaming in host-centric

networks deploying generation-based network coding.

4.4 Conclusions

In this Chapter we have presented DAS-NetCodNDN, a Dynamic Adaptive Video

streaming architecture over NetCodNDN, based on DASH. Our architecture takes

advantage of multi-path communication and uses network coding to eliminate the

need for coordination between the network nodes. This improves the quality of the

delivered video, reduces the resource utilization at the sources and improves the

resiliency to Data packet erasures. We implemented our architecture by modifying the

original NDN codebase, to enable network coding operations at the sources, routers,

and clients. We evaluated our architecture using a network topology similar to the

one used by video content providers. We have observed that network coding brings

large performance gains in terms of the load on the source, as well as an increased

cache-hit rate.

91

Chapter 4. Adaptive Video Streaming over Network Coding Enabled NDN

We can conclude that introducing network coding into NDN brings significant gains

to video content providers, by reducing the traffic load on the servers and improving

the use of network resources. This will, in turn, have an impact on the cost for the

video content providers, leading to reduced cost for the video content consumers.

Moreover, network coding also improves the speed at which the clients obtain the

desired video representation.

The study presented in this Chapter considers that the routers have enough capacity

on their content stores to cache all the Data packets that they receive. This allows

focusing on the study of the benefits that network coding brings to NDN, without the

need to consider the effects that particular caching policies have on this. However,

this is not practical for real-life scenarios. Thus, in the next Chapter we propose a

caching policy tailored for network coded data retrieval over NDN.

92

5
Caching Policy for Network Coding

Enabled NDN

5.1 Introduction

Chapter 3 presented the NetCodNDN architecture, which enables efficient content

retrieval in multi-source and multi-client scenarios for data intensive applications

over NDN. Then, in Chapter 4 the NetCodNDN architecture was advanced to support

adaptive video streaming and show the benefits that network coding brings to data

intensive applications over NDN. However, these two Chapters considered scenarios

in which the routers have unlimited storage capacity in their content store to cache all

the Data packets that they receive, which is impractical in real-life networks.

When routers have limited caching storage, a caching policy is needed in order to

decide which Data packets are placed into the cache (placement), as well as which

data packets are evicted from the cache when the cache is full and a new Data packet

should be cached (eviction). The goal of this Chapter is to develop a distributed

caching policy that preserves the benefits that network coding brings to NDN for the

93

Chapter 5. Caching Policy for Network Coding Enabled NDN

realistic scenario in which the content stores have limited capacity.

To this aim, this Chapter proposes PopNetCod [79], a popularity-based caching policy

for the NetCodNDN architecture. PopNetCod is a caching policy in which routers

distributedly estimate the popularity of the content objects based on the received

Interests. Based on this information, each router decides the number of Data packets

for each name prefix that it caches or evicts from its content store. The decision to

cache Data packets is taken while processing the Interests. Since the first routers to

process Interests in their path to the source are the edge routers, this helps to cache

the most popular Data packets closer to the network edges, which reduces the data

delivery delay [24, 26, 87]. To avoid that two independent routers cache the same Data

packet, when a router decides to cache the Data packet that is expected as a reply to a

received Interest, it informs the routers upstream in the path by setting a binary flag in

the Interest. This increases the Data packet diversity in the caches. Then, whenever a

router receives a Data packet with a name that the router previously decided to cache,

it stores the Data packet in its content store and informs its downstream routers that

it has cached this Data packet. This helps to avoid caching duplicated Data packets

in the path, since the decision to cache a number of Data packets is taken for name

prefixes that include multiple network coded Data packets. If the cache of a router is

full and a Data packet should be cached, the router decides which Data packet should

be evicted from its content store based on the popularity information.

The proposed caching policy has been implemented on top of the updated version of

NetCodNDN presented in Chapter 4. We evaluate the performance of PopNetCod in

a Netflix-like video streaming scenario, designed using parameters available in the

literature [2, 12, 62]. In comparison with a caching policy that uses the NDN’s default

placement policy, i.e., Leave Copy Everywhere (LCE), and the widely popular Least

Recently Used (LRU) eviction policy, PopNetCod is able to achieve a higher cache-hit

rate, which preserves better the benefits of network coding reported in Chapter 4, i.e.,

higher video quality at the clients and reduced load at the sources.

This Chapter is organized as follows. Section 5.2 introduces the problem of caching

in network coding enabled NDN for data intensive applications. Then, Section 5.3

presents our caching policy, PopNetCod. A practical implementation of the PopNet-

Cod caching policy is described in Section 5.4. Section 5.5 presents the evaluation of

the PopNetCod caching policy.

94

5.2. Caching in Network Coding Enabled NDN

5.2 Caching in Network Coding Enabled NDN

Whenever a NetCodNDN router r receives an Interest în,g over face f , it can either (i)

reply with a Data packet p̂n,g , if it can generate a network coded Data packet that has

high probability of being innovative to its neighboring node connected over face f , or,

otherwise, (ii) it forwards the Interest în,g upstream.

Recall from Chapter that ξ
f
n,g denotes the number of network coded Data packets that

the router can generate with the content of its CS and that have high probability of

being innovative to its neighboring node connected over face f . Then, if at time t the

router r receives the Interest în,g , a cache-hit is defined as:

h
f
n,g (t) =







1, if ξ
f
n,g > 0

0, otherwise.
(5.1)

Let us now assume that during a time period [t , t +T] the router r receives a set of

Interests I (t ,T). The cache-hit rate during this time period is defined as follows:

H(t ,T) =
1

T

t+T
∑

t ′=t

h
f
n,g (t ′). (5.2)

The overall cache-hit rate seen by router r at time t can be computed as follows:

H(t) = lim
T→∞

H(t ,T) = lim
T→∞

1

T

t+T
∑

t ′=t

h
f
n,g (t ′). (5.3)

To make optimal use of the limited CS capacity while maintaining the benefits that

network coding brings to NDN, the objective of each router is to maximize the number

of Interests that it can satisfy with the Data packets available in its CS, i.e., maximize

its overall cache-hit rate. Achieving a high cache-hit rate at the routers is beneficial

for both clients and sources. For the sources, an increased cache-hit reduces their

processing load and bandwidth needs, since the number of Interests that they receive

is reduced. For the clients, the delivery delay is reduced, since the Interests are satisfied

with Data packets cached at routers closer to them.

It is clear from (5.1), (5.2), and (5.3) that in order to maximize the overall cache-hit rate,

routers should maintain the value of ξ
f
n,g high enough so that most of the Interests

95

Chapter 5. Caching Policy for Network Coding Enabled NDN

π
CS status (P)

CS

Forwarder

if
v,q,z,g

Cache pv,q,z,g , Evict pv q z g

Do not cache pv,q,z,g

Figure 5.1: Overview of the caching policy.

received can be satisfied with the Data packets on their CS. However, since in this

Chapter we consider that the routers’ CS have limited capacity, it is unfeasible for

a router to cache all the Data packets that it receives, as it has been considered in

Chapters 3 and 4 of this thesis, and in the literature [59, 78, 80]. Optimal solutions to

this issue have been proposed [49,97] and consider a central controller that knows the

network topology and is aware of all the Interests received by the routers. However,

these solutions do not scale well with the size of the network, since they require a

high number of signaling messages and a powerful enough controller. Hence, in this

Chapter we consider that each router decides in an online manner if a Data packet

should be cached or not, and which Data packets should be evicted from the CS when

it is full. This is achieved by using a distributed caching policy π that, based on the

content store status (i.e., the Data packets that are currently cached and the available

space) and the context (e.g., previous requests, time of the day, etc.), decides which

Data packets should be cached and which ones should be evicted from the content

store in order to maximize the overall cache-hit rate H(t) of each router, as shown in

Fig. 5.1. Thus, the goal of the router can be described as:

max
π

H(t). (5.4)

The optimal caching policy π should predict which Interests will be received in the

future, so that the router caches the Data packets that will be useful to satisfy those

Interests.

5.3 The PopNetCod Caching Policy

In this section, we present our popularity-based caching policy for NetCodNDN,

called PopNetCod. To increase the overall cache-hit rate, the PopNetCod caching

policy exploits real-time data popularity measurements to determine the amount

96

5.3. The PopNetCod Caching Policy

Popularity of (n,g)

9:30AM 9:31AM 9:32AM 9:33AM 9:34AM 9:35AM

t t+Tt-τ

Received Interests Expected Interests

Figure 5.2: Popularity prediction for the name prefix (n, g).

of Data packets that each router should cache for each name prefix. In order to

determine which Data packets to cache and evict, such that the overall cache-hit rate

is maximized, the PopNetCod caching policy performs the following steps. First, it

measures the popularity of the different name prefixes contained in the Interests that

pass through it. Then, it uses this popularity measurements to predict the Interests

that it will receive. Finally, using this prediction, it determines in an online manner

the Data packets that should be cached and the ones that should be evicted from the

CS.

5.3.1 Popularity Prediction

The popularity prediction in PopNetCod is based on the fact that the rate λ
f
n,g (t) at

which Interests for a particular content object arrive at a router r over face f at time t

tends to vary smoothly, as shown in Fig. 5.2. Thus, the router r can predict the rate of

the Interests that it will receive in the near future by observing the Interests that it has

recently received. Let us denote I
f

n,g (τ, t) as the set of Interests for the name prefix

(n, g) that the router r has received over face f during the past period [t −τ, t], where

t is the current time and τ is the observation period. Let us also denote I
f (τ, t) as the

total set of Interests for all the name prefixes received over face f during the period

[t −τ, t]. Using the sets I
f

n,g (τ, t) and I
f (τ, t), the router r can compute the average

Interest rate for the name prefix (n, g) over face f as follows:

λ
f
n,g (τ, t) =

|I f
n,g (τ, t)|

|I f (τ, t)|
, (5.5)

97

Chapter 5. Caching Policy for Network Coding Enabled NDN

Note that since the average Interest rate does not vary abruptly, the average Interest

rate λ
f
n,g (τ, t) of the recent period [t −τ, t] will be very close to that expected in the

near future, i.e., in the period [t , t +T] where T is the length of the prediction period.

Thus, λ
f
n,g (τ, t) = λ

f
n,g (t ,T), which hereafter we denote as λ

f
n,g (t). The PopNetCod

caching policy uses λ
f
n,g (t) to predict the number of Interests with name prefix (n, g)

that will be received over face f in the near future, and hence, to allocate more storage

space in the CS to Data packets with higher probability of cache-hit.

In order to prepare the CS for the Interests that the router may receive, the PopNetCod

caching policy maps the received Interest rate to the capacity of the CS, such that

name prefixes with high Interest rate are allocated more space in the content store.

The number of network coded Data packets with name prefix (n, g) that the router

should cache in its CS at time t to satisfy the Interests expected over face f is denoted

as M
f
n,g (t) and computed as:

M
f
n,g (t) =







λ
f
n,g (t) ·M , if λ

f
n,g (t) ·M < |P̂n,g |

|P̂n,g |, otherwise,
(5.6)

where M is the capacity of the CS.

5.3.2 PopNetCod Placement

In the PopNetCod caching policy, the placement decision is taken following the re-

ception of an Interest. Whenever a router decides to cache the Data packet that is

expected as reply to the received Interest, it sets a flag on the Interest signaling up-

stream routers about its decision. In this way, the upstream nodes do not consider this

Interest for caching. Since the edge routers (i.e., the routers that are directly connected

to the clients) are the first ones that have the possibility to decide whether they will

cache a Data packet, the PopNetCod caching policy naturally enables edge caching.

This is inline with recent works [24, 26, 87] arguing that most of the gains from caching

in NDN networks come from the edge caches, and thus, it is natural to cache the most

popular content at the edge routers.

Whenever a router receives an Interest în,g over face ft at time t , the PopNetCod

caching policy follows the next steps to decide if the Data packet p̂n,g should be

cached. First, it uses the popularity prediction to compute M
f
n,g (t), i.e., the total

98

5.3. The PopNetCod Caching Policy

number of Data packets that it aims to cache for the name prefix (n, g), as defined in

(5.6). Then, it computes the number of Data packets that it should cache in order to

satisfy the expected Interests as:

δ
f
n,g (t) = M

f
n,g (t)−ξ

f
n,g∀ f ∈F , (5.7)

where ξ
f
n,g is the number of network coded Data packet that the router can generate

and that have high probability of being innovative to its neighboring node connected

over face f .

Finally, the caching policy decides to cache the Data packet p̂n,g that is expected as

reply to the received Interest if the average number of Data packets needed by all the

faces is greater than 0. However, it should be noted that the Data packet p̂n,g will not

be useful to the node connected over the downstream face ft over which the Interest

arrived. This is because when the Data packet p̂n,g arrives at the router, it will be

sent to face ft in order to satisfy the received Interest. Then, replying with the same

Data packet to a subsequent Interest received over the same face ft will not add any

innovative information, i.e., the Data packet will be considered duplicated. Instead,

the expected Data packet p̂n,g is potentially useful for all the nodes connected over

all the other downstream faces of the router. For this reason, the average number of

Data packets needed is taken only over the downstream faces different to the one over

which the Interest arrived. It is computed as:

∆
+
n,g (t) =

1

|F r |−1

∑

f ∈F

f 6= ft

δ
f
n,g (t) > 0. (5.8)

5.3.3 PopNetCod Eviction

When a router receives a network coded Data packet that it has previously decided to

cache, but its CS is full, it first should evict at least one Data packet from the CS before

caching the recently arrived one.

The steps followed by the PopNetCod caching policy to decide how many Data packets

with name prefix (n, g) can be evicted from the router’s CS are the following. Similarly

to the placement case, first, the caching policy uses the popularity prediction to

compute M
f
n,g (t), i.e., the number of Data packets that it aims to cache for the name

99

Chapter 5. Caching Policy for Network Coding Enabled NDN

prefix (n, g). Then, it computes the number of Data packets that it can evict from its

CS and still satisfy the expected Interests as:

δ̃
f
n,g (t) = rank(P̂r

n,g)−M
f
n,g (t)∀ f ∈F . (5.9)

Finally, the number of Data packets the router can evict from a particular name prefix

(n, g) is computed as the minimum number of Data packets that it can evict over all

the faces:

∆
−
n,g (t) = min

f ∈F

δ̃
f
n,g (t). (5.10)

5.4 Practical Implementation of PopNetCod

In this section, we describe a practical implementation of the PopNetCod caching

policy for the NetCodNDN architecture described in Chapters 3 and 4. In order to

enable the use of caching policies in the NetCodNDN architecture, we extend its design

by adding a new module called Content Store Manager (CSM). The CSM manages

the content store by enforcing a determined caching policy. In the following sections,

we describe the functioning of routers which CSM is configured with the PopNetCod

caching policy. First, we describe the signaling between routers. Even if each router

makes the caching decision in a completely distributed manner, Interests and Data

packets carry a binary flag that prevents routers of the same path to cache duplicate

Data packets. Next, we present the Interest processing algorithm, where placement

decisions are made. Finally, we describe the Data packet processing algorithm for

placement enforcement, eviction decision, and eviction enforcement.

5.4.1 Signaling Between Routers

As described in Section 5.3, the PopNetCod caching policy is distributed and requires

very little signaling between the different routers. The only signaling that exists

between the PopNetCod caching policy is a binary flag added to the Interest and Data

packets that is used to inform neighbor routers that an expected Data packet will be

cached or that a received Data packet has been cached. Distributed caching policy

decisions helps to keep the complexity of the system low and to make our system

scalable to a large number of routers.

100

5.4. Practical Implementation of PopNetCod

Each Interest în,g carries a flag CachingDown, which is set to 1 by a CSM when it

decides to cache the Data packet p̂n,g that is expected to come as reply to the Interest.

This flag informs the upstream routers that another router downstream has already

decided to cache the Data packet that is expected to come as reply to this Interest.

The routers receiving an Interest with the CachingDown flag set to 1 do not consider

to cache the Data packet that is expected to come as reply to this Interest, therefore

reducing the amount of duplicated Data packets in the path and the processing load

in the nodes.

Since Interests for network coded data do not request particular Data packets, but

rather any network coded Data packet with the requested name prefix, the routers

need a way to know that a Data packet has been already cached by another router, so

that they avoid caching duplicated Data packets. For this reason, each Data packet

p̂n,g has a flag CachedUp, which is set to 1 by a CSM when it caches this Data packet

in its CS. This flag informs the downstream routers that another router has already

cached this Data packet. A router receiving a network coded Data packet with the

CachedUp flag set to 1 does not consider it for caching. Instead, it will wait for another

Data packet with the same name prefix that has not ben cached upstream. This

ensures that a Data packet is cached by only one router on its way to the client.

5.4.2 Status Information at Routers

Each CSM configured with the PopNetCod caching policy should store information

that assist to identify the Data packets that should be cached or evicted. In particular,

the CSM needs to keep the Recently received Interests information to compute the

popularity prediction. Moreover, since the placement decision takes place when the

Interest is received, the CSM needs to remember the Names to be cached, such that

the selected Data packets are cached when they arrive. Finally, since the popularity

information can vary over time, the CSM should keep a list with the Names to consider

for eviction, which is used when they decide about eviction. Below, we describe the

data structures used to store this information.

• Recently received Interests — The CSM maintains a list L f for each face f of the

router, where it stores the names of the Interests I
f (τ, t) received over face f

during the period [τ, t]. The parameter τ controls how much of the recent past

the router observes. Together with the name prefix, each element in L f also

101

Chapter 5. Caching Policy for Network Coding Enabled NDN

keeps the time ti at which the Interest was received, such that it can be removed

from the list at time ti +τ.

• Names to be cached — The CSM maintains a table A, where it stores the name

prefixes (i.e., the content object name appended with the generation ID) of the

Data packets that should be cached, together with the number of Data packets

that should be cached for each name prefix. The table A is implemented as

a hash table, in order to provide fast insert and search operations. When the

router receives an Interest în,g and the PopNetCod caching policy decides that

the network coded Data packet that is expected as reply should be cached, the

CSM adds its name prefix (n, g) to the table A, or increases its counter if the

name prefix (n, g) already exists on the table. Then, whenever a network coded

Data packet arrives, the CSM looks for the name prefix of the Data packet in the

table A. If it finds a match, it caches the Data packet, and reduces the counter

value by 1.

• Names to consider for eviction — The CSM also maintains a queue E, where

it stores the name prefixes (i.e., the content object name appended with the

generation ID) of the CS entries that can be considered for Data packet eviction.

When a name prefix (n, g) is removed from the list L f , the popularity of this

name prefix decreases, i.e., it becomes a good candidate to consider for eviction.

Thus, each time a name prefix is removed from L f , it is added to E. Then,

whenever the CSM needs to evict a Data packet from the CS to cache a new one,

it chooses a name prefix from E, computes the number of Data packets that can

be evicted from the CS entry, and then proceeds to evict the computed number

of Data packets.

5.4.3 Interest Processing

As depicted in Fig. 5.3, when a CSM configured with the PopNetCod caching policy

receives an Interest în,g from downstream, it (i) determines if the Interest can be

replied from the CS. Then, if the CSM could not reply to the Interest with the content

of its CS, it (ii) updates the popularity information, and, (iii) determines if the Data

packet that is expected as reply to this Interest should be cached. The CSM should

provide the NetCodNDN forwarder with either a Data packet that should be sent

downstream as reply to the Interest, or an Interest that should be forwarded upstream.

Below we describe the details of this procedure, which is summarized in Algorithm 5.

102

5.4. Practical Implementation of PopNetCod

Algorithm 5 Interest processing at the CSM

Require: în,g , f

1: t ← current time

2: if Flag CachingDown in în,g is set to 1 then

3: if ξ
f
n,g > 0 then (în,g can be satisfied from the CS)

4: Generate a Data packet p̂n,g from the CS

5: Return p̂n,g

6: else

7: Return în,g

8: end if

9: else

10: Add (n, g) to L f

11: if ξ
f
n,g > 0 then (în,g can be satisfied from the CS)

12: Generate a Data packet p̂n,g from the CS

13: Return p̂n,g

14: else if în,g will be aggregated by the PIT then

15: Return în,g

16: else

17: Update L. (Algorithm 6)

18: if ∆+
n,g (t) > 0 then (p̂n,g should be cached)

19: Insert (n, g) into A

20: Set the flag CachingDown of în,g to 1

21: Return în,g

22: else

23: Return în,g

24: end if

25: end if

26: end if

103

Chapter 5. Caching Policy for Network Coding Enabled NDN

PopNetCod CSM

Recently received Interests (L)

Query CS

Update Popularity

Names to consider for eviction (E)

Names to be cached (A)

Content Store

Placement

UpstreamDownstream

Forwarder

Figure 5.3: Access to the CS and the Status Information during the Interest processing

in a CSM configured with the PopNetCod caching policy.

After receiving an Interest în,g , the CSM first checks the flag CachingDown to see if any

previous node downstream in the path has decided to cache the Data packet that is

expected as reply to this Interest (lines 2 to 8). If the flag CachingDown is set to 1, then

the CSM only checks its CS to determine if the Interest can be satisfied from the CS. If

this is possible, i.e., if ξ
f
n,g is greater than 0, it generates a network coded Data packet

from the CS and provides it to the NetCodNDN forwarder, which sends it over face f .

If the Interest can not be satisfied from the CS, the CSM provides the same Interest to

the NetCodNDN forwarder, which will forward it upstream.

Algorithm 6 Update L

1: for all f ∈F
r do

2: for all expired entries (nl , gl) in L f do

3: Remove (nl , gl) from L f

4: Add (nl , gl) to E

5: end for

6: end for

If the flag CachingDown is set to 0, the CSM first inserts the name (n, g) of the Interest

into the list L f (line 10). Then, the CSM checks if it can satisfy the Interest with the

content of the CS (lines 11 to 13). If this is possible, i.e., if ξ
f
n,g is greater than 0, it

generates a network coded Data packet from the CS and provides it to the NetCodNDN

forwarder which sends it over face f . Otherwise, the node needs to forward the

104

5.4. Practical Implementation of PopNetCod

PopNetCod CSM

Recently received Interests (L)

Query A

Update Popularity

Names to be cached (A)

Content Store

Replacement

DownstreamUpstream

Names to consider for eviction (E)

Insert in CS

Generate Data packet

Forwarder

Figure 5.4: Access to the CS and the Status Information during the Data packet pro-

cessing in a CSM configured with the PopNetCod caching policy.

Interest to its neighbor nodes. If the router will not send the Interest upstream, but

will aggregate it in the PIT with a previously received Interest, the CSM does not need

to do anything else and provides the Interest to the NetCodNDN forwarder, which will

aggregate it (line 15).

If the Interest will not be aggregated, then the CSM determines if it will cache the Data

packet with name prefix (n, g) that is expected as reply to this Interest, by computing

∆
−
n,g (t) using Eq. (5.8). In order to obtain an accurate value of ∆−

n,g (t), the CSM first

updates the popularity information, removing all the expired elements from L f and

adding their name prefix to the list E of name prefixes to be considered for eviction

(line 17). This procedure is summarized in Algorithm 6. Then, the CSM computes the

value of ∆+
n,g (t). If ∆+

n,g (t) is greater than 0, it means that the Data packet should be

cached. In this case, the CSM inserts the name prefix (n, g) into the table A, sets the

flag CachingDown on the Interest în,g to 1 and, finally, provides the modified Interest

to the NetCodNDN forwarder, which will send it upstream (lines 18 to 21). If the

value of ∆+
n,g (t) is not greater than 0, then the CSM provides the same Interest to the

NetCodNDN forwarder, which will forward it upstream (line 23).

105

Chapter 5. Caching Policy for Network Coding Enabled NDN

Algorithm 7 Data packet processing at the CSM

Require: p̂n,g

1: if Flag CachingUp in p̂n,g is set to 1 then

2: Return p̂n,g

3: else if (n, g) ∉ A then

4: Return p̂n,g

5: else

6: Update A

7: if |P r | == M then (The CS is full)

8: Update L (Algorithm 6)

9: while |P r | == M do

10: Select an element (ne , ge) from E

11: if ∆−
ne ,ge

(t) > 0 then

12: Evict ∆−
ne ,ge

(t) Data packets with name prefix (ne , ge) from the CS

13: end if

14: end while

15: end if

16: Insert p̂n,g into the CS

17: Generate a Data packet p̂∗
n,g from the CS

18: Set the flag CachingDown of p̂∗
n,g to 1

19: Return p̂∗
n,g

20: end if

5.4.4 Data Packet Processing

As depicted in Fig. 5.4, when a CSM configured with the PopNetCod caching policy

receives a network coded Data packet p̂n,g from upstream, it (i) determines if the

Data packet should be cached in the CS, by consulting A. If the Data packet should

be cached, the CSM ensures that there is enough free space in the CS, (ii) updating

the popularity information and (iii) executing the cache replacement procedure if

needed. Finally, the CSM (iv) inserts the received Data packet into the CS, and (v)

generates a new network coded Data packet that should be forwarded downstream.

This procedure is detailed below and summarized in Algorithm 7.

106

5.5. Evaluation

After receiving a Data packet p̂n,g , the CSM first checks the flag CachedUp to determine

if any router upstream has already cached this Data packet. If the flag CachedUp

has been set to 1, then, the CSM understands that another router upstream has

already cached this Data packet. In this case, the CSM returns the Data packet to the

NetCodNDN forwarder, which will reply to any matching pending Interest (line 1).

When the flag CachedUp is set to 0, then the CSM first verifies if any entry in A matches

the name prefix (n, g). If there is no matching entry, the CSM returns the Data packet

to the NetCodNDN forwarder (line 3). If there is a match, the Data packet should be

cached, and A is updated by decreasing the counter of the matching entry by one

(line 6). However, if the CS is full, the CSM first needs to free some space in the CS

(lines 7 to 15). To evict Data packets, the CSM goes through the list E, each time

selecting a name prefix (ne , ge) and computing the number of Data packets that can

be evicted for the name prefix using Eq. (5.10). If this number is greater than 0, then

the CSM evicts the corresponding number of Data packets from the CS and interrupts

the scan of the list. Note that, since the cached Data packets are network coded, the

CSM does not need to decide which particular Data packets from the CS entry P̂n,g it

should evict from the CS, but it can rather select random network coded Data packets

from the CS entry and evict them. After evicting at least one Data packet, the CSM

caches the received Data packet p̂n,g . Then, the router generates a new Data packet

p̂∗
n,g by applying network coding to the cached Data packets with name prefix (n, g).

Since the new Data packet p̂∗
n,g contains the cached Data packet p̂n,g , the router sets

the flag CachedUp of p̂∗
n,g to 1. Finally, the router provides the Data packet p̂∗

n,g to the

NetCodNDN forwarder, which will use it to reply to any pending Interest with name

prefix (n, g).

5.5 Evaluation

In this section, we evaluate the performance of the PopNetCod caching policy in an

adaptive video streaming architecture based on NetCodNDN. First, we describe the

evaluation setup. Then, we present the caching policies with which we compare the

PopNetCod caching policy. Finally, we show the performance evaluation results.

107

Chapter 5. Caching Policy for Network Coding Enabled NDN

IXP1

A
u

st
ri

a
 (

A
T

)

ISPAT,1 ISPAT,2 ISPAT,l

B
e

lg
iu

m
 (

B
E

)

ISPBE,1 ISPBE,2 ISPBE,m

S
w

e
d

e
n

 (
S

E
)

ISPSE,1 ISPSE,2 ISPSE,n

IXP10

...

...

...
...

L
a

y
e

r
1

S
o

u
rc

e

Source
 e.g., single server, data center, content delivery network (CDN), etc.

L
a

y
e

r
2

IX
P

L
a

y
e

r
3

IS
P

L
a

y
e

r
4

C
li

e
n

t

...

Figure 5.5: Layered topology used in the evaluation of PopNetCod.

5.5.1 Evaluation Setup

We consider a layered topology similar to the one used for the evaluations of the

DAS-NetCodNDN architecture in Chapter 4, as the one depicted in Fig. 5.5. It consists

of 1 source, 123 clients, and 45 routers connecting the clients and the sources. The

routers are arranged in a two layer topology, with 10 routers directly connected to the

source and 35 edge routers directly connected to the clients. The links connecting

the routers between them and the links connecting the routers to the source have

a bandwidth of 20Mbps. The bandwidth of the links connecting the clients to the

routers follow a normal distribution, with mean 4Mbps and standard deviation 1.5.

These values are chosen based on the Netflix ISP Speed Index [62]. Each client is

connected with two routers, considering that nowadays most end-user devices have

multiple interfaces, e.g., LTE, Wi-Fi, Bluetooth.

For the evaluation, we consider that the source offers 5 videos for streaming, each

one composed of 50 video segments with a duration of 2 seconds each, i.e., in to-

tal, each video has a duration of 100 seconds. The video segments are available in

three different representations, Q = {480p, 720p, 1080p} with bitrates {1750kbps,

3000kbps, 5800kbps}, respectively. These values for the representations and bitrates

are chosen according to the values that had been used by Netflix [2]. The content

objects (i.e., the video segments in our evaluation scenario) are divided into Data

packets and generations, in order to implement network coding. In particular, for

the representations Q = {480p, 720p, 1080p}, each video segment is divided into

{359,615,1188} Data packets of 1250 bytes each, and {4,7,12} generations, respectively.

108

5.5. Evaluation

Thus, in total, the source stores 540500 Data packets. All the routers are equipped

with content stores able to cache the same number of Data packets, which in this

evaluation is between 5000 to 12500 Data packets, i.e., between 0.9% and 2.3% of the

total Data packets available at the source.

The clients randomly choose a video to request and start the adaptive video retrieval

process at a random time during the first 5 seconds of simulation. The network

coding operations are performed in a finite field of size 28. The clients use the dash.js

adaptation logic [93] to choose the representation that better adapts to the current

conditions, i.e., the measured goodput and the number of buffered video segments.

5.5.2 Benchmarks

We compare the performance of our caching algorithm with the following bench-

marks:

• LCE-NoLimit — The placement policy is Leave Copy Everywhere (LCE). We

consider that the CSs of the routers have enough space to store all the videos.

This setting is similar to the one used in Chapters 3 and 4, which is used here

to determine how much the different caching policies help to maintain the

benefits of network coding in the video streaming system.

• LCE+LRU — The placement policy is NDN’s default LCE, while the eviction

policy is the widely used Least Recently Used (LRU), which evicts Data packets

with the least recently requested name.

• NoCache — In this setting, the routers do not have a CS, i.e., all the Data packets

should be retrieved from the source.

5.5.3 Evaluation Results

Cache-hit Rate

We first evaluate the average cache-hit rate at the routers. In Fig. 5.6, we can see that by

using the PopNetCod caching policy, the routers achieve a higher cache-hit rate than

with LCE-LRU. This is because with PopNetCod the number of Data packets cached for

a certain name prefix increases smoothly, according to the popularity. In comparison,

109

Chapter 5. Caching Policy for Network Coding Enabled NDN

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

10

20

30

40

50

60

C
a

c
h

e
-h

it
ra

te
[%

]

NC-LCE+NoLimit

NC-LCE+LRU

NC-PopNetCod

NC-NoCache

Figure 5.6: Average cache-hit rate in the routers.

with LCE+LRU all the Data packets received by the router are cached, and the least

recently used are evicted from the CSs when the capacity is exceeded. Thus, if a router

receives Data packets that are requested by a single client, the router still caches them,

wasting storage capacity that could be used to cache more popular Data packets that

are requested by multiple clients. We can also see that the LCE+NoLimit caching

policy defines an upper bound to the cache-hit rate at the routers, since caching all

the Data packets with unlimited CS capacity represents the best caching scenario. On

the contrary, the NoCache case, where the routers do not have CS capacity, defines a

lower bound to the cache-hit rate. Note that in our evaluation the NoCache policy has

a non-zero cache-hit rate because our measurement of cache-hit rate also includes

Interest aggregations, which is what is being measured in this case. As it can be

seen in Fig. 5.6, the PopNetCod caching policy helps to maintain the benefits that

network coding brings to NDN closer to what has been measured in Chapter 4 with

the LCE+NoLimit caching policy.

The increased cache-hit rate that the PopNetCod caching policy brings to the routers

has two major consequences: (i) the goodput at the clients increases, which enables

the adaptation logic to choose higher quality representations when bandwidth is

sufficient, and (ii) the source receives less Interests, meaning that its processing and

network load is reduced.

110

5.5. Evaluation

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

2

3

4

5

6

7

A
v

e
ra

g
e

G
o

o
d

p
u

t
[M

b
p

s]

LCE+NoLimit

LCE+LRU

PopNetCod

NoCache

Figure 5.7: Average goodput perceived by the clients.

Impact for Clients

Let us first evaluate the impact that the increased cache-hit rate at the routers has

for the clients. The percentage of video segments delivered to the clients for each

of the available representations (i.e., 480p, 720p, and 1080p) with the PopNetCod

and LCE+LRU caching policies is shown in Figs. 5.8 and 5.9, respectively. We can see

that, compared to the LCE+LRU policy, with the PopNetCod caching policy a higher

percentage of video segments are delivered in the highest representation available,

i.e., 1080p. This happens because the Data packet retrieval time is reduced, since

more Interests are being satisfied from the routers’ content stores, which increases the

goodput measured by the clients. The percentage of video segments delivered to the

clients in each of the available representations with the upper bound LCE+NoLimit

caching policy can be seen in Fig. 5.10.

Impact for Sources

Finally, we analyze the impact that the increased cache-hit rate in the routers has

for the sources. Fig. 5.11 illustrates the load reduction on the source. This metric

measures the percentage of Data packets received at the clients that have not been

directly provided by the source. It is computed as 1 − N sent
S

/N r cvd
C

, where N sent
S

denotes the total number of Data packets sent by the source, and N r cvd
C

denotes the

111

Chapter 5. Caching Policy for Network Coding Enabled NDN

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

S
e

g
m

e
n

ts
re

q
u

e
st

e
d

[%
]

480p

720p

1080p

Figure 5.8: Percentage of video segments delivered in each of the available representa-

tions, with the PopNetCod caching policy.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

S
e

g
m

e
n

ts
re

q
u

e
st

e
d

[%
]

480p

720p

1080p

Figure 5.9: Percentage of video segments delivered in each of the available representa-

tions, with the LCE+LRU caching policy.

112

5.5. Evaluation

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

S
e

g
m

e
n

ts
re

q
u

e
st

e
d

[%
]

480p

720p

1080p

Figure 5.10: Percentage of video segments delivered in each of the available represen-

tations, with the LCE+NoLimit caching policy.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

20

30

40

50

60

70

80

90

L
o

a
d

re
d

u
c

ti
o

n
o

n
th

e
so

u
rc

e
[%

]

NC-LCE+NoLimit

NC-LCE+LRU

NC-PopNetCod

NC-NoCache

Figure 5.11: Load reduction in the source, measured as the percentage of Data packets

delivered to the clients not sent by the source.

113

Chapter 5. Caching Policy for Network Coding Enabled NDN

total number of Data packets received by all the clients. In Fig. 5.11 we can see that by

using the PopNetCod caching policy, the source load is reduced by up to 10% more

than by using the LCE+LRU caching policy.

5.6 Conclusion

In this Chapter we have presented PopNetCod, a popularity-based caching policy

for data intensive applications communicating over network coding enabled NDN.

PopNetCod is a distributed caching policy, where each router aims at increasing its

local cache-hit rate, by measuring the popularity of each content object and using

it to determine the number of Data packets for each content object that it caches in

its content store. PopNetCod takes the cache placement decisions when Interests

arrive at the routers, which naturally enables edge caching. We have implemented the

proposed caching policy by modifying the codebase of the NetCodNDN architecture

to enable the use of caching policies, in particular the PopNetCod caching policy.

The evaluation of the PopNetCod caching policy is performed in a Netflix-like video

streaming scenario. The results show that, in comparison with a caching policy that

uses the Leave Copy Everywhere (LCE) placement policy and the Least Recently Used

(LRU) eviction policy, PopNetCod achieves a higher cache-hit rate, closer to the results

obtained in Chapter 4 with a content store with unlimited capacity. The increased

cache-hit rate reduces the number of Interests that the source should satisfy, and also

increases the goodput seen by the clients. Thus, our caching policy presents benefits

for the content providers, by reducing the load that its servers receive and hence its

operative costs, and for the end-users, which are able to watch higher quality videos.

114

6
Conclusions

The fast and huge increase of Internet traffic due to data intensive applications moti-

vates the development of new communication methods that can deal with the growing

volume of data traffic. To this aim, Named Data Networking (NDN) has been proposed

as a future Internet architecture that enables ubiquitous in-network caching and

naturally supports multi-path data delivery. This thesis proposed to integrate network

coding into the NDN architecture, to improve the performance of data intensive appli-

cations in networks with limited bandwidth, network bottlenecks and packet losses.

Overall, network coding brings significant benefits to data intensive applications over

NDN. All the nodes in the content retrieval process, i.e., the clients, the intermediate

routers and the sources, could benefit from the use of network coding. The clients are

able to retrieve content faster, the intermediate routers are able to serve more content

from the edge of the network, reducing the load in the core routers, and the sources

receive less requests, which reduces its processing and bandwidth needs. In the next

Sections we first describe the main contributions of this thesis. Then, we propose

future directions for network coding enabled NDN architectures.

115

Chapter 6. Conclusions

6.1 Main Contributions

In order to study and quantify the benefits that network coding brings to data intensive

applications in NDN, an architecture that integrates network coding into NDN was

needed. Due to the lack of well defined and data intensive oriented network coding

enabled NDN architectures in the literature, the first contribution of this thesis is

NetCodNDN, an architecture that integrates network coding into NDN, presented in

Chapter 3. In comparison to previous works proposing to enable network coding in

NDN, NetCodNDN permits Interest aggregation and Interest pipelining, which reduce

the data retrieval times in data intensive applications. The evaluation showed that

the NetCodNDN architecture leads to significant improvements in terms of content

retrieval delay, compared to the original NDN. The performance gains were verified

for content retrieval in various network scenarios.

Having an architecture efficiently integrates network coding into NDN for data inten-

sive applications, the next contribution of this thesis related to analyzing the benefits

that network coding brings to data intensive applications in NDN. Since video stream-

ing is the most popular data intensive application, this thesis used dynamic adaptive

video streaming as a data intensive application to study. Thus, Chapter 4 proposed

a Dynamic Adaptive Streaming over NetCodNDN (DAS-NetCodNDN) architecture.

In comparison to previous works proposing dynamic adaptive streaming over NDN,

DAS-NetCodNDN exploits the benefits that network coding brings to video streaming

applications, in multi-source and multi-client scenarios. The experimental evaluation

has been performed in a Netflix-like scenario. The results showed that the use of

network coding permits to exploit more efficiently the available network resources,

which leads to reduced data traffic load on the video sources, increased cache-hit rate

at the in-network caches and faster adaptation of the requested video quality by the

clients.

Having experimentally demonstrated and quantified the benefits that network coding

brings to data intensive applications over NDN, the final contribution of this thesis was

to limit the capacity of the content stores (i.e., caches) available at the intermediate

routers. When the content store capacity is limited, routers need a caching policy that

decides which Data packets are cached and which ones are evicted when the content

store capacity is reached. To this aim, Chapter 5 proposed PopNetCod, a popularity-

based caching policy for data intensive applications communicating over NetCodNDN.

PopNetCod is a distributed caching policy, where each router aims at increasing its

116

6.2. Future Directions

local cache-hit rate, by measuring the popularity of each content object and using

it to determine the number of Data packets for each content object that it caches in

its content store. The design of the PopNetCod caching policy favors edge caching,

which has been demonstrated to be beneficial. The evaluation of the PopNetCod

caching policy has been performed in a Netflix-like video streaming scenario, similar

to the one presented in Chapter 4. The results showed that, in comparison with a

caching policy that uses the Leave Copy Everywhere (LCE) placement policy and the

Least Recently Used (LRU) eviction policy, PopNetCod achieves a higher cache-hit

rate at the intermediate routers. The increased cache-hit rate reduces the number

of Interests that the source should satisfy, and also increases the goodput seen by

the clients. Thus, our caching policy presents benefits for the content providers, by

reducing the load that its servers receive and hence its operative costs, and for the

end-users, which are able to watch higher quality videos.

Additionally, this thesis also provided a complete codebase of a network coding en-

abled NDN architecture. The provided codebase uses open-source libraries and fol-

lows the NDN project codebase guidelines, to simplify its re-usability and expansion.

In particular, we used the NDN Forwarding Daemon (NFD) codebase [61] as a base

for the NetCodNDN architecture. To enable network coding, we have used Kodo [69],

an industry standard C++ library that implements network coding functionality in

an optimized way. Moreover, we have used the Adaptive Multimedia Streaming with

ndnSIM (AMuSt) codebase [43] and the libdash library [60] for the DAS-NetCodNDN

architecture. Currently, libdash is the official reference software of the DASH standard.

The provided codebase also permits the development of new caching policies, which

can be designed and plugged to the nodes in a simple way.

6.2 Future Directions

While this thesis provided an architecture that enabled network coding on NDN and

demonstrated its benefits in different scenarios, many opportunities for extending

the scope of this thesis remain. This Section presents some of these future research

directions.

In the NetCodNDN architecture, intermediate routers aggregate Interests based on

the premise that each Interest will bring back an innovative Data packet, which is not

always true. Non-innovative Data packets may be received, and also Interests or Data

117

Chapter 6. Conclusions

packets may be lost. Thus, it would be interesting to study new approaches in which

the routers can measure the packet loss rate and the non-innovative Data packet rate,

among other metrics, and take them into consideration when performing Interest

aggregation, to reduce the decoding delay.

Moreover, when a NetCodNDN router receives a Data packet that is non-innovative,

it does not forward it further downstream. The router does this to avoid wasting

network resources in the transmission of Data packets that have a high probability of

being non-innovative for the clients. However, Interest forwarding strategies could

use the non-innovative rate of the different faces to adjust where to forward Interests.

A possible way to share this “non-innovativeness” information, without the need

to send the complete Data packets, is to use negative acknowledgments (NACK),

which have been defined in newer versions of the NDN architecture [4]. NACKs

are used by routers to signal downstream nodes that they were unable to satisfy a

particular Interest. NACKs carry the Interest that could not be satisfied and a reason

why the router was unable to satisfy the Interest. In NetCodNDN, a new reason “non-

innovative Data packet received” could be defined for the NACK. Interest forwarding

strategies could use NACKs with this reason to reduce the number of Interests they

forward to faces over which a high number of NACKs with the reason “non-innovative

Data packet received” have been received. Furthermore, the non-innovative rate of a

face could also be used to improve the Interest aggregation procedure in NetCodNDN.

The NetCodNDN architecture considers that generations [20] are defined by the source

and that they do not vary after being defined. As a consequence, the Data packets that

belong to a generation can be cached in the routers and they can be easily re-used to

serve future Interests for the same generation. However, the use of generations fixes

the delay seen by the client to decode the original content object, as it needs to collect

a number of network coded Data packets that is at least similar to the generation

size. This is not ideal since the network conditions may vary, making the delay to

decode the original content object too large for the application. An alternative to the

use of generations is to use sliding-window network coding schemes [40], in which

the number of Data packets that could be used to generate a network coded Data

packet (i.e., the code block size) is decided dynamically according to the network

conditions measured by the sources and/or the clients. However, considering the

in-network caching capabilities of NetCodNDN, it is not trivial to re-use a cached

sliding-window network coded Data packet, since the Data packets used to generate

it may be different to the ones that a later client will request, creating a situation in

118

6.2. Future Directions

which cached network coded Data packets may be useless for subsequent clients.

Security in NetCodNDN is another aspect that needs to improved. In particular,

content confidentiality, i.e., only the nodes with the right to view a content object are

able to decode it, and content authenticity, i.e., the retrieved content object is exactly

as the original trusted source provided it.

Traditionally, content confidentiality in NDN is provided by end-to-end encryption.

The sources encrypt the content objects or even the names or name prefixes of the

content objects, and then, the clients use the decryption keys provided by the sources

to get the original content object. The use of network coding provides inherent content

confidentiality properties, since an external eavesdropper that gathers a few Data

packets will not be able to see the original content unless it receives enough Data

packets to decode it. An approach that takes profit of these network coding properties

to reduce the computational complexity of end-to-end encryption is Secure Practical

Network Coding (SPOC) [96]. In this approach, a subset of the encoding coefficients

of each Data packet, called the locked coefficients, are encrypted with keys that are

available at the source and at the client, but not at the routers. The routers can still

perform network coding operations in another subset of the encoding coefficients

of each Data packets, called the unlocked coefficients. The unlocked coefficients do

not provide any information for effectively decoding the Data packets without access

to a decrypted version of the locked coefficients. An adaptation of SPOC could be

integrated into NetCodNDN to enable efficient content confidentiality.

In NDN, content authenticity is provided by signing the content object and its name.

The sources sign the Data packets that they store, and the clients and routers can

use the generated signature to verify the authenticity of the Data packets. However,

in NetCodNDN the intermediate routers are able to generate new network coded

Data packets based on the Data packets they receive. This means that the signature

created by the source is invalidated and not able to be used for authenticity verifi-

cation. Gkantsidis et al. [32] propose an approach for content signature in network

coding enabled P2P networks. This approach proposes to sign the network coded

Data packets with homomorphic hash functions, which have the property that the

hash value of a linear combination of some input Data packets can be constructed

efficiently by a combination of the hashes of the input Data packets. The verification

of signatures created with homomorphic hash functions has high computational

complexity, which would create high delays if each network node decides to verify all

119

Chapter 6. Conclusions

the Data packets they receive. For that reason, Gkantsidis et al. [32] also propose a

cooperative approach to reduce the overall hash verification complexity, by allowing

the routers to verify a subset of the Data packets they receive, and informing their

neighbors of any malicious Data packet detected. Understanding the best way to

integrate this approach into the NetCodNDN architecture to enable network coded

content authenticity is left as future work.

It is worth noting that the aforementioned security issues of the NetCodNDN architec-

ture are only affect network coded content retrieval. The NetCodNDN architecture

also permits content retrieval using the original NDN procedures, in which case, the

security measures of the NDN architecture are used.

In this thesis, we considered that the clients’ position is fixed, i.e., clients are connected

to the network through the same edge routers during the content retrieval process.

To fully support content retrieval in mobile scenarios (e.g., VANETs, mobile phones,

etc.), the NetCodNDN architecture should be enhanced. In particular, in the current

NetCodNDN architecture the routers count the number of Data packets that have

been sent over a particular face, which in the case of edge routers, counts the number

of Data packets sent to a particular client. This information is used to avoid sending

the same Data packets twice, and to enable Interest pipelining. However, in a mobile

scenario, this information is invalid after a client moves to a new location. As a

consequence, the rate of duplicate Data packets received by the client could increase,

delaying the content retrieval process. One approach that could be used to alleviate

this issue is to enable clients to share information about the Data packets that they

have previously received with any new edge router, after moving to a new location.

With this information, the edge router could compute the number of Data packets

from its content store that are duplicated to the client, and initialize the counters

appropriately. However, this solution requires sharing information at the beginning

of every new connection, which increases the overhead of the architecture. New

solutions that improve the performance of the NetCodNDN architecture in mobile

scenarios should be studied.

Finally, the DAS-NetCodNDN architecture proposed in this thesis for adaptive video

streaming over NetCodNDN considers a Video-on-Demand (VoD) scenario, in which

clients request the video segments at different times. An interesting expansion to the

DAS-NetCodNDN architecture would be to consider the use of live video streaming

scenarios, where the Data packets are valid for a short period of time, and where

120

6.2. Future Directions

Interest aggregation plays a more important role than caching. HTTP Live Streaming

(HLS) [66] is a well stablished approach that resemble the Dynamic Adaptive Streaming

over HTTP (DASH) [37] approach in which DAS-NetCodNDN is based on. Thus, it

would be interesting to extend DAS-NetCodNDN to allow HLS, and understand the

benefits that network coding brings to live video streaming over NDN.

121

Bibliography

[1] 3GPP, “3GPP TS 26.346 V7.1.0, Technical Specification Group Services and Sys-

tem Aspects; Multimedia Broadcast/Multicast Service; Protocols and Codecs,”

Jun. 2005.

[2] A. Aaron, Z. Li, M. Manohara, J. D. Cock, and D. Ronca, “The Netflix tech blog:

Per-title encode optimization,” http://techblog.netflix.com/2015/12/per-title-

encode-optimization.html, Dec. 2015.

[3] N. Abani, G. Farhadi, A. Ito, and M. Gerla, “Popularity-based partial caching for

information centric networks,” in Proc. Med-Hoc-Net’16, Jun. 2016, pp. 1–8.

[4] A. Afanasyev et al., “NFD developer’s guide,” Named Data Networking project,

Technical Report NDN-0021 Revision 7, Oct. 2016.

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey

of information-centric networking,” IEEE Communications Magazine, vol. 50,

no. 7, pp. 26–36, Jul. 2012.

[6] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman,

K. Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone, “Design consid-

erations for a network of information,” in Proc. of ACM CoNEXT’08, 2008, pp.

1–6.

[7] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE

Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[8] C. Anastasiades, N. Thomos, A. Striffeler, and T. Braun, “RC-NDN: Raptor codes

enabled named data networking,” in Proc. of IEEE ICC’15, Jun. 2015, pp. 3026–

3032.

123

Bibliography

[9] R. Bassoli, H. Marques, J. Rodriguez, K. W. Shum, and R. Tafazolli, “Network

coding theory: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4,

pp. 1950–1978, Apr. 2013.

[10] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-based caching

strategy for content centric networks,” in Proc. of IEEE ICC’13, Jun. 2013, pp.

3619–3623.

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Commun. of the ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[12] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect every-

where: a glimpse at the internet ecosystem through the lens of the netflix cdn,”

arXiv preprint arXiv:1606.05519, Jun. 2016.

[13] E. Bourtsoulatze, N. Thomos, and P. Frossard, “Distributed rate allocation in

inter-session network coding,” IEEE Trans. Multimedia, vol. 16, no. 6, pp. 1752–

1765, Oct. 2014.

[14] E. Bourtsoulatze, N. Thomos, J. Saltarin, and T. Braun, “Content-aware delivery

of scalable video in network coding enabled named data networks,” IEEE Trans.

on Multimedia, vol. PP, no. 99, Aug. 2017.

[15] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach

to reliable distribution of bulk data,” SIGCOMM Comput. Commun. Rev., vol. 28,

pp. 56–67, Oct. 1998.

[16] “CCNDC(1) Manual Page, Project CCNx ®, version 0.8.2,”

https://github.com/ProjectCCNx/ccnx/blob/master/doc/manpages/ccndc.1.txt.

[17] “Project CCNx ®, version 0.8.2,” http://www.ccnx.org/releases/ccnx-

0.8.2/doc/.

[18] V. Cerf and R. Kahn, “A protocol for packet network intercommunication,” IEEE

Trans. on Communications, vol. 22, no. 5, pp. 637–648, May 1974.

[19] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE: Popularity-based

and collaborative in-network caching for content-oriented networks,” in Proc.

of IEEE INFOCOM’12 Workshops, Mar. 2012, pp. 316–321.

[20] P. Chou and Y. Wu, “Network coding for the Internet and wireless networks,”

IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 77–85, Sep. 2007.

124

Bibliography

[21] “Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,” White

Paper, Cisco Systems Inc., Jun. 2016.

[22] N. Cleju, N. Thomos, and P. Frossard, “Selection of network coding nodes for

minimal playback delay in streaming overlays,” IEEE Trans. on Multimedia,

vol. 13, no. 5, pp. 1103–1115, Oct. 2011.

[23] A. Dabirmoghaddam, M. Dehghan, and J. J. Garcia-Luna-Aceves, “Characteriz-

ing interest aggregation in content-centric networks,” in Proc. of IFIP Network-

ing’16, May 2016, pp. 449–457.

[24] A. Dabirmoghaddam, M. Mirzazad-Barijough, and J. J. Garcia-Luna-Aceves,

“Understanding Optimal Caching and Opportunistic Caching at “the Edge” of

Information-Centric Networks,” in Proc. of ACM ICN’14, 2014, pp. 47–56.

[25] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, and A. Bragagnini, “Of-

floading cellular networks with information-centric networking: the case of

video streaming,” in Proc. of IEEE WoWMoM’12, San Francisco, CA, USA, Jun.

2012.

[26] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs,

K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain: incrementally

deployable ICN,” in Proc. of ACM SIGCOMM’13, 2013, pp. 147–158.

[27] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content,” RFC 7231, IETF, Jun. 2014. [Online]. Available:

https://tools.ietf.org/rfc/rfc7231.txt

[28] A. Ford et al., “TCP extensions for multipath operation with multiple addresses,”

RFC 6824, IETF, Jan. 2013. [Online]. Available: http://www.rfc-editor.org/rfc/

rfc6824.txt

[29] N. Fotiou, D. Trossen, and G. C. Polyzos, “Illustrating a publish-subscribe inter-

net architecture,” Telecommunication Systems, vol. 51, no. 4, pp. 233–245, Dec

2012.

[30] C. Fragouli, E. Soljanin et al., “Network coding applications,” Foundations and

Trends® in Networking, vol. 2, no. 2, pp. 135–269, 2008.

[31] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Information Theory,

vol. 8, no. 1, pp. 21–28, Jan. 1962.

125

https://tools.ietf.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt

Bibliography

[32] C. Gkantsidis and P. R. Rodriguez, “Cooperative security for network coding file

distribution,” in Proc. of IEEE INFOCOM’06, Apr. 2006.

[33] A. Gomes and T. Braun, “Load balancing in LTE mobile networks with

Information-Centric Networking,” in Proc. of ICC’15 Workshops, Jun. 2015, pp.

1845–1851.

[34] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits of coding

over routing in a randomized setting,” in Proc. of IEEE ISIT’03, Jun. 2003, pp.

442–.

[35] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On randomized network

coding,” in Proc. of Allerton’03, Oct. 2003.

[36] ICNRG, “Design Choices and Differences for NDN and CCNx 1.0 Implemen-

tations of Information-Centric Networking,” draft-icnrg-harmonization-

00, ICNRG, Jul. 2017. [Online]. Available: https://icnrg.github.io/

draft-icnrg-harmonization/draft-icnrg-harmonization-00.html

[37] ISO/IEC JTC 1/SC 29, Information technology – Dynamic adaptive streaming

over HTTP (DASH) – Part 1: Media presentation description and segment formats,

ISO/IEC 23 009-1:2014, May 2014.

[38] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.

Braynard, “Networking named content,” in Proc. of ACM CoNEXT’09, Rome,

Italy, Dec. 2009, pp. 1–12.

[39] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen, “Poly-

nomial Time Algorithms for Multicast Network Code Construction,” IEEE Trans.

on Information Theory, vol. 51, no. 6, pp. 1973 – 1982, Jun. 2005.

[40] M. Karzand and D. J. Leith, “Low delay random linear coding over a stream,” in

Proc. of Allerton’14, Sep. 2014, pp. 521–528.

[41] R. Koetter and M. Médard, “An algebraic approach to network coding,”

IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[42] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,

and I. Stoica, “A data-oriented (and beyond) network architecture,” in Proc. of

SIGCOMM’07, 2007, pp. 181–192.

126

https://icnrg.github.io/draft-icnrg-harmonization/draft-icnrg-harmonization-00.html
https://icnrg.github.io/draft-icnrg-harmonization/draft-icnrg-harmonization-00.html

Bibliography

[43] C. Kreuzberger, D. Posch, and H. Hellwagner, “AMuSt Framework - Adap-

tive Multimedia Streaming Simulation Framework for ns-3 and ndnSIM,”

https://github.com/ChristianKreuzberger/amust-simulator, 2016.

[44] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of lru caches

and its analysis,” Performance Evaluation, vol. 63, no. 7, pp. 609 – 634, 2006.

[45] S. Lederer, C. Mueller, B. Rainer, C. Timmerer, and H. Hellwagner, “Adaptive

streaming over content centric networks in mobile networks using multiple

links,” in Proc. of IEEE ICC’13 Workshops, Jun. 2013, pp. 677–681.

[46] ——, “An experimental analysis of dynamic adaptive streaming over HTTP in

content centric networks,” in Proc. of IEEE ICME’13, San Jose, CA, USA, Jul. 2013,

pp. 1–6.

[47] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content caching,” in

Proc. of IEEE INFOCOM’16, Apr. 2016, pp. 1–9.

[48] Z. Li, H. Xu, and B. Li, “Network coding in bi-directed and peer-to-peer net-

works,” in Next-Generation Internet: Architectures and Protocols, ch. 17.

[49] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-coded caching-aided mul-

ticast for efficient content delivery,” in Proc. of IEEE ICC’13, Budapest, Hungary,

Jun. 2013, pp. 3557–3562.

[50] M. Luby, “Lt codes,” in Proc. of IEEE FOCS’02, 2002.

[51] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, “RaptorQ

Forward Error Correction Scheme for Object Delivery,” RFC 6330, IETF, Aug.

2011. [Online]. Available: https://tools.ietf.org/rfc/rfc6330.txt

[52] M. Luby, “Tornado codes: Practical erasure codes based on random irregular

graphs,” in Proc. of RANDOM’98, 1998, pp. 171–171.

[53] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Fulcrum Net-

work Codes: A Code for Fluid Allocation of Complexity,” arXiv preprint

arXiv:1404.6620, Nov. 2015.

[54] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the Evolution of ndnSIM: an

Open-Source Simulator for NDN Experimentation,” ACM SIGCOMM Computer

Communication Review, vol. 47, no. 3, Jul. 2017.

127

https://tools.ietf.org/rfc/rfc6330.txt

Bibliography

[55] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss streaming using

in-network coding and caching,” in Proc. of IEEE INFOCOM’17, Atlanta, USA,

May 2017.

[56] M. Mitzenmacher, “Digital fountains: a survey and look forward,” in Proc. of

IEEE ITW’04, 2004, pp. 271 – 276.

[57] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034, IETF, Nov.

1987. [Online]. Available: https://tools.ietf.org/rfc/rfc1034.txt

[58] ——, “Domain names - implementation and specification,” RFC 1035, IETF,

Nov. 1987. [Online]. Available: https://tools.ietf.org/rfc/rfc1035.txt

[59] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets

information-centric networking: an architectural case for information disper-

sion through native network coding,” in Proc. of ACM NoM’12 Workshop, Hilton

Head, South Carolina, USA, Jun. 2012, pp. 31–36.

[60] C. Mueller, S. Lederer, J. Poecher, and C. Timmerer, “Demo paper: libdash - an

open source software library for the MPEG-DASH standard,” in Proc. of IEEE

ICME’13 Workshops, San Jose, CA, USA, Jul. 2013.

[61] Named Data Networking (NDN) Project, “Named Data Networking Forwarding

Daemon,” https://github.com/named-data/NFD.

[62] “The Netflix ISP Speed Index,” Netflix Inc., Dec. 2016. [Online]. Available:

https://ispspeedindex.netflix.com/

[63] “The network simulator - ns3,” http://www.nsnam.org/.

[64] “Direct Code Execution (DCE),” https://www.nsnam.org/overview/projects/

direct-code-execution/.

[65] J. Ozer, “What is AV1?” http://www.streamingmedia.com/Articles/Editorial/What-

Is-.../What-is-AV1-111497.aspx.

[66] R. Pantos and W. May, “HTTP Live Streaming,” draft-pantos-http-live-

streaming-23, IETF, May 2017. [Online]. Available: https://tools.ietf.org/html/

draft-pantos-http-live-streaming-23

128

https://tools.ietf.org/rfc/rfc1034.txt
https://tools.ietf.org/rfc/rfc1035.txt
https://ispspeedindex.netflix.com/
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

Bibliography

[67] G. Parisis, V. Sourlas, K. V. Katsaros, W. K. Chai, and G. Pavlou, “Enhancing multi-

source content delivery in content-centric networks with fountain coding,” in

Proc. of CCDWN’16 Workshop, 2016, pp. 1–7.

[68] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical ap-

proach,” in Proc. of AAAI’82, 1982, pp. 133–136.

[69] M. Pedersen, J. Heide, and F. H. P. Fitzek, “Kodo: an open and research oriented

network coding library,” in Proc. of IFIP Networking’11, Valencia, Spain, May

2011, pp. 145–152.

[70] M. Pedersen, J. Heide, P. Vingelmann, and F. Fitzek, “Network coding over the

232 −5 prime field,” in Proc. of IEEE ICC’13, Budapest, Hungary, Jun. 2013.

[71] K. Pentikousis et al., “Information-Centric Networking: Baseline Scenarios,”

RFC 7476, Mar. 2015. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7476.

txt

[72] “PlanetLab,” https://www.planet-lab.org/.

[73] D. Posch, C. Kreuzberger, B. Rainer, and H. Hellwagner, “Using in-network adap-

tation to tackle inefficiencies caused by dash in information-centric networks,”

in Proc. of VideoNext ’14 Workshop, 2014, pp. 25–30.

[74] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management and re-

source allocation for information-centric networks,” IEEE Trans. on Parallel

and Distributed Systems, vol. 25, no. 11, pp. 2920–2931, Nov. 2014.

[75] A. Ramakrishnan, C. Westphal, and J. Saltarin, “Adaptive video streaming over

ccn with network coding for seamless mobility,” in Proc. of IEEE ISM’16, Dec.

2016.

[76] V. Roca, Z. Khallouf, and J. Laboure, “Design and Evaluation of a Low Density

Generator Matrix (LDGM) Large Block FEC Codec,” in Proc. of COST 264 NGC’03,

Sep. 2003, pp. 193–204.

[77] G. Rossini and D. Rossi, “Evaluating CCN multi-path interest forwarding strate-

gies,” Computer Communications, vol. 36, no. 7, pp. 771 – 778, Apr. 2013.

[78] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “NetCodCCN: a network

coding approach for content-centric networks,” in Proc. of IEEE INFOCOM’16,

Apr. 2016.

129

http://www.rfc-editor.org/rfc/rfc7476.txt
http://www.rfc-editor.org/rfc/rfc7476.txt

Bibliography

[79] J. Saltarin, T. Braun, E. Bourtsoulatze, and N. Thomos, “Popnetcod: A popularity-

based caching policy for network coding enabled named data networks,” in

under submission, Jul. 2017.

[80] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “Adaptive video stream-

ing with network coding enabled named data networking,” IEEE Trans. on

Multimedia, vol. 19, no. 10, Aug. 2017.

[81] K. M. Schneider and U. R. Krieger, “Beyond network selection: exploiting access

network heterogeneity with named data networking,” in Proc. of ACM ICN’15,

San Francisco, USA, Sep. 2015, pp. 137–146.

[82] A. M. Sheikh, A. Fiandrotti, and E. Magli, “Distributed scheduling for low-delay

and loss-resilient media streaming with network coding,” IEEE Trans. Multime-

dia, vol. 16, no. 8, pp. 2294–2306, Dec. 2014.

[83] A. Shokrollahi, “Raptor codes,” IEEE Trans. on Information Theory, vol. 52, no. 6,

pp. 2551 –2567, Jun. 2006.

[84] M. Sipos, J. Heide, D. Lucani, M. Pedersen, F. Fitzek, and H. Charaf, “Adap-

tive network coded clouds: High speed downloads and cost-effective version

control,” IEEE Trans. on Cloud Computing, vol. PP, no. 99, 2017.

[85] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the inter-

net,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, Apr. 2011.

[86] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high

efficiency video coding (hevc) standard,” IEEE Trans. on Circuits and Systems

for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[87] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig, “Trace-

driven analysis of ICN caching algorithms on video-on-demand workloads,” in

Proc. of ACM CoNEXT ’14, 2014, pp. 363–376.

[88] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher, and

J. Barros, “Network coding meets TCP: theory and implementation,” Proc. of the

IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.

[89] N. Thomos and P. Frossard, “Toward one Symbol Network Coding Vectors,” IEEE

Communications letters, vol. 16, no. 11, pp. 1860–1863, Nov. 2012.

130

Bibliography

[90] N. Thomos, E. Kurdoglu, P. Frossard, and M. van der Schaar, “Adaptive pri-

oritized random linear coding and scheduling for layered data delivery from

multiple servers,” IEEE Trans. Multimedia, vol. 17, no. 6, pp. 893–906, Jun. 2015.

[91] N. Thomos and P. Frossard, “Media coding for streaming in networks with

source and path diversity,” in Intelligent Multimedia Transmission: Techniques

and Applications. Springer-Verlag, 2009.

[92] M. Thomson, E. Damaggio, and B. Raymor, “Generic Event Delivery

Using HTTP Push,” RFC 8030, IETF, Dec. 2016. [Online]. Available:

https://tools.ietf.org/rfc/rfc8030.txt

[93] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? An objective

and subjective performance evaluation of http-based adaptive media streaming

systems,” arXiv preprint arXiv:1606.00341, Jun. 2016.

[94] D. Trossen and G. Parisis, “Designing and realizing an information-centric

internet,” IEEE Communications Magazine, vol. 50, no. 7, pp. 60–67, Jul. 2012.

[95] C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Are information-centric net-

works video-ready?” in Proc. of IEEE PV’13 Workshop, Dec. 2013, pp. 1–8.

[96] J. P. Vilela, L. Lima, and J. Barros, “Lightweight security for network coding,” in

Proc. of IEEE ICC’08, May 2008, pp. 1750–1754.

[97] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, and C. Westphal, “An Optimal Cache Man-

agement Framework for Information-Centric Networks with Network Coding,”

in Proc. of IFIP NETWORKING’14, Trondheim, Norway, Jun. 2014.

[98] X. Wang, J. Ren, T. Tong, R. Dai, S. Xu, and S. Wang, “Towards efficient and

lightweight collaborative in-network caching for content centric networks,” in

Proc. of IEEE GLOBECOM’16, Dec. 2016, pp. 1–7.

[99] C. Westphal et al., “Adaptive video streaming over information-centric

networking (ICN),” RFC 7933, IRTF, Aug. 2016. [Online]. Available: http:

//www.rfc-editor.org/rfc/rfc7933.txt

[100] Q. Wu, Z. Li, and G. Xie, “CodingCache: multipath-aware CCN cache with

network coding,” in Proc. of ACM ICN’2013 Workshop, Hong Kong, China, Aug.

2013, pp. 41–42.

131

https://tools.ietf.org/rfc/rfc8030.txt
http://www.rfc-editor.org/rfc/rfc7933.txt
http://www.rfc-editor.org/rfc/rfc7933.txt

Bibliography

[101] Y. Wu, P. Chou, and K. Jain, “A comparison of network coding and tree packing,”

in Proc. of IEEE ISIT’04, Chicago, IL, USA, Jun. 2004, p. 145.

[102] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,

K. V. Katsaros, and G. C. Polyzos, “A survey of information-centric networking

research,” IEEE Communications Surveys Tutorials, vol. 16, no. 2, pp. 1024–1049,

Feb. 2014.

[103] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A framework for joint

dynamic forwarding and caching in named data networks,” in Proc. of ACM

ICN’14, 2014, pp. 117–126.

[104] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopou-

los, L. Wang, and B. Zhang, “Named data networking,” SIGCOMM Computer

Communication Review, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[105] L. Zhang et al., “Named Data Networking (NDN) Project,” Named Data Net-

working project, Technical Report NDN-0001 Revision 7, Oct. 2010.

[106] M. Zhang, H. Li, F. Chen, H. Hou, H. An, W. Wang, and J. Huang, “A general

co/decoder of network coding in hdl,” in Proc. of NetCod’11, Beijing, China, Jul.

2011.

132

Saltarin De Arco, Jonnahtan Eduardo

 13-128-970

Computer Science

✔

Network Coding Enabled Named Data Networking Architectures

Prof. Dr. Torsten Braun

133

Jonnahtan Saltarin
Curriculum Vitae

Worblentalstrasse 63
CH-3063 Ittigen

H +41 78 652 09 69
B saltarinj@gmail.com

Í jonnahtan.me

Education

09.2013 - 10.2017 PhD, Computer Science, University of Bern, Switzerland.

09.2008 - 04.2011 MSc, Computer Networks Engineering, Polytechnic University of Turin, Italy.
GPA: 107/110 (5.8/6.0).

09.2003 - 08.2008 BSc, Electrical Engineering, Central University of Venezuela, Venezuela.
GPA: 16/20 (4.8/6.0), Top 5%.

Professional Experience

09.2013 - 09.2017 Research Assistant.
University of Bern, Switzerland – with Prof. Torsten Braun

01.2012 - 09.2013 Software Engineer & Research Assistant.
COPElabs, University Lusófona, Portugal – with Profs. Rute Sofia and Paulo Mendes

09.2011 - 01.2012 Software Engineering Intern.
Fiat SpA, Italy

01.2011 - 05.2011 Research Intern.
EPFL – Swiss Federal Institute of Technology Lausanne, Switzerland – with Prof. Karl Aberer

04.2010 - 12.2010 Research Intern – MSc Thesis.
EPFL – Swiss Federal Institute of Technology Lausanne, Switzerland – with Prof. Pascal Frossard

Publications in this Thesis
[1] Jonnahtan Saltarin, Torsten Braun, Eirina Bourtsoulatze, and Nikolaos Thomos. PopNetCod: A

Popularity-based Caching Policy for Network Coding enabled Named Data Networking. Under
submission.

[2] Jonnahtan Saltarin, Eirina Bourtsoulatze, Nikolaos Thomos, and Torsten Braun. Adaptive
Video Streaming with Network Coding Enabled Named Data Networking. In IEEE Transactions
on Multimedia (TMM), vol. 19, no. 10.

[3] Jonnahtan Saltarin, Eirina Bourtsoulatze, Nikolaos Thomos, and Torsten Braun. NetCodCCN:
a Network Coding approach for Content Centric Networks. In IEEE International Conference
on Computer Communications (INFOCOM), April 2016.

135

	Acknowledgements
	Abstract
	Contents
	List of Figures
	Introduction
	Background
	Research Proposal
	Motivation
	Efficient Multipath Content Retrieval
	Throughput Gains in Case of Network Bottlenecks
	Resilience to Packet Losses

	Thesis Objective
	Thesis Contributions
	NetCodNDN: A Network Coding Enabled NDN Architecture
	Adaptive Video Streaming over Network Coding Enabled NDN
	Caching Policy for Network Coding Enabled NDN

	Thesis Outline

	State of the Art
	Overview
	Content Retrieval over the Internet
	Information-Centric Networking
	Data-Oriented Network Architecture
	Publish-Subscribe Internet Routing Paradigm
	Network of Information
	Content-Centric Networking

	Named Data Networking
	Content Object Partitioning and Naming in NDN
	Data Structures of the NDN Architecture
	Interest Processing
	Data Message Processing
	Multipath Data Delivery in NDN

	Fountain Codes
	LT codes
	Raptor Codes
	Fountain Codes in NDN

	Network Coding
	Random Linear Network Coding
	Network Coding in NDN

	Video Streaming
	Dynamic Adaptive Streaming over HTTP
	Dynamic Adaptive Streaming over NDN

	Caching in Named Data Networking

	A Network Coding Enabled NDN Architecture
	Introduction
	Network Coding Enabled NDN
	Challenges of Enabling Network Coding in NDN
	The NetCodNDN Architecture
	Content Object Fragmentation
	Data Packet Naming
	Data structures in NetCodNDN
	Interest Processing
	Data Message Processing
	Complexity

	Evaluation
	Evaluation Setup
	Metrics
	Butterfly Topology
	PlanetLab Topologies

	Conclusions

	Adaptive Video Streaming over Network Coding Enabled NDN
	Introduction
	The DAS-NetCodNDN Architecture
	Video Fragmentation
	Adaptive Video Streaming Implementation
	Improvements to the NetCodNDN Architecture

	Evaluation
	Implementation
	Network Topology
	Evaluation Setup
	Evaluation Results

	Conclusions

	Caching Policy for Network Coding Enabled NDN
	Introduction
	Caching in Network Coding Enabled NDN
	The PopNetCod Caching Policy
	Popularity Prediction
	PopNetCod Placement
	PopNetCod Eviction

	Practical Implementation of PopNetCod
	Signaling Between Routers
	Status Information at Routers
	Interest Processing
	Data Packet Processing

	Evaluation
	Evaluation Setup
	Benchmarks
	Evaluation Results

	Conclusion

	Conclusions
	Main Contributions
	Future Directions

	Bibliography
	Declaration of Consent
	Curriculum Vitæ

