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Abstract

With increasing popularity of digital cameras, the field of Computa-
tional Photography emerges as one of the most demanding areas of
research. In this thesis we study and develop novel priors and op-
timization techniques to solve inverse problems, including disparity
estimation and image restoration.

The disparity map estimation method proposed in this thesis incor-
porates multiple frames of a stereo video sequence to ensure temporal
coherency. To enforce smoothness, we use spatio-temporal connec-
tions between the pixels of the disparity map to constrain our solution.
Apart from smoothness, we enforce a consistency constraint for the
disparity assignments by using connections between the left and right
views. These constraints are then formulated in a graphical model,
which we solve using mean-field approximation. We use a filter-based
mean-field optimization that perform efficiently by updating the dis-
parity variables in parallel. The parallel updates scheme, however, is
not guaranteed to converge to a stationary point. To compare and
demonstrate the effectiveness of our approach, we developed a new
optimization technique that uses sequential updates, which runs ef-
ficiently and guarantees convergence. Our empirical results indicate
that with proper initialization, we can employ the parallel update
scheme and efficiently optimize our disparity maps without loss of
quality. Our method ranks amongst the state of the art in common
benchmarks, and significantly reduces the temporal flickering artifacts
in the disparity maps.

In the second part of this thesis, we address several image restora-
tion problems such as image deblurring, demosaicing and super-
resolution. We propose to use denoising autoencoders to learn an
approximation of the true natural image distribution. We parametrize
our denoisers using deep neural networks and show that they learn
the gradient of the smoothed density of natural images. Based on
this analysis, we propose a restoration technique that moves the so-
lution towards the local extrema of this distribution by minimizing
the difference between the input and output of our denoiser. We
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demonstrate the effectiveness of our approach using a single trained
neural network in several restoration tasks such as deblurring and
super-resolution. In a more general framework, we define a new
Bayes formulation for the restoration problem, which leads to a more
efficient and robust estimator. The proposed framework achieves state
of the art performance in various restoration tasks such as deblurring
and demosaicing, and also for more challenging tasks such as noise-
and kernel-blind image deblurring.

Keywords. disparity map estimation, stereo matching, mean-field
optimization, graphical models, image processing, linear inverse prob-
lems, image restoration, image deblurring, image denoising, single
image super-resolution, image demosaicing, deep neural networks,
denoising autoencoders



iii

Acknowledgements

I thank Matthias Zwicker, my mentor and adviser, for generously of-
fering the opportunity to learn and develop under his supervision. His
honest views and broad knowledge of computer science shaped my
views on research. I dedicate this work to him.

Many thanks are due to Sabine Süsstrunk and Paolo Favaro for
their assistance in reviewing the thesis. I am also very grateful to have
been Paolo’s student and to collaborate with him during my research.

I would like to express sincere gratitude to Dragana Esser, who
selflessly cleared the path for my work during my PhD. Her contri-
butions to my studies and research are more than one could ever
imagine or hope for. I also thank members of the Computer Graphics
Group for their friendship and support throughout this time. On many
occasions, they helped clarify the most challenging topics of my stud-
ies. Peter Bertholet, Marco Manzi, and Tiziano Portonier have helped
me to arrive at a deeper understanding of Swiss-German culture and
literature, and Daljit Singh Dhillon and Shihao Wu have broadened
my knowledge of India and China. Last but not least, I would like to
thank the Iranian students of the Computer Science Institute - Mehdi
Nowrouzi, Ali Marandi, and Mostafa Karimzadeh - for keeping the
connection to my home and culture strong.

The infinite support of my parents and my wife are the sole reason
that I could finish my studies. My wife Rava has selflessly advanced
my work on countless occasions, engaging in endless theoretical dis-
cussions about my research, listening to my practice talks, and proof-
reading my texts into the late hours of the night. I am immeasurably
grateful to my family and devote my research to them.



iv



Contents

1 Introduction 7
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . 13

2 Temporally Coherent Disparity Maps 15
2.1 Background and Related Work . . . . . . . . . . . . . . 17
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . 22
2.3 Energy Terms . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Unary Term . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Disparity-Dependent Smoothness Term . . . . . 25
2.3.3 Higher Order Local Consistency Term . . . . . . 29
2.3.4 Temporal Extension . . . . . . . . . . . . . . . 29

2.4 Energy Minimization . . . . . . . . . . . . . . . . . . . 30
2.4.1 Mean-Field Approximation . . . . . . . . . . . 30
2.4.2 Filter-based Parallel Update Iteration . . . . . . 33
2.4.3 Final Disparity Map . . . . . . . . . . . . . . . 35
2.4.4 Implementation . . . . . . . . . . . . . . . . . . 35

2.5 Convergence Analysis . . . . . . . . . . . . . . . . . . 36
2.5.1 Sequential Updates for Mean-field Approximation 37
2.5.2 Convergence Results . . . . . . . . . . . . . . . 44

2.6 Experiments and Results . . . . . . . . . . . . . . . . . 47
2.6.1 KITTI Stereo Evaluation . . . . . . . . . . . . . 48
2.6.2 Stereo Sequences . . . . . . . . . . . . . . . . . 49

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 51

1



2 CONTENTS

3 Natural Priors for Image Restoration 53
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 54
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Procedural and End-to-End . . . . . . . . . . . 57
3.2.2 Declarative and Generic . . . . . . . . . . . . . 59
3.2.3 Noise- and Kernel-Blind Deconvolution . . . . . 63
3.2.4 Summary of Priors . . . . . . . . . . . . . . . . 64

3.3 Denoising Autoencoder as Natural Image Prior . . . . 66

4 Autoencoding Priors 73
4.1 Prior Formulation . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Optimization . . . . . . . . . . . . . . . . . . . 77
4.1.2 Overcoming Training Limitations . . . . . . . . 77
4.1.3 Autoencoder Architecture and Training . . . . . 80

4.2 Experiments and Results . . . . . . . . . . . . . . . . . 81
4.2.1 Super-Resolution . . . . . . . . . . . . . . . . . 81
4.2.2 Non-Blind Deconvolution . . . . . . . . . . . . 82

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Deep Mean-Shift Priors 89
5.1 Bayesian Formulation . . . . . . . . . . . . . . . . . . 91

5.1.1 Defining the Objective via a Bayes Estimator . . 92
5.1.2 Gradient of the Prior via Denoising Autoencoders 94
5.1.3 Stochastic Gradient Descent . . . . . . . . . . . 94

5.2 Image Restoration using the Deep Mean-Shift Prior . . 96
5.3 Experiments and Results . . . . . . . . . . . . . . . . . 98

5.3.1 Deblurring: Non-Blind and Noise-Blind . . . . . 100
5.3.2 Deblurring: Noise- and Kernel-Blind . . . . . . 102
5.3.3 Super-resolution . . . . . . . . . . . . . . . . . 104
5.3.4 Demosaicing . . . . . . . . . . . . . . . . . . . 105

5.4 Relationship to MAP . . . . . . . . . . . . . . . . . . . 105
5.5 Ratio between Runtime Noise and Training Noise . . . 108
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions 111



List of Figures

1.1 Forms of Coding. (1955). McHale . . . . . . . . . . . . 8
1.2 Visualization of the disparity matching ambiguity . . . 11
1.3 Visualization of the image restoration ambiguity . . . . 12

2.1 Temporal coherence in disparity maps . . . . . . . . . 16
2.2 Visualization of the smoothness energy in the joint

pixel-disparity space . . . . . . . . . . . . . . . . . . . 28
2.3 Sequential updates using a naive approach . . . . . . . 37
2.4 Sequential update passes. . . . . . . . . . . . . . . . . 39
2.5 Visualization of the sequential update operations. . . . 44
2.6 Convergence comparison of different optimizations . . 46
2.7 End-to-end comparison of sequential and parallel updates 48
2.8 Example results from the KITTI dataset . . . . . . . . . 49
2.9 Visualization of the flicker index for tow disparity se-

quences . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Image degradation model . . . . . . . . . . . . . . . . 55
3.2 Visualization of image priors . . . . . . . . . . . . . . . 67
3.3 Visualization of a denoising autoencoder using a 2D

spiral density . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Visualization of our iterative restoration technique . . 75
4.2 Local minimum of our natural image prior . . . . . . . 76
4.3 Convergence results . . . . . . . . . . . . . . . . . . . 79

3



4 LIST OF FIGURES

4.4 Network architecture . . . . . . . . . . . . . . . . . . . 80
4.5 Performance gain for different DAE noise standard de-

viations . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Visual comparison of super-resolution methods . . . . 83
4.7 Visual comparison of non-blind deconvolution methods

on Levin et al.’s dataset . . . . . . . . . . . . . . . . . . 84
4.8 Visual comparison of non-blind deconvolution methods

on Kodak dataset . . . . . . . . . . . . . . . . . . . . . 86
4.9 Denoising and holefilling tasks . . . . . . . . . . . . . 88

5.1 Effect of parameters in convergence . . . . . . . . . . . 98
5.2 Visual comparison of our deconvolution results. . . . 100
5.3 Performance of our method for fully-blind deblurring

on Levin’s set . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Visual comparison for restoration from real camera

noise and blur. . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Visual comparison for demosaicing noisy images from

the Panasonic dataset . . . . . . . . . . . . . . . . . . . 107
5.6 Performance comparison for different additive noise

variances in our stochastic gradient descent method . . 109



List of Tables

2.1 Properties of different optimization methods for a fully-
connected graph . . . . . . . . . . . . . . . . . . . . . 45

2.2 Performance gain in each step of the proposed method. 49
2.3 The top 10 methods in KITTI benchmark . . . . . . . . 50
2.4 Comparison of flicker index and computation time. . . 51

3.1 Popular priors and their characteristics . . . . . . . . . 65

4.1 Comparison of non-blind deconvolution methods on
Levin et al.’s dataset . . . . . . . . . . . . . . . . . . . 85

5.1 Evaluation of different noise standard deviation for
DAE training . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Comparison of different non-blind deconvolution meth-
ods on two datasets . . . . . . . . . . . . . . . . . . . . 101

5.3 Average PSNR (dB) for non-blind deconvolution on the
Sun et al.’s dataset . . . . . . . . . . . . . . . . . . . . 102

5.4 Comparison of different super-resolution methods on
two datasets . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Comparison of different demosaicing methods on the
Panasonic dataset . . . . . . . . . . . . . . . . . . . . . 107

5



6 LIST OF TABLES



Chapter 1

Introduction

Whether [the artist] regards himself as highly individual or
not, it seems to me that he or she needs to be exquisitely
aware of all the other images, symbols, movements floating
around, so that they can be taken into account—so that the
artist can anticipate the response of the viewer...

Alvin Toffler

The Digital Revolution in the 20th century has ignited a wave of
change in arts. As an influential futurist, Alvin Toffler suggested pop
artists to begin interpreting their environment for clues and evidence
about the preference of their audience, instead of escaping their con-
text [TM87]. John McHale, as an art theorist, took this debate even
further by formulating the environment as a set of shared codes and
symbols to be used effectively as the artist’s guide. This analogy is
visible in his early work Forms of Coding, shown in Figure 1.1. He
clearly depicts the role of shared codes in the form of a storage that
help in decoding an observation to its symbol or a new work of art.

The role of an artist in producing appealing images is highly remi-
niscent of the tools being used today for digital imaging. Surprisingly,
computer scientists usually take the same approach of pop artists

7
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Figure 1.1: Forms of Coding, John McHale, 1955, c© Yale Center for
British Art.

by interpreting and analyzing digital images, and encoding intuitive
representations of their distribution. Once obtained, these representa-
tions are made accessible to the computational tools that incorporate
the knowledge to produce high quality results.

Aside from the aforementioned similarity, considering the applica-
tion of computers and scientific tools, digital images are also becom-
ing available to a broader range of users, and not limited to the use
by artists. With recent technological advances, digital cameras are
available almost everywhere today, which leads to further increase
in demands for digital imaging tools. The Economist reports that,
in the year 2010, more than one billion cameras where installed on
mobile phones alone [Eco10]. In addition to mobile phone users,
professional photographers, medical scientists, security experts, and
many more use digital cameras every day for their specific applica-
tions. These cameras are being used continuously to capture images,
some of which are observed by the human eye, others are further an-
alyzed by computers. Thus it is necessary for the computer graphics
and vision fields to make advancements as well and develop many
tools to be used in applications ranging from visual quality enhance-
ment to machine scene understanding. The two fields of computer
graphics and vision intersect in the computational photography sub-
domain (also known as image processing), which covers most of the
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techniques that are applied to digital images and to meta-data related
to them. These techniques are being applied from the moment the
image is being captured until it is analyzed or displayed, using both
hardware and software tools.

The most common challenge in the field of computational pho-
tography is the presence of under-constrained or ill-posed problems.
This is due to practical and physical limitations, that in most problems,
fewer observations are being made than there are unknowns. As a triv-
ial example, consider the case where one would measure the length
of a single edge in a rectangle and try to compute its area. However in
computing the area of a rectangle, two measurements (edge lengths)
are required. In digital image processing, the unknowns are typically
the RGB color values of pixels. A physical limitation of digital cameras
is that the light intensity sensors only record the amount of incoming
light for a specific color range. Therefore in practice, most digital
images are captured using the Bayer’s pattern (using red, green, and
blue color filters). In this case, each pixel on the camera image uses a
sensor to measures the intensity of a single color channel (e.g. red);
thus, the other two color intensity values (e.g. green and blue) re-
main unknown for that pixel. This leads to a challenging problem
known as image demosaicing, where it is necessary to infer the un-
known color intensities from the captured values. Other examples
of under-constrained problems include removing undesired artifacts
from images (e.g. image denoising), image editing and enhancement
(e.g. Photoshop). More general under-constrained tasks are designed
to recover additional information (such as object segmentation masks,
disparity maps, etc.) from digital images, and are often used by other
computer vision tools (e.g. for pedestrian detection in self-driving
cars).

An intuitive way to solve an under-constrained problem and infer
its unknowns is to use prior knowledge (a "prior" for short) about
the problem and the underlying data distribution. In essence, the prior
encodes information about the problem (definition and parameters),
and also about the plausibility and probability of data samples. This
leads to a declarative approach, where the reasoning (algorithm) is
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separated from the basic knowledge (prior). We take the same declar-
ative approach in this thesis to address several under-constrained
problems related to computational photography. We encode knowl-
edge about the problems in usable formats (priors) and introduce
optimization techniques that benefit from these priors for efficient
reasoning. We apply the above approach to disparity map estimation
and a more general class of image restoration problems, which we
describe briefly below.

Disparity map estimation. In digital image processing, the term
disparity refers to the change in pixel location between two views
of the same scene. Due to the parallax between the two views, the
disparity value at each pixel encodes information about its distance
to the camera(s). The disparity map estimation (also known as stereo
matching) task is one of the classical problems in computer vision,
which requires finding and matching correspondences between two
views (stereo pairs), that were captured from the same scene at the
same time. Finding the correspondence between two views can help
to understand the (relative) depth of the objects in the scene, which
is similar to the human visual system. Disparity maps are used in
challenging computer vision tasks such as detecting obstacles in au-
tonomous vehicles. In computer graphics, disparity maps are used
in many different applications such as novel view synthesis, object
removal and insertion, as well as depth-aware refocusing.

Disparity map estimation is an ill-posed problem; matching the
corresponding pixels or patches between the two views is ambiguous.
Figure 1.2 shows an example of the disparity matching ambiguity,
where a patch in one of the views usually has more than one corre-
spondence in the other view. In this example illustration each of the
blue boxes in the left view can be matched with all other boxes in
the right view. The goal of the disparity map estimation is to use the
surrounding context, by connecting parts of the same object to reduce
the ambiguity between these correspondences. Hence, the proposed
technique should incorporate the knowledge, that all these patches
belong to a larger object (i.e. the handrail), and use it to infer a
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Left view Right view

Figure 1.2: Visualization of the disparity ambiguity in matching pixels
from the left view to the pixels in the right view (Middlebury Stereo
Dataset [SHK+14]). Each of the blue boxes in the left view could be
matched with all other boxes in the right view.

unique match for each of these patches.

Image restoration. Often the quality of a captured image is de-
graded by undesired artifacts; therefore, image restoration tools are
required to remove and reduce these artifacts. These restoration tools
are mostly designed to remove degradation artifacts such as noise,
blurriness, and holes in captured images. Additional to software
restoration tools, almost all of the consumer cameras use basic hard-
ware restoration tools to produce images with acceptable quality for
users. Therefore, image restoration is one of the most important tools
in the area of computational photography.

Similar to the disparity map estimation problem, image restora-
tion is an ill-posed problem and requires prior knowledge of natural
images. An example for this is shown in Figure 1.3: the left image is
captured with a low resolution camera sensor resulting in the middle
image. Due to the extreme loss of information, one can relate the
low resolution image to many other high resolution images, shown
on the right hand side. In other words, these images would appear
the same way if captured with the low resolution sensor. This makes
our inference ambiguous; given the low resolution image, we cannot
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High resolution Low resolution Possible solutions

→ ?→

Figure 1.3: An example visualization for image restoration ambiguity
(MNIST Dataset [LeC98]). The image on the left is downsampled to
have lower spatial resolution, which results to the image in the middle.
The task of restoring a high resolution image from the low resolution
observation is called the super-resolution problem. Due to the loss of
information, one can supper-resolve the low resolution image to many
other images shown on the right side.

decide which of these high resolution images is our solution. Im-
age restoration techniques use prior knowledge about image statistics
(sharp edges, etc.) to find a more plausible solution.

In summary, the goal of this thesis is to develop novel priors that
effectively encode prior knowledge about natural images and their
distribution. Additionally, we aim to develop optimization techniques
that leverage these priors and efficiently solve inverse problems, in-
cluding disparity estimation and image restoration.

1.1 Contributions

This thesis contributes in the following two problems:

Temporally coherent disparity maps [BBZ16]. We propose a ro-
bust disparity map estimation technique that can be used for stereo
sequences as well as single stereo pairs. A key contribution of this
technique is the strong smoothness constraints that reduce the am-
biguity of matching pixels between the views. To avoid degenerate
solutions, we preserve depth discontinuities by incorporating a depth
dependent similarity measure between pairs of pixels in an image. We



1.2. THESIS ORGANIZATION 13

generalize this smoothness constraint to the temporal dimension and
use it for stereo sequences to produce temporally coherent results. We
show the robustness of our technique by comparing to the state of
the art results for both cases of stereo sequences and single stereo
pairs. We develop a new optimization technique with convergence
guarantees and demonstrate that, in practice, our algorithm is stable.
Furthermore, we provide a GPU implementation that can compute
disparity maps of a sequence very efficiently.

Natural priors for image restoration [BZ17, BZFJ17]. A key con-
tribution in this thesis is to propose novel and generic frameworks
for various restoration tasks. We use analytical techniques to make
interesting observations about the natural image distribution using
empirical probability estimators. Specifically, we show that it is pos-
sible to learn the (gradients of) natural image distribution using em-
pirical Bayesian lease squares denoisers. We parametrize these de-
noisers using deep neural networks to efficiently approximate the
non-parametric approach, and we use them as our priors in two frame-
works for image restoration. We design our first framework to address
several image restoration tasks using a single neural network as the
prior. Our second framework is designed to handle more general and
ambiguous cases where the degradation noise variance and blur ker-
nel are unknown. Finally, we show competitive results for various
restoration tasks compared to the state of the art methods.

1.2 Thesis Organization

This thesis starts with a chapter on the proposed disparity map esti-
mation technique, followed by three chapters on the proposed image
restoration techniques. The thesis is structured as follows:

In Chapter 2 we introduce our disparity map constraints for single
stereo pairs and stereo sequences. We further present the disparity
estimation framework in two schemes of parallel and sequential vari-
able update. And we finalize this chapter by presenting quantitative
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results of the proposed technique.
Chapter 3 gives an introduction to the image restoration problem

followed by a brief review of the related work. We present the key
ideas of image distribution parametrization using neural networks
that we use later for image restoration.

In Chapter 4 we describe our first approach to general image
restoration using our prior. We explain the intuition behind our tech-
nique as well as the details of our algorithm. At the end of this chap-
ter, we provide visual and numerical comparisons of our technique to
other state of the art methods.

Chapter 5 presents our second formulation of the image restora-
tion problem with a more generic approach. We complete this chapter
by giving detailed explanation of our algorithm and comparison to
the state of the art techniques.

Chapter 6 concludes our research and results and briefly describes
possible future work.



Chapter 2

Temporally Coherent
Disparity Maps

Disparity map estimation is one of the most classical problems in
computer vision with many applications regarding the depth of the
objects in the scene. Detecting obstacles in autonomous cars is an
example application, that crucially relies on temporal coherency of the
disparity maps. In applications like video production for 3D displays,
also, temporally coherent disparity maps are crucial. While human
observers are more forgiving about incorrect disparities, they easily
notice flickering artifacts due to temporally incoherent disparity maps.
While some disparity estimation methods leverage information over
several frames of stereo video sequences, most do not attempt to
produce temporally coherent disparity maps.

We address this problem by proposing a technique that produces
temporally coherent disparity maps over stereo video sequences.
We formulate an energy minimization problem consisting of unary,
smoothness, and consistency terms, which we solve using the mean-
field approximation of a densely connected conditional random field
(CRF). Figure 2.1 shows a comparison of disparity maps from three
techniques that support spatio-temporal disparity estimation, includ-

15
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Left input (650 × 365) PRSM (104 sec)TDCBG (0.04 sec) Ours (2.1 sec)

Figure 2.1: Our optimization includes the temporal dimension to
achieve temporally coherent disparity maps in linear time. Here
we compare disparity maps from TDCBG [ROD+10] using a tem-
poral window of eight frames, PRSM [VSR15] using three frames,
and our method using 21 frames. We also indicate the computa-
tion time per frame for each method. On the right we show the
average disparity flicker index in this sequence. Our algorithm and
TDCBG [ROD+10] allow controlling temporal smoothness using a
temporal support parameter σt. Sequence courtesy of Media Leader
Srl (www.medialeadersrl.com).

ing TDCBG [ROD+10], PRSM [VSR15], and our method. We use the
maximum temporal support for each method, which is eight consecu-
tive frames for TDCBG, three frames for PRSM, and 21 frames for our
approach. On the right side of Figure 2.1 we show the average dispar-
ity flicker index in this sequence. The flicker index is a quantitative
measurement of the temporal smoothness of a signal, and we com-
pute it according to the IESNA standard [DHMS00]. Our algorithm
and TDCBG [ROD+10] allow controlling temporal smoothness with
a user specified parameter σt. Our proposed algorithm achieves the
lowest flicker index, can be computed in linear complexity in terms of
image resolution and number of frames, and our GPU implementation
requires only a few seconds per frame.

We propose two efficient filtering techniques to solve the mean-
field approximation, using parallel and sequential updates. Both have
linear complexity in terms of the number of pixels in the input. Parallel
updates allow us to process all pixels in a stereo sequence indepen-
dently, enabling fast GPU implementations. In contrast to sequential
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updates, parallel updates are not guaranteed to converge. We provide
a detailed comparison between both techniques, and show that with
proper initialization, parallel updates obtain the same quality of re-
sults. Hence they are preferable in practice. Finally, our method ranks
among the state of the art in the KITTI benchmark [GLU12].

In summary, the contributions of this chapter are:

• A new smoothness term that leverages both left and right images
to distinguish between image edges due to depth discontinuities,
and edges due to surface texture.

• A novel consistency term to obtain a joint left-and-right disparity
estimation formulation.

• A temporal smoothness term to achieve temporally coherent
disparity maps over stereo video sequences.

• A novel technique for sequential mean-field update with a linear
complexity in the number of variables, with extensive compar-
isons of different CRF optimization techniques.

The rest of this chapter is organized as follows: we discuss the
background and previous work in Section 2.1. We introduce our
energy formulation that includes a novel consistency term and the
temporal extension in Section 2.3. Next, in Section 2.4 we discuss
energy minimization via the mean-field approximation and using an it-
erative algorithm with parallel updates. Parallel updates are not guar-
anteed to converge, however, and we develop an efficient sequential
approach in Section 2.5 that does not suffer from this problem. Finally,
we evaluate our approach using standard datasets in Section 2.6.

2.1 Background and Related Work

In this section we describe the background and related contributions
for different aspects of the disparity map estimation task. Most meth-
ods assume that the stereo inputs are rectified such that the disparity
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is only in the horizontal direction, but similar to our technique, they
are not limited to this setup.

Cost volume construction. Disparity map estimation is commonly
defined as a discrete labeling problem. The estimation process usually
starts by computing a cost for each pixel and each disparity hypoth-
esis. These costs are then stored in a volume (array) of linear size
in the number of pixels times the number of disparity hypotheses.
Birchfield and Tomasi [BT99] use absolute pixel differences, between
pixels in the left and right views, to compute the pixel-disparity cost.
This approach is highly sensitive to noise ans illumination differences
in the image pixels. Therefore, most methods compute this cost us-
ing a small patch centered at each pixel. This approach incorporates
a basic assumption that the disparities in each patch are the same
(i.e. each patch is parallel to the image plane). In this case, having
a larger patch size improves the robustness of the cost. On the other
hand, larger patch size can violate the uniform disparity assumption
and can produce blurry results at depth discontinuities. For a more
robust estimation, Spangenberg et al. [SLR13] propose to use a small
neighborhood around the pixel and use Hamming distance (instead
of absolute differences) between the patches from the two views to
compute the cost. To get more semantically consistent costs, Žbon-
tar and Yann [ZL15] use Convolutional Neural Networks to define a
new cost function that leads to significant quality improvements, but
incurs a high computational cost. In our work, we use a weighted
combination of absolute differences and Hamming distance to get a
robust estimation of the cost volume.

In practice, the estimated cost volume in these methods are still
very noisy. And most often, in uniform regions, the cost values are
ambiguous (i.e. there are no unique minimum cost). Therefore, it is
necessary to refine this volume using post-processing techniques such
as aggregation or optimization.

Cost aggregation. A simple approach to removing the noise in the
cost volume is averaging and aggregating its values. This is simply
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done by sharing the cost of each assignment with neighboring pixels to
reduce noise. Rhemann et al. [RHB+11] use edge-aware distances be-
tween pixels to define contribution weights of each neighboring pixels’
cost. By assuming that image edges correspond to depth discontinu-
ities, using an edge-aware filter reduces the risk of sharing costs be-
tween regions with different disparities. Donatsch et al. [DBRZ14] use
the same technique to aggregate the cost, but they consider geodesic
distances to compute the contribution weights. For a better represen-
tation of the depth discontinuities, we use a different approach which
incorporates depth information to compute the contribution weights.

Although efficient, aggregation technique does not evaluate the
resulting costs after a single filtering step (i.e. whether or not the noise
and ambiguity have been removed). Therefore, naive aggregation is
unable to reason about complex assignment configurations. In our
method, we use an optimization technique that incorporates more
complex assignments by iteratively refining the global energy of the
disparity map until the best configuration is found.

Disparity optimization. More robust disparity map estimation
methods perform a global optimization to reduce ambiguities as well
as noise. These optimization-based methods try to find the best dis-
parity assignments by minimizing an energy function. A very common
optimization scheme is to define smoothness connections between im-
mediate neighboring pixels (4- or 8-connected neighborhoods), and
incorporate high energy to penalize the assignments where neighbor-
ing pixels are assigned to different disparity values. Earlier methods
use the Graph Cuts [BVZ01] algorithm to optimize this objective by
minimizing the smoothness energy, which is very inefficient in time
and memory. For an efficient alternative, Hirschmuller [Hir08] pro-
pose the Semi-Global Matching (SGM) optimization. This method
approximates the original energy function, of the two dimensional
disparity map, using a set of one dimensional scan-lines in different
directions. They iteratively minimize the energy function of each scan-
line using dynamic programming, which is very efficient in practice.
To further improve the efficiency of SGM, Herman and Klette [HK12]
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propose to use the resulting disparity maps of each iteration to reduce
the number of hypotheses (the search space) for the next iteration.
Spangenberg et al. [SLR13] generalized SGM by including a weight-
ing function between these directional scan-lines. This generalization
improves the quality of SGM by adopting the weights for different
structures in the scene (e.g. slanted planes).

While SGM is able to find a semi-global arrangement of disparity
labels, it is unable to capture the fine details of local structures due
to the simple energy formulation. Using image information and con-
straining further pixels, similar to aggregation-based methods, can
help to capture more complex structures. Filter-based mean-field
approximation [KK11] is a very attractive approach that enforces full-
connectivity of disparity map pixels. Yu and Gallup [YG14] use this
model, in which all disparity pixels are connected to all other pixels.
Similar to their work, we use a fully-connected model that enforces
a very powerful smoothness constraint, and we use the filter-based
mean-field approximation for a fast and efficient optimization.

Vineet et al. [VWT14] further extend the optimization to include
higher order terms that incorporate information about objects to be
used in the disparity estimation problem. In our method, we incorpo-
rate very higher order terms to connect the disparity maps of the two
views, and we jointly optimize for a pair of consistent disparity maps.

Initialization and convergence. Many methods use a multi-scale
approach to increase their robustness to ambiguous regions in the dis-
parity maps. For example, Zhang et al. [ZFM+14] use multiple scales
and aggregate the cost between different scales such that the assign-
ment is consistent in all scales. In a similar fashion, optimization-
based methods such as Vineet et al. [VWST12] run the optimization
on coarser scales to initialize finer ones. In our approach, we use the
SGM method to initialize our optimization, which further incorporates
other complex terms.

Filter-based mean-field approximation [KK11] performs efficiently
by using a parallel scheme to update each disparity variable. However,
this scheme is not guaranteed to converge to a stationary point, and
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can lead to oscillations in the disparity assignments during the itera-
tions. On the other hand, other optimization techniques that have con-
vergence guarantees, such as SGM [Hir08] and Graph cuts [BVZ01],
cannot handle full-connectivity in practice. We propose an alterna-
tive optimization scheme for filter-based mean-field approximation
that uses sequential updates instead of conventional parallel updates,
while still performing efficiently. We use this technique to analyze
and validate the convergence of the parallel scheme for our energy
function. And we show that, by using our initialization, the parallel
scheme can achieve similar or better convergence properties than the
sequential case.

Video sequences and flicker artifacts. Temporal coherence is a
crucial factor in many applications of disparity maps. An intuitive
approach for this challenge is to use several stereo frames (stereo
sequence) and attempt to ensure temporal coherence between them.
Slanted plane StereoFlow [YMU14] uses two consecutive frames to
improve results. This method computes an initial disparity map using
SGM and then jointly optimizes for planar surfaces and local segments.
This approach is tailored for applications such as autonomous vehi-
cles with an ego-motion assumption, which cannot be generalized to
other and more general scenes. Vogel et al. [VSR15] use consistency
factors between the views that are defined as a data term in their
optimization. Using a piece-wise rigid model their method includes
consistencies in the temporal dimension that incorporates neighbor-
ing views. Unlike these methods we do not enforce segmentation nor
local planarity on our disparity maps. In addition, our method has
linear complexity with respect to the number of frames, which allows
us to compute the disparity maps of the whole sequence in a single
optimization.

Disparity flicker artifacts have been previously studied [ROD+10,
MLD12]. Richardt et al. [ROD+10] assumed that the pixel’s disparity
persist in time and aggregated the costs between temporally consecu-
tive pixels. Min et al. [MLD12] filtered noisy disparity maps between
different frames. Similar to their work we use a precomputed flow
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field and enforce temporal coherence along its vectors. In addition to
end-to-end disparity error, we propose a quantitative measure to bet-
ter evaluate the flicker artifacts in disparity sequences and compare
with previous works.

2.2 Problem Formulation

Let us denote X as the unknown disparity map. Given left and right
images L and R, our goal is to estimate the corresponding disparity
maps between them. We follow the literature [KF09a] to define an
intuitive formulation of the disparity map estimation problem. We first
define the influential variables in our estimation problem as random
variables (random fields). Second, we represent the distribution of
our variables using a graphical model.

Conditional random fields. We consider a stereo image random
field (L,R) for left and right images. Similarly, we define a random
field (XL, XR) for left and right disparity maps. Consequently, we can
form their joint random field (XL, XR, L,R) indicating all possible
left and right image pairs (L andR), and their corresponding disparity
maps (XL and XR). When the left and right images are known, we
can form the conditional random field (XL, XR|L,R). Our goal in
the disparity map estimation task is to find the most likely disparity
maps (XL, XR)∗ for a given a pair of stereo images. Specifically, we
would like to maximize the probability of the conditional posteriori
by finding

(XL, XR)∗ = argmax Prob(XL, XR|L,R).

In practice, we cannot measure this probability exactly even
though, in theory, the above conditional distribution and its proba-
bility exist. One approach to approximate this probability is to use
large disparity map datasets as done in data-driven methods. In prac-
tice, the available datasets are very limited in size and application
since capturing and calibrating the left and right images and their
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corresponding ground truth disparity maps is very challenging. To
overcome this limitation, we avoid using any dataset by incorporating
common rules and observations to design a novel graphical model to
parametrize the disparity maps probability distribution.

Graphical model. We represent the probability distribution of our
joint random field using a graphical structure [KF09a]. Specifically,
we represent our disparity random field X using a graph G(V, E),
with V denoting its set of nodes and E denoting its set of edges.
The nodes of this graph represent the disparity map pixels, that is
V = {X1, X2, ..., Xn}, where Xi denotes the random variable at i-th
pixel of the disparity map and n denotes the total number of pixels. In
our graph formulation, we include an edge between any pair of pixels
in the disparity map. In other words, for any i and j, we have an
undirected edge Xi 
 Xj ∈ E . We further extend our graphical repre-
sentation to include disparity variables from both views by including
nodes from both views, i.e. V = {XL

1 , X
L
2 , ..., X

L
n , X

R
1 , X

R
2 , ..., X

R
n }.

In the graphical formulation, any subset of the nodes in which all
its nodes are connected with an edge is called a clique. Therefore in
a fully-connected graph, any subset of the nodes can be used to form
a clique. We use the notion of cliques in our graph to parametrize
the distribution of our disparity maps. We characterize our condi-
tional random field by a Gibbs distribution [KF09a] with graph G on
(XL, XR):

Prob(XL, XR|L,R) =
1

Z
exp

−∑
c∈CG

φc

(
(XL, XR)c|L,R

) ,

where Z is a normalizing constant (partition function), and c denotes
a clique from a set of all cliques CG in our graph, that contribute an
energy therm φc to this characterization.

Intuition. In the formulation above we use a notation of the cliques
in the graphs to define and parametrize our disparity map distribution.
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We use cliques in our graph to define an acceptance measure for each
local structure in the disparity map. Intuitively, by setting the energies
φ of the graph cliques, we express the likelihood of structures. We
set the clique energies to be high for unlikely structures and low
otherwise.

We use this characterization to formulate and represent our dispar-
ity map estimation in a declarative manner. In Section 2.3 we define
the clique structures of our disparity graph and design their energy
functional φ. We propose an efficient optimization technique in Sec-
tion 2.4 to maximize the conditional posteriori, and we compare to
different optimization techniques using the same graphical model.

2.3 Energy Terms

In this section we describe our energy terms that characterize the
spatio-temporal disparity estimation problem. We define variable as-
signments XL

i = xLi for the disparity values of pixels i in the disparity
field XL of the left image, and similarly xRi in XR for the right image.
In the rest of this work, we omit the left and right superscripts unless
necessary. Our joint energy function over XL and XR includes unary
(per-pixel), smoothness, and consistency terms.

2.3.1 Unary Term

We denote the cost of assigning disparity d to pixel i in the left image L
by the unary term φLu (xi = d). We compute this term using a standard
approach, which is based on edge differences and Census transform
distances similar to Yamaguchi et al. [YMU14]. Specifically,

φLu (xi = d) =
1

|N(i)|
∑

j∈N(i)

{
|SLj − SRj+d|+ λcen|H(TLj , T

R
j+d)|

}
,

where φLu (xi = d) is the unary cost of assigning disparity d to pixel i in
the left image, SL and SR denote the response to the horizontal Sobel
operator, H is the Hamming distance of the center-symmetric Census
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transforms TL and TR introduced by Spangenberg et al. [SLR13],
and λcen = 1

3 is a constant that controls the relative weight of the two
terms. The cost for pixel i is averaged over its 8-connected neighbors
j ∈ N(i). We compute the Census transform in a 7× 7 window on the
blurred image using a 3 × 3 box filter. This will increase robustness
against artifacts such as noise and aliasing. The Census transform is
a feature that represents the local arrangement of pixels in a neigh-
borhood robust to brightness changes and noise by capturing if the
brightness of a pixel is larger than the center pixel of that neighbor-
hood. Since this transformation looses some textural information,
adding the edge difference measure helps to better identify the match-
ing pixels in the other view.

2.3.2 Disparity-Dependent Smoothness Term

The goal of the smoothness term is to encourage pairs of pixels that
are close in some sense (defined more precisely below), to get sim-
ilar disparity assignments. We define the smoothness term φLs (xi =
di, xj = dj) for a pair of assignments xi = di and xj = dj in the left
image as a function of both the pixel locations i, j and the disparity
assignments di, dj (similarly for the right image). We express this
term as a sum of weights WL(P ) over all paths P that connect the
points 〈i, di〉 and 〈j, dj〉 in the joint pixel-disparity space,

φLs (xi = di, xj = dj) = −

 ∑
P∈P(i,di,j,dj)

WL(P )

 ,

where P(i, di, j, dj) is the set of all paths between 〈i, di〉 and 〈j, dj〉 in
the joint space of pixel locations and disparity hypotheses, and each
path P = {〈k, d〉} is a sequence of (4-connected) pixels k paired with
a disparity hypothesis d.

We define the weight kernel W based on three length functions of
the path, its length ls(P ) in the image, its length ld(P ) in the disparity
label space, and a length δL (discussed below) that takes into account
potential disparity discontinuities along the path. Specifically, the
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weight kernel is

WL(P ) = exp

{
−
∣∣∣∣∣∣∣∣δL(P )

σr
+
ls(P )

σs
+
ld(P )

σd

∣∣∣∣∣∣∣∣2
2

}
, (2.1)

where σr, σs, and σd control the kernel support for the three length
terms. Applying a Gaussian weight to the sum of the three distances
ensures that WL(P ) decreases when the two pixels are separated by a
large distance, and it increases when they are close. Because we sum
the negative weights WL(P ) over all paths, the smoothness energy
(cost) decreases by the weight of each path, and each short path fur-
ther reduces the energy. In contrast, Hosni et al. [HBGR09] use only
the path with the minimum distance. A single path, however, is more
sensitive to noise. Summing up the weights from all paths not only
includes the weight from the shortest path, but also increases robust-
ness to noise. Additionally, including all paths favors arrangements
where assignments are connected by many long paths in contrast to
assignments with few short paths. This choice of weight will later
allow us to efficiently compute the smoothness energy.

The key ingredient in the definition of WL(P ) is the length δL(P ),
which we design to become large when the path crosses depth dis-
continuities. Since depth discontinuities are not known a priori, ei-
ther boundaries in superpixel segmentation [VSR15, YMU14] or im-
age edges (pixel-wise differences) [ZL15, ZLL09, RHB+11, DBRZ14,
ZFM+14, MSZ+11, KK11, VWST12] are conventionally used in their
place. Many image edges, however, represent surface texture, not
depth discontinuities, hence these approaches may lead to ineffective
smoothness energies. Crucially, we consider color information from
both (left and right) views to compute the path length δL(P ) such that
it depends on the disparities along the path P . For each disparity on
the path, we compute a pixel-wise difference of the two views where
one is shifted by that disparity. At pixels where the disparity happens
to be the correct one, this will cancel image edges due to surface
textures, indicating that these edges are not disparity discontinuities.
If the disparity is wrong, image edges typically do not cancel. We
use this intuition to define a disparity discontinuity indicator for pixel



2.3. ENERGY TERMS 27

k and disparity d as min(|Lk − Rk+d|, |Lk − Lk−1|), where L and R
denote the left and right color images, and pixels k − 1 and k + d are
horizontally offset from pixel k. Taking the minimum makes sure we
do not introduce any spurious discontinuities. The path length δL(P )
is now simply the sum of these disparity discontinuity indicators along
the path,

δL(P ) =
∑
〈k,d〉∈P

min(|Lk −Rk+d|, |Lk − Lk−1|).

This distance will be small if the pixel colors along the path have
correspondences in the other image under their disparities, even if
the image itself has large color dissimilarities along that path.

We visualize our approach in Figure 2.2. We show slices of the
joint disparity-pixel space (d, i), where disparities d are along the hor-
izontal axis, and the vertical axis corresponds to one vertical column
of pixels i. The data is from a continuous, slanted surface patch that
is highly textured (ground region in Figure 2.8, top left). Figure 2.2a
shows conventional disparity discontinuity indicators given by pixel
differences |Li − Li−1|, and Figure 2.2d are our proposed indicators
min(|Li − Li−1|, |Li −Ri+d|). Figure 2.2(a,d) show the ground truth
disparities in red, and some estimated disparities consisting of fronto-
parallel segments in green. In Figures 2.2(b,c,e,f) we visualize the
smoothness energy for the red and green disparity assignments using
the conventional and our approach. That is, each point (d, i) in these
figures shows the sum

∑
j φ

L
s (xi = d, xj = ∆j) where the ∆ contain

either the ground truth (red) or estimated (green) disparities. We
also indicate the total smoothness energy

∑
i,j φ

L
s (xi = ∆i, xj = ∆j).

This shows that in the conventional approach some pixels have high
smoothness energies even with the ground truth disparity assign-
ment, and the total smoothness energy of the piecewise fronto-parallel
disparities (green, Figure 2.2(c)) is actually lower than the ground
truth (red, Figure 2.2(b)) here. With our approach, we obtain low
smoothness energies at all pixels, and the ground truth (red, Fig-
ure 2.2(e)) has lower energy than the piecewise fronto-parallel as-
signments (green, Figure 2.2(f)).
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Φs(xi) =
∑

j φ
L
s (xi, xj = redj)

(b)

|Li − Li−1|

(a)

Φs(xi) =
∑

j φ
L
s (xi, xj = redj)

(e)

min(|Li − Li−1|, |Li − Ri+d|)

(d)

Φs(xi) =
∑

j φ
L
s (xi, xj = greenj)

(c)

Φs(xi) =
∑

j φ
L
s (xi, xj = greenj)

(f)

i

∑
i Φs(xi = redi) = −0.4

∑
i Φs(xi = greeni) = −0.6

∑
i Φs(xi = greeni) = −1.8

∑
i Φs(xi = redi) = −1.9

d

Figure 2.2: Visualization of the smoothness energy in the joint pixel-
disparity space (pixels i on vertical axis, disparities d on horizontal
axis). The top row shows the conventional approach, and the bottom
row is our technique, where (a) is the conventional disparity discon-
tinuity indicator, and (d) our proposed one. The red line in the left
and middle column indicates the ground truth disparities, and the
green line in the left and right column is a piecewise fronto-parallel
disparity assignment. In the conventional approach, the piecewise
fronto-parallel disparities incorrectly have a lower smoothness energy
(−0.6 in (c)) than the ground truth (−0.4 in (b)). Our technique
correctly leads to a lower energy for the ground truth (−1.9 in (e))
compared to the fronto parallel disparities (−1.8 in (f)).
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2.3.3 Higher Order Local Consistency Term

Each disparity assignment indicates that the corresponding pixel ap-
pears with a shift (disparity) in the other image, therefore we expect
that the disparity in the other view would agree with this assignment.
We design the consistency energy to be low if the disparity assign-
ments in two corresponding pixels in the left and right image agree.
As a key idea, we compute this term over pixel neighborhoods, instead
of individual pixels, to be more robust to per-pixel errors. We first
introduce a binary consistency factor ν = [|xLj − xRj+xLj | ≤ 1], which is

one when two corresponding pixels xLj and xR
j+xLj

(according to the

disparity assignment in the left image) agree on their disparities up
to a threshold of one disparity level, and zero otherwise. We allow
for a difference of one disparity level to compensate for sub-pixel dis-
parities and self occlusions. We now define the consistency energy
as

φLc (xLi = di, x
L
j = dj) = −

 ∑
P∈P(i,di,j,dj)

WL(P )

 ν,

where we sum over all paths between joint pixel-disparity assign-
ments xLi and xLj and use the same path weight WL(P ) as for the
smoothness term. Note that although this term is defined over pairs
of disparity variables in one view, it implicitly involves a third disparity
variable from the other view via the disparity compatibility function
ν. Intuitively, given an assignment xLi , our consistency energy is low
if many assignments xLj that are close to xLi in the left image, have
consistent assignments xR

j+xLj
in the right image. Since we cannot

confirm consistency in the case of occlusions, we ignore them here
and treat them later when finalizing the disparity map.

2.3.4 Temporal Extension

A main advantage of our filter-based CRF optimization (Section 2.4)
is that we can easily extend it to the temporal domain, and simultane-
ously optimize disparity assignments over all frames of a stereo video
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sequence. By extending the smoothness and consistency terms to
the temporal dimension, we will obtain temporally coherent disparity
maps that reduce flickering artifacts. We define the smoothness and
consistency energies (φc , φs) as before, but now with weight kernels
W over paths in the joint spatio-temporal and disparity domain,

WL(P ) = exp

{
−
∣∣∣∣∣∣∣∣δL(P )

σr
+
ls(P )

σs
+
lt(P )

σt
+
ld(P )

σd

∣∣∣∣∣∣∣∣2
2

}
,

where lt(P ) is the length of the path in time, and σt determines the
kernel width along time. Our assumption here is that the disparities
persist over a short time defined by σt. As a key idea, we define the
temporal dimension by following flow vectors of a precomputed flow
field over the video sequence. Specifically we use the flow by Lang et
al. [LWA+12], and refer the reader to their paper for more details.

2.4 Energy Minimization

Here we describe our fast spatio-temporal energy minimization based
on the mean-field approximation and filter-based parallel updates.
We discuss our initialization and post processing steps, followed by a
description of our GPU implementation.

2.4.1 Mean-Field Approximation

We define the global energy function E as a sum of the unary, smooth-
ness, and consistency terms, all evaluated on both left and right im-
ages,

E(XL, XR|L,R) =
∑
i

{
φLu (xi) + φRu (xi)

}
+ λ

∑
i,j

{
φLs (xi, xj) + φRs (xi, xj)

}
+ γ

∑
i,j

{
φLc (xi, xj) + φRc (xi, xj)

}
,
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with parameters λ and γ to control the influence of the smoothness
and consistency terms relative to the unary term.

As described in Section 2.2, we can relate this energy to the prob-
ability distribution of the disparity maps, which takes the form of a
conditional random field (CRF),

Prob(XL, XR|L,R) =
1

Z(L,R)
exp(−E(XL, XR|L,R)), (2.2)

where Z(L,R) =
∑
XL,XR exp (−E(XL, XR|L,R) is a partition func-

tion that normalizes the probabilities to add to one.
We minimize the energy function by following the mean-field

approach [KF09a]. This approach approximates the distribution
Prob(XL, XR) with a much simpler distribution Q(XL, XR) in which
the variables are marginally independent, that is Q(XL, XR) =∏
iQ

L
i (XL

i )QRi (XR
i ), where QLi (XL

i ) and QRi (XR
i ) are the marginal

distributions of all variables (pixels) in the left and right images.
Specifically, the original distribution Prob is approximated with the
new distribution Q by minimizing their relative entropy (also known
as the Kullback-Leibler divergence) defined as

D(Q‖Prob) = EQ
[

ln
Q

Prob

]
= EQ

[
lnQ

]
− EQ

[
ln Prob

]
. (2.3)

For simplicity, we formulate this approximation without the left and
right index of the disparity maps and write the optimization as

Find {Q(X)}
Minimizing D(Q‖Prob)
Subject to Q(X) =

∏
iQi(Xi)∑

xi
Qi(xi) = 1 ∀i ∈ L,R

(2.4)

where we force the probabilities in Q to add to one. We can use the
dual form of the objective to get rid of the constraints by adding a
Lagrange multiplier ν. We keep only the terms that involve Qi and



32 CHAPTER 2. TEMPORALLY COHERENT DISPARITY MAPS

write the Lagrangian at variable i as

Li[Q] = EQ
[

lnQ(Xi)
]
− EQ

[
ln Prob(Xi)

]
+ ν

(∑
xi

Q(xi)− 1

)
.

(2.5)

Taking the derivative of the Lagrangian with respect to the assignment
probability Qi(Xi = xi) and setting it to zero we get [KF09a]

lnQi(Xi = xi) = EQ
[

ln Prob(Xi)|Xi = xi
]

+ ν − 1. (2.6)

Finally we take exponents of both sides and normalize,

Qi(Xi = xi) =
1

Zi
exp

{
EQ
[

ln Prob(Xi)|Xi = xi
]}
, (2.7)

where the Lagrangian parameter ν drops out due to the normalization.
The approximate distribution Q is a stationary point of this equation
at all assignments Xi = xi. We can use this equation to iteratively
update the probability of each variable assignment independently by
computing the expected value of the energy conditioned to that assign-
ment. We refer the reader to the work of Koller and Friedman [KF09a]
for a more detailed derivation of this approximation. Using the formu-
lation of our distribution in Equation 2.7 into the Equation 2.2, the
stationary equation for our disparity distribution in the left image is
derived as

QLi (d) =
1

Zi
exp

{
− φLu (xi)−∑

j

(
λE[φLs (xi, xj)|xi = d] + γE[φLc (xi, xj)|xi = d]

)}
,

(2.8)

where Zi is again the partition function that is used to normalize the
distribution over the variable xi. The summation over j accumulates
the expected values E, conditioned to xi = d, over all energy terms
that include the variable xi. The expected value for each smoothness
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term, conditioned to xi = d, is

E[φLs (xi, xj)|xi = d] =
∑
l

φLs (xi = d, xj = l)QLj (l), (2.9)

and for the consistency term it is

E[φLc (xi, xj)|xi = d] = (2.10)∑
l

l+1∑
k=l−1

φLc (xi = d, xj = l)QLj (l)QRj+l(k).

Here, the sum over k ∈ {l − 1, l, l + 1} corresponds to the compatibil-
ity function ν in Section 2.3.3. Although the consistency term φc is
defined over three independent random variables, the expected value
here is conditioned on the assignment of disparity d to pixel i, hence
the conditional expected energy only depends on the probabilities of
the two remaining variables QLj and QRj+l.

2.4.2 Filter-based Parallel Update Iteration

Algorithm 2.1 minimizes our energy by iteratively updating the mean-
field distributions by computing Equation 2.8. The first iteration of the
algorithm updates the disparity distribution of the left image (QL). In
subsequent iterations we switch between updating the disparity maps
of left and right images (line 5) to avoid oscillations between them.
The notation implies that the operations are applied to all variables i
and values d in parallel. The first two lines in the loop compute the
expected values (Equations 2.9 and 2.10) and the summation over
all pixels j in Equation 2.8. First (line 1), we compute intermediate
values Q̃i that store the contributions that each pixel will make to
the conditional expected energies of the smoothness and consistency
terms of all other pixels. Next (line 2), at each pixel we simultaneously
compute the expected values (summation over l) and accumulate the
contributions from all the other pixels (summation over j) using a
single, fast filtering operation over the intermediate values Q̃i. We
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Algorithm 2.1 Filter-based parallel update iteration to compute
the mean-field approximation. We switch between updating the
variables of the left and right image.

initialize QL, QR with SGM
loop #iterations

1. Q̃i(d)← λQLi (d) + γ
∑
k,d−1≤k≤d+1Q

L
i (d)QRi+d(k)

2. Q̂i(d)←
∑
j,l[−

∑
P∈P(i,di,j,dj)

WL(P )Q̃j(l)]

3. QLi (d)← exp
{
−φLu (xi = d)− Q̂i(d)

}
4. QLi (d)← QLi (d)/

∑
lQ

L
i (l)

5. switch L and R
end loop

provide some more details about the filter implementation below. A
single filtering step is possible since we have the same weights W
defined in φs and φc. In line 3 the disparity potential is computed by
adding the unary term, exponentiating, and normalizing to a distribu-
tion in line 4, which completes computation of Equation 2.8. Finally
the iteration ends by switching the target distribution (line 5).

A key element of our algorithm is that we compute the path
weights W efficiently using the Domain Transform Filter [GO11],
which allows us to evaluate each filtering operation (line 2 of Al-
gorithm 2.1) in constant time. We use interpolated convolution by
iteratively applying a moving sum (box filter) in the transformed do-
main. The joint image and disparity space leads to 3D filtering (sum-
ming over j and l), and our temporal extension to 4D filtering over
two spatial, the temporal, and the disparity dimensions. In the tem-
poral dimension we filter along the precomputed flow vectors similar
as Lang et al. [LWA+12]. We obtained our best results by iterating
over passes along spatio-temporal directions and filter in the disparity
domain at the end. We refer to the original publication [GO11] for
more details about the Domain Transform Filter.
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Initialization For initializing Algorithm 2.1 we leverage semi-global
matching (SGM) [Hir08] with penalties P1 = 4, P2 = 64 in four direc-
tions. Instead of the MAP results of SGM, we rather use the obtained
(min-marginal) energies to initialize our distribution Qi(d). For a bet-
ter initialization, we run the first two iterations of the optimization
using a large kernel support (σs = 7, σr = 100, σd = 2).

2.4.3 Final Disparity Map

We compute final disparities by finding the one with the minimum
energy − log(Qi(d)) from Algorithm 2.1. For accuracy below the level
of the disparity discretization we fit a quadratic to the three disparity
costs centered at the minimum. We remove spikes by applying a
5× 5 median filter. We fill occluded regions by checking for left-right
consistency to find pixels with disparity differences higher than a
threshold, and replacing disparities marked as occluded with the last
non-occluded disparity in the left direction for the left view (similarly
for the right view).

2.4.4 Implementation

The CPU version of the proposed pipeline supports 256 or more dis-
parity hypotheses. We also implemented a GPU version for the whole
pipeline that takes advantage of parallelism in the optimization at the
pixel level. We ran our experiments on an Nvidia Titan Black graphics
card with 6GB memory on board. We allocate memory for a batch of
left and right images, including the disparity hypothesis layers requir-
ing 2×Width×Height×Frames×Disparities floating point values.
Because of the limited GPU memory we are currently restricted to
batches of 14 frames at a resolution of 960 × 540 and 32 disparity
layers. Note that we evaluate the unary term at a finer discretization
of disparity steps, typically at one pixel steps. We then store the min-
imum for each of the 32 layers. At the end of the optimization the
disparity is computed and finalized as described above, and by fitting
the quadratic to the 32 layers we achieve finer levels of disparity. After
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the disparities of a batch of frames are computed, we move forward
by seven frames and compute the disparities for the next batch. We
finally interpolate the disparity values of the overlapping frames in
consecutive batches for smoother transitions.

2.5 Convergence Analysis

Our proposed Algorithm 2.1 in Section 2.3 and other filter-based
mean-field approximation methods [KK11, VWT14] update the ran-
dom variables in the mean-field in parallel. While parallel updates
lead to very fast implementations, they are not guaranteed to con-
verge at all. The goal of this section is to answer two questions: First,
how good are results obtained using parallel updates of the mean-field
compared to sequential updates, which are guaranteed to converge to
a fixed point? Second, how well can the mean-field approximate our
energy functional compared to methods that do not make the same
assumption? To answer the first question, we develop an efficient
method that applies mean-field inference with guaranteed conver-
gence using sequential updates, and we compare its results with the
parallel implementation’s. Second, we compare our approach with
the minimized energy of Graph Cuts [BVZ01], which does not rely on
the mean-field approximation.

To explain the sequential algorithm more clearly, we assume a sim-
pler labeling problem on a single image with unary and smoothness
energies, but without the consistency term between left and right im-
ages. The update equation of this problem (compare to Equation 2.8)
simplifies to

Qi(xi = d) = (2.11)

1

Zi
exp

{
− φu(xi = d)−

∑
j

λE[φs(xi, xj)|xi = d]

}
.

Keep in mind, however, that this is only for explanatory purposes.
We also implemented the sequential approach for the same energy
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Figure 2.3: Sequential updates using a naive approach, proceeding
from bottom right to top left. At each pixel i, we collect the contribu-
tions of all pixels that have not been updated yet (red) and already
updated pixels (green) to implement the summation in Equation 2.11.
Because we have a smoothness term between all pairs of pixels, this
requires O(N2).

and update equations as in Section 2.3 for our evaluation. The main
challenge is now to compute the summation over all variables j in
Equation 2.11 efficiently, but sequentially over the pixels i. This is
what we focus on next.

2.5.1 Sequential Updates for Mean-field Approxima-
tion

To optimize the mean-field approximation, each variable update needs
to reduce the relative entropy (KL-Divergence) between the estimated
and the true distribution [KF09a]. In the parallel scheme, while each
variable tries to reduce its dependent energy in each update, all other
variables change their distribution too, which invalidates the update
in each variable. This could lead to oscillations in the distribution as
well as being more prone to local minima in the energy functional.
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Kolmogorov [Kol06] addressed a similar problem in max-product
message passing optimization. Similar to this work, we develop a se-
quential iteration that updates a single variable in each step and there-
fore does not suffer from the same problems as the parallel scheme.
We visualize the naive implementation of the summation over all pix-
els j in Equation 2.11 (similar as the one by Kolmogorov [Kol06]) in
Figure 2.3. The black arrows indicate the sequence of variable up-
dates, proceeding from bottom right to top left. Green variables are
already updated, red ones have not been processed yet. Each update
computes the expected energy of the current pixel (that is, variable)
by summing up the contributions of all other variables. This is indi-
cated by green and red lines in the figure, distinguishing contributions
from previously updated variables (green) and not-yet-updated vari-
ables (red). Because we have a smoothness term between each pair
of pixels, each variable update has linear complexity in the number
of pixels. Updating all variables once has quadratic complexity, which
makes this scheme computationally unattractive.

Leveraging constant time filtering. To make the sequential update
practical, our key contribution is to leverage the constant time filter-
ing technique by Gastal and Oliveira [GO15]. This approach allows
us to accumulate the contributions of all pixels to the expected en-
ergy of each individual pixel (the summation over j for each i in
Equation 2.11, illustrated by the red and green lines in Figure 2.3) in
constant instead of linear time. Note that we compute the summation
over all labels (Equation 2.9), which is required to complete the com-
putation of the expected values, in an inner loop of our algorithm as
explained later. We proceed using a two pass approach as shown in
Figure 2.4, which involves first a collection and then an update pass:

• The collection pass (Figure 2.4(a)) traverses the pixels in the
inverse order of the update sequence (compare to Figure 2.3).
At each pixel, it collects the contributions from all variables that
come later in the update sequence and stores them in a tempo-
rary buffer, shown in red. The key point is that we compute each
step (each new red pixel) in this pass in constant time using the
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(a) Collection pass (b) Update pass

Figure 2.4: Sequential update passes.

technique by Gastal and Oliveira [GO15], instead of linear time
as illustrated in Figure 2.4(a).

• The update pass (Figure 2.4(b)) traverses the pixels in the up-
date sequence (as in Figure 2.3). In each step, it accumulates
the contributions to the current pixel from all previous pixels
that have already been updated (green), again in constant time.
In addition, we add the contribution from all pixels that have
not been updated to the current pixel (that is, the value of the
corresponding red pixel from Figure 2.4(a)) to complete the
update of the current pixel.

We first give a brief explanation of the constant time filtering pro-
cess for accumulating the contributions to the expected energy, and
then show how the filter is employed in our two pass algorithm. Gastal
and Oliveira [GO15] showed that processing signals with infinite im-
pulse response (IIR) filters can be performed using a summation of
first-order recursive operations. In other words, a K-th order IIR filter
that needs K feedback operations per pixel, can be replaced with a
summation of K first-order filters that need one feedback operation
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per pixel. For a two dimensional signal f , two orthogonal 1D filters
G in the horizontal direction and H in the vertical direction are used
such that H ∗G ∗ f corresponds to a 2D filtering of signal f .

First, the horizontal filtered result gf = G ∗ f at pixel (y, x) is
defined using a set of K first-order recursive operations,

g+
f,s(y, x, k) = akf(y, x) + bkg

+
f,s(y, x− s, k), (2.12)

g−f,s(y, x, k) = akbkf(y, x+ s) + bkg
−
f,s(y, x+ s, k), (2.13)

where k = 1 . . .K, g+
f,s(y, x, k) and g−f,s(y, x, k) are the causal and anti-

causal responses of the k-th first-order filter of signal f with complex
coefficients ak and bk at pixel (y, x). Then,

gf (y, x) =

K∑
k=1

REAL
[
g+
f,s(y, x, k) + g−f,s(y, x, k)

]
(2.14)

is the response of the desired K-th order filter of signal f , which is
computed by taking the real part of the summation of causal and
anti-causal filter responses. The parameter s ∈ {1,−1} indicates the
direction of first-order filters, where s = 1 corresponds to a recursive
operation from left-to-right in g+ and right-to-left for g−. Note that
the choice of s does not influence the final filtered result g. Similar
to the horizontal filtering we define hf , h+

f,r, h
−
f,r for vertical filtering,

where the direction r ∈ {1,−1} manipulates the vertical index y. The
2D filtering of the signal f is then defined as

H ∗G ∗ f = hg(y, x) (2.15)

=

K∑
k=1

REAL
[
h+
g,r(y, x, k) + h−g,r(y, x, k)

]
,

which is the convolution of the two vertical and horizontal filters h
and g. The reader is referred to Gastal and Oliveira [GO15] for more
details about the filtering operations.

Next we show that the 2D filter formulation in Equation 2.15
can be computed recursively using the two-pass scheme as illustrated
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in Figure 2.4(a, b). By expanding Equation 2.12 and 2.13, one can
immediately see the relation between the causal and anti-causal filters,
that is

g+
f,s(y, x, k) = akf(y, x) + g−f,−s(y, x, k). (2.16)

Using Equation 2.16 once for h and once for g in Equation 2.15, it is
easily verified that the convolution result can be expressed by

hg(y, x) = (2.17)

C−f,r,s(y, x) +

(
K∑
k=1

REAL[ak]

)2

f(y, x) + C−f,−r,−s(y, x),

where

C−f,r,s(y, x) = (2.18)
K∑
k=1

REAL

[
h−g,r(y, x, k) + ak

K∑
k=1

REAL
[
g−f,s(y, x, k)

]]
.

The crucial insight from Equations 2.17 and 2.18 is that the 2D filtered
output signal at pixel (y, x) is expressed as a sum of two contributions,
C−f,r,s(y, x) and C−f,−r,−s(y, x), which represent the contributions from
all pixels before (y, x) and all pixels after (y, x) in the update sequence.
We compute C−f,−r,−s(y, x) in the collection pass, and C−f,r,s(y, x) in
the update pass (Figure 2.4(a) and (b)). Note that the smoothness
term between a pixel and itself is zero, hence the expected smoothness
energy for a variable is a sum over all other variables. Therefore the
middle term in Equation 2.17 is zero.

All values in Equation 2.17 can be computed with O(K) opera-
tions, therefore the complexity to compute the expected energy is
constant in the number of pixels and linear in the order K of the
kernel function. Using this scheme, a Gaussian filter can be approx-
imated perfectly (MSE < 2.5 × 10−8) by using two recursive filters,
that is K = 2.
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Efficient sequential update algorithm. Algorithm 2.2 shows the
proposed sequential iteration of the mean-field approximation in a 2D
fully connected grid with distribution Q using the update sequence
from bottom right to top left (Figure 2.4(b)). First, the collection
pass operates in reverse order (top left to bottom right) to compute
and store the contributions to the expected energy from pixels in the
sequence that have not been updated (Figure 2.4(a)).

In line 1, we compute the contribution to the expected energy from
all previous variables on the current scanline using Equation 2.13,
illustrated in yellow in Figure 2.5(a). In line 2 we compute Equa-
tion 2.18, also illustrated in Figure 2.5(a). We sum all contributions
from previous variables in the horizontal (g−, shown in yellow) and
vertical directions (h−, blue). This completes the collection step for
the current pixel, and we store the result in a temporary buffer Q̂.
Next, lines 3–5 are needed to prepare for the next scanline. First we
compute g+ using Equation 2.12 in line 3, which we need to complete
the horizontal filter g in line 4 (Equation 2.14). In line 5, we accumu-
late the horizontal contributions g in the vertical direction (h−) to be
used in the next scanline. This is visualized in Figure 2.5(b), where
we apply the vertical anti-causal filter h− to the horizontally filtered
contributions g.

Second, in the update pass we now proceed in the update sequence
order as in Figure 2.4(b), with analogous computations to the previ-
ous pass. Here we update the buffer Q̂ by adding the contributions to
the expected energies from the green (previously updated) half of the
variables (line 7).

Note that in our algorithm we perform the update steps described
so far for all hypotheses separately, but we omitted this in the notation
for simplicity. To obtain the final expected energy of a pixel we now
need to perform the summation over all hypotheses (Equation 2.9) in
an inner loop (line 8). We also take into account the unary term here.
The compatibility function of the hypotheses w(d, l) = exp(−|d −
l|2/σ2

d) corresponds to the third factor in Equation 2.1. We then use
the expected energy to update the distribution (line 9).

The proposed sequential update does not change the linear com-
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Algorithm 2.2 The proposed sequential update for mean-field ap-
proximation. We explain each step in more details in Section 2.5.1.
s← −1 // Collection pass Figure 2.4(a)
For y : 1 to Height

For x ∈ [1,Width] ordered by s // Process current scanline,
Figure 2.5(a)

1. ∀k, compute g−Q,s(y, x, k) // Equation 2.13
2. Q̂y,x ← C−Q,−1,s(y, x) // Equation 2.18

s← −s
For x ∈ [1,Width] ordered by s // Prepare for next scanline,

Figure 2.5(b)
3. ∀k, compute g+

Q,s(y, x, k) // Equation 2.12
4. compute gQ(y, x) // Equation 2.14
5. ∀k, compute h−g,−1(y + 1, x, k) // Figure 2.5(b)

s← 1 // Update pass Figure 2.4(b)
For y : Height to 1

For x ∈ [1,Width] ordered by s
6. ∀k, compute g−Q,s(y, x, k) // Equation 2.13
7. Q̂y,x ← Q̂y,x + C−Q,1,s(y, x) // Equation 2.17, 2.18

8. Qy,x(d)← exp
{
−φu(xy,x = d)−

∑
l w(d, l)Q̂y,x(l)

}
// Up-

date
9. Qy,x(d)← Qy,x(d)/

∑
lQy,x(l) // Normalize to distribution

s← −s
For x ∈ [1,Width] ordered by s

10. ∀k, compute g+
Q,s(y, x, k) // Equation 2.12

11. compute gQ(y, x) // Equation 2.14
12. ∀k, compute h−g,1(y − 1, x, k) // Figure 2.5(b)
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+

(y, x )h−g,−1

g−Q,s(y, x )

(y, x )h−g,−1

g−Q,s(y, x )g+Q,s(y, x ) +

(a) Constructing Q̂y,x (b) Computing h−g,−1(y + 1, x)
(lines 1 and 2 in Algorithm 2.2) (lines 3-5 in Algorithm 2.2)

Figure 2.5: Visualization of the sequential update operations.

plexity of the algorithm in the number of pixels, however, it includes
additional complex exponentials and multiplications for the IIR filter-
ing (O(NMK) for N pixels, M hypothesis and K-th order smooth-
ness kernel). Although the sequential iteration is guaranteed to con-
verge and minimize the KL-divergence, its result is biased with respect
to the chosen update sequence due to the nature of the mean-field
approximation (i.e. the result depends on the order in which variables
are updated). To reduce this bias, in each iteration, we estimate the
distribution over four sequences (top-to-bottom, bottom-to-up, left-to-
right and right-to-left) and update with the mixture of these distribu-
tions. Methods such as Jaakkola et al. [JJ98] use the KL-Divergence
to optimally mix mean-field distributions, however, we found that
simply averaging them is enough in our case.

2.5.2 Convergence Results

We set up a toy experiment with synthetic data to compare the re-
sults of the parallel and sequential mean-field iteration. To have a
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Method Smoothness Complexity Convergence
measure (per iteration) guarantee

Graph cut direct quadratic yes
Naive MF direct quadratic yes
Parallel MF w/o init. direct/geodesic linear no
Proposed sequential MF geodesic linear yes

Table 2.1: Properties of different optimization methods for a fully-
connected graph. We compare the distance metric that is supported in
each method for the smoothness term between each pair of variables.
Additionally we compare the convergence guarantees and the running
time complexity of one iteration in the number of random variables
and hypothesis.

baseline for our comparison we also computed energies from Graph
Cuts [BVZ01] with alpha-beta swaps. Further, in our experiment we
include the parallel update algorithm initialized with our SGM ap-
proach, as described in Section 2.4.2, to check the effect of our ini-
tialization. The other methods in this comparison do not include this
initialization step. In Table 2.1 we compare these methods in terms of
smoothness measure, their time complexity and convergence guaran-
tees. This comparison shows that the proposed sequential update is
an attractive method that can perform efficiently while guaranteeing
convergence.

To see the behavior of the methods in practice, we perform
additional empirical comparison between them. Similar to Kol-
mogorov [Kol06], we compare the results from 50 randomly gener-
ated instances of unary data. Variables were distributed on a 39× 29
grid with 16 hypotheses. The energy was defined over a fully con-
nected graph with a smoothness term with Gaussian weights (σ = 3)
between them. We used a single CPU core (3.5 Hz) for all methods.

Figure 2.6 shows the average energy (left) and KL-divergence
(right) over the 50 random data instances for parallel, sequential,
and SGM-initialized-parallel mean-field approximation implementa-
tions, in addition to Graph Cuts, as a function of computation time.
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Figure 2.6: Convergence comparison between parallel, sequential,
and SGM-initialized parallel mean-field updates. We also include
Graph Cuts minimization of our energy, which does not rely on the
mean-field approximation.

The minimized energy indicates that with Gaussian weights on a fully
connected graph, the mean-field approximation performs well com-
pared to Graph Cuts. Both sequential and parallel mean-field approxi-
mations have linear time complexity in the number of variables and
hypotheses, hence they converge faster in contrast to Graph Cuts.

Without initialization, we observe that parallel updates (blue) con-
verge to a higher energy and KL-divergence than the sequential ap-
proach (green). This confirms that sequential updates are more ro-
bust to local minima in the energy functional compared to the parallel
approach. Initializing the distribution before parallel updates (red)
using SGM (Section 2.4.2) leads to convergence to a lower energy
and KL-Divergence, closing the gap to the sequential approach. This
is because SGM (as the first iteration of Tree-Reweighted Message
Passing [DHAH14]) can find the global establishment of the variables
to some extent. After the initialization, the parallel updates can re-
fine the local configuration of the variables more independently. Note
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that at the beginning, the initialization increases the energy and KL-
Divergences sharply, because it tries to minimize a much simpler en-
ergy functional that does not necessarily have the same solution as
our desired energy.

It is interesting to see that SGM-initialized parallel updates
perform better than the sequential approach in terms of the KL-
Divergence (Figure 2.6(right)). This could be explained by the fact
that, in contrast to the sequential approach, parallel updates do not
suffer from directional bias. In practice, parallel updates can be imple-
mented much more efficiently, for example using GPU devices, since
operations can be done for each pixel separately. Therefore they are
more attractive in practice. In the absence of a good initialization,
however, the sequential update can be expected to obtain better re-
sults.

Finally, we compare sequential and parallel updates by computing
end-to-end errors of the disparity maps from a subset of nine stereo im-
ages in the KITTI training dataset. In this comparison we used the full
pipeline proposed in Section 2.3 using a single core CPU implementa-
tion of the IIR filter. We also include results from an SGM-initialized
version of the sequential method to see if initialization has a similar
influence as in the parallel case. Figure 2.7 shows the percentage of
pixels that have disparities differing by more than three pixels from
their ground truth. These results agree with our previous experiments
on energy and KL-Divergence. Without initialization, sequential up-
dates lead to better results than parallel ones. The SGM initialization
improves both methods, and it closes the gap between them. The
sequential update is about four times slower, however, since the dis-
tribution is computed with a mixture of four update sequences as
described in the previous section.

2.6 Experiments and Results

As seen above, initialized parallel updates lead to best results in prac-
tice. Hence, in this section we are reporting results and evaluations
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Figure 2.7: Comparing end-to-end results between sequential and
parallel mean-field updates for a subset of KITTI stereo images.

of this technique as described in Section 2.3 in more detail.

2.6.1 KITTI Stereo Evaluation

We first tested our CPU implementation without the temporal exten-
sion on the entire KITTI [GLU12] dataset. We fixed parameters σs = 4,
σr = 6, σd = 4, λ = 109, γ = 50λ, which we found by exhaustive
search, and observed convergence after four iterations. Figure 2.8 il-
lustrates our qualitative results from two scenes of the KITTI training
dataset, where the first row shows the left input image, the middle
row our final disparity map, and the last row the errors clamped to 5.
In Table 2.2 we show the performance of each step of the proposed
method in the KITTI training dataset. SGM initialization improves the
quality about 30%. The proposed consistency term does not increase
the computation time and further decrease the error by 10%. Table 2.3
summarizes the quantitative performance of our method on the KITTI
test dataset. Our method obtains an average error of 3.32% for error
threshold 3 and we rank number 8 on the list (in the time of submis-
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Figure 2.8: Example results from the KITTI dataset. Top to bottom:
left image, disparity map, and clamped disparity errors.

Included terms % > 3px Time
φu 22.30 16 s
φu, φs 6.88 25 s
ESGM 4.52 35 s
(init.) φu, φs 4.02 60 s
(init.) φu, φs, φc 3.67 60 s

Table 2.2: Performance gain in each step of the proposed method.

sion). Unlike other state of the art methods, the proposed method
does not have simplifying assumptions about the scene geometry such
as piece-wise planarity and does not assume prior knowledge on the
data. Our CPU implementation compares to the rest in simplicity and
scalability, and still obtains state of the art results.

2.6.2 Stereo Sequences

To measure the temporal coherence we compared the flicker index
(IESNA standard [DHMS00]) of the final disparity maps. This in-
dex is computed in a temporal window of five frames as the ratio
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Method % >3px % >4px % >5px Time
Displets [GG15] 2.47 1.94 1.67 265 s
MC-CNN [ZL15] 2.61 2.04 1.75 100 s
PRSM [VSR15] * 2.78 2.15 1.74 300 s
SPS-StFl [YMU14] * 2.83 2.24 1.90 35 s
VC-SF [VRS14] * 3.05 2.35 1.92 300 s
OSF [MG15] * 3.28 2.59 2.16 50 min
CoR [CXGZ15] 3.30 2.59 2.16 6 s
Ours 3.32 2.45 1.96 60 s
SPS-St [YMU14] 3.39 2.72 2.33 2 s
PCBP-SS [YMU13] 3.40 2.62 2.18 5 min

Prior knowledge Planarity *: Flow

Table 2.3: The top 10 methods in KITTI benchmark by the time of
submission. For an update list of methods visit evaluation webpage
(http://www.cvlibs.net/datasets/kitti)

of the time-averaged disparities and the disparities above that aver-
age, which indicates how much disparities deviate from their average
value in a temporal window (Figure 2.9). In Figure 2.1 we compare
the average flicker index of our GPU implementation with Richardt et
al. [ROD+10] and Vogel et al. [VSR15]. The plot on the right shows
that we can significantly reduce the flicker index by enlarging the
temporal smoothness kernel σt. In Table 2.4 we report the average
computation times and flicker index over five video sequences with
resolutions from 417× 360 to 960× 540. Our GPU implementation re-
quires less than three seconds per frame, and with σt = 5 it produces
significantly less temporal artifacts. Video results are available online
for visual comparison.1

1http://www.cgg.unibe.ch/publications/temporally-consistent-disparity-maps

http://www.cvlibs.net/datasets/kitti
http://www.cgg.unibe.ch/publications/temporally-consistent-disparity-maps
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Figure 2.9: Visualization of the flicker index for tow disparity se-
quences. We compute the flicker index by taking the ratio of between
the time-averaged disparities and the disparities above this average.
This index is high in case of rapid changes of disparities in a time
window (left), and is low for smooth transition of disparities (right).

2.7 Discussion

We have presented a robust method to compute disparity maps of
stereo sequences in a single optimization. The optimization is solved
efficiently using 4D filtering in pixel-disparity space. The proposed
method ranks amongst the state of the art in challenging tests (KITTI)
and produces less flicker artifacts in stereo videos.

We have developed a new and efficient filter-based optimization

Method Time (sec) Flicker
SGM 1.89 39.48
SPSS-St [YMU14] 1.62 47.95
PRSM [VSR15] 130.24 45.98
TDCBG [ROD+10] 0.06 35.21
Ours 2.57 25.44

Table 2.4: Comparison of flicker index and computation time.
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algorithm that performs sequential variable update in the mean-field
approximation. This algorithm guarantees convergence along with a
decrease of the KL-Divergence in each iteration that is not available in
previous filter-based mean-field approximation methods with parallel
variable updates. In addition, our experiments showed that the new
algorithm can perform well in comparison to Graph Cuts, a very well
established optimization method. We showed that with an intuitive
initialization, the parallel scheme can perform as well as the sequen-
tial method. However, the right initialization might not be available
all the time, in which case, the proposed sequential algorithm can be
used instead.



Chapter 3

Natural Priors for Image
Restoration

Image restoration is one of the main topics in the field of computer vi-
sion and graphics. Almost all digital image capturing systems require
restoration and refinement steps to produce meaningful and pleasant
images. Image demosiacing, denoising, super-resolution are the pri-
mary applications of the restoration techniques used in these systems.
More advanced techniques such as image deblurring and inpainting
are generalizations of these primary applications.

Image restoration tasks are generally ill-posed problems, whose
solution requires effective image priors (prior knowledge). These pri-
ors plays the main role on regularizing under-determined restoration
problems. Therefore the prior is the core of each restoration tech-
nique and, one way or another, all methods that implement an image
restoration technique assume some prior about the natural image.

Deep learning has been successful recently at advancing the state
of the art in various low-level image restoration problems including
image super-resolution, demosaicing, and denoising. The common
approach to solve these problems is to train a network end-to-end
for a specific task, that is, different networks need to be trained for

53
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each noise level in denoising, or each magnification factor in super-
resolution. This makes it hard to apply these techniques to related
problems such as non-blind deconvolution, where training a network
for each blur kernel would be impractical. The main reason for this
limitation is that in neural networks the prior is manifested in the
restoration operations and steps (i.e. the routine code and algorithm).
Therefore, using a single pass of a trained neural network is not effec-
tive to remove other degradations. An alternative strategy to approach
image restoration problems is to design or learn priors separately from
the operations and steps, that can successfully constrain these under-
determined problems

We propose a generic formulation that benefits from a learning
stage for prior construction. After this, the proposed priors can be
used, off the shelf, for many image restoration tasks. In summary,
the contribution of this chapter is to propose a generic class of priors
based on denoising autoencoders (DAEs) that can be used for various
restoration tasks. The rest of this chapter is organized as follows:
In Section 3.2 we describe the standard and commonly used image
degradation model. We discuss the related work in Section 3.1. At the
end of this chapter, in Section 3.3, we describe our prior derivation.

3.1 Problem Formulation

In this section we describe the standard image degradation
model [JZSK09], and explain different restoration strategies. We
model degradation including blur, noise, and downsampling as

y = D(k ∗ ξ) + n, n ∼ N (0, σ2
n), (3.1)

where ξ is the unknown image, k is the blur kernel, D is a down-
sampling operator using point sampling, n is zero-mean Gaussian
noise with variance σ2

n, and y is the observed degraded image (Fig-
ure 3.1). Like many other models, this degradation forms an a poste-
riori probability distribution p(x|y), which indicates the probability of
a solution x, given the observed, degraded image y.
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Degraded
image y

Sharp image
ξ

Blur
kernel k

Gaussian
noise n

= ∗ +

Figure 3.1: Our framework is built to restore degraded image y that
is modeled as an unknown image ξ, blurred by convolution kernel k
and corrupted with additive Gaussian noise n with variance σ2

n.

In light of the ambiguity in image restoration, there are two major
estimation strategies that are used for this problem. Minimum mean
squared error (MMSE) estimators address this ambiguity by provid-
ing the estimate that is the closest to all possible solutions, weighted
by their probabilities, that is

xMMSE = argmax
x

∫
x̄

‖x− x̄‖2p(x̄|y)dx̄. (3.2)

The intuition behind this objective is to incorporate each image x̄ as a
candidate solution of the degradation. The optimal estimator of this
equation is the average of these candidates weighted by the posterior
probability of the degradation model p(x̄|y). An issue regarding these
estimators is that the final estimation is, most often, not a natural
image due to the averaging.

An alternative strategy is to use a Maximum a Posteriori (MAP)
estimator in the restoration. This estimator intuitively returns the
most probable solution of the posteriori distribution, that is

xMAP = argmax
x

p(x|y) = argmax
x

p(y|x)p(x), (3.3)

where p(y|x) includes the data dependency to observed image y and
p(x) encodes the prior knowledge about the distribution of natural
images (independent of the degradation model). The MAP estimator
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is often defined in the logarithmic domain as a minimization problem

xMAP = argmin
x
− log p(y|x)p(x) = argmin

x
− log p(y|x)− log p(x),

(3.4)

that is often simpler and more practical to optimize. Unlike the MMSE,
the solution of MAP is guaranteed to be a probable natural image.

The choice of an estimator highly depends on its application (e.g.
entertainment, medical science), and sometimes it is more practical to
define a new estimator to increase performance and robustness. For
example in neural networks, the absolute error is often used in place
of the squared distance of the MMSE estimators to produce sharper
results. Another example is the use of the relaxation techniques in
the MAP estimators that increase the robustness of the optimization
with respect to the bad local minima. Most methods, irrespective of
the type of the estimator, focus on providing a good approximation
for prior p(x), while assuming that the data dependency is known.
Others focus on problems that the degradation model is unknown
and try to approximate its parameters (e.g. blur kernel and noise
variance), while restoring the sharp image. In the next section, we
describe these methods and discuss their relevance and differences to
our approach.

3.2 Related Work

Image restoration, like many other inference techniques, can be cat-
egorized into two classes of algorithms. Procedural methods work
in an end-to-end fashion by incorporating the knowledge (prior) in-
side their routine code. These approaches are usually implemented
with neural networks, using training examples to minimize the MMSE
objective. One limitation of these methods is that they cannot in-
corporate their knowledge outside of the scope of their application.
Alternatively, declarative methods separate their reasoning from their
prior knowledge. In these techniques, the algorithm makes queries
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to a knowledge bank (prior) about the state and quality of their esti-
mation. These methods usually estimate the MAP solution and can
be adopted more easily to other applications in the same domain (im-
age restoration). In these methods, the knowledge is required to be
stored in a suitable format to be accessed by the algorithm. This leads
to additional processing overhead for making queries to the prior at
every step. In the remaining of this section, we discuss relevant work
in these two classes and explain their techniques to attain and use
their prior.

3.2.1 Procedural and End-to-End

Deep learning has been very successful recently at advancing the
state of the art in various low-level image restoration problems in-
cluding image super-resolution, deblurring, and denoising. Solving
image restoration problems using neural networks seems attractive
because they allow for straightforward end-to-end learning. This
has led to remarkable success for example for single image super-
resolution [DLHT14, GZX+15, DLHT16, LWW+16, KKLML16] and
denoising [BSH12, MSY16]. Common approaches to solve these prob-
lems train a network end-to-end for a specific task, that is, different
networks need to be trained for each noise level in denoising, or each
magnification factor in super-resolution. A disadvantage of the end-
to-end learning is that, in principle, it requires training a different
network for each restoration task (e.g., each different noise level or
magnification factor). This makes it hard to apply these techniques
to related problems such as non-blind deconvolution, where training
a network for each possible blur kernel would be impractical. While
a single network can be effective for denoising different noise lev-
els [MSY16], and similarly a single network can perform well for
different super-resolution factors [KKLML16], it seems unlikely that
in non-blind deblurring, the same network would work well for arbi-
trary blur kernels. Additionally, experiments by Zhang et al. [ZZC+16]
show that training a network for multiple tasks reduces performance
compared to training each task on a separate network. Previous re-
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search addressing non-blind deconvolution using deep networks in-
cludes the work by Schuler et al. [SCBHS13] and more recently Xu
et al. [XRLJ14], but they require end-to-end training for each blur
kernel.

In the area of neural networks, some of the focus has been on
the architectural improvements. Kim et al. [KKLML16] employs the
common residual learning scheme by adding the input image of the
network to its final output layer. This scheme allows the use of deeper
networks by providing speed and stability during training. Tai et
al. [TYLX17] propose a deeper networks architecture that effectively
uses less or equal number of parameters than conventional methods.
They use dense skip connections in a form of long-term memory that
are adaptively weighted using short-term memory blocks. Apart from
the efficiency and performance, network architecture plays an im-
plicit role on the regularization effect. Experiments by Ulyanov et
al. [UVL17] show that, without the need for training, a well designed
network can be used effectively to regularize various restoration tasks.
When designing a network, one implicitly make an assumption that
the underlying image distribution can be expressed by the current
architecture. Therefore, any image structure that is not representable
by the current architecture, will be regularized out during the process.

Another challenge in neural networks is to define a suitable loss
function to be used during training. Conventionally, the Euclidean
norm is used to define the distance between the network’s output
and the true solution. Johnson et al. [JAFF16] use the so-called per-
ceptual loss for image super-resolution. This loss incorporates the
Euclidean norm in the feature space of the image rather than the pix-
els directly, and usually leads to a sharper solution. Another common
approach is the use of adversarial loss [GPAM+14] that enforces the
solution of the network to be a sample from the image distribution.
This approach, when trained well, usually produce very sharp results
compared to other techniques. For a more stable training and better
results, Ledig et al. [LTH+16] propose a combination of losses that
includes pixel-wise Euclidean norm, perceptual loss, and the adver-
sarial loss. Although these methods produce visually more appealing
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results, they are still limited in their application similar to other neural
network approaches.

Apart from neural networks, Yang et al. [YWHM10] proposes a
dictionary based representation of image patches for image super-
resolution. Their method consists of learning two dictionaries for low-
and high-resolution image patches and a mapping between them to
compute the high-resolution results. Schmidt et al. [SJN+16a] use a
cascade of regression trees with applications in image denoising and
deblurring. These methods also requires an end-to-end training with
corresponding pairs of degraded and sharp images, which limits their
prior to be used generally for other restoration tasks.

3.2.2 Declarative and Generic

As mentioned before, a key idea of declarative models is to separate
the knowledge from the algorithm. For image restoration problems,
this knowledge is usually referred to by the natural image prior or the
prior for short. In the last decades, several natural image priors have
been proposed. Earlier methods employ hand-crafted priors based on
low-level image statistics, by making assumptions about the underly-
ing image structure (e.g. edge sparsity). Although simplistic, these
methods are fast and they can achieve good quality results in prac-
tice. On the other hand, data-dependent priors learn a representation
of the natural image distribution, and usually achieve better perfor-
mance in terms of quality. Most of these methods make assumptions
about the image distribution (e.g. Gaussian mixture models) to be
able to efficiently encode and employ their prior.

Hand-crafted priors. These priors are very attractive due to their
simplicity and efficiency, and we give a brief description on some of
the successful and recent hand-crafted priors. The main idea in these
priors comes from a common observation that the natural images
have sparse gradients (edges). Using this observation, these priors
try to measure the likelihood of an image by counting the number of
its edges. The Total Variation (TV) regularizing method of Rudin et
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al. [ROF92] is a very popular example of such hand-crafted priors. In
this method, the prior is simply the sum of absolute gradients in the
image, which corresponds to the L1-norm over the image gradients.
Using the larger class of Hyper-Laplacian regularizers, Krishnan and
Fergus [KF09b] propose an optimization scheme that incorporates
L 1

2
- and L 2

3
-norms for image gradients. Perrone and Favaro [PF16]

extend the TV prior by using an even sparser representation of image
gradients. They use the image gradients norm in the logarithmic
domain and they show that, in the limit, their approach approximates
the L0-norm. In contrast to L1, L0-norm does not penalize edge
magnitudes, but only penalizes the number of non-zero edges.

Our work has an interesting connection to the work of Romano et
al. [REM16], where they designed a prior model that is implemented
by a denoiser function. Interestingly, the gradient of their regular-
ization term boils down to the residual of the denoiser, that is, the
difference between its input and output, which is the same as in our
approach. However, their framework does not establish the connec-
tion between the prior and the natural image probability distribution,
as in data-dependent approaches.

Data-dependent priors. Earlier methods for learning priors focused
on low level image statistics such as gradients. Tappen et al. [TRF03]
use Guassians to model the distribution of directional gradients in
images, and image samples to fit the model parameters. Portilla et
al. [PSWS03] took a similar approach to model the distribution of
wavelet coefficients (in contrast to simple gradients). To get a more
general approximation, Fergus et al. [FSH+06] use a mixture of Gaus-
sians to model the distribution of image gradients. On the other hand,
Fattal [Fat07], proposes graphical modeling to capture a representa-
tion for image gradients.

While some of these techniques are tailored for small degradations,
patch-based priors achieve superior results for more challenging appli-
cations, such as deblurring with large kernels. Aharon et al. [AEB06]
use k-SVD to learn a dictionary of patches for denoising. The key idea
in their work is to provide a collection of patch representations (i.e.
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a dictionary). They constrain the dictionary such that any natural
patch can be very well represented by only a few combinations of its
elements. For a more compact representation, Roth and Black [RB05]
use Markov random fields to model images using local patch filters.
Zoran and Weiss [ZW11] use a simpler, more tractable, approach
by modeling image patches using mixtures of Gaussian distributions
(GMMs). This approach, called EPLL, is very effective in practice and
is a common baseline for performance comparisons.

Instead of parametrizing the patch distribution (e.g. using GMMs),
Levin and Nadler [LN11] took a non-parametric approach for image
denoising, which can be easily generalized to other restoration tasks.
They use a very large dataset and evaluate the patch likelihood at run-
time. This is not a practical approach for restoration since it requires
comparisons of patches in the estimated image to all patches in the
dataset. However, subsequent work [LNDF12] use this approach to
provide effective bounds of optimality and complexity of denoisers
with respect to the patch size.

Plug-and-play denoisers. Our approach is most related to tech-
niques that leverage Alternating Directions Method of Multipliers
(ADMM) to regularize the inverse restoration problem. These tech-
niques build on the observation by Venkatakrishnan et al. [VBW13]
that many algorithms that solve image restoration via MAP estimation
only need the proximal operator of the regularization term, which
can be interpreted as a MAP denoiser [MMHC17]. Venkatakrishnan
et al. [VBW13] build on the ADMM algorithm and propose to re-
place the proximal operator of the regularizer with a denoiser such as
BM3D [DFKE06] or NLM [BCM05]. Unsurprisingly, this inspired sev-
eral researchers to learn the proximal operator using CNNs [CLP+17,
ZZGZ17, XHH+17, MMHC17]. Meinhardt et al. [MMHC17] consider
various proximal algorithms including the proximal gradient method,
ADMM, and the primal-dual hybrid gradient method, where in each
case the proximal operator for the regularizer can be replaced by a
neural network. They show that no single method will produce sys-
tematically better results than the others.



62 CHAPTER 3. NATURAL PRIORS FOR IMAGE RESTORATION

In the proximal techniques the relation between the proximal oper-
ator of the regularizer and the natural image probability distribution
remains unclear. While their use of a denoiser is a consequence of
ADMM, our work shines a light on how a trained denoiser is directly
related to the underlying data density (the distribution of natural
images). We explicitly use the Gaussian-smoothed natural image dis-
tribution as a prior, and we show that we can learn the gradient of its
logarithm using a denoising autoencoder. Our approach also leads to
a different, simpler gradient descent optimization that does not rely
on ADMM approximation.

A key idea of our work is to train a neural denoising autoencoder,
that we use as a prior for image restoration. Autoencoders are typ-
ically used for unsupervised representation learning [VLL+10]. The
focus of these techniques lies on the descriptive strength of the learned
representation, which can be used to address classification problems
for example. In addition, generative models such as generative adver-
sarial networks [GPAM+14] or variational autoencoders [KW14] also
facilitate sampling the representation to generate new data. Their
network architectures usually consist of an encoder followed by a de-
coder, with a bottleneck that is interpreted as the data representation
in the middle. The ability of autoencoders and generative models to
create images from abstract representations makes them attractive for
restoration problems. Notably, the encoder-decoder architecture in
Mao et al.’s image restoration work [MSY16] is highly reminiscent
of autoencoder architectures, although they train their network in a
supervised manner.

Internal priors. The methods we discussed mainly bring knowledge
about the image distribution form an external set of images. Hand-
crafted or data-driven, these methods are based on seperate observa-
tions, that are different from the input (degraded) image in process.
Non-local means [BCM05] is one of the most popular methods that im-
plements an internal prior for image denoising. They key idea in their
method is that structures in image patches have, many, similar corre-
spondences in the same image. By finding the corresponding set of
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similar patches, they compute their average to remove the noise from
the image. Intuitively, the more corresponding patches are found, the
better the quality of the noise-free estimate will be. Another successful
approach, called BM3D [DFKE06], extends this idea by using a more
elaborate technique to remove the noise form the set of corresponding
image patches.

The simple underlying assumption of these techniques is, in prac-
tice, very effective. Extensive experiments by Plotz and Roth [PR17]
reveal that for real camera noise removal, BM3D outperforms other
external-based-prior methods. This can be explained by the fact that,
unlike restoration techniques using external priors, BM3D makes very
few assumptions about the underlying data and its degradation noise
distributions. However, these methods are still ineffective for restora-
tion tasks other than denoising. An example failure case is image
deblurring, where all patches in the image are similarly blurred. In
this case, finding and incorporating similar patches has no meaningful
regularizing influence.

3.2.3 Noise- and Kernel-Blind Deconvolution

It is also worth mentioning methods that try to estimate the degra-
dation model parameters such as the degradation noise variance and
blur kernel. Amongst these methods, Kernel-blind deconvolution has
seen the most effort recently. Perrone and Favaro [PF14] used a con-
strained optimization regularized by gradient sparsity. After obtaining
an estimate of the blur kernel, they use a separate deconvolution tech-
nique to restore the sharp image. In a similar fashion, noise-blind
deblurring is usually performed by first estimating the noise variance
and then applying the restoration using the estimated variance. Zhang
et al. [ZW13, ZY14] explored a spatially-adaptive sparse prior and
scale-space formulation to handle noise- or kernel-blind deconvolu-
tion. Jin et al. [JRF17] proposed a Bayes risk formulation that can
perform deblurring by adaptively balancing the regularization weight.
The blind methods, however, are mostly tailored for the specific task
of image deconvolution. And they can usually handle one case of



64 CHAPTER 3. NATURAL PRIORS FOR IMAGE RESTORATION

either noise- or kernel-blind. Our work extends the work of Jin et
al. [JRF17] by providing a Bayesian framework that can incorporate
a generic prior, and consequently can be used for various tasks such
as the joint noise- and kernel-blind deconvolution.

3.2.4 Summary of Priors

We summarize some of the most popular and recent image restoration
techniques and their characteristics in Table 3.1. We compare the
domain of knowledge for these methods and see that most successful
methods employ external datasets to learn their priors. We also com-
pare these methods by the feature that each prior regularizes and see
that recent methods tend to measure the global image likelihood in
the place of small patches and gradients. Rather than operating on
individual patches, BM3D [DFKE06] operates on a set of patches in
a form of a patch blocks, which implicitly extends the regularization
area of this method.

By comparing the type of the prior in these methods, we can see
that most popular methods use a representation of the density of their
features as opposed to sparsity to regularize their reconstruction. This
is mainly because sparse representations assume a specific distribution
of the image features. As example of this occurs in the Total Variation
(TV) norm and its variants, where the priors force Laplace-type distri-
butions on the image gradients. Therefore, most successful methods
use a more flexible representation of the true density and tune their
parameters by a set of data samples. Although these methods try to
propose a good representation of the true density, often they use ap-
proximations for tractability, efficiency, and implementation reasons.
The kernel density approximation method, is one of the most effec-
tive approaches to learn an intuitive representation of the distribution
using a dataset with discrete set of image examples. Markov Random
Fields (MRFs) are less effective to represent the distribution since
their parametrization using Graphical models are too simplistic.

The parametrization is an effective property of these methods
that could influence the prior representation. For example, the
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EPLL [ZW11] method parametrizes the true distribution using a mix-
ture of Gaussians, which leads to a very simplifying representation of
the complex patch distribution in practice. Recent methods benefit
from the efficiency and the power of the convolutional neural net-
works (CNNs) compared to the more classical approaches of GMMs
and MRF potentials. By comparing the application of these methods,
however, we see that most CNN-based methods are not generic since
they are trained for a specific task.

In light of the advances in constructing priors, Shaham and
Michaeli [SM16] propose an interesting approach for understanding
image priors. They provide a prior visualization technique to help
understand what type of structures are preferred by which priors. We
show a visual comparison for some of the popular priors using this
technique in Figure 3.2. Basic priors (such as TV, KSVD, and NLM)
that make simplifying assumptions about the images fail to capture
the detail structures of the image. Other priors tend to prefer sim-
ple image structures such as straight lines and sharp corners over
the complex and curved edges. We refer the reader to the original
work [SM16] for a more comprehensive review and visualization of
previous image priors.

3.3 Denoising Autoencoder as Natural Im-
age Prior

In this section, we describe our approach for learning priors for the
natural image distribution. Using the advances in deep learning, we
benefit from fast and accurate neural networks to learn representa-
tions of image distribution. We build our idea based on the underlying
theory of denoising autoencoders and how their solution relates to
the natural image distribution.

A denoising autoencoder [VLBM08] is an autoencoder trained to
reconstruct data that was corrupted with noise. Previously, Alain and
Bengio [AB14] and Nguyen et al. [NYB+16] used DAEs to construct
generative models. We build on the key observation by Alain and
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Input Our prior BM3D [DFKE06]

EPLL [ZW11] FoE [RB05] CSF [SR14]

NLM [BCM05] KSVD [AEB06] TV [ROF92]

Figure 3.2: Visualization of image priors using the method by Shaham
et al. [SM16]: Our deep mean-shift prior learns complex structures
with different curvatures. Other priors prefer simpler structures like
lines with small curvature or sharp corners.
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Bengio [AB14] that for each input, the output of an optimal denois-
ing autoencoder is a local mean of the true natural image density.
The weight function that defines the local mean is equivalent to the
noise distribution used to train the DAE. Our insight is that the au-
toencoder error, which is the difference between the output and input
of the trained autoencoder, is a mean shift vector [CM02], and the
noise distribution represents a mean shift kernel. It is worth mention-
ing that prior to the work of Alain and Bengio [AB14], others such
as Miyasawa [Miy61], Raphan and Simoncelli [RS11], and Levin et
al. [LN11], made similar observations about optimal denoisers. Specif-
ically, the derivations below were, to the best of our knowledge, first
discovered by Miyasawa [Miy61].

We visualize the intuition behind DAEs in Figure 3.3. Let us denote
a DAE as rσ. Given an input image x, its output is an image rσ(x). A
DAE rσ is trained to minimize [VLBM08]

LDAE = Eη,x
[
‖x− rσ(x+ η)‖2

]
, (3.5)

where the expectation is over all images x and Gaussian noise η with
variance σ2, and rσ indicates that the DAE was trained with noise
variance σ2. It is important to note that the noise variance σ2 here
is not related to the degradation noise and its variance σ2

n, and it is
not a parameter to be learned. Instead, it is a user specified param-
eter whose role becomes clear with the following proposition. Let
us denote the true data density of natural images as p(x). Alain et
al. [AB14] show that the output rσ(x) of the optimal DAE (assuming
unlimited capacity) is related to the true data density p(x) as

rσ(x) =
Eη [p(x− η)(x− η)]

Eη [p(x− η)]

=

∫
gσ2(η)p(x− η)(x− η)dη∫

gσ2(η)p(x− η)dη
. (3.6)

This reveals an interesting connection to the mean shift algo-
rithm [CM02]:

Proposition 3.1. The autoencoder error, that is the difference between
the output and the input of the autoencoder rσ(x) − x is an exact
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mean shift vector. More precisely, the mean shift vector (Comaniciu and
Meer [CM02], Equation 17) is a Monte Carlo estimate of Equation 3.6
using random samples ξi ∼ p, i = 1 . . . n.

Proof. By substituting ξ = η in Equation 3.6, and Monte Carlo estima-
tion of the integrals with a sum over n random samples ξi ∼ p, i =
1 . . . n,

rσ(x) = x−
∑n
i=1 g(x− ξi)(ξi)∑n
i=1 g(x− ξi)

,

we directly arrive at the original mean shift formulation (Comaniciu
and Meer [CM02], Equation 17).

The autoencoder output can be interpreted as a local mean or a
weighted average of images in the neighborhood of x. The weights
are given by the true density p(x) multiplied by the noise distribution
that was used during training, which is a local Gaussian kernel gσ(η)
centered at x with variance σ2. Hence the parameter σ2 of the autoen-
coder determines the size of the region around x that contributes to
the local mean. The key of our approach is the following theorem:

Theorem 3.1. When the training noise η has a Gaussian distribution,
the autoencoder error is proportional to the gradient of the log likelihood
of the data density p smoothed by the Gaussian kernel gσ2(η),

rσ(x)− x = σ2∇ log [gσ ∗ p] (x), (3.7)

where ∗ means convolution.

Proof. A proof of this theorem was derived earlier by Miya-
sawa [Miy61] and was generalized by Raphan and Simoncelli [RS11]
for other types of noise. Here we describe an alternative proof that
drives directly from the definition of the optimal DAE. We first rewrite
the original equation for the optimal DAE (Alain and Bengio [AB14]
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and our Equation 3.6) as

rσ(x) =
Eη [p(x− η)(x− η)]

Eη [p(x− η)]

= x− Eη [p(x− η)η]

Eη [p(x− η)]
, η ∼ N (0, σ2).

By expanding the numerator in the quotient we get

Eη [p(x− η)η] =

∫
gσ2(η)p(x− η)ηdη

= −σ2

∫
∇gσ2(η)p(x− η)dη,

where we used the definition of the derivative of the Gaussian to
remove η inside the integral. Now we can use the Leibniz rule to
interchange the ∇ operator with the integral and we get

Eη [p(x− η)η] = −σ2∇Eη [p(x− η)] .

Plugging this back into our equation for the DAE we get

rσ(x) = x+ σ2∇Eη [p(x− η)]

Eη [p(x− η)]
,

and using the derivative of the logarithm we see that this is

rσ(x) = x+ σ2∇ logEη [p(x− η)]

= x+ σ2∇ log[gσ2 ∗ p](x),

as in Equation 3.7.

With this alternative formulation of the DAEs we have removed
the normalization term in the denominator of the DAE definition. This
result shows that the autoencoder error (that is, the mean shift vector)
corresponds to the gradient of the log-likelihood of the distribution
blurred with a Gaussian kernel with variance σ2. Hence we observe
that the autoencoder error vanishes at stationary points, including
local extrema, of the true density smoothed by the Gaussian kernel.
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(a) Spiral Manifold (b) Smoothed Density
and Observed Samples from Observed Samples

(c) Mean Shift Vectors (d) Mean Shift Vectors
Learned by DAE Approximated (Equation 3.8)

Figure 3.3: Visualization of a denoising autoencoder using a 2D spiral
density. Given input samples of a true density (a), the autoencoder
is trained to pull each sample corrupted by noise back to its original
location. Adding noise to the input samples smooths the density rep-
resented by the samples (b). Assuming an infinite number of input
samples and an autoencoder with unlimited capacity, for each input,
the output of the optimal trained autoencoder is the local mean of the
true density. The local weighting function corresponds to the noise
distribution that was used during training, and it represents a mean
shift kernel [CM02]. The difference between the output and the input
of the autoencoder is a mean shift vector (c), which vanishes at local
extrema of the true density smoothed by the mean shift kernel. Due
to practical limitations, we approximate the mean shift vectors (d,
red) using Equation 3.8. The difference between the true mean shift
vectors (d, black) and our approximate vectors (d, red) vanishes as
we get closer to the manifold.
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Overcoming training limitations. The theory above assumes un-
limited data and time to train an unlimited capacity autoencoder. In
particular, to learn the true mean shift mapping, for each natural im-
age the training data needs to include noise patterns that lead to other
natural images. In practice, however, such patterns virtually never oc-
cur because of the high dimensionality. Since the DAE never observed
natural images during training (produced by adding noise to other
images), it overfits to noisy images. This is problematic during the
gradient descent optimization, when the input to the DAE does not
have noise.

As a workaround, we obtained better results by adding noise to
the image before feeding it to the trained DAE during optimization.
We further justify this by showing that with this workaround, we can
still approximate a DAE that was trained with a desired noise variance
σ2 using the lowerbound

rσ(x)− x ≥ 2
(
Eε
[
r σ√

2
(x− ε)

]
− x
)
, (3.8)

where ε ∼ N (0, σ√
2

2), and r σ√
2

is a DAE trained with noise standard
deviation σ√

2
. This is visualized in Figure 3.3(d). The red vectors indi-

cate the approximated mean shift vectors using Equation 3.8 and the
black vectors indicate the exact mean shift vectors. The approximation
error decreases as we approach the true manifold.



Chapter 4

Autoencoding Priors

In this chapter we propose to leverage denoising autoencoder net-
works as priors to address image restoration problems. We build on
the key observation that the output of an optimal denoising autoen-
coder is a local mean of the true data density, and the autoencoder
error (the difference between the output and input of the trained au-
toencoder) is a mean shift vector. We use the magnitude of this mean
shift vector, that is, the distance to the local mean, as the negative
log likelihood of our natural image prior. For image restoration, we
maximize the likelihood using gradient descent by backpropagating
the autoencoder error. A key advantage of our approach is that we
do not need to train separate networks for different image restoration
tasks, such as non-blind deconvolution with different kernels, or super-
resolution at different magnification factors. We demonstrate state of
the art results for non-blind deconvolution and super-resolution using
the same autoencoding prior.

We build on the key observations in Section 3.3 that for each input,
the output of an optimal denoising autoencoder is a local mean of the
true natural image density. The weight function that defines the local
mean is equivalent to the noise distribution used to train the DAE.
Our insight in Section 3.3 is that the autoencoder error, which is the

73
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difference between the output and input of the trained autoencoder,
is a mean shift vector [CM02], and the noise distribution represents a
mean shift kernel.

Hence, we leverage neural DAEs in an elegant manner to define
powerful image priors: Given the trained autoencoder, our natural
image prior is based on the magnitude of the mean shift vector. For
each image, the mean shift is proportional to the gradient of the
true data distribution smoothed by the mean shift kernel, and its
magnitude is the distance to the local mean in the distribution of
natural images. With an optimal DAE, the energy of our prior vanishes
exactly at the stationary points of the true data distribution smoothed
by the mean shift kernel. This makes our prior attractive for maximum
a posteriori (MAP) estimation.

For image restoration, we include a data term based on the known
image degradation model. For each degraded input image, we max-
imize the likelihood of our solution using gradient descent by back-
propagating the autoencoder error and computing the gradient of the
data term. Intuitively, this means that our approach iteratively moves
our solution closer to its local mean in the natural image density, while
satisfying the data term. This is illustrated in Figure 4.1.

A key advantage of our approach is that we do not need to train
separate networks for different image restoration tasks, such as non-
blind deconvolution with different kernels, or super-resolution at dif-
ferent magnification factors. Even though our autoencoding prior
is trained on a denoising problem, it is highly effective at removing
these different degradations. We demonstrate state of the art results
for non-blind deconvolution and super-resolution using the same au-
toencoding prior. In summary, the main contributions of this chapter
are:

• An image restoration formulation based on maximum a posteri-
ori (MAP) estimator that makes use of the connection between
DAEs and mean shift, and the relation of an optimal DAE to the
underlying data distribution.

• An implementation of the prior based on denoising autoen-
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Blurry Iterations 10, 30, 100 and 250
23.12dB 24.17dB 26.43dB 29.1dB 29.9dB

Figure 4.1: We propose a natural image prior based on a denoising
autoencoder, and apply it to image restoration problems like non-blind
deblurring. The output of an optimal denoising autoencoder is a local
mean of the true natural image density, and the autoencoder error is
a mean shift vector. We use the magnitude of the mean shift vector as
the negative log likelihood of our prior. To restore an image from a
known degradation, we use gradient descent to iteratively minimize
the mean shift magnitude while respecting a data term. Hence, step-
by-step we shift our solution closer to its local mean in the natural
image distribution.

coders (DAEs) parametrized by a convolutional neural network.1

• Experiments to show the effectiveness of our prior for different
restoration problems, including deblurring with arbitrary ker-
nels and super-resolution with different magnification factors.

1The source code of the proposed method is available at https://github.com/

siavashbigdeli/DAEP.

https://github.com/siavashbigdeli/DAEP
https://github.com/siavashbigdeli/DAEP
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Figure 4.2: Local minimum of our natural image prior. Starting with a
noisy image (left), we minimize the prior via gradient descent (middle:
intermediate step) to reach the local minimum (right).

4.1 Prior Formulation

Following the problem formulation in Section 3.1, we propose a MAP
estimator for image restoration. We follow the observations in Sec-
tion 3.3 to use the squared magnitude of the mean shift vector as the
energy (the negative log likelihood) of our prior, L(x) = ‖rσ(x)−x‖2.
This energy is very powerful because it tells us how close an image x
is to its local mean rσ(x) in the true data density, and it vanishes at
local extrema of the true density smoothed by the mean shift kernel.
Figure 3.3(c), illustrates how small values of L(x) = ‖rσ(x) − x‖2
occur close to the data manifold, as desired. Figure 4.2 visualizes
a local minimum of our prior on natural images, which we find by
iteratively minimizing the prior via gradient descent starting from a
noisy input, without any help from a data term.

We use the logarithmic objective as in Equation 3.4, that leads
to an energy minimization algorithm. Including the data term, we
recover latent images as

argmin
x

‖y −D(k ∗ x)‖2/σ2
n + γ‖rσ(x)− x‖2. (4.1)

Our energy has two parameters that we will adjust based on the
restoration problem. First, this is the mean shift kernel size σ, and
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Algorithm 4.1 Proposed gradient descent. We express convolution
as a matrix-vector product.

loop #iterations
• Compute data term gradients ∇xL(y|x):

KTDT (DKx− y)/σ2
n

• Compute prior gradients ∇xL(x):

∇xrσ(x)T
(
rσ(x)− x

)
+ x− rσ(x)

• Update x by descending
∇xL(y|x) + γ∇xL(x)

end loop

second we introduce a parameter γ to weight the relative influence of
the data term and the prior.

4.1.1 Optimization

Given a trained autoencoder, we minimize our loss function in Equa-
tion 4.1 by applying gradient descent and computing the gradient
of the prior using backpropagation through the autoencoder. Algo-
rithm 4.1 shows the steps to minimize Equation 4.1. In the first step
of each iteration, we compute the gradient of the data term with re-
spect to image x. The second step is to find the gradients for our
prior. The gradient of the mean shift vector ‖rσ(x)− x‖2 requires the
gradient of the autoencoder rσ(x), which we compute by backpropa-
gation through the network. Finally, the image x is updated using the
weighted sum of the two gradient terms.

4.1.2 Overcoming Training Limitations

Following our observations in Section 3.3, we obtained better results
by adding noise to the image before feeding it to the trained DAE
during optimization. Specifically, we can approximate DAE rσ, by
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another DAE r σ√
2
, that is

rσ(x)− x ≈ 2
(
Eε
[
r σ√

2
(x− ε)

]
− x
)
, (4.2)

where, again, ε ∼ N (0, σ
2

2 ), and r σ√
2

is a DAE trained with σ√
2

stan-
dard deviation noise.

To derive the above approximation, we start by using the alterna-
tive equation of the DAE from Equation 3.7 for rστ , where στ ≤ σ,
and write

rστ (x)− x = σ2
τ∇ logEτ [p(x− τ)] ,

and we take expectations of both sides over noise variable ε ∼ N (0, σ2
ε ),

where σ2
ε = σ2 − σ2

τ , that is

Eε [rστ (x− ε)]− x = σ2
τ∇Eε [logEτ [p(x− τ − ε)]] ,

where we used the Leibniz rule to interchange the ∇ operator with
the expectation. Now we would like to move the expectation over ε
inside the log. For this we perform a first order Taylor approximation
of the log around Eε [Eτ [p(x− τ − ε)]] and replace the equality sign
with approximation, which gives us

Eε [rστ (x− ε)]− x ≈ σ2
τ∇ logEε [Eτ [p(x− τ − ε)]] .

Now we use the fact that consecutive convolution of the density by
Gaussian kernels with bandwidths σ2

ε and σ2
τ is identical to a single

convolution by a Gaussian kernel with bandwidth σ2 = σ2
ε + σ2

τ , that
is

Eε [rστ (x− ε)]− x ≈ σ2
τ∇ logEη [p(x− η)] ,

where η ∼ N (0, σ2). We now use Equation 3.7 to rewrite this as

Eε [rστ (x− ε)]− x ≈ σ2
τ

σ2
η

(
rσ(x)− x

)
,
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Figure 4.3: Convergence results of our stochastic objective error (left)
and reconstruction PSNR (right) during the iterations.

which is the result we wanted. We use the specific case where σ2
τ =

σ2
ε = 1

2σ
2, which leads to Equation 4.2.

During optimization, we approximate the expected value in Equa-
tion 4.2 by stochastically sampling over ε. We use momentum of 0.9
and step size 0.1 in all experiments and we found that using one noise
sample per iteration performs well enough to compute meaningful
gradients. This approach resulted in a PSNR gain of around 1.7dB for
the super-resolution task (Section 4.2.1), compared to evaluating the
left hand side of Equation 4.2 directly.

Bad Local Minima and Convergence. The mean shift vector field
learned by the DAE could vanish in low density regions [AB14], which
corresponds to undesired local minima for our prior. In practice, how-
ever, we have not observed such degenerate solutions because our
data term pulls the solution towards natural images. In all our experi-
ments the optimization converges smoothly (Figure 4.1, intermediate
steps), although we cannot give a theoretical guarantee. We show the
convergence of our algorithm for a single image deblurring example in
Figure 4.3. By using a momentum in our stochastic gradient descent,
we are able to avoid oscillations and our reconstruction converges
smoothly to the solution.
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RGB RGB64 ch

3x3 Convolution 

*/ */

*

*

ReLU activation/

64 ch

*/

64 ch

*/

64 ch

residual connection

Figure 4.4: Our neural network consists of 20 convolution layers with
3× 3 filters and ReLU activations in between.

4.1.3 Autoencoder Architecture and Training

Our network architecture is inspired by Zhang et al. [ZZC+16]. We
visualize this architecture in Figure 4.4, where the network consists of
20 convolutional layers with batch normalization in between except
for the first and last layers, and we use ReLU activations except for
the last convolutional layer. The convolution kernels are of size 3× 3
and the number of channels are 3 (RGB) for input and output and
64 for the rest of the layers. Unlike typical neural autoencoders, our
network does not have a bottleneck. An explicit latent space imple-
mented as a bottleneck is not required in principle for DAE training,
and we do not need it for our application. We use a fully-convolutional
network that allows us to compute the gradients with respect to the
image more efficiently since the neuron activations are shared be-
tween many pixels. Our network is trained on color images of the
ImageNet dataset [DDS+09] by adding Gaussian noise with standard
deviation σε = 25 (around 10%). We perform residual learning by
minimizing the L2 distance of the output layer to the ground truth
noise. We used the Caffe package [JSD+14] and employed an Adam
solver [KB14] with β1 = 0.9, β2 = 0.999 and learning rate of 0.001,
which we reduced during the iterations.
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Figure 4.5: Performance gain for different DAE noise standard devia-
tions σε ∈ [20, 30] for supper-resolving different images from ’Set14’
dataset [ZEP10]. The vertical axis shows the PSNR gain with respect
to the PSNR score of the standard deviation σε = 25.

4.2 Experiments and Results

We compare our approach, Denoising Autoencoder Prior (DAEP), to
state of the art methods in super-resolution and non-blind deconvolu-
tion problems. For all our experiments, we trained the autoencoder
with σε = 25 (σ = 25

√
2), and the parameter of our energy (Equa-

tion 4.1) were set to γ = 6.875/σ2. We always perform 300 gradient
descent iteration steps during image restoration.

Optimal DAE noise variance. We visualize the influence of our
DAE noise standard deviation parameter in Figure 4.5 for the super-
resolution task. This experiment shows that the DAEs with bigger
standard deviation perform consistently better for larger degradations.
However in average, most small variations of the DAE standard devia-
tion form σε = 25 result into negligible differences and do not change
the overall performance (< 0.05 PSNR).

4.2.1 Super-Resolution

The super-resolution problem is usually defined in absence of noise
(σn = 0), therefore we weight the prior by the inverse square root of
the iteration number. This policy starts with a rough regularization
and reduces the prior weight in each iteration, leading to solutions
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that satisfy σn = 0. We compare our method to recent techniques
by Kim et al. [KKLML16] (SRCNN), Dong et al. [DLHT16] (VDSR),
Zhang et al. [ZZC+16] (DnCNN-3), Chen and Pock [CP16] (TNRD),
and IRCNN by Zhang et al. [ZZGZ17]. SRCNN, VDSR and DnCNN-
3 train an end-to-end network by minimizing the L2 loss between
the output of the network and the high-resolution ground truth, and
TNRD uses a learned reaction diffusion model. While SRCNN and
TNRD were trained separately for each scale, the VDSR and DnCNN-3
models were trained jointly on ×2, 3 and 4 (DnCNN-3 training in-
cluded also denoising and JPEG artifact removal tasks). For ×5 super-
resolution we used SRCNN and TNRD models that were trained on
×4, and we used VDSR and DnCNN-3 models trained jointly on ×2, 3
and 4. Table 5.4 compares the average PSNR of the super-resolved
images from ’Set5’ and ’Set14’ datasets [BRGA12, ZEP10] for scale
factors ×2, 3, 4, and 5, were we denote our method as DAEP. We com-
pute PSNR values over cropped RGB images (where the crop size in
pixels corresponds to the scale factor) for all methods. For SRCNN,
however, we used a boundary of 13 pixels to provide full support
for their network. While SRCNN, VDSR and DnCNN-3 solve directly
for MMSE, our method solves for the MAP solution, which is not
guaranteed to have better PSNR. Still, we achieve better results in
average. For scale factor ×5 our method performs significantly better
since our prior does not need to be trained for a specific scale. Fig-
ure 4.6 shows visual comparisons to the super-resolution results from
SRCNN [DLHT16], TNRD [CP16], and DnCNN-3 [ZZC+16] on three
example images. We exclude results of VDSR due to limited space
and visual similarity with DnCNN-3. Our natural image prior provides
clean and sharp edges over all magnification factors.

4.2.2 Non-Blind Deconvolution

To evaluate and compare our method for non-blind deconvolution
we used the dataset from Levin et al. [LFDF07] with four grayscale
images and eight blur kernels in different sizes from 13×13 to 27×27.
We compare our results to Levin et al. [LFDF07] (Levin), Zoran and
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GT Bicubic SRCNN TNRD DnCNN-3 DAEP

29.12 32.01 32.46 32.98 33.24

28.70 31.09 31.27 31.45 31.67

28.67 29.98 30.03 30.31 30.96

Figure 4.6: Comparison of super-resolution for scale factor 2 (top
row), scale factor 3 (middle row), and scale factor 4 (bottom row)
with the corresponding PSNR (dB) scores.
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GT Blurred Levin et al. EPLL RTF-6 DAEP

22.05 30.88 32.69 32.82 33.64

19.47 28.22 29.65 21.82 30.68

17.52 26.57 27.38 15.05 27.84

Figure 4.7: Comparison of non-blind deconvolution with additive
noise standard deviation σ = 2.55 (top row), σ = 7.65 (middle row),
and σ = 12.75 (bottom row) with the corresponding PSNR (dB)
scores. The kernel is visualized in the bottom right of the blurred
image.
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Method σ → 2.55 7.65 12.75 time (sec)
Levin [LFDF07] 31.09 27.40 25.36 3.09
CSF [SR14] 29.35 27.05 25.50 0.72
EPLL [ZW11] 32.51 28.42 26.13 16.49
RTF-6 [SJN+16b] 32.51 21.44 16.03 9.82
IRCNN [ZZGZ17] 30.78 28.77 27.41 2.47
DAEP (Ours) 32.69 28.95 26.87 11.19

Table 4.1: Average PSNR (dB) for non-blind deconvolution on Levin
et al.’s [LFDF07] dataset for different noise levels.

Weiss [ZW11] (EPLL), Schmidt et al. [SJN+16b] (RTF-6), and IRCNN
by Zhang et al. [ZZGZ17] in Table 4.1, where we show the average
PSNR of the deconvolution for three levels of additive noise (σ ∈
{2.55, 7.65, 12.75}). Note that RTF-6 [SJN+16b] is only trained for
noise level σ = 2.55, therefore it does not perform well for other noise
levels. Figure 4.7 provides visual comparisons for two deconvolution
result images. Our natural image prior achieves higher PSNR and
produces sharper edges and less visual artifacts compared to Levin et
al. [LFDF07], Zoran and Weiss [ZW11], and Schmidt et al. [SJN+16b].
We report runtimes for different methods in Table 4.1 for image size
of 128x128 on an Nvidia Titan X GPU. Our runtime is on par with
popular methods such as EPLL [ZW11].

We performed an additional comparison on color images similar
to Fortunato and Oliveira [FO14] using 24 color images from the
Kodak Lossless True Color Image Suite from PhotoCD PCD0992 [Kod].
The images are blurred with a 19 × 19 blur kernel from Krishnan
and Fergus [KF09b] and 1% noise is added. Figure 4.8 shows visual
comparisons and average PSNRs over the whole dataset. Our method
produces much sharper results and achieves a higher PSNR in average
over this dataset. We refer to Section 5.3.1 for a more extensive
evaluation of our method, denoted as DAEP.
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(Lucy Richardson) [ZN09] [LFDF07] (L2) [WYYZ08] (L1) [WYYZ08] (TV)
24.38/24.47 27.38/27.68 27.04/27.37 27.68/28.23 28.63/29.25

[LFDF07] (IRLS) [SJA08] [KF09b] [FO14] DAEP (Ours)
28.96/30.15 28.97/30.01 29.15/30.18 29.25/30.34 29.92/31.07

Figure 4.8: Comparison of non-blind deconvolution methods on the
21st image from the Kodak image set [Kod]. For each method, we
report the PSNR (dB) of the visualized image (left) and the average
PSNR on the whole set (right). The results of other methods were re-
produced from Fortunato and Oliveira [FO14] for ease of comparison.
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4.3 Discussion

We introduced a natural image prior based on denoising autoencoders
(DAEs). Our prior minimizes the distances of restored images to their
local means (the length of their mean shift vectors). This is powerful
since mean shift vectors vanish at local extrema of the true density
smoothed by the mean shift kernel. Our results demonstrate that a
single DAE prior achieves state of the art results for non-blind image
deblurring with arbitrary blur kernels and image super-resolution at
different magnification factors.

A disadvantage of our approach is that it requires the solution of an
optimization problem to restore each image. In contrast, end-to-end
trained networks perform image restoration in a single feed-forward
pass. For the increase in runtime computation, however, we gain
much flexibility. With a single autoencoding prior, we obtain not only
state of the art results for non-blind deblurring with arbitrary blur
kernels and super-resolution with different magnification factors, but
also successfully restore images corrupted by noise or holes as shown
in Figure 4.9.

Our approach requires some user defined parameters (mean shift
kernel size σ for DAE training and restoration, weight of the prior
γ). While we use the same parameters for all experiments reported
here, other applications may require to adjust these parameters. For
example, we have experimented with image denoising (Figure 4.9),
but so far we have not achieved state of the art results. We believe that
this may require an adaptive kernel width for the DAE, and further
fine-tuning of our parameters.
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30% of Pixels Reconstruction
6.13dB 30.68dB

Input with 10% Noise Reconstruction
20.47dB 31.05dB

Figure 4.9: Restoration of images corrupted by noise and holes using
the same autoencoding prior as in our other experiments.



Chapter 5

Deep Mean-Shift Priors

In Chapter 4 we described a generic prior that could be used in a MAP
estimation of various restoration tasks. This approach requires the
degradation model to be known when estimating the sharp image,
which is not always the case. Additionally, the proposed autoencoding
prior uses the mean-shift magnitude over the natural image distri-
bution, which requires an expensive backpropagation step at each
iteration of the optimization. In this chapter we introduce a natural
image prior that directly represents a Gaussian-smoothed version of
the natural image distribution. We include our prior in a formulation
of image restoration as a Bayes estimator that also allows us to solve
noise-blind image restoration problems. We show that the gradient of
our prior corresponds to the mean-shift vector on the natural image
distribution. In addition, we learn the mean-shift vector field using
denoising autoencoders, and use it in a gradient descent approach
to perform Bayes risk minimization. We demonstrate competitive re-
sults for noise-blind deblurring, super-resolution, and demosaicing.
We propose an image prior that is directly based on an estimate of
the natural image probability distribution. Although this seems like
the most intuitive and straightforward idea to formulate a prior, only
few previous techniques have taken this route [LN11]. Instead, most

89
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priors are built on intuition or statistics of natural images (e.g., sparse
gradients). Most previous deep learning priors are derived in the
context of specific algorithms to solve the restoration problem, but it
is not clear how these priors relate to the probability distribution of
natural images. In contrast, our prior directly represents the natural
image distribution smoothed with a Gaussian kernel, an approxima-
tion similar to using a Gaussian kernel density estimate. Note that we
cannot hope to use the true image probability distribution itself as our
prior, since we only have a finite set of samples from this distribution.
We show a visual comparison in Figure 3.2, where our prior is able
to capture the structure of the underlying image, but others tend to
simplify the texture to straight lines and sharp edges.

We formulate image restoration as a Bayes estimator, and define
a utility function that includes the smoothed natural image distribu-
tion. We approximate the estimator with a bound, and show that
the gradient of the bound includes the gradient of the logarithm of
our prior, that is, the Gaussian smoothed density. In addition, the
gradient of the logarithm of the smoothed density is proportional to
the mean-shift vector [CM02], and it has recently been shown that
denoising autoencoders (DAEs) learn such a mean-shift vector field
for a given set of data samples [AB14, BZ17]. Hence we call our prior
a deep mean-shift prior, and our framework is an example of Bayesian
inference using deep learning.

We demonstrate image restoration using our prior for noise-blind
deblurring, super-resolution, and image demosaicing, where we solve
Bayes estimation using a gradient descent approach. We achieve
performance that is competitive with the state of the art for these
applications. In summary, the main contributions of this chapter are:

• A formulation of image restoration as a Bayes estimator that
leverages the Gaussian smoothed density of natural images as
its prior. In addition, the formulation allows us to solve noise-
blind restoration problems.

• An implementation of the prior, which we call deep mean-shift
prior, that builds on denoising autoencoders (DAEs). We rely on
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the observation that DAEs learn a mean-shift vector field, which
is proportional to the gradient of the logarithm of the prior.

• Image restoration techniques based on gradient-descent risk
minimization with competitive results for noise-blind image de-
blurring, super-resolution, and demosaicing.1

5.1 Bayesian Formulation

We assume a standard model for image degradation,

y = k ∗ ξ + n, n ∼ N (0, σ2
n), (5.1)

where ξ is the unknown image, k is the blur kernel, n is zero-mean
Gaussian noise with variance σ2

n, and y is the observed degraded
image. For brevity, this model simplifies the degradation model intro-
duced in Section 3.1 by removing the downsampling operator D. We
restore an estimate x of the unknown image by defining and maximiz-
ing an objective consisting of a data term and an image likelihood,

argmax
x

Φ(x) = data(x) + prior(x). (5.2)

Our core contribution is to construct a prior that corresponds to the
logarithm of the Gaussian-smoothed probability distribution of nat-
ural images. We will optimize the objective using gradient descent,
and leverage the fact that we can learn the gradient of the prior us-
ing a denoising autoencoder (DAE). We next describe how we define
our objective by formulating a Bayes estimator in Section 5.1.1, then
explain how we leverage DAEs to obtain the gradient of our prior in
Section 5.1.2, describe our gradient descent approach in Section 5.1.3,
and finally our image restoration applications in Section 5.2.

1The source code of the proposed method is available at https://github.com/

siavashbigdeli/DMSP.

https://github.com/siavashbigdeli/DMSP
https://github.com/siavashbigdeli/DMSP
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5.1.1 Defining the Objective via a Bayes Estimator

A typical approach to solve the restoration problem is via a maximum
a posteriori (MAP) estimate, where one considers the posterior distri-
bution of the restored image p(x|y) ∝ p(y|x)p(x), derives an objective
consisting of a sum of data and prior terms by taking the logarithm of
the posterior, and maximizes it (minimizes the negative log-posterior,
respectively). Instead, we will compute a Bayes estimator x for the
restoration problem by maximizing the posterior expectation of a util-
ity function,

Ex̃[G(x̃, x)] =

∫
G(x̃, x)p(y|x̃)p(x̃)dx̃, (5.3)

where G denotes the utility function (e.g., a Gaussian), which encour-
ages its two arguments to be similar. This is a generalization of MAP,
where the utility is a Dirac impulse.

Ideally, we would like to use the true data distribution as the prior
p(x̃). But we only have data samples, hence we cannot learn this
exactly. Therefore, we introduce a smoothed data distribution

p′(x) = Eη[p(x+ η)] =

∫
gσ(η)p(x+ η)dη, (5.4)

where η has a Gaussian distribution with zero-mean and variance σ2,
which is represented by the smoothing kernel gσ. The key idea here
is that it is possible to estimate the smoothed distribution p′(x) or its
gradient from sample data. In particular, we will need the gradient
of its logarithm, which we will learn using denoising autoencoders
(DAEs). We now define our utility function as

G(x̃, x) = gσ(x̃− x)
p′(x)

p(x̃)
, (5.5)

where we use the same Gaussian function gσ with standard deviation
σ as introduced for the smoothed distribution p′. This penalizes the
estimate x if the latent parameter x̃ is far from it. In addition, the
term p′(x)/p(x̃) penalizes the estimate if its smoothed density is lower
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than the true density of the latent parameter. Unlike the utility in Jin
et al. [JRF17], this approach will allow us to express the prior directly
using the smoothed distribution p′.

By inserting our utility function into the posterior expected utility
in Equation 5.3 we obtain

Ex̃[G(x̃, x)] =

∫
gσ(ε)p(y|x+ ε)

∫
gσ(η)p(x+ η)dηdε, (5.6)

where the true density p(x̃) canceled out, as desired, and we intro-
duced the variable substitution ε = x̃− x.

We finally formulate our objective by taking the logarithm of the
expected utility in Equation 5.6, and introducing a lower bound that
will allow us to split Equation 5.6 into a data term and an image
likelihood. By exploiting the concavity of the log function, we apply
Jensen’s inequality and get our objective Φ(x) as

logEx̃[G(x̃, x)] = log

∫
gσ(ε)p(y|x+ ε)

∫
gσ(η)p(x+ η)dηdε

≥
∫
gσ(ε) log

[
p(y|x+ ε)

∫
gσ(η)p(x+ η)dη

]
dε

=

∫
gσ(ε) log p(y|x+ ε)dε︸ ︷︷ ︸

Data term data(x)

+ log

∫
gσ(η)p(x+ η)dη︸ ︷︷ ︸

Image likelihood prior(x)

.

(5.7)

Image Likelihood. We denote the image likelihood as

prior(x) = log

∫
gσ(η)p(x+ η)dη. (5.8)

The key observation here is that our prior expresses the image likeli-
hood as the logarithm of the Gaussian-smoothed true natural image
distribution p(x), which is similar to a kernel density estimate.
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Data Term. Given that the degradation noise is Gaussian, we see
that [JRF17]

data(x) =

∫
gσ(ε) log p(y|x+ ε)dε

= −|y − k ∗ x|
2

2σ2
n

−M σ2

2σ2
n

|k|2 −N log σn + const, (5.9)

where M and N denote the number of pixels in x and y respectively.
This will allow us to address noise-blind problems as we will describe
in detail in Section 5.2.

5.1.2 Gradient of the Prior via Denoising Autoencoders

A key insight of our approach is that we can effectively learn the
gradients of our prior in Equation 5.8 using denoising autoencoders
(DAEs). From our analysis in Section 3.3, specifically Equation 3.7,
we can now see that the DAE error, that is, the difference rσ(x) −
x between the output of the DAE and its input, is the gradient of
the image likelihood in Equation 5.8. Hence, a main result of our
approach is that we can write the gradient of our prior using the DAE
error,

∇prior(x) = ∇ log

∫
gσ(η)p(x+ η)dη =

1

σ2

(
rσ(x)− x

)
. (5.10)

5.1.3 Stochastic Gradient Descent

We consider the optimization as minimization of the negative of our
objective Φ(x) and refer to it as gradient descent. Similar to our
previous observations in Section 4.1 and Section 3.3, we observed
that the trained DAE is overfitted to noisy images. Because of the large
gap in dimensionality between the embedding space and the natural
image manifold, the vast majority of training inputs (noisy images)
for the DAE lie at a distance very close to σ from the natural image
manifold. Hence, the DAE cannot effectively learn mean-shift vectors
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for locations that are closer than σ to the natural image manifold. In
other words, our DAE does not produce meaningful results for input
images that do not exhibit noise close to the DAE training σ.

To address this issue, we reformulate our prior to perform stochas-
tic gradient descent steps that include noise sampling. We rewrite our
prior from Equation 5.8 as

prior(x) = log

∫
gσ(η)p(x+ η)dη

= log

∫
gσ2

(η2)

∫
gσ1

(η1)p(x+ η1 + η2)dη1dη2

≥
∫
gσ2(η2) log

[∫
gσ1(η1)p(x+ η1 + η2)dη1

]
dη2

= priorL(x), (5.11)

where σ2
1 + σ2

2 = σ2, we used the fact that two Gaussian convolutions
are equivalent to a single convolution with a Gaussian whose variance
is the sum of the two, and we applied Jensen’s inequality again. This
leads to a new lower bound for the prior, which we call priorL(x).
Note that the bound proposed by Jin et al. [JRF17] corresponds to
the special case where σ1 = 0 and σ2 = σ.

We address our DAE overfitting issue by using the new lower
bound priorL(x) with σ1 = σ2 = σ√

2
. Its gradient is

∇priorL(x) =
2

σ2

∫
g σ√

2
(η2)

(
r σ√

2
(x+ η2)− (x+ η2)

)
dη2. (5.12)

In practice, computing the integral over η2 is not possible at run-
time. Instead, we approximate the integral with a single noise sample,
which leads to the stochastic evaluation of the gradient of the prior as

∇priorsL(x) =
2

σ2

(
r σ√

2
(x+ η2)− x

)
, (5.13)

where η2 ∼ N (0, σ2
2). This addresses the overfitting issue, since it

means we add noise each time before we evaluate the DAE. Given
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the stochastically sampled gradient of the prior, we apply a gradient
descent approach with momentum that consists of the following steps:

1. ut = −∇data(xt−1)−∇ priorsL(xt−1)

2. ū = µū− αut

3. xt = xt−1 + ū

(5.14)

where ut is the update step for x at iteration t, ū is the running step,
and µ and α are the momentum and step-size.

5.2 Image Restoration using the Deep Mean-
Shift Prior

We next describe the detailed gradient descent steps, including the
derivatives of the data term, for different image restoration tasks. We
provide a summary in Algorithm 5.1. For brevity, we omit the role of
downsampling (required for super-resolution) and masking.

Non-Blind Deblurring (NB). The gradient descent steps for non-
blind deblurring with a known kernel and degradation noise variance
are given in Algorithm 5.1, top row (NB). Here K denotes the Toeplitz
matrix of the blur kernel k.

Noise-Adaptive Deblurring (NA). When the degradation noise vari-
ance σ2

n is unknown, we can solve Equation 5.9 for the optimal σ2
n

(since it is independent of the prior), which gives

σ2
n =

1

N

[
|y − k ∗ x|2 +Mσ2|k|2

]
. (5.15)
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Algorithm 5.1 Gradient descent steps for non-blind (NB), noise-
blind (NA), and kernel-blind (KE) image deblurring. Kernel-blind
deblurring involves the steps for (NA) and (KE) to update image
and kernel.

Non-blind (NB):
1. ut = 1

σ2
n
KT (Kxt−1 − y)−∇priorsL(xt−1)

2. ū = µū− αut
3. xt = xt−1 + ū

Noise-blind (NA):
1. ut = λtKT (Kxt−1 − y)−∇priorsL(xt−1)
2. ū = µū− αut
3. xt = xt−1 + ū

Kernel-blind (KE):
4. vt = λt

[
xT (Kt−1xt−1 − y) +Mσ2kt−1

]
5. v̄ = µkv̄ − αkvt
6. kt = kt−1 + v̄

By plugging this back into the equation, we get the following data
term

data(x) = −N
2

log
[
|y − k ∗ x|2 +Mσ2|k|2

]
, (5.16)

which is independent of the degradation noise variance σ2
n. We show

the gradient descent steps in Algorithm 5.1, second row (NA), where
λt = N

(
|y −Kxt−1|2 + Mσ2|k|2

)−1
adaptively scales the data term

with respect to the prior.

Noise- and Kernel-Blind Deblurring (NA+KE). Gradient descent
in noise-blind optimization includes an intuitive regularization for the
kernel. We can use the objective in Equation 5.16 to jointly optimize
for the unknown image and the unknown kernel. The gradient de-
scent steps to update the image remain as in Algorithm 5.1, second
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1 sample, α = 0.1, µ = 0.9

2 sample, α = 0.1, µ = 0.9

4 sample, α = 0.1, µ = 0.9

1 sample, α = 0.2, µ = 0.8

2 sample, α = 0.2, µ = 0.8

4 sample, α = 0.2, µ = 0.8

Figure 5.1: Effect of parameters in convergence of our method using
the example image shown in Figure 5.2. We show the PSNR results
for optimization using 1, 2, and 4 samples per iteration. For each
optimization, we also compare the effect of increasing the stepsize.

row (NA), and we take additional steps to update the kernel estimate,
as in Algorithm 5.1, third row (KE). Additionally, we project the kernel
by applying kt = max(kt, 0) and kt = kt

|kt|1 after each step.

5.3 Experiments and Results

We use the same network and training procedure as in Section 4.1.3.
The runtime of our method is linear in the number of pixels, and
our implementation takes about 0.2 seconds per iteration for one
megapixel on an Nvidia Titan X (Pascal). As mentioned in Sec-
tion 5.1.3, we use a single noise sample to approximate our prior’s
gradient. Figure 5.1 compares cases where we use 1, 2, and 4 sam-
ples in each iteration to compete the gradients. These results indicate
that increasing the number of samples only increases the runtime and
does not improve the quality. Since including more samples better
approximates the gradients, we extend the experiment by comparing
the gradient descent stepsize. Taking larger stepsize leads to a faster
convergence at the begging of the optimization, but leads to a slightly
lower performance at the time or convergence. Therefore, for image
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σn DAE σ1: 5 7.7 11 15
2.55 (NB) 25.71 25.89 25.69 25.17
5.10 (NB) 24.09 24.35 24.45 24.26
7.65 (NB) 23.16 23.42 23.60 23.59
10.2 (NB) 22.52 22.79 22.99 23.06
Avg. (NB) 23.87 24.11 24.18 24.02
2.55 (NA) 25.64 25.93 26.00 25.99
5.10 (NA) 24.03 24.34 24.47 24.47
7.65 (NA) 23.10 23.40 23.61 23.63
10.2 (NA) 22.45 22.77 22.97 23.07
Avg. (NA) 23.80 24.11 24.26 24.29
Avg. 23.84 24.11 24.22 24.15

Table 5.1: Evaluation of different noise standard deviation for DAE
training. We train our DAE with different noise levels (scaled about
twice in variance) and we show the average PSNR (dB) for non-blind
deconvolution on the Berkeley [AMFM11] dataset.

restoration we always take 300 iterations with step length α = 0.1
and momentum µ = 0.9.

Optimal DAE noise variance. The main parameter of our frame-
work is the noise level used in the DAE training. We experimented
with different noise levels σ1 ∈ {5, 7.7, 11, 15} scaling about twice in
variance, and found σ1 = 11 to perform well for all our deblurring and
super-resolution experiments. Table 5.1 shows the comparison results
for non-blind deconvolution on the Berkeley [AMFM11] dataset. This
results indicate a correlation between the degradation noise variance
and the DAE training noise variance. In the Non-Blind (NB) opti-
mization, the DAE with smaller training variance performed better for
smaller amount of degradation noise. The Noise-Blind (NA) optimiza-
tion scheme, however, is more robust to changes in the degradation
noise variance compared to the non-blind case. The training noise
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GT [ZW11] [JRF17] DAEP DMSP DMSP+NA

Figure 5.2: Visual comparison of our deconvolution results.

levels of {7.7, 11, 15} performed similarly in average over the whole
experiment, which means that the proposed method is insensitive to
small variations of this parameter.

5.3.1 Deblurring: Non-Blind and Noise-Blind

In this section we evaluate our method for image deblurring using two
datasets. Table 5.2 reports the average PSNR for 32 images from the
Levin et al. [LFDF07] and 50 images from the Berkeley [AMFM11]
segmentation dataset, where 10 images are randomly selected and
blurred with 5 kernels as in Jin et al. [JRF17]. We highlight the
best performing PSNR in bold and underline the second best value.
The upper half of the table includes non-blind methods for deblur-
ring. EPLL [ZW11] + NE uses a noise estimation step followed by
non-blind deblurring. Noise-blind experiments are denoted by NA for
noise adaptivity. We include our results for non-blind (DMSP) and
noise-blind (DMSP + NA). Our noise adaptive approach consistently
performs well in all experiments and on average we achieve better re-
sults than the state of the art. Figure 5.2 provides a visual comparison
of our results. Our prior is able to produce sharp textures while also
preserving the natural image structure.
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Method σn → 2.55 5.10 7.65 10.2
FD [KF09b] 30.79 28.90 27.86 27.14
EPLL [ZW11] 32.05 29.60 28.25 27.34
CSF [SR14] 30.88 28.60 27.65 26.97
TNRD [CP17] 30.03 28.79 - -
IRCNN [ZZGZ17] 31.80 30.13 28.93 28.09
DAEP (ours) 31.76 29.31 28.01 27.16
EPLL [ZW11] + NE 32.02 29.60 28.25 27.34
EPLL [ZW11] + NA 32.18 30.08 28.77 27.81
TV-L2 + NA 30.07 28.59 27.60 26.89
GradNet 7S [JRF17] 31.75 29.31 28.04 27.54
DMSP (ours) 29.41 29.04 28.56 27.97
DMSP + NA (ours) 32.01 29.56 28.56 27.93

Table 5.3: Average PSNR (dB) for non-blind deconvolution on the
Sun et al.’s [SCWH13] dataset.

5.3.2 Deblurring: Noise- and Kernel-Blind

We performed fully blind deconvolution with our method using Levin
et al.’s [LFDF07] dataset. In this test, we performed 1000 gradient
descent iterations. We used momentum µ = 0.7 and step size α = 0.3
for the unknown image and momentum µk = 0.995 and step size αk =
0.005 for the unknown kernel. Figure 5.3 shows visual results of fully
blind deblurring and performance comparison to state of the art (last
column). We compare the SSD error ratio and the number of images
in the dataset that achieves error ratios less than a threshold. Results
for other methods are as reported by Perrone and Favaro [PF16].
Our method can reconstruct all the blurry images in the dataset with
errors ratios less than 3.5. Note that our optimization performs end-
to-end estimation of the final results and we do not use the common
two stage blind deconvolution (kernel estimation, followed by non-
blind deconvolution). Additionally our method uses a noise adaptive
scheme where we do not assume knowledge of the input noise level.
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Figure 5.3: Performance of our method for fully (noise- and kernel-)
blind deblurring on Levin’s set.
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Input [TL12] [ZCM+13] [ZY14] DMSP

Figure 5.4: Visual comparison for restoration from real camera noise
and blur.

We also compare visual results for real camera noise and motion
blur in Figure 5.4. Our noise- and kernel-blind optimization (NA +
KE) is robust to real camera noise and non-uniform motion blur.

5.3.3 Super-resolution

To demonstrate the generality of our prior, we perform additional
comparisons for the task of single image super-resolution. We evalu-
ate our method (DMSP) on the two common datasets Set5 [BRGA12]
and Set14 [ZEP10] for different upsampling scales. Since these tests
do not include degradation noise (σn = 0), similar to Section 4.2.1,
we perform our optimization with a rough weight for the prior and de-
crease it gradually to zero. We compare our method in Table 5.4. The
upper half of the table represents methods that are specifically trained
for super-resolution. SRCNN [DLHT16] and TNRD [CP17] have sepa-
rate models trained for ×2, 3, 4 scales, and we used the model for ×4
to produce the×5 results. VDSR [KKLML16] and DnCNN-3 [ZZC+16]
have a single model trained for ×2, 3, 4 scales, which we also used
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to produce ×5 results. The lower half of the table represents general
priors that are not designed specifically for super-resolution (see Sec-
tion 4.2.1 for a more detail explanation). Our method performs on
par with state of the art methods over all the upsampling scales.

5.3.4 Demosaicing

We finally performed a demosaicing experiment on the dataset intro-
duced by Khashabi et al. [KNJF14]. This dataset is constructed by
taking RAW images from a Panasonic camera, where the images are
downsampled to construct the ground truth data. Due to the down
sampling effect, in this evaluation we train a DAE with σ1 = 3 noise
standard deviation. The test dataset consists of 100 noisy images cap-
tured by a Panasonic camera using a Bayer color filter array (RGGB).
We initialize our method with Matlab’s demosaic function [MHC04].
To get even better initialization, we perform our initial optimization
with a large degradation noise estimate (σn = 2.5) and then perform
the optimization with a lower estimate (σn = 1). We summarize the
quantitative results in Table 5.5. Our method is again on par with
the state of the art. Additionally, our prior is not trained for a specific
color filter array and therefore is not limited to a specific sub-pixel
order. Figure 5.5 shows a qualitative comparison, where our method
produces much smoother results compared to other methods.

5.4 Relationship to MAP

Here we show how our estimator relates to MAP and the formulation
by Jin et al. [JRF17]. We start with the logarithm of the maximum
a-posteriori (MAP) estimator and see that our proposed formulation
is bounded from above by MAP. In addition, we observe that our
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Ground Truth Matlab [MHC04] RTF [KNJF14]

DJDD+f.t. [GCPD16] SEM [KHKP16] DMSP (ours)

Figure 5.5: Visual comparison for demosaicing noisy images from the
Panasonic dataset [KNJF14].

Matlab [MHC04] RTF [KNJF14] DJDD [GCPD16]
33.9 37.8 38.4

DJDD+f.t. [GCPD16] SEM [KHKP16] DMSP (ours)
38.6 38.8 38.7

Table 5.5: Average PSNR (dB) in linear RGB space for demosaicing
on the Panasonic dataset [KNJF14].
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formulation is bounded from below by Jin et al. [JRF17],

log max
x̂

p(y|x̂)p(x̂) (MAP)

= max
x

log max
x̂

p(y|x̂)p(x̂)
∫
gσ(x− x̄1)dx̄1

∫
gσ(x− x̄2)dx̄2

≥ max
x

log
∫
gσ(x− x̄1)p(y|x̄1)dx̄1

∫
gσ(x− x̄2)p(x̄2)dx̄2

≥ max
x

∫
gσ(x− x̄1) log p(y|x̄1)dx̄1 + log

∫
gσ(x− x̄2)p(x̄2)dx̄2︸ ︷︷ ︸

(Our lower bound, Equation 5.7)

≥ max
x

∫
gσ(x− x̄1) log p(y|x̄1)dx̄1 +

∫
gσ(x− x̄2) log p(x̄2)dx̄2︸ ︷︷ ︸

Jin et al. [JRF17]

,

where we applied Jensen’s inequality several times. The interesting
observation here is that our formulation is produced by separately
relaxing the posteriori and prior, which later allows us to get a tighter
lower bound for MAP compared to Jin et al. [JRF17].

5.5 Ratio between Runtime Noise and Train-
ing Noise

We perform an evaluation to find the best ratio between the runtime
additive noise during stochastic gradient descent and the noise used
during DAE training. Specifically, we set up an experiment for image
deconvolution with our framework for fixed σ = 15 and compare the
performance for different ratios between σ1 and σ2 (Equation 5.11).
First, we train different DAEs with noise levels σ1 = 1 : 15. Second,
for each DAE we compute the variance of runtime additive noise by
setting it to σ2

2 = σ2 − σ2
1 . And finally, we evaluate the performance

of each configuration with our experiment. Figure 5.6 shows the
quantitative performance for each ratio σ2

1

σ2 . The configuration σ2
1 =
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Figure 5.6: Performance comparison for different additive noise vari-
ances in our stochastic gradient descent method. We show the average
RMSE for deblurring over a set of images for each ratio σ2

1/σ
2. As ex-

pected, the desired variance σ2 should be evenly split over the trained
DAE and additive noise during stochastic gradient descent, that is
σ2

1/σ
2 = σ2

2/σ
2 = 0.5.

σ2
2 = σ2

2 achieves the best performance. This is expected since our
the DAE trained with a noise variance σ2

1 performs better for that
specific noise variance, therefore it is better to use the same variance
for runtime additive noise.

5.6 Discussion

We proposed a Bayesian deep learning framework for image restora-
tion with a generic image prior that directly represents the Gaussian
smoothed natural image probability distribution. We showed that
we can compute the gradient of our prior efficiently using a trained
denoising autoencoder (DAE). Our formulation allows us to learn
a single prior and use it for many image restoration tasks, such as
noise-blind deblurring, super-resolution, and image demosaicing. Our
results indicate that we achieve performance that is competitive with
the state of the art for these applications. In the future, we would
like to explore generalizing from Gaussian smoothing of the under-
lying distribution to other types of kernels. Similarly, one could also
investigate other utility functions. We are also considering multi-scale
optimization where one would reduce the Bayes utility support grad-



110 CHAPTER 5. DEEP MEAN-SHIFT PRIORS

ually to get a tighter bound with respect to maximum a posteriori.
Finally, our approach is not limited to image restoration and could be
exploited to address other inverse problems.



Chapter 6

Conclusions

In this thesis, we addressed restoration techniques for inverse prob-
lems, including disparity map estimation and image restoration. We
took a declarative approach to solve these problems by separating our
prior knowledge from our reasoning. This approach enabled us to use
the developed knowledge in various restoration tasks.

We described a disparity map estimation technique in Chapter 2.
Common observations were used to design new prior constraints to es-
timate disparity maps. These constraints were formulated in a graphi-
cal model, which could then be solved efficiently using the filter-based
parallel mean-shift approximation method. Since parallel updates are
not guaranteed to converge, we developed a novel and efficient tech-
nique to perform sequential (as opposed to parallel) update scheme
for inference. The time complexity of the proposed approach is still
linear in the number of variables, just like in the parallel scheme. In
contrast to the parallel scheme, where all variables are updated at the
same time, the sequential scheme introduces a risk of ordering bias in
the variable updates. In our implementation, we significantly reduce
this bias by using a multi-directional optimization technique. We com-
pared the parallel and the sequential update schemes using simulated
and real data and we observed that by using an initialization step,

111
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parallel updates can perform more efficiently in terms of quality and
speed. We extended our disparity map estimation approach to stereo
video sequences by including time-domain constraints. Using this ex-
tension, our technique produced disparity maps that are temporally
coherent and have significantly less flickering artifacts compared to
other state of the art methods.

Our general sequential algorithm and the proposed temporal con-
straints can be used and extended for many other labeling problems,
such as semantic and motion segmentation tasks. When encounter-
ing such problems, the lack of a general-purpose dataset prevents
us from developing data-driven approaches. Therefore, hand-crafted
constraints are more practical and intuitive to use. However, more
complex restoration problems such as image restoration cannot be
solved efficiently using hand-crafted priors and require data-driven
techniques.

In Chapter 3, we described the general image restoration task
using a standard degradation model. We proposed an intuitive formu-
lation of the prior distribution using Denoising Autoencoders (DAEs).
We showed that an optimal DAE can be used to compute the gradient
of a smoothed version of the natural image distribution.

We use this analysis in Chapters 4 and 5 to formulate generic
image restoration techniques. In practice, we used neural networks as
an efficient parametrization of DAEs in our techniques. Our method
in Chapter 4, called Denoising Autoencoder Prior (DAEP), is built on
the observation that the gradient of the smoothed density has its
minimum length in the local extrema of the natural image distribution.
Therefore, we defined an energy minimization objective to minimize
the magnitude of this gradient. This led to a generic approach that
could be used for various image restoration tasks such as deblurring
and super resolution.

In a more generic approach, we propose our Deep Mean-Shift Prior
(DMSP) method for image restoration problems. We built this frame-
work using a Bayesian formulation that relaxes the conventional max-
imum a-posteriori estimators. This relaxation led to a simple objective
function that incorporates the smoothed version of the natural image
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density. We used our previous analysis to compute the gradient of
our objective via DAEs efficiently and perform different restoration
tasks. We showed that this general framework can be used also when
degradation parameters such as noise variance and blur kernel are un-
known. Our evaluations implicates that, using this single framework,
we can achieve state of the art performance in many tasks such as
deblurring and demosaicing.

A main limitation of the proposed methods is the use of fully-
convolutional neural networks to parametrize the DAEs. In practice,
this parametrization only works for small degradations and cannot
handle more global artifacts. For example, our primary results on the
image reflection removal task shows that the trained DAEs are unable
to regularize the low frequencies in images. An intuitive approach to
resolve this issue could be to use a multi-scale regularization, where
one would train and use different DAEs for different scales of images.
Despite its limitations, the proposed approach of learning natural
priors using DAEs can be used for many other types of data, where a
large set of samples are available for training such as medical images.
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