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Abstract

The increasing amount of space debris requires huge efforts for the tracking networks in order
to maintain the orbits of all the objects. The precise knowledge of the positions of space debris
objects is fundamental for collision avoidance maneuvers performed by satellite operators and
for future active debris removal missions. It is very well known that the accuracy of an orbit
determination process depends on the kind of observables used, their accuracy, the length of the
observed arc, the number of observations, the observer orbit, and the observer-target geometry
of the observations.
In this thesis an in-depth study is carried out to understand how the mentioned parameters
influence the orbit determination accuracy and how we can improve the quality of the estimated
orbits. After a brief introduction on the least squares adjustment algorithm and on the way of
propagating and manipulating the resulting covariance matrix, we will focus essentially on the
influence of the object-observer relative geometry and of the use of different observables for the
orbit determination of space debris.
The object-observer relative geometry is approached as an information gain problem and it is
studied using simulations and covariance analysis. The main aim of the covariance analysis is
to identify the optimal follow-up strategy as a function of the object-observer geometry, the
interval between follow-up observations and the shape of the orbit. This analysis is applied to
every orbital regime but particular attention is dedicated to the highly-populated space debris
orbits. Furthermore, several particular cases are analyzed with this method: more than two
follow-ups observations, the influence of a second observing station, and the introduction of the
distance as second observable.
The study on the combination of different types of observables is carried out investigating
the influence of addition of the laser range measurements to the classical optical astrometric
observations in terms of improved accuracy of the determined orbit. In particular, after some
validation tests to prove the effectiveness of the implemented algorithm, it will be shown how
different kinds of observables influence the accuracies of the estimated orbital parameters. Then,
the influence of the observation geometry is analyzed and finally the improvements achieved on
the orbit prediction, for different orbital regimes, will be shown. All the mentioned tests are
performed using real ranges from the International Laser Ranging Service (ILRS) stations and
real angular/laser measurements provided by sensors of the Swiss Optical Ground Station and
Geodynamics Observatory Zimmerwald owned by the Astronomical Institute of the University
of Bern (AIUB).
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Chapter 1

Introduction

The first artificial satellite was launched in 1957; since then the satellite launch rate continuously
increased reaching the point that in January 2017 5250 launches were performed bringing 7500
satellites in orbit [3]. Unfortunately, the space-race has a side product: orbital debris. At the
moment there are more than 29000 objects with a diameter bigger than 10 cm [3], and more
than 750000 objects with a diameter from 1 cm to 10 cm in the space around the Earth [3];
furthermore, according to estimates there are more than 166 million objects from 1 mm to 1
cm [3]. Among all these objects, only about 1400 are active satellites, all the rest is space
debris. Space debris is any man made orbiting object which is not operational anymore with
no reasonable expectation of assuming or resuming its intended function [4]. The space debris
population includes discarded satellites, rocket bodies, mission-related objects, painting and
insulation flakes, fragments created by collisions, and break up events [5].
The space debris problem was taken more seriously since 2009 when the collision between
Iridium 33 and Cosmos 2251 occurred. Recent studies [6] and [7] proved that the space debris
populations will continue to grow even if we stop to launch new satellites; this growth will
be driven mainly by accidental collisions and breakups. Therefore, space debris constitutes
a serious problem for manned and robotic missions, both humans and satellites. In the Low
Earth Orbit region (LEO) the average speed for debris is about 8 km per second [8]. Because
of the high velocities of the debris particles, the present shields, including those used on-board
of the International Space Station (ISS), are able to protect spacecraft only from the smaller
debris (less than 1 cm in size [5]). In order to ensure the long-term sustainability of outer
space activities, the various agencies and institutions are facing this problem both from the
bureaucratic side, developing guidelines for the satellite owners and manufacturers, and from the
scientific side answering questions about the space debris population and its evolution. Studies
on the evolution of the space debris population [7] and [9] showed the need of active debris
removal (ADR) operations to preserve the environment for the future generations. Although the
ADR will be necessary for the long-term sustainability, it is of fundamental importance for the
current space activities to know and to understand as much as we can about the space debris
problem.
The main aim of the space debris research is to find an answer to the most common questions
about space debris: how many debris objects are there? What are the most populated regions?
What are they made of? And how will this population evolve in the future? To answer these
questions the most common approach consists of three main steps: the first is the discovery of
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the objects [10], the second is their orbit determination [11] and the third is their characterization
[12].
This work takes place in the second step of the chain, in particular once an object is discovered
by mean of survey observations and classified as a space debris, to accomplish further study
on it, it is necessary to improve its orbit. In particular, the main aim of this thesis is to study
the ways to enhance the performance, in terms of accuracy, of the orbit determination (OD)
process. The need of improving the OD accuracy is mainly due to two factors: the number of
the objects and the type of instrument used to acquire the measurements. If on one hand we have
to deal with a relatively high number of objects, on the other hand, the number of instruments
which are able to observe them is limited. The only way to acquire the measurements needed to
perform an OD of a space debris is via radar or telescope facilities. Both type of instruments
have advantages and disadvantages. If radars can observe centimeter size object at 1000 km of
altitude [13], the telescopes become the only instruments able to observe space debris at the
higher altitude. If radars can provide both distance and direction measurements, the telescopes
provide only direction angles. If radars can operate continuously, the telescopes observations
are weather dependent and possible only during nighttime. At this point the need to optimize the
observation strategy is evident. It is necessary to find methods which improve the results of the
OD process and increase the maximum time interval in which the object has to be re-observed
before losing it. Assuming that the dynamical model used to describe the orbital motion of an
object is accurate enough, the OD accuracy depends essentially on 6 factors:

- the length of the observed arc,

- the number of the observations,

- the accuracy of the measurements,

- the type of observations,

- the temporal distribution of the observations,

- the object-observer relative geometry.

As we will see later in the course of the thesis, the length of the arc of observations has to
be optimized as a function of the accuracy of the dynamical model used for the OD and the
visibility of the observed object. Generally speaking, the more observations, the better is the
OD accuracy. However, we do not have to underestimate the influence of the distribution of
the measurements: observing always the same portion of the orbit does not ensure the precise
knowledge of the object trajectory in the unobserved part of the orbit. The OD accuracy depends
on the type of measurements, on their accuracy and on the type of information that they can
provide directly. The achievable accuracy in the orbit estimation depends directly on the noise
and the precision of the observations. Finally, according with the relative position of the object
on its orbit and of the observer on the Earth the information retrieved during the OD process is
different.
In this thesis we will treat the problem of the improvement of the OD accuracy analyzing
the influence of all just mentioned factors but focusing mainly on the consequences of the
object-observer relative geometry and of the different observables processed within a Least
Squares adjustment (LSQ). After a generic introduction of the main algorithms typically used
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for the OD (Chapter 2) we will analyze in more details the Least Squares adjustment method
and its application to the space debris orbit determination. In particular, we will show the main
parts, the main outputs and the main properties of the LSQ focusing especially on the properties
of the normal equation system and of the covariance matrix.
One of the outputs of the LSQ is the covariance matrix, this gives information about the uncer-
tainty of the estimated orbit and it is used as discrimination criterion to decide whether or not to
perform new observations of an object. For this reason in the Chapter 3 we will describe how
the covariance can be manipulated, propagated in time and what are the main characteristics
of the propagated uncertainties. We will study also how certain factors, like the number of
estimated parameters and the object-observer relative geometry, will influence the behavior of
the propagated covariance.
Once proved the dependency of the performance of the OD algorithm on the observation geom-
etry, an in-depth study is carried out via simulations and via the analysis of the covariance to
identify the optimal sequence of follow-up observations and to understand which are the main
geometry-dependent factors which influence the accuracy of the OD. This study is performed in
Chapter 4 and applied to different typical observations scenarios and orbital regimes. With the
same method we will study the influence of the number of observations, of the time distance
between them. We will then analyze the OD results obtained when processing different observ-
ables (angular and range measurements) and when the observations come from more than one
observatory.
Finally, in Chapter 5, we will analyze the benefits of adding laser range measurements to the
classical optical astrometric observations. Kirchner et al. [14] have shown that with the new
laser technologies it is possible to successfully track space debris, at least a certain category of
them. After validation tests carried out to prove the effectiveness of the implemented algorithm,
by means of only real data, we will show how the different observables influence the accuracy
of the estimated parameters. We will investigate also the influence of the observation geometry
and of the number of measurements. Particular attention is dedicated to the evaluation of the
achievable accuracy with a relatively small number of observations spread over a short arc.
These tests are performed using real ranges from the stations of the International Laser Ranging
Service (ILRS) and real angular/laser measurements provided by sensors of the Swiss Optical
Ground Station and Geodynamics Observatory of Zimmerwald owned by the Astronomical
Institute of the University of Bern (AIUB).
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Chapter 2

Least Squares Adjustment and Space
Debris Orbit Determination

2.1 Introduction
One of the fundamental steps of the space debris research concerns the knowledge of the position
of the objects. In facts, if one wants to characterize space debris, to know its rotational state
or investigate the material it is made of, first of all one has to discover it, then one has to
know precisely where it is and where it will be. We can say that the orbit determination (OD)
processes, both the initial OD and the orbit improvement are fundamental pillars in this field.
For simplicity from now on we will refer to orbit improvement simply by using OD.
Today several groups of estimators exist and are essentially based on the works of Kepler,
Legendre and last but not least Gauss [15]. Of course, in this last 500 years, many innovations,
modifications and adjustments to their algorithms were proposed and performed but the basic
principles are still the same. The two main groups of algorithms commonly used in the orbit
improvement are: the batch estimators (like the Least Squares method), and the sequential or
recursive estimator (like the Kalman filters). Between them we find the group of the sequential-
batch estimators which try to take the advantages of both mentioned algorithms.
The performance of all OD determination algorithms depends on some common factors like:
the number of measurements, their accuracy, their distribution, the kind of observables and
the object-observer relative geometry. Since the main aim of this thesis is the enhancing of
the accuracy of the OD results, we will first of all briefly introduce the three main groups of
estimators then we will analyze in detail the Least Squares (LSQ) adjustment and its properties.
We will focus on this algorithm since it is the one on which all this thesis work is based.

2.2 Types of Estimator Algorithm
In the OD field, all the mentioned estimators are stochastic processes which estimate a set of
unknown parameters (such as the classical orbital elements, the state vector, the equinoctial
elements etc.) which minimize, very generally, the discrepancies between the computed and
the real measurements. The difference among the three groups resides essentially in the way
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the observations are treated. The batch and the sequential-batch estimators process group of
data (or batches) while the sequential ones update or correct the estimated parameters as soon as
new observation is available. For convenience from now on we will refer to the classical orbital
elements simply with orbital elements (OE).

2.2.1 Batch Estimator
The batch algorithms provide an estimate of the unknown parameters at a certain epoch and an
associated covariance matrix which contains the uncertainty of the parameters and how they
are related. Normally the batch estimators need iterations to converge on the optimal solution,
especially if the investigated problem is non-linear. On the other hand, the numerical integration
has to be performed only once per iteration. Since this type of algorithm processes batches
of data, it is necessary to collect all the available data before performing the estimation. This
limits the applicability of such algorithms only to post-processing since are computationally
heavy and the restart of the algorithm every time that a new observation is available it is not
efficient. Nevertheless, the post-processing has the advantage that one can profit of more precise
information about time-varying parameters (e.g. the ballistic coefficients) [15] and then usually
produces more accurate results. As an example, the atmospheric drag is a function of the
atmospheric density that, as we will see in the Paragraph 5.4, can be modeled exploiting the
parameters which describe the solar activity and the disturbances of the Earth’s magnetic field.
These parameters are obtained by processing other phenomena and are not available at the
moment of the acquisition of the measurements. Another disadvantage of the batch estimator
is the difficulty to model the uncertainties of the dynamical model [15]. On the other hand,
it is common habit to introduce solve-for parameters which need to be estimated to remedy
model deficiencies. Among the solve-for parameters there are, in general, scaling parameters
to estimate the area-to-mass ratio (AMR), the ballistic coefficient and other empirical either
constant or periodic and/or pseudo-stochastic accelerations to “complete” the dynamical model
[15–17].
The family of the batch estimators includes the Least Squares algorithm which will be discussed
in details later in Paragraph 2.3.

2.2.2 Sequential-Batch Estimator
As the name says, the sequential-batch estimators constitutes an hybrid solution between the
batch and the recursive algorithms. These techniques process batches of data separately and then
combine the obtained results using the Bayes theorem to update the state estimate and the related
covariance [15]. For this reason, the sequential-batch techniques are also called Bayes filters.
These techniques are often used to save time in the case that one has already processed a certain
number of observations with a batch estimator and then new measurements become available.
Therefore, instead of reinitializing a new batch estimator with old and new observations, we can
use these kind of algorithms to update the previous solution. The main issues related to these
techniques are due to the handling of the new data and to the propagation of the state estimate
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and its related covariance. For further details on this technique please see [15].

2.2.3 Sequential Estimator - The Kalman Filter
The last group of estimators is constituted by the sequential ones. Among them the most famous
are the Kalman filters. These algorithms exploit the predictor-corrector mechanism to compute
the best estimate of a time-varying process taking into account the noise of the observations
and the uncertainties of the background models. These algorithms are very useful for problems
where there is a continuous flux of measurements (e.g. attitude determination problems). The
two main reasons that make popular these algorithms are the fact that the state estimate and
its covariance are propagated until a new measurement is available and then updated; and the
fact that all the information coming from the data history is stored within the covariance matrix,
so the reprocessing of past data is not needed. If these can be considered advantages w.r.t. the
batch estimators, on the other hand, it is difficult to find appropriate models for the process noise
and they tend to ignore new data [15].
There are several versions of the Kalman filter, as in the case of the LSQ, the most used ones
are: the Kalman filter applied to linear systems, the linearized, the extended and the unscented
Kalman filters used for nonlinear problems. Being the OD determination problem nonlinear, the
most used ones are the last three. The first two differ for their approach to the propagation: the
first propagates the difference of the state about a nominal trajectory, the second uses each new
estimates to generate a new reference trajectory [15]. Since sometimes the extended Kalman
filter may not converge to the minimum variance solution [18], very often the unscented Kalman
filter is used which calculate the covariance from the propagation of the perturbed states accu-
rately selected around the correct one. This kind of algorithms is used to take into account in
the propagation of the covariance that the error distributions in the OD are not Gaussian [19],
and then it is essentially used for tracklet association and initial orbit determination problems
[20, 21].

2.3 The Least Squares Adjustment
The OD problem is a particular case of parameters estimation: one has to determine the set of
parameters (as the orbital elements, the equinoctial elements or the state vector) of a model
of the phenomenon (the orbit dynamical model), which fit “best” a series of measurements.
Since the problem is overdetermined, or rather the number of the observations is bigger than
the number of parameters to estimate, we have to choose a criterion and set up a cost function
to represent the “best” fit of the model w.r.t. the data. One possible criterion is to minimize
the sum of the absolute values of the difference between the data and the computed values; or
the one proposed by Gauss and Legendre where the sum of the squared difference has to be
minimized (Least Squares) [18], which is by far the most used in the OD problems.
The basic formulation of the LSQ adjustment process is the observation equations visible in Eq.
2.1. Given a set l of n observations, this can be described by a functional model f , function
of the vector x made of u unknown parameters (with n > u) plus the discrepancies ν , called
residuals, between the model and the measurements.
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l+ν = f (x) (2.1)

It is assumed that the residuals have mean value equal to zero with a fixed standard deviation
(STD) σ :

E[ν ] = 0,

E[ν2] = σ
2.

In the case of linear systems, each observation can be expressed as a linear combination of
the unknown parameters. Introducing the first design matrix A as the n×u partial derivatives
matrix of the functional model w.r.t. to the unknown parameters, the Eq. 2.1 can be rewritten in
matrix form as follows:

ν = Ax− l (2.2)

with

A =
∂ f (x)

∂x
. (2.3)

The least-squares cost function that has to be minimized is defined as follows:

J =
n

∑
i=1

(Ai · xi − li)
2 = (Ax− l)T (Ax− l) (2.4)

Assuming that the system of observations is positive definite the condition which minimizes
J is that its gradient w.r.t. x is equal to 0. This condition is verified if:

(
AT A

)
x = AT l or equivalently N ·x = b (2.5)

where:

- N =
(
AT A

)
,

- b = AT l.

The Eq. 2.5 is called “Normal Equations system” (NEQ). If N is regular, solving the NEQ
w.r.t. x we obtain the set of parameters which minimizes the cost function J.

x =
(
AT A

)−1 AT l (2.6)
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The Equation 2.6 is valid when the unknown parameters and the observations are linearly
related. Since in the OD problem the relations between the unknowns and the observations
are not linear, the Eq. 2.1, must be approximated through a first-order Taylor series expansion
around x0.

l+ν = f (x0)+Ax̂ (2.7)

where:

- x0 are the a priori values of the unknown parameters x,

- A is again the first design matrix but evaluated as function of the a priori parameters,
which reads as follow:

A =
∂ f (x)

∂x

∣∣∣∣
x=x0

, (2.8)

- x̂ are the unknown correction to add to the a priori value x0 so that x = x0 + x̂.

Rearranging the Eq. 2.7 and introducing the term l̂ = l− f (x0) usually called observed
minus computed (O−C) we obtain the observation equations for nonlinear systems:

ν = Ax̂− l̂ (2.9)

The Equation 2.9, for nonlinear systems, is equivalent to the Eq. 2.2 for linear ones. The
NEQ system and its solution can be derived analogously and look as shown in Eq. 2.10 and in
Eq. 2.11:

(
AT A

)
x̂ = AT l̂, (2.10)

x̂ =
(
AT A

)−1 AT l̂. (2.11)

The main difference resides in the fact that we solve for corrections to be given to the a priori
values, and we need to iterate the updating of the a priori value until when the new corrections
values do not improve anymore the solution. It is important in this case to find a criterion to stop
the iterations. Since we are looking for the solution which minimizes the residuals a good stop
criterion can be made based on the changes of the value of the sum of the residuals. Practically,
together with the mentioned criterion a maximum number of iterations is also allowed.
It must be said that the nonlinearity of the problem introduces some issues: we need an a priori
estimate of the unknown parameters, and depending on the a priori values, the dynamic of the
problem and the distribution of the observations, the LSQ is not always able to find a proper
solution. In particular, two main convergence issues can occur: the first, the solution may
diverge; and the second, the LSQ converges to a local minimum of the cost function which can
be different from the true solution, as we will see in Chapter 5.
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Until now all the observations were treated assuming that they have the same accuracy. Generally
this is not the case, in fact very often one performs OD using either different kind of observables
(e.g. direction angles and distances, range and range-rate, etc.) or the same observable but
coming from different sensors. To take into account these differences we introduce the weight
matrix W. The W matrix describes the stochastic model and is the inverse of the a priori
variance-covariance information of the observations. It contains the relations between the
measurements and it is also function of the measurements noise as shown in Eq. 2.12. So W is
a positive definite symmetric matrix that for independent observations becomes diagonal. The
elements of the diagonal matrix Qll are constituted by the square of the standard deviation σi
(variance) of the generic measurement i.

W = Kll
−1 = σ

2
0 Qll

−1 (2.12)

where:

- Kll is the cofactor matrix of the measurements [18],

- σ2
0 is the a priori sigma of the unit weight,

- Qll is the covariance matrix of the observations.

Introducing the W matrix in the cost function J and repeating the procedure described above,
the solution of the NEQ for nonlinear systems in the case of weighted measurements reads as
follows:

x̂ =
(
AT WA

)−1 AT Wl̂. (2.13)

Together with the improvement of the estimated parameters, the other output parameters of
the LSQ adjustment are:

- Kxx the a posteriori cofactor matrix of the estimated parameters, can be derived applying
the error propagation law on the covariance matrix of the observations:

Kxx =
[(

AT Kll
−1A

)−1 AT Kll
−1
]

Kll

[(
AT Kll

−1A
)−1 AT Kll

−1
]T

=
(
AT WA

)−1
= N−1.

(2.14)

- ν = Ax̂− l̂ the estimate of the residuals.

- m2
0 the a posteriori variance of the unit weight:

m2
0 =

νTWν

n−u
(2.15)

where n−u is the degree of freedom of the LSQ adjustment and it is valid only for n > u.
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- Qxx the a posteriori covariance matrix of the estimate parameters, where the square root
of the elements on the main diagonal corresponds to the mean error of the estimated
parameters. The off-diagonal terms reflect the correlation between the parameters.

Qxx = m2
0
(
AT WA

)−1
= m2

0Kxx (2.16)

- γi j the correlation which can be retrieved from the covariance matrix as shown from
Eq. 2.17. If γi j exists, −1 < γi j < 1, the off-diagonal terms (γi j) can not be equal to 1
otherwise the covariance matrix would be singular and we would not be able to solve the
NEQ system. However, if γi j ≈±1 the two parameters are strongly correlated vice versa
if γi j = 0 the parameters are not correlated. Being Qxx,i j the covariance term between the
parameters i and j, Qxx,ii and Qxx, j j the variances of parameters i and j respectively, their
correlation reads as:

γi j =
Qxx,i j√

Qxx,ii ·Qxx, j j
. (2.17)

- Condition number of the correlation coefficients matrix. This number provides infor-
mation about the robustness of the parameters estimation in the LSQ adjustment and
about the consistency of the obtained covariance [22]. The condition number of the
correlation coefficient matrix is defined as the ratio of its largest singular value to its
smallest singular value [22]. To determine its value in our simulation first, we needed
to apply the singular value decomposition [23] to the correlation matrix then, as said
before, we took the ratio between the biggest and the smallest singular value. Parametric
studies showed that a large condition number implies a lack of covariance consistency [22].

2.4 Properties of the NEQ
Starting from the basic formulas for the LSQ adjustment shown in the previous paragraph,
several manipulations can be performed on the NEQ system. A general overview of these
operations, which are important for the derivation of some results of this thesis, are reported in
the next sections.

2.4.1 Stacking of NEQ Systems
The basic operation that can be done with NEQ systems is their stacking. Although it is
commonly used in the satellite geodesy field [24, 25] this technique is also very useful to
investigate how the distribution and the type of observations influence the accuracy of the
estimated parameters (from now on we will refer to this kind of study simply with the information
gain). This is the basic principle on which we based the analysis carried out in Chapter 4.
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Stacking means the combination of common parameters coming from different NEQ systems
in one single parameter in the resulting NEQ. It was proven that sequential LSQ adjustment
leads to the same results as a common adjustment in one step, provided that the different
observation series are independent [24]. Therefore we will briefly outline the basic formalism
of this operation; for further details on the equivalence proof we refer to [24].
Assuming to have 2 statistically uncorrelated systems of observation equations (the extension to
more than 2 NEQs is straightforward) function of the same unknown parameters x we have:

{
ν1 = A1x− l1
ν2 = A2x− l2

(2.18)

where νi, Ai and li with i = 1,2 are respectively the residuals vector, the first design matrix
and the O−C vector of the ith system. Knowing that Wi is the weight matrix of the ith system,
the corresponding NEQ systems look as follow:

{(
A1

T W1A1
)
·x = A1

T W1 · l1(
A2

T W2A2
)
·x = A2

T W2 · l2
. (2.19)

The superposition of the individual NEQ systems is defined as:

Nc = N1 +N2 =
(
A1

T W1A1
)
+
(
A2

T W2A2
)

(2.20)

bc = b1 +b2 = A1
T W1 · l1 +A2

T W2 · l2 (2.21)

from which the common parameters x can be estimated from the combined NEQ.

Nc ·x = bc. (2.22)

The just exposed technique of combining different NEQ systems is fundamental for the
sequential-batch estimators, like for example the sequential LSQ adjustment.

2.4.2 Constraining of Parameters
It can happen that the observations available do not contain all the information needed to derive
a solution. In this case, the NEQ is singular or almost singular. If this occurs, the N matrix
is ill-conditioned therefore it should not be inverted since the inversion may produce large
numerical errors. To remedy the rank deficiencies of the matrix, we need to introduce additional
information, or constraints, into the LSQ. The constraining can be done in different way, but one
of the most convenient methods of constraining is via the introduction of pseudo-observations
with their appropriate weighting which reflects their accuracy. This procedure allows a reduction
of the limitation to the degree of freedom of the parameters and avoids the degradation of the
solution given by the setting of the conditions directly on the parameters [25]. Furthermore, the
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constraints may also be applied to force the estimated parameters to assume a value within a
restricted range.
The observation equations for the fictitious observations and their relative weights matrix is
equivalent to that of the “real” observations in Eq. 2.9.

νh = H ·x−h (2.23)

Wh = σ
2
0 Qhh

−1 (2.24)

where:

- νh is the residual vector of the constraints,

- H is the first design matrix containing the partial derivatives of the fictitious observations
w.r.t. the estimated parameters,

- h is the vector of the known fictitious observations,

- Qhh
−1 represents the dispersion matrix of the introduced pseudo-observations (con-

straints).

The NEQ system obtained for the pseudo-observations (Eq. 2.25) can be stacked as
shown in the previous paragraph with the NEQ of the “real” observations to obtain the com-
plete/constrained NEQ (Eq. 2.26).

HT WhH ·x = HT Wh ·h (2.25)(
AT WA+HT WhH

)
·x = AT W · l+HT Wh ·h (2.26)

Depending on the purposes of the LSQ and the estimated parameters several ways of
constraining are possible. For the purposes of this thesis the most meaningful ones are the
absolute and the relative constraining of the parameters [25].
The absolute constraint is used to force the estimated parameter x to a value w. This can be
done setting up the following pseudo-observation:

νh = x−w. (2.27)

From which the Eq. 2.26 becomes:

(
AT WA+Wh

)
·x = AT W · l+Wh ·w. (2.28)

A particular application of this kind of constraining is the forcing of the estimated parameter
to its a priori value, possible setting w = 0 and adding the weights Wh to the NEQ.
The relative constraints are used to force the improvements of two parameters with respect to
each other. Having two parameters xi and x j, and the known value which relate them w, such
constraint can be set up via the Eq. 2.29. Introducing σw as the standard deviation (STD) of the
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tie value w the Eq. 2.30 shows the NEQ system of the constraint which, as shown before, must
be stacked to the “real” observations NEQ.

ν = xi − x j −w (2.29)

(
σ2

0
σ2

w

)
·
[

1 −1
−1 1

]
·
[

xi
x j

]
=

(
σ2

0
σ2

w

)
·
[

w
−w

]
(2.30)

2.4.3 NEQ Normalization
This procedure is important to avoid numerical instabilities in the NEQ solution. In the previous
paragraph we have just mentioned the problem of the bad conditioning of a matrix. In fact,
as long as the detN ̸= 0 the matrix is regular but the smaller the value of detN is, the more
unreliable is the solution for x. In this case, we say that the matrix N is badly- or ill-conditioned;
in particular, in such NEQ system a small change of b causes large relative changes in x [24].
The normalization is a particular transformation of the NEQ system whose aim is to scale the
values of the matrix N so that the main diagonal is constituted by 1. As shown in [24] the
normalization can be easily done applying the following equation:

BT NB ·x = BT ·b (2.31)

where B = diag
(

N
− 1

2
ii

)
and Nii with i = 1, ...,u is the ith element on the N matrix.

2.5 The Covariance Matrix and its Properties
Another product of the LSQ that will be extensively used during this thesis is the covariance
matrix. As we have seen, the LSQ adjustment provides both the best estimate of the parameters
which minimize the error and also the statistical confidence in the uncertainty of the answer [1].
The covariance matrix, defined by Eq. 2.16, contains the variances (squares of the STD) and the
covariances of the estimated parameters. Together with m0 it describes the closeness of the fit
for the chosen dynamics [15]. Furthermore, the cofactor matrix indicates the observability of
of the system. In order to be observable a linear dynamical system should fulfill the following
criterion:

δxk
T Kxxδxk > 0 (2.32)
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for all arbitrary real vectors δxk, at the time tk [26]. This condition requires that Kxx is
symmetric and positive definite, which can be obtained only if A is full rank [26].
The covariance matrix indicates also which are the effects of the noisy data or of a certain
parameter on the estimated ones [15, 26]. It is interesting to notice that the evaluation of the
observability and the sensitivity of the system are not function of the availability of the real
measurements but only of their partial derivatives w.r.t. the estimated parameters [15]. The
validity of the model used to set up the observation equations can be easily checked via a
model-test. Since for zero-mean Gaussian distributed noise on the measurements, the sum of
the squares of the residuals should be χ2-distributed, then the ratio between the a posteriori and
the a priori variances is close to 1. In particular being z a χ2-distributed random variable with
degree of freedom n−u, we have that:

m2
0

σ2
0
=

z
n−u

. (2.33)

If n−u ≫ 1 and the ratio is not ∼ 1, it means that either gross errors or outliers are present
in the system, or there are deficiencies in the mathematical model [27].
The covariance matrix it is also fundamental to express the uncertainty w.r.t. different sets
of parameters without solving a set-specific LSQ adjustment and to express the uncertainty
evolution with the time. Sometimes, for numerical reasons as an example, it is better to
determine an orbit w.r.t. a certain set of elements (i.e. either orbital elements, state vector
or equinoctial elements) but for the applications another set of parameter is easier to use; e.g.
for collision avoidance operation the uncertainty w.r.t. the state vector in radial, along- and
cross-track components is more easily understandable than the uncertainty w.r.t. the orbital
elements. Another goal of the LSQ modeling for OD is to predict the position of the observed
object in the future. Unfortunately, since the dynamical model for the OD and propagation is
just an approximation of the forces acting on an orbiting object, the estimated orbit has to be
updated with new observations to keep it with a good level of accuracy. The question now is,
when is the best time to re-observe an object? If on one hand the more observation the better,
on the other, acquire observations which do not give a certain amount of improvement results
in time-consuming activities for a generic observer. The use of the covariance matrix becomes
essential to determine the optimal data span [18]. Generally speaking both these tasks can be
accomplished via a similarity transformation of the covariance matrix as shown in Eq. 2.34.

Qyy = C ·Qxx ·CT (2.34)

where Qyy and Qxx are the output and input covariance matrices respectively, and C is the
transformation matrix. The transformation matrix can be derived applying the linear-error theory
[15] and in the case of transformations between different sets of parameters it corresponds to
the partial derivatives matrix of the second set w.r.t. the first one; and in the case of uncertainty
propagation C coincides with the state transition matrix (STM). Both these operations will be
discussed in the next Chapter (3).
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2.6 Orbit Determination of Space Debris
To determine the orbit of an object, the observation of its motion is required. The main types
of observations used today are essentially three: the angular data, the range and the relative
velocity measurements by measuring the Doppler effect.
Historically, the most ancient type of observations are the angular ones. In particular the Right
ascension and the Declination (RA and DE), obtained observing the movement of an object w.r.t.
the fixed stars, were used by Gauss to estimate the 6 orbital elements which fully describe an
orbit. This set of angles express the position of an object in the celestial sphere. There are two
types of RA and DE: the geocentric and the topocentric. The first are calculated in an equatorial
coordinate system whose origin is in the center of the Earth (generally called Earth Centered
Inertial - ECI) and essentially the RA is the longitude angle measured from the vernal equinox
and the DE is the latitude angle measured from the celestial equatorial plane. The topocentric
RA and DE use a plane parallel to the Earth equatorial plane but located at a particular site [15].
Another set of angular data is constituted by the Azimuth and the Elevation angles taken in the
local-horizontal coordinate system. The RA and DE are extracted by processing the acquired
images using an external star catalog [16], the azimuth and elevation can be measured directly
on the mount of the instrument, being it a radar or a telescope.
The ranges are provided by radar or by laser systems and can be distinguished in two groups:
one-way and two-way data. The one-way signals are measured either at the sensor location or
on board the satellite while for the two-way ones the observing station sends a signal which
has to be reflected or re-transmitted by the target. The ranges are determined converting the
measured time of flight (TOF) of the electromagnetic signal.
The last group of measurements often used for the satellite OD are range rates. This measurement
is derived from the Doppler shift, caused by the relative motion between object and observer,
which alters the signal frequency traveling to and from the satellite. However, range and range
rate especially for high altitude satellites are possible only through an active “collaboration” of
the observed object. In fact, very often the satellite receives a signal and then retransmits it to
the station.
Laser ranging techniques became popular since they provide very accurate measurements and
do not require an active payload on board of the satellite. Laser range measurements are in fact
possible thanks to the corner-cube retro-reflectors which reflect the light back parallel to the
incoming beam.
At this point we may ask how we may determine orbits of space debris? A space debris is
defined as: “Any man-made object which is non-functional anymore without reasonable ex-
pectations that it will resume its intended function” [13]. By definition a space debris it is not
“collaborative”, and this will reduce the amount and the type of usable data for its OD.
The “Space Surveillance Network” (SSN) of the US Strategic Command (USSTRATCOM), a
military entity of the USA, is the main provider of the orbits of large space debris. It consists of a
global network of optical telescopes but mainly of narrow beams and phased array radars which
collect and process continuously measurements in order to keep up to date the orbits of the ob-
served objects [13]. Since the radar sensitivity decreases with the fourth power of the distance of
the object, the application of radar techniques is strongly limited by the distance of the object. If
on one hand we are able to track centimeter-size objects in the Low Earth Orbit (LEO) regime, it
starts to be demanding the tracking of 1 meter-size object in the Geostationary Earth Orbit (GEO)
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[13]. These are the main reasons why the estimated orbits of high altitude space debris are based
on angular measurements provided by optical telescopes. Another big entity providing orbits
of space debris in high-altitude orbits is the International Scientific Optical Network (ISON)
managed by the Keldysh Institute of Applied Mathematics (KIAM) [28]. Other advantages of
the optical telescopes are: the fact that the measurements are acquired passively exploiting the
capability of the object to reflect the light of the Sun; and, being the angular resolution of a
telescope ∝ λ/D where λ is the wavelength and D is the aperture diameter [15, 29], observing
in the visual part of the electromagnetic spectrum allows us to obtain relatively small instruments
with a high resolution and sensitivity. The main drawback of the use of optical telescopes is
that the observations are weather dependent. Since the optical telescopes exploit the reflected
light of the Sun their capability of collect light is directly proportional to their size, therefore
faint objects can not be observed with small telescope. Despite that, an optical telescope of 1 m
diameter is able to track an object of 10 cm in size in the GEO-regime. Practically a telescope
whose mirror has a diameter of 1 m is able to track GEO objects that are 10 times smaller
w.r.t. those trackable by the a USSTRATCOM radar system whose antenna have diameters
between 34 and 36 m [13], this is the main reason why the USSTRATCOM tracks GEO objects
mainly with optical telescopes. As we will see later, the OD accuracy depends on a lot of factors.
Nevertheless, the angle-only orbit determination of space debris can produce accuracies better
than 100 m [30]. Recently, several studies were performed to evaluate the influence of the
range observables on the OD of space debris [31–33]. The tracking of space debris using laser
techniques became possible thanks to the new generation of lasers with a high pulse energy (1
J) [34]. Further details on the space debris tracking using laser systems will be given in Chapter 5.
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Chapter 3

Covariance Propagation

3.1 Motivation
The covariance matrix is one of the products of the LSQ adjustment. It gives information about
the statistical reliability of the estimated parameters and consequently contains the uncertain-
ties of the satellite position and velocity. Lastly, the satellite position uncertainty has become
fundamental for different purposes. For catalog maintenance, as an example, it is needed to
re-observe an object before the uncertainty becomes bigger than the field of view (FoV) of the
instrument. For close-approach calculations the covariance is used to determine the collision
probability and then to decide if the satellite has to maneuver or not [1].
It is then important to understand how the uncertainties of the estimated parameters evolve with
time and how we can transform the covariance w.r.t. different representations of the state vector.
The main aim of this chapter is to show how the covariance can be manipulated and then we
will analyze the uncertainty evolution depending on different orbit determination scenarios and
parameters.

3.2 Covariance Transformation
Depending on the applications, it is useful to transform the covariance matrix between different
state representations. Figure 3.1 shows the main transformations between state vector descrip-
tions. In particular, the figure shows the transformations between different sets of Cartesian
coordinates (represented by the ellipses) and between different sets of parameters: Cartesian
coordinates, classical osculating orbital elements, equinoctial elements and flight parameters
(represented by rectangles) [1]. During this thesis the main transformations used are: between
orbital elements and Earth Centered Inertial (ECI) Cartesian coordinates, between ECI and Earth
Centered Earth Fixed (ECEF) coordinates, and between ECI and Radial, Along- and Cross-track
components (RSW). For this reason, we will focus only on these transformations; however the
others w.r.t.:

- the equinoctial elements,

- the flight (spherical) sets (geocentric latitude, longitude, flight-path angle from the local
horizontal, azimuth, position magnitude and velocity magnitude) [1],
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- the normal, tangential and cross-track components (NTW),

- the Pseudo Earth Fixed (PEF), which is similar to the ECEF but without considering the
actual direction of the Earth’s spin axis described by the polar motion;

- the Mean (Equinox) of Date (MOD),

- the True (Equinox) of Date (TOD),

- the True Equator Mean Equinox (TEME),

will not be treated but their application is analogous to what we will show and for further details
please refer to [35, 15]. The difference between MOD, TOD, TEME and ECI resides only in
the choice of the reference orientation of the Earth at a certain epoch. For completeness, when
we refer to ECI we implicitly mean the J2000 reference system defined with the Earth’s Mean
Equator and Equinox at 12:00 Terrestrial Time on 1 January 2000. The x-axis is aligned with
the mean equinox. The z-axis is aligned with the Earth’s spin axis or celestial North Pole. The
y-axis is rotated by 90° East about the celestial equator [26].

Figure 3.1 Main covariance transformations [1].

As said in the previous chapter, the covariance transformations can be derived by the
application of the linear-error theory and result in a similarity transformation which follows the
Eq. 2.34 [15]. For clarity, from now on when we will refer to a generic covariance transformation,
without involving the propagation, we will use J to indicate the transformation matrix. The
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matrix J is simply the Jacobian matrix of the ending state w.r.t. the initial one [1]. Recalling for
simplicity the transformation equation taking into account J and indicating with y the ending
state and with x the initial one we have:

Qyy = J y
x
·Qxx ·J y

x

T , (3.1)

where:

J y
x
=

[
∂y
∂x

]
. (3.2)

Generally speaking all the transformation can be performed applying the Eq. 3.1 only the
values within J change. In the next paragraph we will shortly describe all the transformations
used in this thesis.

3.2.1 Transformation between Orbital Elements and Cartesian Coordi-
nates

Referring with the subscripts OE and ECI respectively to the orbital elements and to the
Cartesian covariance matrix, respectively, the Eqs. 3.1 and 3.2 become:

QECI = J ECI
OE

·QOE ·JT
ECI
OE

and J ECI
OE

=

[
∂⃗r

∂OE
,

∂ v⃗
∂OE

]
(3.3)

where:

- r⃗ = [x,y,z] is the position vector in the ECI system with its corresponding vector compo-
nents,

- v⃗ = [vx,vy,vz] is the velocity vector in the ECI system with its corresponding vector
components,

- OE = [a,e, i,Ω,ω,u0] are the osculating orbital elements namely: semi-major axis, eccen-
tricity, inclination, Right Ascension of the Ascending Node (RAAN), argument of perigee
and argument of latitude at the osculating epoch;

- ∂⃗r
∂OE ,

∂ v⃗
∂OE are the partial derivatives of the position and velocity components of the orbiting

object w.r.t. the orbital elements whose derivation is shown later in Paragraph 4.2.3.

The partial derivatives of each state vector component w.r.t. each single orbital elements
occupy the columns of the matrix J.
Numerical restrictions occur for certain values of the eccentricity and of the inclination where
the derivatives (and the elements) start to be poorly defined, in particular this happens if the
orbit is either nearly circular or nearly parabolic (e < 0.00001 and e > 0.9999), and if the orbit
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is near equatorial (i < 0.00001° and 180°−i < 0.00001°) [1].
Finally, the inverse transformation from ECI components to orbital elements is obtained applying
the following equations.

QOE = J OE
ECI

·QECI ·JT
OE
ECI

and J OE
ECI

=

[
∂OE

∂ (⃗r,⃗v)

]
= J−1

ECI
OE

(3.4)

3.2.2 From ECI to RSW Components
The local orbital set of coordinates (RSW) is very useful since it allows us to visualize how the
uncertainty is oriented along the orbit. An example of the different behaviors between ECI and
RSW propagation will be shown later in Paragraph 3.4.1. This set of components can be easily
obtained by a rotation applied to the ECI coordinates. In particular, being the unit vectors R̂, Ŝ
and Ŵ in the radial, along-, and cross-track directions defined as:

R̂ =
r⃗
|⃗r|

, Ŵ =
r⃗× v⃗
|⃗r× v⃗|

, Ŝ = Ŵ× R̂, (3.5)

arranging the direction vectors in the columns of the matrix
[
R̂ | Ŝ |Ŵ

]
we obtain the rotation

matrix from RSW to ECI coordinates systems. The matrix J describing the transformation of
the covariance from ECI to RSW components becomes:

J RSW
ECI

=

[R̂ | Ŝ |Ŵ
]T

03×3

03×3

[
R̂ | Ŝ |Ŵ

]T

 and QRSW = J RSW
ECI

·QECI ·JT
RSW
ECI

. (3.6)

As said, the matrix
[
R̂ | Ŝ |Ŵ

]T
represents a rotation. Since a rotation matrix is orthonormal,

its inverse coincide with its transpose. Then the backward transformation from RSW to ECI is
represented by the following matrix J.

J ECI
RSW

=

[R̂ | Ŝ |Ŵ
]

03×3

03×3

[
R̂ | Ŝ |Ŵ

] (3.7)
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3.2.3 From ECI to ECEF Components
For completeness we will shortly describe the last transformation that will be implicitly used
during this thesis: from inertial coordinates to Earth-fixed ones, namely from ECI to ECEF. To
transform from, generally speaking, celestial frame (as ECI) to terrestrial frame (as ECEF), we
have to take into account the Earth orientation model [15]. More specifically one has to consider
the Polar Motion (PM) which defines the movement of the Earth’s rotation axis w.r.t. the crust of
the Earth [15], the Precession (PR) which describes the changes of the orientation of the equator
w.r.t. the ecliptic [15], the Nutation (NU) which describes the oscillation of the Earth’s rotation
axis [15] and the Sidereal Time (ST ) which accounts for the rotation of the Earth. We will not
go through the details of the calculation of the PM, PR, NU and ST and their corresponding
rotation matrices ([PM], [PR], [NU], [ST]), for these we refer to the IERS Conventions [36–38].
Introducing the Earth’s rotation vector and its rate as ω⃗⊕ and ω⊕, the transformation of position
and velocity between ECI and ECEF can be obtained from:

r⃗PEF = [ST] · [NU] · [PR] ·⃗ rECI, (3.8)

r⃗ECEF = [PM] ·⃗ rPEF , (3.9)

v⃗ECEF = [PM] ·
{
[ST] · [NU] · [PR] · v⃗ECI − ω⃗⊕× r⃗PEF

}
. (3.10)

As one can see, to pass from ECI to ECEF we need an intermediate step through the
pseudo-Earth fixed reference system (PEF). The same mechanism applies to the covariance
transformation therefore the matrix J and, consequently, the Eq. 3.1 reads as follows:

J PEF
ECI

=

[
D 0
wr D

]
and J ECEF

PEF
=

[
[PM] 0

0 [PM]

]
, (3.11)

QECEF = J ECEF
PEF

·
[
J PEF

ECI
·QECI ·JT

PEF
ECI

]
·JT

ECEF
PEF

, (3.12)

with:

D = [ST] · [NU] · [PR] and [wr] = ω⊕ ·

 D21 D22 D23
−D11 −D12 −D13

0 0 0

 . (3.13)

Where Di j is the element of the ith-row and the jth-column of the matrix D with i, j = 1,2,3.
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3.3 Covariance Propagation
There are two main methods of propagating the uncertainty: the first is stochastic and it is based
on the Monte Carlo theory, the second is deterministic. During this work, for the propagation
of the covariance matrix we utilized the analytical approach and we will compare the results
obtained with different ways of calculating the state transition matrix. For completeness, we
will briefly describe how the stochastic approach works.

3.3.1 Stochastic Propagation
This method is essentially based on the Monte Carlo theory. The core idea of this theory is the
study of a generic system by empirically simulating it with a relatively huge number of samples.
This approach is relatively simple and provides reliable results since it is based on the direct
evaluation of the system. Very often is used as validation criterion for other methods. Being this
a statistical method, it is computationally expensive, in facts the accuracy of the results depends
on the number of samples: the higher is the number, the better are the results. Therefore the
main drawback of this method is the computation time needed to perform the simulations which
increases with the dimensions of the dynamic system [19].
The Monte Carlo theory is often applied to verify other methods for the covariance propagation
[39, 40]. An example of how the Monte Carlo covariance propagation works is shown in the
study of Sabol et al. [39].

3.3.2 Analytical Propagation
The analytical propagation of the covariance matrix can be done via the state transition matrix
(STM). The STM propagates the deviations of the state vector from an epoch t0 to an epoch t
[41]. In the field of the OD, we indicate with δx the vector of the corrections (or the deviations)
to be applied to the estimated parameters. Hence, the STM allows to write the values of δx at a
certain epoch t as function of the value of δx at time t0:

δx(t) = Φ(t, t0) ·δx(t0) . (3.14)

Given two epochs ti and t j, and indicating from now on, for simplicity, with δxi and δxj the
values of the deviations at the respective time, the main properties of the STM are:

- Φ(ti, ti) = I where I is the identity matrix,

- Φ
(
t j, ti
)
= Φ

(
t j, tk

)
·Φ(tk, ti) where tk is a third epoch,

- Φ
(
t j, ti
)−1

= Φ
(
ti, t j
)

The equation for the covariance propagation can be easily obtained from the definition of the
covariance. Indicating now with Qi the covariance matrix at the time ti we have:
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Qi ≡ E
[
δxiδxi

T
]
. (3.15)

According to Eq. 3.14, δxi = Φ
(
ti, t j
)
·δxj therefore we have:

Qi = E
[
Φ
(
ti, t j
)
·δxjδxj

T ·Φ
(
ti, t j
)T
]
. (3.16)

Since the STM is deterministic [26] we obtain:

Qi = Φ
(
ti, t j
)
·Qj ·Φ

(
ti, t j
)T

. (3.17)

Fundamental for the deterministic propagation of the covariance is then the STM. The STM
can be also used in the estimation process, especially when using sequential estimators like the
Kalman filters. Here, the STM may be used to propagate the state vector from a measurement
epoch to the successive one if the dynamical system is linear [18]. Usually in nonlinear systems,
as in the case of orbit dynamics, the propagation of the state vector is performed via numerical
integration, and the STM may be only used to evaluate the partial derivatives of the observations
w.r.t. the state vector at a certain epoch [18]. In both cases, the calculation of the STM has to be
very accurate. Several methods to determine the STM exist, the main are:

- Taylor series expansion of eFt ,

- Padé series expansion of eFt ,

- Inverse Laplace transform of [sI−F]−1,

- Integration of Φ̇ = FΦ,

- Matrix decomposition method,

- Scaling and squaring (interval doubling) used with another method,

- Direct numerical partial derivatives using integration,

- Partitioned combinations of methods.

Where: I is the identity matrix, s is the frequency parameter of the Laplace transform and F is the
Jacobian matrix of a generic function f w.r.t. a generic state vector x at a certain epoch. In the
orbit determination/propagation case f is the orbit dynamical model function of the state vector
which could contain either the initial position and velocity or the initial osculating elements.
During this work we performed some tests exploiting two of the mentioned methods to calculate
the STM namely: the Taylor series expansion and the direct numerical evaluation of the partial
derivatives. For details about the other methods refer to [18].
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STM Calculation - Taylor Series Expansion Method

For its simplicity the first method that we implemented was the Taylor series expansion of eFt .
This method can be applied if the state dynamics are time invariant, so then F is constant, or it
can be considered as time-invariant over the integration interval. Hence, its application to the
orbital dynamics requires a small time integration step, whose size depends on the considered
orbital regime. If the system is time-invariant the STM Φ(t) is equivalent to the exponential of
the matrix eFt and can be expanded through a Taylor series as follows [18]:

Φ(t) = eFt = I+F∆t +
(F∆t)2

2!
+

(F∆t)3

3!
+ . . . with ∆t = ti − t j. (3.18)

The output covariance matrix of a LSQ adjustment usually is either w.r.t. the state vector
(position and velocity in the ECI coordinates) or w.r.t. the orbital elements. As said before,
the transformation between the two state representations is relatively easy (and described in
Paragraph 3.2.1) therefore we decided to evaluate both covariance propagations. It was then
necessary to determine an F matrix for each representations.
For the propagation w.r.t. the orbital elements the derived F matrix (Eq. 3.19) contains the
partial derivatives of the Gaussian perturbation equations (shown in Equations (3.20) to (3.25))
w.r.t. the orbital elements. For completeness, since the SATORB orbit determination estimate
the argument of latitude as 6th parameter and the 6th parameter of the Gaussian perturbation
equation is the perigee passing time, before propagating the covariance using this method
we needed to perform a covariance transformation. In particular, we needed to convert the
covariance from [a,e, i,Ω,ω,u0] to [a,e, i,Ω,ω,T0]. The transformation matrix J is an identity
matrix exception made for the last element of the main diagonal which contains the partial
derivatives of T0 w.r.t. u0.

F =
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∂Ω

∂ ė
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(t −T0) ȧ (3.22)

ι̇ =
di
dt

=
r cosu

na2
√

1− e2
fW (3.23)

Ω̇ =
r sinu

na2
√

1− e2 sin i
fW (3.24)

ω̇ =
1
e

√
p
µ

{
−cosν fR +

(
1+

r
p

)
sinν fS

}
− cos iΩ̇ (3.25)

where:

- a, e, i, Ω, ω , T0 and u are respectively the classical orbital elements plus the argument of
latitude,

- µ is the Earth gravitational constant,

- ν and E are the true and eccentric anomaly,

- t is the time epoch,

- p = a
(
1− e2) is the semi-latus rectum,

- n =

√
µ

a3 is the osculating mean motion,

- fR, fS and fW are the perturbing accelerations decomposed into the radial, along- and
cross-track components whose partial derivatives are calculated numerically using the
central difference method [15, 18].

The determination of the F matrix in the case of propagation of the covariance matrix w.r.t. the
state vector is obtained by deriving the partial derivatives for the following equation:

r̈ =− µ

r3⃗ r +⃗ f (3.26)

with r = |⃗r| and f⃗ is the vector of the perturbing force in ECI components. Hence the F
matrix in this case looks:
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(3.27)

where:

- x, y, z, vx, vy and vz are the position and velocity components in the ECI coordinates
system,

- fx, fy and fz are the perturbing forces decomposed into the ECI components whose
partial derivatives are computed as in the previous case via the central differences method
[15, 18].

We must remind that the Taylor series expansion is an approximation of the problem, thus to
obtain more accurate results we can act on two parameters: the truncation order of the series and
the time interval in which we assume F constant. We decided to truncate to the third order the
Taylor series and we assumed that the F matrix can be considered constant for 5 and 1 seconds
respectively for the case of OE and state vector propagation. The main consequence of such
short time interval is, obviously, a huge increase of the computation time.

STM Calculation - Direct Numerical Evaluation of Partial Derivatives Method

The second method used in this thesis for the STM calculation is based on the direct evaluation
of the partial derivatives via their numerical integration. Being t j = t0 +∆t where ∆t is a generic
time interval, the STM can be written as follows:

Φ(t0 +∆t, t0) =
∂x(t0 +∆t)

∂x(t0)
. (3.28)

This formulation remains valid both for linear and nonlinear systems [18]. Furthermore, the
implementation of this method is more convenient in our case since in SATORB the propagation
of the partial derivatives and therefore of the state vector is performed by integrating the varia-
tional equations [16]. The mentioned program is used daily at AIUB for the OD of space debris
and belongs to the CelMech software suite. Its original purpose is the generation of satellite
orbits or their determination using tabular positions as pseudo-observations or astrometric posi-
tions as real observations [16]. During this thesis we made extensively use of SATORB which
was modified in order to first propagate the covariance matrix and successively to handle the
laser range measurements (see Chapter 5).
In SATORB, the partial derivatives of the position and velocity w.r.t. to the orbital elements are
integrated using the collocation method [16], so to propagate the covariance we simply need to
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extract the partial derivatives and build the STM. In this case, being the starting covariance w.r.t.
the OE the propagation and the transformation are done in one single step, to obtain again the
propagated covariance w.r.t. the OE we only need to apply the inverse transformation, see above
in Paragraph 3.2.1.

STM Calculation - Comparison of the Results

After checking the correctness of the implementation of the two methods for the calculation
of the STM we decided to compare the results obtained propagating the covariance using the
Taylor series expansion to evaluate the STM with those obtained using a STM directly evaluated
by the numerical integration of the variational equations.
The comparison was carried out propagating the covariance w.r.t. the OE of a GPS-like orbit.
First a synthetic series of continuous angular observations over 10 days of arc was generated,
then an OD was performed and the osculating orbital elements were estimated at the beginning
of the observation arc. The resulting covariance was then propagated over a total propagation
time of 20 days using both the methods for the STM evaluation. The comparison is performed
only on the following orbital elements: a, e, i, Ω and ω since the variational equation method
propagates the uncertainty w.r.t. the argument of latitude and the Taylor series expansion w.r.t.
the perigee passing time (respectively u0 and T0).
Figure 3.2 shows the comparison of the uncertainty propagation obtained exploiting the varia-
tional equations and the Taylor series expansion to calculate the STM. From now on we will use
the term uncertainty to refer to the square root σ of the variance of the estimated parameters.
Generally, there is a good agreement for the trends of the uncertainties; however the obtained
results show important differences. These differences are probably due to: the truncation of the
Taylor series expansion, the length of the time interval in which the matrix F can be considered
constant, and to the complexity of the dynamical model and consequently the rising difficulties
when evaluating the partial derivatives of the perturbing forces.
After this test we decided to keep, for the operational environment, only the propagation method
which exploits the variational equations to calculate the STM. Summarizing, this choice was
driven by three main factors:

- the linearization,

- the complexity of the equations,

- the computational time.

In particular the variational equations allow the determination of the total STM in one single step
and therefore also the propagation of the covariance is performed by 2 matrix multiplications
and produces more accurate results w.r.t. the Taylor series method. Furthermore, with this
method, the only error introduced are those due to the numerical integration. On the other hand,
the Taylor series needs to split the entire propagation period (which can be from few hours to
several months) into small intervals whose size is given by the time interval in which the F
matrix can be considered constant. This produces 720 STM determinations and consequently
1440 matrix multiplications for 1 hour propagation, which leads inevitably to an increase of
the computation time. Furthermore, this approach introduces errors due to the truncation of
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the Taylor series. The Taylor approach needs the analytical derivation either of the Gaussian
perturbation equations or of the basic two-body problem. For both, the Gaussian formulation
and the two-body problem, to have more accurate results, one has to include the perturbing
forces like the solar radiation pressure, the atmospheric drag, the third-body acceleration, the
gravitational harmonics, etc. in the calculation of the F for the Taylor series expansion method
for the STM evaluation. The analytical derivation of this partial derivatives is rather complicated
and we overcome this problem via a numerical approximation using the central difference
method, which has obviously introduced further approximation errors.

Figure 3.2 Comparison of the uncertainty (σ ) propagation between the variational equation and
the Taylor expansion methods to determine the STM.

3.4 Covariance Propagation Results
In this section, we will show some results of the covariance propagation. In particular, first
we will show the characteristics and the different kind of information retrievable from the
propagation of the covariance w.r.t. different state representations. Secondly, we will start a
study to investigate the factors which influence the covariance propagation. In this paragraph
the differences given by the number of estimated parameters will be showed and we verify that
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the covariance propagation depends not only on the variances themselves but also on the correla-
tion coefficients [1]. This last simulation is the starting point of the study performed in Chapter 4.

3.4.1 Propagation w.r.t. Different State Representations
We will first show the comparison of the propagation between different state representations,
namely OE and state vector, and between different state vector components, respectively ECI
and RSW coordinates. More precisely, the propagation is always performed w.r.t. the ECI
components and the uncertainties are then transformed w.r.t. the different state representations.
This experiments is performed to illustrate the main features of the uncertainties propagation
w.r.t. the different state representations. For this example we used an eccentric geosynchronous
orbit where we simulated 10 continuous days of angular observations with a constant sampling
from the European Space Agency (ESA) Space Debris Telescope (ESASDT) in Tenerife, and
we performed an OD exploiting this set of measurements. The determined orbit and the related
covariance are propagated for 200 days. Every 30 minutes a propagated covariance w.r.t. ECI
components and the corresponding state vector are given as an output. For each epoch, these
outputs are used to convert the covariance from ECI to RSW components and w.r.t. the orbital
elements. Figure 3.3 and 3.4 show an excerpt, respectively 20 and 100 days of propagation,
of the results obtained for a covariance propagation w.r.t. the state vector (in ECI and RSW
coordinates) and w.r.t. the orbital elements (namely a, e, i, Ω, ω and u0).
In the first, the propagation of the uncertainty w.r.t. the state vector in different reference system,
ECI and RSW, is shown respectively in Figure 3.3a and 3.3b. Looking at these figures, we can
see some similarities; these are essentially due to the fact that, as seen in Paragraph 3.2.2, we can
transform from ECI to RSW components simply via a rotation. The main similarity is visible in
the general trend of the uncertainty which is decreasing during the first 5 days and then tends to
increase, and in the fact that are present features which are repeating every orbital period. This
“decrasing-increasing” trend is due to the fact that the first 10 days of uncertainty propagation
fall within the time interval where observations were simulated and where the LSQ adjustment
is performed. This occurs since the uncertainty propagation begins at the first observation epoch
where also the orbit is estimated. The “decreasing-increasing” trend is due to the LSQ which
fits best the measurements in the middle of the observations arc [26]. Nevertheless, the rotation
between the two reference systems allows a better interpretation of the results. If in the case of
ECI coordinates the uncertainty along x and y directions do not show particular differences, in
the RSW, the three channels are completely separated showing that the uncertainty w.r.t. the
orientation of the orbital plane (W component) remains constant, while the total uncertainty
is driven by the along-track component (S). Looking at the behavior of the uncertainties on
the velocity components, in RSW, it is evident the correlation between the along-track position
uncertainty and the radial velocity one. This second representation becomes very important in
operational scenarios, like conjunctions, since it visually shows how the uncertainty ellipsoid is
located w.r.t. the orbit.
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(a) Position and Velocity uncertainty in ECI (b) Position and Velocity uncertainty in RSW

Figure 3.3 Comparison of the uncertainty propagation in ECI and RSW for an eccentric geosyn-
chronous object. The first 10 days of propagation are performed within the “fit span”.

Depending on the application it is useful to transform the propagated covariance w.r.t. differ-
ent state descriptions. For example, in Figure 3.3 it is easy to see the behavior of the uncertainties
within the orbital period, while in Figure 3.4 the uncertainties w.r.t. the OE show the short, the
medium and the long term features of the propagation. In Figure 3.4 we have in fact a total
propagation period of 100 days, where the short term represents the uncertainty behavior within
the orbital period, a medium term with roughly 25 days of period is visible, and finally a trend
whose period is longer than 100 days. These trends are visible for all elements exception made
for the argument of latitude that, consistently to what shown in Figure 3.3, contains mostly a
divergent term consistent with the along-track uncertainty. This trend is due to the fact that any
error in a will result in a linear growing error in u0.
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Figure 3.4 OE uncertainty propagation for an eccentric geosynchronous object.

3.4.2 Influence of the Estimated Empirical Parameters
In a general orbit determination problem is quite common to make use of dynamical and/or
empirical parameters, which are further unknowns of the problem used to overcome the defi-
ciencies of the physical model. The firsts are additional parameters which define the forces field;
the seconds are determined empirically to absorb poorly modelled parts of the physical model
[16, 17]. In the space debris OD environment the typically used dynamical parameters are:

- scaling parameter to estimate the area-to-mass ratio (AMR),

- scaling parameter to estimate the ballistic coefficient for the atmospheric drag,

while the typically used empirical parameters are:

- constant accelerations in radial, along- and cross-track directions,

33



Covariance Propagation

- once-per-revolution (OPR) accelerations in radial, along- and cross-track directions.

These parameters, used to remedy the model deficiencies, will usually reduce the residuals
on the observations and help getting (hopefully) a better orbit. To evaluate the influence of
these parameters on the covariance propagation we decided to analyze two different kinds of
orbits: a GPS and a GTO. To carry out this analysis we generated, for both cases, 10 days of
continuous angular observations with a constant measurement sampling. An orbit determination
is performed over the set of measurements estimating first simply the 6 orbital elements, then the
OE together with the scaling parameter to improve the AMR, and finally the set of OE together
with the once-per-revolution radial acceleration for the GPS while for the GTO also a constant
along-track acceleration. In all cases the a posteriori errors per unit weight obtained at the end
of the OD process are under 2 arcsec. The determined orbit and covariance are then propagated
for 250 days for the GPS and for 150 for the GTO.
Figures 3.5 and 3.6 show the uncertainty behavior for the two considered objects. Figure 3.5
shows the uncertainty trends in RSW components for the GPS-like orbit, left-side graphs, and for
the GTO-like orbit, right-side graphs, obtained for the 3 analyzed cases. Figure 3.6 shows, for an
easier comparison, the modulus of the 3 components of the position uncertainty (indicated with
3D) obtained with the 3 set of estimated parameters within the same graph and a particular of
the first 20 days of propagation. The figures clearly show that, within the LSQ process, the more
parameters are used the faster the covariance grows with time. These examples were reported
to show how a higher number of estimated parameters which produces the best “fit” (given
by the lowest RMS) does not necessarily coincide with the most accurate orbit propagation.
This phenomenon is due to the fact that the estimated parameters, if not properly modeled, do
not describe correctly the physics of the forces acting on an orbiting object. Furthermore, it is
interesting to notice how the general trends of the uncertainties change. Looking at the GPS
case for example (left-side graphs), from an almost linear trend obtained estimating only the
OE a quadratic behavior is obtained when estimating also the OPR accelerations in the radial
direction (indicated with RC and RS in the graphs). Also interesting are the behaviors of the
oscillation amplitudes obtained when estimating also the scaling parameter for the improvement
of the AMR. We think that the long term changes in the uncertainty amplitude, visible in Figures
3.5c and 3.5d, are due to the motion of the Earth on its orbit and therefore of the motion of
the orbital plane w.r.t. to the Sun. Consistently with the previous examples, the predominant
error remains the along-track one while the “decreasing-increasing” behavior of the uncertainty
propagation within the observation interval remains for all cases. The only differences are in
their values which increase together with the number of estimated parameters. Finally it must
be noticed that also the orbit of the object is playing a role in the uncertainty evolution. We
can see that, exception made for the case of OD estimating only the 6th orbital elements, the
uncertainties of the GTO-like orbit increase faster w.r.t. those of the GPS ones and even more
faster if we increase the number of estimated parameters. The amplitude of the uncertainty
oscillation is always bigger in the GTO case. Since the STM is function of the orbital elements,
these phenomena are probably due to the eccentricity of the GTO orbit.

34



3.4 Covariance Propagation Results

(a) GPS - Only orbital elements (b) GTO - Only orbital elements

(c) GPS - OE and scaling AMR (d) GTO - OE and scaling AMR

(e) GPS - OE and OPR R (f) GTO - OE, constant S and OPR R

Figure 3.5 RSW component uncertainty propagation, influence of the empirical parameters. For
details see text.
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(a) GPS-like object (b) GTO-like object

Figure 3.6 3D position uncertainty propagation, influence of the empirical parameters. For
details see text.

3.4.3 Influence of Variance and Correlation Index
After the analysis of the influence of the empirical parameters, the next step was to understand
how much the uncertainty propagation is influenced by the variances on the single parameters
and by the correlation coefficients. In other words, we wanted to understand if the accuracy
of an OD depends on the relative geometry between the observer and the object. We decided
to verify this dependence via a Monte Carlo approach. First, we simulated a population of 40
objects distributed on slightly different orbits whose orbital parameters were:

- a = 40000÷43000 km,

- e = 0÷0.02,

- i = 0÷10 deg,

- Ω = 0÷360 deg,

- ω = 0÷360 deg,

- u0 = 0÷360 deg.

We intentionally did not consider more objects since this was just an hypothesis exploration.
For each object a reference orbit was generated and propagated over 10 days. Then, always

36



3.4 Covariance Propagation Results

for each object, we simulated a set of observations made of 3 series (tracklets) of angular
measurements (RA and DE) of 3 minutes length acquired from the ESASDT in Tenerife. Two
series are consecutive (separated by 10 minutes) to simulate the discovery of the object, the third
is separated by 2 hours w.r.t. the second to simulate the first follow-up. For each measurement
we added a Gaussian distributed error with a standard deviation of 1 arcsec. The 3 tracklets are
then used to perform an OD of the objects, the estimated orbit is then propagated and compared
with the reference one. The results of this first simulation are shown in Figure 3.7a. The plot
on the upper part of Figure 3.7a shows the difference between reference and estimated orbit in
terms of angular distance in the sky for the first ∼ 4 hours of propagation displaying clearly the
influence of the discovery and follow-up observations. The bottom-one shows the difference
behaviors over the 10 days of propagation time. We can see how in the latter the features show
different increasing rates and amplitudes of the differences w.r.t. the reference orbits, while they
show the same periodicity with the orbital period.
This example is still too generic to extract a definitive conclusion, for this reason, a second one
was carried out with the same methodology but in this case the population of the 40 objects
belongs to the same orbit but are randomly distributed along it. The orbital elements used for
this simulation are:

- a = 40000 km,

- e = 0.02,

- i = 10 deg,

- Ω = 20 deg,

- ω = 30 deg,

- u0 = 0÷360 deg.

Analogously as for the previous case, the results of this simulation are shown in Figure 3.7b.
Although the obtained behaviors are more similar, the differences are still quite big; this confirms
that the accuracy of the OD and therefore the uncertainty propagation depends on the observation
geometry. This topic will be studied in depth in the next chapter (4).
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(a) Slightly different orbits (b) Same orbit

Figure 3.7 Monte Carlo simulation to show the influence of the observation geometry.

3.5 Summary
In this chapter we showed what transformations can be performed on the covariance matrix and
we described and compared different methods which can be used to propagate it. The method
based on the variational equations to compute the STM gives the most accurate results with the
least computational efforts.
Successively, we described the characteristics of the covariance propagation w.r.t. different
state representations. We started the analysis of the factors which influence the covariance
propagation. We studied the influence of the number of estimated parameters focusing especially
on the empirical accelerations usually used during the OD process and on the scaling parameter
to determine the AMR. Essentially, the more parameters are estimated, the faster the uncertainty
increases. A study was carried out to understand how much the orbit propagation is influenced
by the variances and the correlation terms. This dependence was confirmed using Monte Carlo
simulations. A more in depth study on the influence of the object-observer relative geometry is
performed in the next chapter.
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Chapter 4

Covariance Study to Optimize Follow-up
Strategies

4.1 Motivation
In the space debris research, the precise knowledge of the number of objects and their position
is a fundamental requirement. The orbit determination phase can be divided into two main
steps: the first orbit determination and the orbit improvement. The first one is performed on the
measurements resulting from a discovery campaign carried out by scanning certain regions of
the sky to ensure that each object which cross the FoV of the telescope is observed several times
during the same night [42]. While the orbit improvement is performed using the measurements
obtained by planning regular observations of the object of interest, these additional series of
observations are usually called follow-ups. Due to the huge amount of space debris and to the
limitations of the telescopes, which can operate only when the weather conditions are good, it is
necessary to optimize the time available for follow-up observations.
In this chapter we will describe a method, based on the analysis of the covariance matrix, to
understand how the object-observer relative geometry influences the accuracy of the OD. This
study will allow us to decide, in an operational scenario, how the follow-up observations should
be distributed to obtain the best orbit and how the survey strategies could be optimized. We de-
fine the best orbit as the set of orbital elements with the lowest uncertainties, that maximizes the
accuracy of the predicted positions of the object. In the first part of the chapter we describe the
reasons that brought us to use the covariance matrix for this study and we will show the results
of a theoretical study carried out to identify the main parameters which influence the results
and how the problem can be simplified. Then, the results obtained from a simplified scenario
will be shown. Afterwards, the complexity of the scenario is increased step by step showing
in details the consequences on the results; in particular we will analyze first the influence of
each estimated parameter on the results, and then the influence of the position of the observer.
Once understood the basics, we will present the results obtained from the application of the
covariance study to some typical observation scenarios and to some typical orbital regimes.
Increasing gradually the complexity of the scenario we will study the case where two observers
are observing the same target and the case where 3 series of observations are used. This last two
scenarios are analyzed since the first allows us to understand how a network of observatories
could improve the orbit determination while the second allows us to simulate a classical discov-
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ery plus follow-up scenario. The last results presented are those obtained if we process together
two kinds of observables, namely the classical angular measurements and the ranges.
Finally, we can say that we have carried out this analysis to be able to optimize the parameters
estimation and to find the best combination of tracklets which gives the best orbit.

4.2 Theory
Depending on the number of objects to observe in the catalog, the survey strategy, the perfor-
mance of the telescope system and of the software used to extract the measurements from an
image, the number of observations per night per object, coming from the various observatories,
is not constant. To carry out this study we choose the number of observations per object ac-
cordingly to what is provided by the AIUB observatory at the end of a standard observation
night. Using the tools available at the Zimmerwald observatory, at the end of an observation
night is not unusual to have, on average, two standard tracklets per observed objects. A tracklet
is the result of a series of images acquired during a survey campaign or during a follow-up of an
already cataloged object. We assume that a standard tracklet consists of e.g. 7 images, each one
of them contains a triplet of data: a pair of angular measurements, one in Right Ascension and
one in Declination (respectively RA and DE) and the time epoch when the measurements are
collected. This means that for each tracklet one has 14 angular measurements, consequently, 28
observations per object, on average, from an observation night. Of course, these numbers can
vary depending on factors like: the number of objects to observe in the catalog, the observation
strategy and also, the information taken into account by the scheduler. For this study we assumed
to have two good tracklets per observed object.
These two series of observations are then used to determine/improve the orbit of the object by
means of a Least Squares adjustment (LSQ). The aim of this study is to analyze the output
covariance of a LSQ process to understand how the relative geometry between the observer and
the target object influences the accuracy of the estimated parameters. The covariance matrix or,
to be more precise as we will see later in Paragraph 4.2.1, the cofactor matrix [27] is chosen
as evaluation criterion because it contains the uncertainties of the estimated parameters. The
partial derivatives are completely independent from the noise of the measurements and they are
only functions of the geometric relation between the observer and the observed object. Since we
are interested only in the influence of the geometry, we provide to the system the real/correct
positions of the object for the calculation of the derivatives and no propagation of the covariance
matrix is involved.
Together with the cofactor matrix we will make use also of the correlation indexes and the
condition number (defined in Chapter 2) to explain the obtained results.

4.2.1 Cofactor Matrix
Recalling for simplicity the definitions already shown in Chapter 2, as one can see from Eq. 4.1,
we chose the covariance matrix as the evaluation criterion because it contains the uncertainties
of the estimated parameters as a function of the partial derivatives of the observations w.r.t. them
and of the a posteriori error per unit weight.
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Q = m0
2 [AT WA

]−1
(4.1)

K =
[
AT WA

]−1
=⇒ K =

Q
m2 (4.2)

in which:

A =
∂obsi

∂x0
, (4.3)

where:

- Q is the covariance matrix,

- m2
0 is the a posteriori variance of the unit weight,

- A is the first design matrix,

- W is the weight matrix,

- obsi = [RAi;DEi;ρi] are the ith measurements, the angular ones respectively Right Ascen-
sion and Declination, and the range where i = 1, ...,n, and n is the number of measurement
epochs,

- x0 = [a,e, i,Ω,ω,6th] are the orbital parameters.

Taking this into account, we do not need to solve the LSQ adjustment and feeding the
systems with the correct values we avoid all “problems” related to the nonlinear LSQ like the
initialization, the iterations and the convergence of the process on local minimum solution [15].
Since we are not going to solve the LSQ adjustment and in our study no real measurements with
noise are involved it is more correct to talk about cofactor matrix [27]. The relation between
covariance and cofactor matrix can be seen in Eq. 4.2. As one can see from Eq. 4.3, the cofactor
matrix contains the partial derivatives of the observations w.r.t. semi-major axis, eccentricity,
inclination, right ascension of ascending node, argument of perigee and the 6th parameter.
What we call from now on uncertainty values are not meant to be real values because we do not
solve the LSQ and the analysis is performed without the employment of any measurement. So
the vector of the residuals and then the a posteriori RMS can not be calculated. As consequence
the obtained “uncertainties” are non-dimensional, to be more precise their dimension is the
dimension of the parameter to which they refer divided by the square of the dimension of the
residuals. On the other hand, the obtained uncertainty does not lose its importance as qualitative
index indicating us which configuration of observation produces more accurate results.
In this chapter, we will consider first only the angular measurements as observations then we
will introduce also the ranges (Paragraph 4.15). These partial derivatives are functions of the
geometric relation between observer and observed object. This allows us to study both, the
influence of the observation geometry and the influence of the different observables.
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4.2.2 Choice of Parameters
As can be seen from Eq. 4.1 and Eq. 4.3, the output covariance of a LSQ adjustment is a [6×6]
matrix, function of the observer position and the orbit of the object. To simplify the problem,
in order to isolate the contribution of each single component, it was decided to eliminate the
effects associated to the observer, so in a first step an observer on the center of the Earth is used.
The set of unknown parameters consists of: two parameters which describe the shape of the
orbit (i.e. semi-major axis and eccentricity), two which describe the orientation of the orbital
plane in space (i.e. inclination and right ascension of ascending node), one parameter for the
orientation of the orbit in the plane (i.e. argument of perigee), and finally the 6th parameter
which relates to the position of the object along the orbit at a particular time. Among them, the
parameters describing the orientation of the plane in space are completely independent from the
others, so negligible in a first analysis. The remaining parameters can not be excluded a priori
because they depend on the chosen parametrization. There are several variables which can be
used to express the 6th parameter: mean anomaly, eccentric anomaly, true anomaly, argument of
latitude and perigee passing time, respectively M,E,ν ,u0 and T0. Among them, the historical
one is the perigee passing time; in fact, using T0, the dependencies between parameters have the
structure described by Eq. 4.4 [16].

M = M (a,T0)

E = E (M,e) (4.4)
ν = ν (e,E)

Making use of this structure, the partial derivatives of true anomaly are function of a,e and
T0. This parametrization has a big disadvantage for small eccentricity values; in fact if e = 0,
the orbit is circular, which means that we do not have any perigee and the T0 can not be defined
anymore. To overcome this problem, the most used solution is to define the argument of latitude
at the time t0. For circular orbit, exploiting the definition of osculating elements [16] , the
user can set up arbitrarily an osculating time Tosc, with a certain ω and ν0, and solve the LSQ
adjustment at this epoch. The disadvantage is given by the fact that the dependencies between
parameters change accordingly with new parametrization as shown by Eq. 4.5. The analysis
reported in this thesis were carried out using the parametrization with the argument of latitude
because of the above mentioned reasons.

ν0 = ν0 (u0,ω)

E0 = E0 (ν0,e) (4.5)
T0 = T0 (a,e,E0)
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4.2.3 Build up of the Normal Equation System
As said in Paragraph 4.2.1, the cofactor matrix, shown in Eq. 4.2, is function of the weight and
of the first design matrix. In this paragraph we will show how to calculate the matrices needed
to build our cofactor matrix: first we will describe how to determine the first design matrix then,
we will analyze the weight matrix.
As shown from Eq. 4.1 and Eq. 4.3, the covariance matrix is function of the partial derivatives
of the observations w.r.t. the estimated parameters. At this point, since in the previous Paragraph
(4.2.2) we explained the reasons of our parametrization choice, we can now determine the
partial derivatives that will characterize the cofactor matrix. To simplify the calculation of the
derivatives we decided to split them as shown in Eq. 4.6 [16].

∂obs
∂x0

=
∂obs

∂⃗r
· ∂⃗r

∂x0
, (4.6)

where r⃗ is defined as shown in Eq. 4.7. We have intentionally omitted the subscript i since
the following equations are valid for each observation epoch.

r⃗ = r⃗s − r⃗o =

x
y
z

=

xs
ys
zs

−

xo
yo
zo

 (4.7)

Here r⃗s and r⃗o represent the position of the target object and of the observer whose coordi-
nates in the inertial reference system are respectively xs,ys,zs,xo,yo and zo. We reported only
the coordinate of the positions since the measurements used in our orbit determination process
does not depend on the target and/or observer velocities. At this point, defining x,y and z as
shown in Eq. 4.7 we can determine the partial derivatives of our measurements w.r.t. r⃗.
Recalling for clarity the definition of Right Ascension and Declination in the Eq. 4.8 and Eq.
4.9 and defining the range (ρ) as shown in Eq. 4.10 we have:

RA = arctan
(y

x

)
, (4.8)

DE = arctan

(
z√

x2 + y2

)
, (4.9)

ρ =
√

x2 + y2 + z2. (4.10)

We can now calculate the partial derivatives of RA and DE w.r.t. r⃗ as follows:
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∂RA
∂⃗r

=
[

∂RA
∂x

∂RA
∂y

∂RA
∂ z

]T

∂RA
∂x

=− y
x2 + y2 ,

∂RA
∂y

=
x

x2 + y2 ,
∂RA
∂ z

= 0, (4.11)

∂DE
∂⃗r

=
[

∂DE
∂x

∂DE
∂y

∂DE
∂ z

]T

∂DE
∂x

=− x · z
ρ2
√

x2 + y2
,

∂DE
∂y

=− y · z
ρ2
√

x2 + y2
,

∂DE
∂ z

=

√
x2 + y2

ρ2 . (4.12)

The partial derivatives of the ranges w.r.t. r⃗ are:

∂ρ

∂⃗r
=
[

∂ρ

∂x
∂ρ

∂y
∂ρ

∂ z

]T

∂ρ

∂x
=

x
ρ
,

∂ρ

∂y
=

y
ρ
,

∂ρ

∂ z
=

z
ρ
. (4.13)

Looking now at the remaining part of the Eq. 4.6, in particular the one which refers to the
partial derivatives of r⃗ w.r.t. the estimated parameters, we see that these are only function of the
satellite position since from Eq. 4.7 we get:

∂ r⃗o

∂x0
= 0. (4.14)

As one can see from [1], the satellite position coordinates in the inertial system of reference
(SoR) can be obtained from its coordinates in the perifocal reference system (⃗rEPH) using the
following expression:

r⃗s = R ·⃗ rEPH (4.15)

where R is the Euler rotation matrix [1]. The matrix R and the perifocal coordinates are
defined by Eq. 4.16 and Eq. 4.17.

R =

cosΩcosω − sinΩsinω cos i −cosΩsinω − sinΩcosω cos i sinΩsin i
sinΩcosω − cosΩsinω cos i −sinΩsinω + cosΩcosω cos i −cosΩsin i

sinω sin i cosω sin i cos i

 (4.16)
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r⃗EPH =


a(1−e2)cosν

(1+ecosν)
a(1−e2)sinν

(1+ecosν)

0

 (4.17)

From these equations and taking into account the dependencies shown in Paragraph 4.2.2
we can now calculate the derivatives of the satellite position w.r.t. the estimated parameters.
Regarding the derivative w.r.t. the semi-major axis a we have:

∂⃗rs

∂a
= R

 cosE − e√
1− e2 sinE

0

+a ·R

 −sinE√
1− e2 cosE

0

 · ∂E
∂a

, (4.18)

∂E
∂a

=−na
r

[
3
2a

(t −T0)+
∂T0

∂a

]
, (4.19)

∂T0

∂a
=− 3

2an
[E0 − esinE0] =− 3

2a
(Tosc −T0) , (4.20)

n =

√
µ

a3 , (4.21)

r =
a
(
1− e2)

1+ ecosν
, (4.22)

where r is the geocentric distance of the satellite, n is the mean motion, µ = 398600.4418
km3sec−2 is the terrestrial gravitational constant, t is the time, E0 is the value of the eccentric
anomaly at the osculating epoch where our LSQ is solved.
For the derivatives w.r.t. the eccentricity e we have:

∂⃗rs

∂e
=−a ·R

 1
esinE√

1−e2

0

+a ·R

 −sinE√
1− e2 cosE

0

 · ∂E
∂e

, (4.23)

∂E
∂e

=

[
sinE −n

∂T0

∂e

]
· r

a
, (4.24)
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∂T0

∂e
=−1

n

[
∂E0

∂e
(1− ecosE0)− sinE0

]
, (4.25)

∂E0

∂e
=− sinν0√

1− e2 (1+ ecosν0)
, (4.26)

where ν0 is the true anomaly at the osculating epoch.
For the derivatives w.r.t. the inclination i we have:

∂⃗rs

∂ i
=

∂R
∂ i

·

r cosν

r sinν

0

 , (4.27)

∂R
∂ i

=

 sinΩsinω sin i sinΩcosω sin i sinΩcos i
−cosΩsinω sin i −cosΩcosω sin i −cosΩcos i

sinω cos i cosω cos i −sin i

 . (4.28)

For the derivatives w.r.t. the Right Ascension of the Ascending Node Ω we have:

∂⃗rs

∂Ω
=

∂R
∂Ω

·

r cosν

r sinν

0

 , (4.29)

∂R
∂Ω

=

−sinΩcosω − cosΩsinω cos i sinΩsinω − cosΩcosω cos i cosΩsin i
cosΩcosω − sinΩsinω cos i −cosΩsinω − sinΩcosω cos i sinΩsin i

0 0 0

 .
(4.30)

For the derivatives w.r.t. the Argument of Perigee ω we have:

∂⃗rs

∂ω
= a

∂R
∂ω

 cosE − e√
1− e2 sinE

0

+aR

 −sinE√
1− e2 cosE

0

 ∂E
∂ω

, (4.31)

∂R
∂ω

=

−cosΩsinω − sinΩcosω cos i −cosΩcosω + sinΩsinω cos i 0
−sinΩsinω + cosΩcosω cos i −sinΩcosω − cosΩsinω cos i 0

cosω sin i −sinω sin i 0

 , (4.32)

∂E
∂ω

=−na
r

∂T0

∂ω
, (4.33)
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∂T0

∂ω
=−1

n
[1− ecosE0]

∂E0

∂ω
, (4.34)

∂E0

∂ω
=−

√
1− e2

1+ ecosν0
. (4.35)

For the derivatives w.r.t. the Argument of Latitude at the osculating time u0 we have:

∂⃗rs

∂u
= aR

 −sinE√
1− e2 cosE

0

 ∂E
∂u0

, (4.36)

∂E
∂u0

=−na
r

∂T0

∂u0
, (4.37)

∂T0

∂u0
=−1

n
[1− ecosE0]

∂E0

∂u0
, (4.38)

∂E0

∂u0
=

√
1− e2

1+ ecosν0
. (4.39)

Since the Argument of Latitude it is defined as shown in Eq. 4.40,

u0 = ν0 +ω (4.40)

it is important to notice the relation between the derivatives of the eccentric anomaly E w.r.t.
ω and u0, in particular we get:

∂E0

∂u0
=−∂E0

∂ω
=⇒ ∂E

∂u0
=−∂E

∂ω
(4.41)

Now we are able to determine the value of Eq. 4.6 for each observation epoch; in other words
we are able to build the first design matrix A. To complete the set up of the normal equations
system and then to be able to calculate our cofactor matrix, we need one last component: the
weight matrix W. The weight matrix, in this study, is used only with merged measurements.
In fact, since in this study, we focus only on the influence of the geometry we do not need the
weight matrix when processing homogeneous measurements. During this study, also when we
analyze the influence of a second observer, we assume that the accuracy of the observations
from the two observers is the same.
The only case where the weight matrix is fundamental is when we evaluate the consequences of
processing different kind of observables, i.e. angular and range measurements. In this case W is
needed to normalize the contribution given by the derivatives of the ranges w.r.t. the angular
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ones. This need can be easily proved by means of a dimensional analysis of the NEQ system
with merged observables.
As defined in Chapter 3 and by adapting the generic form of the weight matrix to our case we
have:

W =



wRA1 0 0 · · · 0 0 0
0 wDE1 0 · · · 0 0 0
0 0 wρ1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · wRAn 0 0
0 0 0 · · · 0 wDEn 0
0 0 0 · · · 0 0 wρn


(4.42)

where wRAi,wDEi and wρi are the weights for the ith RA, DE and range measurement
respectively, with i = 1, . . . ,n. To be precise in our case, wRA1 = wDE1 = . . . = wRAn = wDEn
and wρ1 = . . .= wρn. At this point, we need to determine the values for wRA,DE and wρ .
Consistently with the approach followed in Paragraph 5.5.1, we determined the weights between
angular and range measurements relatively, in particular we have:

wRA,DE =
σ2

0

σ2
RA,DE

and wρ =
σ2

0
σ2

ρ

, (4.43)

where σRA,DE and σρ are the measurement accuracies for the angles and the ranges, respec-
tively. If we put σ0 = σRA,DE we obtain that:

wRA,DE = 1 and wρ =
σ2

RA,DE

σ2
ρ

. (4.44)

During this study the weights were calculated using the following values for the measure-
ment standard deviations σRA,DE = 0.5 arcsec and σρ = 1.3 m.

4.2.4 Study of Partial Derivatives
Once the parametrization was chosen, we decided to study the partial derivatives to have an idea
of their influence on the results. Figures 4.1 and 4.2 show the behavior of the partial derivatives
of RA, DE and ρ w.r.t. the orbital elements, obtained for an object whose orbit is described
by the following orbital elements: a = 42164.173 km, e = 0.6, i = 30°, Ω = 40°, ω = 60° and
Tosc = 0 sec. The observer’s coordinates are: latitude 40° North, longitude 10° East and altitude
900 m.
As can be seen in Figures 4.1 and 4.2, all partial derivatives show periodic features over the
orbital period, which in this case is also coincident with the sidereal day. There is only an
exception for the derivatives w.r.t. the semi-major axis that show also a time dependency which
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amplifies the periodic features. Looking at the analytical expression of the derivatives of the
satellite position w.r.t. the semi-major axis, as shown in Eqs. 4.18-4.20, it was notice that
these are the only ones which are proportional to the difference between the actual epoch
and the osculating time, consequently the derivatives of the measurements w.r.t. a keep this
proportionality (see Eq. 4.45). During the analysis of the covariance matrix, the influence of
different Tosc was also studied; the variations caused by Tosc are seen only in the uncertainties of
the argument of latitude (u0) without influencing the other parameters.

(
∂RA
∂a

,
∂DE
∂a

,
∂ρ

∂a

)
∝ (t −Tosc) (4.45)

Figure 4.1 Behavior of RA and DE partial derivatives w.r.t. the orbital elements.

Figure 4.2 Behavior of range partial derivatives w.r.t. the orbital elements.
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4.3 Simulation Set-up
The results which we are going to present are based on a limited number of observations. The
main part of the results presented here were obtained using only two tracklets, each one consists
of 7 triplets of measurements: two angles and one observation epoch (i.e. RA, DE and t), for a
total number of 28 angular observations. Later on, when we will study some particular cases
the number of observations used will change, more specifically, where studying the influence
of a second observer a total of 4 tracklets are used; for the study of the follow-up influence 3
tracklets are used and finally to evaluate the influences of the ranges we will add to the usual 2
tracklets a variable number of ranges. Despite the change in the number of measurements, the
basic principle of the simulation will remain the same. Details will be provided at the beginning
of each Paragraph. However, during all simulations the time interval between the measurements
within a tracklet is kept constant to 30 seconds.
We focus now, for simplicity, on the two tracklets case from a single observer. The simulations
are performed in a way to cover all possible combinations of tracklets positions in the orbit. To
do so, the first LSQ adjustment is performed positioning the first tracklet on the orbit perigee and
the time interval between first and second tracklet is increased from 10 sec to 2 orbital revolu-
tions with intervals of 2.5° in true anomaly; then, the same procedure is repeated positioning at
each run the first tracklet 2.5° in true anomaly forward along the orbit. These scheme is adopted
for all simulations carried out in this Chapter. For each couple of tracklets the last iteration of a
LSQ adjustment is simulated and from the corresponding covariance matrix the square root of
the terms in the main diagonal, the correlation coefficients and the condition number are stored.
Since we are not interested in LSQ performances the correct orbital elements are given as input
to the LSQ. It is possible to do this simplification because being a non-linear LSQ, the only
requirement to find the minimum is that the initials value of the estimated parameters should be
near to the global minimum values to converge to the correct solution [15].

4.4 First Results with Simplified Scenario
In order to simplify the problem and to identify the influence of the observation-geometry on
each single estimated parameter the first set of results was obtained estimating a subset of the
unknown parameters. In principle, if the parameters to be estimated are independent from each
other, one could solve for each of them separately. Unfortunately, as we have seen in Paragraph
4.2.2, the orbital elements are not completely independent and the minimum number of param-
eters to be estimated depends on the chosen parametrization. Since we chose the following
set of parameters: a, e, i, Ω, ω and u0, taking into account Eq. 4.5, we could separate them
in only two groups. The first group concerns the parameters which describe the shape of the
orbit and the position of the object along the orbit (namely a, e, ω and u0); the second describes
the orientation of the orbital plane in the space (namely i and Ω). Although this simplification
was only partial, it allowed us to understand some basic features and characteristics of the
problem. A further simplification that one can apply to the problem is related to the position of
the observer.
In the first analysis the effect of an observer on the Earth’s surface is neglected, so a geocentric
observer is used. At the same time, only semi-major axis, eccentricity, argument of perigee and
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the argument of latitude are estimated. Figures 4.3, 4.4 and 4.5 show the results obtained for this
simplified scenario for an orbit with: a = 42164.173 km, e = 0.6, i = 30°, Ω = 40°, ω = 60°
and Tosc coincides with the epoch of the 1st observation (from now the osculating epoch will
be indicated simply with Tosc = 1st observation). The three figures show the three main results
of our simulation. In Figure 4.3, the uncertainty maps obtained for the estimated parameters
are reported. In Figure 4.4, a subset of the correlation maps are reported and finally Figure 4.5,
the condition numbers map of the correlation matrix coefficients is shown. All the maps show
the obtained results as a function of the tracklets position. In particular, the position of the 1st
tracklet along the orbit can be read on the y-axis, while the position of the 2nd is displayed on
the x-axis. Both positions are expressed in terms of true anomaly.
Before starting the discussion of the features visible in the maps it is important to highlight
two particular regions of the obtained maps: the “period-line” and the “symmetry-line”. The
subscript number indicates the number of the tracklet: ν1 indicates the first tracklet and ν2
indicates the second. The period-line is made by the points lying on the diagonal line whose
extremes have coordinates [ν2 = 360,ν1 = 0], [ν2 = 720,ν1 = 360] which defines all tracklets
whose positions are separated by one (or more) orbital period(s) in time. The symmetry-line con-
sists of points lying on the diagonal line whose extremes have coordinates [ν2 = 360,ν1 = 360],
[ν2 = 720,ν1 = 0] which defines all tracklets whose positions are symmetrical to the line of the
apsides. Of course all the lines which are parallel to the one mentioned before with a distance
multiple of 360° have the same meaning.
Each point of Figure 4.3 shows the logarithm (in base 10) of the square root of the uncertainty of
the estimated parameters (log10 Kx with Kx =

√
Kii where x is the generic estimated parameter

coincident with the ith element on the main diagonal of matrix K). Here, it is already possible
to notice two important characteristics: the first is given by the fact that the features in the maps
are completely different between the first and the second orbital revolution, more precisely when
the time interval between the tracklets is smaller or bigger than the orbital period. The second
is the S-shaped feature, associated with a high uncertainty area, which appears in the second
revolution. The first effect is one of the consequences of the time dependency of some partial
derivatives, while the S-shaped high uncertainty is occurring when the time interval between the
tracklets is half an orbital period; both effects will be later discussed in details (respectively in
the Paragraphs 4.5 and 4.6).
Looking at the S-shaped high uncertainty region it easy to see how for the eccentricity and the
argument of perigee the features present some interruptions while for the semi-major axis the
S is continuous. Being this an elliptical orbit and the tracklets are acquired with a constant
time sampling between observations, it is obvious that the arc length covered by the tracklets is
depending on the tracklet position. Furthermore, the length of the arc between the single obser-
vations is not constant. The mentioned effects provide information regarding the eccentricity
and the position of the perigee. In fact if one pays attention to the interruptions of the S for the
eccentricity, these are occurring when the first tracklet is on the perigee and the second is at
the apogee (and vice versa). This tracklets combination maximizes the difference between the
length of the arc covered by the tracklet.
Regarding the interruptions of the S for the argument of perigee, these are occurring when the
tracklets are symmetric w.r.t. the line of the apsides. In this case two symmetric tracklets with
the same length are used, but the distances between the observations within the tracklet are first
increasing then decreasing (or vice versa) in the same way. If we pay attention to the position
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of the S-region, it is easy to see that thee minimum is not precisely on the half period distance
between the tracklets, this is even more evident if we look at the interruptions for the eccentricity.
As we will see later, this is a second effect of the time dependency.
For completeness also the uncertainty map for the argument of latitude (u0) is reported in Figure
4.3, this parameter will not be always shown in this chapter because our interest is mainly
focused on the geometric parameters. Furthermore, the uncertainties of u0 are depending on the
arbitrary time Tosc.

Figure 4.3 Uncertainty maps estimating only a,e,ω and u0 with a geocentric observer.

Figure 4.4 shows the correlation maps obtained for the above mentioned scenario. The
correlation index is calculated as shown in Eq. 2.17 and it tells us how strong any two parameters
are correlated. In particular if |γi j| ≈ 1 the two parameters (i and j) are strongly correlated this
means that any modification of one parameter will influence the other.
From Figure 4.4 is evident how the estimated parameters are strongly correlated. Some excep-
tions are present in these maps and coincide with the areas where the single parameters have
their minimum uncertainty. For example if we look at the correlation between a and e or a and ω

the low correlation area are coincident with the period-line. This result is clearly understandable
because if we observe an object twice in the same position with an interval between tracklets
of one period, the semi-major axis is well defined. Other areas with low correlation values are
occurring in the graph a vs e when the first tracklet is on the perigee and the second on the
apogee, while for the map a vs ω low correlations are occurring for tracklets symmetric to the
line of the nodes. It is also important to highlight that the maps in Figure 4.4 show the maximum
correlation value in the S-area with the only exception given by the points where each parameter
has its own uncertainty minimum.
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Figure 4.4 Correlation maps estimating only a,e,ω and u0 with a geocentric observer.

The last part of the results is made by the condition number map of the correlation co-
efficients matrix shown in Figure 4.5. Each point of this map correspond to the condition
number of the correlation coefficients matrix obtained for the couple of tracklets used in the
LSQ. In Figure 4.5 it is possible to see a certain consistency between the high uncertainty
areas shown in Figure 4.3 and the areas where the condition number is relatively high. The
highest condition numbers are visible as expected for very short observation arcs and in the
S-region. It is also interesting to notice how the condition number shows a relatively higher
values for tracklets which are separated by one orbital period. Along the period-line it is easy
to see that there are three interruptions of the higher values occurring when the tracklets are
in the perigee and when the true anomaly is, in this case, ν1/2 = 140 and ν1/2 = 220 deg.
Regarding the other two low condition number interruptions of the period-line these are due
to the fact that we are resolving the LSQ with a subset of parameters. On the other hand, a
very high condition number is visible for tracklets at the apogee: this is probably due to the
arc covered by the tracklet that in this position is the shortest. In fact, it is possible to see how
the condition number is decreasing going toward tracklets whose position is closer to the perigee.

Figure 4.5 Condition number map of the correlation coefficients matrix estimating only a,e,ω
and u0 with a geocentric observer.
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4.5 The S-Region
In Figure 4.3 it is possible to see an S-shaped area of high uncertainty values very sharp for the
semi-major axis, the eccentricity and the argument of perigee. As anticipated in the previous
paragraph this area is occurring when the distance in time between the tracklets is half of an
orbital period. Looking now at Figure 4.4 it is evident that in the S-area the observations are
distributed in a way that it is difficult to estimate correctly these three parameters, so in order to
understand the cause of this S-shaped high-uncertainty area a simulation was performed fixing
the argument of perigee in the first design matrix A. The results of this simulation are shown in
Figure 4.6.
It is important to note that these results are not relevant for this study but at least they are helpful
to find a possible explanation for the S-area. Looking at these results it is easy to see that from
the S-region only two points are remaining, which coincide with the case where the position
of the two tracklets is symmetric w.r.t. the line of the apsides with half a period distance. We
think that the uncertainty on a and e is related to ∆t/∆θ and this ratio is maximum for these
particular points. We take a limit to ∆t = T/2 because each symmetric positions w.r.t. the line
of the apsides with ∆t > T/2 is geometrically equivalent to the same positions after applying
the mod(∆t,T ), where T is the orbital period.
As seen before, if one estimates a,e,ω,u0 without fixing ω , the above mentioned points dis-
appear and instead of them we have the S-line containing all positions which are distant half
a period in time. This is due to the fact that by varying a,e and ω we can relate the generic
situation of half a period distance between tracklets to the case of tracklets symmetric to the line
of the apsides, just mentioned above.

Figure 4.6 Uncertainty maps estimating only a,e,ω and u0 with a geocentric observer but fixing
ω .
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4.6 Influence of Time Interval
As expected from the analysis of the partial derivatives and then confirmed by previous results,
the time interval between the tracklets has a big influence on the uncertainties of the estimated
parameters. This effect can be highlighted comparing the results in Figure 4.3 with those in
Figure 4.7, which are obtained with a distance in time between tracklets contained within 49
and 50 orbital revolutions.

Figure 4.7 Uncertainty maps for a and e estimating only a,e,ω and u0 with a geocentric observer
with a maximum distance between tracklets of 50 orbital periods.

From this comparison it easy to see three main effects of the time distance between tracklets.
The S-shaped high uncertainty for a, e and ω is clearly visible from the 2nd period on. This does
not mean that it is appearing only after one orbital revolution, but it is also present within the 1st
period; the only difference is that in this case, this feature is hidden under higher uncertainty
values. Secondly, the average values of the uncertainties tend to decrease while the time interval
between tracklets increases (especially for the semi-major axis). Thirdly, the S-shaped high
uncertainty is now precisely passing on the area where the tracklets are separated in time by half
of an orbital period.
In Figure 4.8 it is possible to see how, especially for a, the average uncertainties are diminishing
with time. It is also clear how the half-period feature is hidden within high uncertainty values
when the time interval between tracklets is less than one orbital revolution. A possible explana-
tion for these phenomena is in the behavior of the partial derivatives. In fact, as seen before, the
partial derivatives of position w.r.t. the semi-major axis contains a direct dependency from the
time, in particular ∂ r⃗s/∂a ∝ (t −Tosc), while the other derivatives are periodic over the orbital
period. Despite the fact that the time is increasing linearly, we think that these effects are due to
the order of magnitude of the time difference between the tracklets, which is growing from 0
sec up to 104 sec within the 1st orbital period, then from 104 sec to 105 sec in the 2nd, and it
will reach 106 sec only after the 11th revolution.
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Figure 4.8 Behavior of the uncertainty of a,e and ω obtained with the 1st tracklet on the perigee
with a varying time interval of the 2nd up to 25 orbital revolutions.

4.7 Estimation of the Entire Set of Parameters
Once we understood the main features characterizing a,e,ω and u0, the simulation was repeated
including in the estimation process also the parameters which describe the orientation of the
orbital plane in the space (i and Ω). Figure 4.9 shows the uncertainty maps obtained for the same
orbit analyzed before (a = 42164.173 km, e = 0.6, i = 30°, Ω = 40°, ω = 60° and Tosc = 1st
observation) with a geocentric observer.

Figure 4.9 Uncertainty maps for i and Ω estimating all 6 parameters with a geocentric observer.

The uncertainty maps of i and Ω are characterized only by one main feature of high uncer-
tainty values which includes all the positions with a difference in time of one (or more) orbital
period(s) and which are separated by 180° in true anomaly. These high uncertainty areas can be
explained considering the fact that the orientation of the orbital plane in the space is described
by the direction of the angular momentum. At the same time this direction is also defined by
the cross product of the directions of two position vectors. The cross product is undefined
if the unit vectors involved are parallel or aligned which is precisely the case described just
before. Each of these features presents two interruptions. To explain them it is necessary to
have a look at the orbital parameters, in particular ω , which in this case is equal to 60°. The
line of the nodes intersects the orbit when the true anomaly is equal to 120° and 300°. Being
the observer always within the orbital plane, the information regarding Ω is maximized if both
observations are performed on the line of the nodes. The information about the inclination is
maximized if the observations are performed at 90° of distance from the line of the nodes, in this
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case when ν of the 1st tracklet is equal to 30° and for the second tracklet ν = 210°, or vice versa.

4.8 Topocentric Observer
Until now, the results shown were obtained using an unreal observer located at the center of the
Earth. In the next section, the influence of a real observer on the Earth’s surface is analyzed. Fig-
ure 4.10 shows the scenarios used to identify the contributions given by a topocentric observer.
Two “standard” orbits are used to carry out this study and the results obtained using different
observers displaced in longitude or in latitude are compared. The used orbits have the following
orbital elements: a = 42164.173 km, e = 0.6, i = 1° or 60°, Ω = 0°, ω = 0° and Tosc coincides
with the time of 1st observation. As for the case of the geocentric observer, the simulations are
performed analyzing all possible combinations between tracklets positions separated by 2.5° in
true anomaly. The only difference is the observer position. In particular, the initial position of
the observer is kept constant for the different 1st tracklet positions while for the second tracklet,
the position of the observer is rotated accordingly with the time interval between tracklets and
the Earth’s angular velocity. The initial positions chosen for these simulations are shown in
Table 4.1. It is important to note that being a geometrical study the real orientation of the Earth
in the space is neglected. To better understand the results we set up the orbits so that their line
of nodes/apsides are coincident with the x-axis of the generic inertial system and the Greenwich
meridian is also aligned with the same axis at time t = 0.

Longitude [deg] Latitude [deg] Geodetic altitude [m]
Reference Observer 0 0 0
Longitude-displaced observer 60 0 0
Latitude-displaced observer 0 50 0

Table 4.1 Observer’s geodetic coordinates.
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(a) Different observer positions with an equatorial orbit

(b) Different observer positions with an inclined orbit

Figure 4.10 Scenarios used to evaluate the influence of a real observer.

4.8.1 Longitude Displacement of the Observer
In the first attempt, to isolate the contribution given only by the position of the observer, the
simulations are performed using an almost equatorial orbit. To avoid the singularity of the used
parametrization an inclination of 1° is used. In fact for i = 0°, Ω it is not defined anymore
therefore also ω become undefined with this convention. The results obtained with a longitude
displacement of the observer with an equatorial orbit are analyzed and no significant effects can
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be seen.
A “more” complicated scenario with i = 60° is used to evaluate the effects of a longitude-
displaced observer. The simulations are then repeated using the scenario described in Figure
4.10b, where the “Reference” observer, at the time of 1st tracklet, is within the orbital plane
precisely on the line of the nodes, which in this case coincides also with the line of the apsides.
Being a geosynchronous orbit, the observer will be again within the orbital plane every half of a
revolution. For the observer displaced in longitude the 1st tracklet is acquired always outside of
the orbital plane. The observer will be in the orbital plane only if the distance in time between
the tracklets is equal to 1/3 or 5/6 of the orbital period. Figure 4.11 shows the results of this
simulation and shows the comparison between only two parameters a and i. Comparing the
latter results with those obtained in the case of an equatorial orbit we can already conclude
that the relative position of the observer w.r.t. the orbital plane has a huge influence on the
results. In particular it is important to distinguish if the observer is always, systematically, or
just “occasionally” within the orbital plane. Figure 4.11 shows the comparison between results
obtained with an observer systematically inside the orbital plane w.r.t. that obtained by an
observer just occasionally inside.
The Figures 4.11a and 4.11b show some common features like: the minimum uncertainty area
on the period-line for a, the S-area with high uncertainties, the high uncertainties for tracklets
whose angular distance is 180° for i. Focusing now on the uncertainty maps for a, it is possible
to see few differences and one new feature. The main difference is in the uncertainty values in
the S-area which are smaller if the observer is just occasionally within the orbital plane. The
new feature that is not so sharp in this case, but will be more evident in the next paragraph,
consists in a minimum value line for a in the case where the tracklets have an angular distance
of 180°. These two effects are due to the fact that observing from outside the orbital plane one
is able to estimate the distance from the object.
Comparing the two inclination maps, it is easy to see that they are pretty different. In particular
the one in Figure 4.11a shows two horizontal lines with low uncertainty values and an S-shaped
low uncertainty area. The reason for this is that the two horizontal lines are occurring precisely
when the true anomaly of the 1st tracklet is 90° or 270°; remembering that ω = 0° these two are
the points of the orbit with the maximum angular distance from the line of the nodes. In the
figure only the horizontal lines are present because they are relative to the 1st tracklet which
is always acquired with the observer within the orbital plane; while if the 2nd tracklet is in
the same positions the observer is outside the plane reducing the strength of this information.
Regarding the S-area, it contains all the observations performed by the observer within the
orbital plane.
Looking now at the inclination map of Figure 4.11b, the just mentioned features are not present
anymore but only some minimum point-like areas can be observed. These areas are given by
a compromise between distance of the observation from the line of the nodes and position of
the observer w.r.t. the orbital plane. These higher average uncertainty values in this figure also
mean that to determine i and Ω it is better to have an observer within the orbital plane. It was
decided not to show the maps for e,ω and Ω because we can extract the same conclusions just
reported for a and i.
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(a) Observer regularly within the orbital plane (b) Observer occasionally within the orbital plane

Figure 4.11 Comparison between uncertainty maps obtained for an inclined orbit with longitude-
displaced observer.

4.8.2 Latitude Displacement of the Observer
To confirm the importance of the position of the observer w.r.t. the orbital plane, the case where
the observer is always inside the orbital plane is compared with the case where it is always
outside. The geosynchronous equatorial orbit is again used with an equatorial observer and the
results are compared with those obtained with the same orbit but the observer was displaced
by 50° in latitude (see Figure 4.10a). Figure 4.12 shows the uncertainty maps for a, i and ω

obtained with the equatorial observer and the ones obtained with a latitude-displaced observer
(respectively in Figures 4.12a and 4.12b). In the uncertainty maps for a it is clearly visible how
the intensity of the S-area is strongly reduced by an observer outside the orbital plane. On the
map of e the same effect is noticeable. As for the previous paragraph, a diagonal line with low
uncertainty values is appearing when the ν2 −ν1 = 180°; this effect can be explained by the
fact that an orbit is a section of a cone. If one is observing the orbit from the apex of the cone
(or from a circular section of the cone) and one is able to estimate the distances, exploiting the
information within the tracklets, it is easier to determine the semi-major axis and the eccentricity.
Comparing now the maps for the inclination we can see how the main features are kept. There is
only a small reduction of the diagonal line with tracklets separated by 180°. The most important
difference is that the average uncertainty values in the Figure 4.12b remarkably increased. This
is well understandable because the inclination can be described measuring the distance of the
object from the equatorial plane. Having a relatively small distance, given by 1° of inclination,
this can be better measured if the observer is inside the orbital plane.
One interesting result is the difference between the maps for the argument of perigee. In the
case shown in Figure 4.12a the classical S-shaped area is present, it is then important to notice
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that also a high uncertainty diagonal line is present for tracklets with angular distance of 180°.
This feature is characteristic of Ω but is present also on ω because of the small inclination
value. For i → 0 it is difficult to define the line of the nodes and being the argument of perigee
defined w.r.t. this line all the uncertainties of Ω are transferred also to ω . The most interesting
feature for the map of ω in Figure 4.12b is given by the fact that the S-area contains minimum
uncertainty values. This can be explained by the fact that looking from outside the orbital plane
we have an improvement given by the capabilities to estimate the distances. This is followed
by an improvement also for the eccentricity estimation, and being able to estimate these two
quantities, one is also able to decorrelate them from ω . This effect can be seen looking at the
relative correlation maps. Finally the increase of the average uncertainty values can be explained
by the fact that looking from outside the orbital plane it is more difficult to determine precisely
the distance between observations within a tracklet.
In conclusion, is it better to observe within or outside the orbital plane? There is not a unique
answer to this question as we have just seen: the observer inside the orbital plane is gaining
more information about the orientation of the orbital plane in the space, amplifying the effect
given by the distance of the observations from the line of the nodes and reducing the average
uncertainty values. Vice versa, observing from outside the orbital plane gives us information
about distances that reduce the average error on a, strongly reduce the S-area for a,e and ω , and
helps us decorrelate ω from a and e.
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(a) Equatorial observer (b) Latitude-displaced observer

Figure 4.12 Comparisons between uncertainty maps obtained for an equatorial orbit with an
equatorial and a latitude-displaced observer.

4.9 Influence of Orbital Parameters
Once the main features in the results were studied, the analysis was repeated varying the orbital
parameter of the reference orbit in order to understand their influences.
First, the influence of u0 was studied: modifying u0 is equivalent to change the osculating time
Tosc, this means to solve the orbit determination problem for positions of the object along the
orbit. This analysis showed that this parameter is affecting only the map of the argument of
latitude while is not influencing at all the other geometric parameters.
The argument of perigee ω describes the orientation of the orbit within the orbital plane. Chang-
ing it, means to change the intersection points of the orbit with the equatorial plane producing
only a translation of the minimum horizontal lines seen in Figure 4.9.
Repeating the simulations changing the position of the line of the nodes in the space (modifying
Ω) produces the same effect of a longitude displacement of the observer changing his relative
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position w.r.t. the orbital plane. In particular the observer will be inside or outside the orbital
plane for different time distances between the tracklets reducing the strength of the S-area for a
and e if the observer will be more outside the orbital plane and influencing the low uncertainty
area for i and Ω.
One of the most interesting parameter is the inclination i, as anticipated before, the main effects
are given when i tends to 0. If i = 0, Ω is not defined. The main effects of this singularity is
visible in the map of ω in Figure 4.12a. This because ω is defined w.r.t. the line of the nodes and
then, it will show some characteristic features of Ω. Additionally the closer i is to 0 the fainter
will be the characteristic S-area of ω . Finally being u0 = ω +ν0, the main features of Ω are
consequently transferred also to the argument of latitude. This phenomenon is also confirmed by
the different correlation maps among Ω, ω and u0 which, in this case, do not show any feature
and are constant at the maximum correlation value over all possible combinations of tracklets
positions.
The eccentricity is the main responsible for the S-area, in particular if e grows the S tends to have
the shape of two hyperbolas, while if e decreases towards 0 (for circular orbit) the S becomes a
diagonal line for tracklets whose angular distance is 180° in true anomaly.
The last important effects are given by the variations of the semi-major axis which are related to
the changing of the "Earth’s parallax" angle, the length of the arc covered by the tracklet and the
ratio between the Earth’s rotation period and the orbital period. We define "Earth’s parallax" as
the angle θ = 2arctan(R/r) where R is the Earth’s radius and r is the geocentric distance of the
object. This angle tells us how much the observation geometry can change due to the motion
of the observer in the space. Increasing the semi-major axis means augmenting the distance
of the object from the observer. This produces a general rise of the average uncertainty values
especially for a and e since the beneficial effects of the Earth parallax and of the information
within the tracklet are strongly reduced. In particular, if the object is enough distant from the
Earth the effect given by the Earth’s parallax and the fact that the observer is inside or outside the
orbital plane is strongly reduced and the features of the maps become similar to those obtained
for a geocentric observer which is always inside the orbital plane. Furthermore keeping constant
the time interval between the observations within a tracklet during all simulations leads to a
decrease of the arc covered by the tracklet if the semi-major axis increases, and produces a
loss of information for a, e and ω . The main consequence of a shorter arc is an increase of the
average uncertainty values especially for the just mentioned parameters. The ratio between the
orbital period and the Earth’s rotation is important because it will determine when an observer
is within or outside the orbital plane. As seen before this is important for the high uncertainty
S-shaped area.

4.10 Effect of the Rotation of the Earth
Another aspect that should be taken into account during the maps analysis is the rotation period
of the Earth. In particular the ratio between the orbital period and the Earth rotation is important
because it will determine when an observer is within or outside the orbital plane. Figure 4.13
shows the results obtained for the uncertainty maps of a for two orbits which have the same
values of e, i,Ω,ω and u0, but different a values: a = 20270.404 km and a = 42164.173 km.
These two values of a were chosen in order to have, in the first case, three complete revolution of
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the satellite and, in the second case, one within the Earth’s rotation period. This choice allowed
us to have an observer within the orbital plane respectively every 1.5 and 0.5 orbital periods.
This experiment confirms the fact that the S-area is characteristic of observations performed
within the orbital plane. As shown in Figure 4.13a, the S appears only when the distance between
tracklets is 1.5 or 4.5 orbit revolutions.

(a) a = 20270.404 km, 3 rev/day

(b) a = 42164.173 km, 1 rev/day

Figure 4.13 Influence of Earth’s rotation for the semi-major axis uncertainty map.

4.11 Application to Real Cases
Until now only a theoretical study was performed to highlight the influence of each single
parameter on the accuracy of an orbit determination/improvement process. The main features
are now known and the effect of the observer position is also known. The next natural step
is to apply this method to a real scenario characterized by a real orbit with a real observer.
For simplicity the simulations are carried out using a generic inertial system of reference. In
this section we will show the results obtained for those orbital regions largely populated by
satellites and then by space debris: the Low Earth Orbit regime (LEO), the Medium Earth Orbits
(MEO), with the Molniya and the Geostationary Transfer Orbit (GTO) cases, and finally the
Geostationary Earth Orbit (GEO) region.

4.11.1 LEO
To study the LEO case, we used the following orbital parameters: a = 7707.627 km, e =
0.0008776, i = 66.125°, Ω = 10.011°, ω = 247.14° and Tosc = 1st observation. The geodetic
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coordinates of the observing site are those of the Zimmerwald observatory namely: 46.8772°
North, 7.4652° East and 951.2 m. Since the orbital period is only 112.238 minutes, for reasons
of space, to display the uncertainty maps we needed to split them in two parts. The splitting was
necessary to show the results obtained over an entire Earth’s rotation period. The Figures 4.14
and 4.15 show respectively the obtained uncertainty maps for a time interval between the two
tracklets from 10 seconds to 6.5 orbital revolution and from 6.5 to 13 orbital revolutions.
Comparing the Figures 4.14 and 4.15 it is interesting to notice that all the uncertainty maps show
a trend of the general values of the uncertainties: from an average low value (exception made
for the first orbital revolution), first they are increasing to have their maximum between the 6th
and the 7th revolution to then decrease again. This trend of the average uncertainty values is
due to the relative geometry between object and the observer, and in particular to the distance
between the observer and the object. The only element in which this behavior is a bit dimmed
is the semi-major axis because its uncertainty, as we have seen previously in Paragraph 4.6,
decreases when the time interval between the measurements increases.
Since the orbit has a relatively low altitude we have fast changes in the observation geometry
which lead to a more difficult interpretation of the maps. Starting from the figures describing
the orientation of the orbital plane, respectively Figures 4.14c and 4.15c for the inclination and
Figures 4.14d and 4.15d for RAAN, we can see how the low uncertainty areas for tracklets
which are at the maximum and at the minimum distance from the line of the nodes (respectively
for i and Ω) are still present, as well as the high uncertainty areas for tracklets separated by 180°
and 360° in true anomaly. On the other hand, it is interesting to notice the appearance of low
uncertainty areas for i when the second tracklet is close to the apogee in Figure 4.14 and when it
is close to the perigee in Figure 4.15. First of all, considering the position of the perigee, the
just mentioned tracklet positions coincide with the farthest points w.r.t. the equatorial plane;
while the change from apogee to perigee between the Figure 4.14c and 4.15c is probably due to
the relative position of the observer w.r.t. to the orbit and the distance of the object from the
observer. By looking at the geometry of the problem and at Figure 4.16c it is possible to see
how the apogee of the orbit is closer to the observer position for tracklets whose separation in
time is less than 12 hours (roughly 6.5 orbital revolutions which results are shown in Figure
4.14), vice versa the perigee is closer to the observer position for tracklets whose separation is
bigger than 12 hours (results shown in Figure 4.15). At the same time, comparing the minimum
distance between observer-apogee and observer-perigee, it is clear that the first is the shortest.
The effect of this distance is also reflected in the maps: the uncertainty obtained when the 2nd
tracklet is at the apogee, in Figure 4.14c, is lower than that obtained at the perigee in Figure
4.15c. For the RAAN, this phenomenon is less evident since the distance of the observer from
the line of the nodes is more constant during the simulation interval.
Looking now at the maps of the semi-major axis (Figures 4.14a and 4.15a), of the eccentricity
(Figures 4.14b and 4.15b) and of the argument of perigee (Figures 4.14e and 4.15e) we can
see how the S-area is less defined and, due to the low eccentricity value of the orbit, is almost
diagonal. Also for these maps, an interesting region is the horizontal low uncertainty values
area which is occurring when the first tracklet is between 135° and 180° of true anomaly for a
and e, and between 90°and 135° of true anomaly for ω . This position coincides with the closest
distance between the object and the observer. Since the arc length of the tracklet is constant
if measured from the geocenter, the length of the arc seen from the observer varies with the
distance of the observer from the target. In particular, the closer the object the wider is the
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topocentric angle under which the object is observed. Since we use the topocentric RA and DE
as measurement, the variations of their partial derivatives is bigger when the object-observer
distance is shorter. This probably produces a gain of information useful to estimate a and e. Due
to the time dependency of the derivatives w.r.t. a, this improvement becomes more evident, in
the map of the semi-major axis (Figures 4.14a and 4.15a), with the increase of the time interval
between the tracklets and it is even more evident for observations separated by one or more
orbital periods.
Looking now at the eccentricity maps (Figures 4.14b and 4.15b), we see a more constant hori-
zontal low uncertainty area and in addition a vertical low uncertainty area is visible when the
second tracklet is close to the apogee. The uncertainty values of the vertical lines are increasing
with the object-observer distance.
Concluding with the analysis of the map of ω (Figures 4.14e and 4.15e), we can see how these
maps have two main low-uncertainty areas. The first is due to the object-observer distance. In
fact, the shorter the distance the wider is the arc seen from the observer and it is almost coinci-
dent with the low-uncertainty area seen for e and a. The second are the classical low-uncertainty
points which interrupt the high-uncertainty features visible in all maps related to ω . These occur
when the first and the second tracklet have the following positions in true anomaly: ν = 85°
and ν = 265°. As we know, these positions are determined by the eccentricity of the orbit and
one couple of them corresponds to tracklets which are symmetric to the line of the apsides and
separated by half of an orbital period. The second couple is obtained when the two tracklets are
in one or the other position but separated by an integer number of orbital revolution. The last
remark that we can do on these particular areas is regarding their values which are influenced,
as all the other maps, by the object-observer distance. This phenomenon is much more evident
for low-altitude orbits than for high-altitude ones since the relative change of this distance is
smaller.
The behavior of the object-observer distance is shown in Figure 4.16. In particular, the Figure
4.16a we see the behavior of the distance for the first tracklet where it is interesting to see the
minimum distance which is occurring when the true anomaly of the tracklet is between 135°
and 180°. The Figure 4.16b shows the obtained map of the distances for the second tracklet as
a function of the position of the first one. It is interesting to notice that in the first part of the
graph the minimum distance is when the second tracklet is at the apogee while in the second
part, due to the rotation of the Earth, the differences between maximum and minimum distance
are smaller. This phenomenon leads to the appearance of a second low-uncertainty vertical line
in Figure 4.15b when the second tracklet is at the perigee. It must be said that the values in
this second line are higher than those visible when the second tracklet is at the apogee. Finally,
Figure 4.16c shows the sum of the distances obtained for the two tracklets. Observing this last
figure, it is easy to notice the correspondence between the minimum distance areas and the
lowest-uncertainty spots, visible especially for the semi-major axis and the argument of perigee.
At the same time the just mentioned correspondence is reflected also in the eccentricity and in
the argument of latitude maps.
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(a) Semi-major axis

(b) Eccentricity

(c) Inclination

(d) Right Ascension of Ascending Node

(e) Argument of Perigee

(f) Argument of Latitude

Figure 4.14 First part of the Uncertainty maps for LEO orbit observed from Zimmerwald.
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(a) Semi-major axis

(b) Eccentricity

(c) Inclination

(d) Right Ascension of Ascending Node

(e) Argument of Perigee

(f) Argument of Latitude

Figure 4.15 Second part of the Uncertainty maps for LEO orbit observed from Zimmerwald.
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(a) Object-Observer Distance for the 1st tracklet

(b) Object-Observer Distance for the 2nd tracklet

(c) Sum of the Object-Observer Distance for the 1st and 2nd tracklet

Figure 4.16 Topocentric object-observer distance for LEO orbit observed from Zimmerwald.

4.11.2 GTO
Another region with a high density of space debris is the Geostationary Transfer Orbit (GTO)
region. This region becomes important since it contains the major part of discarded upper stages
used to bring a geostationary satellite into orbit. We will analyze two examples for this kind
of orbit also to highlight the influences of two parameters: the Right Ascension of Ascending
Node and the Argument of Perigee (namely Ω and ω).
The orbital parameters used for the first example are: a = 24409.4 km, e = 0.7287, i = 6°,
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Ω = 0°, ω = 226° and Tosc = 1st observation. For the observer the Zimmerwald observatory is
selected and a maximum distance of 2 orbital revolutions between the two tracklets is allowed.
Figure 4.17 shows the uncertainty maps obtained for the first GTO-case. Although the results are
difficult to interpret, it is still possible to see some main features like: the decrease of the values
for the semi-major axis when the distance in time between tracklets increases, the S-area almost
disappeared for e and ω while for a it is strongly reduced, and the presence of the minimum
uncertainty diagonal line for tracklets separated by 180°. The latter two effects are both caused
by the fact that the observer is always outside the orbital plane and by the non-synchronization
between the orbital period and the Earth’s rotation period. Looking at the uncertainty maps for i
and Ω it is possible to see how the diagonal lines for tracklets separated by 180°, even if still
present, are strongly reduced. The high uncertainty area remains when the two tracklets are
both close to the apogee. In these two maps it is also possible to see two horizontal lines of low
uncertainty values, respectively when the 1st tracklet is between 30° and 60° for i and between
300° and 330° for Ω. Knowing that ω = 226° these regions coincide with the maximum distance
from the line of the nodes, and the position of the line of the nodes, respectively. Then, it is
important to notice how, due to a small inclination value, the feature of Ω are contaminating the
maps of the argument of perigee and the argument of latitude.

Figure 4.17 Uncertainty maps for 1st GTO orbit observed from Zimmerwald.

The second GTO case is obtained changing only the value for Ω and ω . In this case we will
then use: a = 24409.4 km, e = 0.7287, i = 6°, Ω = 226° and ω = 0°. For completeness it must
be said that the position of the observer and the time interval is precisely the same as in the
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previous example, i.e. the observer is the Zimmerwald observatory and the time interval is 2
orbital revolutions.
Of course, there are a lot of similarities with the previous case (results in Figure 4.17). From
the plot referring to the semi-major axis and the eccentricity for example it is easy to see the
reduction of the S-area and the reduction of the diagonal line for positions separated by 180°.
As expected the main effects due to the different value of Ω and ω are visible for the parameters
which describe the orientation of the orbital plane. These effects can be seen comparing the
results for i, Ω, ω and u0 shown in Figures 4.17 and 4.18. One of the consequences of the
change in the orbital elements in the two GTO cases is that in the first case, the line of the
apsides does not coincide with the line of the nodes. This has an influence first on the results
obtained for the inclination. Looking at these two plots, respectively in Figures 4.17 and 4.18,
one can see how the first graph shows an attenuation of the classical features seen until now
and of the uncertainty values. In fact the diagonal lines of the tracklet separated by 180° and
the one of the orbital period are fainter in the first case than in the second. On the other hand
the low-uncertainty horizontal lines related to the maximum distance of the first tracklet from
the line of the nodes (being ω = 0° the maximum angular distance from the lines of the nodes
is obtained for ν1 = 90° or 270°), are much more visible in the second case than in the first
one. It is interesting to notice the comparison among the uncertainty values obtained when both
tracklets are acquired at the apogee (consequently separated by one orbital period). Here the
values obtained in the first case are smaller than in the ones in the second and this is probably
due to the fact that the apogee is not anymore in the Earth’s equatorial plane. While the higher
values of the second case are probably given by the sum of two effects: the high eccentricity of
the orbit and the fact that the line of the nodes coincides with the line of the apsides. Comparing
the plots which refer to Ω in the Figures 4.17 and 4.18 we can deduce the same conclusions
as those obtained for the inclination. Also here the diagonal features from tracklets separated
by 180°, despite strongly reduced, are still present but in the first case are less evident. The
main difference between the two graphs is clearly visible in the plot for the argument of perigee
where it is possible to see how the S-area is now a minimum uncertainty area due again to the
observer position. This configuration is then characterized by the shortest tracklets along the
orbit close to the line of the nodes. Finally, comparing the maps obtained for Ω, ω and u0 one
can see huge similarities among them which are due to the relatively small inclination value
which leads to a high correlation of these three parameters.
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Figure 4.18 Uncertainty maps for 2nd GTO orbit observed from Zimmerwald.

4.11.3 Molniya
For this simulation the same scenario as described before is used changing only the orbital pa-
rameters of the orbit; in particular: a = 26561.765 km, e = 0.7, i = 63.4°, Ω = 278°, ω = 270°.
As usual, also the results for the Molniya object show an S-shaped high uncertainty area for a,e
and ω , in Figure 4.19. Comparing the S-area just obtained with that of the GTO, despite the
similar shape of the orbit, in this case the S is sharper and the average uncertainty is a bit higher.
These effects are probably due to the fact that the orbit is synchronous with the Earth period and
the higher inclination of the Molniya orbit reduces the distances of the orbital plane from the
observer position. As for the GEO and GTO case, these results show also the diagonal line for
tracklets separated by 180° of true anomaly typical of the observer always outside the orbital
plane.
Looking now at the plot for i and Ω, it is interesting to notice how the different position of the
perigee in space produces a shift of the horizontal low uncertainty lines. In particular, for the
GTO case these lines have positions ν1 = 90° and ν1 = 270° for the inclination and, although
not clearly visible, ν1 = 0° and ν1 = 180° for the RAAN; for the Molniya case is vice versa.
This is due to the fact that ω = 270° , then the line of the nodes coincides with the line of the
semi-latus rectum, while the apogee and the perigee are at the maximum angular distance from
the equatorial plane. In these figures the high uncertainty diagonal lines for tracklets separated by
180° or 360° in true anomaly are also present. Finally, it is important to note two features which
are visible in the graphs of i and Ω: one for the inclination and one for the RAAN. Regarding
i, it is interesting to notice the presence of an S-shaped low uncertainty area coincident with
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half a period separation between tracklets. This is probably due to the orientation of the orbit
in the space. Being the apogee and the perigee the furthest points from the equatorial plane,
at least one of the two tracklets, which are separated in time by half a period, is far enough
from this plane to clearly determine the inclination of the orbit. For the same reason the highest
uncertainty areas for Ω are occurring for tracklets close to the apogee separated by one orbital
period.

Figure 4.19 Uncertainty maps for Molniya orbit observed from Zimmerwald.

4.11.4 GEO
The orbital parameters used for this last set of simulations are: a = 42164.173 km, e = 0.0005,
i = 0.1°, Ω = 270°, ω = 0° and Tosc = 1st observation. For the observer’s position the Zimmer-
wald observatory is used. A maximum distance of 2 orbital revolutions between the two tracklets
is allowed in this simulation. Figure 4.20 shows the results obtained for the just described
scenario.
As we can see from the graphs referring to the semi-major axis, the eccentricity and the argu-
ment of perigee, being this an almost circular orbit, the S-area for a,e and ω is now a diagonal
line which is not yet precisely coincident with that of 180° angular distance between tracklets
because of the time dependency shown in Paragraph 4.6. In these maps the diagonal line for
the tracklets whose positions are separated by 180° in true anomaly is also present, this line
is obtained by the fact that the observer is always outside the orbital plane. Looking at the
uncertainty maps for i and Ω, the high-uncertainty diagonal lines for tracklets separated by 180°
and 360° in true anomaly (which are more or less equivalent to half and to one orbital revolution)
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are clearly visible. It is interesting to notice that the 180° tracklets separation, although it is
not the best configuration of observation for i and Ω, shows lower uncertainty values than the
360° tracklets separation due to the different geometry condition given by the observer position
on the Earth’s surface. Other consequences of the small eccentricity values can be observed in
the average high uncertainties for the argument of perigee (ω). In this case, despite the small
inclination value, the argument of perigee keeps its main features while the uncertainties of Ω

are directly transferred to u0 which is completely correlated with it.

Figure 4.20 Uncertainty maps for GEO orbit observed from Zimmerwald.

4.12 Visibility and Night-Time
The current maps show also some impossible combinations of observations due to the visibility
limits. For example if we consider the scenario described at the beginning of the Paragraph 4.8
where the perigee of the orbit is just at the zenith of the observer at time t = 0, it is obvious
that all the 1st tracklet positions which are around the apogee are impossible to see because
one should be able to look through the Earth. Are there some “forbidden” regions that is not
possible to see in any case? How will the daylight time influence our maps? In fact it is
always possible to find an orbit whose parameters fulfill my visibility criteria. For example,
the results of two simulations were compared: in the first the orbital parameters described in
Paragraph 4.8 were used, and in the second the same orbital elements were kept but ω was
set to 180°, so that the apogee of the orbit was at the zenith at time t = 0. This comparison

74



4.13 Second Observer

showed that the features present in the maps are precisely the same, the only difference are the
uncertainty values which are slightly different due to the different distances of the object from
the observer. It is possible then to conclude that the maps do not have forbidden regions but to
apply them it is necessary to use a mask for the elevation limits and another one for the nighttime.

4.13 Second Observer
The results showed until now are obtained considering one single observer. The next step of this
study will be the evaluation of the effects on the uncertainty maps given by a second observer.
These series of tests were performed to simulate a network of telescopes and then to evaluate
which improvements can be achieved. In order not to introduce a too much complicated scenario
and to easy interpret the results we limited the number of observers to only two.
The introduction of a second observer posed the question: how the second observer should
interact with the first one? There are two possible ways of interaction: the first is when the
observers are acquiring measurements precisely at the same time of the same objects; the second
is when the observers are more independent and they are observing the same object but with
some delays between the measurements. The first case is described in the Paragraph 4.13.1,
while the second is analyzed in the Paragraph 4.13.2.

4.13.1 Synchronous Observers
First we will analyze the case of “synchronous observers” in particular, we will evaluate the
effects on the uncertainty maps given by a second observer which is observing the target object
precisely at the same time as the first observer.
During these simulations it is necessary to take into account some constraints on the observer’s
positions, in fact as an example we could not select observers which are on the opposite part
of the Earth. Also in this case we performed a scan of all possible combinations of tracklets
separated by 2.5° in true anomaly in the same way as described in the Paragraph 4.3. The only
difference is that for this study two series of observations per observer, acquired at the same
time, are used in the orbit determination process.
For an easier comparison of the results with those previously obtained we performed this study
on the same "standard" geosynchronous orbit as that used in Paragraph 4.8. The following
orbital parameters are used: a = 42164.173 km, e = 0.5, i = 60°, Ω = 0°, ω = 0° and Tosc = 1st
observation. Two equatorial observers symmetrical to the Greenwich meridian are used, whose
geodetic coordinates are: for the first Lat. 0°, Long. 45° West and Alt. 900 m; while for the
second Lat. 0°, Long. 45° East and Alt. 900 m. The observation scenario is shown in Figure
4.21.
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Figure 4.21 Simulation scenario with two observers symmetric to Greenwich meridian.

From Figure 4.22, especially for a, e and ω , it is easy to see how the typical features
previously studied are still present. In particular it is still possible to see the effect of the time
distance between the two tracklets, in fact the maps show different features for the 1st and the
2nd orbital revolution and the average error is decreasing while the time difference is increasing.
The S-shaped high uncertainty area is still present, as well as the high uncertainty diagonal
line for tracklets separated by 180° and 360° in true anomaly for i and Ω. However, some
differences can be noticed w.r.t. the case of a single observer: first, the average uncertainty
values are lower due to the capability of estimate the object distance and the higher number of
observations, second some new features are appearing, like the high uncertainty spots close
to the S-area for a, e and ω or close to the diagonal line of tracklets separated by 180° for i
and Ω. The main improvement given by a second observer is given by the fact that, knowing
the observer position and the direction to the target object, it is always possible to estimate the
distance of the object from the observers and also the object’s geocentric position. The quality
of the estimation of such distances is proportional to the parallax angle given by the pointing
directions of the observers to the object position, the smaller this angle will be, the less accurate
will be the distance estimation. The correspondence between the high uncertainty spots and the
low parallax values is confirmed by Figure 4.23 which represents the sum of the parallax angles
obtained for the first and for the second tracklets.
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Figure 4.22 Two observers symmetric to the Greenwich meridian - Uncertainty maps for
Geosynchronous inclined orbit.

(a) Parallax for 1st tracklet

(b) Parallax for 2nd tracklet (c) Map for total parallax (1st + 2nd)

Figure 4.23 Two observers symmetric to the Greenwich meridian - Parallax angles maps for
Geosynchronous inclined orbit.
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The most important result obtained by the introduction of the second observer is given by
the capacity to estimate the distances. At the same time this improvement can be reduced by
the dependency of the accuracy of the estimated parameters on the parallax of the observations.
This quantity is, of course, dependent on the relative position between the observers and the
object. To highlight this effect, the results of a second simulation are reported in the Figures 4.24
and 4.25. These results are obtained with the same scenario previously utilized, but changing
the inclination of the orbit to make it equatorial (i = 0.1°). Only the maps of the semi-major
axis and the eccentricity (namely those of a and e) show significant changes. As one can see,
instead of high uncertainty spots on the map, in this case some new features appeared which
are intersecting the nominal S-area. The correspondence between these new features with those
regarding the parallax angles is clearly visible in Figure 4.25c. Regarding the other orbital
elements, we see that for the argument of perigee and the argument of latitude (respectively ω

and u0) the predominant features are as those visible for the RAAN (Ω). At the same time in
the maps obtained for ω and u0 the S-area is barely visible. As said before, these phenomena
are occurring since the orbit is equatorial and then one has the maximum correlation between
Ω, ω and u0. Finally, regarding the inclination and the RAAN (i and Ω) we see that only the
classical features given for tracklets which are separated by 180° of true anomaly and by an
integer number of orbital period are visible. Since in this case both, the orbit and the observers
,are lying on the same plane, the orientation of the orbital plane in the space is well defined
for almost all tracklets combinations except for the ones which are obtained when observing
opposite parts of the orbit.

Figure 4.24 Two observers symmetric to the Greenwich meridian - Uncertainty maps for
Geosynchronous equatorial orbit.
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(a) Parallax for 1st tracklet

(b) Parallax for 2nd tracklet (c) Map for total parallax (1st + 2nd)

Figure 4.25 Two observers symmetric to the Greenwich meridian - Parallax angles maps for
Geosynchronous equatorial orbit.

For completeness the Figures 4.26a and 4.26b show the semi-major axis uncertainty map
and the parallax map obtained using the same inclined geosynchronous orbit as in the first case,
but in this case, the observers are in a symmetric position w.r.t. the Earth’s equator, namely: 45°
Lat. North and 45° Lat. South. As one can see from the figures, the parallax variations given by
the tracklets combinations are smoother than those obtained previously and do not show highly
pronounced particular regions. The obtained uncertainty maps do not show particular behaviors
and the typical features analyzed until now are visible. For this reason we report only an extract
of the results. It must be said that the only characteristic that can be noticed is the reduction
of the obtained uncertainty values w.r.t. the one-observer case due to the increased amount of
observations processed and the capability to estimate indirectly the distances exploiting the
parallax angle and the known positions of the observers.

(a) Semi-major axis uncertainty map (b) Map for total parallax (1st + 2nd)

Figure 4.26 Semi-major axis and Total Parallax for Geosynchronous inclined orbit observed
from two observers symmetric to the Equator.
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4.13.2 Non-Synchronous Observers
Another way of operating a network of telescopes is to let them work independently. To not
complicate too much the scenario instead of selecting two observers whose positions are ran-
domly distributed on the Earth and let them operate independently, we decided to keep the same
observers, symmetric to the Greenwich meridian, as in the previous case and we analyzed the
influence of a time delay between the observations of the observers. So we decided to increase
step by step the time distance between the beginning of each tracklet of the second observer
w.r.t. the beginning of the tracklets of the first one. In each simulation we used a constant delay
between the tracklets of the two observers. The test orbit has the following orbital parameters:
a = 42164.173 km, e = 0.5, i = 60°, Ω = 0°, ω = 0° and Tosc = 1st observation. The positions
of the two observers have the following coordinates: for the first Lat. 0°, Long. 45° West and
Alt. 900 m while for the second Lat. 0°, Long. 45° East and Alt. 900 m. The time delay
between the observations was increased from 10 seconds to 45 minutes. Also in this case the
simulations were performed in order to scan all possible combinations of tracklets separated by
2.5° in true anomaly as in the case of one observer over the orbit. These positions are used as
reference to determine the positions of the tracklets of the second observer accordingly with the
chosen time delay. Figure 4.27 shows the results obtained with a delay of 45 minutes between
the observation of the two observers.
The simulations produced two kinds of results depending on the chosen time delay. If the
chosen time distance is relatively small, let’s say less than the length of the tracklet (in our case
210 seconds) and it is different from k ·30 sec with k = 0,1, ...,7, we do not have coincident
observations and then we can not estimate the distance of the object. At the same time, we
see in the results almost the same features as shown in the Figure 4.22. Only the uncertainty
values are slightly different. This is probably due to the fact that despite the “triangle” (between
observers and object) is not closed perfectly, the observations of the two observers are close
enough that, together with the known dynamical model of the orbit, the system could exploit
this “approximated parallax-angle” to have a rough idea of the distance. At the same time,
introducing a delay in the observations of the second observer, we increase slightly the length of
the observed arc.
The second type of results are obtained when the tracklets of the two observers are not over-
lapping anymore. In this case, we have a conceptual change of the observation scenario. In
fact the two observers are not interacting anymore and we have an increase of the observed
portion of the orbit. This produces an information gain that is reflected by the reduction of the
average uncertainty values, as shown in Figure 4.27. The main difference with the previous
examples can be seen in the fact that their values are not symmetric anymore. Furthermore, as
one can see especially from the maps of e, i, and RAAN, the classical behaviors of these maps
are dimmed and bent. These deformation, asymmetries and even new features, as can be seen
for the map of the inclination, are due to the variation of the angular distance of the tracklets of
the two observers. In fact, since the delay is constant in time, according to the observed part of
the orbit, the angular distance between the tracklet of the first observer w.r.t. that of the second
is changing. If we are observing close to the apogee the same time delay corresponds to a small
angle and a shorter portion of the orbit observed with the consequent increase of the uncertainty.
Vice versa observing close to the perigee the observed portion of the orbit increases giving more
information for the correct estimation of the parameters. To better understand these results and
the just mentioned phenomenon, in the Figure 4.28 we report the values of the true anomaly of
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the tracklet of the second observer as a function of the position of the tracklet of the first one
and the selected time delay.

Figure 4.27 Two not synchronized observers symmetric to Greenwich meridian - Uncertainty
maps for Geosynchronous inclined orbit.

Figure 4.28 True Anomaly of the object at the time of the observation of the second observer
as a function of the observation position of the first one for the case of a Geosynchronous
inclined orbit observed from two non-synchronized observers (45 minutes distance between the
observation of the 1st and 2nd observer) symmetric to the Greenwich meridian.
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4.14 Discovery and First Follow-up
The last results are obtained using three tracklets in the simulation of our orbit determination
problem. This scenario was introduced since it is representative of a classical discovery and first
follow-up scenario as it is common habit to have during the regular observations at the AIUB.
In particular, this kind of observation scheme is principally used at the AIUB when operating
the ESA Space Debris Telescope in Tenerife (ESASDT). Since the time available to the AIUB
to operate the ESASDT is limited one has to ensure that the determined orbit is good enough to
reobserve the newly discovered object in the future from the Zimmerwald observatory.
Usually when the ESASDT and, more in general, when a telescope is used to discover new
objects, the survey observations are scheduled in a way that every single object is observed
at least two times within the same night. The time distance between the first two series of
observations is fixed and usually depends on the orbital regime of the target (e.g. LEO, MEO
and GEO) and on the survey plan. The pictures acquired by the ESASDT [43] are processed
almost in real time, a first orbit is determined and then a second and a third series of so-called
follow-up observations are scheduled within the same night.
We decided to analyse the 3-tracklets case to simulate this kind of scenario: we fixed the time
distance of the first and second tracklet to simulate the results of a survey and then we evaluated
how the position of the follow-up (third tracklet) will improve our orbit determination as a
function of its time distance from the second one. A scheme of the just mentioned observation
scenario is visible in Figure 4.29.

Figure 4.29 3 tracklets from a single station Scenario.

The simulated observation scenario consists of a geosynchronous eccentric orbit with a
single observer on the Earth’s surface. The Zimmerwald observatory is used as the observer
position while the used orbital parameters are: a = 42164.173 km, e = 0.5, i = 60°, Ω = 8°,
ω = 180° and Tosc = 1st observation. As said before, for this simulation the time distance
between the 1st and the 2nd tracklet is kept constant to 2 hours, while the distance of the 3rd
one is varying from 10 seconds up to 2 orbital revolutions. As for the other cases, the observer
position at the epoch of the first observation is kept constant while all the other positions
(respectively for the remaining observations of the 1st tracklet and those for the 2nd and the
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3rd) are determined consistently with the Earth rotation rate and the time distance from the just
mentioned observation epoch. Also in this case, the simulation is performed in order to analyze
all possible combinations of tracklets positions separated by 2.5° in true anomaly.
Figure 4.30 shows the results obtained for the 3 tracklets case. As usual, the position of the 1st
tracklet is represented in the y-axis while in the x-axis the position of the 3rd is shown. The
position of the 2nd tracklet is roughly coincident with the first visible position of the 3rd tracklet,
this because the minimum time distance between the latter two is 10 seconds (e.g. ν1 = 0°,
ν2 = 81.557° and ν3 = 81.631°). As one can see from the uncertainty map obtained for the
semi-major axis, the use of a third tracklet strongly reduces the average uncertainty values in
comparison to those obtained for the case using only two tracklets. Despite that, as for the
previous cases, the uncertainty tends to decrease with the increase of the time distance between
tracklets. Also the S-area is still visible but strongly reduced consistently to the higher number
of observations and to the fact that the observer is always outside of the orbital plane. The part
of the map where the S-area is sharper coincides with the case where the positions of the first
two tracklets are close to the apogee because the slower the object the shorter is the arc between
the first two tracklets. It is still possible to see the minimum uncertainty diagonal line coincident
with one period separation between first and third tracklet. It is interesting to notice that also
another minimum line is appearing in this map and it coincides with the orbital period distance
of the third tracklet from the second.
Looking at the maps obtained for the eccentricity and the argument of perigee, as in the case of
the semi-major axis, it is still possible to identify the residuals of the classical S-area of half a
period distance between observations and at the same time, the features which in the map of
a are minima regions, in the map of e and ω are high uncertainty regions. This because when
the third tracklet is coincident with one of the first two it loses some useful information for
the determination of e and ω . In the map of e, two horizontal lines of minimum uncertainty
appeared for positions of the first two tracklets which are symmetrical w.r.t. the line of the
apsides.
Finally, looking at the maps obtained for i and Ω, it is possible to see how, for positions of the
3rd tracklet which are coincident with one of the previous two, there is a loss of information
which produces high uncertainty values. This loss is even more evident in the inclination map,
for tracklets whose positions are close to the apogee; these positions are, in fact, coincident with
the lines of the nodes. Both maps show two horizontal lines of minimum uncertainty, these
appear when either the 1st or the 2nd tracklet is at the maximum angular distance from the line
of the nodes (for i) or is on the line of the nodes (for Ω).

83



Covariance Study to Optimize Follow-up Strategies

Figure 4.30 3 Tracklets - Uncertainty maps for Geosynchronous orbit observed from the Zim-
merwald observatory.

4.15 Angular and Range Measurements
The last analysis is performed to study the influence of the range measurement when processed
together with the angular ones. It was decided to carry out this study since the ranges are
regularly used to determine an orbit [15]. In particular, the range measurements can be obtained
either from radar facilities and usually are processed together with the steering angles of the
radar (i.e. azimuth and elevation) or from laser facilities [2]. Usually the ranges obtained by
laser facilities, due to their high accuracy, are used for geodetic purposes. Since the capability
of collecting range measurements via laser systems depends essentially on the capability of
the target object to reflect the light toward the laser station and due to the accuracy of the laser
measurements, many studies are focusing on the tracking and processing of laser measurements
to determine the orbit of space debris [34, 31].
As we will see in the next chapter (5), the main reasons that motivated scientists to study the
applicability of the laser technologies for the orbit determination of space debris are the fact
that laser measurements are: less dependent on the size of the target, very precise and the laser
systems are cheaper than the radar ones. For these reasons, we decided first to investigate
the influence of the ranges on an orbit determination process based on the classical angular
measurements, then in Chapter 5 we will analyze the results obtained with real measurements.
As before, to easily understand and interpret the results, we focused our study in a relatively
simple scenario: only two series of observations from the same observer are taken into account.
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Each observation series consists, as usual, of 7 of angular observations (RA, DE) and 3 ranges
(ρ) with their corresponding epochs (t). As we will see in Chapter 5, due to the high precision
of the laser measurements, to process correctly laser and angular measurements and to be able
to discriminate the effects of each observable it is fundamental to limit the number of processed
ranges and to use the proper weights on the observables within the LSQ adjustment. We decided
to limit the number of ranges to 3 per series. We time tagged the ranges with the epoch of
the first, the fourth and the last angular measurement of the tracklet. As previously shown
in Paragraph 4.2.3, to process consistently the two types of observables, it was necessary to
relatively weight the partial derivatives of the ranges w.r.t. those of the angular measurements.
The weights values are determined consistently with the method proposed in Paragraphs 5.5.1
and 5.5.2. The weights are calculated using the following values for σRA,DE = 0.5 arcsec and
for σρ = 1.3 m. As usual, the Zimmerwald station is used as observing site and the orbit of the
target has the following orbital parameters: a = 26561.765 km, e = 0.7, i = 63.4°, Ω = 278°,
ω = 270° and Tosc = 1st observation. To easily compare the results, we decided to use precisely
the same Molniya-orbit that was analyzed previously in Paragraph 4.11.3.
Figure 4.31 shows the uncertainty maps obtained for the just described scenario. Comparing
the obtained maps with those in Figure 4.19 we can see a significant general reduction of the
uncertainty values. For the semi-major axis, for example, the maximum values are roughly two
orders of magnitude smaller than those obtained processing two angular tracklets. The main
improvements are visible on the S-region and especially toward the apogee of the orbit along
the direction of the symmetric positions w.r.t. the line of the apsides. The improvements on
this region are even more evident if we compare the eccentricity uncertainty maps. A high
uncertainty area for short time distances between the observations when the position of the first
tracklet is between 135° and 225°, which almost disappeared in the eccentricity map of Figure
4.31. Being the orbit very eccentric and these observations taken closer to the apogee, the arc
covered by the tracklet is very short as also the distance among the observations within the
tracklets. Thus dealing with angles only the system has more difficulties to estimate correctly
the eccentricity, which is partially overcome by the distance information given by the ranges.
It is interesting to notice how the ranges are helping also in the estimation of the orientation of
the orbital plane. Comparing the uncertainty maps obtained for the inclination we can notice
a strong reduction on the uncertainty values for tracklets closely spaced in time and for those
belonging to the S-area which are separated by half of an orbital period. The tracklets belonging
to this region have positions either spaced far apart on the orbit or enough distant from the
Earth’s equatorial plane. These characteristics are favorable to the estimation of i and this effect
is amplified by the ranges. The same improvements are also visible for the RAAN where the
highest uncertainty area corresponds to the tracklet combinations whose positions are close to
the apogee and are separated by one orbital period. These positions coincide, in the analyzed
case, to the farthest point from the line of the nodes.
The last maps which we will analyze are those related to the argument of perigee. Here, the
improvements given by the range produce even a change in the features for tracklets whose time
separation is within the first orbital period. First, an important reduction of the uncertainty values
is visible; second, coherently with the results obtained for the eccentricity, a huge improvements
is visible towards the apogee of the orbit and finally a low uncertainty S-area is appearing.
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Figure 4.31 Merged Measurements - Uncertainty maps for Molniya orbit observed from the
Zimmerwald observatory.

Another analysis can be done comparing the correlation and the condition number maps
obtained processing two tracklets of angles with or without the ranges, shown respectively in the
Figures 4.32b and 4.32a. Since the main effects of the ranges are visible for the semi-major axis,
the eccentricity and the argument of perigee, we decided to report only the correlation maps
related to these parameters. Figure 4.32a shows the correlation maps for a and e, a and ω and
finally for e and ω . The maps reflect the effect already highlighted for the uncertainty maps.
The decrease of the average uncertainty values in the estimation produces, in general, a major
decorrelation between the parameters. Looking at the correlation maps between semi-major axis
and eccentricity and between a and ω , the ones obtained processing both angles and ranges show
more structured features which before were hidden within the high correlation part. Furthermore
it is possible to see a reduction of the high correlation areas towards the apogee of the orbit and
in the short time separation between the tracklets, respectively in the maps of a and e and in
that of a and ω . The most prominent changes are visible in the e and ω correlation map, where
the information on the distances produce a strong decorrelation between the two parameters,
especially for tracklets which are symmetric to the line of the apsides. Finally, the diminution
of the condition number by roughly one order of magnitude all over the map confirms the
importance of the ranges in the orbit estimation considering short arcs of observation.
The results shown until now were obtained using 2 tracklets of observations constituted by 7
angular and 3 range measurements. As said before, the ranges are coincident with the 1st, the
4th and the 7th angular observations of each tracklets. For the same scenario we performed also
a simulation using a different placement of the ranges w.r.t. the angles (e.g. ranges placed on the
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1st, 2nd and 3rd angular measurement). These results will not be reported since they are pretty
much the same as those shown in the Figures 4.31 and 4.32. In particular, no significant changes
are visible in the features of the map, but only the uncertainty values are slightly different. To
be precise only the average uncertainty values all over the map of the semi-major axis show a
noticeable, although small, increase. This is probably due to the length of the arc covered by the
ranges which is maximized when positioning the ranges on the first and last angular observation.
The same scenario was also used to test the influence of the number of ranges within the
tracklets. The number of ranges was varied from the minimum of 1 to the maximum of 7.
The epoch of the ranges was taken always coincident with those of the angles. Also for this
analysis we will not report the results since essentially no changes in the features of the maps
can be noticed. Only the uncertainty values are changing: in particular they decrease as the
number of ranges increases. As expected, the main changes are noticeable, first for the map
regarding the semi-major axis, then for the eccentricity and the argument of perigee, and finally
the smallest changes are occurring for the argument of latitude and the parameters which de-
scribe the orientation of the orbital plane (namely i and Ω). Other changes can be seen in the
values of the correlation maps between a and e, and between e and ω . These maps shows a
growing capability of the system to decorrelate the parameters when increasing the number of
the ranges. All these changes in the maps are due essentially to the increment of the number
of processed measurements. As obvious, the higher the number of observations the better is
the accuracy of the results. This trend is also reflected by the condition number map whose
values are also decreasing. For completeness, it must be said that, if on one hand a higher
number of observations produces better results, on the other, the amount of improvement is
limited by the observation geometry and even more by the portion of orbit observed. The
evidence of this phenomenon can be seen in the fact that the change of the uncertainty values is
minimal and will be also proved by means of real measurements subsequently in Paragraph 5.6.2.
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(a) Angles and ranges (b) Only angles

Figure 4.32 Comparisons between the correlation and the condition number maps for the
Molniya orbit obtained processing range and angular measurements with those obtained by
processing only angles.

4.16 Conclusions
In this chapter, a study was presented to highlight the dependency of the accuracy of the results
achievable from an orbit determination on the object-observer relative geometry. This study was
performed analyzing the covariance matrix obtained from the simulation of a LSQ adjustment
process. In particular, we simulated an orbit determination/improvement problem, in which
we evaluated the influences of the position along the orbit of some observations series (2 or 3
tracklets, 4 only in the case with two observers) on the accuracies of the estimated parameters.
The relative position of the two series of observations were chosen in order to cover all possible
combinations of tracklets positions separated by 2.5° in true anomaly. Tests were carried out
using intervals between tracklets smaller than 2.5° but the narrower sampling did not show
further features. The results of the simulations allowed us to create an uncertainty map for each
estimated parameter, which shows the uncertainties as a function of the position of the first
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series of observations and the separation in time between the series.
At the beginning, this analysis was performed for a simplified scenario without estimating the
complete set of parameters using an observer in the center of the Earth. Such simplification of
the problem allowed us to better understand what kind of results are achievable, the influence of
the time interval between tracklets and what the limitations of the parametrization are.
Then we introduced the parameters which describe the orientation of the orbital plane in the
space.
Subsequently an observer on the Earth’s surface was introduced in the LSQ process. This study
was repeated for different observer positions and different kinds of orbit. This first part of the
study allowed us to understand which are the main factors which influence the accuracies of the
estimated parameters. The key factors are:

- the time interval between tracklets, especially the effect on a, e, and ω if the observations
are performed within the 1st orbital period or in the successive ones if performed with 1.5
orbital period of time distance (S-region).

- the object-observer topocentric distance,

- the parallax angle due to the movement of the observer in the space,

- the relative position of the observer w.r.t. the orbital plane, it was shown the effect on a, i,
and Ω of the observations performed by an observer within the orbital plan w.r.t. those
performed by one outside.

- the distance of the observations from the line of the nodes and the line of the apsides,
which effects are evident in i and Ω.

Successively, more complex scenarios are analyzed. The case of two observers which are
observing the same object is studied first; secondly, the case of three series of observations is
analyzed and thirdly the consequences of using also range measurements are analyzed. Apart
from the obvious improvements given by the higher number of observation processed, the
main advantages given by the second observer can be summarized in the capability to estimate
distances of the object from the observers. This effect is quite evident in the case of synchronous
observers and it is directly proportional to the amplitude of the parallax angle given by the
pointing directions of the observers to the object position.
The case of two observers who are not observing the target at the same time was also studied.
This examples showed a trend in the achievable accuracy: if the time delay between the two
observers is relatively short we have a reduction of the parallax effects. This reduction is
proportional to the time delay between the two observers. On the other hand, if the time delay
increase we have an improvement in the achievable accuracy given by the wider arc of orbit
covered by the observations and by the combination of the effects already seen in the single
observer case.
The analysis of the case with three series of observations showed that the main effects, noticed
in the case of the two tracklets, are amplified by the relative combinations between the third and
first or the second tracklet. These features occur respectively when the first two tracklets are in
symmetric positions w.r.t. the line of the apsides and when one of the first two tracklets is at the
maximum or minimum distance from the line of the nodes.
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In the last test, the introduction of the range measurements showed how this different kind of
observable helps the system in the estimation of a, e and ω , especially for short time distance
between the series of observations.
Finally, it is worthwhile to mention the secondary effects on the uncertainty of the parameters
given by:

- the angular distance between tracklets,

- the difference between orbital period and sidereal day,

- the total number of observations,

- the length of the tracklets and the distance between intra-tracklet observations,

- the inclination of the orbit,

- the eccentricity of the orbit,

- the length of the arc of orbit covered by the tracklet.

This study can be applied to more general situations, where more than two series of observations
are available in order to optimize the survey/follow-up strategy for a given orbit or orbital
regimes. However, it is important to notice that, since the uncertainty maps are “object-specific”,
it is not possible to obtain a unique conclusion. Nevertheless they help understand which are
the key factors and how they influence the OD accuracy. Furthermore the maps show where to
observe a second time in order to minimize the uncertainty on the unknown parameters, based
on the position of the first observation. Therefore they can be useful, depending on the needs of
the users, to evaluate the gain of information given by a certain observation geometry.
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Chapter 5

Fusion of Laser Ranges and Angular
Measurements

5.1 Introduction
It is very well known that the accuracy of an orbit determination (OD) depends on: the number
of observations, the length of the observed arc [44, 45], the observation geometry [46] and
the accuracy of the observations. Therefore to improve the OD accuracy one can optimize the
observation strategy, increase the number of observations and the length of the observed arc,
and/or use different observables in addition to the classical angular measurements. It is quite
common in the OD process to use range measurements together with the angular ones. The first
kind of measurement can be provided by radar and by laser facilities. The main limit of the first
is the size of the targets, while the main limit of the second is the weather dependency. Recent
studies showed the possibility of successfully track space debris objects with 1 m level precision
[14].
In this chapter we investigated the influence of merging the laser range and the angular measure-
ments in the OD process. First, a description of what we need to take into account to process
SLR measurements correctly is given. Then, we will show the results of the validation tests
of our OD tool. Afterwards the issue of the different measurements relative weighting in the
Least Squares LSQ adjustment will be addressed. Finally we will report the results obtained by
merging real range and angular measurements in different scenarios for different orbital regimes.
These tests were performed to identify the influence of the observation geometry, of the length
of the observed arc and the effect of different kinds of observables on the estimated OE. For the
tests only real data are used: the angular and part of the laser measurements were provided by
the sensors of the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald
owned by the AIUB, while the other ranges were provided by ILRS stations.
For convenience, the following list reports all the nomenclature used in this chapter:

- c speed of light,

- ∆ts
r light travel time,

- ρ one-way range between the observatory and target at time tr,

- tr time epoch of received time tied to UTC,
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- δrel relativistic correction,

- δltt light travel time correction,

- δrot correction due to the Earth’s rotation and satellite motion in the inertial system,

- δr correction due to station eccentricity w.r.t. the reference point,

- δRB station range bias,

- δCoM satellite Center-of-Mass correction or satellite laser array offset,

- δatm atmospheric (tropospheric) signal delay,

- ε remaining systematic or random system errors,

- ω⃗ Earth’s angular velocity vector in the inertial system,

- r⃗ satellite position vector in the inertial system,

- ˙⃗r satellite velocity vector in the inertial system,

- r⃗r station position vector in the inertial system,

- ˙⃗rr station velocity vector in the inertial system,

- a semi-major axis,

- e eccentricity,

- i inclination,

- Ω Right Ascension of Ascending Node,

- ω Argument of Perigee,

- A/M Area to Mass Ratio,

- x vector of adjustment to the a priori values of the parameters to be estimated,

- A,AT First Design Matrix of observation partial derivatives w.r.t. the parameters to be
estimated and its transpose,

- W weights matrix of the observations,

- l difference between the observations and the computed ones as a function of x,

- wi weight of he ith measurement,

- n number of observations,

- σ0 a priori errors of the parameters to be estimated,

- σα standard deviation of the angular measurements,
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- σr standard deviation of the range measurements,

- E error either in radial or along- or cross-track component,

- u amplitude of the error sinusoid,

- θ angular rate of the error sinusoid,

- t time,

- γ phase of the error sinusoid,

- m error drift,

- q error offset,

- M mean anomaly.

5.2 Satellite Laser Ranging
The Satellite Laser Ranging (SLR) is one of the geodetic techniques which started to be used
intensively for OD purposes 50 years ago. It is the only geodetic technique which performs
measurements in the visible part of the electromagnetic spectrum. The “Satellite Laser Ranging
and the Lunar Laser Ranging use short-pulse lasers and state-of-the-art optical receivers and
timing electronics to measure the two-way time of flight (TOF) (and hence distance) from
ground stations to retroreflector arrays on Earth orbiting satellites and the Moon” [2]. The
SLR products are mainly used for precise orbit determination (POD), for the determination
of the Earth’s gravity field [47], and for the estimation of geodynamical parameters such as
the polar motion, the estimation of the station coordinates and the tectonic motions [41]. The
SLR activities are organized and coordinated by the International Laser Ranging Service (ILRS)
which provides laser data and their derived products to support the various research activities.

5.2.1 Main Characteristics
The main components of the SLR system are represented in Figure 5.1. The figure shows both
the main components and the observation principle. The SLR system is made of two main com-
ponents: the ground and the space segment. The ground segment includes: a high energy pulsed
laser, an accurate time interval counter, a precise photon detector and a telescope. The two most
used type of laser is the Neodym-YAG-Laser (Yttrium-Aluminum-Granat) [47]. This laser emits
in the infrared part of the spectrum but to increase the efficiency of the detections the frequency
is usually doubled to obtain the classical green light (532 nm for Nd:YAG) [27]. Usually lasers
differ for their pulse-rate: the new generation of lasers emit pulses at high frequency and low
energy, e.g. 0.4 mJ at 2 kHz; the traditional ones have a lower pulse-rate with a higher energy,
e.g. 20−100 mJ at 10 Hz [2]. The high-frequency lasers produce higher precision data due
to the shorter length of the pulses and the higher number of measurements per normal point
while the high-energy ones have a better signal-to-noise ratio [47]. As we will see more in
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details later, the data derived from laser systems are distance measurements converted from
time interval measurements. The other main components of the ground segment are the time
interval counters and the detectors: the time interval counters are used to accurately measure
the time-of-flight (TOF) of the laser-pulse, these are started by the outgoing laser beam and
are stopped when the detectors identify the weak return signal (few or single photons). The
usual accuracy of the time interval counters is of the order of 10 picoseconds [2]. The last
component is the telescope which has to be fast and precise since it needs to track LEO satellites
and the width of the laser beam is relatively small (e.g. < 30 arcsec for the SLR system of the
Zimmerwald observatory). Since this is a general overview of the laser systems we will skip
all other additional components of the ground segment: the kind of detectors, the ultra-stable
clocks, the safety systems, the narrow-band filters and the components needed to have daytime
observations; for further information refer to [47].
The other main component of the SLR systems is the space segment. Another big advantage
of the SLR techniques is that they do not need an active payload on board of the satellite. The
entire space segment is then reduced to a retroreflector or to an array of them. The retroreflector
is a device which reflects the light back to its source with a minimum of scattering [48]. The
retroreflectors which are widely used on board of satellites are the corner cubes. These are
made of three mutually perpendicular intersecting flat and square surfaces, which reflect the
laser light back directly towards the source, but slightly shifted [49]. There are three main kinds
of corner cubes retroreflectors as shown in [50]. These can be classified as: hollow corner
cubes, back-coated solid corner cubes and uncoated solid total internal reflection (TIR) corner
cubes. All have different characteristics, their advantages and disadvantages. As said most
satellites carry on board corner cubes but there are some exceptions: satellites like BLITS and
METEOR-3M have a spherical glass retroreflector [2].

Figure 5.1 Basic scheme of the SLR system [2].
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5.2.2 How It Works
The basic SLR measurement is the round trip travel time of a laser pulse between the station
and the satellite and back to the station. This time measurement is then converted to a distance
by multiplication with the speed of light. To achieve the desired level of accuracy of the
SLR-products the measurements need to be corrected for several effects due to the propagation
through the atmosphere, the general relativity, the relative motion between the satellite and the
station. For the space debris orbit determination case, some of these errors and/or biases can be
neglected, however a detailed description of the needed and applied corrections will be given in
Paragraph 5.3.2.
One of the advantages of the SLR systems is that the measurements are done on ground and
the satellite is a completely passive system. This means that the station starts the time interval
counter when the pulse is sent and stops it when the pulse is received back after the reflection
on the satellite. The main consequence is that there is no need to synchronize the clocks of the
station with that of the satellite, as it is mandatory when one deals with GNSS measurements [51].
For completeness, it must be said that in most of the cases the SLR are two-ways ranging but
there are also cases in which one-way ranging is used, e.g. in case of the Lunar Reconnaissance
Orbiter (LRO) [2].
The two-ways light travel time (∆ts

r ) can be expressed as the sum of the time needed by the pulse
sent from the station to reach the satellite (∆t1) and the time needed by the pulse to reach the
station, once reflected, to reach the station again. We can then express the light travel time as:

∆ts
r = ∆t1 +∆t2 =

1
c
[|⃗r(ts)− r⃗r (ts −∆t1) |+ |⃗r(ts)− r⃗r (ts +∆t2) |], (5.1)

where ts is the pulse reflection epoch. If we expand the receiver position at the different time
epochs in the Eq. 5.1 via a Taylor series, and we neglect the higher order terms of the expansion
we obtain the following expressions:

r⃗r (ts −∆t1)≈ r⃗r

(
ts − 1

2
∆ts

r

)
, (5.2)

r⃗r (ts +∆t2)≈ r⃗r

(
ts +

1
2

∆ts
r

)
. (5.3)

Assuming that ∆t1 ≃ ∆t2, then substituting the equations 5.2, 5.3 in the Eq. 5.1 and solving
(neglecting the second and higher order terms of the Taylor series expansion) w.r.t. the two way
light travel time (∆ts

r ), we obtain the relation between the measured time and the positions of the
satellite and of the station at time ts.

∆ts
r =

2
c
|⃗r(ts)− r⃗r (ts) | (5.4)

from which we have the basic observation equation for the SLR measurements:

∆ts
r =

2
c
(ρ +δrel +δatm)+

1
c

δRB + ε. (5.5)
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5.2.3 SLR Data
As just said, the laser ranging data consist in a time measurement of the laser pulse round-trip
between the laser-pulse generator and the target satellite. There are two main kinds of derived
ranging data: the full-rate and the normal points data [2].
The full-rate data are the original observations plus corrections. These were the primary SLR
product till mid 1980’s [2]. They are essentially the registration of the time epochs and the
flight times of each single laser pulse generated by the station plus some parameters which
give information about the station, the laser characteristics and the atmospheric parameters (i.e.
temperature, pressure and relative humidity). Since the amount of collected data is relatively big,
even more if we think about the new generation of high-frequency lasers, and the measurements
are correlated especially within a short time distance, the full-rate data are usually used to
generate the normal points which are the main SLR products since late 1980’s. On the other
hand the full-rate data are still used for specialized analyses like co-location analysis, Fizeau
effect, center-of-mass algorithm development [2].
The normal points range measurements are generated by an averaging algorithm of the full-rate
data collected over a certain time interval. The normal points are also called quick-look data
since they are generated directly by the station shortly after the end of the satellite pass and
transmitted to the data centers. Briefly the normal point formation process is divided in two main
steps: the formation of range residuals from a trend function and data screening, and the real
normal point formation. In the first part, the prediction residuals are generated differentiating
the observations with the predictions. Then, a first screening to remove outliers is performed.
The systematic trends of the prediction residuals are removed with a trend function, then the
fit residuals of the trend function on the prediction residuals are calculated and the outliers are
eliminated. The estimation of the trend function and of the fit residuals is iterated until the
process converges. In the second part, the fit residuals are divided into fixed time intervals
(usually called bins) whose size depends on the satellite processed. For each bin, the mean value
of the fit residuals is calculated. Then, the nearest observation to the mean epoch of the bin with
its fit residual is located, and the normal point is computed as the difference of the observation
and its fit residual and summing the mean fit residuals value. Finally, the Root Mean Square
(RMS) of the accepted fit residuals is computed for each bin. The normal points are then stored
in a file with a particular format called Consolidated Range Data (CRD). Details about the CRD
format is decribed in the appendix B.1.1. It must be said that the bin size or the standard normal
point time interval is derived by the assumption of linearity of the measurements w.r.t. their
predictions. For this reason the bin size is different for each satellite and it depends from its
altitude. Therefore, for the lower satellites we will have short bin sizes which go from the 5
seconds of GOCE, CHAMP and GRACE to the 15 seconds of Cryosat-2 and Jason-2. The bin
size for the MEO region varies from the 2 minutes of the LAGEOS satellites to the maximum of
5 minutes for GLONASS, GPS, IRNSS and ETALON satellites. For more detailed information
about the SLR data and the normal points formation please refer to the International Laser
Ranging Service website [2].
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5.2.4 International Laser Ranging Service (ILRS)
The International Laser Ranging Service is a space geodetic service of the International As-
sociation of Geodesy (IAG) which was established in September 1998. The ILRS collects,
archives, analyses and provides global satellite and lunar ranging data and their related products
to support geodetic and geophysical research activities [2]. The service develops the necessary
global standards and specifications, and coordinates a network of about 50 stations around the
world (as shown in Figure 5.2).
The SLR and the lunar ranging data are mainly used to generate the following data products and
to support a variety of scientific and operational applications [2]:

- Detection and monitoring of tectonic plate motion, crustal deformation, Earth rotation,
and polar motion

- Modeling of the spatial and temporal variations of the Earth’s gravitational field

- Determination of basin-scale ocean tides

- Monitoring the variations of the coordinates of the center of mass of the total Earth system
(solid Earth-atmosphere-oceans)

- Establishment and maintenance of the International Terrestrial Reference System (ITRS)

- Detection and monitoring of post-glacial rebound and subsidence

- Station coordinates and velocities of the ILRS tracking systems

- Centimeter accuracy satellite ephemerides

- Fundamental physical constants

- Lunar ephemerides and librations

- Lunar orientation parameters

- Support the monitoring of variations in the topography and volume of the liquid Earth
(ocean circulation, mean sea level, ice sheet thickness, wave heights, etc.)

- Calibration of microwave tracking techniques

- Picosecond global time transfer experiments

- Astrometric observations including determination of the dynamic equinox, obliquity of
the ecliptic, and the precession constant

- Gravitational and general relativistic studies

For more detailed information about the ILRS products and activities please refer to the
ILRS web page [2].
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Figure 5.2 ILRS network [2].

5.2.5 SLR Limitations and Application to Space Debris
One way to improve the accuracy of predicted orbits to avoid unnecessary collision avoidance
maneuvers is to use high precision measurements like the laser ranges. The success of the SLR
technique for OD purposes is mainly due to the fact that the measurements do not need an active
payload on board of the satellite and due to the very high accuracy of the derived ranges (∼ 1
mm) [15]. These are the two main reasons why the laser technique is also suitable for the OD of
space debris.
Unfortunately, there are some limitations. The first limiting factor is given by the weather
conditions. Since we exploit the visible part of the electromagnetic spectrum, we are able to
observe only when the sky is clear. The second limiting factor is given by the capability of the
target to reflect the laser pulse back to the station. For a generic object to be trackable by a
laser system it has either to be quite big and rather low in altitude or it has to carry on-board
retroreflectors array should be visible from the station. This means that the target should have
either a stabilized and/or favorable attitude or it is entirely covered by retroreflectors (i.e. the
case of geodetic satellites like LAGEOS, ETALON, LARES, etc.).
In the space debris field, the LEO upper-stages, due to their size, are suitable target for this
kind of experiments. Nevertheless the proof that the attitude of the object has to be favorable
even if the object carries a retroreflector was shown by the study of Silha et al. [52]. In this
study, the estimation of the tumble axis direction of ENVISAT was confirmed by the fact that
the satellite passes at the East w.r.t. the Zimmerwald station did not produce any laser returns
since the retroreflector was not visible.
To exploit the high precision of the laser data it is necessary to apply correctly the Center of Mass
(CoM) correction which is possible only if one knows the shape of the target, the displacement
of the retroreflectors array w.r.t. the center of mass and the attitude of the target. This will
inevitably limit the achievable OD accuracy in the space debris case.
The last requirement/limitation of the SLR systems is given by the aperture of the laser beam
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and the field of view (FoV) of the detector. These two apertures are relatively small, e.g. the
aperture at the Zimmerwald observatory is ≤ 30 arcsec [2] and the FoV of the detector is smaller
and changes from night- to day-time observations.
This requires very precise ephemerides to be able to keep the object within the FoV. This last
characteristics make the usage of the SLR techniques in the space debris field quite controversial.
In fact, why should we use SLR measurements to improve the space debris orbit when the
available ephemerides are already good enough to hit the object? Recent studies have shown the
possibility to track space debris with lasers exploiting the images acquired by a CCD, CMOS
or a tracking cameras to correct the pointing offset of the telescope w.r.t. the target position
[32, 33].
It must be said that, due to their high precision, several applications of the SLR measurements
in the space debris domain are possible. In this thesis we focus on the achievable improvements
by using laser ranges in the OD process. The studies of Silha and Kucharski [52, 53] showed
the possibility of the employment of laser measurement for the attitude determination of defunct
satellites.

5.3 Implementation of the Software
The CelMech tool [16], in particular the part of the software called SATORB, which is used daily
at the AIUB for OD, was able to handle only the classical RA and DE angular measurements.
The first part of this work was dedicated to implement the capability to handle correctly the SLR
measurements. To exploit all the advantages given by the high precision range measurements
two main aspects of the tool needed to be improved: the first is related to the satellite orbit
modeling, and the second to the corrections to be applied to the measurements.
The list of Perl scripts and Fortran subroutines modified and implemented for the SLR and
angular measurements processing with their descriptions are reported in the Appendix A.

5.3.1 Background Models
The physical models used in the processing of the SLR data are summarized in Table 5.1 and
were chosen consistently with those used by the Bernese GNSS Software (BSW) [54]. The table
includes all the models used during the studies presented in this chapter. It must be said that,
according to the analyzed case, the settings on the models are changed and more in general,
some forces are neglected. As an example, for the gravity field, we considered up to degree and
order 40 for orbiting objects whose altitudes are higher than 5000 km. But for LEO satellites,
with altitudes less than 2000 km we increased the considered terms of the gravity field up to
degree and order 70. Furthermore, when processing MEO and GEO satellites we disabled the
atmospheric drag and the Earth’s Albedo. Finally, it must be said that despite it is common habit
in the precise orbit determination (POD) field to estimate empirical accelerations to compensate
for deficiencies of the models [17, 55], all the orbit determination results shown in this chapter
were obtained without estimating any empirical parameters. We intentionally renounced to the
usage of the empirical parameters and pseudo-stochastic pulses since we were not interested in
the achievement of the most accurate orbit, but we wanted to investigate the influence of the
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different observables in the parameters estimation.

Table 5.1 Models used for the processing of SLR and angular measurements.

Type of Model Description
Tropospheric delay Mendes-Pavlis delay model with FCULa map-

ping function [56]
Atmospheric drag Using MSISe90 model (only for LEO satellites)

[57]
Relativistic Corrections General relativity corrections

Shapiro effect according to IERS Conventions
2003 [37]
Schwarzschild acceleration
Lense-Thirring effect
Geodetic precession (DeSitter effect) [38]

Solar Radiation Pressure Direct radiation: applied with a fix radiation
pressure coefficient CR = 1.13
Earth’s Albedo (only for LEO satellites)

Tidal Forces Solid Earth Tide Model [37]
Pole Tide Model [37]
Ocean Pole Tide [38]
Love numbers for ocean tides - FES2004 [58]

Loading Corrections Ocean tidal loading: FES2004 [58]
Atmospheric tidal loading: Ray and Ponte [59]

Earth Gravity Field EGM2008 [60]
Third Body Earth’s Moon, Sun

JPL Ephemerides DE200 [61]
Earth orientation parameters IERS08 [62]
Subdaily pole model IERS Conventions 2010 [38]
Nutation Model IAU2000 [63]
Ocean Tide model FES2004 [58]
Geodetic Datum ITRF2008 [64]
Numerical Integration Integration order: 12, Initial step size: 120 sec-

onds, Number of iteration per step 1, Maximum
error per Velocity component: 1 ·10−10 m/sec,
Collocation method [16]

Gravitational Constant (µ) 398600.4415 km3·sec−2

Speed of Light (c) 299792458 m/sec
Earth equatorial radius 6378.137 m
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5.3.2 Correction of the Measurements
The second main part of the implementation consisted in the correct handling of the laser range
measurements and the application of the needed corrections. The extended formula of SLR
observations reads as follows [47]:

1
2

c∆
s
r = ρ +δrel +δltt +δrot +δr −δRB +δCoM +δatm + ε, (5.6)

where:

δrot =
˙⃗r+ ω⃗ × r⃗

c
· (r⃗r − r⃗) , (5.7)

δltt =−
(⃗r− r⃗r)

(
˙⃗r− ˙⃗rr

)
c

. (5.8)

The term c∆s
r represents what is really measured by the station. It contains the effective

geometrical distance between the station and the satellite (ρ) at time tr with a series of additional
terms. The above mentioned corrections can be divided in three groups: the ones due to the
signal propagation (i.e. δrel , δltt and δatm), the ones related to the station which usually are
constant over a longer period and do not depend on the target (i.e. δr and δRB) and the last ones
related to the satellite and its motion (i.e. δCoM and δrot).
According to the theory of general relativity, the speed of light depends on the strength of the
gravitational potential along its path. In our case, the Earth’s gravity field produces a delay
(Shapiro effect [37]) which is taken into account in the term δrel . The δltt corrects the aberration
due to the movement of the station and of the target. It is generally called light travel time (or
simply light time) since the light path is not a straight line between the the two objects [15].
The last correction of the first group, i.e. δatm, corrects the delay in the propagation of the
laser-pulse due to the atmosphere, more precisely to the troposphere. Usually this correction is
divided in two components: a zenith path delay and a mapping function. They depend on the air
temperature, the atmospheric pressure, the relative humidity and the observation direction which
influences the “amount” of atmosphere crossed by the pulse. There are different tropospheric
models to determine the delay of the signal in the visual part of the electromagnetic spectrum.
The most used for the SLR measurements are those developed by Marini and Murray [65] and by
Mendes and Pavlis [56]. In particular, the latter it is the one which is recommended by the ILRS
and provides better results since it takes into account the hydrostatic and the non-hydrostatic
components of the zenith delay and, within the mapping function, the refraction of the light due
to the water vapor in the atmosphere.
The δr, called eccentricity, accounts for the difference in position between the station reference
point coordinates and the intersection between the elevation and the azimuth axis of the telescope
which is the point from where the range is measured. The range bias (δRB) contains the delays
due to instrumental problems of the station or incorrect calibration measurements which should
be constant over a satellite pass or for longer time periods. The biases can be corrected by using
the ILRS SINEX data handling file which contains the time interval in which the station is
affected by the bias and the amount of the bias [66].
The last group of corrections contains the δrot which compensates for the relative motion be-
tween target and station in the inertial frame and it must be applied if the setup of the observation
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equations is done in an Earth fixed frame [47]. The final correction δCoM is needed to refer the
measured range to the Center-of-Mass (CoM) of the target. This is needed since the laser pulse
is reflected from the retroreflectors array on the surface of the satellite while its orbit refers to
its CoM. For “simple” geodetic satellite the CoM it is approximately the radius of the sphere
while for complex-shaped satellite (like TOPEX, GLONASS, etc.) this correction is defined by
a three-components vector in the satellite-body reference frame. During our experiments, this
correction will be applied only in the validation case for geodetic satellites. For all other cases
this correction will be neglected since it is function of the shape and of the attitude of the object
which are usually unknown parameters for space debris.

5.3.3 Modification to the LSQ
Finally, to complete the implementation of the SLR measurements in our tool it was necessary
to adapt the part of SATORB responsible for the building of the normal equation system. In
particular, the implementations concerned the partial derivatives of the new observable w.r.t.
the parameters to estimate and the relative weighting of the different observables. Since the
validation tests were performed using homogeneous measurements (only ranges), the problem
of the relative weighting when processing together angles and ranges will be addressed in details
later in Paragraph 5.5.1. The explanation of the adaptation of the specified subroutines is given
in the Appendix A.
Regarding the partial derivatives of the observables w.r.t. the unknown parameters also the
SATORB software uses Eq. 4.6.
Since the part of the derivatives of the target position w.r.t. the unknown parameters was already
handled by the software, we needed to take care only of the implementation of the partial
derivatives of the range measurement w.r.t. the satellite position. The implemented derivatives
are the same showed in Eq. 4.2.3.

5.4 Validation
To check the correctness of our implementation we divided the test in two parts: the first
concerning the application of the range-corrections and the second concerning the OD results.
The validation of the ranges corrections was performed comparing the ranges, before and after
their application, with those provided by the Bernese GNSS Software Version 5.2 [54].
The solution of our OD process was validated comparing the ephemerides obtained by the
propagation of the orbit determined with real laser measurements (publicly available on the
ILRS [2]) with the satellite positions provided by the ILRS. This comparison was repeated for
four different satellites belonging to different orbital regimes, namely LARETS, LAGEOS 1,
ETALON 1 and GLONASS 123. As can be seen from Table 5.2, the first belongs to the LEO
regime while the others to the MEO.
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Table 5.2 Orbital Elements of the satellites used for the validation.

Orbital Elements Larets Lageos 1 Etalon 1 Glonass 123
COSPAR ID 03042F 76039A 89001C 10041B
a [km] 7059.78 12265.2 25501.2 25505.4
e 2.071 ·10−4 4.467 ·10−3 1.902 ·10−3 3.567 ·10−3

i [deg] 97.896 109.898 64.114 64.892
Ω [deg] 11.148 133.163 −152.988 −35.241
ω [deg] 9.688 150.832 203.517 166.867
A/M [m2/kg] 1.5 ·10−3 6.9 ·10−4 1.04 ·10−3* 2.90 ·10−2*
* Estimated

5.4.1 Validation of Range Corrections
The validation of the ranges was performed comparing the values of the corrected range with
those provided by the Bernese GNSS software. This comparison was performed evaluating each
single correction at a time and excluding all the other possible sources of errors as those given
by: the propagation, the dynamical model and the orbit estimation part. To exclude the influence
of the parameters estimation we carried out the comparison during the first set up of the normal
equation system (NEQ). In principle, the a priori orbital elements are used to generate the orbit
which is propagated till the measurement epoch to calculate the observation residuals (observed
minus computed, O−C). Already at this point some differences could be introduced by the
orbit propagation. Two are the main causes of the error introduced by the propagation: the
main component is due to the background model, which is not completely equivalent to the one
adopted in the BSW, and the numerical integration part.
Although the integration method used by SATORB and by BSW is the same, in both cases we
use in fact the collocation method to integrate the variational equations [16], in the BSW we use
a fix step-size for the integration while in SATORB we use a variable step-size optimized as
a function of the order of the integration polynomial and of the tolerance error on the satellite
velocities. Of course, the difference due to the numerical integration are smaller than those
given by the background model. On the other hand, tests showed that over 7 days of propagation
already more than 20 cm of position error can be accumulated. To overcome this problem, we
used the satellite coordinates provided by the BSW as input to the subroutine responsible for
the application of the corrections (namely RGCORR.f see Appendix A). We were then able
to check the correctness of the propagation of the station coordinates, the right application
of the Earth orientation parameters (EOP) and of the corrections of the measurements. Since
we exploited the same subroutines of the BSW to calculate the corrections, it was enough to
compare the correctness of their inputs and finally the range before and after the application of
the corrections.
For this reason in Table 5.3 we report an example of the results of this comparison. As previously
said, it is common use in the BSW to calculate first the geometric range and then apply the
corrections so that it can be compared with the real observation. First the comparison of the
station coordinates (after the propagation and the application of the station eccentricity) is pro-
posed, then we checked the obtained pole coordinates and true sidereal time of Greenwich which
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will be used by TOPSTA.f to apply the relativistic and the light-travel-time corrections. The
correction due to the tropospheric delay is applied within TROPOS.f which needs as inputs the
station, the satellite coordinates, the laser wavelength and the weather data at the measurement
epoch (namely temperature, relative humidity and atmospheric pressure). The range-bias and
CoM corrections are read directly from a file. We report also the measurement time fraction
used to “complete” the numerical propagation and then to correct the satellite position. Finally,
the geometrical and the corrected ranges are shown. We can see how the values in the table
are very close to each other, in particular, apart from the differences due to rounding, we have
sub-millimeters difference in the station coordinates and between the ranges confirming that the
application of the corrections is correct.

Table 5.3 Validation of the laser range corrections.

Parameter SATORB BSW

Station
Coor. [m]

X 4331283.376556 4331283.376160

Y 567550.031096 567550.031410

Z 4633140.429627 4633140.429704

Pole
Coor. [rad]

X 4.264447763888022 ·10−7 4.264447763888022 ·10−7

Y 2.205209272933186 ·10−6 2.2052092729331858 ·10−6

True Sidereal
Time [rad]

1.81847311072601 1.8184731107260097

Meas. Time
fraction [sec]

8.765667 ·10−5 8.765700 ·10−5

Geo. Range [m] 7543515.5756690 7543515.5753968
Corr. Range [m] 7543572.1095809 7543572.1093140

5.4.2 Factors Influencing the Orbit Determination Accuracy
The accuracy of the OD results depends on: the arc-length covered by the observations, the
number of observations, their accuracy and the relative position of the object along its orbit
w.r.t. the observer position. The relative observer-object geometry is, of course, influenced by
the stations positions and the satellite orbit. The ILRS network is made of roughly 50 sites not
homogeneously distributed and mainly located on the northern hemisphere, so it is not possible
to have a homogeneous observation coverage of the satellites orbits. Furthermore the visibility
of a satellite is influenced by its altitude and inclination. Especially for the LEO satellites, the
visibility is the main factor that limits the amount of observations that can be collected [67].
On the other hand, having high-altitude satellites as in the upper MEO and GEO regions (from
20000 to 40000 km of altitude), which have very broad visibility windows, does not mean
more observations since, in this case, the power of the laser of the station is the main limit for
collecting observations. Summarizing, the altitude and the inclination of the orbit together with
the distribution of the observing stations constitute a trade-off for the achievable OD accuracy.
If on one hand, the visibility is limiting the accuracy, on the other hand the altitude is limiting
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the number of measurements. The best compromise in terms of number of observations and
orbit coverage is given for the LAGEOS satellites which will be used as first validation scenario.
The OD accuracy is also influenced by the altitude of the satellite since it determines the dy-
namical model of the forces used in the OD. LEO satellites are more sensitive to the higher
degree and orders of the gravity field, to the atmospheric drag and the radiation of the Earth in
terms of albedo and thermal radiation. Satellites at higher altitudes are more sensitive to the
correct modeling of the solar radiation pressure. There are several methods to counteract the
effect of the mismodeling like the set-up of empirical accelerations or scaling parameters for the
estimation of the AMR and the ballistic coefficient. For completeness, we have to say that in all
the OD performed in this study no empirical accelerations are used and no scaling parameters
are estimated. Only in the case of Glonass 123 and Etalon 1 the AMR was estimated in a 6
months observation period, then the obtained value was used in the validation part, while the
AMR of the Larets and Lageos 1 satellites were taken from [67].
The above mentioned factors drove the choice of the length of the observation arc, in particular
we needed to select an amount of observations not too spread over time in order not to accumu-
late mismodeling effects but at the same time not too short in order to guarantee a good coverage
of the orbit and not to be affected too much by the relative object-observers geometry. Since
there are no specific guidelines about the selection of the arc-length we needed to determine it.
First of all, we took the epoch of the positions given by the ILRS, this was used as our central
time interval for the OD. Then, keeping the reference ephemerides in the middle of our arc of
observations, we increased the time interval from which we collected the laser measurements
used for the OD from 1 day up to 1 month (for the Etalon 1 case). At this point, an OD process
was performed, and the determined orbit was used to generate the ephemerides within the fit
span. The positions obtained at the same epoch of those provided by ILRS were stored and then
compared. During these tests, all the available stations in the CRD-file were used and only a
manual screening to remove the outliers was performed on the available observations.

5.4.3 Lageos Orbit Determination
The first validation test was performed on the Lageos 1 satellite. This was chosen because its
altitude, about 6000 km, is a sort of compromise, since it is not too high to be reachable from
almost all SLR stations and it has a nice visibility window which allows a pass length over
a single station of more than 30 minutes. At the same time, its orbit is less sensitive to the
higher terms of the gravity field (the gravity field used for the OD is up to degree and order
40 [47]) and is not influenced by the atmospheric drag. Table 5.4 reports the results obtained
from the validation tests using Lageos 1 observations. In the first column, the observations
arc-length is shown. In the second, the number of observations (normal points) used in the OD
is reported. In the last three we report the mean position differences w.r.t. three ILRS analysis
centers (namely SGF, JAXA and HTS), obtained from the comparison of 4 days of ephemerides
generated within the fit span. For completeness, in the bottom part of the table we report the
mean position difference between the centers, obtained averaging the difference between the
ephemerides provided by the different centers.
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Table 5.4 Lageos 1 results of validation tests.

Arc-length Num. of obs.
Mean Position Difference w.r.t.

SGF [m] JAXA [m] HTS [m]
1 Day 297 0.94 1.90 1.50
3 Days 870 0.84 1.47 1.22
5 Days 1427 0.81 1.36 1.14
7 Days 2044 0.81 1.41 1.15
9 Days 2553 0.83 1.17 1.05
11 Days 3023 0.72 1.25 0.99
13 Days 3595 0.71 0.91 0.82
15 Days 4095 0.68 0.94 0.80
19 Days 5034 0.78 1.03 0.93
23 Days 5992 0.74 1.23 0.97

Mean position Difference between centers [m]
SGF Vs HTS 0.47

SGF Vs JAXA 0.95
HTS Vs JAXA 0.79

As one can see from Table 5.4, the best OD results were obtained with the 15 days observa-
tion arc; in this case we have the minimum position differences w.r.t. the different centers and
more important, the distance of our results is of the same order of magnitude as the distance
between the centers themselves. It is easy to see also the “parabolic” behavior of the mean
error that shows higher values for short arcs in which the observations are not enough and the
geometry is not very good. At the same time, the error increases as the arc is getting longer;
this is probably due to the deficiencies of the dynamical model and to the fact that we did not
compensate them using empirical accelerations. These effects are even more evident in the
following example, the Larets case.

5.4.4 LEO Orbit Determination
Table 5.5 shows the results obtained for 5 days of ephemerides comparison for the Larets
satellite case. The number of observations used for the test is way smaller than the Lageos
1 case; this is due to the short visibility windows of the satellite mainly caused by its low
altitude (∼ 700 km). Furthermore, to process satellites at this altitude, one needs to increase
the coefficients of the gravity field model (up to degree and order 70) and needs to take into
account the atmospheric drag that is no longer negligible. Despite these modifications and im-
provements of the dynamical model, the mismodeling effects appears earlier than in the Lageos
1 case. In fact, the mean error increases again already after 7 days. Another evidence of the
effect of a more complex dynamical model are the higher values of the obtained position differ-
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ences both w.r.t. the centers and among themselves (from ∼ 1 m of the Lageos 1 case to > 10 m).

Table 5.5 Larets results of validation tests.

Arc-length Num. of obs.
Mean Position Difference w.r.t.

SGF [m] MCC [m] HTS [m]
1 Day 102 16.12 64.34 109.77
3 Days 290 14.41 56.21 83.60
5 Days 529 12.95 47.40 67.32
7 Days 835 11.43 39.27 66.47
8 Days 942 11.88 39.43 65.93
9 Days 1008 12.57 40.42 65.48
11 Days 1199 14.17 41.16 64.30
13 Days 1372 17.14 46.28 63.60

Mean position Difference between centers [m]
HTS Vs MCC 83.77
HTS Vs SGF 77.13
SGF Vs MCC 34.98

Modification Done for the Atmospheric Drag

When processing LEO satellites it is fundamental to consider the air drag in the satellite back-
ground model. The SATORB tool uses the MSISe90 atmospheric model to determine the
atmospheric density, in particular the atmospheric density is calculated as a function of the
solar flux and geomagnetic indices [57]. In SATORB there was the possibility to specify the
average solar flux and geomagnetic index as input in the graphical interface. Since the solar
flux constant changes from day to day and the geomagnetic indices are given with a 3 hours
sampling, we wanted to evaluate the consequences of these approximations when processing
observations distributed over an arc of several days. To do this comparison we needed to
implement in SATORB the capability to use correctly these indices in particular, the MSISe90
model needs the daily solar flux index plus the average solar flux index of the last 90 days, the
daily geomagnetic index, the 3 hours geomagnetic indices until 9 hours before the measurement
epoch, the average of the 3 hours indices from 12 to 33 hours before the current epoch and
the average of the 3 hours indices from 36 to 59 hours before the measurement epoch [68].
These procedure was implemented within GTSFGMI.f. Successively, we performed 3 different
OD determinations on the same measurements for the same satellite (i.e. LARETS): the first
neglecting the atmospheric drag, the second using the previous configuration of SATORB which
uses the average indices and the last using the just mentioned implementation for the indices. As
usual, after the OD the obtained orbit is integrated over the arc of observations and the generated
ephemerides are compared with those provided by the OD centers (namely HTS, MCC and
SGF). The resulting coordinate differences are shown in Figure 5.3. The OD was performed
over an arc of 9 days of observations and the reported ephemerides coincide with the last 4
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days of the observation arc. As shown in Figure 5.3, the average distance of the estimated orbit
in the case where the effect of the atmospheric drag is neglected is bigger than 120 m for the
entire propagation period w.r.t. all centers. The distance becomes smaller if we consider the
atmospheric drag, in particular the average error w.r.t. the SGF center becomes 22.6 m if we
consider the average indices given as input in the SATORB mask (as before the modification)
and decreases to 9.7 m when the geomagnetic and the solar flux indices are applied properly.
Apart from the case of the comparison w.r.t. MCC where the average error in both cases remains
the same, also the comparison w.r.t. HTS shows an improvement of roughly 16 m for a correct
use of the geomagnetic and solar flux indices.

Figure 5.3 Evaluation of the influence of the geomagnetic and solar flux indices in the OD
process.

5.4.5 Higher Altitude MEO Orbit Determination
The results of the validation test for the last orbital regime are shown in the Tables 5.6 and 5.7.
For the MEO case we decided to report the results obtained for two different satellites, Etalon
1 and Glonass 123. The first is a classical geodetic satellite and, as in the previous cases, we
have at our disposal all the needed information to be able to determine the level of accuracy
available for this orbital regime. The second is a 3-axis stabilized navigation satellites with a
more complex shape. This satellite was used to evaluate the consequences in the achievable
accuracies when neglecting the attitude and the CoM corrections.
Although the satellites at ∼ 20000 km of altitude have nice visibility windows, the number
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of observations available is even smaller than in the LEO case. This is essentially due to two
main factors: the normal point bin size (5 minutes) and the fact that only a subset of stations
belonging to the ILRS are able and focus on the tracking of high satellites. The main effects
of the stations tracking capabilities are a smaller number of available observations and a poor
distribution of the observations along the orbit. Although the dynamical model is simpler
w.r.t. the previous cases, these factors reduce the achievable accuracy in the OD. In fact, the
average error is higher than that obtained for Lageos 1. Since the AMR was not available
in this case, we were obliged to estimate it before conducting the tests; to do so we took
a relatively long arc of observation (∼ 6 months) and we performed an OD estimating the
AMR scaling factor as empirical parameter. The estimated AMR was then used as a priori
value in the validation test and it was not further refined. As one can see from Table 5.6, the
best results are obtained for an arc-length of 11, 13 days and the obtained mean error is of
the same order of magnitude as the difference between the two centers. As we have seen
before, the mean error increases again starting from 13 days. At the same time, it is possible
to see that the error remains stable around 3.2 m. This effect suggests that the poor relative
object-observer geometry and the smaller number of observations are the main causes of the
limit in the OD accuracy and not the deficiencies in the dynamical model as in the previous cases.

Table 5.6 Etalon 1 results of validation tests.

Arc-length Num. of obs.
Mean Position Difference w.r.t.
SGF [m] HTS [m]

3 Days 71 2.99 2.91
5 Days 135 3.47 3.05
7 Days 189 3.56 3.07
9 Days 302 3.15 2.47
11 Days 377 2.82 2.45
13 Days 468 2.86 2.50
15 Days 527 3.10 2.73
19 Days 634 3.17 2.73
23 Days 734 3.39 2.96
27 Days 869 3.24 2.84
31 Days 995 3.19 2.70

Mean position Difference between centers [m]
SGF Vs HTS 3.28

The last validation test, whose results are shown in Table 5.7, was carried out on a Glonass
satellite which is in the same orbital regime as Etalon 1 (see Table 5.2). This test was carried
out because in the case of Etalon 1 we do not care about the attitude of the satellite, since it is
a sphere, and then the application of the CoM correction is relatively easy. For the case of a
Glonass satellite we did not apply the CoM correction since it is time dependent and its correct
application require the knowledge of the attitude of the satellite. This choice was made since
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for a generic space debris, we do not have any information about its attitude, about the position
of the retroreflector, or about which part of the space debris reflects the laser pulse, therefore
we can not estimate precisely the AMR. This test was carried out to evaluate how much these
deficiencies will affect the OD results. In this case, 3 days of satellite positions every 15 minutes
were provided by the CODE center. These ephemerides are obtained from the processing of
radio-frequency measurements, therefore completely independent from the SLR ones. As in
the Etalon 1 case, the number of usable observations is limited by the altitude of the satellite
and the used AMR was estimated fitting 2 months of SLR observations. Although we used
a mean AMR value and we did not apply the CoM correction, the best OD produced results
whose accuracy is comparable to the Etalon 1 case.

Table 5.7 Glonass 123 results of validation tests.

Arc-length Num. of obs. Mean Position Difference w.r.t. CODE [m]
3 Days 64 8.25
5 Days 114 3.85
7 Days 166 3.42
9 Days 219 2.92
11 Days 252 3.79
13 Days 316 5.85
15 Days 374 6.71

5.4.6 Comparison of SATORB Propagation versus BSW Propagation
The last validation test was performed comparing the ephemerides generated by the propagation
of the results of an OD process carried out with SATORB with those generated by the BSW.
The comparison was performed again using the measurements of Lageos 1 satellite. For the
test, the same set of measurements, spread over 7 days of observation arc, were given as input
to SATORB and the BSW, the OD was then performed without the use of any empirical ac-
celerations and without estimating any scaling parameters. The determined orbits were then
integrated over the fit span in the Earth Centered Inertial system (J2000) to generate a 2 minutes
sampling set of ephemerides. The comparison of the two sets of ephemerides is shown in Figure
5.4. In particular, the left graph shows the radial, along- and cross-track differences of the
generated ephemerides while the right graph shows the modulus of the three components. The
"decreasing-increasing" behavior of the 3D distance is a consequence of the LSQ estimation
which gives the best fit in the middle of the observations arc. Although the average distance,
over the propagation period, is about 0.88 m which is of the same order of that obtained w.r.t. the
different centers, we were expecting a smaller distance. To find out the reason of such distance
we decided to split the problem again between OD part and orbit propagation. To test the
orbit propagation we compared the ephemerides generated propagating the same set of orbital
elements. This test produced the results shown in Figure 5.5 where it is clearly visible how the
differences starting from a sub-millimeter level reach the 5 m level after 7 days of propagation.
We can then confirm that the difference between SATORB and the BSW are mainly caused by
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the propagation part. As said before, two are the main components of the propagation error: the
background model and the errors cumulated within the numerical integration. Tests where we
changed the order of the integrating polynomial and the tolerances on the velocity error showed
that over 7 days of propagation the differences introduced by the numerical integration is ∼ 16
cm. We can then conclude that the differences between the SATORB and BSW results are
essentially given by the background models. Further investigations are needed to find out which
part of the background model causes these differences. However among the possible causes we
have: the number of planets of the solar system considered for the third body perturbation forces,
the correct application of the tidal forces, loading corrections and possibly also some small
problems due to the EOP. Since for our study the achieved level of accuracy can be considered
sufficient we did not further investigate the reasons of these differences, nevertheless one has to
take into account that this problem has to be solved for future, more precise, applications.

Figure 5.4 Comparison of the ephemerides obtained integrating the results of a SATORB OD
with those of a BSW OD.

Figure 5.5 Comparison of SATORB and Bernese GNSS Software propagation starting from the
same orbital elements.
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5.5 Simultaneous Processing of Angular and Range Measure-
ments

Before merging the ranges with the angular measurements, we needed to face the problem of
their weighting within the normal equation system. The weighting of the different observations
becomes necessary since the two observables have very different accuracy [26]. In this case, we
need to make the system able to get the advantages of both measurements without ignoring one
or the other.

5.5.1 Observables Relative Weighting
First of all we will recall for convenience the solution equation of a LSQ adjustment.

x =
(
AT WA

)−1 AT Wl, (5.9)

where the weight matrix is:
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Now, if one sets up σ0 = σα we obtain a relative weight between the two observables where
all angular measurements are weighted with 1 and the ranges are weighted proportionally to the
ratio between the two standard deviations.
At this point, we calculate the relative weights using an initial guess value for the standard
deviations of each observable. Typical value for the ZIMLAT telescope are of 0.5 arcsec for the
angular measurements [45] and 1.5 cm for the normal point [2]. Since the astrometric accuracy
are instrument dependent and the normal point accuracy are satellite and station dependent,
the rough values of 1 arcsec for the angular ones and, of 3 cm for the SLR measurements
were used. The selection of these values produces the following weights values: wα = 1 and
wr = 2.6 ·10−8.
Several tests were performed comparing the OD results obtained with only angular, only SLR
and with merged measurements provided by the Swiss Optical Ground Station and Geodynamics
Observatory Zimmerwald (from now on called simply Zimmerwald observatory). In particular,
the evaluation was made comparing the ephemerides generated from different OD cases w.r.t.
those obtained from a reference OD scenario. The reference orbit was obtained processing all
available measurements both angular and laser from all available stations spread over a time
period which contains the one for the study case. The reference orbit was then integrated, starting
from the 1st observation epoch, over the entire fit span to generate the reference ephemerides.
Several OD were carried out changing both the length of the observations arc (from 1 to 5
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nights) and the observation geometry (e.g. only night measurements, or only angular during
the nighttime and SLR during the daytime). These tests showed almost no difference between
the cases of merged measurements and those using only SLR. This indicated that the angular
measurements did not play a huge role in the OD process.
The suspicion was confirmed after a second series of tests. For these tests, only the observations
(both angular and SLR) acquired from the Zimmerwald observatory for a specific satellite were
used in the OD. At each run of OD we kept the observations used constant and we varied the
SLR weights in a way to simulate STD values going from 1 mm up to 15 km. The standard
deviation of the angular measurement was kept constant to 1 arcsec. The choice of these STD
values to determine the weights for SLR measurements was made on purpose in order that the
system will consider as little as possible those measurements. The OD results are then used to
generate the ephemerides which will be then compared with the reference ones. An extract of
the results, considering only 3 days of propagation, obtained from these tests is shown in Figure
5.6. In this example, the test was performed using Lageos 1 observations acquired in 5 days only
during the night time. The differences in radial, along-track and cross-track components are
obtained comparing the ephemerides generated from the determined orbit w.r.t. the reference
ones. Figure 5.6 shows only the results obtained using the following a priori STD to calculate
the weights: 5 mm, 5 cm, 50 cm, 5 m, 50 m, 500 m, 5 km. The figure contains also the results
obtained from an OD with only SLR and only angular measurements which are respectively
under the red/cyan and the yellow curves.

Figure 5.6 Position difference in Radial, Along- and Cross-track components obtained with
different weighting of SLR measurements.
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Unfortunately, from these results, it is not possible to define the most appropriate weight to
give to the SLR measurements so that the system can profit from the benefits of the two kinds of
observables. To answer this question, it was decided to characterize the errors curves exploiting
their shape. In fact, if we consider a reasonable propagation length as the one in Figure 5.6
(i.e. 3 days), the shape of the differences among the components can be described by a biased
drifting sinusoid, as shown by Eq. 5.12, neglecting the change of amplitude over time.

E = usin(θ t + γ)+mt +q (5.12)

It was decided to characterize the error in the RSW directions as a function of its amplitude,
its drift and its offset, respectively u, m and q. For simplicity, to estimate these parameters first a
straight line was fitted through the differences between the ephemerides components and the
total position error, the inclination and the offset of the line coincide with the drift and offset of
the error (m and q). Then the straight line is subtracted from the measured error to de-trend it
and finally the amplitude was calculated as shown in the following equation:

u =
max [E − (mt +q)]−min [E − (mt +q)]

2
. (5.13)

Figure 5.7 shows the drift, the offset and the amplitude of the error in the RSW components
and the total position error obtained comparing the reference ephemerides with those generated
by an OD varying the weights for the SLR measurements. In these plots are also indicated, with
the horizontal green and red line, the drift, the offset and the amplitude of the error obtained
using only angular and only SLR measurements in the OD. As expected, the results of the OD
coincide with the laser-only solution in the case of low STD for range measurements (higher
weight). On the other hand, increasing the STD on the SLR measurements, after a transition
phase, the solutions tend toward the one obtained with the angles-only case. For all cases,
the main component of the error is, as expected, in the along-track direction since the radial
components of the error is constrained by the range measurements. The cross-track error is
surprisingly small also in the SLR-only case. This effect is probably due to the fact that a good a
priori orbit is used to initialize the LSQ and the orbital plane is determined indirectly exploiting
the high precision of the SLR measurements and the exact knowledge of the observer position.
These factors and the 5 nights of observations allow enough geometry changes that allow the
correct identification of the orbital plane. In the cases of merged observations, the angular ones
are of fundamental importance in the estimation of the orbital plane. As one can see from the
comparison of the offsets and the amplitudes on each direction, the difference between the
laser-only and the angles-only solution is less pronounced in the cross-track component than in
the other directions.
The tests with different weights on the SLR measurements were repeated for different orbital
regimes and different observation scenarios for the same object. In all these tests the transition
phase between the laser-only and the angles-only solutions showed different behaviors confirm-
ing that the cause of it should be seen in the different relative geometry changes in combination
with the weight given to each measurement.

114



5.5 Simultaneous Processing of Angular and Range Measurements

Figure 5.7 Results of error characterization for the runs varying the weights on SLR measure-
ments.
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5.5.2 Weights Determination
Finally coming again to our first question, these tests showed that the STD of 1 arcsec and 3
cm, respectively for the angular and the SLR measurements used for the weight determination,
produced a solution almost coincident with the one obtained processing only ranges in the OD.
It was then necessary to use other values to determine the weight in a more proper way. This
problem was addressed both from the side of the angular and of the SLR measurements.
The astrometric accuracy of the Zimmerwald telescopes was estimated exploiting the obser-
vations acquired over satellites whose position is very well known and publicly available (i.e.
GPS and GLONASS satellites). In particular, the astrometric positions in RA and DE of GNSS
satellites are routinely acquired at the Zimmerwald observatory. These are then compared with
the RA and DE coordinates calculated by precise ephemerides provided by CODE. As previously
said, CODE is one of the GNSS analysis center which provides the orbits of GNSS satellites
with accuracy in the order of 1.5 cm, which corresponds to an angle smaller than 0.0002 arcsec
[69]. Due to their high precision and to the fact that they are estimated processing microwave
observations (and thus completely independent from the telescope measurements) we can con-
sider the orbits provided by CODE as the “truth”. Figure 5.8 shows the position differences in
terms of RA and DE for several GPS satellites observed in the night of 25th October 2015. As
one can see the average difference in position between observations and CODE ephemerides
is below 1 arcsec, only a few outliers can be seen. Usually, these position differences are used
for the determination and then the calibration of the time bias of the observation system [70].
Figure 5.9 shows the time bias of the ZIMLAT telescope-system obtained from November 2014
to October 2015 where we can see how the value of the time bias remains always below 10
ms and the median value is about 2.4 ms over the entire period. The residuals obtained at the
end of the time bias calibration process can be used to estimate the astrometric accuracy of
the system itself. Figure 5.10 shows an extract of the residuals of the time bias calibration
obtained for the ZIMLAT and ZimSMART telescopes which are daily used at the Zimmerwald
observatory. After having screened the outliers from the residuals of the calibration process
using the Median Absolute Deviation method [71], the resulting astrometric accuracies obtained
for the Zimmerwald telescopes over 6 months of data are summarized in Table 5.8. In particular,
the 2σ and 3σ values refer to the threshold, of respectively 2 and 3 time the median absolute
deviation value, used to exclude the outliers. The screened data are successively averaged to
obtain the values shown in the table.
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Figure 5.8 Comparison between RA, DE coordinates obtained from optical and microwave
observation.

Figure 5.9 One year Time Offset obtained for the ZIMLAT telescope.

Figure 5.10 Angular Residuals after the time offset calibration.

117



Fusion of Laser Ranges and Angular Measurements

Also for the SLR measurements we decided to extract the values used for the weight calcu-
lation from experimental data. In particular, we used the resulting a posteriori RMS per unit
weight obtained at the end of the OD performed with only SLR measurements. Furthermore,
this OD process was carried out without the estimation of any empirical force and of any scaling
parameter. In this case, we do not have a unique value that can be used for all the following
experiments since, as seen in Paragraph 5.4, the OD accuracy depends on the orbit altitude. It
was then necessary to estimate a value per orbital regime. To do that an OD was performed
taking into account all the available SLR observations over the time interval which gave, for the
analyzed orbit, the smallest average position difference in Paragraph 5.4.
Since the tests shown in the following paragraphs are using angular observations which come
exclusively from the Zimmerwald observatory, we can already say that the value used for the
angular measurements in the weight determination is 0.5 arcsec while, the one used for the
ranges will be specified for each case that will be analyzed. The selected astrometric accuracy
correspond to the worse accuracy obtained in Table 5.8.

Table 5.8 Astrometric accuracy of Zimmerwald telescopes.

Telescope
Mean astrometric accuracy [arcsec]

2σ 3σ

ZIMLAT 0.46” 0.50”
ZimSMART 0.41” 0.45”

5.6 Orbit Determination Results
At this point, we are ready to analyze the influence of the SLR measurements on an OD process
based on angular measurements. With these tests we tried to understand the influence of the
relative observer-object geometry, the number of observations and number of follow-ups. These
tests were repeated for different orbital regimes to investigate the influence of the different
observables on each orbital parameter. It must be said that the main part of the results showed in
the following paragraphs refers to the Lageos 1 satellite. This choice was made since, as we
have seen in Paragraph 5.4, this satellite-orbit combination gives the best compromise in terms
of visibility and number of observations allowing us to play easily with the different observation
geometries. Finally, always for different orbital regimes, we will show the achievable improve-
ments of an OD with 3D measurements (RA + DE + ranges) w.r.t. the angles-only solution
and how the use of 3D measurements will allow us to save time for future catalog maintenance
application. The just mentioned topics will be addressed separately in the following sections.

5.6.1 Influence of the Arc Length
The first series of tests was performed to evaluate the influence of the length of the observed
arc. Only the observations (both SLR and angular) acquired by the Zimmerwald observatory for
a total of 5 days of observations spread over 18 days will be used. For this experiment, only
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the SLR observations acquired during the night-time after the first angular measurements are
taken into account (the measurements time epoch is within the MJD−0.25 and MJD+0.25
of the observation night). This choice was made to simulate an active tracking of space debris.
The considered object is the Lageos 1 satellite, so the STD used to determine the weight of SLR
measurements is 55 cm (together with 0.5 arcsec for the angles). As mentioned before, this RMS
is obtained from an OD performed using only normal points spread over an observation arc of
optimal length. The OD is carried out without using any empirical acceleration to compensate
the deficiencies of the dynamical model. It must be said that 55 cm of RMS for a LAGEOS orbit
is a very high value compared with geodetic standards [47]. Nevertheless we decided to use this
value for several reasons: for consistency w.r.t. our solutions, for the differences highlighted in
Paragraph 5.4.6, and for the fact that such high level of accuracy was not needed to carry out the
following studies.
This test was carried out performing an OD covering an increasing observation arc from one
pass up to 5 observation nights. For each observation arc an OD is performed first, using only
angular measurements (2D), then merging angles and ranges, and finally for completeness
with ranges-only (1D). For each OD the ephemerides were generated and compared with those
obtained from the reference orbit. The comparison period is coincident with the reference orbit
which starts 8 days after the last observation night and lasts 5 days. This time distance was
chosen on purpose to evaluate what was the committed error for the target object after roughly
one month from the first observation. The reference orbit was generated performing an OD
using all possible laser observations over 5 days from all available stations to get rid, as much as
possible, of geometry dependencies. These observations were provided by the ILRS.
The mean error of the ephemerides generated by the OD results w.r.t. the reference ones are
summarized in Table 5.9. In the table, it is possible to see: the number of observations used
in the OD separated by type (1D for SLR and 2D for RA and DE), the errors separated by
components (radial, along-track and cross-track, namely R, S and W) and the total position error
in meters obtained for different arc-lengths. In the 2D observations counting we counted the
number of epochs for which a couple of RA, DE measurements is available. We did not report
the number of observations used in the OD with 3D measurements as it is given by the sum of
the number of 1D and 2D observations.
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Table 5.9 Results of the influence of the arc-length test for Lageos 1.

Days of Obs. 1Pass 1 2 3 4 5

# of obs.
1D 14 50 57 100 134 169
2D 18 59 63 83 97 101

R [m]
1D 60.5 0.61 0.50 0.74 0.83 0.80
2D 19.7 16.4 13.1 17.0 21.9 22.0
3D 4.10 0.43 0.54 0.89 1.06 1.06

S [m]
1D 2.0 ·104 15.8 13.9 3.92 3.41 1.65
2D 1.9 ·103 2.5 ·103 53.2 34.5 44.5 44.7
3D 3.0 ·103 55.6 12.2 2.90 2.56 2.32

W [m]
1D 47.9 11.6 11.5 9.67 0.74 8.52
2D 23.1 11.8 8.14 7.73 17.0 6.80
3D 10.7 11.3 11.4 9.59 9.27 8.42

Total [m]
1D 2.0 ·104 20.2 18.7 10.9 10.4 8.88
2D 1.9 ·103 2.5 ·103 56.4 42.6 54.3 54.6
3D 3.0 ·103 57.0 17.3 10.5 10.1 9.11

1D = SLR, 2D = RA & DE, 3D = SLR + RA & DE,

With these tests we would like to focus the attention on the comparison between the re-
sults obtained with the classical angular-only case and the one with 3D measurements. The
ranges-only case was added for completeness and to have a general overview that allowed us to
understand better the other results. Furthermore the sometimes more precise orbit obtained in the
1D case was possible because, for convenience, we used the SLR measurements to improve an
already good a priori orbit. This is the only reason why it was possible to obtain the convergence
of LSQ especially in the 1-pass case. In fact, in this case, being the ranges one dimensional
measurement, if the geometry, given by a second station, or the angular measurements are not
available, it is impossible to estimate the orbital plane. Despite the good a priori orbit, the
ranges-only solution (1D), shows the highest errors of the entire set of tests.
Looking now at the error components, there are two main remarks that can be done: first, the
error component on the along-track direction is the biggest among the three (especially for the
1-pass case); second, the smallest cross-track error is obtained for the 2D case. The main reason
of the first can be easily explained if we look at the 1-pass case: here, the radial component
is constrained by the measurements themselves but at the same time the observed arc is too
short to estimate correctly the semi-major axis, the eccentricity and the perigee passing time.
These parameters are so correlated in this case that they can be adjusted to fit perfectly the
measurements but, at the same time, these are not enough to ensure the correctness of the
estimation. The second effect can be explained by the nature of the used observables. In fact,
the astrometric positions are just directions in the inertial frame, so even a series of them allows
a relatively easy identification of the orbital plane orientation (namely i and Ω). The nature of
this observable has another consequence: being only a direction, a single couple of RA and
DE does not give any information about the distance of the object. This quantity can be in any
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case estimated combining series of astrometric positions with the corresponding epoch. This
phenomenon is reflected directly in the higher error obtained in the radial direction.
From these tests it is already possible to notice the huge impact of the SLR measurements on
the orbit accuracy especially for the shortest arcs. Looking at the 1-night arc, for a total of
two satellite passes, we have an improvement of two orders of magnitude from roughly 2.5
km of error to just 57 m. Then, always comparing the 2D case with the 3D one, increasing the
arc the error is dropping down from roughly 2 arcsec (at the Lageos 1 altitude, 1 arcsec ≃ 29
m) to less than 0.5 arcsec. The only exception to this trend is for the 1-pass case where the
error of the merged solution, still remaining of the same order of magnitude, is bigger than the
angles-only case. This is probably due to the fact that the number of observations for the 1D and
2D cases is almost the same, but being the laser ones much more precise than the angular the
LSQ converges on a local minimum solution. Finally, one can see that due to the high number
of SLR measurements, to the geometry changes obtained in the 18 days of observation arc and
the ≃ 6.4 revolution per day of the satellite, the 1D solution is of the same order of magnitude
than the 3D one and, for the case of 5 nights, it is even slightly better. Observing the value of
the errors for the 1D and 3D case, we can make one last consideration. Starting from 3 nights
there are not substantial changes in the error values. This is, probably, the precision limit with
that geometry configuration before the error starts to increase again due to mismodelling effects.

5.6.2 Influence of the Number of Measurements
In the previous Paragraph (5.6.1), we considered all the observations coming from one station
but limited to a certain period of the day. Already in this scenario the SLR observations, probably
due to their high number, play a big role especially with the increase of the observation arc.
In the following tests we want to reduce this effect and see the influence of a handful of SLR
measurements (per pass) associated with angular ones. This test was performed to simulate
a more realistic environment of debris tracking where, due to the shape of the object and its
attitude, it is not possible to have the same amount of observations as for a regular geodetic satel-
lite, even if the target carries a retroreflector on board. To do it, the previous test was repeated
using just a small fraction of the observations available, as can be seen from Table 5.10. As
in the previous case, the observations used were acquired only from the Zimmerwald observatory.

Table 5.10 OD Results for Lageos 1 varying the arc-length using sparse range measurements.

Days of Obs.
# of Obs. Mean error w.r.t. the reference orbit
1D 2D R [m] S [m] W [m] Total [m]

1Pass 3/14 18 30.62 4614 25.03 4614
1 6/50 59 3.11 1144 9.64 1144
2 7/57 63 0.693 3.48 12.95 13.76
3 11/100 83 2.40 27.10 13.08 30.85
4 12/134 97 4.39 25.02 8.72 27.44
5 13/169 101 4.88 30.02 9.09 32.27

121



Fusion of Laser Ranges and Angular Measurements

The second column of Table 5.10 shows the number of SLR measurements used over those
available. Comparing the obtained results with those shown in the last line of Table 5.9, we can
see, as expected, that except for the 2 observation nights case, the error w.r.t. the reference orbit
increases due to the reduction of the number of observations. At the same time it is important to
notice that this is not so crucial. In fact, again with the exception of the 1 night case, the errors
remain of the same order of magnitude. This experiment confirms the advantage of using SLR
ranges. Excluding the 1-pass case, although we used just a tenth or even less of the observations
available, we were able to obtain results at least two times better than in the angles-only case;
this factor is of importance if one wants to optimize the observation time.
From the previous example we have seen that a higher number of observations produces better
results. Is it always like this? In principle yes but, at the same time, the distribution of the
observations and the relative object-observer geometry are also very important. In the following
Figure 5.11 and Table 5.11 the ephemerides distance w.r.t. the reference orbit are shown. These
were obtained from an OD using only the observations, for the Lageos 1 satellite, coming from
the Zimmerwald observatory. In these runs only the observations coming from one satellite
pass are taken into account. The total length of the pass is about 40 minutes. While the ranges
are homogeneously distributed over the entire pass, the angular ones are concentrated in the
middle of it and cover only 5 minutes of the pass. The difference among each runs relies in
the number of range measurements considered and their distributions. In the figure each color
is associated with a different number of ranges taken into account in the OD process: from 0
(angles-only) to 19, that was the maximum number available for the selected pass. There are two
lines that refer to the same number of ranges used, namely “Mer. 3 s, m, e” and “Mer. 3 rng”. In
these runs only three ranges are used, the difference between the two is in the distribution of
those measurements over the pass. In the first, the ranges are one at the beginning, one in the
middle and one at the end of the angular measurements. In the second, are just the first three
ranges available after the first epoch of the angular measurements. In all the other cases, the
considered ranges are selected in chronological order since the first angular measurement. The
only exception is given by the “Mer. all obs.” case, where all the observations available in the
pass are considered and then even those before the angular ones.
Figure 5.11 and Table 5.11 show the effects of the distribution of the observations. As one can
see, the best solution, in this case, is given adding 3 ranges, one at the beginning, one in the
middle and one at the end of the series of angular measurements. The solution obtained using all
ranges available (“Mer. all obs”), which coincides with the longest observed arc in this case, is
more or less comparable with that obtained using only two ranges (“Mer. 2 rng”). The obtained
errors, in these cases, are respectively ≃ 4 and ≃ 5 times bigger w.r.t. those obtained for the best
solution (“Mer. 3 s,m,e”). The angle-only solution, due to the very short arc, gives the biggest
error while the others, increasing the number of used ranges, produce better results getting close
to the best solution but then they tend again toward the solution obtained using all observations
available. This behavior is probably due to the fact that adding more ranges, due to their better
distribution over the relatively short arc considered for the OD and their higher precision make
the LSQ converge on a local minimum solution.
The same behavior is visible in Table 5.11. There, the effect of the range measurements can be
seen comparing the radial component of the error (third column) obtained in the angles-only
and in the 1-range solution, respectively reported in the third and forth row of the table. Only
one range produces an improvement of two orders of magnitude. The same jump in the error is
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visible comparing the one with the two ranges solution. Afterward, the improvements are less
pronounced.
Concluding this section, we can say that the number of ranges used in the OD process is of
fundamental importance together with their distribution and the object-observer relative geome-
try which we suppose is the main cause of the obtained plateau in the position error w.r.t. the
reference orbit. Nevertheless, as shown in Table 5.11, the angular observations are fundamental
in the determination of the orientation of the orbital plane in the space. In fact, comparing the
error components obtained in the merged cases with those obtained in the angle-only case, the
cross-track error show the smallest improvement.

Figure 5.11 Ephemerides difference, w.r.t. the reference orbit, obtained with 1 pass of Lageos 1
orbit varying the number of used SLR measurements.
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Table 5.11 OD Results from 1 pass of Lageos 1 from Zimmerwald observatory varying the
number of used SLR measurements.

# of Obs. Mean error w.r.t. the reference orbit
1D 2D R [m] S [m] W [m] Total [m]
− 41 5.925 ·105 3.263 ·106 604.1 3.324 ·106

1 41 995.7 1.461 ·105 83.55 1.461 ·105

2 41 7.42 1068 12.23 1068
3 41 6.33 620.2 12.14 620.8

3* 41 5.20 194.9 12.07 193.3
4 41 5.63 356.9 12.10 357.9
5 41 5.26 217.6 12.07 218.9

19*1 41 6.02 838.5 6.17 838.7
* 1 at the beginning, 1 in the middle and 1 at the end of the

pass (s, m, e, in the Figure 5.11)
*1

All available ranges

5.6.3 Influence of the Object-Observer Relative Geometry
Until now, both angular and laser measurements were provided by the Zimmerwald observatory.
In this paragraph, we want to highlight the consequences of the relative object-observer geometry
in the accuracy of OD results. Since we did not want to feed the system with synthetic observa-
tions, the angular measurements used in the following tests were provided by the Zimmerwald
observatory while, the range measurements were provided by three SLR stations (namely Graz,
Matera and Mt. Stromlo whose coordinates are given in Table 5.12).
These stations were chosen because they are among the most productive stations of the ILRS
network, consequently there were more data available for the geometry tests and they are able
to track even high altitude satellites. In the first series of tests we want to show the influence
of a displacement of the station which provides ranges, while in the second we want to show
the effects introduced by combining the angular measurements with the SLR ones provided by
more stations. For the following test the data of the Glonass 123 satellite are used.
As mentioned in Paragraph 5.5.1, being this object in a MEO orbital regime, the σr = 1.3 m
is used to determine the weight for the range measurements. This value coincides with the a
posteriori RMS obtained from the OD performed over the arc of observations with the optimal
length. This object was chosen especially for the reduced number of measurements available
w.r.t. the Lageos 1 satellite. As usual, the tests were performed comparing the ephemerides
obtained by an OD using a subset of measurements with those generated by a reference OD.
To generate the reference solution we used 18 days of observations from all available stations
both angular and SLR. The orbit so determined was then integrated over the fit span to generate
the reference ephemerides. For the OD tests we used all angular measurements from the Zim-
merwald station and all SLR measurements from the selected station/s available within the 18
days of arc. For both series of tests the time interval used for the comparison of the ephemerides
coincides with the fit span used in the various ODs. Finally, for an easier comprehension of the
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following results, we report in Figure 5.12 the distribution of the observation within the fit span
of the stations considered for the experiments.

Table 5.12 Coordinates of the stations used in the tests.

Station
Geodetic Coordinates

Latitude[°] Longitude[°] Elevation [m]
Zimmerwald 46.8772 N 7.4652 E 951.2

Graz 47.0678 N 15.4942 E 495.0
Matera 40.6486 N 16.7046 E 536.9

Mt. Stromlo 35.3161 S 149.0099 E 805.0

Figure 5.12 Distribution of the observation used to study the object-observer relative geometry
for the selected station.

One Station Angular Data and One Station SLR, Different Relative Geometry

With this series of tests we wanted to see how data from a SLR station located somewhere else on
the Earth impacts our solutions. Comparing the coordinates of the Zimmerwald observatory w.r.t.
those of the other stations (see Table 5.12), one can see that Graz was chosen as representative
of the effect of a shift in longitude and Matera as a generic shift both in latitude and in longitude.
Both stations share with Zimmerwald almost the same visibility window for the considered
satellite (Glonass 123) and then we can have angular and SLR measurements which are collected
almost at the same time. The third station, Mt. Stromlo, was chosen since it does not share the
visibility window with Zimmerwald and then will provide a completely different observation
geometry.
The summary of the obtained results is reported in Table 5.13. The table shows the mean position
difference and the mean difference of the osculating orbital elements. The mean differences
in the radial, along- and cross-track directions are obtained, as usual, averaging the difference
of the propagated positions w.r.t. the reference ones. The mean differences of the osculating
orbital elements are determined averaging the difference of the osculating elements obtained by
converting the generated state vectors at each available epoch. For completeness, the results
obtained with an angles-only OD and the number of measurements used in the various OD
processes are also reported. As one can see, the best solution is obtained merging the angular
measurements coming from Zimmerwald with the SLR ones coming from Graz whose average
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total position error is less than 7 m.

Table 5.13 OD Results for one station angular and one SLR with different geometries.

10041B Angle-Only Zimmer. &
Matera

Zimmer. &
Graz

Zimmer. &
Mt. Stromlo

#
of

O
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. 1D − 31 33 61
2D 63 63 63 63
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rr
or

[m
] R 43.2 0.382 0.403 1.271

S 90.3 13.60 2.165 12.58
W 7.10 7.762 6.239 1.294

Tot. 108.5 16.79 6.909 12.90
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or

a [m] 0.389 9.404 ·10−2 1.559 ·10−2 7.990 ·10−2

e 1.83 ·10−6 1.200 ·10−8 1.500 ·10−8 3.400 ·10−8

i [°] 2.38 ·10−5 1.520 ·10−5 1.270 ·10−5 4.300 ·10−6

Ω [°] 8.30 ·10−6 2.530 ·10−5 1.990 ·10−5 1.600 ·10−6

ω [°] 3.22 ·10−2 3.484 ·10−4 3.414 ·10−4 1.144 ·10−3

M [°] 3.22 ·10−2 3.294 ·10−4 3.286 ·10−4 1.171 ·10−3

Looking now at each single error component, we can notice that the errors in the radial
direction obtained for the Matera and Graz case are comparable while the one obtained in the Mt.
Stromlo case is 3 times bigger. On the other hand, in the Mt. Stromlo case one has the smallest
cross-track error. Similar assessments can be done observing the mean error on the osculating
elements. If one analyzes separately the parameters which describe the orientation of the orbital
plane (namely i and Ω) and those which describe the orbit shape and the position of the object
along the orbit (namely a, e, ω and M), we can see that the Mt. Stromlo case presents the lowest
error for i and Ω and the biggest for ω and M. The latter two parameters are, together with a
and e, the main responsible for the error in the along-track direction. We think that the smaller
error in the orientation of the orbital plane and the higher one in the along-track directions is
probably due to the different geometry. Comparing the Graz case with the Mt. Stromlo one, we
can see that in the first, the observations are concentrated in one part of the orbit. In this case,
the ranges and the higher density of observations improve the estimation of the semi-major axis.
In the second, the bigger spatial distributions of the observations along the orbit will constrain
better the orientation of the orbital plane. Finally, the interpretation of the difference between
the Matera and the Graz case is more difficult. Comparing the error components we can see
a larger error in the along-track direction of the Matera case w.r.t. the Graz one. Although
the two cases have almost the same number of observations, probably, this higher error is due
to the worse distributions of them over the considered arc. In the Matera case, just in the
middle of the observation arc there are 9 days of gap where no measurements are available,
while in the Graz case, the SLR measurements are more homogeneously distributed and no
such big gaps are present. This worse distribution of the observations is probably the cause of
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the higher error in the semi-major axis which leads to the just mentioned difference in the results.

One Station Angular Data and More than One SLR station

The previous tests showed the results achievable exploiting the ranges provided by one single
station, in this section we analyze the impact on the OD given by observations from more than
one SLR station. We wanted to face this problem because it is very well known that ranges,
being one-dimension measurements, do not provide any information about the orientation of
the orbital plane (at least not directly). At the same time, as it is common use in the geodetic
community, using more than one station we can remedy to this deficiency. In particular, if we
take one station whose position is known and a range, the satellite could be on every point on
a sphere centered on the station with radius equivalent to the measured range. At this point,
adding a second station whose position it is also known we constrain the satellite to move on
the intersection of the two spheres. Adding now a second range for each stations we are able
to identify the orbital plane. This series of tests was carried out using a combination of the
observations used in the previous paragraph for the Glonass 123 satellite. In these tests we
compared the results achievable using two SLR stations with those obtained adding also the
angular measurements and finally with those obtained by all 4 stations together. It was possible
to estimate an orbit starting from 2 SLR stations because their coordinates are known and an a
priori orbit is used as input in the LSQ adjustment. These tests were performed also to highlight
the benefits given by the angular measurement in the OD.
Table 5.14 shows the obtained results. As usual, in the first rows of the table the name of the test
and the number of observations used, separated by kind, are reported. The “Graz & Matera” and
the “Matera & Mt. Stromlo” are those tests carried out without using angular observations. Fur-
thermore, the results of the test “Graz & Mt. Stromlo” performed using only SLR measurements
are not reported as they will be similar to those of the “Matera & Mt. Stromlo” case. These two
test cases show how the processing of ranges produce high accuracy results in the radial and
along-track directions but at the same time, being the range one dimensional, show higher error
in the cross-track component. Consequently the estimation of the orientation of the orbital plane
is less accurate. However, the interaction given by a second station brings down the error to an
acceptable level.
Looking now at all results, the obtained overall errors are relatively small for all cases. In fact,
they are at least one order of magnitude smaller than the angles-only case (see Table 5.13) and
the maximum average error over 18 days is 11.53 m.
Using a relatively large number of ranges we are able to reduce a lot the error in the radial and
along-track directions.
Looking now at the error in the cross-track direction, we can see a smaller improvement w.r.t.
the cases shown in the previous paragraph. Furthermore there are no cases for which a second or
even a third SLR station improves the solution in this direction (between the series of tests shown
in Table 5.13 and Table 5.14, the smallest cross-track error is obtained for the “Zimmerwald &
Mt. Stromlo” case). We suppose that this is due to the bigger number of SLR measurements
w.r.t. the angular one. This effect can also be seen looking at the case where the measurements
provided by the 4 stations are processed together (“Graz, Matera, Mt. Stromlo & Zimmerwald”
case). Against the expectations, this case did not produce the best results in terms of position
error w.r.t. the reference ephemerides. As one can see from the Table 5.14, we obtained the
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smallest error in the radial and along-track directions but the overall position displacement is
driven by the difference in the cross-track direction. This is probably caused by the fact that the
ranges, due the their higher number, drive the LSQ solution but, at the same time, only 3 SLR
stations do not provide enough geometry change to identify precisely the orbital plane.
One last thing which is interesting to highlight can be seen from the comparison of the “Graz,
Mt. Stromlo & Zimmerwlad” case with the “Graz, Matera & Zimmerwald” one. These two
examples show the smallest error in the cross-track direction. Furthermore looking at the error
on the orbital elements, the first shows the smallest error in the inclination while the second
in the RAAN. As it was anticipated previously, the displacement of the SLR stations and their
number have an impact in the OD results especially in the accuracy of the parameters describing
the orientation of the orbital plane. As for the “Zimmerwald & Mt. Stromlo” case (of the
previous paragraph), the “Graz, Mt. Stromlo & Zimmerwald” one confirms the importance in
the estimation of i and Ω of the observations located in places diametrically opposite along the
orbit. In the latter case, this effect is strengthened by the introduction of the Graz station.
The “Graz, Matera & Zimmerwald” case, instead, shows that two SLR stations, which are
sharing almost the same visibility window with the satellite and can acquire measurements
almost at the same time, will set stronger constraints to the orbital plane via the triangulation of
ranges w.r.t. to the single SLR station case. At the same time, this constraint is weaker than the
just above mentioned case since the displacement of the two stations and the introduced parallax
w.r.t. the orbital plane are relatively small.
Finally, one could ask: why the “Matera, Mt. Stromlo & Zimmerwald” case, although their
geometry is similar, produces slightly worse results than the “Graz, Mt.Stromlo & Zimmerwald”
one? We suppose that, as said in Paragraph 5.6.3, the reason lies in the huge data gap of
measurements coming from the Matera station.
The just showed tests highlighted the importance of object-observer relative geometry in the
estimation of orbital parameters. They show also the importance of the angular measurements
in the case where not a large number of SLR stations provide measurements. On the other
hand, they indicate us the tendency of the LSQ adjustment to follow the higher precision range
measurements that, in the case where they are not enough to observe homogeneously an orbit,
may result in not optimal results.
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Table 5.14 OD Results obtained by merging ranges from more than one station.
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i [°] 2.6 ·10−5 9.8 ·10−6 8.0 ·10−6 1.3 ·10−5 1.6 ·10−5 9.9 ·10−6
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M [°] 5.6 ·10−4 4.9 ·10−4 4.6 ·10−4 4.1 ·10−4 5.5 ·10−4 3.1 ·10−4

5.6.4 Discovery and Follow-ups Scenarios Simulation
We have just illustrated the effects of the object-observer relative geometry, of the number of
observations, of the length of the observed arc and the importance of the right weights selections
within the LSQ adjustment. But, in the end, what are the benefits of the SLR measurements in
terms of achievable orbit accuracy? And in the space debris field, what are the improvements, for
example, for catalog maintenance applications? To illustrate these effects in the next examples
we will compare the OD results obtained using one or two nights of angular observations with
those adding a very small number of ranges. As usual, the ephemerides generated after an OD
are then compared with those obtained from a reference orbit. Only a very small number of
observations are taken into account in these tests so that we simulate the classical scenario of
object discovery and first follow-ups (acquired in the same and in the following night). This
choice was made as this way of operating is usually adopted at the AIUB and, especially for the
GEO case, the obtained results could be easily compared with those shown in [44] to highlight
the benefits given by the ranges. These tests were repeated for different orbital regimes (namely
LEO, MEO and GEO).

LEO

One good candidate for the kind of analysis carried out for the LEO regime is TOPEX POSEI-
DON (92052A). This satellite, which carries a retroreflectors array, was built to measure the
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surface topography and was decommissioned in 2006. This satellite, with its 2400 kg of mass
and its fast spin period (∼ 10 sec), is one of the case studied in the space debris field [72].
For the analysis of this case we used only the observations provided by the Zimmerwald observa-
tory acquired during three consecutive passes of the satellite from one single night. In particular,
we have an astrometric series for each pass and two ranges series belonging to the first two
passes. The results of the tests and the precise number of used observations are summarized in
Tables 5.15 and 5.16. Since in this case we did not have enough observations to generate a good
reference orbit, the analysis was performed comparing the propagated ephemerides obtained
from the computed orbit with those provided by the ILRS centers. In particular, we compared
the ephemerides obtained from ∼ 7 days of propagation starting from the first observation epoch,
which is also the epoch were we estimated the orbit. The time interval between two successive
ephemerides positions is 1 minute. Due to the lack of observations it was not possible to estimate
a laser-only orbit and as a consequence the value of σr. We decided to use the value of σr = 1.7
m obtained for the LARETS case. Knowing that, for TOPEX, the distance from the center of the
retroreflector array and the CoM is ∼ 1.42 m [2] the uncontrolled attitude motion of the satellite
cause an error in the range that should be absorbed by the chosen σr value. The value of σα is
kept constant to 0.5 arcsec.

Table 5.15 Results of the OD tests for the LEO satellite in the 1 pass case.
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Table 5.16 Results of the OD tests for the LEO satellite in the 2 and 3 passes case.
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Obs* −/25 59/− 10/25 59/25
R 110.5 184.2 148.5 159.2
S 1336 644.0 472.1 474.7
W 346.8 291.1 235.0 239.7

Tot. 1412 789.1 598.1 607.9
* Number of observations respectively 1D/2D

As usual we want to compare the results obtained by the classical angles-only solution with
those using merged measurements varying the number of ranges used in the OD. Furthermore
we want to report, for completeness, the results obtained by the ranges-only OD. For the satellite
considered, this kind of experiments was not always possible especially for the 1-pass case. We
decided to split the results in two tables: in the first (Table 5.15), the results obtained for the
1-pass case are shown, and in the second (Table 5.16), the ones obtained for the 2- and 3-passes
cases are reported. Since the observed part of the orbit, in the 1-pass case, is too short to perform
a LSQ to determine the orbit only one type of measurements we needed to change the method
to calculate the orbit. For the “Angle-Only” case we used the Gauss-method as described in
[16], in particular we reported the case where only a circular orbit was estimated and the case
with the estimation of the entire set of orbital parameters (namely “Angle-Only Circular” and
“Angle-Only 6 ele.”). These results are obtained processing an extremely short arc of observation
made of only 1 tracklets constituted by 3 measurement epochs. The results in the “Angle-Only
Circular” column were obtained estimating only the semi-major axis, the inclination, the RAAN
and the argument of latitude (respectively a, i, Ω and u0) assuming e = 0 and ω = 0.
For the “Ranges-only”, we were obliged to use a minimum number of merged observations to
be able to estimate an orbit. In particular, for the 1-pass case, we decided to report the results
obtained with all ranges available plus the minimum number of angular observation to ensure
the LSQ convergence (the “1 Angle, All Ranges” case). We also reported the results obtained
using all angular measurements available plus the minimum number of ranges (the “All Angles,
2 ranges” case). As one can see from the Table 5.16 the workarounds used in the “Angle-Only
Circular”, “All angles, 2 ranges” and “1 angle, all ranges” cases were not necessary for the
2/3-passes scenarios, so they were not replicated. The last two columns of the tables show the
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results obtained using only 1/6 of the ranges and using all measurements available. As for the
other cases no empirical parameters are used during the OD process. On the other hand, since
the object is still influenced by the effects of the atmosphere, we used the MSISe90 model to
determine the atmosphere density and to model the atmospheric drag [16]. Finally, due to its fast
attitude dynamics (tumbling period ∼ 10 sec [72]) we could not use the nominal value of AMR.
We estimated the AMR fitting all available observations (both ranges and angular) coming from
1 week of observations from different laser stations. The observation arc used to determine the
AMR was chosen in a way that the observations used for our tests are in the center of this arc.
As said before, once estimated the AMR the ODs for the next tests were performed without
estimating any empirical forces/parameters.
Starting now from the angles-only examples in the 1-pass case shown in Table 5.15, we report a
comparison between the results obtained by the application of the Gauss-method to estimate
the complete and the reduced set of orbital elements. As one can see, the total error obtained
estimating the circular orbit is 2 orders of magnitude better than those obtained estimating the
full set of parameters. This is due, obviously, by the fact that the observed arc is extremely small
and the target object is in an almost circular orbit (the true eccentricity is ≃ 4 ·10−4).
The case “All angles, 2 ranges” was reported since it represents the minimum number of obser-
vations (with a majority of the angular ones) for which the LSQ converges. The total observation
time interval is about 6 minutes which does not allow for a good OD but one can already see the
improvements given by the ranges. The radial error decreased by 1 order of magnitude w.r.t.
the “Angle-only 6 ele.” case. Looking at the “1 angle, all ranges” case we can see how the
accuracy of the ranges produces an improvement of 2 orders of magnitude w.r.t. the angles-only
case. In particular, the main improvements are visible for the radial component (3 order of
magnitudes better) and secondarily for the along-track error. At the same time this example
shows the importance of the angular observations. The obtained error in cross-track component
is roughly 1.5 times bigger than in the “All angles, 2 ranges” case where a significantly smaller
number of observations is used, the observed arc is shorter and 2 more angular measurements
were used. As for the previous examples we decided also to evaluate the influence of the
number of observations w.r.t. the length of the observed arc keeping constant the number of
angular observations considered (namely the cases: “All angles, 2 ranges”, “16% of Ranges”
and “Merged All Meas.”). In the “All angles, 2 ranges” case we just used the first two ranges
measurements available, in the “16% of Ranges” one we used a subset of ranges homogeneously
distributed over the entire pass and finally, the “Merged All Meas.” case considers simply all
the measurements available for that satellite pass. These three examples show the importance
of the distribution of the observations. In fact, as one can see by the comparison of the “All
angles, 2 ranges” case against the “16% of Ranges” one, the addition of only 2 ranges, with
a different distribution over the arc, improves the solution by 2 orders of magnitude. Adding
further measurements leads to a degradation of the solution. As for the example shown in
Paragraph 5.6.2, this degradation is due to the fact that the OD fits nicely the observations over
the observed arc which is too short to describe correctly the shape of the real orbit.
Looking now at the 2-passes examples shown in Table 5.16 we can see how, due to the length
of the arc observed and therefore the higher number of observations available, we were able to
carry out an OD using a LSQ adjustment even with only one type of measurements. It must
be said that the convergence of the LSQ algorithm, and therefore the improvement of the orbit,
using only range measurements is probably due to the fact that the orbit used to initialize the
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algorithm was near the true orbit. The highest improvement in the accuracy of the solution can
be see observing the angles-only case where the error now is 4 order of magnitude smaller w.r.t.
its analogous in the 1-pass case. As expected, the main component of the error is the along-track
one which depends on the estimation of the semi-major axis, the eccentricity, the argument of
perigee and the perigee passing time. These parameters, except the semi-major axis, are difficult
to estimate if the observations are taken with a distance of one orbital period. In the ranges-only
case the along-track component is 10 times smaller than the angles-only case. This is due to the
nature of the observables which helps in the estimation of the just mentioned parameters. The
comparison of the merged cases is another evidence of the importance of the distribution of the
observations: as one can see, the results obtained with one sixth of the available observations
are comparable to those obtained using all of them.
Looking at the results of the 3-passes cases shown in Table 5.16, it must be said that the ranges-
only results were just copied from the 2-passes case, for an easier comparison, since we did
not have any ranges from the third pass. Considering now the angles-only case it is possible
to see how the further addition of observations still improves the results. Performing the same
comparison with the merged cases, a much smaller improvement is visible. There are two
probably main reasons: the first is the fact that no other ranges are added w.r.t. the 2-passes
cases, the second is given by the object-observer relative geometry. The information gained
from the geometry is limited by the fact that only one station provides measurements and the
considered arc is relatively short, in fact the total observation arc is only 4 hours.
The same plateau and the reduction of the improvements, in the results accuracy, given by the
introduction of the range measurements with longer observation arcs can be seen also in Figure
5.13. The figure shows the behavior of the total position error of the propagated orbit w.r.t. the
reference ephemerides. Each plot shows the comparison between the results obtained by an
OD using homogeneous and merged measurements together with the observation epochs. The
epochs of each measure are identified with the green vertical lines for the ranges, and with the
red ones for the angles. Note that the first two plots are in a logarithmic scale while the latter in
a linear one.
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Figure 5.13 Behaviour of the 3D position errors and distribution of the used observations
resulting from the OD tests for the LEO case.

MEO

For the MEO orbital regime test scenario, we used two consecutive nights of observations where
a total of 4 angular tracklets (3 of them during the first night) were acquired from the Zim-
merwald observatory and 4 range measurements (again 3 during the first night) were acquired
from the Graz station. The precise number of used observations can be seen in Table 5.17. The
satellite used for this test is the Glonass 125 (11009A).
As usual, at the end of each OD process, the ephemerides are calculated from the obtained orbit
and then compared with those of a reference one. In this case, the positions of the object were
generated starting from the first measurement epoch and propagated for the next 6 days with
a sampling of 1 position every 5 minutes. The reference orbit was determined processing all
the data, both angular and ranges, available over a period of 13 days which includes the just
mentioned propagation period. This orbit is then integrated over the fit span to generate the
reference ephemerides.
As in the tests with the Glonass 123, also here, the value of σr = 1.3 m is used to determine the
weights on the ranges, while the σα is kept constant to 0.5 arcsec. For each ephemeris epoch,
the calculated state vector is converted to the correspondings set of osculating orbital elements
which are also compared with the reference ones. Table 5.17 shows the average position and
elements differences obtained over the 6 days of propagation. Figure 5.14 shows the behaviors
of the position difference during the propagation time together with the distribution of the
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observations. In particular the red vertical lines show the position of the angular measurements
and the green the SLR ones. Looking at the results obtained with the “1 night” case, it is easy to
see the huge jump in accuracy using merged measurements. As can be seen from the Table 5.17,
the use of only 3 ranges allows an improvement of 3 orders of magnitude (passing from roughly
200 km to 600 m). This huge difference is driven by the error in the along-track component
which is mainly caused by the error in the estimation of the semi-major axis (∼ 4 km) together
with the error in the eccentricity, argument of perigee and mean anomaly.
The error in the estimation of these parameters is strictly related to the kind of observables
used and to the length of the observed arc. In fact the angular measurements do not provide
directly information about the distance of the object. Adding at this point even a couple of
ranges provides the needed distance information to strongly constrain the semi-major axis (the
error in this case is ∼ 11 m) and as direct consequence reducing also the along-track error to
∼ 612 m. In this way we obtained results which are comparable in accuracy to those given by
two nights of observations. These results are of fundamental importance for catalog building and
maintenance applications. Looking at the angles-only case we can say that probably, we would
have lost the object (of course depending on the field of view of the telescope used), while in the
second case, the obtained final error is ∼ 1.3 km which is, for the considered object, less than
14 arcsec after 6 days. On the other hand, these results confirm the fundamental importance of
the angular measurements in the estimation of the orbital plane. In fact, looking at the errors
obtained for the inclination and the RAAN, we can see that in all 4 cases they are of the same
order of magnitude.
Finally, looking at the bottom plot of Figure 5.14 we can see how the addition of the ranges, for
the two nights of observations case, produces a final error still twice better than the angles-only
case. This small improvement is probably due to the small number of used ranges, and to the
small geometry changes between the object and the observers. The small geometry changes
are caused by an interaction of the orbital period of the observed object (∼ 11 hours and 20
minutes) and the distance between the observations which are roughly 1 day apart.
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Table 5.17 Results of the OD tests for the MEO case.
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R 5171 11.65 36.79 5.309
S 2.246 ·105 612.4 455.8 220.3
W 159.4 52.25 26.74 24.17

Tot. 2.248 ·105 619.4 462.6 224.1
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a [m] 3843 10.88 8.929 4.178
e 1.439 ·10−4 4.130 ·10−7 1.796 ·10−6 1.080 ·10−7

i [°] 8.70 ·10−5 2.35 ·10−5 3.58 ·10−5 2.17 ·10−5

Ω [°] 6.318 ·10−4 3.150 ·10−4 9.560 ·10−5 9.060 ·10−5

ω [°] 5.631 3.150 ·10−2 1.149 ·10−1 2.244 ·10−2

M [°] 5.128 3.021 ·10−2 1.140 ·10−1 2.200 ·10−2

Figure 5.14 Behavior of the 3D position errors and distribution of the used observations resulting
from the OD tests for the MEO case.
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GEO

The last orbital regime that we wanted to investigate is the geostationary one. This region is
one of the most exploited, it presents also a higher density of space debris. The satellite used
for these tests is the IRNSS1A (13034A). As in the previous case (MEO), we will compare the
position and orbital elements, generated after an OD performed over a maximum of two nights
of observations, with those coming from a reference orbit. The reference orbit was determined
processing all the data, both angular and ranges, available over a period of 22 days. Since the
satellite used for this experiment is an active one, this period coincides with the time interval
between two maneuvers. The reference orbit is then integrated over the fit span to generate the
reference ephemerides with a sampling frequency of 1 position every 5 minutes. The fit span
includes the subset of measurements used for the following tests. The orbit determined using
the subset of observations are then propagated for 4 days for the comparison with the reference
ephemerides.
The angular data are provided, as in the previous cases, by the Zimmerwald observatory, while
the ranges by Hertsmonceux (United Kingdom). Also in this case the weights on the SLR
measurements are determined using σr = 1.3 m. We would like to highlight that, in this case,
the usual comparison is made using SLR measurements which were available only for the first
night of observation. This was probably due to the rising difficulties of the SLR stations in
tracking high altitude satellites. It is also important to notice that, in this case, w.r.t. the MEO
one, a higher number of angular observations was available. A total of 3 tracklets spread over
3 hours were available for the first night and another 2 consecutive ones for the second night.
Looking at Table 5.18, as for the MEO case, adding the 2 ranges produces a jump of 3 orders
of magnitude in the mean error that will ensure the recovery of the object, as we will see in
Paragraph 5.6.5, even after 4 weeks. In the angles-only case, as previously shown by Musci et
al. in [44], a follow-up in the successive nights becomes mandatory. Comparing quickly the
results shown by Musci et al. in [44] for the same orbital regimes we can say that 1 night of
observations made by 3 tracklets and 2 ranges provides the same accuracy achievable with 4
(angular-only) follow-ups spread over 3 observation nights.
Looking now at the bottom graph of Figure 5.15, we can see how the behavior of the errors
is completely different from those shown before. In fact, in this case, the error sinusoidal
component is more pronounced than the drifting one. Furthermore, from the vertical green
and red lines, it is easy to see how the smallest error occurs close to the observed part of the
orbit. This effect is due to the distribution of the angular measurements which are precisely
one day apart and the orbital period of the object that, being a GEO satellite, is coincident
with the sidereal day. As main consequence this observation distribution improves strongly
the estimation of the semi-major axis but at the same time, as shown in [46], does not give
enough information to estimate correctly the eccentricity of the orbit. This effect, even if less
pronounced, is also visible for the two nights case with merged measurements. In this case the
ranges together with the distance information increase also the geometry changes. Since they
are acquired a bit more than two hour later than the last angular observation, they help constrain
both the semi-major axis and the eccentricity reducing the amplitude of the error oscillations
(see elements error in Table 5.18). Consequently, improving the estimation of a and e, the ranges
have strong effects even in the estimation of the argument of perigee and the mean anomaly, as
can be seen looking at the error for ω and M.
Another consequence of the distribution of the observations can be seen in the parameters
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which describe the orientation of the orbital plane. Looking at the distributions of the angular
measurements they are spread over 3 hours during the 1st night of observations, and the time
distance between the 1st and the last tracklet is about 24 hours. As shown in [46] for GEO
objects, series of angular observations in the same part of the orbit, since the arc covered by the
tracklet is relatively small, do not provide enough information to determine correctly i and Ω.
This effect can be easily seen from the error value reported in Table 5.18: the errors for i and Ω

are relatively high and stay on the same order of magnitude (especially i) for the angles-only
cases. In this case the ranges help also the estimation of these parameters (i and Ω) enlarging
the observed portion of the orbit. The arc observation increases in fact from 3 to 5 hours. This
last test shows the strength of the SLR measurements: looking at the last column of Table 5.18,
even a small number of ranges (only 2) produces an improvement of the average error from
roughly 2 arcmin to 2 arcsec.

Table 5.18 Results of the OD tests for the GEO case.
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Angles-Only Merged Angles-Only Merged
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R 7.193 ·105 486.8 5436 86.07
S 5.219 ·106 9017 1.698 ·104 199.6
W 8.992 ·103 50.99 703.9 20.87

Tot. 5.282 ·106 9056 1.850 ·104 234.3
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a [m] 2.793 ·105 497.2 61.71 6.729
e 4.997 ·10−3 1.822 ·10−6 8.270 ·10−5 3.089 ·10−6

i [°] 4.921 ·10−3 3.190 ·10−5 1.387 ·10−3 4.500 ·10−5

Ω [°] 3.997 ·10−2 2.207 ·10−4 1.407 ·10−3 9.800 ·10−6

ω [°] 22.93 2.995 ·10−1 5.032 1.760 ·10−2

M [°] 16.75 2.865 ·10−1 5.055 1.771 ·10−2
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Figure 5.15 Behavior of the 3D position errors and distribution of the used observations resulting
from the OD tests for the GEO case.

5.6.5 Error Evolution with Time
With the last tests we want to compare the influence of few SLR measurements in a short
observation arc on the time needed by an observed object to go outside of the FoV of a telescope.
This time interval it is important for an observer since if it does not want to lose an object, it
has to acquire new measurements to improve its orbit before it leaves the FoV of the telescope.
The maximum time interval available before losing the object will be called recovery period. In
the following tests we will highlight the benefits of the use of SLR measurements in terms of
length of the recovery period for an observed object. We want to compare the time needed by
an observed object to go outside of the FoV of a telescope. For these tests we used the FoV of
the Zimmerwald telescopes, namely ZIMLAT and ZimSMART. The first has a FoV of ≃ 26
arcmin while the second ≃ 3.5 deg; consequently, we will consider an object as lost when the
vectorial sum of the errors in the along- and cross-track directions, w.r.t. the reference orbit, is
greater than the half of the FoV. This comparison will be made between results obtained from
an OD with different kinds of observables, number of observations, lengths of the observed
arc and for different orbital regimes. Particular emphasis is given to the comparison between
the angles-only case and the merged one in order to highlight the improvements of the SLR
measurements w.r.t. the results achievable with the actually used angular observations method.
This test is of fundamental importance for catalog maintenance. The increase of the recovery
time allows a more relaxed observation schedule with a smaller number of required observations
permitting the tracking of a bigger number of objects. The test will be performed mainly on
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short observation arcs using a very small number of ranges to better simulate the space debris
observation case. Table 5.19 shows the time interval needed by the propagated orbit to go
outside the FoV for the first time for the different cases analyzed. We report the smallest time
interval needed to go outside the FoV since it can happen that, due to the observation geometry,
certain OD produce results like those shown in the bottom graph of Figure 5.15. In this case the
object, before getting completely lost, appears again inside the FoV after a certain period. This
effect can be reproduced easily if we compare the OD results with the reference orbit. These
test were performed on the same objects previously analyzed, therefore the same reference orbit
were used. In particular, for the GLONASS 123 (10041B) we used the same reference orbit
of the Paragraph 5.6.3, for the TOPEX (92052A), GLONASS 125 (11009A), and IRNSS1A
(13034A) cases we used the same reference orbits of the Paragraph 5.6.4. The only exception
was done for the LAGEOS 1 (76039A) for which we needed to generate a new reference orbit
considering all data, both angular and ranges, available over a time interval of 15 days. All
the reference orbits used contain the subset of observations used for these tests. Except for the
TOPEX case for which, due to the use of CPF, only ∼ 7 days of ephemerides were available; for
all the other cases the reference orbit is propagated for a total period of 3 months starting from
the epoch of the first observation used for the test. It must be said that the recovery time was
calculated from the position difference extracted from the ephemerides if smaller than 90 days;
while the longer recovery times (as shown in Table 5.19) were extrapolated by an interpolation
of the position differences during the propagation period. Despite the complex shape of the
position differences we assumed a linear growth of the error outside of the propagation period.
Table 5.19 shows also the arc-length and the number of observations used in each case. As
mentioned just above, only short observation arcs are used. In particular, for the Lageos 1 and
TOPEX cases (namely 76039A and 92052A), the results obtained by 1, 2 and 3 passes within
the same night are reported, while in the other cases the comparison between 1 and 2 nights of
observation are shown. Looking now at the case of the 10041B, a further comparison is done
changing the number of observations used in the case of 2 nights of observation arc. As one can
see the first 3 tests were carried out using 3 tracklets of angular observations (14 observations in
the table) varying the number of used range from 2 to 4. A second test was performed comparing
the results given by the 4 tracklets (18 angular observations) case with the 4 tracklets and 4
ranges one.
Looking at the Table 5.19 we can see how in the angles-only 1 pass cases for the 76039A and the
92052A and the one-night cases for the 13034A and the 10041B, the recovery time is roughly 4
hours or even smaller (if one look at the results using the FoV of ZIMLAT). For 11009A even
in the worst case scenario the recovery time is at least one day. The reason for it is in the length
of the observed arc. In fact, the observations are distributed over ≃ 4.5 hours, which roughly
coincide with one third of the orbital period. Already adding a couple of ranges the solution
improves by at least one order of magnitude. As one can see from the results obtained with
the smallest observation arc, the recovery time using few SLR measurements increases from
few hours to almost one week (look at the 10041B) and even more, depending, of course, on
the number of angular observations and their distribution. As shown in [44], extending the
observation arc by adding follow-up observations, will produce an increase of the recovery
time also using only angular measurements. Also in this case the improvement given by the
ranges is noticeable but generally less pronounced. It is also interesting to highlight two cases
where the angles-only solution of two nights of observations is compared with the merged one
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using only the range measurements acquired during the first night (namely the 2 nights cases
for 10041B and 13034A marked with a *). These two examples highlight the importance of
merging different kinds of observables since each one is acting differently on the estimated
parameters. The combination of angular follow-up and a constant number of ranges produces a
results 9 times better than the angles-only solution (see 13034A case). One last thing that can be
noticed from the table is a general, quite obvious, trend in the improvement of the solution given
by an increase of the observation time. There is only one case which goes against this trend:
the 76039A. For this satellite the comparison between the one pass merged solution and the
two passes one, shows that the one pass case has a longer recovery time. We do not deduce any
general conclusion from this case, as we think that the distribution of the observations makes
the system converge on a slightly worse solution. One last remark can be seen from the recovery
times obtained for the TOPEX case which are sensitively smaller w.r.t. those obtained for the
other satellites, this is probably due to the more complex orbital dynamics and the increasing
difficulty in modeling all the forces acting on the LEO regime.
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Table 5.19 Results of the recovery time tests.

# of Obs. Recovery Time [days]
1D 2D ZIMLAT ZimSMART

L
E

O

TO
PE

X

92
05

2A

1 Pass.* − 3 0.18 0.35
1 Pass. 4 3 0.80 5.78
2 Pass. − 20 1.92 16.30
2 Pass. 10 20 47.64 403.2
3 Pass. − 25 17.30 153.3
3 Pass. 10 25 60.13 511.4

M
E

O

LA
G

EO
S1

76
03

9A

1 Pass. − 41 < 0.1667 0.5417
1 Pass. 3 41 917.2 7400
2 Pass. − 59 248.7 2006
2 Pass. 10 59 674.1 5443

G
L

O
N

A
SS

10
04

1B

1 Night − 9 < 0.1667 < 0.1667
1 Night 2 9 5.83 45.83
2 Nights − 14 60 493.7
2 Nights 2*1 14 435.6 3515
2 Nights 4 14 499.3 4032
2 Nights − 18 1177 9470
2 Nights 4 18 1319 10650

G
LO

N
A

SS

11
00

9A

1 Night − 10 1.167 8
1 Night 3 10 340.6 2749
2 Nights − 14 415.3 3350
2 Nights 4 14 886.2 7153

G
E

O

IR
N

SS
1A

13
03

4A

1 Night − 19 < 0.1667 0.5
1 Night 2 19 29.83 310.2
2 Nights − 33 314.7 3039
2 Nights 2*1 33 2920 23660

* OD using the Gauss-method estimating a circular orbit (esti-
mated parameters: a, i, Ω and u0)

*1
ranges belonging to the first observation night

5.7 Conclusions
The employment of laser ranging techniques in the space debris field is quite controversial. The
problem rises from the fact that if on one hand the laser measurements are very attractive due to
the high accuracy on the other hand, the FoV of a laser system is relatively small and to hit a
space debris object a good a priori knowledge of its orbit is needed. Furthermore, usually the
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SLR technique is applied to satellites which carry retroreflectors. These factors are partially
limiting the applicability of SLR techniques in the space debris field. Studies proved that with
the new generation of high-power laser it is possible to track big objects (as rocket stages or
defunct satellites) even if they do not carry retroreflectors. The problem of the laser FoV can be
overcome by mixing different instrumentations like tracking cameras to correct the ephemeris
offset. It must be said that in both cases the attitude of the target has to be favorable to the
reflection of laser pulses.
In this chapter we investigated the benefits that the high precision ranges provided by an SLR
station, could be given to the OD process based on the classical angular measurements. First of
all, we needed to adapt the tool used for the OD at the AIUB to handle the new observables.
After the implementations of all model improvements needed to exploit the laser ranges, and
after checking the proper application of the corrections to those measurements, we needed to
validate the OD process. To do it: we selected four different satellites belonging to different
orbital regimes, we estimated their orbit based on SLR measurements only and finally, we
compared the generated ephemerides with those provided by the ILRS. Subsequently, a study
was carried out to identify the proper relative weighting of the different observables within the
LSQ adjustment. After the weights definition, some studies were performed to highlight the
consequences of the use of the laser ranges in the OD process. First, we studied the influence
of the length of the observed arc and the influence of the number of SLR observations used
in the OD. Then we wanted to evaluate the influence of the relative object-observer geometry
comparing the OD results obtained by different subsets of measurements acquired from different
stations. Finally, we simulated a classical discovery and follow-up scenario and we highlighted
the improvements given by a very small number of ranges. All these tests were performed using
exclusively real angular and SLR measurements provided by the Zimmerwald observatory and
the ILRS, respectively.
Those tests showed the huge improvements achievable using a relatively small number of ranges
over a small observation arc. Furthermore, they showed that, since the SLR measurements are
much more precise than the angular ones, a fine tuning of the measurements weights is needed
so that the system will not ignore the angles. The tests on the influence of the arc-length show a
plateau in the achievable accuracy highlighting the influence of the relative observer-object ge-
ometry. Furthermore, as expected, the improvements given by the SLR data on long observation
arcs are less pronounced w.r.t. those obtained for short arcs. The tests made to investigate the
geometry influence and those which simulated the discovery/follow-up scenario showed how
each single observable is acting on the estimated parameters. Finally, the tests on the recovery
time showed the benefits that merged SLR and angular measurements could bring to the catalog
building and maintenance activities and to the planning of collision avoidance maneuvers.
Of course, this problem needs further investigation, but it already proved the benefit of the use
of SLR measurements in the OD for space debris. However, to have more general outcomes one
should analyze the results coming from the application to a wider set of observations concerning
different orbital regimes. It would be interesting to investigate if there is a dependence of
the achievable improvements, employing merged data, on the altitude of the orbit. Further
improvements can be given by the investigation of the geometry influence in a more theoretical
way. Further studies can be carried out using simulation and/or synthetic data in order to not
have constraints given by the availability of the measurements. Otherwise one can follow and
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improve the approach proposed in Chapter 4.
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Chapter 6

Summary

The increasing number of space debris objects, together with the risk associated for the active
space missions, has as main consequence an increase of the working-load for the infrastructures
dedicated to the space debris cataloging and orbit maintenance. Due to the high number of target
objects and to the limitations of the observing systems, it is necessary to optimize the use of
the time available for observations. The scheduling of the observations for the maintenance of
the catalog depends on the quality of the orbit previously determined. Since the accuracy of
the OD results depends on relative object-observer(s) geometry, on the type, the accuracy and
the number of used observations, there are several methods to improve it. One can optimize
the observation-geometry by adapting the scheduling of the network of sensors dedicated to the
measurements acquisition. Then one could acquire as many observations as possible, but in this
case the orbit accuracy will be limited by the accuracy of the measurements and, of course, this
is time consuming. One could improve, to a certain extent, the accuracy of the measurements
acquired by a generic sensor. Finally, one could merge different observables and exploit the
advantages given by each one.
The main aim of this thesis was to study the ways of improvement of the results of the orbit
determination process. After a brief introduction on the LSQ algorithm and its products, we
focused our attention on the covariance matrix as index of the quality of the estimation. We
needed first to understand how the covariance can be transformed according to the user needs
focusing on the main advantages and disadvantages of the different covariance representations.
Then we showed how it evolves in time and what are the parameters which influence its propa-
gation. Successively we wanted to understand how the object-observer relative geometry and
the different type of observables influence the OD results and improve the covariance.
The covariance matrix was used as evaluation criterion to investigate the effects due to the
observation geometry. OD simulations were performed to evaluate the information gain given by
a certain combination of small sets of observations. The isolation of the contribution given by a
small set of observations is possible thanks to the stacking property of the NEQ. The simulations
were carried out for different orbital regimes (LEO, MEO and GEO) and were used to evaluate
the influence of the number of observations, of the time distance between the measurements,
of the number of observers and their way of observing, and finally the type of processed mea-
surements. We simulated also the typical discovery and follow-ups scenario. This approach
allowed us to identify the key-factors determining the OD accuracy, and to understand how and
why they influence the OD accuracy. These are: the distance of the object, the position of the
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observer w.r.t. the orbital plane, the position of the observations along the orbit, in the case of
two observers the consequences of the parallax, and of course, the different types of observables.
This is an information-gain problem and we approached it in a way that the object-specific
results, together with some a priori information, can be used in an operational environment for
the observation planning and scheduling. This study can be further improved by examining new
scenarios and test cases, for example it is advisable to pay attention to the S-shaped uncertainty
area in the covariance maps whose explanation needs further investigations.
Finally we investigated the effects of different observables in the OD results. There are two main
types of observables which can be used for the OD of space debris: the angular and the distance
measurements. We decided to perform this study using only real measurements provided by the
ILRS and Zimmerwald observatory. In particular we analyzed the effects of the high-accuracy
laser ranges on the OD process based on the classical angular measurements of RA and DE. We
are fully conscious of the controversial opinions regarding the application of SLR in the space
debris field. However, assuming that we are able to track a space debris with a laser system
we implemented the capability to process laser ranges and we validated the software. Then,
we performed several tests to study the influence of each observable in the OD process. When
processing SLR and angular measurements, due to their huge accuracy difference, the relative
weighting between the two observables becomes fundamental. In fact, the LSQ can converge
on more laser-based solutions which, depending on the number of the laser observations and
their distributions, could not coincide with the best ones. On the other hand, with the proper
set up, the laser measurements improve the angular-only solution by orders of magnitude when
processing short observations arcs (1−2 days). Since the main purpose of this study was not to
obtain the best orbit but more to investigate the influence of the different observables, the level of
accuracy achieved in the SATORB software can be considered sufficient. Nevertheless, further
improvements are possible. For example we think that the discrepancies obtained comparing
our laser-only LAGEOS solution with that provided by the BSW could be strongly reduced
improving the background-dynamical model. Other improvements and checks have to be done
for the atmospheric drag modeling and in the estimation of the ballistic coefficient.
In addition, it could be interesting to repeat the observation geometry study exploiting the
possibility to constrain the NEQ system in order to analyze and discriminate which observation
scenarios could be used for the improvements of certain orbital parameters. Especially for
operational applications this capability has not to be underestimated since a poorly conditioned
NEQ, used to estimate or improve the entire set of parameters, could produce a degradation
of the solution which could be avoided allowing the improvements of only a subset of the
unknowns. Furthermore, the constraint of the NEQ could be even more interesting when
processing different observables. In our opinion it is worth analyzing the influence of each
observable when, depending on the needs and the length of the arc of observations, the LSQ
process is used to improve only certain elements.
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Appendix A

Subroutines for Processing SLR

A.1 Perl Scripts
Here the list of implemented Perl scripts that were used for different purposes during the study
of the merging of the laser range with the angular measurements. For each subroutine a short
description of its purpose is given.

- ReadCRD.pl: used to read the Consolidated Range Data (CRD) both full-rate or quick-
look files, store the data necessary for the SLR processing and converting them into the
new observation data format.

- LStaRen.pl: called within ReadCRD.pl takes as input the station number and the ob-
servation epoch, searches within the station-information file (i.e. CODE_SLR.STA) the
other part of the station-name, which identifies the station-configuration, according to the
observation epoch.

- ReadOBS.pl: reads the standard SATORB observation file (e.g. procogs.OBS), stores
the data and converts them into the new observation data format.

- MergeObs.pl: main scripts which converts from the standard observations formats (i.e.
CRD and OBS) to the final observations file in the new format. It calls ReadCRD.pl and
ReadOBS.pl, merges their output files and sorts the measurements in the chronological
order from the oldest to the newest and finally calls the CheckDoubleLines.pl.

- CheckDoublelines.pl: checks the observations file obtained by merging laser and angular
measurements and delete the lines which contain the same observations.

- ScreenObservations.pl: reads the SATORB orbit determination output file (e.g. procogs.OUT)
and according to the selected threshold it comments the observations in the observation
file whose residuals are higher than the threshold.

- SelectStaObs.pl: reads the observation file in the new format and stores or deletes all the
observations coming from the specified station.

- CreaFakeOBS.pl: creates an observation file in the new or old SATORB observation for-
mat with the desired time epoch and interval. It is used for the generation of ephemerides.
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- ReadSP3.pl: reads the SP3-format (i.e. file.EPH) downloaded from CODE, selects
the coordinates of the position of the specified satellites, converts the position-epoch in
MJD and stores time epoch and positions in a text file ready to be imported into another
environment (e.g. MatLab).

- ReduceFullRate.pl: reads the output of the MergObs.pl and when it finds a full-rate data
set, it selects only the observations with a time distance equal or bigger than the specified
one. Finally, it writes the reduced set of observations in a new file.

- ReadPRE.pl: reads the file.PRE generated by the Bernese GNSS Software v. 5.2 [54] and
stores the satellite positions in a text file ready to be imported into another environment.

- RecOBSfromMJD.pl: generates an observations files (in the new format) storing in it
only the observations contained in a SLR RINEX file (i.e. file.XXO) or in a list of them. It
was used to compare the orbit determination results with those obtained from the Bernese
GNSS Software v. 5.2 [54].

- RecoveryOBSfromOUT.pl: reads the SATORB orbit determination output file (e.g.
procogs.OUT), looks in the observations files containing all observations for the specified
object and reconstructs a new observations file with only the measurements used in the
orbit determination process.

- AutoRunsoWeight.pl: runs one after the other the orbit determination and the orbit
propagation part of SATORB using each time different weights on the laser measure-
ments (specified on a separated list) and stores the obtained orbital elements, output and
ephemeris files (respectively OD.ELE, OD.OUT and PR.TAB).

- ReadELE.pl: reads all the elements files (i.e. .ELE) generated by AutoRunsoWeight.pl
and stores all the orbital elements in a new file.

A.2 Fortran Subroutines

A.2.1 New Subroutines
As well as for the Perl scripts, here the list of Fortran routines implemented during the study
of the merging of the laser range with the angular measurements. For each subroutine a short
description of its purpose is given.

- BUILDWEIGHTOBS.f: calculates the weights for each measurement.

- RGCORR.f: main subroutine which applies all the corrections needed for the SLR
measurements.

- GTSFGMI.f: reads the solar flux and geomagnetic indexes and combines them to be
given as input to the MSISe90 atmospheric model for the calculation of the atmospheric
drag.
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- WRTCOVM.f: writes the covariance matrices w.r.t. the orbital elements and the state
vector in the Earth Centered Inertial and Radial, Along- and Cross-track components at
the end of the orbit determination process.

A.2.2 Modified Subroutines
Finally the list of Fortran subroutines and/or programs that were modified and adapted for the
processing of the laser measurements.

- SATORB.f adapted to handle the laser measurements and the correction of the light travel
time for angular observations

- OBSREA.f adapted to read the new observation file

- BNGOBS.f adapted to read the new observation file, read station position and velocities,
apply the station velocities and the station eccentricity correction for the laser measure-
ments before the conversion of the station coordinates from Earth Centered Earth Fixed
(ECEF) to Earth Centered Inertial (ECI, precisely the J2000 system).

- SETNOR.f adapted to handle the laser measurements, more details are given in the
following Paragraph A.2.3.

- DEQSOR.f introduction of the subroutine GTSFGMI.f to improve the accuracy of the
atmospheric density calculation.

- TABPOS.f introduction of the choice between generating the ephemerides in ECEF or in
ECI coordinates

- RDSORX.f adapted to read all input files needed for the background model shown in
Paragraph 5.3.1.

A.2.3 Modification of the SETNOR.f Subroutine
The major modifications of the SATORB software were performed within the subroutine called
SETNOR.f. This subroutine is responsible for the set up of the normal equation system (NEQ),
the calculation of the observation residuals (O−C), the inversion of the NEQ, and the conse-
quent estimation of the parameters, of the residuals and of the resulting covariance matrix.
First of all we needed to adapt it to handle the new observable and its relative weight. Then we
needed to implement the partial derivatives shown in Paragraph 5.3.3, and finally we needed to
modify the part which is responsible of the residuals calculation.
However, the most important modifications were needed to calculate the O−C of the laser
measurements. Since within the CelMech/Bernese GNSS softwares the corrections of the
measurements are applied to the computed ones and not to the raw measurements, and in order
to modify what is already existing as little as possible, we collected and applied almost all
the corrections within the RGCORR.f subroutine and we called it within SETNOR.f. As just
said and as shown in Figure A.1 not all the corrections are applied within RGCORR.f. Since
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SETNOR.f takes as input the station coordinates already in the ECI system we were obliged
to apply the correction due to the station eccentricity (δr) before this transformation which is
performed within the subroutine BNGOBS.f. The corrected station position, together with the
satellite position (in the same ECI coordinates) and the meteorological data regarding the laser
measurements are sent as input within SETNOR.f and then within RGCORR.f. Among these
inputs there is also the measurement-epoch time fraction (dt) which, as we will see in Appendix
B, could not be taken into account within the MJD of the measurement because outside the
significant digits. First of all, the position of the satellite is corrected according to the time
fraction dt , then it is sent as input, together with the station coordinates, into the subroutine
TOPSTA.f which calculates the geometric range, the relativistic corrections (see Paragraph
5.3.1) and the light-travel-time correction (see Paragraph 5.3.2). The corrected satellite position
together with the relative humidity, the temperature and the pressure of the observing site at the
observation epoch are used by TROPOS.f to determine the tropospheric delay. Finally, within
RGCORR.f the subroutine GETRGB.f is called twice to get the station range bias and, in the
case of geodetic satellites, the center of mass corrections stored within the station information
file. The just determined corrections (δrel , δltt , δatm, δRB and δCoM) are then applied to the
geometrical range to calculate the computed range which is the main output of RGCORR.f and
will be then used for the O−C derivation later within SETNOR.f.

Figure A.1 Flowchart of the application of the corrections to the laser measurements

156



A.3 Light Travel Time Correction for Angular Measurements

A.3 Light Travel Time Correction for Angular Measurements
Finally we needed to correct a small error in the SATORB software which became evident only
when we merged for the first time some range with angular observations. The tested object was
the Lageos 1 satellite and the arc covered by the observations was 1 night. First we performed
an OD using only the angles, then we repeated the OD process once using only ranges and a
second time merging the two observables. If both ODs were good with separated observables, i.
e. residuals of 0.27 arcsec for the angle-only solution and 1.64 cm for the laser-only one, we
notice that when merging the two kinds of measurements the angular observations got a bias in
the residuals of about 3 arcsec. This bias was corrected implementing the light travel time (LTT)
correction for the angular measurement as shown in Figure A.2. This correction is needed since
the angular position measured on the image does not represent the real position of the observed
object at the time of the image acquisition, but it represents the position of the object at the
time of the image acquisition minus the time needed by the light to travel from the object to the
CCD camera [16]. Since at the image processing level the distance of the object is unknown this
correction must be applied within the OD process. As said, this correction needs to be applied
to the measurement epoch which is also the time used by the propagator to calculate the satellite
state vector. Figure A.2 shows the application of this correction via a small iterative process.
Finally, we compared again the sets of orbital elements estimated before and after the application
of the correction. It was interesting to notice that the only difference between the two sets
was visible for the argument of latitude. This means that the perigee passing time is absorbing
entirely this error. Since this error for a geostationary satellite (altitude about ∼ 36000 km)
is ∼ 0.12 sec and the angular velocity in the sky for a GEO is 15 arcsec/sec, neglecting the
LTT produces an error of 1.8 arcsec. This corresponds to less than 3 pixels on the Zimlat CCD,
which was unnoticeable without the use of highly precise external sources of information as the
laser ranges, the GNSS orbits or other satellites whose orbit is accurate enough.

Figure A.2 Light travel time correction implemented within the program SATORB.f.
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Appendix B

The New Format of SATORB Files

B.1 Observation Format
The SATORB software was not meant to deal with range measurements. So together with the
modification described in the Paragraph 5.3 we needed also to implement the capability to read
the new observations. For simplicity instead of import separately the angular observations file
and the range one and then take care of sorting chronologically the measurements within the
software, we decided to let SATORB read only one observation file with a new format where
the just mentioned steps were performed outside the program. In the next paragraphs we will
describe the starting observation formats (namely the CRD for the ranges and the OBS for the
angles) and the new implemented one.

B.1.1 Old Format - CRD Format
According with the ILRS standards, the laser ranges measurements are provided in the Consoli-
dated Range Data format (CRD). This files usually contains:

- Header Record:
Type ”H1” or ”h1” information about the version of the file,
Type ”H2” or ”h2” information about the station,
Type ”H3” or ”h3” information about the target,
Type ”H4” or ”h4” information about the session (pass),
Type ”H8” or ”h8” indicates the end of the session (pass),
Type ”H9” or ”h9” indicates the end of file.

- Configuration Record:
Type ”C” or ”c0” system configuration record,
Type ”C1” or ”c1” laser configuration record,
Type ”C2” or ”c2” detector configuration record,
Type ”C3” or ”c3” timing system configuration record,
Type ”C4” or ”c4” transponder (clock) configuration record.

- Data Record:
Type ”10” Full-rate range record,
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Type ”11” Normal Point range record,
Type ”12” Range supplement record,
Type ”20” Meteorological record,
Type ”21” Meteorological supplement record,
Type ”30” Pointing angles record,
Type ”40” Calibration record,
Type ”50” Session (Pass) statistics record,
Type ”60” Compatibility record.

We reported just a summary of the contents of the CRD format, for more information please
look at the ILRS website [2]. It must be said also that not all data records are usually available
in the CRD-files, and among CRD there are station dependent differences. Figure B.1 shows
an example of CRD-file where normal point range data are stored. We reported this example
to highlight the components that will be taken into account for conversion between CRD and
the new observation file. From the CRD file we take into account: the measurements epoch in
particular only the day, the month, the year of the measurement plus the seconds from midnight,
the laser wavelength, the meteorological data, the time of flight of the laser pulse, the standard
deviation (STD) of the normal point (which is given in picoseconds), and the epoch event flag
which indicates the reference time of the normal point (e.g. spacecraft bounce epoch, ground
receive time, ground transmit time etc.).

Figure B.1 Example of CRD file.

B.1.2 Old Format - OBS Format
The typical observation file used by SATORB when processing angular observations is the one
shown in Figure B.2. As one can see, the first column is occupied with the telescope or the sta-
tion name, the second can be occupied either by the tracklet ID or in the case where the tracklet
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is already associated to a known object by the object name. Nevertheless the tracklet-name is
always reported also in the 9th column. Then comes the part regarding the data, in particular in
the third column the modified Julian epoch (MJD) of the measurements is reported, then the
Right Ascension (RA, in the format hh.mmss) and the Declination (DE, in the format dd.mmss).
Successively the magnitude of the object, the astrometric uncertainty, and finally, the name of
the picture from which the measure is extracted and some empty fields.

Figure B.2 Example of the classical SATORB observation file.

B.1.3 New Format
The new observation format was studied essentially to collect different observables in the same
files, but we also took the opportunity to introduce new features. Dealing with different kinds of
observables the new format consists of a common part and then of an observation specific part.
The first contains: the header, the flag specific of each kind of observation, the measurement
epoch and the station name. The second contains: the measurement itself and the parameters
related to that observable.
The header contains the name of the object whose observations refer to. The flag is observable-
specific and within SATORB it is used as discriminant to understand which kind of observable
we are dealing with. At the moment only three kind of observables can be distinguished: the
normal point (L1), the full-rate data (L0) and the classical angular observations (O1). We
introduced the flag mechanism so that if one wants to add a new observable it is sufficient to add
a new flag in the file and in the BNGOBS.f subroutine, responsible for reading the observation
file.
We introduced the possibility to comment out the measurements just by putting a # in front of
the observation line.
We added digits to the MJD of the measurements in order to take into account up to tens of
microseconds.
This accuracy it is not sufficient for the laser measurements so we needed to introduce another
field (dt) which contains the time fraction not considered in the MJD. The value of dt is ex-
pressed in milliseconds.

161



The New Format of SATORB Files

The last component of the common part is the name of the observing site to which correspond
the geodetic coordinates used later by SATORB. We talked about observing site or “monument”
and especially for angular observations we discriminate between telescope name and station
name since different instruments were alternated in the same place. This separation allowed us
to keep track of the used instrument and will not bring to ambiguous entries.
Continuing the description for the angular measurement we introduced the possibility to keep
both the name of the object and the related tracklet, then the usual RA, DE coordinates, their
respective STD (which could be different), and finally the magnitude of the observed object.
For the laser observations, after the MJD of the measurement, we report the station name, which
is made by two part: the first identifies the place, and the second the version of the system. Then,
we have the target name, the measured range, the range STD, a data quality alert indicator (Qf),
the laser wavelength (λ ), the before mentioned time fraction not considered by the MJD (dt),
the atmospheric pressure expressed in millibar (p), the temperature in Kelvin degree (K) and
the relative humidity (RH). As said in Paragraph 5.3.2 the laser wavelength together with the
meteorological data are needed to calculate the tropospheric correction. It must be said that the
range STD is expressed in meters and in the case of normal points is obtained by the conversion
of the STD expressed in picoseconds in the CRD file. In the case of full rate data, since it is not
available in the CRD file, is assumed to be equivalent to 0.5 m. Finally the data quality alert
indicator is reported directly from the CRD file, indicates when the quality of the measurement
is good(= 0), suspicious (= 1) in the sense that can be used with caution or poor (= 2) when it
is advisable to not use it for geodetic purposes. We decided to keep this flag to better understand
the results.

Figure B.3 Example of the new SATORB observation file.

B.2 Output File
For completeness, we report also a small description of the fields that were modified within
the SATORB output file. The new fields of the SATORB output file are the ones within the red
rectangles in the Figures B.4, B.5 and B.6. The changes strictly related to the introduction of the
ranges measurements were essentially 3: we added a column in the list of the observations and
of the residuals paying attention to put a 0 on the range column when only the angles are present
and vice versa. Then we needed to adapt the unit of measurements and the residual computation
according to the kind of measurements processed.
The other modifications introduced to the output file were done to display other results useful
during the study, and to better understanding the outcomes. We then introduced the residuals
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computed during the first iteration of the LSQ adjustment. Finally, we reported the obtained
covariance w.r.t. the estimated orbital elements and its conversion w.r.t. the state vector in
Earth Centered Inertial (ECI) and in radial, along- and cross-track (RSW) coordinates. To better
understand the effects of the different observables we displayed also the STD of the position
and the velocity plus the correlation matrix in RSW components. For completeness, the last
change was performed to show, together with the scaling parameter, the new estimated value of
the AMR (see Figure B.6).
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Figure B.4 First part of the modified SATORB output file.
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Figure B.5 Second part of the modified SATORB output file.

Figure B.6 Part of the SATORB output file modified to display the new AMR value.
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