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Abstract

In the few decades of its existence, mathematical programming has evolved into an impor-

tant branch of operations research and management science. This thesis consists of four

papers in which we apply mathematical programming to real-life personnel scheduling

and project management problems. We develop exact mathematical programming formu-

lations. Furthermore, we propose effective heuristic strategies to decompose the original

problems into subproblems that can be solved efficiently with tailored mathematical pro-

gramming formulations. We opt for solution methods that are based on mathematical

programming, because their advantages in practice are a) the flexibility to easily accom-

modate changes in the problem setting, b) the possibility to evaluate the quality of the

solutions obtained, and c) the possibility to use general-purpose solvers, which are often

the only software available in practice.
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Introduction

Personnel scheduling is an essential and recurring challenge for many companies and or-

ganizations, especially in the service industries. In general, personnel scheduling involves

a) the determination of the tasks (or shifts) to be performed, b) the temporal scheduling

of these tasks, and c) the assignment of the employees to these tasks. As manpower

is the most critical and expensive resource for many companies, a careful and proper

planning leads to substantial cost savings for the company and a greater job satisfaction

for the employees. However, generating a personnel schedule is a very challenging and

time-consuming process, as a large variety of different and often conflicting requests have

to be considered simultaneously.

Mathematical programming-based planning tools can significantly speed up the

schedule-generation process and considerably improve the resulting schedules. In the

few decades of its existence, mathematical programming has evolved into an important

branch of operations research and management science (cf., e.g., Bixby and Rothberg,

2007; Williams, 2013). Mathematical programming is concerned with determining an

optimal solution to a planning problem and assists this way in taking decisions. It en-

compasses modeling techniques to formulate planning problems as mathematical models

and algorithms to solve them. A typical application of mathematical programming is

allocating some scarce resources, e.g., employees or machines, such that a given objective

is maximized, e.g., profit or employee satisfaction. For industrial practitioners, the advan-

tages of mathematical programming are a) the flexibility to easily accommodate changes

in the problem setting, b) the possibility to evaluate the quality of the solutions obtained,

and c) the possibility to use general-purpose solvers, which are often the only software

available to industrial practitioners (cf., e.g., Koné et al., 2011; Kopanos et al., 2014).

The formulation of a planning problem as a mathematical model is not unique. In

general, different formulations can be used to model the same planning problem. Because

the performance of general-purpose solvers strongly depends on the underlying formula-

tion (cf., e.g., Vielma, 2015), analyzing different formulations for each planning problem

is vitally important. A drawback of mathematical programming-based models is that
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they contain a substantial number of constraints and variables for large-sized instances.

Therefore, despite the recent improvements in optimization software and computer hard-

ware (cf., e.g., Lodi, 2010; Koch et al., 2011; Bixby, 2012), often no feasible solution is

found in a reasonable amount of computation time for large-sized instances.

This thesis consists of four papers on personnel scheduling. For various specific real-

life scheduling problems, we develop novel and efficient mathematical programming-based

solution approaches. Hence, they can be adapted easily to changes in the problem setting

or to related scheduling problems. For the treatment of large-sized instances, we propose

effective heuristic strategies to decompose the original problem into subproblems that

can be solved efficiently with tailored mathematical programming formulations. These

strategies have two important advantages: a) we maintain the flexibility of mathematical

programming to easily accommodate complex constraints, and b) we are able to control

the speed of the optimization behavior by the size of the subproblems. In practice, both

aspects are particularly important, i.e., when short computation time limits are prescribed

or when the problem settings change dynamically.

In the first paper, we consider the assessment center planning problem (ACP). The

ACP originates from a human resource management service provider that conducts as-

sessment centers for corporate clients, e.g., banks. In an assessment center, candidates for

job positions perform different tasks while being observed and evaluated by so-called as-

sessors. The planning problem consists of scheduling all tasks and a lunch break for each

candidate and determining which assessors are assigned to which candidate during which

task. Because the assessors are usually senior managers of the company or highly quali-

fied psychologists, the objective of the ACP is to minimize the total waiting time for the

assessors. Specific rules for assigning the assessors to the candidates distinguish the ACP

from related scheduling problems discussed in the literature (e.g., the resource-constrained

project scheduling problem). In particular, because of fairness considerations, the num-

ber of different assessors assigned to a candidate at least once must be approximately the

same for each candidate. Due to these application-specific restrictions, we cannot apply

solution methods from the literature straightforwardly to the ACP. We present a decom-

position heuristic that separates the scheduling and assignment decisions into different

subproblems. We then solve each subproblem using an appropriate mixed-integer linear

programming (MIP) formulation. The scheduling decisions determine the start times for

the tasks, whereas the assignment decisions assign the assessors to the tasks. In general,

heuristics are unable to evaluate the quality of the solution found. However, a salient fea-

ture of the proposed decomposition heuristic is that the scheduling subproblem provides

a strong lower bound for the original problem. In a computational analysis, we apply
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this decomposition heuristic to 4 real-life instances and to 240 systematically generated

test instances derived from real-life data. Our computational results demonstrate that

this novel heuristic is able, for the first time, to solve the four real-life instances to opti-

mality. Furthermore, this heuristic outperforms the state-of-the-art approaches, i.e., the

list-scheduling heuristic of Zimmermann and Trautmann (2015) and the MIP formulations

of Grüter et al. (2014), Zimmermann and Trautmann (2014), and Rihm et al. (2016).

In the second paper, we deal with the same assessment center planning problem as

in the first paper. We develop problem-specific lower bounds and analyze different MIP

formulations for the ACP. In detail, we provide two discrete-time and three continuous-

time MIP formulations. In discrete-time formulations, the planning horizon is divided into

a set of time intervals of equal length, and the activities can only start at the endpoints

of these intervals. Conversely, in continuous-time formulations, the activities can start

at any point in time. In a comparative study, we analyze the strength of the lower

bounds and the performance of the five MIP formulations for the same instances as in the

first paper. The results demonstrate that for all instances, the developed lower bounds

are very close or equal to the optimal objective function values. Furthermore, the MIP

formulations provide good or optimal solutions within reasonable computational time.

Surprisingly, in contrast to results generally obtained for related planning problems (e.g.,

the resource constrained project scheduling problem), the continuous-time formulations

outperform the discrete-time formulations in solution quality. However, we obtain the

best MIP-based lower bounds using the discrete-time formulations.

In the third paper, we study a novel planning problem in the context of assessment

centers, which we call the assessment center resource investment problem (ACRIP). In

the ACRIP, the goal is to minimize the total operational costs to meet a given dead-

line and the constraints from the ACP. The operational costs increase with additional

assessors, actors, or rooms. In contrast to the ACP that we study in the first and the

second paper, the number of required assessors and actors is to be determined. The liter-

ature on project scheduling makes a similar distinction between the objective functions.

Minimizing the total duration for given resource capacities is referred to as the resource-

constrained project scheduling problem (cf., e.g., Artigues et al., 2015), and minimizing

the total resource costs as per a project completion deadline is referred to as the resource

investment problem (cf., e.g., Möhring, 1984). However, owing to the problem-specific

rules for assigning the assessors to the tasks and the candidates, the solution methods

for the resource investment problem are not applicable to the ACRIP. Hence, we develop

a novel discrete-time MIP formulation to solve the ACRIP. We choose a discrete-time

formulation because in the second paper it turned out that discrete-time formulations
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yield the best lower bounds for a related planning problem. To speed up the search

process, we propose some preprocessing techniques and a novel row generation scheme

that exploits the structural properties of the ACRIP. In this scheme, some constraints

that mainly drive the computation time of a general-purpose solver are relaxed and the

relaxed formulation is solved. Whenever an integer solution is found that violates one of

the relaxed constraints, a violated constraint is added to the formulation and a heuristic

attempts to transform the integer solution into a feasible integer solution. In a computa-

tional study, we test the MIP formulation with and without the row generation scheme

on a set of instances derived from real-life data. The results highlight a great potential

to save operational costs of assessment centers. Furthermore, using the row generation

scheme increases the performance of the general-purpose solver considerably.

In the fourth paper, we study a new real-life staff assignment problem, the staff assign-

ment problem with lexicographically ordered acceptance levels (SAP-LAL). The SAP-LAL

consists of assigning employees to work shifts subject to a large variety of critical and non-

critical requests, including personal preferences of employees. This problem was reported

to us by a provider of commercial employee scheduling software that has developed a new

user interface to specify trade-offs among different requests. The user defines a target

value for each request and assigns integer acceptance levels to deviations from this target

value. These acceptance levels reflect the relative severity of possible deviations, e.g.,

for an employee that requests at least two weekends off, obtaining one weekend off is

preferable to no weekend off, and thus receives a higher acceptance level. The objective

is to minimize the total number of deviations in lexicographical order of the acceptance

levels. This objective cannot be represented straightforwardly in existing staff assignment

approaches from the literature, because each request is associated with several acceptance

levels. We provide a binary linear programming formulation, propose novel aggregation

techniques to reduce the size of the formulation, and develop a MIP-based heuristic for

large-sized instances. The main methodological feature of the MIP-based heuristic is an

employee selection rule for effectively decomposing the original problem into subproblems.

In a computational analysis, we apply the binary linear programming formulation and the

MIP-based heuristic to a real-world instance and a test set that contains 45 instances de-

rived from real-life data. Our computational analysis shows that the two approaches solve

small- and medium-sized instances to optimality. Furthermore, the MIP-based heuristic

delivers high-quality solutions for large-sized instances with limited computational effort

and outperforms the commercial employee scheduling software of our industry partner. It

turns out that the MIP-based heuristic results in fairer schedules, i.e., the distribution of

the refused requests is more balanced across the employees. We show that it is beneficial
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to run the MIP-based heuristic in an eager manner, i.e., to impose a short time limit

for the solution of the subproblems. This setup exploits the fact that optimal solutions

of the subproblems are often found within a few seconds, while the majority of time is

spent on proving the optimality of this solution. This finding is of general interest in the

development of MIP-based heuristics, independent of the context.

Although we develop our approaches for specific real-life problems, they are applica-

ble to other problems discussed in the literature. The decomposition heuristic, the row

generation scheme, and the MIP-based heuristic presented in the first, second, and fourth

paper, respectively, are easily adaptable to related problems by changing the underlying

MIP formulations. In future research, it would be interesting to adapt the MIP-based

heuristic to the nurse scheduling problem (cf., e.g., Burke et al., 2004). Furthermore, it

would be interesting to adapt the decomposition heuristic and the row generation scheme

to the multi-skill project scheduling problem (cf., e.g., Bellenguez-Morineau and Néron,

2007) and the mode identity resource constrained project scheduling problem (cf., e.g.,

Salewski et al., 1997).
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Paper I: A decomposition heuristic for short-term planning of assessment centres

Abstract

In an assessment centre, several candidates for a job vacancy per-

form a set of predefined tasks while being observed and evaluated by

so-called assessors. For the organizers of such assessment centres, a

challenging job is to schedule the tasks and assign the prescribed number

of assessors to the tasks such that the total waiting time for the asses-

sors is minimized. This planning situation has been reported to us by a

human resource management service provider. Application-specific re-

strictions distinguish this problem from related scheduling problems dis-

cussed in the literature, e.g., the resource-constrained project scheduling

problem. We present a mixed-integer programming-based decomposi-

tion heuristic, which iterates between pre-scheduling, assignment, and

re-scheduling subproblems. Our computational results demonstrate that

this novel heuristic outperforms the state-of-the-art approaches on a

set of 240 benchmark instances. Furthermore, this heuristic provides

optimal solutions to a set of four real-life instances.

1.1 Introduction

Human capital is considered to be a key success factor for many companies and orga-

nizations (cf., e.g., Hitt et al., 2001; Skaggs and Youndt, 2004). To recruit the best

candidates for job vacancies, a large number of companies operate assessment centres

(cf., e.g., Lievens and Thornton III, 2005; Melchers et al., 2010). The objective of such

an assessment centre (AC) is to systematically evaluate the skills and abilities of the

candidates using tasks that are frequently encountered in the vacant position (cf., e.g.,

Collins et al., 2003). According to Spector et al. (2000), typical examples of such tasks

are project presentations, in-basket exercises, structured interviews, and role-play exer-

cises. While performing the tasks, the candidates are observed and evaluated by so-called

assessors. Because these assessors are generally high-level officials of the company (e.g.,

senior managers) or trained specialists (e.g., psychologists), ACs are relatively expensive

(cf., e.g., Wirz et al., 2013). Hence, minimizing the assessors’ waiting times is of particular

importance during the planning of ACs.

We consider the short-term planning of such assessment centres. This problem has

been reported to us by a human resource management service provider that organizes

ACs for companies on a regular basis. The assessment centre planning problem (ACP)

consists of scheduling a set of predefined tasks and a lunch break for each candidate and

9
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of assigning the prescribed number of assessors and actors to these tasks. The assigned

assessors observe and evaluate how the candidates perform the tasks. The assigned actors

are required for role-play exercises, e.g. playing the role of a subordinate or of an unhappy

customer. The tasks may include some preparation time for the candidate at the beginning

and some evaluation time for the assessor(s) and the actor(s) at the end. Furthermore,

the lunch breaks need to be scheduled within a prescribed time window. Two assessor-

assignment rules have to be considered. First, the number of different assessors assigned

to a candidate at least once must lie between given lower and upper bounds. The lower

bound targets a fair and objective overall evaluation of each candidate, whereas the upper

bound aims to reduce time-consuming discussions among assessors. Second, there may

be candidates and assessors who know each other personally. In such a case, the assessor

must not observe the candidate (no-go relationship). The objective of the ACP is to

minimize the total waiting time for the assessors. Because the assessors meet before the

start and after the completion of all tasks and lunch breaks, this objective corresponds to

minimizing the total duration of the AC.

The ACP can be interpreted as an extension of the resource-constrained project

scheduling problem (RCPSP): each candidate’s tasks and lunch break correspond to

project activities, and the candidates, assessors, and actors represent renewable resources.

The ACP, however, does not contain precedence relationships among the activities, but

extends the RCPSP with the two above-described assessor-assignment rules. Rihm et al.

(2016) adapted five basic mixed-integer linear programming (MIP) formulations that were

developed for the RCPSP to the ACP. Their computational results indicated that only

small-sized instances (20–30 activities) were solved to optimality within reasonable com-

putation times. In contrast, the comparative study of Kopanos et al. (2014) showed for

the RCPSP that a wide range of medium- and large-sized instances (30–90 activities)

were solved to optimality using the basic MIP formulations. These results indicate that

besides the lack of precedence relationships, the two above-described assessor-assignment

rules have a strong impact on the computation time of general-purpose solvers. Hence,

we propose to consider the scheduling decisions and the assignment decisions separately.

In this paper, we propose a decomposition heuristic that divides the ACP into a pre-

scheduling, an assignment, and a re-scheduling subproblem. Each of the three subprob-

lems is solved using an appropriate MIP formulation. In the pre-scheduling subproblem,

the assessor-assignment rules are dropped. We model this subproblem as an RCPSP.

Because the assessor-assignment rules are dropped, a feasible assessor assignment may

not exist for the schedule obtained. In the assignment subproblem, the assessors are as-

signed to the activities such that so-called assessor conflicts are minimized, i.e., the total

10
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time during which one assessor is assigned to more than one activity is minimized. We

model this subproblem as an extension of the generalized graph colouring problem. In

the re-scheduling subproblem, the assessor conflicts are resolved by re-scheduling some ac-

tivities, while the assessor assignments are maintained. To improve the obtained feasible

solution, an improvement routine applies the decomposition heuristic multiple times while

exploiting information about the current best feasible solution. An useful characteristic of

the proposed decomposition is that an optimal solution of the pre-scheduling subproblem

corresponds to a strong lower bound for the overall problem. In a computational analysis,

we apply this decomposition heuristic to four real-life instances and to 240 systematically

generated benchmark instances. Our results demonstrate that the proposed decomposi-

tion heuristic outperforms the state-of-the-art approaches in terms of solution quality and

lower bounds. Furthermore, this heuristic provides optimal solutions to the four real-life

instances.

The remainder of this paper is organized as follows. In Section 1.2, we review the

related literature. In Section 1.3, we depict the best-performing MIP formulation for

the ACP. We use this formulation as the basis for solving the re-scheduling subproblem.

In Section 1.4, we present our novel decomposition heuristic and illustrate the heuristic

with an example. In Section 1.5, we report the design and the results of our computa-

tional analysis. In Section 1.6, we provide some concluding remarks and discuss possible

directions for future research.

1.2 Related literature

In Section 1.2.1, we summarize the existing solution approaches for the ACP. In Sec-

tion 1.2.2, we review related planning problems that contain scheduling and assignment

decisions similar to the ACP. In Section 1.2.3, we provide an overview of decomposition

heuristics for this type of planning problems.

1.2.1 ACP

The ACP discussed in this paper was first described in Grüter et al. (2014). They proposed

an MIP formulation to solve this problem. In this formulation, each activity is split

into several sub-activities to model the preparation, execution, and evaluation times.

Rihm et al. (2016) interpreted the ACP as an extension of the RCPSP and analysed

the performance of two discrete-time (DT) formulations and three continuous-time (CT)

formulations for the ACP. For a comprehensive overview of different MIP formulations

for the RCPSP, we refer to Artigues et al. (2015). In DT formulations, the activities can

11
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only start or end at predefined points in time. Typically, such formulations involve time-

indexed variables. Conversely, in CT formulations, the activities can start at any point

in time. The two DT formulations of Rihm et al. (2016) are based on pulse variables (cf.

Pritsker et al., 1969) and on/off variables (cf. Kopanos et al., 2014), respectively. The

three CT formulation include assessor-assignment variables, resource-flow variables (cf.

Artigues et al., 2003), and overlapping variables (cf. Kopanos et al., 2014), respectively, to

model the resource constraints. However, despite the recent improvements in optimization

software and computer hardware (cf., e.g., Bixby, 2012; Koch et al., 2011; Lodi, 2010),

only small-sized instances can be solved to optimality within reasonable computation

times using these MIP formulations. For practical applications, the performance of these

MIP formulations is insufficient.

To address this drawback, Zimmermann and Trautmann (2015) developed a multi-pass

list scheduling heuristic for the ACP. Under this heuristic, the activities are (a) ordered

in a list using a priority rule and (b) scheduled sequentially using a schedule-generation

scheme. Steps (a) and (b) are executed multiple times; in each iteration, the order of

the activities in the list is varied by applying random sampling. This list scheduling

heuristic provides good feasible solutions in short computation times; however, there is

still a considerable average relative deviation of the objective function values obtained

from the best known lower bounds.

1.2.2 Related planning problems

The ACP consists of an assignment subproblem and a scheduling subproblem. In this

section, we review planning problems discussed in the literature that also consist of these

two subproblems. However, none of these planning problems contain all of the problem

characteristics of the ACP.

The multi-mode resource-constrained project scheduling problem (MRCPSP) consists

of scheduling a set of project activities to be executed in a specific mode subject to prece-

dence relationships and limited availability of renewable and non-renewable resources (cf.,

e.g., Hartmann and Briskorn, 2010; Mika et al., 2015). The selected mode determines the

duration and the resource requirements of an activity. The objective is to minimize the

project duration. In the ACP, the candidates’ tasks and lunch breaks correspond to

project activities. The candidates, assessors, and actors represent renewable resources,

and each feasible assignment of assessors to an activity corresponds to a different exe-

cution mode. Because the tasks are unrelated, the ACP does not contain precedence

relationships or non-renewable resources. In contrast, the MRCPSP does not contain

specific rules to select the modes analogous to the assessor-assignment rules.

12
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The multi-skill project scheduling problem (MSPSP) is a variant of the MRCPSP. In

this problem, the renewable resources are multi-skilled employees (cf., e.g., Bellenguez-

Morineau and Néron, 2007). Each activity requires a prescribed number of employees

with predefined skills, and each employee can perform at most one activity at a time.

Each combination of employees that satisfies the activity’s skill requirements corresponds

to a feasible way to execute that activity. Bounds for the workload of each employee

are considered. The ACP can be viewed as an extension of the MSPSP. Each candidate

and the set of assessors and actors can each be interpreted as a subset of employees who

have the same skills. Assessors with no-go relationships correspond to employees who

lack the appropriate skill to observe certain candidates, and the assignment of alternative

employees corresponds to alternative assessor assignments. Extensions of the MSPSP

are considered by, e.g., Drezet and Billaut (2008) and Li and Womer (2009). However,

an equivalent to the assessor-assignment rules is not considered in the MSPSP or its

extensions.

Assignment and scheduling decisions are also encountered within other real-life appli-

cations. Typical examples include the scheduling of batch process operations in the chem-

ical industry (cf., e.g., Blömer and Günther, 2000; Maravelias, 2006; Reklaitis, 1996), the

course and examination timetabling (cf., e.g., Carter and Laporte, 1996, 1998; Dorneles

et al., 2014; Schaerf, 1999), the planning and scheduling of operating rooms (cf., e.g.,

Cardoen et al., 2010; Jebali et al., 2006), and the scheduling of technicians and tasks (cf.,

e.g., Cordeau et al., 2010; Zamorano and Stolletz, 2017).

1.2.3 Decomposition approaches

A large variety of heuristic decomposition approaches have been proposed for large-scale

optimization (cf., e.g., Ball, 2011; Zanakis et al., 1989). The main idea of decomposition

approaches is to decompose an initial large and complex problem into smaller and easier

subproblems, which can be solved within reasonable computation times. Depending on

the relation between the subproblems, two types of decompositions are distinguished (cf.,

e.g., Zanakis et al., 1989). In the first type, each subproblem is solved independently.

The resulting solutions are combined into a solution of the overall problem. In the second

type, the subproblems are solved in a given order. Thus, the solution of a subproblem is

required as an input for the consecutive subproblem. The solution of the last subproblem

corresponds to a solution of the overall problem.

For the MRCPSP and its extensions, the second type of decomposition is the most

commonly used (cf., e.g., Ballest́ın et al., 2013; De Reyck and Herroelen, 1999; Toffolo

et al., 2016). In this case, a mode is first assigned to each activity, and subsequently, the
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starting times of the activities are determined. These subproblems are solved using differ-

ent methods. Ballest́ın et al. (2013) proposed a simulated annealing and an evolutionary

algorithm for these two steps, respectively. De Reyck and Herroelen (1999) used a tabu-

search method, and Toffolo et al. (2016) applied different MIP formulations to solve the

subproblems. Serafini and Speranza (1994) applied a similar decomposition: first, a mode

is assigned to each activity; second, a sequence of activities is assigned to each resource;

and third, the starting times of the activities are determined. Furthermore, they added

a feedback loop to iteratively solve the three subproblems. In this loop, critical activities

are selected for which the mode assignment is revised in the subsequent iteration.

All these decomposition approaches are appropriate for the MRCPSP because the

mode affects the duration of the activities and hence the total duration of the project.

For the ACP, however, the duration of a task is constant, regardless of the assessors

assigned. Assigning the assessors before scheduling the tasks can lead to poor solutions.

Thus, we propose a decomposition heuristic that proceeds in reverse order.

1.3 Assessment centre planning problem

In this section, we present the MIP formulation for the ACP that performs the best in

the comparative analysis of Rihm et al. (2016). The notation that we use throughout this

paper is summarized in Tables 1.1 and 1.2.

This MIP formulation includes continuous variables Si to model the start times of

the activities i ∈ I. For activities that include a preparation time, the candidate starts

with the preparation at time Si. Figure 1.1 shows at which time during the execution

of an activity the candidate, the assessor(s), and the actor(s) are required. During the

preparation time, only the candidate is present. The assessor(s) and the actor(s) join the

candidate immediately after the preparation is completed, i.e. at time Si+p
C
i . During the

evaluation time, only the assessor(s) and the actor(s) are present, discuss their observa-

tions, and evaluate the candidate. This evaluation time can differ between the assessor(s)

and the actor(s). Because the candidates are primarily evaluated by the assessors, the

evaluation time of the actors does not exceed the evaluation time of the assessors, i.e.,

pAi ≥ pPi always applies. Due to fairness and objectivity considerations, no waiting times

are allowed between the preparation, execution, and evaluation times. A waiting time

for a candidate would increase his/her preparation time, whereas a waiting time for the

assessors and actors could bias their evaluations of the candidate.

Because each candidate must perform the same tasks and take a lunch break, the

assignment of the candidates to the activities is given by the sets Ic (c ∈ C). For the

14



Paper I: A decomposition heuristic for short-term planning of assessment centres

Table 1.1: Sets and parameters of the MIP formulations

A Set of assessors

C Set of candidates

E Set of edges of the conflict graph

I Set of activities (including lunch breaks)

IA, IP Set of activities that require assessors (IA) and actors (IP )

IAa Set of activities for which the respective candidate has a no-go relation-

ship with assessor a

Ic Set of activities that require candidate c ∈ C
IK Set of activities that require one of the randomly selected candidates

IL Set of lunch breaks

I tabu Set of activities in the tabu list

N Set of candidate-assessor pairs (c, a) with a no-go relationship

P Set of actors

ESi, LSi Earliest (ESi) and latest (LSi) start times for activity i

M Sufficiently large number

pi Total duration of activity i (including preparation and execution times)

pCi Preparation time of activity i for candidates

pAi , pPi Evaluation time of activity i for assessors (pAi ) and actors (pPi )

rAi , rPi Number of assessors (rAi ) and actors (rPi ) required by activity i

T Upper bound on the duration of the assessment centre (i.e., length of a day)

L, U Lower (L) and upper (U) bounds on the number of assessors that are

assigned to a candidate at least once (assessor-assignment rule)

wij Weight of edge (i, j) ∈ E

Candidate

Assessor(s)

Actor(s)

Preparation time Execution time Evaluation time

Total duration of the activity

time

Figure 1.1: Illustration of preparation, execution, and evaluation times
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Table 1.2: Variables of the MIP formulations

D AC duration

Si Start time of activity i for the candidate

Vca

{
= 1, if assessor a is assigned to candidate c at least once

= 0, otherwise

Wij

{
= 1, if activity i and j are assigned to the same assessor

= 0, otherwise

Xit

{
= 1, if activity i starts at time point t

= 0, otherwise

Y C
ij

{
= 1, if activity i is performed before j > i by a candidate

= 0, otherwise

Y A
ij

{
= 1, if activity i is performed before j 6= i by the assessors

= 0, otherwise

Y P
ij

{
= 1, if activity i is performed before j 6= i by the actors

= 0, otherwise

ZA
ia

{
= 1, if assessor a is assigned to activity i

= 0, otherwise

ZP
ip

{
= 1, if actor p is assigned to activity i

= 0, otherwise

assessors and the actors, the assignment to the activities is performed by the model with

the binary assignment variables ZA
ia and ZP

ip, respectively. To ensure that all activities

that require the same candidate, assessor, or actor do not overlap, binary sequencing

variables (Y C
ij , Y P

ij , and Y P
ij ) are used. A distinction must be made between candidates,

assessors, and actors because of the preparation and evaluation times. Finally, binary

variables Vca are used to model the assessor-assignment rules, i.e., Vca = 1 if assessor a is

assigned to candidate c at least once.

The objective is to minimize the total waiting time for the assessors, i.e., the total

duration D of the AC (in the following, we use the term AC duration):

Min D

This duration D corresponds to the latest completion time of an activity; see con-
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straints (1.1).

D ≥ Si + pi (i ∈ I) (1.1)

Constraints (1.2)–(1.5) link the start time variables to the sequencing variables. Con-

straints (1.2) and (1.3) ensure that the activities that require the same candidate do not

overlap. Because candidate c is not required during the evaluation time, activity j can

start pAi time units before the completion of activity i at the earliest.

Sj ≥ Si −M + (pi − pAi +M)Y C
ij (c ∈ C, i, j ∈ Ic : i < j) (1.2)

Si ≥ Sj −M + (pj − pAj +M)(1− Y C
ij ) (c ∈ C, i, j ∈ Ic : i < j) (1.3)

Constraints (1.4) and (1.5) guarantee that the activities which require the same assessor

or actor do not overlap.

Sj ≥ Si −M + (pi − pCj +M)Y A
ij (i, j ∈ IA : i 6= j) (1.4)

Sj ≥ Si −M + (pi − pAi + pPi − pCj +M)Y P
ij (i, j ∈ IP : i 6= j) (1.5)

Constraints (1.6) require that the lunch breaks are taken during the prescribed time

window. For the other activities (i ∈ I\IL), no time-window restrictions exist.

ESi ≤ Si ≤ LSi (i ∈ IL) (1.6)

Constraints (1.7) and (1.8) ensure that the required numbers of assessors and actors are

assigned to each activity, respectively.

∑
a∈A

ZA
ia = rAi (i ∈ IA) (1.7)∑

p∈P

ZP
ip = rPi (i ∈ IP ) (1.8)

Constraints (1.9) and (1.10) link the assignment variables to the sequencing variables. If

the same assessor a or the same actor p is assigned to two activities i and j, then either

activity i is performed before j or j is performed before i.

Y A
ij + Y A

ji ≥ ZA
ia + ZA

ja − 1 (i, j ∈ IA, a ∈ A : i < j) (1.9)

Y P
ij + Y P

ji ≥ ZP
ip + ZP

jp − 1 (i, j ∈ IP , p ∈ P : i < j) (1.10)
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Constraints (1.11) and (1.12) forbid cycles in the sequencing decisions.

Y A
ij + Y A

ji ≤ 1 (i, j ∈ IA : i < j) (1.11)

Y P
ij + Y P

ji ≤ 1 (i, j ∈ IP : i < j) (1.12)

Constraints (1.13) enforce that the number of different assessors that are assigned to a

candidate at least once lies within the bounds imposed by the assessor-assignment rule.

For example, the service provider requires that each candidate is observed by approxi-

mately 50% of all assessors.

L ≤
∑
a∈A

Vca ≤ U (c ∈ C) (1.13)

The number of times that an assessor can observe the same candidate is not limited.

Constraints (1.14) link variables Vca to the assignment variables ZA
ia, i.e., Vca = 1 if and

only if assessor a is assigned to at least one activity that requires candidate c.

∑
i∈Ic\IL

ZA
ia

|Ic\IL|
≤ Vca ≤

∑
i∈Ic\IL

ZA
ia (c ∈ C, a ∈ A) (1.14)

Eventually, constraints (1.15) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (1.15)

In sum, formulation (MP) reads as follows.

(MP)



Min D

s.t. (1.1)–(1.15)

D ∈ N0

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i < j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

ZP
ip ∈ {0, 1} (i ∈ IP , p ∈ P )
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For a more detailed description, we refer to Rihm et al. (2016).

1.4 Decomposition heuristic

In this section, we present our decomposition heuristic for the ACP in detail. For overview

purposes, the heuristic is summarized as a flowchart in Figure 1.2. To construct a feasible

solution, pre-scheduling, assignment, and re-scheduling subproblems are solved consecu-

tively using appropriate MIP formulations. To improve the resulting solution, the im-

provement routine includes a modification step to diversify the search process, followed

by the same decomposition procedure. However, in contrast to the construction routine,

an MIP-based local search heuristic is applied to the pre-scheduling subproblem. The

improvement routine is executed until one of the following two stopping criteria is met:

(a) a predefined computation time limit is reached, or (b) the solution’s objective func-

tion value of the re-scheduling subproblem is equal to the lower bound provided by the

pre-scheduling subproblem of the construction routine. Because a lower bound of the pre-

scheduling subproblem corresponds to a lower bound of the overall problem, the current

solution is optimal if stopping criterion (b) takes effect.

In a preliminary version of the decomposition heuristic (cf. Rihm and Trautmann,

2016), we used the pre-scheduling subproblem to obtain a sequencing of the activities.

Based on this sequencing, the scheduling and assignment decisions were performed simul-

taneously. In this paper, we extend the preliminary version as follows: (a) we include

additional constraints in the pre-scheduling subproblem to enhance the performance of

the heuristic, as shown in constraints (1.21)–(1.25) below; (b) we extend the decompo-

sition by a third subproblem such that the assessor-assignment and the final scheduling

decisions are taken separately; (c) we include an improvement routine; and (d) we provide

an MIP-based local search heuristic to solve the pre-scheduling subproblem.

In Sections 1.4.1, 1.4.2, and 1.4.3, we describe the pre-scheduling, assignment, and

re-scheduling subproblems, respectively. In Section 1.4.4, we present the improvement

routine. In Section 1.4.5, we illustrate the decomposition heuristic using an example.

1.4.1 Pre-scheduling subproblem

The pre-scheduling subproblem is a relaxation of the ACP obtained by dropping the

assessor-assignment rules. Thus, an optimal solution to this subproblem corresponds

to a lower bound for the ACP. Without the assessor assignment rules, all assessors are

considered to be identical, and this subproblem can be interpreted as an RCPSP. Thus,

each candidate’s tasks and lunch break correspond to a project activity. Each candidate
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Figure 1.2: Overview of decomposition heuristic

is interpreted as a renewable resource with capacity 1. The set of all assessors (actors)

coincide with one renewable resource with a capacity that equals the number of assessors

(actors). Because the tasks are unrelated, this pre-scheduling subproblem does not contain

precedence relationships.

To solve the pre-scheduling subproblem, we adapt the MIP formulation of Pritsker

et al. (1969) for the RCPSP as follows. The start times of the activities are modelled with

binary time-indexed variables, i.e. Xit = 1 if and only if activity i starts at time t. The

AC duration is modelled with an integer variable D, which has to be minimized:

Min D

Constraints (1.16) state that this duration is greater than or equal to the largest comple-

tion time of an activity. The earliest and latest start times (ESi and LSi) are required to

model the time windows for the lunch break activities (i ∈ IL). For the other activities
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(i ∈ I\IL), we set ESi = 0 and LSi = T .

D ≥
LSi∑
t=ESi

(t+ pi)Xit (i ∈ I) (1.16)

Constraints (1.17) ensure that each activity is scheduled once.

LSi∑
t=ESi

Xit = 1 (i ∈ I) (1.17)

Constraints (1.18)–(1.20) cover the resources that represent the candidates, assessors, and

actors, respectively. Constraints (1.18) prevent activities that require the same candidate

from being executed at the same time. Because the evaluation time for the assessors and

actors is included in the total duration, activity i is performed at time t by a candidate

if the activity started between time t+ 1− (pi − pAi ) and t.

∑
i∈Ic

min(LSi,t)∑
s=max(ESi,t+1−(pi−pAi ))

Xis ≤ 1 (c ∈ C; t = 0, . . . , T ) (1.18)

Constraints (1.19)–(1.20) ensure that only activities that do not require more than the

available number of assessors and actors are executed at the same time. Therefore, ac-

tivity i is performed at time t by an assessor or actor if the activity started between

time t+ 1− pi and t− pCi or time t+ 1− (pi − pAi + pPi ) and t− pCi , respectively.

∑
i∈IA

min(LSi,t−pCi )∑
s=max(ESi,t+1−pi)

rAi Xis ≤ |A| (t = 0, . . . , T ) (1.19)

∑
i∈IP

min(LSi,t−pCi )∑
s=max(ESi,t+1−(pi−pAi +pPi ))

rPi Xis ≤ |P | (t = 0, . . . , T ) (1.20)

To enhance the performance of the heuristic, we include constraints (1.21)–(1.25). These

constraints exclude some solutions to the pre-scheduling subproblem for which no feasible

assessor assignment exists. Constraints (1.21) state that all activities that are executed

at the same time t and for which the corresponding candidate has a no-go relationship
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with assessor a require at most |A| − 1 assessors.

∑
i∈IAa

min(LSi,t−pCi )∑
s=max(ESi,t+1−di)

rAi Xi,s ≤ |A| − 1 (t ∈ T ; a ∈ A) (1.21)

Constraints (1.22) widen this principle to all activities that have a no-go relationship with

the same two assessors a and e.

∑
i∈IAa1∩IAa2

min(LSi,t−pCi )∑
s=max(ESi,t+1−di)

rAi Xi,s ≤ |A| − 2 (t ∈ T ; a1, a2 ∈ A : a1 6= a2) (1.22)

Constraints (1.23)–(1.25) correspond to lower bounds for the ACP, which have been in-

troduced in Rihm et al. (2016). The objective of these lower bounds is to stop the solver

if a solution with a duration equal to a lower bound is found, even though a shorter sched-

ule may exist for the relaxed problem. Constraint (1.23) ensures that the duration D is

greater than or equal to the average workload of the assessors rounded up. The shortest

preparation time of an activity is added because the assessors cannot start before that

time.

D ≥

⌈∑
i∈IA

rAi (pi − pCi )

|A|

⌉
+ min

i∈IA
pCi (1.23)

The lower bound of constraint (1.24) is obtained by considering only the activities that

require two assessors. The total workload of these activities is evenly distributed among

an even number of assessors.

D ≥


∑

i∈IA:rAi =2

pi − pCi
b |A|

2
c

+ min
i∈IA

pCi (1.24)

All activities that require the same candidate c must be performed sequentially, i.e., the

AC duration cannot be smaller than the total duration of these activities for the candidate:

D ≥ max
c∈C

(∑
i∈Ic

(pi − pAi ) + min
i∈Ic

(pAi )

)
(1.25)
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(b) Corresponding conflict graph

Figure 1.3: Construction of a conflict graph

In sum, formulation (PS) reads as follows:

(PS)



Min D

s.t. (1.16)–(1.25)

D ∈ N0

Xit ∈ {0, 1} (i ∈ I; t = ESi, . . . , LSi)

1.4.2 Assignment subproblem

Given the schedule provided by the pre-scheduling subproblem, the assignment subprob-

lem consists of assigning the required number of assessors to the activities such that the

assessor-assignment rules are fulfilled. Because a feasible assignment may not exist for the

given schedule, the objective is to minimize the total time during which some assessors

are assigned to several activities simultaneously (assessor conflict).

To solve the assignment subproblem, we construct an edge-weighted conflict graph

G = (I, E, w). For each activity, one node is created. Two nodes are connected by

an edge if the corresponding activities overlap in the schedule (for the assessors). The

weight we of edge e is equal to the time during which the corresponding activities overlap.

Figure 1.3 illustrates the construction of a conflict graph with an example, which

includes four activities. Figure 1.3(a) provides a schedule of the activities for the assessors,

and Figure 1.3(b) provides the corresponding conflict graph. Activities 1 and 2 overlap

during 5 time units; therefore, the conflict graph contains an edge between nodes 1 and

2 with edge weight w1,2 = 5. Analogously, the graph contains edges between nodes 2 and

3, 2 and 4, and 3 and 4 with edge weights w2,3 = w2,4 = w3,4 = 10.

The assignment subproblem consists of assigning exactly rAi assessors to each activity

(node) i such that the assessor-assignment rules are met. The objective is to minimize

the total weight of the edges in the conflict graph between pairs of nodes for which at

least one identical assessor is assigned to both nodes. This subproblem can be considered
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as an extension of the generalized graph colouring problem (cf. Carlson and Nemhauser,

1966; Vredeveld and Lenstra, 2003). The generalized graph colouring problem consists

of, given the total number of different colours, assigning one colour to each node of the

graph. The objective is to minimize the total weight of the monochromatic edges (i.e.,

edges that have end points with the same colour). In the assignment subproblem, the

colours corresponds to the assessors. The assignment subproblem extends the generalized

graph colouring problem by the assignment of a pre-defined number of colours to each

node (multicolouring, cf. Halldórsson and Kortsarz, 2004), and by the assessor-assignment

rules.

To solve the assignment subproblem, we propose a novel MIP formulation. In this

formulation, we use the binary conflict variables Wij, which are equal to one if at least

one identical assessor is assigned to the activities i and j, (i, j) ∈ E. Furthermore, we use

the assessor-assignment variables Zia and Vca from formulation (MP). The objective is to

minimize the total time of assessor conflicts.

Min
∑

(i,j)∈E

wijWij

Constraints (1.26) state that an assessor conflict occurs (Wij = 1) if the same assessor is

assigned to two adjacent nodes in the conflict graph.

Wij ≥ Zia + Zja − 1 ((i, j) ∈ E, a ∈ A) (1.26)

Constraints (1.27) ensure that the required number of assessors is assigned to each activity.

∑
a∈A

Zia = rAi (i ∈ IA) (1.27)

Constraints (1.28) link the assignment variables Zia to the binary variables Vca. Conse-

quently, Vca = 1 if and only if assessor a is assigned to at least one activity that requires

candidate c.

∑
i∈Ic\IL

Zia
|Ic\IL|

≤ Vca ≤
∑

i∈Ic\IL
Zia (c ∈ C, a ∈ A) (1.28)

Constraints (1.29) and (1.30) take the assessor-assignment rules into account. Con-

straints (1.29) ensure that the number of assessors assigned to each candidate lies within
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the bounds imposed by the assessor-assignment rule.

L ≤
∑
a∈A

Vca ≤ U (c ∈ C) (1.29)

Constraints (1.30) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (1.30)

In sum, formulation (AS) reads as follows.

(AS)



Min
∑

(i,j)∈E

wijWij

s.t. (1.26)–(1.30)

Vca = 0 ((c, a) ∈ N)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

Wij ∈ {0, 1} (i, j ∈ I)

1.4.3 Re-scheduling subproblem

Given the assessor assignment provided by the solution of the assignment subproblem,

the re-scheduling subproblem consists of re-scheduling the activities to resolve all assessor

conflicts. Furthermore, the actors are assigned to the activities. Thus, a feasible solution

for the ACP is constructed.

To solve the re-scheduling subproblem, we adapt formulation (MP) of Section 1.3 as

follows. The assignment variables ZA
ia are fixed to the values obtained in the assignment

subproblem. Consequently, constraints (1.7) and (1.13)–(1.15) are omitted. In sum,
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formulation (RS) reads as follows:

(RS)



Min D

s.t. (1.1)–(1.6)

(1.8)–(1.12)

D ∈ N0

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i < j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

ZP
ip ∈ {0, 1} (i ∈ IP , p ∈ P )

In contrast to the pre-scheduling subproblem (discrete-time formulation), the

re-scheduling subproblem is solved using a continuous-time formulation. The reason is

that in the pre-scheduling subproblem, the assessors are considered as a single resource

with a capacity that is equal to the total number of assessors. In this case, discrete-time

formulations with time-indexed variables perform the best. In the re-scheduling subprob-

lem, each assessor is considered as a single resource with a unit capacity. In this case,

continuous-time formulations with sequencing variables perform the best.

1.4.4 Improvement routine

In the improvement routine, a modification step is executed before the three subproblems

are resolved. The goal of this modification step is to use some information about the

current ACP solution in the following pre-scheduling subproblem to diversify the solution

process. In the modification step, (a) the current best solution for the ACP is selected,

(b) an activity i∗ ∈ I\I tabu with the largest time gap to its immediate predecessor (for

the same candidate) is chosen, and (c) the earliest start time ESi∗ of activity i∗ is set to

its current start time Si∗ . The tabu set I tabu ensures that another activity (i∗ /∈ I tabu) is

selected in the following modification step if the solution was not improved in the previous

iteration. By setting the earliest start time of activity i∗ to its current start time in the

schedule, one of the activities scheduled after i∗ may be scheduled earlier during the

solution process of the following pre-scheduling subproblem. After the modification step,

the pre-scheduling, assignment, and re-scheduling subproblems are solved consecutively.

Finally, the tabu set I tabu is updated, i.e., activity i∗ is added to the tabu set I tabu if the

solution was not improved. The lunch breaks (i ∈ IL) are included in the tabu set I tabu
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because the lunch breaks must be scheduled within a narrow prescribed time window. The

improvement routine stops if (a) a predefined computation time limit is reached, or (b)

the objective function value of the solution to the re-scheduling subproblem is equal to the

lower bound provided by the pre-scheduling subproblem of the construction routine, or (c)

the tabu set I tabu contains all activities i ∈ I. Algorithm 1.1 describes this improvement

routine.

Algorithm 1.1 Improvement routine

Input: ACP solution (after the construction routine) with objective function value D
Tabu list I tabu ← IL

Lower bound LB computed in the construction routine
Output: ACP solution
while time limit not met and D 6= LB and I tabu 6= I do

Set current solution to best-known ACP solution
i∗ ← activity i ∈ I\I tabu with largest gap to its predecessor
ESi∗ ← Si∗
Apply heuristic pre-scheduling
ESi∗ ← 0
Solve assignment subproblem using formulation (AS)
Solve re-scheduling subproblem using formulation (RS)
if ACP solution is improved then

I tabu ← IL

else
I tabu ← I tabu ∪ {i∗}

end if
end while

In general, the pre-scheduling subproblem requires the most computation time. To

reduce the computation time of the pre-scheduling subproblem in the improvement rou-

tine, we (a) propose an MIP-based local search heuristic for this subproblem, and (b) use

the current best overall solution for the ACP as an initial solution for the heuristic. In

the construction routine, we continue to solve the pre-scheduling subproblem exactly to

obtain a strong lower bound for the ACP.

The pre-scheduling subproblem is solved using an MIP-based local search heuristic

(see Algorithm 1.2). The basic idea of this heuristic is to iteratively improve an initial

solution by re-scheduling some activities within narrow time windows. The resulting sub-

subproblems are smaller and easier to solve. The sub-subproblems are constructed as

follows. For the activities IK of k randomly selected candidates, the time windows are

not restricted. The sequence of these activities can be changed without restrictions. For

the remaining activities i ∈ I\(IL ∪ IK ∪ {i∗}), the time window is defined such that the

activities can be advanced or delayed by at most m time units. The time window of the
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Algorithm 1.2 Heuristic pre-scheduling

Input: Current best solution for the ACP and activity i∗ of modification step
Output: A solution for the pre-scheduling subproblem
while no stopping criterion met do

K ← Set of k randomly selected candidates
for i ∈ I\(IL ∪ {i∗}) do

ESi ←
{

= 0, if i ∈ IK\IL;
= Si −m, if i ∈ I\IK .

LSi ←
{

= D, if i ∈ IK\IL;
= Si +m, if i ∈ I\IK .

end for
Solve pre-scheduling subproblem using formulation (PS)
Update Si for all i ∈ I

end while

lunch break activities IL is not changed because this time window is prescribed by the

problem instance.

Parameters m and k control the size of the resulting sub-subproblem and thus the

computation time. A small value of both parameters leads to small sub-subproblems

that can be solved in short computation times. However, the possible improvements are

limited. Larger improvements can be obtained for larger values of m and k, but at the

expense of more computation time. In the computational analysis, we use m = 5 and

k = 3.

We use two stopping criteria for the MIP-based local search heuristic: (a) a predefined

computation time limit is reached, and (b) the solution’s objective value is equal to the

lower bound derived in the construction routine.

1.4.5 Illustrative example

In this section, we illustrate the decomposition heuristic with an example. We consider

an AC with three candidates (C1, C2, and C3), four assessors (A1, A2, A3, and A4), and

two actors (P1 and P2). The two assessor-assignment rules are a) each candidate must be

observed by at least L = 2 and at most U = 3 different assessors, and b) candidate C3 must

never be observed by assessor A2 because of a no-go relationship, i.e., N = {(C3,A2)}.
Each of the three candidates has to perform three tasks and one lunch break. Thus,

the problem consists of 12 activities, I = {1, 2, . . . , 12}. Table 1.3 shows the main data

of the activities. Row 2 lists all activities that correspond to one of the three tasks or

to a lunch break. Rows 3 to 5 state which activity is associated with which task and

candidate. For example, activities 1 to 3 refer to task 1. Activity 1 corresponds to task 1
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Table 1.3: Illustrative example: main data of the activities

Task 1 Task 2 Task 3 Lunch break

Corresponding activity i 1,2,3 4,5,6 7,8,9 10,11,12

Activity related to candidate C1 1 4 7 10

Activity related to candidate C2 2 5 8 11

Activity related to candidate C3 3 6 9 12

Duration pi 13 10 8 6

Preparation time pCi 4 3 0 0

Execution time 5 5 4 6

Evaluation time for assessors pAi 4 2 4 0

Evaluation time for actors pPi 2 2 0 0

Earliest start time ESi 0 0 0 15

Latest start time LSi 50 50 50 25

Required number of assessors rAi 2 1 2 0

Required number of actors rPi 1 1 0 0

for candidate 1, activity 2 corresponds to task 1 for candidate 2, and so forth. The

duration, the preparation and evaluation times, the earliest and latest start times, and

the required number of assessors and actors of the activities are shown in rows 6 to 14.

Here, one time unit corresponds to 5 minutes.

We applied the proposed decomposition heuristic to this illustrative example. Fig-

ure 1.4 shows two temporary schedules in the course of the construction routine. The

dotted lines indicate the earliest and latest start times for the lunch breaks, and the solid

line indicates the AC duration. Figure 1.4(a) shows the schedule obtained by solving

the pre-scheduling subproblem and the assessor assignment obtained by solving the as-

signment subproblem. The pre-scheduling subproblem is solved to optimality. Hence,

the duration of 35 corresponds to a lower bound for the ACP. The assessor assignment

obtained by solving the assignment subproblem is not feasible for the overall problem

because assessor A3 is assigned to two overlapping activities (activities 4 and 9). The

corresponding assessor conflict F is highlighted in dark grey. Notably, due to the absence

of specific actor-assignment rules, the pre-scheduling subproblem ensures that a feasible

assignment of the actors to the activities exists. However, the actors are only assigned in

the re-scheduling subproblem.

Figure 1.4(b) shows the schedule obtained by solving the re-scheduling subproblem.

Some activities are delayed to eliminate the assessor conflict. The obtained schedule is
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(b) Solution of the re-scheduling subproblem

Figure 1.4: Illustrative example: construction routine

feasible for the overall ACP, and the duration is 37.

In the improvement routine, the schedule of Figure 1.4(b) is improved as follows. In the

modification step, activity 1 is selected. Figure 1.5(a) provides the results of the following

pre-scheduling and assignment subproblems. Due to the modification step, activities 10

and 7 are shifted before activity 1. The duration of the schedule is 35, and the assignment

no longer contains assessor conflicts. Figure 1.5(b) shows the final solution, including the

actor assignments. This solution is optimal because the duration is equal to the lower

bound provided by the pre-scheduling subproblem in the construction routine.

1.5 Computational analysis

In this section, we compare the performance of the proposed decomposition heuristic

(DH) to the performance of the best-performing MIP formulation (MP) of Rihm et al.

(2016) as stated in Section 1.3 and to the performance of the list scheduling heuristic

(LSH) of Zimmermann and Trautmann (2015). In Section 1.5.1, we describe the test

instances used. In Section 1.5.2, we present the design of the analysis. In Section 1.5.3, we

report and analyse the computational results. By varying the time limits for the different

subproblems, the focus of the decomposition heuristic can be put either on computing

strong lower bounds (pre-scheduling subproblem) or on improving the current solutions

(assignment and re-scheduling subproblem). In Section 1.5.4, we assess the performance

of the heuristic if shorter overall time limits were considered, i.e., if the focus is put on

finding good feasible solutions quickly.
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(b) Solution of the re-scheduling subproblem

Figure 1.5: Illustrative example: improvement routine

1.5.1 Test instances

We use two different test sets for the computational analysis. The first set contains the

four real-life instances presented by Grüter et al. (2014), and the second set contains the

240 systematically generated benchmark instances generated by Rihm et al. (2016). For

all instances, the upper bound on the duration of the assessment centre T is set to 200; this

value is prescribed by the human resource provider. The earliest and the latest start times

for the lunch break activities i ∈ IL are set to ESi = 30 and LSi = 78, respectively. For

the other activities i ∈ I\IL, we set ESi = 0 and LSi = T . Here, 1 time unit corresponds

to 5 minutes. The lower and upper bounds (L and U) of the assessor-assignment rule are

defined such that each candidate is observed by approximately 50% of all assessors:

L =

⌊
|A|
2

⌋
and U =

⌈
|A|
2

⌉
+ 1.

The data of the four real-life instances is summarized in Table 1.4. The instances

consist of between 6 and 11 candidates, 9 to 11 assessors, 2 or 3 actors, and between

36 and 66 activities. The last column indicates whether at least one no-go relationship

exists.

The 240 generated benchmark instances were constructed by varying the following

five complexity factors. The experimental levels of each complexity factor are based on

real-life data.

• The number of candidates nC ∈ {4, 5, . . . , 10, 11}.
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Table 1.4: Real-life instances

Instance
Number of Number of Number of Number of No-go

candidates assessors actors activities relationships

RL1 7 10 2 42 no

RL2 11 11 3 66 no

RL3 9 11 3 54 yes

RL4 6 9 3 36 no

• The number of tasks nE ∈ {4, 5}. The tasks were randomly selected from a set of 15

real-life tasks. Each of these tasks has a predefined duration, predefined preparation

and evaluation times, and requires a predefined number of assessors and actors.

• The average number of assignments per assessor aS ∈ {6.0, 8.5, 10.4}. The number of

assessors of an instance depends on both the specific tasks selected and the value of

aS. Thus, the number of assessors nA is equal to the nearest integer to
∑

i∈IA r
A
i /a

S.

• The ratio of assessors who have at least one no-go relationship aN ∈ {1
6
, 1
3
}.

• The average number of no-go relationships per assessor with at least one no-go

relationship aR ∈ {2, 3}. The no-go relationships were randomly assigned to pairs

of candidates and assessors such that (a) the ratio of assessors who have at least

one no-go relationship aN is met and (b) at least bnA/2c different assessors can be

assigned to each candidate.

The number of actors was set to 3 for all instances. The test set contains one instance

for each combination of the complexity factor levels (8 · 2 · 3 · 2 · 2 = 192 benchmark in-

stances). Additionally, the test set contains 8 · 2 · 3 = 48 benchmark instances without

no-go relationships (i.e., aN = aR = 0).

1.5.2 Experimental design

We implemented the decomposition heuristic (DH) and the MIP formulation (MP) in

AMPL, and we used the Gurobi Optimizer 7.0.1 with the default solver settings as the

solver. The list scheduling heuristic (LSH) was implemented in Java. All computations

were performed on a workstation equipped with two 6-core Intel(R) Xeon(R) X5650 CPUs

running at 2.66 GHz, and with 24 GB RAM. The computations were performed using all

available CPU cores. For the four real-life instances, we prescribed a computation time
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Table 1.5: Time limits used by the decomposition heuristic [in s]

Instance Subproblem
Construction Improvement

routine routine

Real-life instances

Pre-scheduling 1,800 30/10

Assignment 3 3

Re-scheduling 10 10

Generated instances

Pre-scheduling 300 30/10

Assignment 3 3

Re-scheduling 10 10

limit of 3,600 seconds. For the 240 benchmark instances, we prescribed a computation

time limit of 1,200 seconds.

In addition to the overall time limit, we used different time limits to solve the sub-

problems of the decomposition heuristic (see Table 1.5). These time limits help to balance

between finding good lower bounds and good feasible solutions within the overall time

limit. For the 240 benchmark instances, we set the solver time limit to 300 seconds to

solve the pre-scheduling subproblem in the construction routine. In the improvement

routine, we ran the MIP-based local search heuristic for 30 seconds. Here, we set a time

limit of 10 seconds to solve each MIP formulation. To solve the assignment and the re-

scheduling subproblem, we set a solver time limit of 3 and 10 seconds, respectively. For

each subproblem, the best feasible solution found is returned if the time limit is reached.

If no feasible solution is found for a subproblem within the time limit, the decomposition

heuristic terminates and returns the best feasible solution found so far (if any).

1.5.3 Computational results

The results for the four real-life instances are shown in Table 1.6. For each approach,

we report the objective function value (OFV ), the lower bound (LB) if present, and

the required computation time in seconds (CPU). For MP, we report the lower bounds

obtained by the solver during the branch-and-bound process. For DH, we report the lower

bounds obtained by the solver during the branch-and-bound process of the pre-scheduling

subproblem. For each instance, the best OFV obtained are highlighted in boldface. Our

decomposition heuristic solved all four real-life instances to optimality. Both approaches,

MP and LSH, provided an optimal solution to instance RL4 only. However, they were not

able to prove that their solution obtained is optimal within the prescribed computation
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Table 1.6: Numerical results for real-life instances

Instance
MP LSH DH

OFV LB CPU OFV CPU OFV LB CPU

RL1 88 69 3,603 86 3,600 82 82 88

RL2 138 62 3,600 113 3,600 110 110 31

RL3 107 62 3,603 96 3,600 90 90 1,249

RL4 82 68 3,603 82 3,600 82 82 46

time limit.

The results for the 240 benchmark instances are summarized in Table 1.7. For each

approach, we state the average relative deviation of the solutions to the lower bounds

obtained by the decomposition heuristic (∅∆LB), the total number of optimal solu-

tions (#OPT ), and the total number of best solutions (#BEST ). To determine the

number of optimal solutions, we compare the objective function value obtained with the

lower bound obtained with DH. The number of best solutions corresponds to the number

of times that a method generates a best solution. Furthermore, we report the average

relative MIP gap (∅∆MIP) obtained by the solver for model MP. We compare the average

results for different levels of complexity factors. For each complexity factor level, the best

results are highlighted in boldface.

Overall, the three approaches are able to find a feasible solution for each instance

within the prescribed computation time. For each level of the different complexity factors

and for each performance criterion, the decomposition heuristic provides the best results.

Over all instances, the average gap ∅∆LB of DH is 0.64%. Furthermore, DH solves 166

out of 240 instances to optimality and provides a best solution for 237 out of 240 instances.

Because the average MIP gap ∅∆MIP(= 41.5%) is considerably higher than the average

gap ∅∆LB(= 7.9%) for MP, we conclude that the lower bounds of the DH are much

stronger than the lower bounds of MP. Indeed, for each instance, the lower bound of

DH is equal to or stronger than the lower bound obtained with MP within the limited

computation time.

Next, we study the impact of the complexity parameters. Depending on the number

of activities |I| = nC(nE + 1), we divide the instances into three groups. Instances with

20–30 activities are considered small sized, instances with 31–50 activities are considered

medium sized, and instances with 51–66 activities are considered large sized. For the

small-sized instances, MP performs better than LSH and almost as good as DH. However,
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Table 1.7: Factor-dependent results for benchmark instances

Complexity Number of ∅∆MIP[%] ∅∆LB[%] #OPT #BEST

factor instances MP MP LSH DH MP LSH DH MP LSH DH

|I|
20–30 75 31.5 0.6 1.1 0.3 48 38 60 60 44 73

31–50 105 42.8 6.3 3.2 0.5 8 15 74 8 23 104

51–66 60 51.6 19.8 5.7 1.3 0 0 32 0 0 60

aS
6.0 80 26.6 7.0 3.5 0.3 15 6 64 15 6 80

8.5 80 44.9 10.2 4.1 1.1 15 18 50 20 23 79

10.4 80 52.9 6.6 2.0 0.6 26 29 52 33 38 78

aN
0.00 48 42.3 8.4 3.2 0.8 11 12 33 13 15 48

0.17 96 41.3 7.8 3.2 0.6 22 20 67 28 27 95

0.33 96 41.2 7.8 3.1 0.6 23 21 66 27 25 94

aR
0 48 42.3 8.4 3.2 0.8 11 12 33 13 15 48

2 96 41.3 7.7 3.2 0.6 23 21 68 28 25 93

3 96 41.2 7.9 3.2 0.6 22 20 65 27 27 96

All instances 240 41.5 7.9 3.2 0.6 56 53 166 68 67 237

the performance of MP is affected the most by the size of the instances. For the large-sized

instances, the average gap ∅∆LB[%] increases to 19.8% for MP, but only to 1.3% for DH.

The complexity factor aS affects the three methods differently. DH finds the most

optimal solutions for the lowest value of aS. In contrast, MP and LSH find more optimal

solutions for high values than for lower values of aS. The performance differences for DH

can be explained as follows. If the average number of assignments per assessor aS is low,

then there are relatively many assessors compared to the total number of activities. In

this case, it is more likely that a feasible assessor assignment exists for a solution of the

pre-scheduling subproblem. Hence, DH performs better. Complexity factors aN and aR

do not affect the solution quality of the three methods. The number of optimal solutions

is lower for aN = 0 and aR = 0, but there are less instances with these factor levels (48

instances for aR = 0 compared to 96 instances for aR = 2 and aR = 3, respectively).

Table 1.8 lists for the set of 240 instances the results of the construction routine, which

stops if the first feasible solution is found. Furthermore, this table reports the interme-

diate results after 600, 900, and 1,200 seconds. In addition to the already mentioned

performance criteria ∅∆LB[%] and #OPT , we state the average number of iterations
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Table 1.8: Intermediate results of decomposition heuristic

Intermediate step ∅∆LB[%] #OPT ∅#IT

After construction routine 2.48 134 0

After 600 s 0.80 162 5.5

After 900 s 0.71 163 8.6

After 1200 s 0.64 166 11.4

performed in the improvement routine of DH (∅#IT ). The average gap ∅∆LB of the

solutions provided by the construction routine is 2.48%. Here, 134 instances are solved

to optimality. After 600 seconds, the average gap is reduced to 0.80%. In this time, the

improvement routine performed on average 5.5 iterations. During the next 600 seconds,

the average gap is reduced further. The final gap is 0.64%.

In total, the decomposition heuristic is able to prove the optimality of 166 instances

out of 240. For the remaining 74 instances, either the solution does not correspond to

an optimal solution or the solution is optimal but the lower bound provided by the pre-

scheduling subproblem is not tight. Indeed, many examples exist for which the optimal

objective function value of the pre-scheduling subproblem is strictly smaller than the

optimal objective function value of the overall problem. However, our computational

results demonstrate that the lower bound provided by the pre-scheduling subproblem is

on average better than the lower bound obtained with MP within the limited computation

time.

1.5.4 Computational results for shorter time limits

A salient characteristic of the decomposition heuristic is that each lower bound of the

pre-scheduling subproblem corresponds also to a lower bound for the ACP. To exploit

this characteristic, in Section 1.5.3, we used a large time limit to solve the pre-scheduling

subproblem. The results of this section indicate that the decomposition heuristic remains

competitive in terms of solution quality when shorter overall time limits are considered.

We ran the heuristic with overall time limits of 15, 30, 60, 120, and 300 seconds, re-

spectively. Due to the reduction of the overall time limit, the time limits to solve the

individual subproblems of the decomposition heuristic have also been adapted; we set the

time limits to 5 seconds to solve each subproblem. Additionally, we set the parameter

MIPFocus of the Gurobi solver to 1. This parameter determines the MIP solution strat-

egy of the solver. When this parameter is set to 1, Gurobi focuses on quickly generating
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Table 1.9: Comparison of LSH and DH for different overall time limits

Time ∅∆LB[%] #OPT #BEST

limit [in s] LSH DH LSH DH LSH DH

15 4.14 4.07 43 55 137 153

30 3.92 2.91 45 72 115 180

60 3.75 2.06 46 94 100 206

120 3.61 1.59 50 112 93 221

300 3.42 1.22 52 133 87 229

good feasible solutions rather than increasing the lower bound.

Table 1.9 compares the results of LSH and DH for the 240 benchmark instances.

Notably, the overall time limits considered are too short for the MIP formulation (MP)

to find competitive solutions. The same criteria as in Table 1.7 are used to evaluate

the two approaches. The gap ∆LB is calculated based on the same lower bounds as in

Section 1.5.3. For each overall time limit considered, the best results are highlighted in

boldface.

For an overall time limit of 15 seconds, the performance of the two approaches is

approximately the same. However, if the overall time limits increase, the performance (in

terms of the three criteria) of DH improves much stronger. For an overall time limit of

30 seconds or more, DH considerably outperforms LSH.

1.6 Conclusions and outlook

In this paper, we considered a real-life assessment centre planning problem. The problem

consists of scheduling a set of predefined tasks for each candidate and of assigning the

prescribed number of assessors and actors to these tasks. The objective is to minimize

the total waiting time for the assessors. We proposed a mathematical programming-based

heuristic under which the initial problem is iteratively decomposed into pre-scheduling,

assignment, and re-scheduling subproblems. An advantage of this decomposition is that

an optimal solution of the pre-scheduling subproblem corresponds to a lower bound for the

overall problem. In a comparative analysis, we showed that the heuristic provides better

solutions and better lower bounds than the state-of-the-art methods. In particular, the

heuristic is able to provide optimal solutions to a set of four real-life benchmark instances

in limited computation time. Moreover, by varying the time limits to solve the different
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subproblems, the heuristic is well scalable with respect to an overall computation time

limit.

The optimal solutions generated by our decomposition heuristic are used to obtain

insights into the structure of optimal solutions. In this way, the decomposition heuristic

has already contributed to improving the performance of the list scheduling heuristic that

is currently used by the service provider.

In future research, the development of an exact tailored solution approach (e.g., a

branch-and-cut approach) is necessary to completely close the optimality gaps. Further-

more, the real-life context of assessment centres gives rise to other interesting variants of

the planning problem. This includes the planning of assessment centres that last more

than one day, the consideration of so-called group tasks that are performed simultaneously

by multiple candidates, and the minimization of the required number of assessors rather

than the total waiting time.
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Cardoen, B., Demeulemeester, E., Beliën, J., 2010. Operating room planning and schedul-

ing: A literature review. European Journal of Operational Research 201 (3), 921–932.

Carlson, R., Nemhauser, G., 1966. Scheduling to minimize interaction cost. Operations

Research 14 (1), 52–58.

Carter, M. W., Laporte, G., 1996. Recent developments in practical examination

timetabling. In: Burke, E. K., Ross, P. (Eds.), Practice and Theory of Automated

39



Paper I: A decomposition heuristic for short-term planning of assessment centres

Timetabling: Selected Papers from the 1st International Conference on the Practice

and Theory of Automated Timetabling, Edinburgh, 1995. Springer, Berlin, Heidelberg,

pp. 3–21.

Carter, M. W., Laporte, G., 1998. Recent developments in practical course timetabling.

In: Burke, E. K., Carter, M. (Eds.), Practice and Theory of Automated Timetabling

II: Selected Papers from the 2nd International Conference on the Practice and Theory

of Automated Timetabling, Toronto, 1997. Springer, Berlin, Heidelberg, pp. 3–19.

Collins, J. M., Schmidt, F. L., Sanchez-Ku, M., Thomas, L., McDaniel, M., Le, H., 2003.

Can basic individual differences shed light on the construct meaning of assessment

center evaluations? International Journal of Selection and Assessment 11 (1), 17–29.

Cordeau, J.-F., Laporte, G., Pasin, F., Ropke, S., 2010. Scheduling technicians and tasks

in a telecommunications company. Journal of Scheduling 13 (4), 393–409.

De Reyck, B., Herroelen, W., 1999. The multi-mode resource-constrained project schedul-

ing problem with generalized precedence relations. European Journal of Operational

Research 119 (2), 538–556.
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Abstract

In the literature, various discrete-time and continuous-time mixed-

integer linear programming (MIP) formulations for project scheduling

problems have been proposed. The performance of these formulations

has been analyzed based on generic test instances. The objective of this

study is to analyze the performance of discrete-time and continuous-

time MIP formulations for a real-life application of project scheduling

in human resource management. We consider the problem of schedul-

ing assessment centers. In an assessment center, candidates for job

positions perform different tasks while being observed and evaluated

by assessors. Because these assessors are highly qualified and expen-

sive personnel, the duration of the assessment center should be mini-

mized. Complex rules for assigning assessors to candidates distinguish

this problem from other scheduling problems discussed in the literature.

We develop two discrete-time and three continuous-time MIP formula-

tions, and we present problem-specific lower bounds. In a comparative

study, we analyze the performance of the five MIP formulations on four

real-life instances and a set of 240 instances derived from real-life data.

The results indicate that good or optimal solutions are obtained for all

instances within short computational time. In particular, one of the

real-life instances is solved to optimality. Surprisingly, the continuous-

time formulations outperform the discrete-time formulations in terms

of solution quality.

2.1 Introduction

Over the past decades, mixed-integer linear programming (MIP) methods have been sig-

nificantly improved (cf., e.g., Koch et al., 2011; Bixby, 2012) and successfully applied to

a large variety of real-life scheduling problems in manufacturing and services. Two ma-

jor advantages of MIP methods are the flexibility to account for changes in the problem

setting and the possibility to obtain upper or lower bounds on the solutions. In general,

different formulations can be used to model the same planning problem. Because the

performance of MIP approaches is determined by the underlying formulation (cf., e.g.,

Vielma, 2015), alternative formulations should be considered for each planning problem.

In this paper, we investigate an assessment center planning problem (ACP). This prob-

lem was reported to us by a human resource management service provider that organizes
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assessment centers (AC) for firms. The goal of an AC is to evaluate some candidates’

job-related skills and abilities for one or several open positions (cf., e.g., Collins et al.,

2003). In an AC, each candidate performs multiple tasks, and for each task, a prescribed

number of assessors (i.e., psychologists or managers) is required. Some tasks involve role

play and additionally require a prescribed number of actors. For example, the actors

might represent unhappy customers with whom the candidate must interact. Tasks some-

times require a preparation time during which only the candidate is present. During the

execution of the task, the candidate is joined by the assessors and the actor. Some tasks

include a subsequent evaluation during which the assessors and the actors discuss their

observations. This evaluation time can differ between assessors and actors. Each candi-

date takes a lunch break within a prescribed time window. When assigning assessors to

tasks, the following rules must be considered: each candidate should be observed by ap-

proximately half the number of assessors; if a candidate and an assessor know each other

personally, no observation is allowed, which is called a no-go relationship. Assessors are

expensive, and hence, their total waiting time should be minimized. Because the assessors

meet before the start and after the completion of all tasks and lunch breaks, this objective

corresponds to minimizing the total duration of the AC (in what follows the AC duration

for short). The planning problem consists of (1) scheduling all tasks and a lunch break

for each candidate and (2) determining which assessors are assigned to which candidate

during which task such that the AC duration is minimized.

The ACP can be interpreted as an extension of the resource-constrained project

scheduling problem (RCPSP). The RCPSP consists of scheduling a set of activities subject

to completion-start precedence and renewable-resource constraints such that the project

duration is minimized. For the ACP, each candidate’s tasks and lunch break correspond to

project activities, and the candidates, assessors, and actors represent renewable resources.

However, the ACP does not involve precedence relationships among the activities, but the

above-described additional constraints. In the literature, different MIP formulations have

been proposed for the RCPSP. In discrete-time (DT) formulations, the planning horizon

is divided into a set of time intervals of equal length, and the activities can only start

or end at the endpoints of these intervals. Conversely, in continuous-time (CT) formula-

tions, the activities can start at any point in time. The DT formulations usually involve

binary time-indexed variables. However, the meaning of these variables differ between the

formulations, e.g., so-called pulse variables indicate whether an activity starts or ends at

a specific point in time (cf. Pritsker et al., 1969; Christofides et al., 1987; Kopanos et al.,

2014), and on/off variables specify whether an activity is in progress at a given time (cf.

Kaplan, 1988; Mingozzi et al., 1998; Kopanos et al., 2014). The CT formulations differ
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with regard to the modeling of the resource constraints, e.g., Artigues et al. (2003) use

resource-flow variables, and Kopanos et al. (2014) use overlapping variables. For a com-

prehensive overview of different MIP formulations for the RCPSP, we refer to Artigues

et al. (2015).

In this paper, we provide two DT formulations and three CT formulations for the

ACP. The two DT formulations are based on pulse variables (DT–P) and on/off variables

(DT–O), respectively. The three CT formulations use assessor-assignment variables (CT–

A), resource-flow variables (CT–F), and overlapping variables (CT–O), respectively, to

model the resource constraints. Moreover, we provide problem-specific lower bounds.

The different MIP formulations are tested on four real-life instances and 240 test instances

based on real-life data. For all instances, good or optimal solutions are obtained within

short computational time. In detail, formulation CT–A consistently outperforms the other

four formulations in terms of solution quality. However, using DT–P, the best MIP-based

lower bounds are obtained. Furthermore, only with DT–P, optimality is proven for one

of the real-life instances within the prescribed time limit. Nevertheless, in contrast to the

RCPSP, the CT formulations provide better solutions than the DT formulations.

The remainder of this paper is structured as follows. In Section 2.2, we describe the

ACP using an illustrative example and relate the ACP to the RCPSP. In Section 2.3,

we provide an overview of the related literature. In Section 2.4, we present the MIP

formulations for the ACP. In Section 2.5, we derive the problem-specific lower bounds.

In Section 2.6, we discuss the design and the results of our comparative analysis. In

Section 2.7, we provide some concluding remarks and an outlook on future research.

2.2 Planning problem

In Section 2.2.1, we describe the problem features of the ACP in detail and illustrate them

through an example. In Section 2.2.2, we discuss the relation between the ACP and the

RCPSP.

2.2.1 Illustration of the planning problem

In our illustrative example, the participants of the AC are as follows: there are three

candidates, C1, C2 and C3; four assessors, A1, A2, A3 and A4; and an actor, P1. A no-go

relationship exists between candidate C3 and assessor A2. Each of the three candidates

must perform the three tasks E1, E2, and E3, and take a lunch break.

The tasks of the illustrative example are listed in Table 2.1. The durations of the tasks

are stated in 5-minute time units. Tasks E1 and E3 require two assessors, and task E2
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︷ ︸︸ ︷........................

preparation ︷ ︸︸ ︷.........................

execution ︷ ︸︸ ︷............

evaluation

︷ ︸︸ ︷.............................................................

duration of the task

time

Candidate

Assessors

Actor

Figure 2.1: Varying requirements for candidate, assessors, and actor during task E1

Table 2.1: Tasks of illustrative example

Task E1 E2 E3

Required number of assessors 2 1 2

Required number of actors 1 - -

Duration 20 10 12

Duration of preparation time (candidates) 8 3 -

Duration of execution time 8 7 8

Duration of evaluation time (assessors) 4 - 4

Duration of evaluation time (actors) 2 - -

requires one assessor. Task E1 involves role play and requires one actor. Tasks E1 and E2

include a preparation time, and tasks E1 and E3 include an evaluation time. Figure 2.1

shows at which time during the execution of task E1 the candidate, the assessors, and

the actor are required. The evaluation time differs between the assessors and the actor.

Due to fairness and objectivity considerations, no waiting times are allowed between the

preparation, the execution, and the evaluation. A waiting time for a candidate would

increase the preparation time, whereas a waiting time for the assessors and actors could

bias their evaluations of the candidate.

The earliest and latest possible start times for the lunch break are 20 and 30, respec-

tively. The duration of the lunch break is 6 time units. Because each candidate has a

lunch break and performs each of the three tasks exactly once, a total of 12 activities are

considered. Table 2.2 shows the indices of these activities.

The rules for assigning assessors to candidates are as follows: each candidate should

be observed by at least half of the total number of assessors rounded down and by at

most half of the total number of assessors rounded up plus one. The lower limit ensures

an objective overall evaluation for each candidate, and the upper limit is motivated by
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Figure 2.2: Optimal schedule of the illustrative example (left) and corresponding assessor
assignment (right)

fairness considerations. The difference between the upper and lower limits facilitates the

assessor assignment without affecting fairness. The number of times that an assessor can

observe the same candidate is not limited. In the illustrative example, each candidate

must be observed by 2 to 3 different assessors. Additionally, because a no-go relationship

exists, candidate C3 can never be observed by assessor A2.

An optimal schedule for the illustrative example is presented in Figure 2.2. The dotted

lines indicate the earliest and latest start times for the lunch breaks, and the solid line

indicates the AC duration. Whether an assessor has been assigned to a candidate at least

once is indicated by a checkmark (3).

Table 2.2: Activity indices of the illustrative example

Task Lunch
Candidate

E1 E2 E3 break

C1 1 4 7 10

C2 2 5 8 11

C3 3 6 9 12

2.2.2 Relation to the RCPSP

The ACP includes many problem features of the well-known RCPSP. Both planning

problems consider activities that require prescribed amounts of some renewable resources

during their execution. In the case of the ACP, the execution of each task and the
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lunch break for each candidate correspond to a project activity, and the candidates,

assessors, and actors can be interpreted as renewable resources. The ACP does not

involve precedence relationships among the activities.

In the RCPSP, only the capacities and not the individual units of the renewable

resources are considered. However, in the ACP, the assessor-assignment rules require

that all activities that use a particular resource unit can be identified. Therefore, the

assessor-assignment rules cannot be formulated in the RCPSP.

If each assessor is interpreted as a renewable resource with unit capacity, then al-

ternative execution modes must be defined in order to represent the alternative assessor

assignments. This corresponds to the multi-mode extension of the RCPSP (MRCPSP).

Because each candidate must be observed by approximately half the number of the asses-

sors, the assessor assignments interdepend. Such interdependencies between modes are

not considered in the MRCPSP. Before assigning any assessors to a candidate, all modes

are feasible. However, selecting the modes for some activities causes several of the modes

of the other activities to be infeasible.

2.3 Literature review

In Section 2.3.1, we provide an overview of different MIP formulations for the RCPSP

which can be used as the basis for MIP formulations of the ACP. In Section 2.3.2, we

discuss recent works that focus on comparing MIP formulations for extensions of the

RCPSP and for specific real-life problems.

2.3.1 MIP formulations for the RCPSP

In DT formulations, binary time-indexed variables are used that indicate the start, end,

or the state (e.g., in progress) of an activity at a specific time. For DT formulations, three

types of binary variables can be distinguished (cf. Artigues et al., 2015). Beside the pulse

and on/off variables described in the Introduction, there are step variables that indicate

whether an activity starts at or before a specific point in time (cf. Klein, 2000; Bianco and

Caramia, 2013). Furthermore, Bianco and Caramia (2013) introduce continuous variables

that specify the percentage of completion of the activities at each point in time.

In CT formulations, the activities can start or finish at any time rather than at pre-

defined time points such as in DT. Artigues et al. (2003) present a CT formulation based

on resource flows. Besides the continuous start-time variables, this formulation requires

two additional sets of variables. The first set consists of binary sequencing variables that

determine for each pair of activities whether one precedes the other or whether both are
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executed in parallel. The second set consists of continuous resource-flow variables for

modeling the resource constraints. Kopanos et al. (2014) present another CT formulation

with continuous start-time variables, binary sequencing variables, and binary overlapping

variables. In combination with the sequencing variables, the overlapping variables are

used to model the resource constraints. Other CT formulations are based on events (e.g.

Koné et al., 2011) or on minimal forbidden sets (e.g. Alvarez-Valdes and Tamarit, 1993).

For the RCPSP, the performances of these different MIP formulations are compared

in Bianco and Caramia (2013), Koné et al. (2011), and Kopanos et al. (2014). They

all use generic test instances, which are provided in, e.g., Kolisch and Sprecher (1997)

and Vanhoucke et al. (2008). For these test instances, Koné et al. (2011) and Kopanos

et al. (2014) show that the performance is primarily affected by the number of activities

and the length of the planning horizon. The performances of the DT formulations are

negatively affected by the length of the planning horizon because the numbers of vari-

ables and constraints depend on the number of time points considered. In contrast, the

performances of the CT formulations are negatively affected by the number of activities

because the number of sequencing variables increases exponentially with the number of

activities. Typically, DT-based formulations are the most competitive and yield the best

LP relaxations. However, no formulation consistently dominates the others, as different

formulations perform better for different problem settings.

In this study, we adapt different RCPSP formulations such that they can be applied to

the ACP. From the DT formulations, we select the RCPSP formulations of Pritsker et al.

(1969) and Kopanos et al. (2014). The basic DT formulation of Pritsker et al. (1969) still

performs very well compared to newer formulations (cf., e.g., Koné et al., 2011). Kopanos

et al. (2014) show that their two DT formulations outperform other DT formulations

presented in the literature. Their DT formulations differ with regard to the modeling of

the precedence constraints. For the ACP, these two formulations are identical because

there are no precedence constraints. From the CT formulations, we adapt the formulations

of Artigues et al. (2003) and Kopanos et al. (2014). The CT formulation of Artigues et al.

(2003) performs well compared to other CT formulations if there are specific problem

characteristics such as long activity durations (cf., e.g., Koné et al., 2011). Kopanos et al.

(2014) show that their two CT formulations outperform other CT formulations presented

in the literature; we adapted their best-performing CT formulation.

2.3.2 Comparative studies of MIP formulations

In addition to the aforementioned comparative studies of the RCPSP, the performances

of alternative MIP formulations have also been compared for various other planning prob-
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lems. In the following, we provide an overview of such comparative studies for extensions

of the RCPSP and for some real-life problems.

Some extensions of the RCPSP for which alternative MIP formulations have been

compared are as follows. In Koné et al. (2013), the performances of alternative DT and

CT formulations are compared for an extension of the RCPSP with so-called storage

resources. Storage resources are consumed and produced at the project activities’ start

times and completion times, respectively. As in Koné et al. (2011), the authors conclude

that no MIP formulation consistently yields the best results. A comparative performance

analysis of alternative DT formulations for the RCPSP with flexible resource profiles

is provided in Naber and Kolisch (2014). With flexible resource profiles, the resource

utilization of an activity is not constant but rather can be adjusted from period to period.

The results of the comparative study in Naber and Kolisch (2014) indicate that an MIP

formulation based on Bianco and Caramia (2013) dominates all other DT formulations. In

the study of Zapata et al. (2008), alternative DT and CT formulations for the MRCPSP

with multiple projects are compared. The authors conclude that the best MIP formulation

depends on the specific characteristics of each problem instance.

Comparative analyses have also been conducted for MIP formulations in real-life ap-

plications. Stefansson et al. (2011) develop DT and CT formulations for a large-scale pro-

duction scheduling problem originating from a pharmaceutical producer. In this problem,

customers order specific products, which need to be produced in a four-stage production

process such that the requested quantity and delivery date of the order are met. The

results obtained for eight test instances indicate that the CT formulation obtains bet-

ter solutions within shorter computational time than the DT formulation. Furthermore,

in Chen et al. (2012), a comparative analysis of different mixed-integer nonlinear pro-

gramming formulations for the scheduling of crude-oil refinement operations is presented.

The planning problem includes several processing steps, from unloading marine vessels to

producing various crude-oil based products. In a recent study, Ambrosino et al. (2015)

evaluated the performance of two alternative MIP formulations for the multi-port master

bay plan problem. This problem involves the placement of containers on a containership

such that the overall berthing costs of the ship’s multi-port journey are minimized.

2.4 MIP formulations for the ACP

In this section, we present our five MIP formulations for the ACP. The notation of the

MIP formulations is provided in Tables 2.3 and 2.4. In Section 2.4.1, we present the CT

formulation that uses the assessor-assignment decisions to model the resource constraints
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(CT–A). In Section 2.4.2, we derive the CT formulation with resource-flow variables (CT–

F). In Section 2.4.3, we present the CT formulation with overlapping variables (CT–O).

In Sections 2.4.4 and 2.4.5, we present the DT formulation with pulse variables (DT–P)

and the DT formulation with on/off variables (DT–O), respectively.

Table 2.3: Sets and parameters of the MIP formulations

C Set of candidates

A Set of assessors

P Set of actors

N Set of candidate-assessor pairs (c, a) with a no-go relationship

I Set of activities i = 1, . . . , n (including lunch breaks)

Ic Set of activities that require candidate c ∈ C
IA, IP Set of activities that require assessors (IA) and actors (IP )

IL Set of lunch breaks

ESL, LSL Earliest (ESL) and latest (LSL) start time for the lunch breaks

pi Duration of activity i

pCi Preparation time of activity i for candidates

pAi , pPi Evaluation time of activity i for assessors (pAi ) and actors (pPi )

rAi , rPi Number of assessors (rAi ) and actors (rPi ) required by activity i

M Sufficiently large number

T Upper bound on the duration of the assessment center

2.4.1 Formulation CT–A

In this section, we present the continuous-time formulation that uses the

assessor-assignment decisions to model the resource constraints (CT–A). In a prelimi-

nary version of this MIP formulation (cf. Grüter et al., 2014), each activity is split into

several sub-activities to model the preparation, the execution, and the evaluation times.

However, this results in an unnecessary large number of variables and constraints. In the

following, we model the ACP without splitting the activities.

We distinguish between three types of resources: candidates, assessors, and actors.

Each candidate is modeled as a renewable resource with capacity 1. The set of all assessors

(actors) is modeled as one renewable resource with a capacity that equals the number of

assessors (actors). Due to the capacity of 1, the resource constraints for the candidates

are modeled using binary sequencing variables, i.e., Y C
ij = 1 (Y C

ij = 0) if activity i (j) is
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Table 2.4: Variables of the MIP formulations

D AC duration

Si Start time of activity i for the candidate

Xit

{
= 1, if activity i starts at time point t;

= 0, otherwise.

Y C
ij

{
= 1, if activity i is performed before j > i by a candidate;

= 0, otherwise.

Y A
ij

{
= 1, if activity i is performed before j 6= i by the assessors;

= 0, otherwise.

Y P
ij

{
= 1, if activity i is performed before j 6= i by the actors;

= 0, otherwise.

ZA
ia

{
= 1, if assessor a is assigned to activity i;

= 0, otherwise.

ZP
ip

{
= 1, if actor p is assigned to activity i;

= 0, otherwise.

Vca

{
= 1, if assessor a is assigned to candidate c at least once;

= 0, otherwise.

FC
ij

{
= 1, if a candidate is sent from activity i to j;

= 0, otherwise.

FA
ij Number of assessors sent from activity i to j

F P
ij Number of actors sent from activity i to j

Ŷij

{
= 1, if activity i starts before or at the same time as j for assessors;

= 0, otherwise.

OA
ji

{
= 1, if activity j finishes after the start of activity i for assessors;

= 0 or 1, otherwise.

OP
ji

{
= 1, if activity j finishes after the start of activity i for actors;

= 0 or 1, otherwise.

Wit

{
= 1, if i is processed at time t by the candidates;

= 0, otherwise.
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completed some time before the start of activity j (i) by the corresponding candidate. For

the assessors and actors, the resource constraints are modeled using binary sequencing

variables (Y A
ij and Y P

ij ), and binary assignment variables (ZA
ia and ZP

ip). For the assessors,

the sequencing variable Y A
ij is equal to 1 if activity i is completed some time before the

start of activity j. Otherwise, Y A
ij is 0, i.e., activities i and j are processed simultaneously

or j finishes some time before i begins. Because the ACP does not include precedence

relationships, there are no prescribed values for the sequencing variables. The assignment

variable ZA
ia is equal to 1 if assessor a is assigned to activity i; otherwise ZA

ia = 0. For the

actors, the sequencing and assignment variables (Y P
ij and ZP

ip) are interpreted in the same

way. Finally, variable Vca is used to model the assessor-assignment rule, i.e., Vca = 1 if

assessor a is assigned to candidate c at least once.

The objective is to minimize the AC duration D.

Min D

The duration corresponds to the latest completion time of an activity that is defined by

constraints (2.1).

D ≥ Si + pi (i ∈ I) (2.1)

Constraints (2.2)–(2.5) determine the resource-feasible start times of the activities. Con-

straints (2.2) are binding if candidate c completes activity i before the start of activity

j. Otherwise, constraints (2.3) are binding. Because candidate c is not required during

the evaluation time, activity j can start at most pAi time units before the completion of

activity i (cf. Figure 2.3).

Sj ≥ Si −M + (pi − pAi +M)Y C
ij (c ∈ C, i, j ∈ Ic : i < j) (2.2)

Si ≥ Sj −M + (pj − pAj +M)(1− Y C
ij ) (c ∈ C, i, j ∈ Ic : i < j) (2.3)

Constraints (2.4) and (2.5) enforce a sequence of activities for the assessors and actors,

respectively. In the case that activity i is executed before activity j by the assessors, con-

straints (2.4) are binding. Because the assessors are not required during the preparation

time, activity j can start at most pCj time units before the completion of activity i (cf.

Figure 2.4). Similarly, constraints (2.5) are binding if activity i is executed before activ-

ity j by the actors. For the actors, activity i is completed after pi − pAi + pPi time units.
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Figure 2.3: Minimum time lag between start times of activities i and j for candidates
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Figure 2.4: Minimum time lag between start times of activities i and j for assessors
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Figure 2.5: Minimum time lag between start times of activities i and j for actors
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Activity j can start at most pCj time units before that completion time (cf. Figure 2.5).

Sj ≥ Si −M + (pi − pCj +M)Y A
ij (i, j ∈ IA : i 6= j) (2.4)

Sj ≥ Si −M + (pi − pAi + pPi − pCj +M)Y P
ij (i, j ∈ IP : i 6= j) (2.5)

Constraints (2.6) ensure that the lunch breaks are scheduled within the prescribed time

window.

ESL ≤ Si ≤ LSL (i ∈ IL) (2.6)

Constraints (2.7) and (2.8) imply that the required numbers of assessors and actors are

assigned to each activity.

∑
a∈A

ZA
ia = rAi (i ∈ IA) (2.7)∑

p∈P

ZP
ip = rPi (i ∈ IP ) (2.8)

Constraints (2.9) and (2.10) link the assignment variables to the sequencing variables.

If the same assessor a or the same actor p is assigned to two activities i and j, then a

sequence between these two activities is enforced.

Y A
ij + Y A

ji ≥ ZA
ia + ZA

ja − 1 (i, j ∈ IA, a ∈ A : i < j) (2.9)

Y P
ij + Y P

ji ≥ ZP
ip + ZP

jp − 1 (i, j ∈ IP , p ∈ P : i < j) (2.10)

Constraints (2.11) and (2.12) ensure that either activity i precedes activity j, j precedes

i, or i and j are processed in parallel.

Y A
ij + Y A

ji ≤ 1 (i, j ∈ IA : i < j) (2.11)

Y P
ij + Y P

ji ≤ 1 (i, j ∈ IP : i < j) (2.12)

Constraints (2.13) enforce that the number of assessors assigned to each candidate lies

within the bounds imposed by the assessor-assignment rule.⌊
|A|
2

⌋
≤
∑
a∈A

Vca ≤
⌈
|A|
2

⌉
+ 1 (c ∈ C) (2.13)

Constraints (2.14) determine whether an assessor a has been assigned to a candidate c at
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least once. Vca must be equal to 1 if assessor a is assigned to at least one activity that

requires candidate c. If assessor a is never assigned to an activity that requires candidate

c, then Vca must be equal to 0.

∑
i∈Ic\IL

ZA
ia

|Ic\IL|
≤ Vca ≤

∑
i∈Ic\IL

ZA
ia (c ∈ C, a ∈ A) (2.14)

Finally, constraints (2.15) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (2.15)

In sum, formulation (CT–A) reads as follows:

(CT–A)



Min D

s.t. (2.1)–(2.15)

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i < j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

ZP
ip ∈ {0, 1} (i ∈ IP , p ∈ P )

2.4.2 Formulation CT–F

In this section, we present the continuous-time formulation with resource-flow variables

(CT–F), which is based on the RCPSP formulation of Artigues et al. (2003). This MIP

formulation was first proposed in Zimmermann and Trautmann (2014). The following

explanations closely follow that study.

To model the resource flows, formulation CT–F requires the dummy activities 0 and

n+1; both have a duration of zero, and rA0 = rAn+1 = |A| (rP0 = rPn+1 = |P |) is equal to the

total number of available assessors (actors). Variable FC
ij (FA

ij , F
P
ij ) denotes the quantity of

candidates (assessors, actors) sent from activity i (upon completion) to activity j (at the

beginning). This resource flow prevents the corresponding activities from being executed

simultaneously. For the assessors (actors), the sequencing variable Y A
ij (Y P

ij ) is equal to

1 if some assessors (actors) are sent from activity i to activity j. Because each activity
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requires exactly one candidate, any flow of candidates between two activities will be

either 0 or 1. Since the resource-flow variable FC
ij is defined as binary, this variable is used

simultaneously as a resource-flow and as a sequencing variable. As a sequencing variable,

FC
ij equals 1 if and only if activity j is executed after activity i.

The following constraints have to be considered. Constraints (2.16) determine resource-

feasible start times of the activities for the candidates. The feasible start times of the

activities for the assessors and actors are determined as in formulation CT–A. Con-

straints (2.16) are binding if a candidate is sent from activity i to activity j (FC
ij = 1).

Sj ≥ Si −M + (pi − pAi +M)FC
ij (c ∈ C; i, j ∈ Ic : i 6= j) (2.16)

Constraints (2.17)–(2.22) are the resource-flow conservation constraints. Constraints (2.17)

ensure that each activity i sends 1 unit of resource c ∈ C to either an activity j 6= i or the

dummy activity n + 1 (if activity i is the last activity performed by candidate c). Con-

straints (2.18) ensure that each activity j receives 1 unit of resource c ∈ C from either

an activity i 6= j or the dummy activity 0 (if activity j is the first activity performed by

candidate c). ∑
j∈Ic∪{n+1}: j 6=i

FC
ij = 1 (c ∈ C; i ∈ Ic ∪ {0}) (2.17)

∑
i∈Ic∪{0}: i 6=j

FC
ij = 1 (c ∈ C; j ∈ Ic ∪ {n+ 1}) (2.18)

Constraints (2.19)–(2.22) conserve the resource flow of assessors and actors, respectively.

The number of assessors rAi (actors rPi ) required by activity i must be sent to and received

from other activities that require the same resource.

∑
j∈IA∪{n+1}: j 6=i

FA
ij = rAi (i ∈ IA ∪ {0}) (2.19)

∑
j∈IP∪{n+1}: j 6=i

F P
ij = rPi (i ∈ IP ∪ {0}) (2.20)

∑
i∈IA∪{0}: i 6=j

FA
ij = rAj (j ∈ IA ∪ {n+ 1}) (2.21)

∑
i∈IP∪{0}: i 6=j

F P
ij = rPj (j ∈ IP ∪ {n+ 1}) (2.22)

Constraints (2.23) and (2.24) link the resource-flow variables to the sequencing variables
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for assessors and actors, respectively.

FA
ij ≤ min(rAi , r

A
j )Y A

ij (i, j ∈ IA : i 6= j) (2.23)

F P
ij ≤ min(rPi , r

P
j )Y P

ij (i, j ∈ IP : i 6= j) (2.24)

The sequencing variables Y A
ij and Y P

ij are only used to link the flow variables FA
ij and F P

ij

to the start times of the activities. The flow variables FA
ij and F P

ij can be greater than 1.

For this reason, they cannot be used as sequencing variables.

Constraints (2.1), which determine the AC duration D, and the sequencing constraints

for the assessors (2.4) and actors (2.5), and constraints (2.6), which specify the time win-

dow for the lunch breaks, are also included. The same applies to the assessor-assignment

constraints (2.7), (2.9), and (2.11)–(2.15).

In sum, formulation (CT–F) reads as follows:

(CT–F)



Min D

s.t. (2.16)–(2.24)

(2.1), (2.4)–(2.7), (2.9)

(2.11)–(2.15)

Si ≥ 0 (i ∈ I)

FC
ij ∈ {0, 1} (c ∈ C; i, j ∈ Ic ∪ {0, n+ 1} : i 6= j)

FA
ij ≥ 0 (i, j ∈ IA ∪ {0, n+ 1} : i 6= j)

F P
ij ≥ 0 (i, j ∈ IP ∪ {0, n+ 1} : i 6= j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.4.3 Formulation CT–O

In this section, we present the continuous-time formulation with overlapping variables

(CT–O), which is based on the RCPSP formulation of Kopanos et al. (2014).

For activities that cannot be processed in parallel (i.e., two activities which require the

same candidate), we use the sequencing variables Y C
ij . For activities that can be processed

in parallel, the resource constraints are modeled with the following binary variables.

• For the assessors and the actors, we introduce the sequencing variables Ŷij. Specif-
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(v) OA
ji − Ŷij = 1

Figure 2.6: Five possible cases (i)–(v) that illustrate the values of the sequencing and
overlapping variables

ically, Ŷij = 1 if activity i starts before or at the same time as activity j for the

assessors. These sequencing variables are not defined separately for assessors and

actors, because the activities start at the same time for them.

• For the assessors, we introduce the overlapping variables OA
ji. Specifically, OA

ji = 1 if

activity j finishes after the start of activity i for the assessors. If activity j finishes

before or at the same time as activity i starts, then OA
ji is equal to 0 or 1. The

overlapping variables for the actors OP
ji are defined in the same way.

To illustrate how these variables jointly determine whether two activities i, j ∈ IA are

processed in parallel by the assessors, several possible cases are depicted in Figure 2.6.

For case (ii), the variable OA
ji can be equal to zero or one, but for cases (iv) and (v), the

variable must be equal to one.

Constraints (2.25) determine the resource-feasible start times of the activities for the

candidates. Constraints (2.26) ensure that either activity i precedes activity j, or j

precedes i. In contrast to constraints (2.2) and (2.3), the sequencing variables Y C
ij are

used for any pair of activities involving the same candidate.

Si + pi − pAi ≤ Sj +MY C
ji (c ∈ C, i, j ∈ Ic : i 6= j) (2.25)

Y C
ij + Y C

ji = 1 (c ∈ C, i, j ∈ Ic : i > j) (2.26)

Constraints (2.27)–(2.29) determine the resource-feasible start times of the activities which

can be processed in parallel. Thereby, parameter λ is used to exclude some symmetric

solutions, i.e., for two activities i > j which start at the same time, it is specified that
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Ŷji = 1 and Ŷij = 0. As proposed in Kopanos et al. (2014), we set λ = 0.1.

Sj + pCj ≤ Si + pCi +MŶij (i, j ∈ IA : i > j) (2.27)

Si + pCi + λ ≤ Sj + pCj + (M + λ)Ŷji (i, j ∈ IA : i > j) (2.28)

Ŷij + Ŷji = 1 (i, j ∈ IA : i > j) (2.29)

Constraints (2.30) and (2.31) link the overlapping variables to the start times of the

activities.

(Sj + pj)− (Si + pCi ) ≤MOA
ji (i, j ∈ IA : i 6= j) (2.30)

(Sj + pj − pAj + pPj )− (Si + pCi ) ≤MOP
ji (i, j ∈ IP : i 6= j) (2.31)

Constraints (2.32) and (2.33) ensure that all activities that are executed in parallel do not

require more than the available number of assessors and actors, respectively. Thereby,

the term OA
ji − Ŷij = 1 if activity j starts before activity i and if both activities overlap

for the assessors. The same applies to the actors.

rAi +
∑

j∈IA:j 6=i

rAj (OA
ji − Ŷij) ≤ |A| (i ∈ IA) (2.32)

rPi +
∑

j∈IP :j 6=i

rPj (OP
ji − Ŷij) ≤ |P | (i ∈ IP ) (2.33)

Constraints (2.34) and (2.35) ensure that the terms OA
ji − Ŷij and OP

ji − Ŷij are greater

than or equal to zero.

Ŷij ≤ OA
ji (i, j ∈ IA : i 6= j) (2.34)

Ŷij ≤ OP
ji (i, j ∈ IP : i 6= j) (2.35)

Constraints (2.36) link the sequencing and overlapping variables to the assignment vari-

ables. If the same assessor a is assigned to two activities i and j, then both activities

cannot overlap for the assessors.

(OA
ji − Ŷij) + ZA

ia + ZA
ja ≤ 2 (a ∈ A, i, j ∈ IA : i 6= j) (2.36)

Constraints (2.1), which determine the AC duration D, and constraints (2.6), which

specify the time window for the lunch breaks, are also included. The same applies to the

assessor-assignment constraints (2.13)–(2.15).
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In sum, formulation (CT–O) reads as follows:

(CT–O)



Min D

s.t. (2.25)–(2.36)

(2.1), (2.6), (2.7), (2.13)–(2.15)

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i 6= j)

Ŷij ∈ {0, 1} (i, j ∈ IA : i 6= j)

OA
ji ∈ {0, 1} (i, j ∈ IA : i 6= j)

OP
ji ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.4.4 Formulation DT–P

In this section, we present the discrete-time formulation with pulse variables (DT–P),

which is based on the RCPSP formulation of Pritsker et al. (1969). This formulation

involves the discretization of the planning horizon into uniform time intervals. The

endpoints of a time interval are denoted by the time points t and t + 1, respectively

(t = 0, . . . , T − 1). Binary pulse variables Xit state if activity i starts at time t. For each

time point t, resource constraints are formulated that ensure that the resource capacities

are not violated. We extend the resource constraints of the RCPSP formulation such that

the preparation and evaluation times of the AC activities are considered.

For the ACP, the following constraints have to be taken into consideration. The AC

duration corresponds to the latest completion time of an activity, which is defined by

constraints (2.37).

D ≥
T−pi∑
t=0

(t+ pi)Xit (i ∈ I) (2.37)

Constraints (2.38) and (2.39) ensure that each activity starts once. Furthermore, con-

straints (2.39) state that the lunch breaks are scheduled within the prescribed time win-
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dow.

T−pi∑
t=0

Xit = 1 (i ∈ I\IL) (2.38)

LSL∑
t=ESL

Xit = 1 (i ∈ IL) (2.39)

Constraints (2.40) to (2.42) ensure that the resource capacities are not violated. Con-

straints (2.40) ensure that each candidate performs at most one activity at the same

time t. Candidate c performs activity i at time t if the activity started between time

t − (pi − pAi ) + 1 and t. Constraints (2.41) and (2.42) ensure that all activities that are

scheduled in parallel do not require more than the maximum available numbers of as-

sessors and actors, respectively. An assessor performs activity i at time t if the activity

started between time t− pi + 1 and t− pCi . An actor performs activity i at time t if the

activity started between time t− (pi − pAi + pPi ) + 1 and t− pCi .

∑
i∈Ic

t∑
τ=max(0,t−pi+pAi +1)

Xiτ ≤ 1 (c ∈ C, t = 0, . . . , T ) (2.40)

∑
i∈IA

t−pCi∑
τ=max(0,t−pi+1)

rAi Xiτ ≤ |A| (t = 0, . . . , T ) (2.41)

∑
i∈IP

t−pCi∑
τ=max(0,t−pi+pAi −pPi +1)

rPi Xiτ ≤ |P | (t = 0, . . . , T ) (2.42)

Additionally, the assessor-assignment constraints (2.7), (2.9), (2.11), and (2.13)–(2.15)

are also included. Constraints (2.43) link the variables Xit to the sequencing variables

Y A
ij .

T−pj∑
t=0

tXjt ≥
T−pi∑
t=0

tXit −M + (pi − pCj +M)Y A
ij (i, j ∈ IA : i 6= j) (2.43)
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In sum, formulation (DT–P) reads as follows:

(DT–P)



Min D

s.t. (2.37)–(2.43)

(2.7), (2.9), (2.11), (2.13)–(2.15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T )

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.4.5 Formulation DT–O

In this section, we present the discrete-time formulation with on/off variables (DT–O),

which is based on the RCPSP formulation of Kopanos et al. (2014). For the RCPSP,

Kopanos et al. (2014) extend the formulation of Pritsker et al. (1969) with binary on/off

variables Wit, which specify if activity i is in progress at time t. With these variables, the

resource constraints can be modeled in a different manner than in Pritsker et al. (1969).

For the ACP, we extend the formulation DT–P (cf. Section 2.4.4) with binary on/off

variables. Due to the preparation and the evaluation time, these on/off variables must be

defined individually for candidates, assessors, and actors. However, this results in a large

number of additional variables, which has a negative impact on the performance. For

this reason, we only define the on/off variables for the candidates, and take the resource

constraints of DT–P for the assessors and the actors. Hence, the resource constraints

(2.40) for the candidates are replaced by constraints (2.44)–(2.46).

Constraints (2.44) ensure that each candidate performs at most one activity at a time.∑
i∈Ic:t≤T−pAi −1

Wit ≤ 1 (c ∈ C, t = 0, . . . , T ) (2.44)

Constraints (2.45) link the pulse variables Xit to the on/off variables Wit.

Wit =
t∑

τ=max(0,t−pi+pAi +1)

Xiτ (i ∈ I, t = 0, . . . , T − pAi − 1) (2.45)
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Constraints (2.46) are valid equalities that tighten the formulation.

T−pAi −1∑
t=0

Wit = pi − pAi (i ∈ I) (2.46)

In sum, formulation (DT–O) reads as follows:

(DT–O)



Min D

s.t. (2.44)–(2.46)

(2.37)–(2.39), (2.41)–(2.43)

(2.7), (2.9), (2.11), (2.13)–(2.15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T )

Wit ∈ {0, 1} (i ∈ I, t = 0, . . . , T − pAi − 1)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.5 Lower bounds

In this section, we derive some lower bounds for the AC duration. In Section 2.5.1, we

present four lower bounds based on the assessors’ workload. In Section 2.5.2, we present

two lower bounds based on the candidates’ workload.

2.5.1 Lower bounds based on the assessors’ workload

In this section, we present four different lower bounds (LB1, . . . , LB4) that are based on

the assessors’ workload. In contrast to lower bounds LB1 and LB2, lower bounds LB3

and LB4 consider the no-go relationships.

Lower bound LB1 corresponds to the average workload of the assessors increased by

the shortest preparation time of an activity. This preparation time is included because

the assessors are never required before that time. The lower bound LB1 reads as follows.

LB1 =

⌈∑
i∈IA

rAi (pi − pCi )

|A|

⌉
+ min

i∈IA
pCi

Lower bound LB2 is obtained by considering only the activities that require two as-

sessors. The total workload of these activities must be completed by an even number of
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assessors. Hence, if the number of assessors |A| is odd, then the following lower bound

LB2 is valid.

LB2 =


∑

i∈IA:rAi =2

2(pi − pCi )

|A| − 1

+ min
i∈IA

pCi

Lower bound LB3 takes the no-go relationships of each assessor into consideration. The

workload of all activities to which assessor a cannot be assigned due to no-go relationships

is evenly distributed among the remaining |A| − 1 assessors and increased by the shortest

preparation time. For each assessor a ∈ A, this corresponds to a lower bound.

LB3 = max
a∈A


∑

c∈C:(c,a)∈N

∑
i∈Ic

rAi (pi − pCi )

|A| − 1

+ min
i∈IA

pCi

Lower bound LB4 combines the underlying ideas of LB2 and LB3. We only consider

activities that require two assessors and for which the corresponding candidates have a

no-go relationship with assessor a. For these activities, an even number of assessors is

required at any time. However, if the number of assessors is even and assessor a cannot

be assigned to these activities due to the no-go relationships, it follows that one assessor

a∗ 6= a is not needed. Hence, the workload of all activities that require two assessors

and to which assessor a cannot be assigned is evenly distributed among the remaining

|A| − 2 assessors. Again, the shortest preparation time of an activity is added to increase

the lower bound. Hence, if the number of assessors |A| is even, then lower bound LB4 is

valid.

LB4 = max
a∈A


∑

c∈C:(c,a)∈N

∑
i∈Ic:rAi =2

2(pi − pCi )

|A| − 2

+ min
i∈IA

pCi

2.5.2 Lower bounds based on the candidates’ workload

In this section, we present two lower bounds for the AC duration based on the candidates’

workload. The first lower bound (LB5) is valid in general, and the second lower bound

(LB6) is only valid under certain conditions. Because each candidate must perform the

same tasks, we do not need to differentiate between different candidates. Hence, in the

following, we consider the tasks to be executed by each candidate and the lunch break

rather than activities for individual candidates. The set of tasks and the lunch break are

denoted by Q and l, respectively. It should be noted that the lunch break is not included in

Q. Let pq, p
C
q , and pAq be the duration, the preparation time, and the assessors’ evaluation

time of task q ∈ Q, respectively. The duration of the lunch break is pl, and its preparation
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time (pCl ) and evaluation time (pAl ) are zero.

Because the tasks and the lunch break must be performed sequentially, lower bound

LB5 is valid.

LB5 =
∑

q∈Q∪{l}

(
pq − pAq

)
The term minq∈Q∪{l} p

A
q could be added to LB5 because the AC cannot end before all

tasks and the lunch break are completed. However, the evaluation time of the lunch

break is always equal to zero and, thus, this term is always zero. The lunch break cannot

be excluded from this term, because each candidate can have the lunch break at the end

if the latest possible start time is not violated.

To motivate lower bound LB6, we first consider an illustrative example with two

candidates and three assessors. Each candidate has to perform a task (activities k1 and

k2) that requires two assessors and a lunch break (activities l1 and l2); activities k1 and k2

cannot be scheduled in parallel due to the limited number of assessors. Figure 2.7 depicts

two feasible schedules for this example. In the schedule on the left, both candidates have

the lunch break at the end. Due to the limited number of assessors, candidate C2 has

a waiting time. In this case, the AC duration D corresponds to the lower bound LB5

plus the waiting time. In the schedule on the right, candidate C2 performs the lunch

break first. In this case, the AC duration D correspond to the lower bound LB5 plus the

evaluation time of the task.

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1
k2 l2

k1
k1

k2
k2

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1
k2l2

k1
k1

k2
k2

Figure 2.7: Schedules of an example with (left) and without (right) waiting time for the
candidates

In this example, either a candidate has a waiting time, or the last activity of a candi-

date does not correspond to the lunch break. With this in mind, we propose lower bound

LB6, which is valid under certain conditions. According to our industry partner, these

conditions are fulfilled by a considerable number of real-life instances.

Theorem 1. Let r be a task with the shortest evaluation time. If (i) b|A|/2c < |C| and

(ii) all tasks except task r require two or more assessors, then the following lower bound

68



Paper II: MIP formulations for an application of project scheduling

is valid.

LB6 = δ0 + min (δ1, δ2)

whereas: δ0 =
∑

q∈Q∪{l}

(
pq − pAq

)
δ1 = min

q∈Q\{r}
pAq

δ2 = min
q∈Q\{r}

(pq − pCq − pAq ) + min
q∈Q\{r}

pAq −max(pl, pr − pAr )

Proof. If the conditions (i) and (ii) hold for a given problem instance, any feasible solution

belongs either to case 1 or to case 2.

• Case 1: The last activity of at least one candidate does not correspond to a lunch

break or an activity of task r. It results that after the candidate completes this last

activity, the assessors have an evaluation time of at least δ1. Hence, δ0 + δ1 is a

lower bound if the solution belongs to case 1.

• Case 2: The last activity of each candidate either corresponds to a lunch break

or an activity of task r. We show that in this case, at least one candidate has a

waiting time of at least δ2 because condition (i) implies that not all candidates can

perform an activity that requires two assessors at the same time. δ2 corresponds

to the length of the minimum time interval during which the required number of

assessors exceeds the number of available assessors.

Let k denote an arbitrary task that requires two assessors. To determine δ2, we first

consider the four possibilities for ordering the last activities such that the lunch

break or task r are performed at the end by each candidate (cf. Figure 2.8).

a) The lunch break is performed at the end and preceded by task r. Task r is

preceded by task k.

b) Task r is performed at the end and preceded by the lunch break. The lunch

break is preceded by task k.

c) Task r is performed at the end and preceded by task k. The lunch break ends

some time before task k.

d) The lunch break is performed at the end and preceded by task k. Task r ends

some time before task k.

In Figure 2.8, the time point t4 in a) and b) corresponds to the earliest possible

finish time of task k for the assessors. The time points t1, t2, and t3 correspond

69



Paper II: MIP formulations for an application of project scheduling

time

Dδ0t1 t2 t3 t4

a) C

A1

A2

Task k Task r Lunch

Task k
Task k

Task r

b) C

A1

A2

Task k Task rLunch

Task k
Task k

Task r

c) C

A1

A2

Task k Task r

Task k
Task k

Task r

d) C

A1

A2

Task k Lunch

Task k
Task k

Figure 2.8: All possible orders of the last activities and corresponding assessor require-
ments

to the possible start times of task k for the assessors if no candidate has a waiting

time. The values of these time points are as follows.

t1 = δ0 − pl − (pr − pAr )− (pk − pCk − pAk )

t2 = δ0 − (pr − pAr )− (pk − pCk − pAk )

t3 = δ0 − pl − (pk − pCk − pAk )

t4 = δ0 − pl − (pr − pAr ) + pAk

Overall, the latest possible start time of task k for the assessors corresponds to

max(t1, t2, t3) = δ0 −min(pl, pr − pAr )− (pk − pCk − pAk ).

If t4 > max(t1, t2, t3) and no candidate has a waiting time, then there is a time

interval with a minimum length of t4 −max(t1, t2, t3) during which every candidate

performs a task that requires two assessors. Because b|A|/2c < |C|, the required

number of assessors exceeds the available number of assessors in this interval. To

resolve this conflict, at least one task k must be delayed, which leads to a minimum

waiting time for at least one candidate of t4 −max(t1, t2, t3).
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To derive a lower bound for the AC duration, we determine the smallest possible

value of t4 and the largest possible value of max(t1, t2, t3) as follows.

t4 ≥ δ0 − pl − (pr − pAr ) + min
q∈Q\{r}

pAq

max(t1, t2, t3) ≤ δ0 −min(pl, pr − pAr )− min
q∈Q\{r}

(pq − pCq − pAq )

Hence, the minimum waiting time corresponds to

t4 −max(t1, t2, t3) ≥ min
q∈Q\{r}

(pq − pCq − pAq ) + min
q∈Q\{r}

pAq −max(pl, pr − pAr )

= δ2.

Thereby, we used α + β − min(α, β) = max(α, β), where α, β are two arbitrary

numbers. Hence, δ0 + δ2 is a lower bound if the solution belongs to case 2.

Overall, LB6 = δ0 +min (δ1, δ2) is a lower bound for the AC duration if conditions (i) and

(ii) hold.

In the performance analysis, we use the maximum of these problem-specific lower

bounds. If for an instance the necessary conditions for any of the lower bounds are not

fulfilled, we set their respective value to 0.

LB+ = max(LB1, LB2, . . . , LB6)

2.6 Comparative analysis

We implemented the MIP formulations presented in Section 2.4 in AMPL, and we used the

Gurobi Optimizer 6.0.5 as solver. All calculations were performed on an HP workstation

with an Intel Xeon 2.67 GHz CPU and 24 GB RAM. The computational experiment

was performed using four real-life instances and 240 test instances derived from real-life

data. We limited the CPU time of the solver to 3,600 seconds for the real-life instances

and to 600 seconds for the test instances. We used Gurobi with its default settings.

Additionally, we applied Gurobi with the parameter MIPFocus set to 1. The parameter

MIPFocus determines the MIP solution strategy of the solver. When this parameter is set

to 1, Gurobi focuses on quickly generating good feasible solutions rather than increasing

the lower bound. The default setting is 0, which aims to balance between finding good

feasible solutions and proving optimality. For the DT formulations, the upper bound of
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Table 2.5: Real-life instances

Instance |C| |A| |P | |E| |I| No-go relationships

RL1 7 10 2 5 42 no

RL2 11 11 3 5 66 no

RL3 9 11 3 5 54 yes

RL4 6 9 3 5 36 no

the AC duration was set to T = 200 for all instances; this value is prescribed by the

human resource provider.

In Section 2.6.1, we describe the instances that we used in our computational study.

In Section 2.6.2, we discuss our computational results for the real-life instances. In Sec-

tion 2.6.3, we provide the results for the test instances. In Section 2.6.4, we compare our

problem-specific lower bounds.

2.6.1 Instances

The number of candidates |C|, assessors |A|, actors |P |, tasks |E| and activities |I| of the

four real-life instances are listed in Table 2.5. The last column indicates whether at least

one no-go relationship exists. We denote the real-life instances with RL1, . . . , RL4.

To test the different MIP formulations, we additionally devised a test set with 240

test instances based on real-life data. For the RCPSP, the well-known test instances of

Kolisch and Sprecher (1997) were generated by systematically varying the complexity

factors resource strength (RS), resource factor (RF ), and network complexity (NC).

These factors are only partially applicable to generate the ACP instances. The factor

NC corresponds to the average number of precedence relationships per activity. Because

there are no precedence relationships among the activities of the AC, we do not require

such a factor. The factors RF and RS correspond to the average portion of the resources

used by an activity and the scarcity of the resources, respectively. The factor RF can

be interpreted as the average number of assessors required by an activity. To ensure

that the instances are as close to reality as possible, we selected real-life tasks with given

requirements for assessors and actors. Hence, we do not require a factor such as RF .

The factor RS can be interpreted as the scarcity of the assessors. We use a similar

factor to determine the number of available assessors. In total, we generated the 240 test

instances by varying five complexity factors. Thereby, the employed experimental levels

of each complexity factor were based on real-life data provided by the human resource
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management service provider. The complexity factors are as follows.

The complexity factors nC and nE correspond to the number of candidates and

tasks, respectively, and determine the number of activities of an instance. The tasks

were randomly selected from a set of 15 real-life tasks. The experimental levels nC ∈
{4, 5, . . . , 10, 11} and nE ∈ {4, 5} were used.

The complexity factor aS corresponds to the average number of assignments per as-

sessor. This factor is used to determine the number of assessors nA of an instance. The

number of assessors is equal to the nearest integer to
∑

i∈IA r
A
i /a

S; thus, the numera-

tor corresponds to the total number of assessor assignments. The experimental levels

aS ∈ {6.0, 8.5, 10.4} correspond to the observed real-life minimum, average, and maxi-

mum.

The complexity factor aN corresponds to the proportion of assessors who have one or

more no-go relationships (no-go assessors). The number of no-go assessors is given by the

nearest integer to aNnA. The no-go assessors were randomly selected from the set of all

assessors. The experimental levels aN ∈ {1
6
, 1
3
} were used.

The complexity factor aR corresponds to the average number of no-go relationships

per no-go assessor. The number of no-go relationships is equal to the product of aR and

the number of no-go assessors. The no-go relationships were randomly assigned to pairs

of candidates and no-go assessors such that (1) each no-go assessor has at least one no-go

relationship and (2) at least b|A| /2c different assessors can be assigned to each candidate.

The experimental levels aR ∈ {2, 3} were used.

Because the actors are paid for each role play in which they actually perform, they

are not considered to be a critical resource. Hence, the number of actors was set to 3 for

all instances, which corresponds to the observed real-life maximum.

For each combination of complexity factor levels, an instance was generated; this leads

to 8 · 2 · 3 · 2 · 2 = 192 test instances. Additionally, 8 · 2 · 3 = 48 test instances without no-

go relationships (i.e., aN = aR = 0) were generated.

2.6.2 Computational results: real-life instances

For the real-life instances RL1, . . . , RL4, the results obtained by the solver using the

MIP formulations CT–A, CT–F, CT–O, DT–P, and DT–O with MIPFocus set to 0 are

reported in Table 2.6. We compare the objective function values (D) with the lower

bounds obtained by the solver (LB) and the maximum value over all problem-specific

lower bounds (LB+). For each instance, the best objective function values obtained are

highlighted in boldface. Using the default solver settings, the solver obtains on average

the best objective function values with CT–O and the highest lower bounds with DT–P.
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Table 2.6: Results for real-life instances with MIPFocus set to 0

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB

LB+

RL1 89 67 90 37 88 74 128 81 95 71 82

RL2 136 59 158 36 132 49 149 103 173 72 110

RL3 106 62 121 36 107 49 125 80 118 63 90

RL4 83 70 86 36 82 74 87 81 86 80 82

Table 2.7: Results for real-life instances with MIPFocus set to 1

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB

LB+

RL1 86 49 86 36 88 49 98 76 88 70 82

RL2 124 49 128 36 129 54 159 70 150 69 110

RL3 102 49 100 36 108 49 118 59 114 63 90

RL4 82 56 84 36 84 55 82 82 82 76 82

For all real-life instances, these lower bounds are smaller than or equal to the problem-

specific lower bound. The problem-specific lower bound of instance RL4 corresponds to

the objective function value obtained with CT–O, i.e., this solution is optimal.

Table 2.7 lists the results obtained by the solver with MIPFocus set to 1. For each

instance, the best objective function values obtained are highlighted in boldface. Except

for CT–O, the average AC duration is improved. However, on average, the lower bounds

are worse. CT–A devises the best solutions for three instances, CT–F for two instances,

and DT–P and DT–O for one instance. The smallest instance (RL4) is even solved to

optimality using formulation DT–P. Both, CT–A and DT–O, also find a solution with an

optimal objective function value, but they do not prove optimality within the prescribed

CPU time.

2.6.3 Computational results: test instances

Based on the number of activities |I|, we divide the 240 test instances into small-sized (20–

34 activities, 75 instances), medium-sized (35–49 activities, 90 instances), and large-sized
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(50–66 activities, 75 instances) instances. For these three ranges of |I|, the average number

of variables and constraints for the different formulations are presented in Figure 2.9.

Regardless of the number of activities, DT–O has the highest number of variables. For

small- and medium-sized instances, DT–O has also the highest number of constraints.

However, with an increasing number of activities, the number of constraints increases

less for the DT formulations than for the CT formulations. For the large-sized instances,

CT–O has the highest number of constraints.
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Figure 2.9: Average number of variables (left) and constraints (right)

Table 2.8 reports the average relative gaps between the obtained solutions and the

problem-specific lower bound (gap+ = (D − LB+)/D), as well as the average relative

gaps between the obtained solutions and the lower bounds obtained by the solver (gap =

(D − LB)/D). To evaluate the quality of the solutions, we use gap+. To evaluate the

quality of the lower bounds provided by the solver, we use gap. For each solver setting

used, the best results are highlighted in boldface.

Regardless of the solver settings employed, the best gap+ is obtained with CT–A

(10.3% for MIPFocus set to 0 and 9.3% for MIPFocus set to 1), and the worst gap+ is

obtained with DT–P. In contrast, the smallest gap is obtained with DT–O. Similarly to

the results of Kopanos et al. (2014), better solutions are obtained with DT–O than with

DT–P. We conclude that the CT formulations provide better solutions, and that the DT

formulations provide better lower bounds. For all formulations, gap considerably exceeds

gap+. We deduce that the problem-specific lower bounds are considerably higher than

the lower bounds obtained by the solver within the prescribed CPU time limit.

With CT–A, CT–O, and DT–P, feasible solutions are obtained for all 240 test instances

within the prescribed CPU time limit. With CT–F and MIPFocus set to 0, feasible

solutions are obtained only for 216 instances (i.e., 90% of the instances). With MIPFocus

set to 1, this number increases to 235 (i.e., 97.9%); feasible solutions could not be obtained
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Table 2.8: Aggregated results for all 240 test instances

Formulation
MIP-

CT–A CT–F CT–O DT–P DT–O
Focus

Average gap+ [in %]
0 10.3 15.1 12.5 27.7 19.4

1 9.3 11.1 11.2 26.8 18.5

Average gap [in %]
0 44.7 59.8 50.4 37.5 36.6

1 56.7 65.0 55.1 44.6 37.8

Number of feasible solutions
0 240 216 240 240 234

1 240 235 240 240 238

Number of optimal solutions
0 36 29 32 22 19

1 27 24 30 22 27

Number of best solutions
0 170 51 80 22 60

1 161 69 81 27 57

for five of the large-sized instances.

To determine the number of optimal solutions, we compare the objective function

value obtained with the maximum value over all problem-specific lower bounds and the

lower bound obtained by the solver. With 36 instances, CT–A obtains the highest number

of optimal solutions.

The number of best solutions corresponds to the number of times that a formulation

generates a best solution. With MIPFocus set to 0, CT–A provides a best solution for

170 instances. This means that the other formulations generate better solutions for 70

instances only.

With MIPFocus set to 1, the average solution quality for all formulations is improved.

This is indicated by a reduction of gap+. For CT–F, this reduction is quite considerable

(from 15.1% to 11.1%). This might indicate that the MIP solution strategy used by the

solver exploits the resource-flow information in an efficient manner. However, the average

gap is larger with MIPFocus set to 1 because this solver setting focuses less on improving

the lower bounds but gives priority to the quick generation of good feasible solutions.

Therefore, the number of feasible solutions is increased for CT–F. Surprisingly, for the

CT formulations CT–A, CT–F and CT–O, the number of optimal solutions obtained is

lower with MIPFocus set to 1.

Table 2.9 reports the average results for all instances with the same problem charac-
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Table 2.9: Average gap+ for different instance characteristics

Instance MIP- Average gap+

characteristics Focus
CT–A CT–F CT–O DT–P DT–O

|I|

20–34
0 1.8 3.1 2.6 10.7 11.0

1 2.4 3.0 2.6 6.8 6.0

35–49
0 8.3 14.9 11.4 28.0 12.7

1 7.8 9.3 9.5 28.0 13.8

50–66
0 21.2 31.8 23.6 44.4 36.5

1 18.1 22.0 21.8 45.4 37.3

aS

6
0 10.1 15.2 12.8 29.3 22.4

1 9.6 11.3 11.9 23.4 20.3

8
0 12.1 17.8 14.3 31.0 20.4

1 11.2 12.9 12.5 32.2 19.4

10.4
0 8.8 11.9 10.4 22.9 15.3

1 7.1 9.0 9.1 24.8 15.8

aN

0
0 10.7 16.9 12.5 25.9 18.8

1 9.2 10.6 11.0 24.9 17.5

0.17
0 10.3 14.9 12.8 27.4 19.4

1 9.4 11.3 11.2 26.9 17.5

0.33
0 10.2 14.5 12.2 29.0 19.6

1 9.3 11.2 11.2 27.6 20.0

aR

0
0 10.7 16.9 12.5 25.9 18.8

1 9.2 10.6 11.0 24.9 17.5

2
0 10.3 15.9 12.4 26.8 18.0

1 9.4 11.3 10.8 27.0 17.8

3
0 10.2 13.5 12.6 29.6 21.1

1 9.3 11.2 11.7 27.6 19.8

f

11–13
0 9.3 13.0 12.2 25.6 10.6

1 8.6 10.0 10.5 26.8 11.2

13–15
0 8.9 13.5 10.7 24.4 18.8

1 7.3 9.4 9.8 22.9 17.5

15–17
0 11.5 17.0 13.5 30.3 23.2

1 10.7 12.4 12.2 28.8 21.9
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teristics. For each solver setting used, the best results are highlighted in boldface. The

overall results show that with MIPFocus set to 1 the best solutions are obtained. How-

ever, for CT–A and small-sized instances, the solver performs better with MIPFocus set

to 0.

The number of activities |I| and the level of complexity factor aS, which defines the

number of available assessors, have a significant impact on both relative gaps. In contrast,

the levels of complexity factors aN and aR, which define the no-go relationships, have no

systematic impact on the relative gaps. Parameter f corresponds to the average duration

of the activities. The performance of DT–O is affected most by the value of f . For

instances with short activities (11 ≤ f ≤ 13), the performance of DT–O is almost as

good as the performance of CT–A. However, for the instances with longer activities, the

average gaps are much higher. Surprisingly, such an effect is not observed with DT–P.

According to the results obtained by Koné et al. (2011) for the RCPSP, DT formu-

lations are better for instances with activities that have a short duration. Although the

durations of the AC activities are quite short, we do not observe similar results for the

ACP. Overall, the CT formulations provide the best solutions. A drawback of the DT

formulations may be the large number of variables (cf. Figure 2.9) which depend on the

number of time points considered. In the RCPSP, the number of variables is reduced

considerably with a simple preprocessing like the definition of earliest and latest start

times for the activities. However, this preprocessing is based on precedence relationships,

which do not exist in the ACP. Considering the CT formulations, CT–A performs best,

and CT–O performs better than CT–F.

2.6.4 Computational results: problem-specific lower bounds

Table 2.10 compares the six problem-specific lower bounds presented in Section 2.5. The

last row shows the number of instances for which the different lower bounds obtained the

highest values. LB1 and LB2 each provide the highest lower bounds for more than 90

instances. However, lower bounds that consider no-go relationships (LB3 and LB4) only

provide the highest values for a few instances. If the conditions for LB6 hold, this lower

bound provides the highest values for 22 instances.

2.7 Conclusions

Comparisons of alternative MIP formulations in the literature for project scheduling prob-

lems are primarily based on generic test instances. In this study, we analyzed the per-

formance of two discrete-time and three continuous-time MIP formulations in a real-life
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Table 2.10: Comparison of problem-specific lower bounds

Lower bound LB1 LB2 LB3 LB4 LB5 LB6

Number of instances with
93 90 0 8 32 22

best lower bound

application of project scheduling. We considered the problem of planning assessment cen-

ters. For this problem, we developed new MIP formulations, and we provided problem-

specific lower bounds. In contrast to the results generally obtained for the RCPSP, our

comparative study indicates that the CT formulations outperform the DT formulations

in terms of solution quality. However, using the DT formulations, the best MIP-based

lower bounds are obtained.

The assessment center planning problem is an interesting and challenging optimization

problem for future research. An important area is the development of heuristic solution

procedures. Preliminary versions of an MIP-based heuristic and a list-scheduling heuristic

are presented in Rihm and Trautmann (2016) and Zimmermann and Trautmann (2015).

In the MIP-based heuristic, first, the activities are scheduled without assessor assignments;

second, the assessors are assigned to the activities using the CT formulation with resource-

flow variables presented in this study. In the list-scheduling heuristic, the activities are

scheduled sequentially based on problem-specific priority rules. The MIP formulations

and the problem-specific lower bounds presented in this paper can be used to analyze the

performance of such heuristic approaches.
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Abstract

In an assessment center, candidates for job vacancies perform a set

of tasks during which so-called assessors evaluate them. We discuss

a novel planning problem that consists of scheduling the tasks and as-

signing a prescribed number of assessors to the tasks subject to a given

deadline and specific assessor-assignment constraints. The objective is

to minimize the total operational costs. We develop a mixed-integer

linear programming formulation of this problem. To improve the per-

formance, we introduce preprocessing techniques and a row generation

scheme. We demonstrate the effectiveness of the proposed approach for

a set of test instances derived from real-life data.

3.1 Introduction

Assessment centers (ACs) are used by human resource managers to evaluate candidates’

skills and abilities relevant for a job vacancy (cf. Collins et al., 2003). Typically, each

candidate performs the same set of predefined tasks, such as presentations, in-basket ex-

ercises, structured interviews, and role-play exercises (cf. Spector et al., 2000). Generally,

the execution of a task requires a separate room and some assessors (i.e., psychologists or

managers) to observe and to evaluate the candidates. The role-play exercises additionally

require some actors to simulate a situation that frequently occurs in the vacant position.

The operational costs of an AC increase with each individual assessor, actor, and room.

We investigate the assessment center resource investment problem (ACRIP). In the

ACRIP, a set of candidates and a set of tasks is given. Each candidate must perform each

task exactly once and must have some free time for a lunch break within a given time

window. During each task, a prescribed number of assessors and actors must be present.

The tasks may include some preparation time for the candidate at the beginning and some

evaluation time for the assessors and actors at the end. Typically, the candidates prepare

the tasks in a common room. After the preparation time has expired, the assessors, the

actors, and the candidate join in a separate room. At the end, the assessors and the

actors stay in the room to discuss their observations and to evaluate the candidate. This

evaluation time can differ between assessors and actors. The total number of assessors,

actors, and rooms that are available is subject to decision. However, the operational costs

increase with each additional required assessor, actor, and room. Two assessor-assignment

rules constrain the assignment of assessors to the tasks. First, each candidate must be

observed by at least half of the total number of assessors rounded down and by at most half
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of the total number of assessors rounded up plus one; this supports an objective and fair

evaluation of each candidate. Second, no assignment is allowed between candidates and

assessors who know each other (no-go relationship). The number of times that an assessor

can observe the same candidate is unlimited. The ACRIP consists of a) scheduling all

tasks and a lunch break for each candidate and b) assigning a room and the prescribed

number of assessors and actors to the tasks such that the above-described constraints and

a given deadline (i.e., length of a day) are met. The objective is to minimize the total

costs that arise with the required number of assessors, actors, and rooms.

To the best of our knowledge, the assessment center planning problem (ACP) intro-

duced by Grüter et al. (2014) is the only scheduling problem discussed in the context of

assessment centers so far. In the ACP, the total duration of the AC is to be minimized

while the available number of assessors and actors are given. In contrast to the ACRIP,

the rooms and the deadline are not considered. All the other constraints are identical.

However, the costs of the AC are affected to a very limited extend only by the duration,

because the assessors, actors, and rooms are paid on a daily basis in practice.

In this paper, we present a mixed-integer linear programming (MIP) formulation for

the ACRIP. We tighten the formulation by introducing some preprocessing techniques.

Furthermore, we propose a novel row generation scheme that exploits the structural prop-

erties of the ACRIP to speed up the search process. Row generation has been known for

a long time and has recently shown promising results for various planning problems (cf.,

e.g., Della Croce et al., 2017; Pferschy and Staněk, 2017). In our row generation scheme,

some constraints that mainly drive the computation time of a general-purpose solver are

dropped and only provided to the solver at runtime if necessary. Each time the solver

finds a feasible integer solution that violates one of the dropped constraints, a violated

constraint is added to the formulation and a MIP-based heuristic attempts to transform

the solution into a feasible solution for the ACRIP. In a computational study, we test

the MIP formulation with and without the row generation scheme on a set of instances

derived from real-life data. The results show that the use of the row generation scheme

increases the number of optimal solutions which are found within a prescribed time limit

considerably.

The remainder of this paper is organized as follows. In Section 3.2, we describe the

ACRIP in more detail. In Section 3.3, we discuss the related literature. In Section 3.4,

we describe the solution approach. In Section 3.5, we report the computational results.

In Section 3.6, we conclude the paper with a summary and some directions for future

research.
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Table 3.1: Data of the illustrative example

E1 E2 E3 Lunch

Activity related to candidate C1 1 4 7 10

Activity related to candidate C2 2 5 8 11

Activity related to candidate C3 3 6 9 12

Required number of assessors 2 1 2 0

Required number of actors 1 1 0 0

Total duration 14 11 9 6

Duration of preparation time (candidates) 4 3 0 0

Duration of evaluation time (assessors) 4 3 2 0

Duration of evaluation time (actors) 4 2 0 0

3.2 Illustration of the ACRIP

In this section, we illustrate the ACRIP with an example that comprises three candidates

(C1, C2, C3) and three tasks (E1, E2, E3). The deadline to complete the AC is 40.

Table 3.1 lists the data. Each candidate’s tasks and lunch break represent individual

activities, e.g., activity 1 corresponds to task E1 of candidate C1. Hence, 12 activities are

considered in total. Activities 1–3 require each 2 assessors, 1 actor, and they have a total

duration of 14 time units including 4 time units for the preparation and the evaluation,

respectively. The number of assessors, actors, and rooms that are available is not limited.

The example does not include candidates and assessor with a no-go relationship. The

costs for one assessor, actor, and room are 1,000, 300, and 500, respectively. Finally, the

earliest and latest start times for the lunch breaks are 15 and 29, respectively.

Figure 3.1 presents an optimal solution for the illustrative example. This solution

includes 4 assessors (A1–A4), 2 actors (P1, P2), and 3 rooms (R1–R3). Hence, the total

costs are 4·1,000+2·300+3·500=6,100. The assessor-assignment rules are met, because

each candidate is observed by 2 or 3 different assessors.

3.3 Related literature

In this section, we review planning problems discussed in the literature that are similar

to the ACRIP. In Subsection 3.3.1, we review the existing solution methods for the ACP.

In Subsection 3.3.2, we review two related planning problems that arise in the context of

project scheduling. The ACRIP is also related to planning problems such as assigning
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Figure 3.1: Optimal schedule of the illustrative example

shifts to a multi-skilled workforce (cf., e.g., Krishnamoorthy et al., 2012) and scheduling

operating rooms (cf., e.g., Cardoen et al., 2010).

3.3.1 Assessment center scheduling

The ACP originates from a human resource management service provider that organizes

ACs regularly for other companies, and is first described by Grüter et al. (2014). Rihm

et al. (2016) compare the performance of two discrete-time (DT) and three continuous-

time (CT) MIP formulations to solve the ACP. In DT formulations, the activities can

only start at predefined time points. The duration between the time points reflects the

planning accuracy, which is typically around 5 minutes in the ACP. Conversely, in CT

formulations, the activities can start at any time point. The results show that the CT

formulations provide better solutions within limited computation time; however, the best

MIP-based lower bounds are obtained with the DT formulations.

Heuristic procedures are presented by Zimmermann and Trautmann (2015) and Rihm

and Trautmann (2016). Zimmermann and Trautmann (2015) present a multi-pass list

scheduling heuristic, which is based on a serial schedule generation scheme. Rihm and

Trautmann (2016) develop a heuristic that decomposes the ACP into a scheduling and

an assignment subproblem. The scheduling subproblem determines the start times of all

tasks and the lunch break for each candidate, whereas the assignment subproblem defines

which assessors are assigned to which candidate during each task. The results show that
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this decomposition heuristic outperforms the above-mentioned approaches. However, this

method does not guarantee to find an optimal solution.

In this paper, we present a DT formulation for the ACRIP because DT formulations

yield the best lower bounds. To speed up the search process of a general-purpose solver,

we present a row generation scheme that also separates the scheduling and the assignment

decisions.

3.3.2 Project scheduling

The ACRIP is similar to various project scheduling problems discussed in the literature.

A project is characterised by a set of activities, which require certain amounts of scarce

renewable resources during their execution. The planning problem consists in scheduling

the activities subject to prescribed completion-start precedence and renewable-resource

constraints. In the ACRIP, each candidate’s tasks and lunch break can be considered as

a project activity, and the candidates, assessors, actors, and rooms represent renewable

resources. However, owing to the specific assessor-assignment rules, solution approaches

for project scheduling problems are not directly applicable to the ACRIP.

In the context of the project scheduling literature, a similar distinction between the

objective functions is made. On the one hand, the minimization of the total duration

for given resource capacities is referred to as the resource-constrained project scheduling

problem (cf., e.g., Artigues, 2010), and on the other hand, the minimization of the total

resource costs subject to a prescribed deadline for the project completion is referred to as

the resource investment problem (cf., e.g., Möhring, 1984). For a comprehensive overview

of the different project scheduling problems, we refer to Hartmann and Briskorn (2010).

3.4 Exact approach

In this section, we discuss our solution methods in detail. We introduce the notation

in Subsection 3.4.1, present preprocessing techniques in Subsection 3.4.2, establish the

MIP formulation in Subsection 3.4.3, and describe the row generation scheme in Subsec-

tion 3.4.4.

3.4.1 Notation

Tables 3.2 and 3.3 provide the notation used in this paper.
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Table 3.2: Sets and parameters of the MIP formulations

A Set of available assessors

C Set of candidates

I Set of activities (including lunch breaks)

IA Set of activities that require at least one assessor

IP Set of activities that require at least one actor

Ic Set of activities that require candidate c ∈ C
IL Set of lunch breaks

N Set of candidate-assessor pairs (c, a) with a no-go relationship

kA Cost for an assessor

kP Cost for an actor

kR Cost for a room

ei Earliest start time for activity i

li Latest start time for activity i

nA Upper bound on the number of assessors required

nA Lower bound on the number of assessors required

nP Lower bound on the number of actors required

nR Lower bound on the number of rooms required

pi Total duration of activity i (including preparation and

execution times)

pCi Preparation time of activity i for candidates

pAi Evaluation time of activity i for assessors

pPi Evaluation time of activity i for actors

rAi Number of assessors required by activity i

rPi Number of actors required by activity i

T Deadline for the duration of the assessment center

3.4.2 Preprocessing

In this subsection, we devise upper and lower bounds on the required number of assessors,

actors, and rooms, respectively. An upper bound on the number of assessors is necessary

to define the set of available assessors. An upper bound on the number of assessors follows

from the assessor-assignment rules. Because each candidate must be observed by at least

half of the total number of assessors rounded down, it follows that the maximum number
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Table 3.3: Variables of the MIP formulation

nA Total number of assessors required

nP Total number of actors required

nR Total number of rooms required

Vca

{
= 1, if assessor a is assigned to candidate c at least once

= 0, otherwise

Wa

{
= 1, if assessor a is assigned to at least one candidate

= 0, otherwise

Xit

{
= 1, if activity i starts at time point t

= 0, otherwise

Yij

{
= 1, if activity i is performed before j 6= i by the assessors

= 0, otherwise

Zia

{
= 1, if assessor a is assigned to activity i

= 0, otherwise

of assessors cannot exceed nA.

nA = min
c∈C

(
2
∑
i∈Ic

rAi

)
+ 1 (3.1)

A lower bound for the number of assessors (nA) that are required to run the AC

corresponds to the maximum number of assessors required by an activity. Another lower

bound is obtained by dividing the total workload of the assessors by their total time

available. A similar lower bound is used by Drexl and Kimms (2001) for the resource

investment problem. The total time that is available for the assessors corresponds to the

deadline minus the shortest preparation time of an activity, because the assessors cannot

start before that time.

nA = max

(
max
i∈IA

rAi ,

⌈∑
i∈IA r

A
i (pi − pCi )

T −mini∈IA p
C
i

⌉)
(3.2)

Analogously, we define a lower bound on the number of actors (nP ) and rooms (nR),
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respectively.

nP = max

(
max
i∈IP

rPi ,

⌈∑
i∈IP r

P
i (pi − pCi − pAi + pPi )

T −mini∈IP p
C
i

⌉)
(3.3)

nR =

⌈∑
i∈IA(pi − pCi )

T −mini∈IA p
C
i

⌉
(3.4)

3.4.3 MIP formulation

The MIP formulation is based on the discrete-time formulation that performs the best

in the comparative analysis of Rihm et al. (2016) for the ACP. We use the binary vari-

ables Xit, which are equal to 1 if activity i ∈ I starts at time t = ei, . . . , li. To model the

assessor-assignment rules, we additionally use three types of binary variables: the sequenc-

ing variables Yij, the activity-assignment variables Zia, and the candidate-assignment

variables Vca.

The objective is to minimize the total costs of the AC

kAnA + kPnP + kRnR. (3.5)

Constraints (3.6) state that each activity starts once. The earliest and latest start times

(ei and li) are required to model the time windows for the lunch break activities (i ∈ IL).

For the other activities (i ∈ I\IL), we set ei = 0 and li = T − pi. This ensures that each

activity is completed within the deadline T .

li∑
t=ei

Xit = 1 (i ∈ I) (3.6)

Constraints (3.7) prevent that any candidate c performs more than one activity at the

same time t. Because the evaluation time for the assessors and actors is included in the

total duration, activity i is performed at time t by a candidate if activity i starts between

time t+ 1− pi + pAi and t.

∑
i∈Ic

min(li,t)∑
s=max(ei,t+1−pi+pAi )

Xis ≤ 1 (c ∈ C; t = 0, . . . , T ) (3.7)

Analogously, constraints (3.8)–(3.10) ensure that only activities that do not require more

than the determined number of assessors, actors, and rooms are executed at the same
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time.

∑
i∈IA

min(li,t−pCi )∑
s=max(ei,t+1−pi)

rAi Xis ≤ nA (t = 0, . . . , T ) (3.8)

∑
i∈IP

min(li,t−pCi )∑
s=max(ei,t+1−pi+pAi −pPi )

rPi Xis ≤ nP (t = 0, . . . , T ) (3.9)

∑
i∈IA

min(li,t−pCi )∑
s=max(ei,t+1−pi)

rAi Xis ≤ nR (t = 0, . . . , T ) (3.10)

Without the assessor-assignment rules, constraints (3.6)–(3.10) would be sufficient to

model the ACRIP. The following constraints only address the assessor-assignment rules.

Constraints (3.11) link the start time variables to the sequencing variables.

li∑
t=ei

(t+ pi)Xit ≤
lj∑
t=ej

(t+ pCj )Xjt + T (1− Y A
ij ) (i, j ∈ IA : i 6= j) (3.11)

Constraints (3.12) ensure that the required number of assessors are assigned to each

activity.

∑
a∈A

Zia = rAi (i ∈ IA) (3.12)

Constraints (3.13) require that Wa = 1 if assessor a is assigned to any activity.

Zia ≤ Wa (i ∈ IA, a ∈ A) (3.13)

Constraints (3.14) state that the total number of assessors required is equal to the sum

of all assessors that are assigned to at least one activity.

∑
a∈A

Wa = nA (a ∈ A) (3.14)

Constraints (3.15) link the activity-assignment variables to the sequencing variables. If

assessor a is assigned to activities i and j, then activities i and j must be performed in
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sequence.

Yij + Yji ≥ Zia + Zja − 1 (i, j ∈ IA, a ∈ A : i < j) (3.15)

Constraints (3.16) forbid cycles in the sequencing decisions.

Y A
ij + Y A

ji ≤ 1 (i, j ∈ IA : i < j) (3.16)

Constraints (3.17) address the assessor-assignment rules, i.e., each candidate must be

observed by at least half of the total number of assessors rounded down and by at most

half of the total number of assessors rounded up plus one.

0.5nA − 0.5 ≤
∑
a∈A

Vca ≤ 0.5nA + 1.5 (c ∈ C) (3.17)

Constraints (3.18) link the candidate-assignment variables Vca to the activity-assignment

variables ZA
ia, i.e., Vca = 1 if and only if assessor a is assigned to at least one activity that

requires candidate c.

∑
i∈Ic\IL

ZA
ia

|Ic\IL|
≤ Vca ≤

∑
i∈Ic\IL

ZA
ia (c ∈ C, a ∈ A) (3.18)

Constraints (3.19) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (3.19)
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In sum, formulation (F) reads as follows.

(F)



Min kAnA + kPnP + kRnR

s.t. (3.6)–(3.19)

nA ≤ nA ∈ N

nP ≤ nP ∈ N

nR ≤ nR ∈ N

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

Wa ∈ {0, 1} (a ∈ A)

Xit ∈ {0, 1} (i ∈ I; t = ei, . . . , li)

Yij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Zia ∈ {0, 1} (i ∈ IA, a ∈ A)

3.4.4 Row generation scheme

In this subsection, we present a row generation scheme for formulation (F) to improve

the performance of a general-purpose MIP solver. The scheme exploits the fact that the

scheduling and the assignment subproblem of the ACRIP are solved much faster if they

are solved independently. For this reason, the linking constraints (3.11) are dropped and

only provided to the solver at runtime if necessary.

For overview purposes, the row generation scheme is summarized as a flowchart in

Figure 3.2. The solver starts the branch-and-bound process without considering the link-

ing constraints. Whenever an integer solution (S−) is found, we check if solution S− is

feasible for the ACRIP, i.e., if all linking constraints are met. If so, we accept S− as a

new incumbent solution and the solver continues with the branch-and-bound process. If

not, we return one violated linking constraint to the solver, which will thereupon discard

solution S−. We select that violated linking constraint for which the corresponding pair

of activities overlap for assessors the most. Notably, we only have to check the linking

constraints for all pairs of activities that overlap for assessors in solution S−.

If solution S− is not feasible for the ACRIP, we attempt to build a feasible solution

with the following MIP-based heuristic. We fix the start time variables Xit and solve a

reduced model that contains the objective function (3.5) and the constraints (3.11)–(3.19).

In general, this reduced problem is solved to optimality or is shown to be infeasible within

very short computation time. If the heuristic devises a solution that is feasible for the

ACRIP, we return this solution to the solver and the solver continues with the branch-

and-bound process.
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Start

Branch-and-bound

New candi-
date solution

Feasible?Optimal?
Add a linking

constraint

Apply MIP-
based heuristic

Stop

Yes No

No

Yes

Figure 3.2: Overview of the row generation scheme

3.5 Computational analysis

In this section, we evaluate the performance of the proposed approaches. We implemented

the MIP formulation (F) and the row generation scheme (R) in Python 3.5, and we used

the Gurobi Optimizer 7.0 with the default solver settings for the optimization. We limited

the computation time of the solver to 600 seconds. All computations were performed on

a workstation equipped with two 6-core Intel(R) Xeon(R) X5650 CPUs running at 2.66

GHz, and with 24 GB RAM.

In Subsection 3.5.1, we present the test instances used. In Subsection 3.5.2, we provide

the numerical results.

3.5.1 Test instances

For the computational analysis, we adapt two test sets from the ACP. The first set contains

the four real-life instances presented by Grüter et al. (2014), and the second set contains
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the 240 systematically generated instances presented by Rihm et al. (2016). In the first set,

all instances contain the same five tasks and only the number of candidates (= 6, 7, 9, 11)

varies. In the second set, each instance contains four or five tasks and between four and

eleven candidates. We drop the number of assessors and actors, which are included in

both test sets, because these numbers are to be determined in the ACRIP. The set of

available assessors A contains all assessors of the corresponding ACP-instance (including

their no-go relationships) and some additional assessors (without no-go relationships) such

that |A| = nA. nA corresponds to the upper bound on the number of assessors presented

in Section 3.4.2. Without the additional assessors, a feasible solution may not exist if the

deadline is short.

For all the instances, we set the costs to kA = 1, 000, kP = 300, and kR = 500. To

compute the deadline T , we proceed as described by Drexl and Kimms (2001) for the

resource investment problem. We compute a lower bound for the duration of the AC and

multiply it by a parameter (Θ). Because all activities that require the same candidate

are performed sequentially, the sum of the durations of these activities corresponds to a

lower bound for the total duration. Hence, deadline T is computed as follows.

T = Θ max
c∈C

(∑
i∈Ic

(pi − pAi )

)
(3.20)

For the real-life instances, we use Θ = 1.2, 1.3, . . . , 1.8. For the test instances, we use

Θ = 1.2, 1.4, 1.6, 1.8.

3.5.2 Numerical results

Table 3.4 lists the results for the four real-life instances (RL1,. . . ,RL4) and Θ = 1.4. We

compare the required computation times in seconds (CPU), the objective function values

(OFV) and the lower bounds (LB) obtained by the solver for formulation (F) and the row

generation scheme (R). For each instance, the best objective function values obtained are

highlighted in boldface. In contrast to formulation (F), the row generation scheme solves

all four instances to optimality within the time limit.

Solving the ACRIP with several deadlines gives an insight into the tradeoff between

the duration and the total costs of the AC. Figure 3.3 shows the relative cost savings if

the deadline is varied. As benchmark, we use Θ = 1.2. The solutions are obtained with

the row generation scheme. Increasing the deadline enables cost savings of up to 40%.

Table 3.5 summarizes the results for the test set. The row generation scheme (R)

provides feasible solutions to all instances, whereas formulation (F) fails to find a feasible
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Table 3.4: Numerical results for real-life instances and Θ = 1.4

Instance
F R

OFV LB CPU OFV LB CPU

RL1 11,600 10,600 600 10,600 10,600 17

RL2 25,700 13,100 600 13,100 13,100 395

RL3 13,400 13,100 600 13,100 13,100 116

RL4 8,800 7,800 600 7,800 7,800 38
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Figure 3.3: Total cost savings for the real-life instances

solution for 31 instances. In total, the row generation scheme is able to devise much more

optimal solutions than formulation (F). For this reason, formulation (F) takes on average

more than twice the time of the row generation scheme.

To calculate the relative gaps between the solutions and lower bounds obtained by

the solver, we use the formula ((OFV − LB)/LB). The average gap obtained with the

row generation scheme is 1.4% for Θ = 1.2 and decreases as the value of Θ increases.

Hence, the level of factor Θ has an impact on the performance of formulation (F). For

formulation (F), such an effect is not observed; the average gap is 13.3% for Θ = 1.2 and

15.2% for Θ = 1.8.

3.6 Conclusions and outlook

In this study, we considered scheduling assessment centers with minimal operational costs.

Up to now, only solution approaches had been proposed that target a minimal duration.

In practice, however, the personnel and the rooms required for the assessment process are

often paid on a daily basis. Hence, reducing the duration of the assessment center does
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Table 3.5: Numerical results for test instances

Θ
All

1.2 1.4 1.6 1.8

Number of feasible solutions
F 218 231 240 240 929

R 240 240 240 240 960

Number of optimal solutions
F 65 83 89 108 345

R 182 206 225 226 839

Average computation time [s]
F 481 436 411 384 428

R 219 141 95 80 134

Average gap [%]
F 13.3 13.6 13.4 15.2 13.9

R 1.4 1.0 0.8 0.7 1.0

not affect the costs. For this reason, we proposed to minimize the costs for the personnel

and rooms directly subject to a given deadline for the total duration. We developed a

mixed-integer programming formulation and proposed a row generation scheme to speed

up the search process. Our computational results validate the effectiveness of the row

generation scheme on a set of instances from the literature.

A promising idea for future research is to eliminate some symmetric solutions from the

search space, because the number of symmetric solutions of this problem may slow down

a general-purpose solver. Furthermore, it will be interesting to apply the row generation

scheme to related planning problems from the literature such as the multi-skill project

scheduling problem (cf., e.g., Bellenguez-Morineau and Néron, 2007).
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Abstract

Staff assignment is a compelling exercise that affects most compa-

nies and organizations in the service industries. Here, we introduce a

new real-world staff assignment problem that was reported to us by a

Swiss provider of commercial employee scheduling software. The prob-

lem consists of assigning employees to work shifts subject to a large

variety of critical and noncritical requests, including employees’ per-

sonal preferences. Each request has a target value, and deviations from

the target value are associated with integer acceptance levels. These ac-

ceptance levels reflect the relative severity of possible deviations, e.g.,

for the request of an employee to have at least two weekends off, having

one weekend off is preferable to having no weekend off and thus re-

ceives a higher acceptance level. The objective is to minimize the total

number of deviations in lexicographical order of the acceptance levels.

Staff assignment approaches from the literature are not applicable to

this problem. We provide a binary linear programming formulation and

propose a matheuristic for large-scale instances. The matheuristic em-

ploys effective strategies to determine the subproblems and focuses on

finding good feasible solutions to the subproblems rather than proving

their optimality. Our computational analysis based on real-world data

shows that the matheuristic scales well and outperforms commercial

employee scheduling software.

4.1 Introduction

Employee scheduling problems arise in hospitals, banks, hotels, police stations, compa-

nies in the service industry, and other organizations. In their general form, employee

scheduling problems involve a) the determination of shift types, b) the temporal schedul-

ing of shifts, and c) the assignment of employees to shifts. For a comprehensive overview

of employee scheduling problems, we refer to Ernst et al. (2004), Van den Bergh et al.

(2013), and De Bruecker et al. (2015). We focus here on the assignment of employees to

shifts after the shift types and their start times have been determined. In most real-world

applications, the assignment of employees to shifts is a challenging task because a large

variety of critical and noncritical requests must be considered. Critical requests pertain

to work laws and policies imposed by the management and must be accepted to obtain a

feasible assignment. Noncritical requests are usually related to employee preferences and
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can be refused in feasible assignments. However, accepting noncritical requests increases

employee satisfaction, which in turn positively affects productivity and eventually results

in high customer satisfaction. In practice, most employee scheduling software packages

model the trade-offs between noncritical requests based on user-defined weights. This

places a heavy burden on the user because she or he is required to repeatedly adjust

the weights of the noncritical requests until a satisfactory solution is obtained (cf., e.g.,

Parr and Thompson, 2007). Only if relevant historical data is available in the form of

past schedules, the configuration of these weights can be partially automated (cf., e.g.,

Mihaylov et al., 2016).

The planning problem considered in this paper stems from a Swiss provider of employee

scheduling software who has developed a new user interface to specify trade-offs among

noncritical requests that is not based on user-defined weights. The user defines a target

value for each request and assigns integer acceptance levels (AL) from the set {0,1,. . . ,100}
to deviations from this target value. The acceptance levels are ordered lexicographically,

i.e., a deviation associated with a lower acceptance level is considered more important

than any number of deviations associated with higher acceptance levels. This framework

has received positive customer feedback because the user has an intuitive understanding

of how the specified inputs affect the final solution. The framework gives rise to a new

type of staff assignment problem that we refer to as the staff assignment problem with

lexicographically ordered acceptance levels (SAP-LAL). The objective in the SAP-LAL

is to minimize the total number of deviations in lexicographical order of the acceptance

levels.

The literature on exact approaches for employee scheduling problems with multiple

and conflicting requests concentrates on goal programming approaches (e.g., Beaulieu

et al., 2000; Azaiez and Al Sharif, 2005; Topaloglu, 2006; Al-Yakoob and Sherali, 2007;

Eiselt and Marianov, 2008; Falasca et al., 2011; Louly, 2013). In goal programming,

which was introduced by Charnes et al. (1955), each request is assigned a target value,

and deviations from the target values are minimized. Goal programming approaches

are based on mathematical programs and thus provide great flexibility to accommodate

a large variety of requests. The most widely used variants of goal programming are

weighted and lexicographic goal programming (cf., e.g., Tamiz et al., 1995). Weighted

goal programming approaches are not applicable to the SAP-LAL because the range

of weights required to ensure that less-accepted deviations are always minimized before

more-accepted deviations grows rapidly with the number of different acceptance levels and

may become large enough to cause numerical problems for solvers. Existing lexicographic

goal programming approaches minimize deviations sequentially and have therefore only
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been designed for applications with a predefined ranking of requests. Such a predefined

ranking is not given in the SAP-LAL. Furthermore, despite improvements in optimization

software and computer hardware, the performance of exact goal programming approaches

is still insufficient for large-scale problem instances.

For large-scale instances, various heuristics have been proposed. Among those meth-

ods, matheuristics have recently shown promising results (cf. Smet and Vanden Berghe,

2012; Della Croce and Salassa, 2014; Smet et al., 2014b). Matheuristics decompose the

original problem into subproblems which are then solved using a mathematical program

(cf., e.g. Raidl and Puchinger, 2008; Boschetti et al., 2009; Maniezzo et al., 2009; Ball,

2011). Hence, they combine the flexibility of mathematical programs to easily accommo-

date complex constraints with the ability of heuristics to find good solutions quickly. The

performance of matheuristics strongly depends on the construction of the subproblems.

Existing matheuristics for employee scheduling problems either use purely random strate-

gies for constructing the subproblems (cf. Smet and Vanden Berghe, 2012), or construct

the subproblems such that the corresponding mathematical programs are as large as the

programs for the original problems in terms of constrains and variables (cf. Della Croce

and Salassa, 2014; Smet et al., 2014b). The existing matheuristics are therefore not ap-

propriate for large-scale SAP-LAL instances because for those instances it is crucial that

the subproblems focus on the decisions which directly impact the quality of the solution

and that the corresponding mathematical programs are small.

In this paper, we propose a new strategy for decomposing the requests into sub-

requests which allows us to formulate the SAP-LAL as a lexicographic goal program.

Despite the decomposition, the resulting lexicographic goal program constitutes an exact

solution approach. To reduce the size of the program, we propose novel aggregation

techniques. For large-scale instances, we develop, based on the lexicographic goal program,

a matheuristic that iteratively improves an initial feasible solution by reassigning specific

subsets of employees. The main methodological feature of the matheuristic is an employee

selection rule for constructing the subproblems effectively. The rule selects, for each

subproblem, a subset of employees such that at least one employee in the subset has a

refused request and that this refusal can be eliminated by a swap of shifts with at least

one other employee in the subset. This rule differentiates the proposed matheuristic from

existing matheuristics as it ensures that the subproblems focus on the decisions which

directly impact the quality of the solution. Moreover, since the number of employees is

the main driver of the problem size, the selection rule allows to write small and compact

mathematical programs for the subproblems that involve only the selected employees.

In contrast to existing matheuristics (cf., e.g., Della Croce and Salassa, 2014), which
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obtain the subproblems by fixing the values of some of the decision variables of the

complete model, our strategy significantly reduces the number of redundant constraints

and variables of the respective models and thus improves running times.

In a computational analysis, we apply the exact approach and the matheuristic to a

real-world instance and a test set that contains 45 instances derived from real-world data.

The exact approach finds optimal solutions for small- and medium-sized instances, and

the matheuristic delivers high-quality solutions for large-scale instances with limited com-

putational effort. The matheuristic even outperforms a commercial employee scheduling

software that is tailored to the SAP-LAL. It turns out that it is beneficial to run the

matheuristic in an eager manner, i.e., to impose a short time limit for the solution of the

subproblems. This setup of the matheuristic exploits that optimal solutions of the sub-

problems are often found within a few seconds, while most of the time is spent on proving

the optimality of this solution. This finding is of general interest for the development of

matheuristics, independent of the context.

The remainder of the paper is structured as follows. In Section 4.2, we formally

introduce the SAP-LAL and provide an illustrative example. In Section 4.3, we review

the literature on employee scheduling. In Sections 4.4 and 4.5, we describe the exact

solution approach and the matheuristic, respectively. In Section 4.6, we report the design

and the results of our computational analysis. Section 4.7 concludes the paper with a

summary and directions for future research.

4.2 Staff assignment problem with lexicographically

ordered acceptance levels

The staff assignment problem with lexicographically ordered acceptance levels (SAP-LAL)

was reported to us by a Swiss provider of employee scheduling software. The problem

stems from an online tool that currently supports many companies and organizations in

assigning employees to work shifts. We describe the SAP-LAL formally in Section 4.2.1

and provide an illustrative example in Section 4.2.2.

4.2.1 Problem description

Consider a set of employees, a set of work shifts with predefined start times and durations,

and a set of critical and noncritical requests. Each employee possesses a specific set of

skills. There is no difference in skill level and the skills of an employee determine which

shifts he or she can perform. When an employee has a skill set that allows her or him
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Table 4.1: Types of requests

Type Description Critical?

1. At most one shift per employee and day yes

2. Exactly one employee is assigned to each shift yes

3. Only employees with the required skills can be assigned to a shift yes

4. Preferences for days off should be considered no

5. Avoid more than 5 consecutive work days no

6. No isolated days off no

7. 11 hours rest between consecutive shifts no

8. Either zero or two shifts on weekends no

9. Lower bound on number of weekends off no

10. Workload should not exceed target no

11. Workload should not be below target no

12. No. of early shifts should not exceed target no

13. No. of late shifts should not exceed target no

to perform more than one shift, she or he actually possesses all separate skills to perform

each single shift. Hence, according to the classification of De Bruecker et al. (2015), the

skills are of the categorical type.

Table 4.1 provides a list of the 13 types of critical and noncritical requests considered

in this paper. According to the software provider, these 13 types of requests are sufficient

to cover the modeling needs of most companies. For a comprehensive list of other requests

that frequently occur in the literature, we refer to Van den Bergh et al. (2013). Critical

requests pertain to work laws, contract specifications, and the availability and skills of

employees and must therefore be accepted to obtain a feasible assignment. The critical

requests are as follows. First, an employee can be assigned to at most one shift per day.

Second, each shift requires exactly one employee. This means that if several employees

work at the same time, multiple shifts will run in parallel. Third, each shift requires a

specific set of skills, and only employees with these skills can be assigned to the corre-

sponding shift. Noncritical requests concern employees’ personal preferences and can be

refused in a feasible assignment. Among the noncritical requests presented in Table 4.1,

requests of type 6 might be less known. The main purpose of requests of type 6 is to

prevent so-called on-off-on work patterns. In an on-off-on work pattern, the employee

works on day d, has day d+1 off, and works again on day d+2. Employees usually prefer
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on-off-off-on work patterns. For example, if an employee works on 5 of 7 days, she or

he generally prefers to have two consecutive days off (e.g. Thursday and Friday) rather

than two isolated (non-consecutive) days off (e.g. Tuesday and Friday). Requests of type

6 allow to express this preference.

Usually, multiple requests of the same type are specified in an instance of the problem.

For example, the lower bound on the number of weekends off can be specified individually

for different employees. Hence, each noncritical request has an individual target value. In

addition, for each noncritical request, a piecewise-constant function maps deviations from

the target value to integer acceptance levels from the set {0,1,. . . ,100}. These mapping

functions are defined by the scheduler in consultation with the employees. An acceptance

level of zero indicates that the corresponding deviation is unacceptable and leads to an

infeasible assignment. An acceptance level of 100 indicates that the target value or an

even better value was achieved. Figure 4.1 shows two possible mapping functions for a

request of type 9. Figure 4.1(a) corresponds to a request that an employee has at least

two weekends off during the planning horizon. Hence, if the employee has two or more

weekends off, an acceptance level of 100 is achieved. Having only one weekend off is

associated with an acceptance level of 80, and having no weekend off is associated with

an acceptance level of 50. Figure 4.1(b) corresponds to a request that an employee has at

least one weekend off during the planning horizon. Having one or more than one weekend

off is associated with an acceptance level of 100. Having no weekend off is associated

with an acceptance level of 60. The acceptance levels express the relative severity of

the corresponding deviations. The lower the acceptance level, the more severe is the

corresponding deviation. Hence, having no weekend off is more severe for an employee

with a mapping function as the one shown in Figure 4.1(a), than for an employee with a

mapping function as the one shown in Figure 4.1(b). Due to the lexicographic nature of

the acceptance levels, the difference in severity is infinite and can thus not be quantified.

The SAP-LAL consists of finding an assignment of employees to work shifts such that

all critical requests are accepted and that the number of deviations from the target values

of noncritical requests is minimized. Thereby, a reduction in the number of less-accepted

deviations is always preferred to any number of reductions in more-accepted deviations.

For example, a schedule with four deviations associated with acceptance level 60 is always

preferred to a schedule with only one deviation with acceptance level 50. The specific

structure of the objective function requires the development of novel types of exact and

heuristic solution approaches, which makes the SAP-LAL an interesting problem from

the academic point of view. The problem is also interesting from the practical point of

view, as the acceptance levels allow users to consider multiple conflicting requests in an
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intuitive and direct manner. Due to the lexicographic ordering of the acceptance levels,

the users have a clear understanding of how a change in the specification of acceptance

levels affects the schedule.

4.2.2 Illustrative example

The planning horizon of the illustrative example spans two weeks. There are five differ-

ent types of shifts: A, B, C, E (early shift), and L (late shift). Figure 4.2 shows for

each shift type the start and end times, the set of employees that possess the required

skills (compatible employees), and the days on which the corresponding shifts must be

performed. Five employees (Ann, Bob, Dan, Eva, and Gil) can be assigned to the shifts

subject to the types of critical and noncritical requests provided in Table 4.1. There are

two requests of type 4: employee Bob wants to have Thursday and Friday of week 2 off.

Refusing either of those two requests is associated with acceptance level 30. Table 4.2

lists all requests of the illustrative example. In total, there are 355 critical and noncritical

requests, which we label with a number from 1 to 355. Some requests are given for each

employee and day of the planning horizon. For example, there are 70 requests of type 1

because there are 5 employees and 14 days. Column 2 of Table 4.2 lists for each type the

labels of the corresponding requests. Notice that the requests of type 2 and 3 affect shifts

and not employees. Table 4.2 also contains the acceptance levels that are associated with

refusing a request. Figures 4.1, 4.3, and 4.4 visualize the mapping functions of request

types 9 to 13.

AL

100

80

50

0 # Weekends off
0 1 2

(a)

AL

100

60

0 # Weekends off
0 1 2

(b)

Figure 4.1: Mapping functions for requests of type 9
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Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat Sun

Shift

Start End

Compatible

employees

8am 4pm Ann, Dan, Eva A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

11am 7pm Ann, Bob, Dan B1 B3 B5 B6 B7 B9 B11 B13 B14

4am 12pm Dan, Eva, Gil E1 E2 E3 E4 E5 E8 E9 E10 E11 E12

3pm 11pm Bob, Dan, Gil L2 L4 L8 L10 L12

9am 5pm Ann, Bob C3 C9 C11

Figure 4.2: Illustrative example: shifts that need to be performed

AL

100

70

30

0
Workload

[h]
64 72 80 88 96

(a)

AL

100

60

20

0
Workload

[h]
24 32 40 48 56

(b)

Figure 4.3: Mapping functions of request types 10 and 11

4.3 Literature review

In this section, we review existing solution techniques for employee scheduling prob-

lems. These techniques can be broadly divided into the three groups: mathematical

programming-based techniques, metaheuristics, and matheuristics. Sections 4.3.1–4.3.3

contain a description of popular techniques from each group and discuss the difficulties

that arise when applying these techniques to the SAP-LAL.

4.3.1 Mathematical programming-based techniques

Mathematical programming-based techniques appear to be the most popular ones for em-

ployee scheduling problems (cf. Van den Bergh et al., 2013). These approaches model

the employee scheduling problem as a linear, integer or mixed-integer program that is

solved either with a general-purpose solver or a specific algorithm such as column gener-
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Table 4.2: Requests for illustrative example

Type Request Affected employees AL

1 1 – 70 Ann, Bob, Dan, Eva, Gil 0

2 71 – 111 — 0

3 112 – 152 — 0

4 153 – 154 Bob (wants days 11, 12 off) 30

5 155 – 199 Ann, Bob, Dan, Eva, Gil 60

6 200 – 259 Ann, Bob, Dan, Eva, Gil 60

7 260 – 324 Ann, Bob, Dan, Eva, Gil 1

8 325 – 334 Ann, Bob, Dan, Eva, Gil 30

9 335 – 336 Ann, Dan Fig. 4.1(a)

337 – 339 Bob, Eva, Gil Fig. 4.1(b)

10 340 – 342 Ann, Bob, Dan Fig. 4.3(a)

343 – 344 Eva, Gil Fig. 4.3(b)

11 345 – 347 Ann, Bob, Dan Fig. 4.3(a)

348 – 349 Eva, Gil Fig. 4.3(b)

12 350 – 352 Dan, Eva, Gil Fig. 4.4(a)

13 353 – 355 Bob, Dan, Gil Fig. 4.4(b)

ation, branch-and-price, or Lagrangian relaxation. The main advantage of mathematical

programming-based techniques is the flexibility to accommodate a large variety of requests

in the underlying mathematical programming formulation.

For problems with multiple conflicting requests, the literature on mathematical

programming-based techniques concentrates on goal programming formulations (cf., e.g.,

Jones and Tamiz, 2002, 2010; Romero, 2014; Jones and Tamiz, 2016). In goal program-

ming, each request is associated with a target value, and deviations from target values

are captured by deviational variables. A so-called achievement function penalizes the

deviations according to the preferences of the decision maker. The main variants of goal

programming are lexicographic, Chebyshev and weighted goal programming.

Lexicographic goal programming requires a ranking of the requests that reflects their

importance. The unwanted deviations from the target values are minimized sequentially

according to the given ranking. This variant has been used by decision makers who do

not need to model trade-offs between requests because they have a clear ranking of the

requests in mind (cf., e.g., Berrada et al., 1996). Chebyshev goal programming minimizes
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AL

100

60

20

0
# Early

shifts
0 1 2 3 4 5 6

(a)

AL

100

60

20

0
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0 1 2 3 4
(b)

Figure 4.4: Mapping functions of request types 12 and 13

the maximum unwanted deviation across all requests. It has been used by decision makers

who are interested in accepting requests in a balanced manner (cf., e.g., Ignizio, 2004).

Weighted goal programming allows for direct trade-offs among requests. A weight is

defined for each deviational variable that quantifies its relative importance. The achieve-

ment function is the weighted sum of the deviational variables. The traditional form of

weighted goal programming assumes that the weights are constant and do not change at

further distances from the target value (cf., e.g., Beaulieu et al., 2000). As this assumption

is too restrictive to fit the preferences of many decision makers, various extensions have

been proposed.

Charnes and Collomb (1972) introduced interval goal programming, which allows de-

cision makers to specify a target interval instead of a target value. Deviations from either

end of the interval are penalized in the achievement function. Subsequently, Charnes

et al. (1976) introduced penalty functions that penalize large deviations by imposing a

higher weight than that assigned to small deviations. This idea was extended by Kvanli

(1980) and Jones and Tamiz (1995), who proposed more complex penalty functions includ-

ing decreasing functions, functions with discontinuities and non-linear functions. Romero

(2004) consolidated U -shaped penalty functions in an achievement function with a general

structure. This achievement function also encompasses the basic variants of lexicographic

and Chebyshev goal programming. The use of complex penalty functions requires the

introduction of binary variables and additional constraints, which increases the computa-

tional cost. To address this drawback of interval goal programming models, Chang (2006)

and Chang and Lin (2009) proposed techniques to reduce the number of variables and

constraints required to model specific penalty functions.

A shared drawback of mathematical programming-based techniques is that the un-
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derlying models contain a substantial number of constraints and variables when they are

formulated for large-sized instances. Despite the recent improvements in optimization

software and computer hardware (cf., e.g., Lodi, 2010; Koch et al., 2011; Bixby, 2012),

it is often the case for large instances that these techniques do not return any feasible

solution in a reasonable amount of computation time. Furthermore, specific difficulties

arise for individual groups of techniques. The existing lexicographic goal programming

approaches fail to consider trade-offs between requests as they optimize the requests se-

quentially. For example, assume that for a problem instance with only one employee

and two types of requests only three feasible schedules (A, B, and C) exist. The first

request is to have a workload of at most 30 hours and the second request is to have four

weekends off. In schedule A, the employee has four weekends off, but exceeds the target

workload by 20 hours. In schedule B, the employee has only one weekend off, but the

target workload request is met. In schedule C, the employee has three weekends off and

the workload exceeds the target by only 1 hour. Existing lexicographic goal programming

approaches would always select schedule A or B, but never schedule C, although this

appears to be the most favourable schedule. The existing weighted goal programming ap-

proaches and their extensions allow for a more accurate modelling of the decision maker’s

preferences and have been applied to many real-world applications (cf. the reviews of

Tamiz et al., 1995; Jones and Tamiz, 2002). However, to apply weighted goal program-

ming to the SAP-LAL, the penalty functions need to assign weights in such a way that

the weight of a less-accepted deviation is always greater than the sum of all weights of

more-accepted deviations. For example, for a small problem instance with 40 different

acceptance levels and ten deviational variables per acceptance level, the largest weight

has to be more than 1040 times larger than the smallest weight. Such large numbers may

slow down commercial solvers or even cause numerical problems. The same difficulties

arise for Chebyshev goal programming approaches where the maximum weighted devia-

tion across all requests is minimized. Therefore, in the Section 4.4, we present an exact

approach based on lexicographic goal programming that unlike existing lexicographic goal

programming approaches is able to consider trade-offs among requests.

4.3.2 Metaheuristics

An important group of approaches for employee scheduling problems are metaheuristics.

This type of solution approach has been successfully used for real-world problems where

exact approaches are not able to devise satisfactory solutions within an acceptable time

limit. The general idea is to iteratively improve a single solution or a population of

solutions with a local improvement procedure until a stopping criterion is met. In addition
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to a local improvement procedure, metaheuristics also employ various search strategies

to escape from local optima. Metaheuristics tend to find good solutions in a reasonable

amount of computation time when a) it is easy to construct a feasible solution quickly, b)

the solution space is smooth, i.e., promising search directions can be determined easily,

and c) when a direct representation of a solution exists. The most popular metaheuristics

for employee scheduling problems are simulated annealing (cf., e.g., Bertels and Fahle,

2006; Cordeau et al., 2010; Smet et al., 2014a), tabu search (cf., e.g., Dowsland, 1998;

Bard and Wan, 2006; Bester et al., 2007), and genetic algorithms (cf., e.g., Aickelin and

Dowsland, 2000, 2004; Maenhout and Vanhoucke, 2008; Valls et al., 2009; Bai et al., 2010).

Although the main structure of metaheuristics is generic, a problem-specific imple-

mentation and fine tuning of parameters is necessary to obtain satisfactory performance

(cf., e.g., Kopanos et al., 2010). This complicates the adaption of the solution approach

to small changes in the problem setting as for example additional requests. In contrast

to exact approaches, a further disadvantage of metaheuristics is that they cannot sys-

tematically evaluate the quality of the generated solutions. Regarding the application of

metaheuristics to the SAP-LAL, the main difficulty is that due to the lexicographic nature

of acceptance levels, the solution space of typical problem instances is non-smooth, which

makes it difficult to find promising search directions. Furthermore, the large number of

conflicting requests reduces the effectiveness of metaheuristics in general (cf., e.g., Jones

et al., 2002) as evaluating the quality of a solution requires more computation time.

4.3.3 Matheuristics

Recently, matheuristics have delivered promising results for various scheduling problems.

Raidl and Puchinger (2008), Boschetti et al. (2009), Maniezzo et al. (2009) and Ball

(2011) provide general reviews of matheuristics. Matheuristics combine the flexibility of

mathematical programs to easily accommodate complex constraints and the ability of

heuristics to find good solutions quickly. The basic idea is to employ the mathematical

program for solving specific subproblems of the original problem for which metaheuristics

have difficulties in dealing with. The size of the subproblems can be adjusted to ensure fast

and predictable optimization behavior (cf. Kopanos et al., 2010). A stable optimization

behaviour is particularly important in a dynamic setting, i.e., when requests are frequently

modified or new requests have to be considered.

In the context of employee scheduling, only few matheuristics have been introduced.

These matheuristics belong either to the group of constructive matheuristics or to the

group of improvement matheuristics. The former iteratively generates a feasible solution,

whereas the latter takes as input an initial solution which is improved iteratively.
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Smet et al. (2014b) propose a constructive matheuristic for the shift minimization

personnel task scheduling problem. The solution is constructed by iteratively assigning

subsets of employees to tasks using an integer program until all tasks have been assigned.

The subsets of employees are selected randomly without using any information of the

current solution.

Smet and Vanden Berghe (2012) propose an improvement matheuristic for the problem

considered in Smet et al. (2014b). In each improvement iteration randomly selected

subsets of employees are reassigned to tasks. For the same problem, Smet et al. (2014b)

use the concept of local branching (cf. Fischetti and Lodi, 2003) to define the subproblems

such that only a limited number of binary variables can change their values.

Della Croce and Salassa (2014) provide an exact formulation and an improvement

matheuristic for a nurse rostering problem that stems from an Italian hospital. To obtain

an initial solution, the exact formulation is solved for a prescribed time limit. This solution

is then iteratively improved by the matheuristic. In each iteration, only a small number of

decision variables are allowed to change their values. This is achieved by either using the

concept of local branching or imposing lower and upper bounds directly on the variables.

The performance of matheuristics depends strongly on the definition of the subprob-

lems. Ideally, the subproblems are defined such that a) the complexity of the subproblem

makes a mathematical program the most appropriate solution methodology, b) the sub-

problem focuses only on the critical decisions that have a direct impact on the quality

of the solution, and c) the corresponding mathematical program can be formulated in a

compact way without redundant constraints and variables. The strategies of the above

described matheuristics to define the subproblems can in principle be applied to the SAP-

LAL. However, these strategies do not appear to be suitable for the following reasons. The

improvement matheuristic of Della Croce and Salassa (2014) constructs the subproblems

by imposing additional constraints on the decision variables, either by using the concept

of local branching or by imposing lower and upper bounds on variables to fix their values.

A major drawback of local branching is that the size of the subproblem in terms of number

of decision variables and constraints is equally big as the original full problem. As the full

formulation for typical instances of the SAP-LAL is already large, imposing additional

constraints leads to subproblem formulations that are difficult to handle. Fixing variables

by imposing upper and lower bounds has a similar disadvantage as the size of the subprob-

lem formulations in terms of number of decision variables and constraints can only exceed

the size of the full formulation. Although the preprocessing procedures of state-of-the-art

solvers are able to remove most of the fixed variables and the corresponding constraints,

reading such large models in each iteration considerably decreases the performance of the
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overall approach. Also the matheuristic of Smet et al. (2014b) relies on local branching

and is thus not appropriate for the SAP-LAL. The matheuristic of Smet and Vanden

Berghe (2012) defines subproblems by randomly selecting a set of employees. Selecting

employees randomly often creates subproblems, which do not consider the critical deci-

sions that have a direct impact on the solution quality. In Section 4.6, we demonstrate

that selecting employees specifically is indeed superior to selecting employees randomly.

4.4 Exact solution approach

In Rihm and Baumann (2015b), we introduced a preliminary version of the exact solu-

tion approach. In this paper, we extend the preliminary version by including all requests

related to early and late shifts. Furthermore, we developed a simplified notation and pre-

sentation of the lexicographic goal program, and we provide a more detailed explanation

of the constraints.

The exact solution approach consists of two phases. In the first phase, each request

is decomposed into a set of sub-requests (see Section 4.4.1). In the second phase, a

lexicographic goal program is formulated to iteratively optimize the sub-requests (see

Section 4.4.2). In Section 4.4.3, we illustrate the exact solution approach by means of the

illustrative example that we introduced in Section 4.2.2.

4.4.1 Phase 1: Request decomposition

The goal of the decomposition is to transform the original problem into a problem that can

be solved efficiently with lexicographic goal programming. Lexicographic goal programs

require a clear order of the goals to be optimized. Such an order cannot be found for the

requests directly because a single request might be associated with different acceptance

levels. We therefore decompose the requests into so-called sub-requests that are associated

with only one acceptance level. It follows that each sub-request can either be accepted

or refused. The sub-requests can then be sorted in ascending order of their acceptance

levels. The decomposition is achieved as follows. The number of sub-requests is equal to

the number of kinks in the mapping function of the original request. Each sub-request

is assigned the target value and the acceptance level from the corresponding kink in the

mapping function.

Figure 4.5 illustrates the decomposition of the workload request of Figure 4.3(a).

This request can be refused to different degrees, and is therefore decomposed into four

sub-requests. The first sub-request (bottom left plot in Figure 4.5) is refused when the

workload is less than 72 hours. Such a refusal is associated with an acceptance level of 30.
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Figure 4.5: Decomposition of a request into four sub-requests.

The second sub-request (second plot from the left) is refused when the workload is less

than 80 hours. Such a refusal is associated with an acceptance level of 70. The meaning

of the third and fourth sub-request can be described analogously. A workload of less than

64 hours, or of more than 96 hours is infeasible. After the decomposition, each of the

four sub-requests is associated to exactly one acceptance level, so a clear order of the

sub-requests results.

4.4.2 Phase 2: Lexicographic goal program

In the second phase, we formulate and solve a lexicographic goal program (LGP). For

each sub-request, we introduce a binary deviational variable that is equal to one when the

sub-request is refused. The LGP is solved as a series of binary linear programs (BLPs).

The first BLP minimizes the number of refused sub-requests associated with the lowest

acceptance level, the second BLP minimizes the number of refused sub-requests associated

with the second-lowest acceptance level, etc. Prior to solving the next BLP, an additional

constraint is added to ensure that the number of refusals from the previous optimization

will not be exceeded in subsequent optimizations. Note that the additional constraints

do not fix assignments because the corresponding deviational variables can still change

in subsequent optimizations as long as the total number of refusals does not exceed the
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prescribed upper bound.

A distinctive feature of our approach is that all deviational variables are binary,

which provides great flexibility for extensions; e.g., a balanced distribution of refused sub-

requests among employees could be easily incorporated. In Rihm and Baumann (2015a),

we introduced an approach for improving an existing schedule in terms of fairness that

takes advantage of this feature.

We introduce the notation in Section 4.4.2.1, formulate the lexicographic goal pro-

gram in Section 4.4.2.2 and present aggregation techniques for reducing the number of

constraints in Section 4.4.2.3.

4.4.2.1 Notation

We use the following notation.

Indices

a Acceptance level

d Day

i Employee

q Request type

r Sub-request

s Shift

w Weekend
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Sets

A Acceptance levels

D Days

Dw Days of weekend w

I Employees

Is Employees compatible with shift s

Ra Sub-requests with acceptance level a

Rq Sub-requests of type q

Rq
i Sub-requests of type q of employee i

S Shifts

Sid Compatible shifts of employee i starting on day d

SEid Compatible early shifts of employee i starting on day d

SLid Compatible late shifts of employee i starting on day d

Sbid Pairs of shifts between which the rest period (break) is less than b hours

W Weekends

Parameters

dr Day relevant for sub-request r

gr Coefficient of deviational variable zr for the basic formulation (BF)

hr Coefficient of deviational variable zr for the aggregated formulation (AF)

ir Employee relevant for sub-request r

ls Length of shift s

tr Target value of sub-request r

va Allowed number of refused sub-requests at acceptance level a

wr Weekend relevant for sub-request r

Variables

xis = 1, if employee i is assigned to shift s; = 0, else

yiw = 1, if employee i has weekend w off; = 0, else

zr = 1, if sub-request r is refused; = 0, else
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4.4.2.2 Model formulation

The model presented below covers the three types of critical requests and the ten types

of noncritical requests presented in Table 4.1. In the following, we refer to sub-requests

that stem from a noncritical request of type q as sub-requests of type q. The model is

solved multiple times, once for each unique acceptance level a∗ ∈ A, in ascending order

of acceptance levels.

The objective function minimizes the total number of refused sub-requests associated

with acceptance level a∗.

Min
∑
r∈Ra∗

zr

Constraints (4.1) bound the number of refused sub-requests for all acceptance levels a < a∗

to ensure that the results from previous optimizations are preserved.

∑
r∈Ra

zr ≤ va (a ∈ A : a < a∗) (4.1)

Constraints (4.2) address the requests of type 1. They ensure that each employee i ∈ I is

assigned to at most one shift each day d ∈ D.

∑
s∈Sid

xis ≤ 1 (i ∈ I, d ∈ D) (4.2)

Constraints (4.3) address the requests of type 2. They ensure that exactly one employee

is assigned to each shift. Notice that sets Is and Sid are defined such that the critical

requests of type 3 cannot be refused.

∑
i∈Is

xis = 1 (s ∈ S) (4.3)

Constraint (4.4) is formulated for each sub-request of type 4. Sub-requests of type 4

represent preferences for days off and are specified for specific employees and days of the

planning horizon. The target value tr is zero and the coefficient gr is one for all sub-

requests r ∈ R4. A sub-request r ∈ R4 is refused when the left-hand side is equal to one,

that is, when employee ir is assigned to a shift on day dr. In this case, variable zr is forced
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to take value one.∑
s∈Sirdr

xirs ≤ tr + grzr (r ∈ R4) (4.4)

Constraint (4.5) covers each sub-request of type 5. Sub-requests of type 5 are specified

for all employees i ∈ I and all days d ∈ D, where d > tr. They are intended to prevent

employees from being assigned to shifts on more than tr = 5 consecutive days. Sub-

request r is refused when employee ir is assigned to a shift on day dr in addition to shifts

on days dr−1, dr−2, . . . , dr−tr. The sub-requests for the first d < tr days of the planning

horizon could easily be incorporated by including the last days of the previous planning

period in the planning horizon and fixing the corresponding decision variables.

dr∑
d′=dr−tr

∑
s∈Sird′

xirs ≤ tr + grzr (r ∈ R5) (4.5)

Constraint (4.6) is formulated for each sub-request of type 6. Sub-requests of type 6 are

specified for all employees i ∈ I and all days d ∈ D, where 1 < d < |D|. They assume

that employees prefer two consecutive days off. A sub-request r is refused when employee

ir has a day off on day dr and is assigned to a shift on day dr−1 and a shift on day dr +1.

The target value tr and the coefficient gr are equal to one for all sub-requests r ∈ R6.

∑
s∈Sirdr−1

xirs −
∑

s∈Sirdr

xirs +
∑

s∈Sirdr+1

xirs ≤ tr + grzr (r ∈ R6) (4.6)

Constraints (4.7) cover all sub-requests of type 7. They are intended to provide employees

a b-hour rest period between consecutive shifts. There is one sub-request r for each

employee i and day d ≥ 2. Set Sbid contains all pairs of shifts (s1 ∈ Sid−1, s2 ∈ Sid)

between which the period off is less than b hours long. The request is refused if both of

these shifts are assigned to the same employee, that means if the left-hand-side is equal to

two. The target value tr and the coefficient gr are equal to one for all sub-requests r ∈ R7.

xirs1 + xirs2 ≤ tr + grzr (r ∈ R7, (s1, s2) ∈ Sbirdr) (4.7)

Constraints (4.8) address all sub-requests of type 8, which are intended to assign employees

either no weekend shifts or one shift on each day of the weekend. The binary variable yiw

indicates whether employee i ∈ I has weekend w = (d1, d2) ∈ W off. Variables yiw are

reused to model the sub-requests of type 9. The target value is tr = 2 and the coefficient
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is gr = −1 for all sub-requests r ∈ R8.

2yirwr +
∑
d∈Dwr

∑
s∈Sird

xirs = tr + grzr (r ∈ R8) (4.8)

Constraints (4.9) cover sub-requests of type 9 and impose a minimum number of weekends

off per employee.

∑
w∈W

yirw ≥ tr + grzr (r ∈ R9) (4.9)

Constraints (4.10) cover sub-requests of type 10, which are intended to ensure that the

target workloads of employees are not exceeded.

∑
d∈D

∑
s∈Sird

lsxirs ≤ tr + grzr (r ∈ R10) (4.10)

The left-hand side computes the total workload of employee ir by summing over all days

d ∈ D and shifts s ∈ Sird planned on that day. If this workload exceeds the target value

tr, variable zr is forced to take value one, which corresponds to a refusal of sub-request

r. In this case, the right-hand side is equal to tr + gr, which is a hard upper bound for

the workload. Analogously, constraints (4.11) cover request type 11, which is intended to

prevent that the actual workload of employees falls below the respective target workloads.

∑
d∈D

∑
s∈Sirt

lsxis ≥ tr + grzr (r ∈ R11) (4.11)

Constraints (4.12) cover sub-requests of type 12, which are intended to ensure that an

employee’s target number of early shifts is not exceeded.

∑
d∈D

∑
s∈SE

ird

xirs ≤ tr + grzr (r ∈ R12) (4.12)

Constraints (4.13) address sub-requests of type 13, which are intended to ensure that an

employee’s target number of late shifts is not exceeded.

∑
d∈D

∑
s∈SL

ird

xirs ≤ tr + grzr (r ∈ R13) (4.13)
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Finally, all variables are binary.

xis ∈ {0, 1} (i ∈ Is, s ∈ S) (4.14)

yiw ∈ {0, 1} (i ∈ I, w ∈ W ) (4.15)

zr ∈ {0, 1} (r ∈ R) (4.16)

4.4.2.3 Model size reduction

The size of the formulation in terms of constraints can be reduced using the following

techniques. A first reduction can be achieved by aggregating sub-requests of the same

type and of the same employee. More precisely, each request with two or more kinks in

the mapping function can be described by only one constraint per employee. Thereby,

the deviational variables zr denote to which degree the request is refused. We need to

define set Rq
i containing all sub-requests of type q relevant for employee i. We introduce

parameter hr, which captures the distance between one kink and its adjacent kink with a

lower acceptance level, i.e.,

hr =

{
gr −maxr′∈Rq

i :gr>gr′
(gr′), if gr ≥ 0;

gr −minr′∈Rq
i :gr<gr′

(gr′), otherwise.

Constraints (4.17) aggregate constraints (4.9).∑
w∈W

yirw ≥ max
r∈R9

i

(tr) +
∑
r∈R9

i

hrzr (i ∈ I) (4.17)

Analogously, we aggregate constraints (4.10), (4.11), (4.12) and (4.13):

∑
d∈D

∑
s∈Sird

lsxirs ≤ min
r∈R10

i

(tr) +
∑
r∈R10

i

hrzr (i ∈ I) (4.18)

∑
d∈D

∑
s∈Sird

lsxirs ≥ max
r∈R11

i

(tr) +
∑
r∈R11

i

hrzr (i ∈ I) (4.19)

∑
d∈D

∑
s∈SE

ird

xirs ≤ min
r∈R12

i

(tr) +
∑
r∈R12

i

hrzr (i ∈ I) (4.20)

∑
d∈D

∑
s∈SL

ird

xirs ≤ min
r∈R13

i

(tr) +
∑
r∈R13

i

hrzr (i ∈ I) (4.21)

The model size can further be reduced by aggregating sub-requests of different types. This

is possible when two requests are structurally similar (i.e. identical left-hand side), affect
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the same employee and share the same target value. Here, this only applies to request

types 10 and 11.∑
d∈D

∑
s∈Sid

lsxis = min
r∈R10

i

(tr) +
∑

r∈R10
i ∪R11

i

hrzr (i ∈ I) (4.22)

For this last aggregation, minr∈R10
i

(tr) = maxr∈R11
i

(tr) must apply.

In the experimental study in Section 4.7, we compare the performance of the basic

model formulation (BF) of Section 4.4.2.2 with the performance of the aggregated model

formulation (AF) of Section 4.4.2.3:

(BF )


Min

∑
r∈Ra∗

zr

s.t. (4.1)− (4.16)

(AF )



Min
∑
r∈Ra∗

zr

s.t. (4.1)− (4.8)

(4.14)− (4.17)

(4.20)− (4.22)

4.4.3 Illustrative example

In this section, we apply the exact approach to the illustrative example introduced in

Section 4.2.2. Table 4.3 reports the result of the decomposition phase. The requests have

been decomposed into 373 sub-requests. The fourth column of Table 4.3 contains the

domain of each sub-request, the employee and, if existing, the exact day to which the

corresponding sub-request applies. The acceptance levels and target values associated

with the sub-requests are listed in the fifth and sixth columns of Table 4.3. The last

column specifies the maximum positive or negative undesired deviation from the target

value that is still considered feasible.

Sub-request 153 applies to employee Bob on day 11. If Bob has to work on this day,

a sub-request associated with acceptance level 30 is refused.

The information given for sub-requests 335–338 is as follows. Ann and Dan ideally

have two or more weekends off, which is expressed by the target value of sub-requests

335 (Ann) and 336 (Dan), respectively. From gr = −2, it follows that the hard lower

bound on the number of weekends off is 0. Having only one weekend off complies with

sub-request 337 (338) but leads to a refusal of sub-request 335 (336). Such a refusal is

associated with an acceptance level of 80. Having no weekend off additionally leads to a

refusal of sub-request 337 (338), which is associated with an acceptance level of 50.

Figure 4.6 depicts an optimal schedule for the illustrative example. All refused sub-
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Table 4.3: Sub-requests for the illustrative example

Type
Request

Sub-
Domain

AL Target Para-

q request r a value tr meter gr

1 1–70 1–70 ir ∈ I, dr ∈ D 0 — —

2 71–111 71–111 s ∈ S 0 — —

3 112–152 112–152 s ∈ S 0 — —

4 153 153 ir =Bob, dr = 11 30 0 1

154 154 ir =Bob, dr = 12 30 0 1

5 155–163 155–163 ir =Ann, dr = 6, . . . , |D| 60 5 1

164–172 164–172 ir =Bob, dr = 6, . . . , |D| 60 5 1

173–199 173–199 ir =Dan,Eva,Gil, dr = 6, . . . , |D| 60 5 1

6 200–259 200–259 ir ∈ I, dr ∈ D : 2 ≤ dr ≤ |D| − 1 60 1 1

7 260–324 260–324 ir ∈ I, dr ∈ D : dr ≥ 2 1 1 1

8 325–334 325–334 ir ∈ I, wr ∈ W 30 2 −1

9 335–336 335–336 ir ∈ {Ann,Dan} 80 2 −2

337–338 ir ∈ {Ann,Dan} 50 1 −1

337–339 339–341 ir ∈ {Bob,Eva,Gil} 60 1 −1

10 340–342 342–344 ir ∈ {Ann,Bob,Dan} 70 80 16

345–347 ir ∈ {Ann,Bob,Dan} 30 88 8

343–344 348–349 ir ∈ {Eva,Gil} 60 40 16

350–351 ir ∈ {Eva,Gil} 20 48 8

11 345–347 352–354 ir ∈ {Ann,Bob,Dan} 70 80 −16

355–357 ir ∈ {Ann,Bob,Dan} 30 72 −8

348–349 358–359 ir ∈ {Eva,Gil} 60 40 −16

360–361 ir ∈ {Eva,Gil} 20 32 −8

12 350–352 362–364 ir ∈ {Dan,Eva,Gil} 60 4 2

365–367 ir ∈ {Dan,Eva,Gil} 20 5 1

13 353–355 368–370 ir ∈ {Bob,Dan,Gil} 60 2 2

371–373 ir ∈ {Bob,Dan,Gil} 20 3 1
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Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat SunEmpl.

Ann A1 A2 C3 A4 A5 C9 A10 C11 A12 A13 A14

Bob B1 L2 B3 B5 B6 B7 L8 B9 B13 B14

Dan E1 E2 A3 E4 E5 A8 A9 L10 B11 L12

Eva E3 A6 A7 E8 A11

Gil L4 E9 E10 E11 E12

Figure 4.6: Optimal schedule

Table 4.4: Refused sub-requests

AL Request Sub-request Affected

a type t r employee ir

60 5 163 Ann (dr = 14)

60 6 214 Bob (dr = 4)

60 9 339 Bob

70 10 342 Ann

80 9 335 Ann

requests are listed in Table 4.4 in ascending order of their corresponding acceptance levels.

Both model formulations (BF and AF) lead to the same schedule, and the correspond-

ing CPU times are negligible (� 1 s).

4.5 Matheuristic

Despite improvements in optimization software and computer hardware, exact approaches

are only applicable to small- and medium-sized problem instances. For large-sized in-

stances, heuristic solution procedures are required. According to Cordeau et al. (2002),

good heuristics are not only accurate and fast but also simple and flexible. We de-

signed a matheuristic for the SAP-LAL because a) matheuristics have proven to deliver

high-quality solutions for related problems (cf., e.g., Smet and Vanden Berghe, 2012;

Della Croce and Salassa, 2014; Smet et al., 2014b), b) the speed can be controlled by the
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size of the subproblems, c) when using an algebraic modeling language the implementa-

tion effort is rather low, and d) the underlying BLP model offers flexibility to account

for additional request types. In Section 4.5.1, we describe the matheuristic in detail. In

Section 4.5.2, we apply the matheuristic to the illustrative example that we introduced in

Section 4.2.2.

4.5.1 Matheuristic: description

The basic idea of the matheuristic is to iteratively improve an initial solution by reassign-

ing groups of employees (see Figure 4.7). In the following, parameter k denotes the size of

such groups of employees. Parameter k controls the size of the subproblems and thereby

the degree of optimization in the matheuristic. A small value of k leads to small subprob-

lems which can be solved in short CPU time. However, the corresponding improvements

tend to be incremental. Larger improvements can be obtained for larger values of k, but

at the cost of increased computational effort. In our experiments, we select parameter k

independently of the problem size, which leads to subproblems of similar size for all prob-

lem instances. This has the advantage that for all instances the size of the subproblems

is comparable and thus the optimization behaviour of the matheuristic is barely affected

by the problem size. For the construction of the initial solution and the improvement

iterations we use model (AF). The initial solution is constructed by solving model (AF)

without noncritical requests. The resulting solution is feasible because it complies with

all critical requests. Then, an improvement routine is executed for each acceptance level

in ascending order of acceptance levels. The improvement routine is executed multiple

times for the same acceptance level until one of the following three stopping criteria is

satisfied: a) the current solution does not contain refused sub-requests that are associated

with the current acceptance level (REF criterion), b) no improvement was achieved for

a predefined number of subproblems (IMP criterion) and c) a predefined CPU time limit

has been reached for one acceptance level (CPU criterion). We refer to this time limit

as acceptance level time limit. The time limit imposed on the individual subproblems is

hereinafter referred to as subproblem time limit.

For a given acceptance level a∗, the improvement routine performs the following three

steps:

1. A subset of k employees is selected according to a selection rule.

2. Model (AF) is formulated for the selected employees and acceptance level a∗. The

resulting model is very compact, as it contains only variables and constraints related

to the selected employees.
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Figure 4.7: Flowchart of matheuristic
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3. The reduced model is solved.

The k employees could be selected randomly without considering any property of the

current solution. However, randomly selected groups of employees might not have any re-

fused sub-requests associated with acceptance level a∗. We therefore employ the following

selection rule:

1. Among all employees who have at least one refused sub-request associated with

acceptance level a∗, one employee is selected randomly. The employee is denoted by

i∗.

2. Among all refused sub-requests with acceptance level a∗ of employee i∗, one sub-

request is randomly selected. This selected sub-request is denoted by r∗.

3. Among all employees who could prevent the refusal of sub-request r∗ by swapping

one of their shifts with employee i∗, one employee is selected. Thereby, we distinguish

two cases:

• Case 1: Sub-request r∗ is of types 4–8: The refusal occurs because a shift s is

assigned to employee i∗ on a particular day d. We select one employee having

that day off and the required skills to perform shift s. We should note that

this employee could prevent the refusal, but it is not ensured that it is not at

the expense of a new refusal.

• Case 2: Sub-request r∗ is of types 9–13: The refusal occurs because too

many/few shifts are assigned to employee i∗ over the entire planning period.

We select one employee with the same skills.

4. We randomly select k − 2 other employees.

The idea of constructing subproblems is to reduce the search space so that a general-

purpose solver can solve them quickly and a large number of iterations can be performed

in a short amount of time. Another advantage is that the solver can use the solution from

the previous iteration as a warm start. We propose to impose a short subproblem time

limit to prevent the solver from wasting time in proving optimality. In Section 4.6, we

test two different variants of the selection rule. In one variant, two employees who could

prevent the refusal of sub-request r∗ are selected instead of just one. In another variant,

two employees each with a refused sub-request associated with acceptance level a∗ are

selected and for each of those employees another employee is selected who can eliminate

the corresponding refusal by a swap of shifts.
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Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat SunEmpl.

Ann A1 A2 C3 A4 A5 C9 A10 C11 A12 A13 A14

Bob B1 L2 B3 B5 B6 B7 L8 B9 B13 B14

Dan E1 E2 A3 E4 E5 A8 A9 L10 B11

Eva E3 A6 A7 E8 A11 E12

Gil L4 E9 E10 E11 L12

Figure 4.8: Temporary schedule in the course of the matheuristic

4.5.2 Illustrative example

We applied the proposed matheuristic to the illustrative example introduced in Sec-

tion 4.2.2. Figure 4.8 shows a temporary schedule in the course of the matheuristic

for an iteration with acceptance level a∗ = 60. In this schedule, 4 sub-requests are refused

at the corresponding acceptance level.

• Sub-request 163: Ann has 6 consecutive working days

• Sub-request 214: Bob has an isolated day off

• Sub-request 337: Bob has no weekend off

• Sub-request 348: Eva’s workload exceeds the target of 40 hours

In the next iteration, we apply the selection rule to define the subproblem.

1. Employee i∗ = Eva is selected.

2. i∗ = Eva has only one refused sub-request: r∗ = 348

3. Sub-request r∗ = 348 is of type 10, that means case 2 is applicable. Employee Dan

is selected because he has the same skills as i∗ = Eva.

4. Employee Gil is randomly selected.

In Figure 4.8, the three selected employees are enclosed by a frame. The subproblem

consists of these employees and is solved to optimality by the solver. On the Friday of

the second week, Dan cannot be assigned to shift E12 because of request type 7 (11 hours
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between two consecutive shifts). However, Dan can be assigned to shift L12, and Gil is

assigned to shift E12, and the refusal is eliminated. The resulting schedule corresponds

to the optimal schedule shown in Figure 4.6.

4.6 Computational analysis

In this section, we evaluate the performance of the proposed approaches. In Section 4.6.1,

we present the test instances. In Section 4.6.2, we describe the design of the analysis. In

Section 4.6.3, we report and analyze the numerical results.

4.6.1 Test instances

Problem instances for the SAP-LAL are different from existing benchmark instances from

the literature. For example, instances from the literature do not contain mapping func-

tions that assign acceptance levels to deviations from the target values. We therefore

generate SAP-LAL instances on the basis of real-world data that we obtained from the

service provider. This has the advantage that a comparison with the service provider’s

software is possible. Our test instances include a test set of 45 systematically constructed

instances and a real-world instance. We first describe the test set. All 45 instances of the

test set have a planning horizon of four weeks. The types of requests to be considered in

each instance are those presented in Table 4.1. The instances were constructed such that

they differ with respect to the following three complexity parameters:

• The number of available employees NE: We generated instances with 10, 30, 50, 70,

and 90 employees. Instances with 10 employees are considered small-sized, instances

with 30 and 50 employees are considered medium-sized, and instances with 70 and

90 employees are considered large-sized. For each employee, we randomly selected

a target workload of 80, 120, or 160 hours.

• The workload ratio WR: Given the target workloads of employees, the workload

ratio determines the number of eight-hour shifts to be performed. The number of

shifts is obtained by multiplying the sum of target workloads of all employees by

WR and dividing the result by 8 (the length of a shift). We generated instances

with a workload ratio of 0.9, 1, and 1.1. For each shift, we randomly determined

the start time and the set of employees who have the required skills to perform it.

The start times of shifts are equally distributed across the planning horizon.
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Figure 4.9: Average number of possible refusals per acceptance level over all instances

• Number of different acceptance levels NL. We generated instances with 10, 20

and 30 different acceptance levels. The number of acceptance levels corresponds

to the number of optimizations to be performed in lexicographical order. First, a

set containing NL different acceptance levels is generated. Thereby, the acceptance

levels are equally distributed between 1 and 99. For each employee, the number of

kinks in the mapping functions of request type 9 is 3 and of request types 10–13 is

10. All other mapping functions have a single kink only.

In total, we generated 45 instances, one instance for each possible combination of the three

complexity parameters. Figure 4.9 visualizes the average number of possible refusals per

acceptance level over all instances. The number of possible refusals varies from 848 to

1,707 between different ranges of acceptance levels.

The real-world instance stems from a client of our industry partner. It comprises 15

employees, a planning horizon of 28 days, the 13 request types presented in Table 4.1, and

23 variants of the request types presented in Table 4.1. These variants are structurally

identical to the baseline request types. For example, the variants “at most 4 consecutive

early shifts” and “at most 3 consecutive late shifts” are structurally identical to the

requests of type 5 (“at most 5 consecutive work days”).

4.6.2 Test design

We tested the following approaches:

• BF: Basic formulation.
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• AF: Aggregated formulation.

• MHk: Baseline matheuristic as described in Section 4.5 with a subproblem time

limit of 3 seconds. The subscript k indicates the size of the subproblems. We ran

MHk for k = 4, 5, 6, 7, 8, 9.

• MHRk: Matheuristic MHk with a random employee selection rule. Under this

rule, the employees are selected randomly with equal probability. We ran MHRk for

k = 4, 5, 6, 7, 8, 9.

• MHFk: Matheuristic MHk with a fix-and-optimize strategy. Under this strategy,

the subproblems are constructed by fixing decision variables in the complete model

without removing them. We ran MHFk for k = 8.

• MH60k: Matheuristic MHk with a subproblem time limit of 60 seconds instead of

3 seconds. We ran MH60k for k = 8.

• MH1−2
k : Matheuristic MHk with a variant of the employee selection rule. Under

this rule, one employee who has sub-request r∗ refused is selected, and two more

employees who could prevent the refusal of sub-request r∗ are selected instead of

just one. k − 3 employees are selected randomly. We ran MH1−2
k for k = 8.

• MH2−2
k : Matheuristic MHk with a variant of the employee selection rule. Under

this rule, two employees with a refused sub-request associated with acceptance level

a∗ are selected and for each of those employees another employee is selected who

can eliminate the refusal by a swap of shifts. k−4 employees are selected randomly.

We ran MH2−2
k for k = 8.

• SP: Software package of our industry partner who reported the SAP-LAL.

All approaches except SP are implemented in AMPL and use the Gurobi Optimizer

6.5.1 as solver. For the exact approaches, we prescribed an acceptance level time limit of

300 seconds for the optimization of each individual acceptance level. For all variants of the

matheuristics we used the three stopping criteria presented in Section 4.5. Thereby, the

upper bound on the number of subproblems solved without improvement (IMP criterion)

was set to 100 and the acceptance level time limit (CPU criterion) was set to 180 seconds.

The computations were performed on a standard workstation with two 6-core Intel(R)

Xeon(R) X5650 2.66GHz CPUs and 24GB RAM.

The quality of a solution to the SAP-LAL cannot be expressed by a single objective

function value due to the lexicographic order of acceptance levels. Instead, we need to
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compare the number of refused sub-requests for each acceptance level separately. As

the exact approaches provide for each acceptance level a lower bound on the number

of refusals, we can use the following three performance criteria to evaluate the exact

approaches:

• OPT: Number of instances solved to optimality. The optimality of a solution is

proven if and only if for each acceptance level, the lower bound on the number of

refusals coincides with the number of refusals in the solution obtained.

• PSO: Mean average percentage of BLPs solved to optimality.

• ALF: Average of acceptance level of the first BLP that is not solved to optimality.

The above performance criteria cannot be used for evaluating the different variants of

the matheuristic since they do not provide a lower bound on the number of refusals. It

is possible, however, to rank different solutions by comparing the number of refusals for

each acceptance level. We therefore use the following performance criteria to compare the

matheuristic variants in terms of solution quality:

• OPT∗: Number of instances for which the schedule obtained is optimal. For this

criterion it is not necessary that the optimality has been proven. Note that we can

only evaluate this criterion for the instances for which the optimal solution is known.

• NBE: Number of instances for which an approach found the best solution.

• ARE: Average number of refused sub-requests per employee.

• AMR: Average maximum number of refused sub-requests per employee.

• AVR: Average variance of the number of refused sub-requests per employee. This

metric captures the fairness of a schedule. Schedules that are perceived as fair tend

to have low AVR.

Note that criterion ARE does not take into account the lexicographic order between dif-

ferent acceptance levels. Nevertheless, it is used in practice to compare different solutions.

In addition, all approaches are compared in terms of average CPU time requirement per

instance in seconds (CPU).
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4.6.3 Numerical results

In Subsection 4.6.3.1, we compare the results of the two exact approaches. In Subsec-

tion 4.6.3.2, we compare these results with the results of the baseline matheuristic. In

Subsections 4.6.3.3–4.6.3.5, we analyze the results of different variants of the matheuris-

tic and investigate the effectiveness of individual components of the matheuristic. In

Subsection 4.6.3.6, we report the results obtained for the real-world instance.

4.6.3.1 Exact approaches

Table 4.5 reports the performance criteria for the two exact approaches BF and AF.

The performance criteria are computed separately for small-, medium-, and large-sized

instances and also for the entire test set. Both approaches are able to solve small- and

medium-sized instances to optimality. For large-sized instances, the exact approaches

were not able to prove optimality. However, the solution quality is still surprisingly

high as around 80% of the binary-linear programs (BLPs) for large-sized instances are

solved to optimality (see PSO values in Table 4.5), and that these BLPs correspond to

the lowest acceptance levels. The 20% of the BLPs that are not solved to optimality

correspond to high acceptance levels (above 78, see ALF values in Table 4.5). Together

these results reflect high solution quality. The optimal solutions for BLPs associated with

low acceptance levels are usually found within few seconds as shown in Figure 4.10. The

CPU times are considerably higher for BLPs associated with higher acceptance levels

than for BLPs associated with lower acceptance levels. The reason is, that in each BLP

associated with acceptance level a∗, all sub-requests associated with an acceptance level

a ≤ a∗ need to be considered. Consequently, the number of sub-requests and thus the

complexity increases with increasing value of the acceptance level.

It can be seen in Figure 4.10 that the CPU time requirement of the BLP with the

lowest acceptance level is slightly higher than for the subsequently solved BLPs. This is

because in the first BLP a feasible solution needs to be constructed from scratch which

is not necessary in all other BLPs since the solution of the previous BLP can be used as

a warm start. Formulation (AF) requires on average slightly more CPU time for the first

BLP but slightly less CPU time for the other BLPs than formulation (BF).

Overall, both approaches (AF and BF) perform very similarly as can be seen from

the last column of Table 4.5. The small performance difference can be explained by the

fact that the aggregation techniques can only be applied to a small subset of constraints,

namely those that refer to mapping functions with multiple kinks. For large-sized in-

stances which contain more of those constraints, approach AF appears to be slightly
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Table 4.5: Numerical results for exact approaches

NE

10 30 50 70 90

All
small medium large

OPT
BF 8 2 0 0 0 10

AF 7 2 1 0 0 10

CPU
BF 269 1,075 1,367 1,671 2,025 1,281

AF 244 1,095 1,345 1,495 2,073 1,250

PSO
BF 98.5 86.7 80.9 78.1 78.9 84.6

AF 99.1 85.7 82.6 83.0 81.1 86.3

ALF
BF 98.6 86.8 81.0 77.7 78.0 84.4

AF 97.2 84.7 81.3 78.8 78.0 84.0

better than approach BF.

Next we study the impact of the complexity parameters WR and NL on the perfor-

mance of the two exact approaches. Tables 4.6 and 4.7 state the performance criteria

for groups of instances that have the same workload ratio (WR) and groups of instances

that have the same number of acceptance levels (NL), respectively. It turns out that both

complexity parameters affect the performance of both approaches in the same way. The

higher the value of WR, the more shifts in relation to employees must be assigned which

makes it more difficult to comply with sub-requests. This is reflected in Table 4.6 by the

lower PSO and ALF values for WR = 1.1 as compared to WR = 0.9. Also, instances

with WR = 1.1 require considerably more CPU time than instances with WR = 0.9.

Higher values of parameter NL do not affect the solution quality. The performance

criteria OPT, PSO, and ALF have similar values for instances with different NL values.

This is interesting because for instances with a high NL value, fewer refusals per accep-

tance level are possible as compared to instances with a low NL value. Apparently, even

though the number of possible refusals is low, the difficulty of the instances remains the

same. However, parameter NL affects the CPU time requirement. Instances with higher

values of NL, i.e. with a larger number of different acceptance levels, require more CPU

time because for each acceptance level, a separate BLP needs to be solved.
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Figure 4.10: CPU time per acceptance level

Table 4.6: Impact of complexity parameter WR

WR

0.9 1 1.1 All

OPT
BF 4 4 2 10

AF 6 3 1 10

CPU
BF 1,023 1,206 1,615 1,281

AF 889 1,212 1,650 1,250

PSO
BF 89.0 85.6 79.3 84.6

AF 93.3 85.9 79.7 86.3

ALF
BF 88.1 85.6 79.5 84.4

AF 89.3 84.0 78.7 84.0
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Table 4.7: Impact of complexity parameter NL

NL

10 20 30 All

OPT
BF 4 4 2 10

AF 5 3 2 10

CPU
BF 634 1,266 1,945 1,281

AF 642 1,313 1,796 1,250

PSO
BF 84.7 85.7 83.6 84.6

AF 86.7 86.0 86.2 86.3

ALF
BF 84.7 85.0 83.5 84.4

AF 86.0 83.0 83.0 84.0

4.6.3.2 Matheuristic: comparison with exact approaches

Table 4.8 lists for six performance criteria the results of the two exact approaches BF and

AF and the results of the matheuristics MHk with k = 4, 5, 6, 7, 8, 9. In this section, we

focus on the comparison between the performance of the matheuristic and the performance

of the two exact approaches. The following insights can be obtained from this comparison:

• All variants of the matheuristic are able to devise optimal solutions. Among the 12

instances for which optimal solutions are known, MH8 provides an optimal solution

for 11 instances.

• The matheuristic variants considerably outperform the exact approaches for

medium- and large-sized instances. This is reflected best by performance crite-

rion ARE. While the ARE values of both exact approaches increase considerably

for medium- and large-sized instances, they remain at a low level for all variants of

the matheuristic. This demonstrates that all matheuristic variants find high-quality

solutions for large instances.

• With respect to performance criteria AMR and AVR, all variants of the matheuristic

clearly outperform the exact approaches, i.e., they tend to generate schedules with

higher fairness. Figure 4.11 shows for the three approaches AF, BF, and MH8,

boxplots that represent the distribution of the number of refusals among employees

for a specific instance with 90 employees. The thick horizontal line marks the
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median of the distribution, the bottom and top of the box correspond to the first

and third quartiles, and the whiskers represent the minimum and maximum number

of refusals. A possible explanation for this outperformance of the matheuristic is the

fact that the employees with a large number of refusals are more likely to be selected

by the employee selection rule than employees with a low number of refusals. Since

only selected employees have their refusals reverted, the guided selection leads to a

more balanced distribution of the number of refusals.

• All variants of the matheuristic require less CPU time than both exact approaches.

• Interestingly, although in the direct comparison formulations AF and BF performed

equally well, formulation AF outperforms formulation BF with respect to all per-

formance criteria shown in Table 4.8.
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Figure 4.11: Distributions of number of refusals among employees for approach BF, AF,
and MH8 for an instance with 90 employees

4.6.3.3 Matheuristic: impact of the size of the subproblems

The goal of this section is to study the impact of the size of the subproblems on the

performance of the matheuristic. The size of the subproblems is determined by parameter
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Table 4.8: Comparison of variants of matheuristic

NE

10 30 50 70 90
Allsmall medium large

OPT∗

BF 8 2 0 0 0 10
AF 8 2 1 0 0 11
MH4 3 0 0 0 0 3
MH5 3 0 0 0 0 3
MH6 5 1 0 0 0 6
MH7 6 0 1 0 0 7
MH8 7 3 1 0 0 11
MH9 5 3 0 0 0 8

NBE

BF 8 3 0 1 1 13
AF 9 2 1 2 0 14
MH4 3 1 0 0 0 4
MH5 3 0 1 0 0 4
MH6 5 2 2 0 0 9
MH7 6 2 5 3 0 16
MH8 7 5 3 1 4 20
MH9 5 4 0 2 4 15

ARE

BF 2.66 2.94 3.76 4.30 9.38 4.61
AF 2.63 3.00 3.49 4.34 8.45 4.38
MH4 2.52 2.46 2.46 2.73 2.97 2.63
MH5 2.50 2.34 2.38 2.54 2.68 2.49
MH6 2.62 2.27 2.29 2.48 2.63 2.46
MH7 2.60 2.25 2.32 2.43 2.57 2.43
MH8 2.62 2.29 2.32 2.45 2.54 2.45
MH9 2.77 2.40 2.43 2.59 2.64 2.57

AMR

BF 5.00 5.56 7.44 8.56 15.22 8.36
AF 4.89 5.89 7.56 9.11 13.33 8.16
MH4 4.67 4.78 5.22 6.22 6.78 5.53
MH5 4.33 4.22 5.00 5.22 6.00 4.96
MH6 4.89 4.22 4.56 5.67 6.11 5.09
MH7 5.00 4.33 4.67 5.33 5.78 5.02
MH8 5.33 4.00 4.89 5.11 6.00 5.07
MH9 4.67 4.67 4.89 5.67 6.00 5.18

AVR

BF 2.41 1.75 3.50 3.53 5.17 3.27
AF 2.25 2.09 3.13 3.68 4.41 3.11
MH4 2.17 1.48 1.41 1.83 1.96 1.77
MH5 1.97 0.97 1.24 1.41 1.73 1.47
MH6 2.16 1.10 1.10 1.39 1.68 1.49
MH7 2.83 1.01 1.23 1.30 1.48 1.57
MH8 2.69 0.82 1.30 1.43 1.58 1.56
MH9 2.26 1.25 1.32 1.50 1.63 1.59

CPU

BF 269 1,075 1,367 1,671 2,025 1,281
AF 244 1,095 1,345 1,495 2,073 1,250
MH4 66 217 686 1,363 2,049 876
MH5 128 305 710 1,267 1,932 868
MH6 207 418 699 1,199 1,837 872
MH7 345 471 742 1,131 1,753 889
MH8 452 506 757 1,160 1,692 913
MH9 479 541 790 1,123 1,617 910
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k. The impact of k is analyzed based on the results given in Table 4.8 from which we

draw the following conclusions:

• Among the different matheuristic variants, variant MH8 delivers the best overall

results in terms of solution quality. This variant achieved the best NBE and OPT∗

value as can be seen from the last column in the table.

• For large-sized instances, variants with k ≥ 7 deliver better results than variants

with k ≤ 6. This shows that in order to reduce the number of refusals in large-sized

instances shift swaps are required that involve multiple employees.

• With respect to performance criteria AMR and AVR, no significant differences can

be observed between the variants of the matheuristic.

• The CPU time requirement of the matheuristic depends on k and the size of the

problem instances. For small- and medium-sized instances, usually the stopping

criterion IMP (no improvement was achieved for 100 consecutive subproblems) is

met first. As variants with a low value of k generally require less time per sub-

problem, they are faster for small- and medium-sized instances than variants with a

large value of k. For large-sized instances, usually the stopping criterion CPU (the

acceptance level time limit has been reached) is met first. As variants with a large

value of k are often able to revert all refusals associated with a specific acceptance

level, they can continue with the next acceptance level while variants with a small

value of k are often not able to revert all refusals and thus need to wait for criterion

CPU to be met. Under this setting, variants with a large value of k can be faster

for large-sized instances than variants with a small value of k.

We also investigated the influence of the strategy to formulate the subproblems without

redundant constraints and variables on the performance of the matheuristic. Due to this

strategy, the size of the subproblems is reduced considerably. In Table 4.9, we compare the

results of MH8 with the results of version MHF8 which uses a fix-and-optimize strategy,

i.e, the subproblems are constructed by fixing decision variables in the complete model

without removing them. Here we report the results only for k = 8 as we obtained similar

results for other values of k. Approach MH8 overall outperforms MHF8 both in terms

of solution quality and CPU time requirement. The outperformance is most distinct for

medium- and large-sized instances.
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Table 4.9: Impact of strategy to formulate the subproblems without redundant constraints
and variables

NE

10 30 50 70 90

All
small medium large

OPT∗
MH8 7 3 1 0 0 11

MHF8 6 2 0 0 0 8

NBE
MH8 8 6 8 9 9 40

MHF8 7 5 2 0 0 14

ARE
MH8 2.62 2.29 2.32 2.45 2.54 2.45

MHF8 2.66 2.27 2.34 2.62 3.58 2.69

AVR
MH8 2.69 0.82 1.30 1.43 1.58 1.56

MHF8 2.70 1.09 1.25 1.56 3.01 1.92

CPU
MH8 452 506 757 1,160 1,692 913

MHF8 437 595 1,047 1,782 3,260 1,424

4.6.3.4 Matheuristic: impact of the employee selection rule

In this section, we examine the impact of the employee selection rule. In Table 4.10, we

compare the results of MHk with k = 4, 5, 6, 7, 8, 9 to the results of a simplified version

MHRk which does not use the employee selection rule and instead selects employees

randomly. The last two columns of the table contain for both variants the average number

of subproblems that were passed to the solver (NSP). Approach MHk clearly outperforms

MHRk for all values of k both in terms of solution quality and CPU time requirement.

The employee selection rule is most effective for small values of k. This is probably due to

the fact that for small values of k, less employees are randomly selected to be included in

the subproblem. If k is small, only few combinations of employees can eliminate refusals.

These combinations are rarely found by a random selection. Approach MHk requires less

time because the employee selection rule effectively identifies subproblems that lead to

a reduction in the number of refusals. A random selection of employees often results in

subproblems that do not lead to a reduction in the number of refusals. Consequently,

approach MHk performs fewer iterations (see the NSP values in Table 4.10).

We also investigated other specific employee selection rules. In Table 4.11, we compare
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Table 4.10: Impact of the employee selection rule

NBE CPU NSP
k

MHk MHRk MHk MHRk MHk MHRk

4 43 5 876 1,403 1,172 1,820

5 35 13 868 1,339 967 1,425

6 33 18 872 1,267 795 1,163

7 32 20 889 1,253 700 977

8 34 20 913 1,228 609 853

9 31 26 910 1,187 573 776

the results to the basic variant of the matheuristic MH8. In MH2−2
8 , two employees with a

refusal are selected, and for each employee at least one other employee which can prevent

the refusal. In MH1−2
8 , only one employee with a refusal is selected, but at least two

employees which can prevent the refusal of the first one. Both, MH2−2
8 and MH1−2

8 ,

overall outperform the basic variant MH8 in terms of solution quality which emphasizes

the effectiveness of the employee selection rule.

4.6.3.5 Matheuristic: impact of the subproblem time limit

In this section, we analyze the impact of the subproblem time limit on the performance of

the matheuristic. In Table 4.12, we compare the results of MH8 (with a default subproblem

time limit of 3 seconds) with the results of approach MH608 which uses a subproblem time

limit of 60 seconds. Interestingly, increasing the subproblem time limit to 60 seconds

does not improve the solution quality. In contrast, the solution quality decreases with

the increased subproblem time limit. This is because for most subproblems the solver

finds the best solution in few seconds but does not terminate until the optimality of this

solution is proven. By increasing the subproblem time limit, fewer subproblems are solved

for each acceptance level because of the acceptance level time limit.

4.6.3.6 Numerical results for real-world instance

We applied the best exact approach (AF) and the best variant of the matheuristic (MH8)

to a real-world instance and compared the results to those of the problem-specific software

package of our industry partner (SP). Table 4.13 lists for all three approaches the results

for each acceptance level. The values in bold indicate for each approach up to which

acceptance level the number of refusals is identical to the number of refusals in the best
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Table 4.11: Comparison of different variants of the employee selection rule

NE

10 30 50 70 90

All
small medium large

OPT∗
MH8 7 3 1 0 0 11

MH2−2
8 6 2 1 0 0 9

MH1−2
8 6 3 0 0 0 9

NBE

MH8 7 5 2 3 2 19

MH2−2
8 6 2 7 2 4 21

MH1−2
8 8 7 1 4 3 23

ARE

MH8 2.62 2.29 2.32 2.45 2.54 2.45

MH2−2
8 2.66 2.28 2.31 2.45 2.50 2.44

MH1−2
8 2.58 2.30 2.34 2.44 2.57 2.44

AVR

MH8 2.69 0.82 1.30 1.43 1.58 1.56

MH2−2
8 2.54 0.95 1.14 1.25 1.46 1.47

MH1−2
8 2.38 0.97 1.29 1.34 1.61 1.52

CPU

MH8 452 506 757 1,160 1,692 913

MH2−2
8 458 493 723 1,049 1,518 848

MH1−2
8 444 521 780 1,159 1,698 920

NSP

MH8 454 558 710 703 620 609

MH2−2
8 452 562 673 634 541 572

MH1−2
8 460 582 741 694 624 620
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Table 4.12: Impact of subproblem time limit

NE

10 30 50 70 90

All
small medium large

OPT
MH8 7 3 1 0 0 11

MH608 6 2 0 0 0 8

NBE
MH8 7 8 9 8 7 39

MH608 8 3 1 1 2 15

ARE
MH8 2.62 2.29 2.32 2.45 2.54 2.45

MH608 2.54 2.77 3.21 4.45 5.25 3.65

AVR
MH8 2.69 0.82 1.30 1.43 1.58 1.56

MH608 2.71 1.55 1.97 4.30 5.16 3.14

CPU
MH8 452 506 757 1160 1692 913

MH608 496 585 815 1184 1690 954

NSP
MH8 454 558 710 703 620 609

MH608 368 482 596 658 600 541

solution found by approach MH8. For approach AF, the table reports the number of

refused sub-requests (NR), the lower bound on the number of refused sub-requests (LB)

and the CPU time requirement (CPU) in seconds. For approach MH8, the table reports

the number of refused sub-requests (NR), the number of subproblems passed to the solver

(NSP), and the CPU time requirement (CPU). For the software package of our industry

partner, we report the number of refused sub-requests per acceptance level. The CPU

time requirement of approach SP cannot be compared to the CPU time requirement

of the other approaches as approach SP was run by the industry partner on a different

computer. For acceptance levels below 46, all approaches have the same number of refusals

per acceptance level. The solutions obtained by approach AF and MH8 have only three

refusals at acceptance level 46 whereas approach SP has four refusals. As one refusal

associated with a lower acceptance level is worse than any number of refusals with higher

acceptance level, the solutions obtained by approaches AF and MH8 are better than

the solution obtained by approach SP. The best solution is obtained by approach MH8,

because it has 14 refusals associated with acceptance level 51 compared to 15 refusals in
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the solution obtained by approach AF.

The comparison was quite important for the service provider. For the first time, they

were able to benchmark their own approach and get an understanding of the quality of

their solutions. Moreover, they were able to study characteristics of optimal solutions for

small- and medium-sized instances. The (optimal) schedules generated by the proposed

approaches were analyzed systematically by the service provider to find opportunities for

improving their approach. New versions of the software have been released based on the

results of this analysis.

4.7 Conclusions

We introduced a real-world staff assignment problem that was reported to us by a Swiss

provider of employee scheduling software. This provider has developed a framework that

helps decision makers to specify trade-offs between different requests such as employees’

personal preferences by means of hierarchically-ordered acceptance levels. The framework

gives rise to a new type of staff assignment problem for which existing solution techniques

are not appropriate. We proposed a novel lexicographic goal programming approach

for solving small instances to optimality, and we developed a matheuristic for large-scale

instances. The matheuristic iteratively improves an initial solution by solving subproblems

which involve only subsets of employees. The subsets are defined according to a new and

effective employee selection rule. The performance of the exact and heuristic approaches

is evaluated based on a collection of problem instances that we derived from real-world

data.

The software provider involved in this research benefits from our research in two ways.

First, the solutions generated by our approach enable the provider to evaluate the current

performance of its software. Second, the provider gains insights into the structure of

optimal solutions which is helpful for improving the performance of its software.

In future research, we plan to develop further variants of the matheuristic. A promis-

ing idea is to vary the size of the subproblems dynamically, i.e., increase the size after

a predefined number of iterations without improvements. Furthermore, according to the

software provider, most of their clients consider a fair distribution of refusals among em-

ployees to be a desirable objective. In Rihm and Baumann (2015a), we present model

extensions that allow to improve an existing schedule in terms of fairness without deteri-

orating its quality with regard to refused requests. Balancing both fairness and number

of refusals is still to be addressed.
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Table 4.13: Numerical results for real-world instance

AF MH8 SPAL

NR LB CPU NR CPU NSP NR

1 2 2 1 2 18 106 2

5 5 5 1 5 17 106 5

20 0 0 2 0 3 13 0

21 0 0 0 0 1 5 0

25 0 0 1 0 1 4 0

26 0 0 1 0 0 1 0

32 0 0 4 0 7 6 0

34 0 0 7 0 32 24 0

37 0 0 70 0 4 3 0

38 4 4 77 4 40 111 4

40 0 0 90 0 1 4 0

41 0 0 0 0 0 1 0

43 0 0 3 0 1 2 0

44 0 0 2 0 1 2 0

45 0 0 29 0 5 2 0

46 3 3 55 3 122 123 4

47 0 0 197 0 15 7 0

49 0 0 2 0 0 1 0

50 3 3 222 3 66 138 4

51 15 10 300 14 180 114 14
...

...
...

...
...

...
...

...

97 0 0 5 0 1 3 0

99 1 0 300 5 131 103 4

Total 60 33 4,482 71 2,061 2,357 68
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