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Abstract

Currently several thousands of objects are being tracked in the Medium Earth
Orbit (MEO) and Geosynchronous Earth Orbit (GEO) regions through op-
tical means. The problem faced in this framework is that of Multiple Target
Tracking (MTT). The MTT problem becomes an NP-hard combinatorial op-
timization problem as soon as its dimension S becomes S ≥ 3. In regions
with a high density of objects the MTT problem will have to have this di-
mension in order to avoid ambiguous solutions. With the advent of improved
sensors and a heightened interest in the problem of space debris, it is expected
that the number of tracked objects will grow by an order of magnitude in the
near future. This research aims to identify an algorithm capable of address-
ing the problem of space debris cataloging in the MEO and GEO regions, in
particular for highly dense regions, without possessing a restrictive computa-
tional complexity. In an attempt to find an approximate solution of sufficient
quality several Population Based Meta Heuristic (PBMH) algorithms are im-
plemented and tested on simulated optical measurements. In addition to this,
a novel way of orbit determination is presented which is based on an existing
S = 2 tracklet association method. These first results show promise as one
of the tested algorithms (the Elitist Genetic Algorithm (EGA)) consistently
displays the desired behavior of finding good approximate solutions before
reaching the optimum. Furthermore, the results suggest that the algorithm
has a polynomial time complexity when finding approximate solutions. The
algorithm is also applied to real observations, where it also performs as de-
sired.
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Chapter 1

Introduction

In 1957 the Sputnik satellite was launched, it is the first man made object
to orbit the Earth. That launch marked the beginning of the space age, and
a rapid increase in the number of Earth orbiting satellites. Because the rate
at which objects reenter the atmosphere is relatively low, the total number
of orbiting objects keeps accumulating over time. Therefore about 95% of
the current Earth orbiting objects are labeled as space debris. Space debris
is defined as follows (Flury and Johnson, 1999):

Orbital debris is herein defined as any man-made object, which
is non-functional with no reasonable expectation of assuming or
resuming its intended function, or any other function for which it
is or can be expected to be authorized, including fragments and
parts thereof.

In Figure 1.1 the number of tracked space objects can be seen over time
according to the country or state of origin.

1
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Figure 1.1: The number of tracked geocentric space objects over time http:

//www.esa.int/spaceinimages/Images/2013/04/Object_catalogue.
Accessed on 17/11/2016.

Figure 1.2 shows the objects categorized by their nature.

Figure 1.2: The number of tracked geocentric space objects over
time, categorized based on their nature http://www.esa.int/Our_

Activities/Operations/Space_Debris/Analysis_and_prediction. Ac-
cessed on 17/11/2016.

From Figure 1.1 the increasing trend in the number of tracked objects is

http://www.esa.int/spaceinimages/Images/2013/04/Object_catalogue
http://www.esa.int/spaceinimages/Images/2013/04/Object_catalogue
http://www.esa.int/Our_Activities/Operations/Space_Debris/Analysis_and_prediction
http://www.esa.int/Our_Activities/Operations/Space_Debris/Analysis_and_prediction
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apparent. Note that this trend is not only due to the increase in the num-
ber of launches, but also due to the improved capabilities to track objects
in Earth orbit. Two major events can be seen in Figure 1.1. The first is
the Chinese anti satellite test that was conducted in 2007. Here the Chi-
nese demonstrated their capability of eliminating a satellite in Low Earth
Orbit (LEO) by destroying it with a missile. The satellite in question was
an old, defunct, Chinese satellite called the Fengyun 1-C. The other sharp
increase in the number of objects is caused by the Cosmos-Iridium crash in
2009. This crash demonstrated the real threat that space debris poses for
the remaining functional satellites. The main consequence of these events is
the large number of new objects that have been created.

In a worst case scenario a cascading effect can be caused by such collisions,
where each collision generates more objects which in turn cause more colli-
sions. This scenario is also known as the Kessler syndrome. New launches
and collisions are not the only sources of space objects. Also so-called break
up events generate new debris objects. To date some 200 of these events have
been recorded. They are thought to occur mainly due to residual fuel left
in upper rocket stages which causes the stage to explode. Currently about
16000 objects are tracked by the US Strategic Command (USSTRATCOM)
and are publicly available through the Two Line Element (TLE) catalog1.
The catalog includes objects down to about 10 cm in diameter in the LEO
region and about 1 m diameter in the higher Medium Earth Orbit (MEO)
and Geosynchronous Earth Orbit (GEO) regions. As the interest in space
debris increases, and the quality and quantity of the sensors improves, the
number of tracked objects can increase by an order of magnitude in the near
future. Figure 1.3 shows the damage that can be done by an object in the
LEO region, where the relative velocities can be up to 15 km/s.

Objects of the size shown in Figure 1.3 cannot be tracked, even though they
can cause catastrophic collisions. Tracking these objects represents a signif-
icant challenge, one that not only requires improved sensor systems but also
improved algorithms capable of processing the large amount of data that re-
sults from these improved sensors.

The three main categories of Earth orbits are the LEO (up to 2000 km alti-
tude), MEO (from 2000 km to about 36000 km altitude), and GEO (around

1https://www.space-track.org/

https://www.space-track.org/
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Figure 1.3: Damage caused by an object of a few millimeter
in diameter that impacted a sheet of metal at hyper-velocity.
http://www.esa.int/Our_Activities/Operations/Space_Debris/

Hypervelocity_impacts_and_protecting_spacecraft. Accessed on
17/11/2016.

the 36000 km altitude) regions. Roughly stated it can be said that the LEO
region is used mostly for scientific and Earth observing satellites, the MEO
region is where the Global Navigation Satellite System (GNSS) satellites are
positioned, and the GEO region is where the majority of the the telecommu-
nication and weather satellites satellites are placed. The tracking methods
that are used mainly depend on the region in which the tracked objects reside.
For LEO objects Radio Detection and Ranging (RADAR) and optical sensors
can be used. For the MEO and GEO regions in general only optical sensors
are used, because the objects are too far away to be observed with a RADAR
system. The other aspect that has an influence on the nature of the problem
are the perturbing forces that act on the orbiting bodies. An overview of
these perturbations can be seen in Figure 1.4. In LEO the bodies are sub-
jected to heavy perturbations by the non-homogeneous gravity field of the

http://www.esa.int/Our_Activities/Operations/Space_Debris/Hypervelocity_impacts_and_protecting_spacecraft
http://www.esa.int/Our_Activities/Operations/Space_Debris/Hypervelocity_impacts_and_protecting_spacecraft
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Earth and its atmosphere. Whereas in MEO and GEO Earth’s gravity field
has less influence on the objects’ orbit. Besides that, the atmospheric drag
can be neglected at these altitudes. The third body perturbations caused by
the Sun and Moon play a larger role in the high altitude orbits then in the
LEO region.

Space debris cataloging consists of two problems. The first problem is the
problem of identification, where each observation of a space object has to
be associated to an object. The identification problem can be divided into
two sub problems, one being the identification of an already cataloged ob-
ject (tracklet-to-orbit association), and the other being the identification of
a new object (tracklet-to-tracklet association). This work only focuses on
the tracklet-to-tracklet association problem. The second problem is the es-
timation of the objects’ state, or the orbit determination problem. As will
be discussed further on, these two problems are interrelated. The number of
tracked objects is expected to increase by an order of magnitude in the near
future. These objects will still be in the same space as the currently tracked
population, therefore the object density will increase. The goal of this thesis
is therefore:

Purpose statement

To identify an algorithm capable of addressing the problem of space
debris cataloging in the GEO region, in particular for highly dense
regions, without possessing a restrictive computational complexity.
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Figure 1.4: Different sources of perturbing accelerations as a function of the
distance from the center of the Earth. The Area to Mass Ratio (AMR) used
to compute the solar radiation pressure is 0.01m2/kg. (Montenbruck and
Gill, 2000)
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1.1 Optical observations of space debris

In this work only optical measurements are considered. The optical mea-
surements are treated after the astrometry has been performed, therefore
the presented work does not cover the e.g. telescope pointing or image pro-
cessing algorithms that are needed. With an optical system a pair of angles
(α, δ)t at an epoch t can be observed, where the angles are defined as in the
schematic given in Figure 1.5. This topocentric reference frame is centered
on the optical sensor, and oriented in the same way as the geocentric equa-
torial coordinate system (i axis parallel to the vernal equinox direction and
ij plane parallel to the equatorial plane)(Vallado, 2007).

Figure 1.5: Definition of measured angles right ascension α and declination
δ.

Typically space debris is observed with Charged Coupled Device (CCD) or
Complementary Metal-Oxide Semiconductor (CMOS) sensors, which results
in images such as that shown in Figure 1.6. In this figure an image of one of
the ASTRA clusters is seen.
The astrometric position of each object is extracted through image process-
ing software which uses a reference star catalog to identify the stars that
are present in the frame. The exact position of the object is then calculated
with respect to these reference stars. For the optical data obtained at the
Zimmerwald observatory the uncertainty of the extracted position is around
0.7” ≥ σ ≤ 1”. Note that in this tracking mode the rotation of the Earth
is not corrected for, therefore the stars appear as stripes and a GEO object
is a point. Other tracking modes are possible. This thesis does not concern
itself with the extraction of the astrometric position. The interested reader is
referred to (Früh, 2011; Schildknecht, 2007; Schildknecht et al., 1997; Schild-
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Figure 1.6: A CCD image of an ASTRA cluster (Schildknecht, 2007)

knecht, 1994).

Space debris is typically observed multiple times in rapid succession. Such a
series of observations is also called a tracklet or very short arc and consists
of four to seven observations made at 15 s to 30 s intervals (in the case of
the Zimmerwald observatory). A schematic representation of such a series is
given in Figure 1.7.

Figure 1.7: A schematic representation of a tracklet, which is a series of
closely spaced optical observations.

A series of observations is made in order to be sure that an object has been
observed, and to obtain a larger number of observations which is beneficial
when e.g. a least squares estimator is applied to them. The tracklet formation
process is where the individual observations are associated to one another in
order to form the correct series of observations. Such a process is described
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in more detail in (Früh and Schildknecht, 2012). The work presented in this
thesis aims to exploit this strategy of observing space debris, and therefore
exclusively considers that space debris is observed in this manner. A feature
of a tracklet is that it describes such a short portion of the object’s orbit
(e.g. for a GEO about 2-5 min of a 24 hr period) that a straight line can
approximate the object’s motion during that time span. By fitting a straight
line to the observations in a tracklet both the average position and the angular
rate of the object are found. This is a so-called attributable as given in
Equation 1.1 (Tommei et al., 2007). The epoch of the attributable is the
average epoch of the observations in the series.

θt =
(
α, δ, α̇, δ̇

)
t

(1.1)

An important aspect of the observations and tracklets is the quantification
of the their uncertainty. In general it is assumed that the noise on a single
measurement is Gaussian. Therefore a single measurement is described with
a mean value and a standard deviation σ0. The σ0 can be characterized and
depends on the telescope, CCD hardware, and image processing software
used. However it is arduous to do so and is in itself not perfectly accurate.
Another option is to use the uncertainties that are provided by the least
squares straight line fit. In this work all measurement errors are assumed to
be Gaussian with no bias.
The tracklets are collected through two types of observation strategies: the
survey and the follow-up strategies. In the survey strategy the sky is ’scanned’
by a telescope (typically with a relatively large field of view). The aim is to
discover new objects by observing as many objects as possible in such a way
that they can be successfully identified and that their orbit can be deter-
mined. The most interesting objects discovered by these surveys are then
observed through a follow-up campaign. In the follow-up strategy the orbit
of the object is already roughly known, and the new observations serve to
improve the orbit of that object. In Figure 1.8 an example of a simulated
survey can be seen. Here a number of GEO objects from the TLE catalog
are simulated and observed through a survey type strategy. The telescope
is used to scan portions of the sky with fixed right ascension and varying
declination. It starts at a certain position and it takes seven images (in order
to form the tracklets afterwards), it then moves one field of view in declina-
tion and repeats the process. It does this five times before moving back to
the first position. The telescope scans in such a manner for e.g. one hour,
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after which it moves one hour in right ascension and continues to scan at the
new position. This is done in order to attempt to re-observe the objects that
it has observed in the first position. Each of such scans with a fixed right
ascension and varying declination is called a fence.

Figure 1.8: Standard survey scenario applied to geostationary objects with
i < 3 deg and e < 0.1. Coordinates are in topocentric right ascension α
and declination δ. Each cross represents the center of the field of view of the
telescope, the telescope scans in fixed right ascension and varying declination
(also known as a fence). The observations are simulated for the night of 11-
6-2014 for a part of the geosynchronous population.

This work mainly focuses on treating observations collected with a survey
type strategy because in this strategy the identity of each object is truly
unknown. In this situation the so called Multiple Target Tracking (MTT)
problem is encountered. Section 1.2 describes this problem in more detail.
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Figure 1.9: A zoom in of four consecutive fences.

1.2 Multiple Target Tracking

In this section the problem addressed in this thesis is defined. The problem
of tracking space debris can be generalized to the MTT problem. In this
problem a set of tracklets, grouped in a number of S fences (also known as
scans in e.g. the RADAR domain), is given. The goal is to find the total
number of objects from which the tracklets originate as well as the state of
each of these objects. This problem is encountered in numerous domains,
examples being defense (Rakdham, 2009), and the tracking of particles re-
sulting from high energy collisions in particle physics (Pusztaszeri et al.,
1996). The MTT problem also takes the occurrence of both false alarms
(sporadic measurements) and missed detections into account. The problem
consists of two interrelated parts, namely data association and state estima-
tion. In the data association part the observations from the different scans
have to be associated to the correct object. The state estimation part then
takes these associated groups of observations and estimates the target state.
This leads to a search for the permutation that results in the target state
estimates that best approximate the measurements, according to a certain
metric. The number of scans S that are used in the problem correspond to
its dimension. For a dimension of S ≥ 3 the number of possible permutations
greatly increases and the problem becomes NP-hard (Poore and Gadaleta,
2006). For instance, in the case where S = 2 with two tracklets per fence,
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there will be a total of seven possible permutations. However for the S = 3
case with two tracklets per fence, there will be 87 of these permutations
(Aristoff et al., 2013). This increase in the number of permutations leads to
the problem falling in a different category of complexity (the NP category),
this is explained in more detail in Section 1.3.

The dimension of the problem is equal to the number of fences S (also called
an S -D MTT problem). Each fence consists of ns tracklets, where s =
1, 2, . . . , S, a tracklet is denoted by i = 1, . . . , N within the total set of
tracklets. Each of the tracklets belongs to at most one object denoted by
j = 1, 2, . . . , J . The missed detection probability is denoted by Pd, a missed
detection is taken into account by adding a dummy tracklet zs0 to every
fence. A permutation is denoted by a which lies in the set A that contains
all possible permutations. Each object j has a cost fj that contributed to
the total cost of a certain permutation a that contains multiple objects (up
to N maximum, where N is the total number of tracklets). Summing those
costs gives the total cost of a permutation, as written in Equation 1.2. Now
the combinations of tracklets from different fences needs to be optimized in
order to reduce the total cost, subject to the constraints given in 1.3, 1.4, and
1.5. The constraint in 1.4 means that the tracklets within each fence cannot
be associated to each other. The contraint in Equation 1.5 means that each
tracklet has to be assigned to something.

mina∈AΣj=J
j=1fj (1.2)

ki,j ∈ {0, 1} (1.3)

Σis=ns
is=1 kis,j ≤ 1 ∀j,∀s (1.4)

Σj=J
j=1ki,j = 1 ∀i (1.5)

If ki,j = 1 it means that the tracklet i is associated to object j. The function
fj depends on the estimated object state, the missed detection probability,
the false alarm probability, the uncertainties in the observed and computed
values, the number of tracklets, and the total number of fences considered.
This so-called fitness function is further elaborated in Section 4.2.
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1.3 P vs. NP complexity

The question of P vs. NP, or P = NP, has to do with the so-called computa-
tional complexity that can be assigned to a given problem. It has been called
one of the most important open standing questions in theoretical computer
science to date. And it is one of the seven problems that the Clay mathe-
matics institute has defined as the ’millenium prize problems’. A reward of
a million US dollars is given to the discoverers of the solution to any of these
outstanding problems. Informally speaking the class P consists of problems
that are easy to solve, and the NP class consists of problems that are very
difficult to solve. Therefore stating that P = NP is essentially saying that
all these difficult to solve problems have simple solutions. Another charac-
teristic of a NP problem is that if one provides the solution, this solution
is easily verified (with P-complexity). One example of an NP-problem is
the prime factorization problem, which is frequently used in cryptography.
In this problem a number is given which is a product of n prime numbers,
where n is a given integer. The problem is to find these n prime numbers. In
order to do so one needs to perform a search through many combinations of
prime numbers, which is a procedure with an NP-complexity. However if the
solution is provided, one multiplication of the n prime numbers is enough to
verify its correctness. If one proved that P = NP, the implications would be
enormous, already just by considering the field of cryptography.
Saying that problems in P are easy and that those in NP are difficult is quite
vague. Therefore a more quantifiable definition is given to the two classes.
The P stands for ’polynomial time’. This means that the computation time
needed to solve the problem varies as a polynomial function of the problem
size. For example if the problem size is denoted by n, the computation time
might vary by n2. This can also be written as O(n2), or more generally
by O(nk). Such a relationship is also called the computational complexity
of a problem. It is important to note that the P and NP classes are not
concerned by the computation time of a problem with a fixed size, they are
only considering the computational complexity. The problems in P might
have a large computation time (e.g. if k is large), however it will dwindle
in comparison to the computation time needed to solve NP problems. The
NP acronym stands for ’non-deterministic polynomial time’. In other words,
no optimal solution to the problem can be found in a deterministic fashion
with a polynomial time complexity. These problems possess an exponential
time complexity, e.g. O(kn). For instance with a k = 2 the computation
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times with n = 2 would be 22 = 4 and 22 = 4 for the P and NP problems
respectively. However for a problem size of n = 10 it becomes 102 = 100 and
2100 = 1.3 · 1030 for a problem in P and NP respectively. Clearly, any prob-
lem that is in NP quickly becomes unsolvable within a realistic computation
time.
The majority of the NP problems are in a specific class called the NP-
complete problems. The characteristic that sets these problems apart is
that they can be adapted to resemble each other. Therefore if a polynomial
time algorithm can be found for one of the NP-complete problems, it would
be valid for all NP-complete problems since it can be adapted to solve all
of the others. If one is capable to solve such a problem in polynomial time
it would be a big step towards proving that P = NP. An example of a
NP-complete problem is the Traveling Salesman Problem (TSP). For a more
in depth overview of the advancements in this field of research the reader is
referred to (Cook, 2000; Sipser, 1992).

1.4 Existing methods

In this section the most promising existing methods that are currently de-
veloped or under development are discussed. Three main categories can be
defined being the S = 2 methods, the S ≥ 3 methods, and the statistical
methods. Statistical methods aim to model the population of objects through
a probability distribution function. They represent a very different approach
to the space debris cataloging problem. The current state of the art methods
are depicted in Figure 1.10.

In Figure 1.10 the proposed Population Based Meta Heuristic (PBMH) method(s)
are highlighted with a red box. The statistical methods represent very dif-
ferent approaches to the problem of cataloging space debris. In-stead of
attempting to identify each object and its state, they try to model the popu-
lation of objects with a probability density function (pdf). A recent example
is the work done in (Hussein et al., 2012). There are still limits to the al-
gorithm described in that work though, for example the number of objects
has to be assumed, and the computational complexity is prohibitive. Other
promising algorithms are for instance the Cardinality Probability Hypothe-
sis Density (CPHD) algorithm (Wei et al., 2015), and the multi-Bernoulli
approach (Brandon and Vo, 2014). According to the P vs. NP problem the-
ory there is no way to find the optimum solution to a NP problem within
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Figure 1.10: An overview of different methods used and under investigation
in the domain of space debris cataloging.

a polynomial time in a deterministic way. However there exists a family
of algorithms that specifically aims at addressing NP problems without in-
curring the exponential computational complexity. These are the heuristic
algorithms. The heuristic algorithms seek to approximate the optimum solu-
tion to the S-dimensional MTT problem with a polynomial time complexity.
In the context of the MTT such a heuristic algorithm might be of value.
Where the S = 2 methods occupy one end of the spectrum and the Mul-
tiple Hypothesis Tracking (MHT) method occupies the other, the heuristic
algorithms might be able to partly fill the middle of this spectrum. Besides
that they have not been studied much in this domain. Two algorithms that
have been applied to the MTT problem are the Lagrangian relaxation algo-
rithm (Deb et al., 1997) and the Greedy Randomized Adaptive Local Search
(GRASP) algorithm (Robertson, 2001).

The prevailing methods at the moment are those based on the Admissible
Region (AR). These methods fall under the S = 2 category and are the first
to be discussed. After that the MHT algorithm is described which is a part of
the S ≥ 3 category. The MHT algorithm is the currently accepted algorithm
used to address the MTT problem in dense regions.
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1.4.1 Admissible regions

Throughout the literature two main classes of ARs can be found, being the
Initial Value Admissible Region (IVAR) and Boundary Value Admissible
Region (BVAR) formulation. In (Siminski et al., 2014) a good overview of
several of the most relevant papers and methods involving ARs is presented.
An AR is a region within the state space which is defined as containing
plausible solutions. For both the initial value problem and the boundary
value problem there are four values that are fixed as a result of observations,
leaving two values to be estimated in order to define the state of the object.
Any set of two additional values which would complete the six element set
needed to define an orbit is called an hypothesis. An AR method optimally
solves the S = 2 MTT problem. This is a problem in P because the number
of combinations between two fences depends in a polynomial fashion on the
number of tracklets in each fence. These algorithms are therefore favorable
in terms of computational complexity, the drawback is that a hard decision
to associate two tracklets is made based on the information contained by just
those two tracklets. In the majority of the cases (where the object density is
relatively low) this works. However in situations with high object densities
(e.g. clusters and break-up scenarios) ambiguous solutions start to exist, and
wrong decisions can be made.

Initial value approaches

A short overview of the problematic and the proposed methods are presented
here, for a more complete explanation the following papers can be considered:
(Siminski et al., 2014), (Fujimoto et al., 2014b), (Fujimoto et al., 2013b),
(Milani et al., 2010), (Siminski et al., 2013a), (Roscoe et al., 2013), (Fujimoto
et al., 2013a), (Tommei et al., 2007), (Siminski et al., 2013b). The initial
value problem uses the attributable denoted in Equation 1.1. A point can
be made here that the quality of the angular rates and the knowledge of its
uncertainty might be questionable. Propagating this uncertainty in time may
thus lead to a bad definition of the angular rates in a future epoch, which can
lead to false positive correlations (Siminski et al., 2014). This problem can
be somewhat diminished by using more observations in one tracklet. Two
questions related to this uncertainty are formulated by (Roscoe et al., 2013):

• How accurate do angle rates need to be in order to represent the orbital
state directly?
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• How accurate do they need to be to properly refine our bounds of the
AR?

(Roscoe et al., 2013) shows that the angular rate errors transform linearly
to orbit velocity errors, making the answer to the first question relatively
straightforward. As for the second question, the admissible region can be
padded to account for the possible errors, effectively enlarging the AR.

Six values are needed in order to define the state of the observed object,
therefore a hypothesis is made which in the case of the initial value problem
is:

p = (ρ, ρ̇) (1.6)

Where ρ is the range between the observer and the object. With these values
the geocentric position and velocity can be determined through the relations
1.7, 1.8:

~r(t) = ~Robs + ρ~u (1.7)

~̇r(t) = ~̇Robs + ρ̇~u+ ρ~̇u (1.8)

where ~u contains the angular positions and ~Robs is the geocentric position of
the observer.

The admissible region can be defined by imposing constraints on the possible
hypotheses, in this case the range and range-rate values. An example of an
AR is taken from (Fujimoto et al., 2013b) where it is defined as:

• C1 = {(ρ, ρ̇) : E ≤ 0}

• C2 = {(ρ, ρ̇) : 1.03 ≤ ρ ≤ 8.53,−5 ≤ ρ̇ ≤ 5}

• C3 = {(ρ, ρ̇) : 1.03 ≤ rp}

• C4 = {(ρ, ρ̇) : ra ≤ 15}

where E is the specific geocentric energy of the object, and ra and rp are the
apogee and perigee heights respectively. Units of length are in Earth radii
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Figure 1.11: An example of an IVAR (Tommei et al., 2009).

and time is in hours. A typical IVAR can look like the one shown in Figure
1.11.

The AR describes a subset of the orbital element space in which the true orbit
should lie. In order to find this true orbit different methods are suggested.
The first method applied is called the Virtual Debris method (Milani et al.,
2010; Tommei et al., 2009). Here the AR is discretized to allow for sampling,
the chosen method is that of Delaunay triangulation. This results in a sam-
pling as shown in Figure 1.12.

This is done in order to ensure an even distribution of sampling points. For
each sample point a ’virtual debris’ is generated which is propagated to the
epoch of a next observation. For each virtual debris an attribution penalty
Ki

4 is defined, which depends on the difference between the computed and
true attributed quantities at the next epoch. A maximum threshold is set
for the attribution penalty under which a virtual debris is accepted as the
possible true object, when this happens a decision is made to associate the
two tracklets.
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Figure 1.12: An example of the discretization of an IVAR with Delaunay
triangulation (Tommei et al., 2009).

Once an orbit based on two attributables is found it has to be confirmed.
In order to do this a least squares fit is made to the two tracklets and the
orbit is propagated to a time t3 of a possible third tracklet. If the computed
attributable is close enough to the observed attributable the orbit is finally
accepted as being true.
The fact that the entire AR has to be sampled, and that each sample is prop-
agated is not very optimal. Another important point to make is that this is
not so much a global approach, since the Virtual Debris algorithm will allow
for association of the data, but still a least squares fit has to be made in the
end (however, this is the case for all of the methods described in this section).

Another approach is described by (Fujimoto et al., 2014b, 2013b,a) called
the Direct Bayesian Admissible Region method. First an AR for each
tracklet is defined and transformed to Poincaré orbital elements. Each AR
is discretized into 375.000 subsets. By using the Fokker-Planck equation
and using the fact that each AR is a pdf the entire AR can be propagated
through time. For each couple of tracklets that are tested the second tracklet
is propagated to the epoch of the first tracklet.



20 CHAPTER 1. INTRODUCTION

If the a posteriori pdf is non zero the tracklets are considered to be possibly
correlated. This process is depicted schematically in Figure 1.13.

Figure 1.13: A schematic representation of the propagation through time
of two ARs in the Poincaré element space. The overlap means that the
probability that the two tracklets belong to the same object is non-zero, in
this case the two tracklets are associated. (Fujimoto and Scheeres, 2011)

These tracklet pairs are passed on to a least squares estimator which refines
the orbit determination and confirms the correlation (if the root mean square
(RMS) is below a certain threshold). When such a least squares estimator
is used the method is called the Hybrid method. Notice that in this case as
well, the AR method does not provide a truly global approach since the orbit
still needs refinement and the correlation still needs confirmation.
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A test is introduced in (Fujimoto et al., 2014b), which attempts to filter out
so called multi-rev (multiple revolutions) solutions. A multi-rev solution is
a solution where a tracklet of a faster, lower altitude object, is accidentally
associated to an object with a longer orbital period. For instance, a faster
orbiting object in a GTO orbit can be mistaken for a GEO object. In order
to check for these errors the single observations within the tracklet are used.
Provided that the tracklet consists of at least four observations we can see
if the RMS within the tracklet has a linear drift. If this is the case it means
that the tracklet has a different orientation than the orbit that was fitted to
it, giving an indication that the tracklet is wrongly associated.

Instead of sampling the entire AR, (Siminski et al., 2013a) conduct a Best
Hypotheses Search on an Iso-Energy grid. Two problems are addressed
in this method, one is the problem of discretzing the AR. When the time
between two tracklets increases, the sampling grid should be more dense. In
order to decrease the necessary computation time the new Iso-Energy grid is
introduced, which takes samples from lines on which the energy is constant.
The second improvement is made by introducing a search algorithm. This
means that not the whole AR is sampled, leading to a reduction in the number
of propagated hypotheses. The loss function to be minimized is defined by
the Mahalanobis distance in 1.9.

L(x0) =

(
(a− â(x0))T

(
Ĉ(x0) + C

)−1

(a− â(x0))

)
(1.9)

Where a contains the angular positions at the second epoch, â(x0) is the
computed (propagated) angular position. The covariance matrix at the sec-
ond epoch is C1 and the propagated value is Ĉ(x0), x0 is the hypotheses that
is being tested. This results in a topography such as the one shown in Figure
1.14.
The search algorithm is generally not able to find the global minimum. When
the difference between observation epochs is less than one revolution the
global minimum and the local minimum coincide. However when the time
between observations is large enough to allow for several revolutions there
will be several local minima. In this case the AR is split up into several
smaller regions based on the number of revolutions (the iso-energy grid is
useful here), and each sub space is treated separately. The global minimum
is computed by comparing all the local minima and selecting the smallest
one. When the AR is devided into too many subsections the topology can
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Figure 1.14: The topography of the initial value loss function, over the IVAR.
As can be seen, it is challenging to robustly find the global minimum point.
(Siminski et al., 2014)

become too difficult to treat robustly with a search algorithm. In such a
case a solution could be to perform a parameter transformation, in (Siminski
et al., 2014) the use of the semi-major axis a0 and the relative range ρ̃0 at
the first epoch is suggested. This adaptation helps to remedy the problem
up to a certain point, but it does not solve the problem completely.

Boundary value approaches

The admissible region concept is not as much studied in the boundary value
problem as it is in the initial value problem. Papers dealing with this prob-
lematic are (Schumacher et al., 2013), (Siminski et al., 2014), (Roscoe et al.,
2013). The hypothesis consists of a range value per tracklet epoch, and the
four fixed values are the angular positions of the first and second tracklet:

p̄ = (ρ1, ρ2) (1.10)

For each hypothesis an orbit can be determined by solving the Lambert prob-
lem. The strength of the boundary value method is that its AR does not rely
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on angular velocity measurements, which can be of doubtful quality (Schu-
macher et al., 2013) depending on the observation strategy and telescopes
used. The angular velocities could be used to come up with potential associ-
ations, and only for those candidate tracklet pairs the Lambert problem will
be solved. In (Schumacher et al., 2013; Roscoe et al., 2013; Fujimoto et al.,
2014a) the entire BVAR is sampled in order to find a good candidate object.
Also in this context an optimization is possible, as proposed in (Siminski
et al., 2014).

In the optimized approach again a search method is applied to a topography
defined by a loss function as given in Equation 1.11.

LS=2(m, p̄) =
(

˙̄z − ˆ̄̇z
)T

C−1
˙̄z

(
˙̄z − ˆ̄̇z

)
(1.11)

Where ˙̄z =
(
α̇1, δ̇1, α̇2, δ̇2

)
, and the ·̂ denotes the computed values. The

covariance is given by C ˙̄z = Σ ˙̄z + Σ ˆ̄̇z
, where Σ ˙̄z is the covariance matrix

of the attributed values and Σ ˆ̄̇z
is the covariance matrix of the computed

values.The loss function is defined with the angular velocities, so even though
these velocities are not directly used in the orbit determination they are used
here to describe the likelihood of an association.
A given hypothesis defines a Lambert problem, the solution to this problem
will give us six orbital elements. With these elements the angular velocities
at the observation epochs can be modeled. The resulting topography is much
more favorable, as shown in Figure 1.15.

Figure 1.15: The topography of the boundary value loss function, over a
BVAR. This is for a set number of revolutions. (Siminski et al., 2014)
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The loss function has to be minimized for different numbers of revolution m
between the epoch of the first tracklet and the epoch of the last tracklet. The
minimum value among those results represents the most likely orbit of the
hypothetical object. If the loss function value falls below a certain threshold
then those two tracklets are associated to each other, and the resulting orbit
is used as the initial orbit of the object.

1.4.2 Multiple Hypothesis Tracking

In the MTT community the MHT principle is widely regarded as the ac-
cepted method to address the problem (Blackman, 2004). The strength of
this method is that it can postpone the decision to associate a measurement
until more information is available. Throughout this section the work in
(Blackman, 2004) is followed. A lot of literature is written on this topic, a
selection of good sources are (Blackman, 2004; Aristoff et al., 2013; Poore
and Gadaleta, 2006). It bases its decisions on more information than just
two data points (or two tracklets, such as all the S = 2 AR methods dis-
cussed in Section 1.4.1). This becomes especially important when dealing
with closely spaced objects where ambiguous solutions exist. In Figure 1.16
this problem can be seen in a schematic representation. In this figure the two
propagated states P1 and P2 are so close together that their uncertainties
start to overlap. Within these two uncertainties three measurements, O1,
O2, and O3, are made. In this situation it is not clear which measurement
should be associated to which object. Therefore more information is needed
before making this decision.
The MHT algorithm will initiate a so-called hypothesis for each of the pos-
sible combinations between the measurements and propagated objects, in-
cluding the possibility that the measurements do not stem from either of the
propagated objects or that they are false alarms. Each of these hypotheses
are then propagated to the next fence where the same process repeats itself.
A track is a series of measurements stemming from different fences. Each
track can be evaluated according to a certain loss function. It is common to
use a likelihood ratio such as the one given in Equation 1.12 which is based
on Bayes’ rule.

LR =
p(DH1)P0(H1)

p(DH0)P0(H0)
=
PT
PF

(1.12)

In this equation p(DH1) denotes the probability of measurement D being
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Figure 1.16: Three measurements and two propagated states with their un-
certainties. Due to the overlap in uncertainty and inclusion of multiple mea-
surements the association becomes ambiguous (Blackman, 2004).

generated by hypothesis H1 and P0(H1) is the a priori probability of the
hypothesis H1. The H0 is the hypothesis where all measurements are declared
false alarms. The probability that the hypothesis is true is given by PT , the
probability that it consists fully of false alarms is given by PF . It is general
practice to use the Log Likelihood Ratio (LLR). This gives the expression in
Equation 1.13. The LLR is also called the track score L(k), where k denotes
the fence.

LLR =
PT
PF

(1.13)

Now the track score at fence k can be updated as such: L(k) = L(k − 1) +
∆L(k) where ∆L(k) is the update value. This update value differs depending
on the hypothesis. It can be either a false alarm, a missed detection, or
the continuation of the track. In this way the score is kept for each track,
adding all these track scores within the same hypothesis gives the hypothesis
score. At any time these scores can be converted back to probabilities. It is
straightforward now to compare different hypotheses and to choose the most
probable one at any time.
Because the MHT method considers all possible hypotheses it will find the
optimal solution given a set of measurements. As was discussed earlier in
Sections 1.2 and 1.3, this quickly becomes computationally unfeasible. For
example, two fences with two measurements each already gives seven possible



26 CHAPTER 1. INTRODUCTION

hypotheses. Adding a third fence with again two measurements leads to a
total number of 87 possible hypotheses (Aristoff et al., 2013). This problem
needs to be addressed if the MHT principle is to be used. The manner in
which this is done is where MHT methods can differ. One possibility is
called N-scan pruning where the search space is pruned by selecting the part
that contains the most probable hypothesis to date. At the current fence
the decision is taken to cut half of the tree N fences before. The half that
contains the best hypothesis so far is kept. This process is depicted in Figure
1.17.

Figure 1.17: A tree structure containing all possible tracks that originate
from measurement 1. Here the N-scan pruning technique is depicted, where
half of the tree is discarded in hindsight (in this case after two fences), here
the left branch is deleted from the tree (Blackman, 2004).

In the example in Figure 1.17 a N = 2 N-scan pruning is used. In reality
it may be necessary to use a N = 5 N-scan pruning (Blackman, 2004). In
any case, this still means that the problem is NP-hard, and is thus only ap-
plicable to small problems that involve only a few tracked objects. Another
way to handle the increase in the number of combinations is the m-best im-
plementation, this approach introduces the parameter m that can tune the
compromise that is made between the computation time and the amount of
hypotheses that are considered. Here only the m tracks with the highest
probabilities of being correct are considered. A different method to restrict
the number of combinations is by using track oriented MHT, where the hy-
potheses on fence k − 1 are pruned.
Even though MHT is considered to be the accepted method to address the
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MTT problem it is not further investigated during this thesis work. The rea-
sons for this are twofold. Firstly, MHT is a well developed method that has
been used extensively (and successfully) throughout many different domains.
Simply applying this well known algorithm to the problem at hand did not
seem to be of much interest. The second reason is that although MHT is
a powerful algorithm it still attempts to optimally solve the S ≥ 3 MTT
problem. Finding the optimum solution is good, but it brings a prohibitively
large computation time with it if no simplifications to the problem are made.

1.5 Outline of the thesis

The thesis is structured as follows. In the upcoming chapter arguments
are given as to why PBMH algorithms could be of use in the space debris
cataloging framework. The algorithms that have been applied to the problem
are described afterwards. Each of the algorithms has problem specific design
elements. In Chapter 4 these elements, which are the fitness function and
the solution representation, are described. In Chapter 3 the initial orbit
determination method that is used in the PBMH algorithms is presented.
In Chapter 5 the results of the different algorithms are presented. Through
three simulated test cases the best algorithm is identified. This algorithm
is applied to a set of real data to show that it performs as expected with
real observations. The time complexity of the algorithm is discussed, also
some preliminary results are presented on possible ways to reduce this time
complexity. Finally, in Chapter 6, the conclusion are drawn and the possible
future work is outlined.





Chapter 2

Population Based Meta
Heuristic methods

In this chapter the algorithms that are applied to the space debris cataloging
problem are discussed. All algorithms are discussed in their general form. An
interesting characteristic of these algorithms is that they are easily adaptable
to solve a wide range of problems (hence the name meta heuristic). The
problem specific adaptations that are made will be discussed in Chapter 4.
First the motivation for using these algorithms is discussed, after which each
of the algorithms is explained separately.

2.1 Motivation

Current methods are at two extremes of a spectrum. Either the method is
compromising its accuracy (the S = 2 methods) or it has an unfavorable
NP computational complexity which leads to simplifications that have to be
made (MHT (Blackman, 2004)). An overview of these existing methods can
be found in Section 1.4. Ideally a new algorithm would be able to cover a
new part in the ’spectrum’ between these two types of solutions. To that
end it is proposed to study meta heuristic algorithms. These algorithms are
capable of approximating the optimum solution to problems that are of NP
complexity. This approximate solution is then obtained with a P complexity.
This means that an approximate solution to the S ≥ 3 MTT problem can
be found with a P computational complexity.
Meta heuristic methods have been explored to a certain extent in the MTT

29



30 CHAPTER 2. PBMH METHODS

community. A few examples are the works of (Deb et al., 1997) and (Robert-
son, 2001) which use the Lagrangian relaxation and GRASP algorithms re-
spectively. And in (Turkmen et al., 2006) and (Chen and Hong, 1997) a
Genetic Algorithm (GA) is used to track a few simulated objects with simple
dynamics. As mentioned in (Poore and Gadaleta, 2006) the Lagrangian re-
laxation and GRASP algorithms are quite well developed. The GA and other
PBMH methods remain a relatively unexplored topic in the domain of MTT.
There is reason to believe that these methods are a promising approach to
this problem. The MTT problem is a combinatorial optimization problem.
It can be represented in a graph as shown in Figure 2.1.

Figure 2.1: A graphical representation of the MTT problem

In Figure 2.1 the S1,2,3 represent the first, second and third fence respectively.
Each node represents a tracklet, within each fence the tracklets belong to
different objects. The nodes can be connected which signifies an association
between those tracklets. If a node is not connected to any other node it
means that it is a different object that has only one tracklet, or that it is
a false alarm. Each connection has a certain weight. This weight can be
calculated with the use of a so-called fitness function which is discussed in
depth in Section 4.2. The goal is to find which connections minimize the
total weight while respecting the constraints set in Section 1.2.
The MTT problem has a lot in common with other well known combinatorial
optimization problems. An example is the TSP. In Figure 2.2 a graphical
representation of this problem can be seen.
In the TSP each node represents a city, and each edge represents the distance
to be traveled between the cities. The goal here is to find the order in
which one should visit each of the cities such that the total traveled distance
is minimized. This is an NP combinatorial optimization problem that has
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Figure 2.2: A graphical representation of the TSP problem

been addressed by using PBMH algorithms (Moon et al., 2002). Other such
problems are the flow shop sequencing problem (Reeves, 1995), and the set
covering problem (Beasley and Chu, 1995). As such it is expected that these
methods will yield good results when applied to the MTT problem.

2.2 Genetic Algorithms

Genetic Algorithms are being developed since the 1960s (Goldberg, 1999).
Nature has a powerful optimization scheme, which is natural selection. All
beings pass on their characteristics to the next generations through the form
of Deoxyribonucleic Acid (DNA). Two parents can do this by creating a child
which inherits a part of each parents’ DNA. Whether or not the individual
will pass on their characteristics depends on whether or not they are fit
enough to do so. By implementing these rules an algorithm can be developed.
The flow chart of the GA is given in Figure 2.3.

The algorithms starts by generating an initial population of individuals. An
individual is a term to describe a possible solution to the problem at hand.
The way in which an individual is defined is important, since it needs to
be able to describe any solution within the search space. A group of such
individuals make up a population. After initializing the population the al-
gorithm proceeds to evaluate each individual separately. The evaluation is
done according to a so-called fitness function. This fitness function is the
second important problem specific design element in the GA. Both the defi-
nition of the individual and the fitness function for the space debris tracking
problem are developed in Chapter 4. The iterations in a GA are called gener-
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Figure 2.3: A flowchart of a GA

ations, and are denoted by g. In the shown flowchart the stopping criterion
is a maximum number of generations maxgens. After evaluating the cur-
rent population a series of operators are used to generate a new population,
which represents the next generation. The first operator to be applied is the
selection operator.

Selection operator The selection operator selects an individual from the
population to be used in the crossover operator. It is important to select
the individuals in a proper manner as it will have a large impact on the
performance of the algorithm. This operator needs to mimic the process
of natural selection. Therefore it is logical to use the fitness values of the
individuals and to base the selection on that. Different selection schemes
exist (Goldberg, 1999), in this section two of them are discussed. The first
version uses the relative fitness of each individual. This relative fitness is
given by Equation 2.1. As the algorithm will attempt to minimize the fitness
value, the inverse of the fitness value is used to define the relative fitness.

fyrel =
1

fy

1∑Y
y=1 (1/fy)

(2.1)

In Equation 2.1 y = 1, . . . , Y denotes a specific individual in the population
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and fy is the fitness value of that individual. The relative fitness values
describe a discrete pdf over the population. An example of such a distribution
is given in Figure 2.4.
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Figure 2.4: An example of a discrete probability density function made by
the relative fitness values in the population.

From this pdf two individuals can be selected at random. This manner of
selecting individuals is called the relative fitness selection operator. A vari-
ation of this operator exists where the relative fitness is scaled. This is done
to ensure a continuous selection pressure during the run of the algorithm.
If the relative fitness values are not scaled it is possible to arrive at a pop-
ulation of individuals that all have similar fitness values. In this case the
relative fitness selection operator selects from a nearly uniform distribution
and the algorithm becomes similar to the inefficient random walk algorithm.
The fitness can be scaled in different ways (Goldberg, 1999). In the current
implementation a linear scaling is used as shown in Equation 2.2. Another
option would be a polynomial scaling.

f scaledy = afy + b (2.2)

In Equation 2.2 the parameter a is computed as shown in Equation 2.3.

a =
(C − 1)µfitness

∆
(2.3)

Here C is the scaling parameter, µfitness is the mean fitness value and ∆ is
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given by ∆ = fmax − µfitness. The parameter b is given by Equation 2.4.

b =
µfitness − (C − 1)

∆µfitness
(2.4)

So the only parameter that is user defined in the relative fitness selection
operator is the scaling parameter C, if linear scaling is used.
An alternative selection operator is the so called tournament selection oper-
ator. This operator is simpler in design but can be more effective in main-
taining the selection pressure during the algorithm run. In this operator two
individuals are selected at random from a uniform distribution. These two
individuals are then compared to each other and the one with the better
fitness value is selected. In Chapter 5 a comparison is made between these
two operators.

As an example the TSP is again considered. Taking five cities: Amsterdam
(A), New York (NY), Boston (B), Hong Kong (HK), and Paris (P), the task
is to find the route that visits all cities once with the minimum distance
traveled. An individual in this problem represents a sequence in which the
cities are visited, for example:

• x1 = (A, NY, B, HK, P)

• x2 = (NY, HK, A, B, P)

• xn = (x1,n, x2,n, x3,n, x4,n, x5,n)

where the last case is the generalized case. The fitness function in this case
can be written as in Equation 2.5.

fTSP = Σi=4
i=1di,i+1 (2.5)

Where di,i+1 is the distance from city xi,n to city xi+1,n. In the MTT problem
an individual represents a hypothesis on the associations of the tracklets.
The fitness function will evaluate how well these association can describe the
observations. Chapter 4 goes into more detail on this topic.

Crossover operator The goal of a crossover operator is to exchange in-
formation between two or more individuals. In general two individuals are
used in this operator, although it is possible to use more (Goldberg, 1999).
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Several variations of the crossover operator exist. The most popular ones are
discussed in this section. A straightforward version is the 1-point crossover
operator. In this operator the individual is cut at one randomly chosen point.
A ’cut’ in an individual means that it now consists of two parts that could be
exchanged with another individual. Before this can be done the individual
has to be represented in a slightly different way. Often a comparison to a
roulette wheel is made. This transformation can be seen in Figure 2.5. In this
example an individual is used that is represented by a string of binary values.
Such a representation can be found regularly. In most cases an individual
can be represented by a string of binary, integer, or real numbers.

Figure 2.5: Transformation from an individual represented by a string of
binary values to a roulette wheel representation.

In this roulette wheel representation a point is chosen at random between two
values. This point is then mapped back to the original string representation
as shown in Figure 2.6.

Figure 2.6: Randomly selecting the cutting point in the roulette wheel and
mapping it back to the string representation.

The two individuals are then cut at that point and their halves are exchanged
as shown in Figure 2.7.
The 1-point crossover operator is one version of the more general n-point
crossover, where n number of cutting points are selected at random. The
number n cannot exceed the length of the string representation.
A different approach is that of the uniform crossover operator. In this oper-
ator each entry in the string representation is exchanged with that of another
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Figure 2.7: Exchanging the two halves of the individuals to create two new
individuals.

individual with a certain probability pxover. This process is depicted in Figure
2.8.

Figure 2.8: Uniform crossover exchanges an element between two individuals
with a crossover probability pxover

The GA works because it ’builds’ the solution over the number of genera-
tions by combining so called ’building blocks’ or ’schemata’ (Goldberg, 1999).
These pieces of information consist of a group of elements within the indi-
vidual. Examples of such schemata are given in Figure 2.9.

Figure 2.9: A few examples of schemata for an individual represented by nine
binary numbers.

In Figure 2.9 the ? denotes a wildcard value. Some schemata will have
a better fitness value than others. For instance any individual that starts
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with a ’1’ can be better than those that start with a zero. The crossover
operator’s ability to combine such schemata is what makes it as efficient as it
is. What is special about the GA is that it takes the dependencies between the
parameters in the individual into account by using these building blocks. If
the operator exchanges building blocks between individuals and the resulting
individual has a bad fitness value, then that individual will likely not be
selected for the next generation. Likewise, by combining building blocks from
highly fit individuals the solution will be improved. For instance, if tracklets
1, 6, and 20 belong to the same object then associating those tracklets will
lead to a good fitness value. These three tracklets are thus dependent on
each other and form a building block that is a part of the optimum solution.

Mutation operator The crossover operator is powerful but still constrained
to only use the information already available. It is said that the crossover
operator is the exploitation part of the GA. To include a certain level of
exploration the mutation operator is introduced. This operator can change
an individual at random and as such can introduce new information into
the population. Each element in an individual is mutated with a probability
pmute. An example of this operation is given in Figure 2.10.

Figure 2.10: An example of the mutation operator.

Elitist selection If this step is added to the regular GA the algorithm
becomes an Elitist Genetic Algorithm (EGA). In this case the best few in-
dividuals are always copied to the population in the next generation. This
ensures that the information contained in the best individuals is conserved.
It also means that the best fitness value in the population will either improve
or stay the same. In a regular GA this is not the case since the entire popu-
lation is always replaced. As shown in Chapter 5, this operation can have a
significant impact.
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2.3 Population Based Incremental Learning

The Population Based Incremental Learning (PBIL) algorithm is a close rel-
ative of the GA. However, it uses less operators and in some cases converges
faster than the GA. It aims at learning a probability distribution from which
highly fit individuals can be sampled. This goal is achieved by using the
information that is present in a given population of individuals. The prob-
ability distribution P for an individual is defined by the probability that a
given element in that individual has a certain integer value. From this dis-
tribution a new individual can be sampled by sampling a value at random
(according to the probability distribution) for each element. The flowchart
for this algorithm is given in Figure 2.11. The probability distribution P is
initialized to a uniform distribution. This means that initially Pi,j = 1/i for
i = 1, 2, . . . , j and j = 1, 2, . . . , N , the i and j denote the row and column
respectively. From this distribution the first population is sampled. These
individuals are all evaluated as usual. In the implementation presented in
this work of PBIL, only the very best individual is used to update the prob-
ability distribution. This is done according to the update rule in Equation
2.6 (Baluja, 1994).

Figure 2.11: Flowchart of the PBIL algorithm

Pi,j = (Pi,j (1− LR)) +
(
LR · y∗i,j

)
(2.6)

The probability distribution is denoted by P . The best individual in the
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population is denoted by y∗. The parameter LR is the Learning Rate pa-
rameter. It dictates how much impact the current best solution has on the
probability distribution. Different update schemes exist, where also the worst
individual of the population is used. Experimental results showed that the
scheme that only uses the best individual in the population performs best.
In PBIL there is also a mutation operator in order to ensure versatility in
the population and to provide a mechanism to escape from local minima.
The mutations can either be performed directly on the individuals (as in the
GA) or on the probability distribution itself. In the current implementation
it is opted to mutate the distribution. This is done by randomly adding or
subtracting a fixed value from a parameter in the distribution P . This algo-
rithm has shown promise, since in many cases it outperforms the standard
GA (Baluja, 1994). One pitfall of this algorithm is that it assumes that all
the parameters (in this case tracklet associations) are independent from one
another. In the GA these dependencies are taken into account, because it
uses the crossover operator. The strength of the GA lies with this crossover
operator and its capability of successfully combining ’building blocks’ (thus
with strong inter-dependencies) to come up with promising solutions. It can
therefore be expected that if these inter-dependencies are very strong, the
PBIL algorithm could have poorer performance than the classical GA. For
further reading about the PBIL algorithm the reader is referred to the work
of (Baluja, 1994).

2.4 Differential Evolution

Differential Evolution was first thought of in the 1990s in order to address
problems with continuous variables. Since then efforts have been made to
adapt the original algorithm so that it can be applied to discrete (combina-
torial) problems as well (Prado et al., 2010) (Onwubolu, 2009). These efforts
have been successful in some cases, however the applicability of Differential
Evolution (DE) to combinatorial optimization problems remains debatable.
The main difference between DE and GA is the way in which new individuals
are produced. In the GA this is done by the crossover and mutation opera-
tors. In DE the difference between (real valued) candidate solution vectors
is used to guide the search process.

The notation xg,i,j is adopted. Here g denotes the generation number, the



40 CHAPTER 2. PBMH METHODS

i the number of the individual and j the parameter number within that
individual. The x means that it is a current member of the population.
From these population members three are selected at random to construct
the so called mutation vector vg,i as shown in Equation 2.7.

vg,i = xg,r1 + F (xg,r2 − xg,r3) (2.7)

Here the r1 6= r2 6= r3. The parameter F is the scaling parameter. It dictates
in what measure the difference vector will perturb the other solution. Now
the mutation vector is used to construct a trial vector ug,i. This is done by
combining the mutation vector vg,i with xg,i by exchanging parameter values
between the two vectors. A certain crossover probability Px is set. For each
parameter ’j’ a random number is generated, if this number is lower than Px
then ug,i,j = vg,i,j, otherwise ug,i,j = xg,i,j. The final step is to evaluate the
new vector ug,i, if it is better than the current solution xg,i then it will replace
it. Otherwise the original solution is kept and copied to the next generation
without making any changes. In Figure 2.12 a graphical representation is
given of the DE search method (Storn and Price, 1997).
Different schemes exist to create the mutation vector. They differ by the way
in which they select the solution vector to change and the number of vectors
that are used. In the current implementation the scheme in Equation 2.8 is
applied.

vg,i = xg,best + F (xg,r2 − xg,r3) (2.8)

As can be seen in the equation, the difference vector is always applied to the
best solution in the population.

As mentioned earlier, this method was first conceived for applications on
real valued problems. There are two ways to adapt DE to handle discrete
variables. One way is to adapt the main operator of the algorithm as given
in Equation 2.7. The other way is to transform the solution vectors from the
discrete domain to the real domain and to leave the differential operator as
it is. Different options to this end are outlined in (Prado et al., 2010) and
(Onwubolu, 2009). Here it was opted to transform the solution vectors to the
real domain. The transformation used is called the forward backward trans-
formation. The idea is to first transform the population from the discrete
to real domain using the forward transformation, then DE can be applied as
usual, after this the new candidate solution vectors are transformed back to
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Figure 2.12: Graphical representation of differential evolution (Storn and
Price, 1997).

the discrete domain with the backward transformation. In Equation 2.9 the
forward transformation is given.

x̂g,i = −1 + αxg,i (2.9)

In the above equation the α is fixed to a value of 1 · 10−3. The backward
transformation is the inverse of the above equation, giving Equation 2.10.

xg,i = round

[
1

α
(1 + x̂g,i)

]
(2.10)

This scheme has performed well on several problems such as the traveling
salesman problem (Onwubolu, 2009). This reason, together with its easy
implementation, led to the decision to use it in the current implementation.

All of the algorithms described in this chapter are applied to the MTT prob-
lem. In Chapter 5 the parameter settings and results are presented and
discussed.





Chapter 3

Initial Orbit Determination:
the OBVIOD method

3.1 Motivation

A MTT algorithm needs to be able to estimate the state of the tracked ob-
jects. Which state estimator is preferable will depend on the underlying
problem and the object dynamics. Space debris cataloging requires many
orbit determinations. Therefore if the orbit determination algorithm that is
used is not robust it means that many man hours are spent in attempts to
determine the orbit manually. A least squares estimator is a popular choice
due to its ability to provide both a maximum likelihood state estimate and
the uncertainties of each dimension of that state. In space debris tracking
the least squares method is used extensively. However a minimum number
of observations are required for the least squares estimator to work in a ro-
bust manner. In general the minimum number of observations needed for a
least squares estimator to work is equal to the number of parameters that
area estimated. However, in the case of space debris often more observations
are needed. This is due to the typical observation strategies that are used
in space debris tracking. An object is often observed in very short arcs of
several observations. Since each short arc of observations only constrains a
small portion of the object’s orbit (typically about two to five minutes of
a 24 hour orbit) the orbit is not well constrained, even if the total num-
ber of observations might suggest otherwise. An Initial Orbit Determination
(IOD) method is used to provide an initial orbit in a robust manner with

43
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a small amount of observations. This initial orbit can then be used as an
initial value in a least squares estimator to further improve the orbit esti-
mate if necessary. Apart from being robust the IOD method should also
provide a consist indicator of the quality of the orbit. In this way the quality
of orbits with different numbers of tracklets can be compared. Initial orbit
determination is a topic which has been addressed extensively. Examples
of well known methods are the Gauss and Laplace methods (Beutler, 2004)
which use three optical observations (α, δ)1,2,3 to determine the six orbital
elements. Although these methods are interesting, they do not exploit the
manner in which space debris is observed. In this work a new IOD method is
developed called the Optimized Boundary Value Initial Orbit Determination
(OBVIOD) method. It relies heavily on previously developed work on the
optimized boundary value problem (Siminski et al., 2014).

A method is needed that fulfills the aforementioned constraints of robust-
ness, consistency, and initial orbit quality. Besides that it needs to be able
to exploit the use of tracklets as apposed to single observations. The current
state of the art S = 2 methods that are discussed in Section 1.4.1 work ex-
clusively with tracklets and attributables (as opposed to the other methods).
Therefore these methods became the focus of this study. These methods use
two tracklets at a time and seek to determine whether or not these tracklets
stem from the same object. The algorithm developed during this thesis aims
to do the same, but for two or more tracklets. This means that whichever
S = 2 method is deemed to be best suited for our needs, it will have to be
generalized such that it can work with two or more tracklets at a time. Two
categories of S = 2 methods can be defined. One is the IVAR approach and
the other is the BVAR approach. The pros and cons of the most important
methods in each category are briefly discussed in the following.

The main advantage of the boundary value methods is that they do not rely
on the attributed angular rates α̇ and δ̇. These are two attributed values
which are randomly distributed with a large uncertainty (e.g. a normal dis-
tribution with a Gaussian uncertainty), so if an AR is based on them (as
is done in the initial value method) the entire AR will be off (Schumacher
et al., 2013). The question of how to include these uncertainties into the
IVAR is still being addressed (Roscoe et al., 2013). Therefore the boundary
value formulation will in general be more robust to uncertainties in the ob-
servations. Of the different boundary value methods the optimized version
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developed by (Siminski et al., 2014) seems the most promising. Therefore it
is chosen as a basis for the OBVIOD method. Note that this choice is based
only on a literature study, and not on a direct comparison of performance.

3.2 The optimized boundary value method

The optimized boundary value method (Siminski et al., 2014) is the S = 2
algorithm that best fulfills the criteria that were set. In order to be used in
an S ≥ 3 MTT algorithm it has to be generalized to be able to determine an
orbit with two or more tracklets. As there are now more than two tracklets,
there is a choice to be made. Which tracklets should be involved in the
definition of the Lambert problem? From the point of view of the IOD it
is favorable to cover a maximum portion of the arc in order to maximize
the accuracy of the solution. Therefore it is chosen to always use the (1, N)
tracklet pair to define the Lambert problem. Because the Lambert problem
is such a vital component of the OBVIOD method it is described separately
in the next subsection.

3.2.1 Lambert problem

For completeness’ sake the Lambert problem will be briefly outlined. There
is a wealth of information to be found on this topic, it is a relatively old
problem that has been addressed extensively. In case the reader is interested
in learning about it the following sources are recommended: (Battin, 1999;
Gooding, 1990; Lancaster and Blanchard, 1969). In (Gooding, 1990) the
Lambert problem is stated as follows:

An unperturbed orbit, about a given inverse-square-law centre of
force, C say, is to be found connecting to given points, P1 and
P2, with a flight time ∆t = t2− t1 that has been specified. There
will always be at least one solution, and the actual number (N
say) depends on the ’kinematic geometry’ of the triangle CP1P2

and the value of ∆t; it will be assumed, for convenience and with
no loss of generality, that ∆t > 0.

From this description the input quantities are defined as r1 = P1 − C and
r2 = P2 − C, the force of the central point C is described by the central
gravity coefficient µ, and the length of the orbit arc ∆t. The angle φ is the
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angle between the vectors r1 and r2 and can be between 0 < φ < 2π. If the
∆t is large enough, more than one solution are possible. These additional
solutions are called multi-revolution solutions and they occur in pairs. The
number of revolutions is denoted by m. Therefore the output quantities are
2m + 1 solutions, each consisting of a radial velocity Vr and a transverse
velocity Vt at epoch t0 and t1.
In order to find a solution to this problem an iterative procedure is needed.
One parameter needs to be defined on which to iterate. The choice of this
parameter has a significant impact on the quality of the solution. Since
the semi-major axis a is directly related to the orbital energy, it is a likely
candidate. However, this would result in having solutions in pairs or no
solutions at all (depending on the geometry of the problem). Since at least
one solution is required (and possible), this parameter choice does not fulfill
the requirements. Instead of using a a new parameter is defined that is
dependent on a. It is given in Equation 3.1 (Gooding, 1990).

x2 = 1− s

2a
(3.1)

Where s is the semi-parameter of the triangle CP1P2. The variable that is
iterated can vary from one Lambert problem solver to another. Although the
parameter x performs well (Lancaster and Blanchard, 1969; Gooding, 1990;
Izzo, 2015), there is still a search for a parameter that might improve the
solution procedure, such as in (Sun et al., 1987). If the length of the orbit
arc is expressed in a non-dimensional form as in Equation 3.2 Figure 3.1 is
obtained.

T =

√
8µ

s3
∆t (3.2)

The value of T is known, and the x values that correspond can be found. This
requires an iterative search, where the initial guess of x plays an important
role in terms of convergence speed. Note that for more than one revolution
there can be one or two solutions to x. In the case where two solutions are
possible they are called the left and right hand solutions. The iterative search
can for instance be a Newton-Raphson method, the Halley iteration method
(Gooding, 1990), or Householder iterations (Izzo, 2015). After x is known,
the Vt and Vr at times t1 and t2 can be computed. This computation can
be different between different solvers as well. All in all, a Lambert solver
can differ in four things: the choice of the iteration parameter, the iteration
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Figure 3.1: The non-dimensional orbit arc length T versus the parameter x
(Gooding, 1990).

scheme, the initial value of the iteration parameter, and the computation of
the final velocities.

3.3 Generalization of the optimized bound-

ary value method

The optimized boundary value method was developed in the work of (Simin-
ski et al., 2014), it is described in Section 1.4.1. That method is able to
handle two tracklets at a time, as such it needs to be generalized so that
it can handle two or more tracklets. This generalization is straightforward.
Instead of having two tracklets, now there are N tracklets, each with an
attributable. This gives us the vector in Equation 3.3.

Θ̄ =
(
θ̄1, θ̄2, . . . , θ̄N

)T
(3.3)

Furthermore, the assumption that the uncertainties on the single observa-
tions is Gaussian still stands. Consequently the uncertainties on all the
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attributables are assumed to be Gaussian as such:

θ̄t =
(
α, δ, α̇, δ̇

)
∼ N (µθ̄t ,Σθ̄t) (3.4)

In the original S = 2 version of this algorithm the loss function was given by
Equation 1.11. Since the errors are all still Gaussian, the same loss function
can be used for the more general case. The result is given in Equation 3.5.

LS≥2(m, p̄) =
(
θ̄ − ˆ̄θ(m, p̄)

)T

Cθ̄(m, p̄)
−1
(
θ̄ − ˆ̄θ(m, p̄)

)
(3.5)

Where the covariance is given by Cθ̄ = Σθ̄ + Σ ˆ̄θ
(m, p̄) and p̄ = (ρ1, ρN). The

Σ ˆ̄θ
(m, p̄) is the covariance of the computed attributables, it can be found by

propagating the uncertainties of the individual observations. Unfortunately
this poses a problem. In order to propagate the uncertainties, the partial
derivatives between the computed attributables and the observations have
to be known. A finite difference scheme is used to obtain these (Vallado,
2007), no analytic method can be used because of the iterations used in the
Lambert problem solver. In a finite difference scheme one variable is slightly
altered and the parameters are estimated again. The difference between the
original and the now slightly different parameter values are used to estimate
the partial derivative with respect to the variable that was changed. In this
case the variables to change are the attributed values. For a slight change
in one of these values a new orbit has to be determined to find the new
parameter values. However, to determine that orbit the uncertainties on the
computed attributables are needed as well. This means that in order to get
the full covariance matrix one already needs to have it. For the angular rates
this is not a large problem, because even without the uncertainties on the
computed rates the minimized loss function is still distributed very close to a
χ2 distribution. For the angular positions, however, this does pose a problem,
since their uncertainty certainly does have an impact on the distribution. In
the case of the angular positions it is opted to only take the partials with
respect to the attributed positions into account. These attributed positions
are slightly changed (one standard deviation), and a new orbit is computed
through a Lambert solver (keeping the range values fixed). This method
approximates the covariance close enough to have a near χ2 distribution.
The resulting distribution with the approximated covariance of the computed
angular positions is shown in Figure 3.2.
When the covariance is neglected the results in Figure 3.3 are obtained. It
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Figure 3.2: The pdf of the Mahalanobis distance with three tracklets. The
covariance of the computed angular values is not neglected in these results.
Therefore the values are distributed according to a χ2 distribution. The
covariance of the computed angular rates is neglected.

is clear that the values are no longer χ2 distributed, their average value is
3.4 · 1013.
By adding new values to the loss function its topography might change. In
Figure 3.4 the topography of this loss function for three tracklets can be
seen. The loss function is minimized with the use of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method (Press et al., 2007). In the current im-
plementation the initial point is computed with Equation 3.6, as done in
(Siminski et al., 2014).

ρiniti = −ci +
√
c2
i + a(m)2 − ||r̄s,i,||2 (3.6)

In Equation 3.6 the i subscript denotes the tracklet number 1 or N . The ci is
given by ci = r̄s,i · ūi. The vector from the Earth’s center to the observer for
tracklet i is given by r̄s,i. The a(m) is the semi-major axis that corresponds
to m revolutions between epochs t1 and tN .
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Figure 3.3: The pdf of the Mahalanobis distance with three tracklets. The
covariance of the computed angular values is not neglected in these results.
Therefore the values are distributed according a to χ2 distribution. The co-
variance of the computed angular rates is neglected. It is seen that neglecting
the covariance of the angular rates leads to Mahalanobis distance values that
are not χ2 distributed.

As seen in this figure, the topography is again smooth and has one global
minimum point within the given range bounds. It is important to note that
the fact that there is one unique minimum point has never been proved
mathematically. Therefore caution is advised when applying this method.
In Figures 3.5 to 3.10 some example topographies can be seen for an object
in GEO, two tracklets are used in all of these cases. The object follows a
Keplerian motion. Note that in each of the figures the range values cover a
large range of values. This is done in order to get a better idea of what the
topography looks like when very loose constraints are imposed. In Figure
3.5 the topography can be seen in the case where there is one hour between
the epoch of the first and second tracklet. It shows that there is a large
region where no valid solutions are possible (the uniform white region), this is
because the orbits here are hyperbolic. The ρ1 is strongly correlated to the ρ2
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Figure 3.4: The topography of the loss function for a set of three tracklets.
The topography of the loss function of the angular rates (left) and angular
positions (right) are shown separately in order to show that they are simi-
lar. The total topography would be the summation of the two topographies
shown.

in the 1 hour case. This is a typical behavior that becomes stronger when the
length of the orbit arc between two tracklets becomes smaller. Any deviation
from the diagonal trend signifies (roughly) an increase in eccentricity of the
resulting orbit. This is why the loss function value is relatively small along
the diagonal, and sharply increases (until the orbits are not valid anymore
i.e. they become hyperbolic) towards the off diagonal. The topography in
this case contains one global minimum which can be found with a typical
gradient descent algorithm.

Figure 3.6 depicts the situation where there is six hours of separation between
the two tracklets. For a GEO object this is near the optimum problem geom-
etry (a quarter revolution between the tracklets), as will be further explained
in Section 3.5. This favorable geometry is reflected in the topography. It is
a smooth topography with one global minimum point, and almost the entire
region contains valid orbit solutions. In Figure 3.8 the effect of adding a
third tracklet can be seen. Due to the addition of the attributable of the
third tracklet, the topography becomes much steeper. The angular position
of the third tracklet is not included in the definition of the Lambert prob-
lem, therefore there will be a non zero difference between the attributed and
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Figure 3.5: Loss func-
tion topography, N = 2,
separation is 1 hour.
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Figure 3.6: Loss func-
tion topography, N = 2,
separation is 6 hours.
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Figure 3.7: Loss func-
tion topography, N = 2,
separation is 12 hours.

computed angular position for that tracklet. However, the topography is still
favorable as it remains smooth and still contains one minimum point.
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Figure 3.8: The topography of the loss function for three tracklets where
the first and last tracklets are spaced at six hours from each other, the third
tracklet is positioned halfway between the first and the third tracklet.

The Lambert problem has two geometries where problems occur. These are
at an angle of φ = π + 2πk and φ = 2πk where k = 0, 1, 2, . . .. In both cases
the orbital plane is not defined by the two geocentric vectors (together they
form a straight line), and therefore an infinite amount of solutions exists.
Figure 3.7 shows the situation where two tracklets have 12 hours between
them. This is close to the φ = π case. As can be expected, the topography
in this case is not favorable, as it shows multiple minimum points. In this
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case a gradient descent algorithm might not be sufficient to find the global
minimum point. This situation should therefore be avoided. Besides the
difficult topography, this geometry brings other problems with it as discussed
in more detail in Section 3.5. In Figure 3.9 a third tracklet is added in
between the first and third tracklet. The first and last tracklets are spaced
at 12 hours from each other. It is clear that the third tracklet has a large
influence on the topography. However, from this example it does not seem to
solve the problem of having multiple minimum points. Therefore, also with
more than two tracklets, the difficult geometries of the Lambert problem
should be avoided. A solution to this problem could be to identify a tracklet
pair that has a good geometry, and use that pair in the orbit determination.
This could be an interesting improvement, but it is not considered in this
work.
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Figure 3.9: The topography of the loss function for three tracklets where
the first and last tracklets are spaced at 12 hours from each other, the third
tracklet is positioned halfway between the first and the third tracklet.

Figure 3.10 shows the topography where the two tracklets are spaced at 24
hours from each other, close to the φ = 2π + 2πk point. Here again the
topography is much more complex than in the more favorable geometries.
Knowing that it is possible to have a topography with several minimum
points means that the choice of the initial point is important to ensure that
the gradient descent algorithm converges towards the correct solution.
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Figure 3.10: The topography of the loss function for two tracklets that are
spaced at 24 hours from each other.

The main difference with the original S = 2 method is the number of el-
ements in the vector of Gaussian random variables. In the original S = 2
algorithm there were four values, being the angular rates at the first and
second epoch. Now the vectors contain 4N values, since angular positions
are now also taken into account. What this means is that the values of the
minimized loss function will be distributed differently. They will still be χ2

distributed, but the degree of freedom f will be different, depending on the
number of tracklets used. The attributed angular positions of the first and
last tracklet are exactly intersected by the computed values. This is because
these two tracklets are used to define the Lambert problem. Therefore these
two angular positions (that is, four values) are not to be counted as a degree
of freedom. Furthermore, two parameters are being estimated, which are
the (ρ1, ρN) range values. These two parameters should also be subtracted
from the total degree of freedom. In the end the degree of freedom of the χ2

distribution can be computed by f = 4N−6. Examples of such distributions
can be found in Figures 3.11 and 3.2.

Note that this method is reminiscent of the Gooding IOD method (Gooding,
1996). In the Gooding method three lines of sight are used to determine an
orbit. The range values at the first and third epochs are varied. For each
range hypothesis a Lambert problem is formulated and solved, the resulting
orbit is used to compute the angular position of the object at the second
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Figure 3.11: The probability distribution of the minimized loss function val-
ues for two tracklets.

epoch. The distance between the observed and computed angular positions
at the second epoch has to be minimized. That procedure is similar to that of
the method described in this section, except that the OBVIOD method also
minimizes the distance between the attributed and computed velocities. On
the other hand the OBVIOD method is also similar to the Siminski method
(Siminski et al., 2014). Where the Siminski method only used angular ve-
locities in its loss function, OBVIOD can use both angular velocities and
angular positions. Other similar methods are those of (Virtanen et al., 2012;
Muinonen et al., 2012), where the range values are varied in order to best
fit the angular positions (as with the Gooding method), but they are varied
through a (Markov-Chain) Monte-Carlo scheme.

3.4 Orbit determination performance

Although the quality of the determined orbits is not the first priority of the
OBVIOD method, it is examined to some extent in this section. The perfor-
mance of the algorithm is quantified by looking at how close the computed
orbit can approximate the true geocentric positions of the object at the ob-
servation epochs. This error in the geocentric position is directly related to
the errors in the right ascension α, declination δ, and range ρ. Several tests
are performed. In each test the first and last tracklets are spaced on different
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intervals. From one twelfth of an orbital period to a full orbital period.
These tests are performed for both a GEO and a MEO object. Note that
the error in the geocentric position is directly translatable into an error in
the (α, δ, ρ) variables. However, the geocentric position lends itself to easier
interpretation and is therefore used in these tests. The expected error in
the position (tangential to the line of sight), resulting from an error in the
astrometric position (α, δ), is given by σp = ρσ0, where σp is the error in the
position and σ0 is the astrometric error. For a GEO object, observed with
an error of σ0 = 1”, this gives σp = 204 m of position error for a range of
ρ = 42000 km. For a MEO object that error is σp = 126 m. Note that this
position error only gives an idea of the order of magnitude in two dimensions,
as no information is available on the range values. A RMS error is computed
as shown in Equations 3.7 and 3.8.

||p− p̂||i =
√

(x− x̂)2
i + (y − ŷ)2

i + (z − ẑ)2
i (3.7)

In Equation 3.7 a ·̂ hat accent denotes the computed values.

RMSp =

√
1

n
(||p− p̂||21 + ||p− p̂||22 + . . .+ ||p− p̂||2i + . . .+ ||p− p̂||2n)

(3.8)
Here n denotes the total number of observations. Finally the relative RMS
is defined as in Equation 3.9.

RMSprel =
RMSp
||p||average

(3.9)

Where ||p||average is the norm of the average geocentric position. By using the
relative RMS orbits from different regimes can be compared. Each object is
modeled by a spherical space craft. The absorption and reflection coefficients
are ca = 0.5 and cr = 0.8 respectively. A gravity field model up to degree and
order four is included in the force models. Any degree and order beyond that
point will introduce perturbations on the millimeter level for MEO objects
(and less for objects in GEO), which is well below the measurement noise.
No third body perturbations are taken into account.

In Figure 3.12 a comparison between the relative error versus the time be-
tween two tracklets can be seen. The comparison is between a low noise case
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where σ0 = 1” and a high noise case with σ0 = 10.0”. The low noise case is
representative for the ZimSMART telescope (Fujimoto et al., 2014b; Herzog
et al., 2010), and the high noise case represents a worst case scenario that is
typically not encountered in the space debris tracking.

Figure 3.12: A comparison between a low noise and high noise case. Two
tracklets spaced at varying fractions of an orbital interval were used in these
orbit determinations, the results shown are the average results over 1000
simulations. The AMR value is 0.02m2/kg.

The noise clearly has an impact on the results. The error increases towards
an orbit arc length of zero and of a full revolution. This is due to the un-
constrained orbital plane in the Lambert problem that exists at these points.
The method does not seem concerned by the infinite possible solutions of
the Lambert problem that exists for half an orbital period. A relative error
of 0.02% corresponds roughly to 8400m. Figure 3.13 shows a comparison
between a GEO object with an AMR value of 0.02m2/kg and an object with
AMR = 2.0m2/kg. The initial orbital parameters of the objects are identi-
cal. The high AMR value is one hundred times larger than that of a typical
operational satellite in GEO. Higher values than this are present in the space
debris population (Schildknecht et al., 2005), but they are rare.
Interestingly, the AMR does not necessarily have a bad impact on the error
of the orbit determination. This is explained by the estimated orbital ele-
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Figure 3.13: A comparison between a low AMR and high AMR case. Two
tracklets were used in these orbit determinations, the results shown are the
average results over 1000 simulations. A low noise value is used of σ0 = 1”.

ments which are able to absorb the effect that the AMR introduces. This is
further shown in the results presented in Section 3.5. Figure 3.14 shows the
comparison between an object in MEO and one in GEO.
The results in Figure 3.14 show that the orbital regime does not have a
large impact on the quality of the orbit determination. Note that the time
is measured in fractions of the orbital period, and that the orbital period of
a MEO object is approximately half that of a GEO object. Certainly the
MEO object is subject to stronger perturbations due to the non-homogeneous
gravity field, but these effects are absorbed by the orbital elements. Also
realize that the errors displayed are the relative errors. So the absolute
error will be less for the MEO object than for the GEO object. Figure 3.15
displays the results for a MEO object with low noise and a high noise on the
measurements.
Finally, in Figure 3.16 a comparison can be seen between a low and a high
AMR case in MEO. As can be seen, it behaves quite similarly to the GEO
case, where the AMR does not necessarily lead to a worse precision with
respect to the geocentric positions.
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Figure 3.14: A comparison between an object in MEO orbit and an object
in a GEO orbit. Two tracklets were used in these orbit determinations, the
results shown are the average results over 1000 simulations. The low noise
and low AMR values are used in this plot.
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Figure 3.15: A comparison between a high noise and a low noise case in MEO.
Two tracklets were used in these orbit determinations, the results shown are
the average results over 1000 simulations. The low AMR value is used in this
figure.
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Figure 3.16: A comparison between a high AMR and a low AMRf case
in MEO. Two tracklets were used in these orbit determinations, the results
shown are the average results over 1000 simulations. The low value of σ0 = 1”
is used for the noise.
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3.5 Limitations

The OBVIOD method is a robust initial orbit determination method capable
of finding good approximate orbits. However, it relies on solving the Lambert
problem, where a Keplerian motion of the object is assumed. In reality the
object follows a perturbed motion, and as such the dynamics models used
in the orbit determination will not exactly match the true motion of the
object. This mismatch of models will have an effect on the results of the
orbit determination and the values of the minimized loss function 3.5. It can
be written as follows:

X ∼ N (0, σ2)→ X2/σ2 ∼ χ2 (3.10)

Note that the X2/σ2 is the Mahalanobis distance where in this case the

X = (Θ̄− ˆ̄Θ). The resulting variable will be distributed as follows:

Θ̄ ∼ N (µΘ̄, σ
2
Θ̄)

ˆ̄Θ ∼ N (µ ˆ̄Θ
, σ2

ˆ̄Θ
)

Θ̄− ˆ̄Θ ∼ N (µΘ̄, σ
2
Θ̄)−N (µ ˆ̄Θ

, σ2
ˆ̄Θ
)

Θ̄− ˆ̄Θ ∼ N (µΘ̄ − µ ˆ̄Θ
,ΣΘ̄ + Σ ˆ̄Θ

) (3.11)

When the motion of the object is Keplerian the µΘ̄−µ ˆ̄Θ
= 0 since the model

is able to perfectly match the object’s trajectory. That is why, in that case,
the Mahalanobis distance is χ2 distributed.

The effect of a perturbed motion of the objects is that the µΘ̄ − µ ˆ̄Θ
6= 0.

This is clearly seen in Figures 3.17 and 3.18 where results are shown for a
two tracklet case with an arc length of 242 hours (a little over ten orbital
periods).
In the situation shown in Figure 3.18 the Mahalanobis distance will not be
χ2 distributed. It will now be distributed according to the non-central χ2

distribution. The results in Figure 3.18 were obtained with a constraint on
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Figure 3.17: The distributions of the observed and computed angular rates
for two tracklets and an arc length of 242 hours. Here the object’s mo-
tion is Keplerian, therefore the computed values will (on average) match the
observed ones.

Figure 3.18: The distributions of the observed and computed angular rates
for two tracklets and an arc length of 242 hours. Here the object’s motion is
perturbed, therefore the computed values will not match the observed ones.
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the number of revolutions between the two tracklet epochs. The probability
density function of the non-central χ2 distribution is given in Equation 3.12.

fx(x; k, λ) =
∞∑
i=0

e−λ/2 (λ/2)i

i!
fYk+2i

(x) (3.12)

Here x is the random variable, k is the degree of freedom, and λ is the
non-centrality parameter which is defined as follows:

λ =
n∑
i=1

µ2
i (3.13)

Here n is the total number of random variables considered and fYq(x) is
the χ2 distribution with q degrees of freedom, µi is the mean value of the ith

variable, normalized by its standard deviation. The non-centrality parameter
λ can therefore be determined by knowing the mean and standard deviation
of the random variables that are involved in the computation. An increase
in the λ parameter will have an effect as shown in Figure 3.19.

Figure 3.19: A χ2 distribution compared to a noncentral χ2 distribution.
They both have two degrees of freedom, this corresponds to the two tracklets
scenario. A value of λ = 10 is used.

An example of a non-central χ2 distributed Mahalanobis distance is given
in Figure 3.20. This distribution is a result of two tracklets being spaced at
about five days with an AMR of 0.04[m2/kg]. Clearly, the λ parameter is
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correctly computed and the distribution approximates the samples. The λ
parameter is computed by performing one IOD without any noise, this will
give the mean values of the observed minus computed vector ∆Θ̄. These
mean values are normalized with the covariance of the attributed values, this
is the same covariance that is used in the computation of the Mahalanobis
distance.

Figure 3.20: A non-central χ2 distribution depicting the distribution of the
Mahalanobis distance in the case where two tracklets are positioned close to
a problematic geometry. The non-centrality parameters is λ = 35.9 in this
example. The x-axis label ’d2’ refers to the Mahalanobis distance.

The evolution of the λ parameter over time is therefore of interest. The
value of this parameter will change with an increase in the length of the orbit
arc between tracklets, or with an increase in the perturbations (e.g. higher
AMR). In Figure 3.21 the λ parameter can be seen for different times of flight
and for two AMR values. The vertical lines in the figure mark the positions of
half and full periods of the object that is tracked. From the figure it becomes
clear that the method suffers from strong instabilities near the half and full
revolution periods. This is explained by the fact that the method uses the
Lambert problem to compute orbits. The orbital plane is not important to
approximate the geocentric positions at the two epochs, however in order to
approximate the angular rates it is important. This is the reason why in
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the Figures 3.12 until 3.16 almost no peak at a half period is seen, but in
Figure 3.21 there are. This certainly constraints the algorithm’s limits, and
poses some strong design constraints on the observation scenarios. Note that
the distribution shown in Figure 3.20 has a relatively high λ value. This is
because the length of the orbit arc is close to the 0.5P + 9P/2 = 121 [hr]
line, here P denotes the orbital period.

Figure 3.21: The evolution of the λ values as a function of the length of the
orbit arc for a high and low AMR object.

Another interesting feature in Figure 3.21 is that the object with a high
AMR does not always have a larger λ value. Especially when the length of
the orbit arc increases, the λ value is consistently lower than that of the low
AMR object. Apparently it is possible to better approximate the attributed
values in this high AMR situation. Figure 3.22 shows the semi-major axis
and eccentricity of the computed orbit for each of the points in Figure 3.21.
This figure clearly shows how the semi-major axis changes as a function of
the length of the orbit arc in order to compensate for the higher AMR value.
The eccentricity is consistently larger for the high AMR case, and maintains
a more or less constant value.
Two tracklets form an ideal geometry when the angle ψ between the first and
second geocentric positions r1 and r2, is ψ = 1

2
π + kπ where k = 0, 1, 2, ...

This angle ensures that the tracklets are as far away as possible from the
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Figure 3.22: The semi-major axis and eccentricity values of the computed
orbits in case of a low and a high AMR.

degenerate geometries. Still though, in some cases the computed λ value
is not at all in line with the trend. In Figure 3.23 the distribution of the
Mahalanobis distance is seen with a length of the orbit arc of dt = 115 [hr]
(or 4.75 orbital revolutions) between the two tracklet epochs. This situation
should have led to a λ value of about λ = 0.15. It seems that the Lambert
solver that is currently used ((Izzo, 2015)) has issues when trying to resolve
any multiple revolution problem where ψ = 3

2
π + 2πk. In Figure 3.24 the λ

parameter is shown as a function of the length of the orbit arc between two
tracklets. The two tracklets are always placed in the ideal geometry. Each
point where the tracklets are placed at ψ = 3

2
π + 2πk is missing from the

plot due to the aforementioned issue.
Again it is seen that a higher AMR value does not necessarily mean that
the λ value is higher as well. The orbit is still able to absorb the effect that
the increased AMR has on the observations. Concretely this means that
this method cannot discern a low AMR from a high AMR object. On the
positive side this means that it is able to associate tracklets that belong to
high AMR objects. On the downside it means that it might wrongly correlate
two closely spaced objects by absorbing any differences in their observations
with the orbital elements.
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Figure 3.23: The probability distribution function of the Mahalanobis dis-
tance for two tracklets with a length of the orbit arc of 115 [hr]. This length
of the orbit arc is close to the ideal geometry of the Lambert problem. Ap-
parently the Lambert solver that is currently used has problems when dealing
with this geometry in a multiple revolution case. The x-axis label ’d2’ refers
to the Mahalanobis distance.
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Figure 3.24: λ versus length of the orbit arc between two tracklets. An
increase in AMR does not necessarily mean an increase in λ. Note that 1000
hours is about 41 days.
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3.6 Multiple revolution solutions

In Figures 3.17 and 3.18 the number of revolutions between the two epochs
was constrained. When we remove that constraint, it becomes clear that the
solutions can be ambiguous. In Figure 3.25 the results are shown for different
regimes of orbital revolutions.
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Figure 3.25: Two tracklets that are 121 hours apart. Due to the noise,
different solutions exist.

In Figure 3.25 the m denotes the minimum number of revolutions (e.g. m =
3 means that the object will have performed between three and four revolu-
tions between the epochs). Clearly, different computed orbits are capable of
approximating the attributed values closely. Note that the attributed values
in Figure 3.25 belong to an object that follows a Keplerian motion. Without
a constraint on the number of revolutions the orbit determination method
might favor solutions with the wrong number of orbital revolutions. There-
fore, if the number of revolutions between the epochs is not constrained to

one setting, the computed values ˆ̄Θ will not be normally distributed. It will
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be a combination from different Normal distributions, each of these distri-
butions corresponding to a solution with a different number of orbital revo-
lutions. Without these values being normally distributed, it is not possible
to estimate the non-central χ2 distribution and it could lead to difficulties
associating the tracklets correctly. In Figure 3.26 the semi-major axis versus
the eccentricity of the different computed orbits can be seen for the m = 3
and m = 4 cases.
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Figure 3.26: The semi-major axis versus the eccentricity of computed orbits
for different numbers of orbital revolutions. Both these orbital regimes are
able to closely approximate the attributed angular rates of two tracklets that
are spaced at 121 hours from each other.

This problem is addressed by setting narrow constraints on the BVAR, par-
ticularly on the minimum and maximum semi-major axis values that are
allowed. The more time there is between two tracklets, the more narrow
the constraints have to be set, until ultimately the constraint is exactly the
true semi-major axis. In other words, if tracklets have to be associated over
longer time spans then more a priori information on the semi-major axis is
needed.





Chapter 4

Application to space debris
cataloging

Although PBMH algorithms are meta-heuristic they still have two elements
that need to be tailored to the problem on which they are applied. These
elements are the fitness function and the solution representation (also known
as an ’individual’). This chapter will focus on these elements as well as on
a method to reduce the search space of possible permutations in the MTT
problem.

4.1 Solution representation

A PBMH algorithm works with a population of individuals. Each individual
represents a potential solution and is evaluated to determine its so-called fit-
ness. The fitness of an individual is a measure of the quality of that solution.
The individual has to be able to accurately represent any valid solution in the
search space. In this work an individual represents the associations between
the tracklets. Equation 4.1 shows the general notation of a k-matrix. The
k-matrix notation was introduced in the work of (Schneider, 2012), where the
most likely k-matrix was sought through the application of Markov Chain
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Monte Carlo (MCMC) computations.

K =


1 0 . . . 0
k2,1 k2,2 . . . 0

. . . . . .
. . . 0

ki,1 ki,2 . . . ki,j

 (4.1)

In the k-matrix any entry ki,j can only have a value of 1 or 0. If ki,j = 1
it signifies that the tracklet in row i is associated to the object in column
j. The k-matrix is defined in such a way that the first tracklet is always
associated to the first object. Following this logic the k-matrix becomes a
lower triangular matrix.

4.2 Fitness function

The fitness function dictates to which solution the algorithm converges and
how it converges to that solution. Therefore the optimum fitness value must
coincide with the optimum solution, and any improvement in the fitness value
must represent an improvement in the solution. These are the only two re-
quirements for a fitness function, so one can choose to be creative with the
definition of the function. The fitness function evaluation is generally the
bottleneck of the algorithm in terms of computation speed. There are ways
to deal with this directly. For instance by using a function that approximates
the true fitness function but is fast to evaluate (Jin, 2005). In this work the
fitness function is based on the underlying physics of the problem. It incor-
porates available information on the MTT problem at hand and uses it to
quantify a probability that a certain solution could be true. What follows is
a derivation of the fitness function used.

In the fitness function the detection probability Pd and the false alarm prob-
ability Pf have to be taken into account. The Pd describes the probability
to detect the object. This probability depends on, e.g., the image processing
software and the brightness of the object. The Pf describes the probability of
having a sporadic measurement due to, e.g., measurement noise. We define
the event A as the event where none of the N tracklets are a false alarm.
The event B is the event where all of the N tracklets are detected. Event C
is the event where the object is not detected in the remaining S −N fences.
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Event D occurs when the measurements stem from the object that is repre-
sented by the modeled object. The probability of this event is modeled with
a multivariate Normal distribution as given in Equation 4.2, since the errors
are assumed to be Gaussian. Note that this probability cannot be evaluated
in the N = 1 case, since the OBVIOD method cannot define an orbit for a
single tracklet.

N (x̄, µ̄x,Σx̄) =
1√

(2π)n|Σx̄|
e−

1
2

(x̄−µ̄x)T Σ−1
x̄ (x̄−µ̄x) (4.2)

Where x̄ is the vector containing the random variables, µ̄x is the vector con-
taining the mean values, Σx̄ is the covariance matrix and n is the dimension
of the vector x̄. The probabilities of having each of these events occur are
given in Equations 4.3 to 4.6.

P (A) = (1− Pf )N (4.3)

P (B) = PN
d (4.4)

P (C) = (1− Pd)S−N (4.5)

P (D) =

{
N
(

Θ̄, ˆ̄Θ(m∗, p̄∗),ΣΘ̄

)
if N ≥ 2

1 if N = 1
(4.6)

In case of Equation 4.6 a value of ’1’ is used for the N = 1 case. An empirical
parameter will be introduced that allows the N = 1 fitness to be tuned.
All the events are assumed to be independent from one another. The con-
junction of all the events is given in Equation 4.7. It describes the total
probability that a single object exists with the given set of tracklets.

Px =

{
N
(

Θ̄, ˆ̄Θ(m∗, p̄∗),ΣΘ̄(m∗, p̄∗)
)

(1− Pd)S−N PN
d (1− Pf )N if N ≥ 2

(1− Pd)S−1 Pd (1− Pf ) if N = 1

(4.7)
Here x = 1, 2, .., X, where X is the total number of hypothetical objects that
the k-matrix proposes. The asterisk superscript denotes an optimized value.
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To obtain the total probability that a k-matrix is correct, all the probabilities
of the individual objects have to be combined as shown in Equation 4.8.

Py =
X∏
x=1

Px (4.8)

Where y = 1, 2, .., Y denotes the k-matrix, and Y denotes the population size.
When we take the negative log-likelihood of Equation 4.7, and introduce the
tuning parameter γ, we obtain Equation 4.9.

fx =



LN≥2(m∗, p̄∗)− ln

(
1√

(2π)n|ΣΘ̄(m∗, p̄∗)|

)
+

− (S −N) ln (1− Pd)−N ln(Pd)−N ln(1− Pf )
N ≥ 2

−ln
(

(1− Pd)S−1 Pd (1− Pf )
)

+ γ N = 1

(4.9)

And Equation 4.8 becomes Equation 4.10.

fy =
X∑
x=1

fx (4.10)

Expressions similar to Equation 4.10 can be found throughout the MTT liter-
ature, examples being (Blackman, 2004) and (Deb et al., 1997). In Figure 4.1
the possible fitness values that a group of three tracklets can have are shown.
Three tracklets can be arranged as three single tracklets (N=1/N=1/N=1),
a group of two tracklets and a single tracklet (N=2/N=1), and a group of
three tracklets N=3. Note that the (N=1/N=1/N=1) fitness value and the
(N=2/N=1) fitness values can be shifted by changing the γ parameter. For
now a value of γ = 0 is maintained. This value ensures that the fitness value
distributions do not overlap.
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Figure 4.1: Probability density function of the fitness values that a group
of three tracklets can have. Three tracklets can be arranged as three single
tracklets (N=1/N=1/N=1), a group of two tracklets and a single tracklet
(N=2/N=1) and a group of three tracklets N=3.





Chapter 5

Results

This section presents the test cases and their results. The majority of the
tests are applied to simulated measurements. This is because in this case the
true solution to the problem is known, which makes it easier to judge the
performance of the algorithm. Through several test cases the best algorithm
is identified. The fitness function and the parameters that can be tuned are
discussed in more detail afterwards. The algorithm is then applied to real
observations in order to show that also in this case it performs as desired.
The second to last section is dedicated to a study of the time complexity
of the algorithm. As these algorithms are stochastic the time complexity
has to be determined through experimental means. The results suggest that
the complexity is polynomial. The final section investigates the effects of
different strategies to improve the convergence speed of the algorithm.

5.1 Attributed angular rates uncertainties

The values of the uncertainty of the angular rates (α̇, δ̇) differ depending
on what approach is taken. Either the uncertainty is computed a priori,
through the expression given by (Fujimoto et al., 2014a). Or it is computed
a posteriori through the least squares method. The a priori approach relies
on the expression given in Equation 5.1.

σ2
rate = σ2

0

12

l(l − 1)(l + 1)dt2 (5.1)

Here l is the length of the tracklet (nr of observations) and dt is the time
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between each observation. With the expression in Equation 5.1 the Maha-
lanobis distance between the attributed and computed attributables are χ2

distributed. When the a posteriori uncertainty is used it is not perfectly
fitting to a χ2 distribution. Instead it will be distributed according to a non-
central χ2 distribution. The least squares method estimates the variance of
a single observation through the following equation:

m2
0 =

vTPv

n− u
(5.2)

here the v is the vector with the observed minus computed values, the P = I
is the identity matrix, n is the number of observations, and u is the number
of parameters to be estimated. The so-called model test will result in a value
of ’1’ if the used model accurately fits the observations. For the model test
to be close to a value of one also enough observations are needed, and the
uncertainty on the observations has to be Gaussian. The model test is given
in Equation 5.3.

rmodeltest =
m2

0

σ2
0

(5.3)

For different numbers of observations n the plot as shown in Figure 5.1 can be
made. From the plot it becomes clear that for a low number of observations
the least squares estimator is not able to correctly estimate the uncertainty.
However, the m2

0 does come close to the true value and does this indepen-
dently from any a priori information on the observation uncertainty. The
differences in performance using σ2

0 or m2
0 are shown in Figures 5.2 and 5.3.

The correctness of a k-matrix indicates the portion of the matrix that co-
incides with the optimal solution. As can be seen in Figure 5.3 using the
posteriori uncertainty does not have a noticeable impact on the performance.
Therefore one can conclude that if the observation uncertainty is not known
a priori, it will not have a profound impact on the performance of the algo-
rithm.
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Figure 5.1: results of the model test for increasing number of observations.
These are average results over 1000 calculations. It is seen that for a small
number of observations the m2

0 differs from the σ2
0.
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Figure 5.2: Monte Carlo simulation for object 31306. Here the a posteriori
uncertainty on the angular rates is used. The values are slightly too small
to fit the χ2 distribution. When the a priori uncertainty is used the values
would fit exactly to the χ2 distribution.
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Figure 5.3: The performance of the algorithm with different methods to
compute the uncertainties on the angular rates. The performance of the
algorithm is not much affected by the method where no a priori information
is necessary.
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5.2 Fitness function parameter settings

The fitness function 4.9 described in Section 4.2 has a tuning parameter γ
included for the N = 1 case. Besides that the role of the normalization factor
that appears in the N ≥ 2 case was not well understood, since an improve-
ment in the performance was observed when this term was eliminated from
the function. This section will therefore explore the impact that these two
parameters have on the performance of the algorithm.
The normalization term in Equation 4.9 stems from the normalization factor
that appears in the normal distribution as shown in Equation 4.2. In Equa-
tion 4.2 this term serves to ensure that the total volume of the multi-variate
Gaussian distribution is equal to 1. The role that these factors play after the
negative log-likelihood is taken is not yet clear. In Figure 5.4 the possible
values that the fitness function can have are shown for different numbers of
tracklets. The Mahalanobis distance is distributed according to a χ2 distri-
bution, these distributions are shifted by the remaining factors in the fitness
function. The main contributors to this shift are the normalization factors.

Figure 5.4: Values the fitness can have, depending on the number of tracklets
N. Here the normalization factors are taken into account

In Figure 5.4 it is seen that the possible values that the fitness function
can have given a certain number of tracklets are clearly separated from each
other. This means that the algorithm will favor larger groups of tracklets.
The criteria for favoring e.g. a group of N = 3 tracklets over a group of
N = 2 tracklets is that the fitness value of N = 3 tracklets should always
be better than the fitness values of N = 2 and N = 1 combined. This is
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because the third tracklet of the N = 3 group has to be put somewhere else,
and this change will have an effect on the total fitness value of the k-matrix.
Therefore the distributions of the N = 3 fitness and that of the (N = 2 / N =
1) fitness have to be non-overlapping. In Figure 5.4 this is the case, thanks
to the normalization factors and a γ = 0. In Figure 5.5 it can be seen what
happens when the Normalization terms are taken out of the fitness function.

Figure 5.5: Values the fitness function can have, depending on the number of
tracklets N. Here the normalization factors are not taken into account. Note
that the distributions overlap significantly for this detection probability.

Here the probability distributions overlap. As stated before, the criteria is
that e.g. the N = 3 distribution should not overlap with the (N = 2 / N =
1) distribution. As is shown in Figure 5.6, the probability that for N = 3
the fitness value is larger than for (N = 2 / N = 1) is small. Therefore it is
expected that the algorithm will still perform well in this case, even without
the normalization factors.
The fact that the (N = 2 / N = 1) distribution almost does not overlap with
the N = 3 distribution in Figure 5.6 is also due to the probabilities Pd and
Pf . If for instance the detection probability is lowered, the distributions will
start to overlap more. This is shown in Figure 5.7. This means that there is
a distinct probability that the (N = 2 / N = 1) situation has a better fitness
value that the N = 3 case. Also the N = 1 value has shifted towards a smaller
number. In this case it is certain that the correct correlations will not be
found, and smaller groups of tracklets will be favored. This is also intuitive:
if the detection probability is lowered, then the probability of having a large
group of tracklets becomes smaller.
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Figure 5.6: Comparing the N = 3 and the (N = 2 / N = 1) distributions. They
overlap slightly in this case. The detection probability is set at Pd = 0.9, the
false alarm probability at Pf = 0.01, and γ = 0.

Figure 5.7: Comparing the N = 3 and the (N = 2 / N = 1) distributions. Here
the Pd = 0.2, the consequence is that the distributions overlap significantly
and that the N = 1 value is small. The false alarm probability is Pf = 0.01
γ = −50.

In Figure 5.8 the effect of weighting the normalization factors can be seen.
The ’correctness’ of the k-matrix is shown versus the generation number. The
two most extreme cases, Wn = 0 and Wn = 1, are represented by Figures
5.5 and 5.4 respectively. The results in Figure 5.8 are as expected. When
Wn = 1 the fitness value is made up in part by the normalization factors. So
the emphasis is more on this part of the function than on the results of the
orbit determination. When Wn < 1 the emphasis shifts towards the quality
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of the orbit determinations. Finally when Wn = 0 the normalization factors
are not taken into account at all, and the orbit determinations are the main
focus of the algorithm.

Figure 5.8: Different weights for the normalization constants will result in a
different performance of the algorithm. The γ parameter is set to zero.
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So far the γ parameter has always been set to zero. Its use is explained by
looking at e.g. Figure 5.6. Here the distributions of N = 3 and (N = 2 / N
= 1) are compared. By changing the γ parameter in Equation 4.9 the N =
1 (and consequently the (N = 2 / N = 1)) distribution can be shifted. This
can be used to further separate the distributions, or to cause them to overlap
more. In Figure 5.9 the effect of changing the γ parameter can be seen.

Figure 5.9: Varying the weights for the normalization factors Wn and the
value of the γ parameter have a large influence on the algorithm performance.

For reference the Wn = 0, γ = 0 curve is plotted in Figure 5.9. It is seen
that when γ = −5, with all other parameters being kept the same, the
algorithm tends towards the wrong solution. This is because the N = 1
fitness value is close to zero in this case. With a fitness value of almost
zero, the N = 1 scenario is the preferred one in terms of optimizing the total
fitness value. Therefore the algorithm will tend towards a solution where
all tracklets belong to different objects. Alternatively when γ = 0 and the
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Pd = 0.2 (as in Figure 5.7) it is also clear that the algorithm will not tend
to a solution that has tracklet groups of N = 3. Instead it will find solutions
that consist of (N = 2 / N = 1) configurations, since that is what minimizes
the fitness function. When the normalization factors are taken into account
(Wn = 1) the γ parameter has a different impact on the performance. For
instance when Wn = 1 and γ = −5 the performance is about the same as
when Wn = 1 and γ = 0, since the N = 1 value has changed relatively
little in this case. The performance of the Wn = 0 curve can be obtained
by tuning the γ parameter, even when Wn = 1. The distributions as shown
in Figure 5.10 can be obtained by setting γ = −50, here the distributions
barely overlap. Indeed it is found that the performance is very similar to the
case where Wn = 0 and γ = 0.

Figure 5.10: Comparing the N = 3 and the (N = 2 / N = 1) distributions.
Here the normalization factors are taken into account and γ is used to bring
the distributions close together.

As a conclusion it can be said that the normalization terms should be taken
into account. These terms follow directly from the theory of the problem and
there is no strong reason to take them out of the fitness function. Besides
that, although the Wn = 0, γ = 0 case performs best, the same performance
can be achieved by tuning the γ parameter while having Wn = 1. It is
therefore decided that the fitness function is left unchanged.
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5.2.1 Tuning the γ parameter

The impact of the γ parameter is explained by looking at the probability
distributions of the fitness value for different tracklet configurations, as shown
in Figure 5.11. By changing the γ parameter, these distributions can be
moved with respect to each other.

Figure 5.11: Values the fitness function can have, depending on the number
of tracklets N. Here the normalization factors are not taken into account
(Wn = 0. Note that the distributions overlap significantly for this detection
probability.

The distributions of N = 3, (N = 2/N = 1), and (N = 1/N = 1/N = 1) are
compared to each other. These are the three configurations that any group
of three tracklets can take. The performance will increase as these distribu-
tions come closer together. When the distributions are moved towards each
other the Mahalanobis distance becomes more important. This Mahalanobis
distance is a value that is directly related to the quality of the IOD. The
performance starts to decrease when the overlap between the distributions
becomes significant. If the distributions overlap, a wrong solution might be-
come favored over the correct solution. An extreme example is shown in
Figure 5.12. Here the N = 3 fitness is almost always worse than the (N =
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2/N = 1) fitness. And the (N = 1/N = 1/N = 1) fitness is always better than
either of the other two. With this γ value, the EGA will always favor single
tracklets, it will converge to the solution where no tracklets are associated to
each other.

Figure 5.12: Values the fitness function can have, depending on the configu-
ration of three tracklets.

The γ parameter is tuned in such a way that the distributions are close to
each other, but without creating any significant overlap. Since it is known
that these are χ2 distributions, it is possible to determine the point at which
a certain fitness value is unlikely to occur. In this case it is said that there
can only be a 1 · 10−3 probability that the fitness value of one tracklet con-
figuration is in the range of possible fitness values of another configuration.
In other words, this means that in one of a 1000 cases, there is a possibility
that the wrong solution is favored by the algorithm.

For a χ2 distribution with degrees of freedom d = 2 (as is the case for the N
= 2 situation), the threshold value that includes 1− p of the distribution is
t21−p = 13.82 where tfx is the cumulative distribution function (cdf) of the χ2

distribution with degree of freedom f . For the N = 3 situation this values is
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t61−p = 22.46 (degree of freedom f = 6). The minimum fitness values fminN=2

and fminN=3 are as shown in Equation 4.9, with the Mahalanobis distance set
to zero LN≥2(m∗, p̄∗) = 0. With these values defined, we can set the criteria
for the γ parameter as shown in Equation 5.4.

3fN=1(γ) > fminN=2 + t21−p + fN=1(γ) > fminN=3 + t61−p + t21−p (5.4)

In Equation 5.4 the γ parameter influences the fN=1 values. The γ parameter
is tuned to a value of p = 1 · 10−3, the distributions as shown in Figure 5.13
are found. The resulting value is γ = −40.

Figure 5.13: Values the fitness function can have, depending on the number
of tracklets N. Here the γ parameter is optimized.

In Figure 5.14 a comparison can be seen in the k-matrix correctness over the
course of an EGA run, with different γ settings. The correctness of a k-matrix
reflects how much of the k-matrix coincides with the optimal k-matrix. A
value of ’1’ means that the k-matrix is the optimal k-matrix. From this figure
we can see that the γ parameter has a significant impact on the performance.
The optimized γ value (with p = 1 · 10−3) indeed performs much better than
the default γ = 0 setting. In this case though, it seems to be a conservative
setting, as more performance can be won by increasing the value even further.
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The γ = −50 setting clearly outperforms the γ = −40 setting. The γ = −50
value comes at the cost of an increased risk to make the wrong associations,
as the overlap between the distributions is larger than for the γ = −40 case.
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Figure 5.14: A comparison between different γ parameter settings. The
γ = −40 setting is the optimized setting, where the distributions overlap
with p = 1 · 10−3 at maximum.

5.3 Selection operator of the GA

The choice of selection scheme can have a large impact on the performance
of the algorithm. As shown in Figure 5.15 there is a noticeable change in
performance when the tournament selection scheme is used.
Apparently this selection scheme is able to maintain a good amount of selec-
tion pressure. This is important in order to avoid stagnation of the algorithm
when the fitness values in the population become similar to each other. When
that happens a selection scheme based on relative fitness will start to select
individuals more or less from a uniform distribution. This means that the
algorithm becomes reminiscent of a random walk algorithm, something that
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Figure 5.15: The difference in performance when tournament selection is
used as opposed to the the previous scheme based on relative fitness. The
lines denoted with ’opt’ represent the optimal solutions.

is quite ineffective. Since the tournament selection operator does not rely
on the relative fitness of the individuals it does not have this problem, and
it will therefore not tend towards this random walk behavior. The tourna-
ment selection scheme is the preferred selection scheme and is therefore used
throughout the tests unless stated otherwise.

5.4 Simulated test cases

In this section three cases are presented. All the objects treated in these
test cases are in geosynchronous, near circular orbits. Each case is based
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on simulated observations, where the objects stem from the TLE-Catalog1

and are propagated with a Keplerian motion. At this stage only objects that
follow a Keplerian motion are considered. In each case the observations are
collected at three epochs within the same night. The fences are spaced at
two hours intervals in Right Ascension. Furthermore, the observations are
made in the topocentric frame associated with the Zimmerwald observatory
(Herzog et al., 2010). No visibility conditions other than the elevation of the
object are considered here. A Gaussian noise is added to each individual ob-
servation with a standard deviation of σ = 1”. The settings of the algorithms
are kept constant, they can be found in Table 5.1. Note that the stopping
criterion of 150 generations is the same for each algorithm. This is deemed to
be fair, since all algorithms have a similar computation cost when evaluating
and creating a generation. To reduce the computation time a look up table is
maintained. In this table the resulting Mahalanobis distance of each IOD is
stored, therefore the same orbit is not determined twice. The first test case
involves four objects that are clearly separated, this should be a relatively
easy task. For the second study case one of the ASTRA clusters is used.
These are again four objects but spaced close together (about 0.06 degrees
in declination for the given epochs). It is expected that the convergence of
the algorithm will be slower when compared to the first case, since the dif-
ference between the correct and erroneous solutions are smaller. For the last
test case the two previous situations are mixed. This gives a total of eight
objects. It is expected that the algorithm will find the correct associations
among the four ’easy’ targets relatively soon, and will need more time to
correctly distinguish the cluster. For each test case the average convergence
is presented. As the algorithms are stochastic it is unrealistic to try to derive
any bounds on the convergence behavior through analytic means. Therefore
the average performance over multiple runs is presented. In this work the
algorithms are applied 100 times for each test case. Each time an algorithm
is applied it starts from a different random seed. However, the observations
remain unchanged after the noise is added one time. This is done to ensure
that the optimum solution stays at exactly the same value. This way the
purely the performance of the algorithm is observed, and not an additional
influence by a varying optimum value. Also the average k-matrix found at
the last generation is shown and compared to the true k-matrix.

Four PBMH algorithms are applied to each test case, namely the GA, the

1https://www.space-track.org/
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Table 5.1: Settings of the parameters

- GA EGA PBIL DE
pop. size 2N 2N 2N 2N
pmute 1/N 1/N 1/N 1/N

pcrossover 0.5 0.5 0.5 0.5
% copied to next generation - 10 - -

α - - - 1 · 10−3

F - - - 0.8
LR - - 0.5 -

Mutation shift - - 1/i -
maxgens 150 150 150 150

γ 0 0 0 0

EGA, PBIL, and the DE algorithms. These tests serve to help determine how
well each algorithm performs when applied to this problem, and to identify
which algorithm is the most promising.
The measurements are simulated based on the TLEs as published by space-
track 2, in each example the objects are denoted with their North American
Aerospace Defense Command (NORAD) ID number. A TLE of interest is
read and converted to Keplerian elements. This orbit is then defined at the
TLE epoch and propagated to the desired epochs (spaced at an equal dis-
tance of two hours from each other). For each tracklet seven observation are
used. These are spaced at 30 s intervals from one another.

5.4.1 Test case 1: four easy objects

In Figure 5.16 the observations for the first test case can be seen. Here it is
seen that all the tracklets are spaced at considerable distances (about three
degrees in position and 6 · 10−4 deg/s in angular rates) from each other in all
dimensions. Therefore this test case should be an easy one to solve for the
algorithm. The numbers noted in the legend of the figure correspond to the
NORAD ID numbers of the objects.
In Figure 5.17 the average best solution per generation can be found. The
straight line represents the optimum solution.

2www.space-track.com
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Figure 5.16: The observations used in the first test case. These are Geosyn-
chronous objects on nearly circular orbit, separated in inclination.

Figure 5.17: The average best fitness individual found per generation. Aver-
age value is based on 100 runs.

From these results some clear conclusions can be drawn. First of all, the
results of the standard GA are not to be seen in this plot. This is because
this algorithm is not capable of finding a solution with a fitness value in the
range denoted on the y-axis. Surprisingly the DE algorithm already performs
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much better than the GA. This is unexpected since the DE algorithm is
an algorithm that is known to have problems when facing a combinatorial
problem (Onwubolu, 2009). The PBIL algorithm seems to converge the
fastest, but it reaches a plateau early in the run. This signifies that the
algorithm has found a local minimum and is trapped. The clear winner
among these algorithms is the EGA. Recall that the only difference between
the GA and the EGA is that in the EGA the best individuals are always
copied to the next population. Therefore the computational cost is the same
for both algorithms. Apparently it is of paramount importance that the
information contained in the top individuals is not lost. This also explains the
relative success of DE with respect to the GA, since in DE the best individuals
are always kept as well. These results are also reflected in the average k-
matrix that each algorithm found at the end of the run (at generation number
150). The entries of the average k-matrix are given by k̄i,j =

∑R
r=1 k

r
i,j/R,

where r = 1, 2, .., R indicates the number of the run, R = 100 is the total
number of runs, and k̄ is the average matrix. In Figure 5.18 these k-matrices
are compared to each other and to the optimum solution.

Figure 5.18: The average k-matrix at the end of the run vs. the true k-matrix
for the first test case.

The results shown in Figure 5.17 are in accordance with those shown in Figure
5.18. The GA is barely able to distinguish any correct associations, instead
it tends to put all the tracklets on the diagonal of the k-matrix (effectively
assigning each tracklet to a different object). The PBIL algorithm has indeed
found a local minimum which is in part correct. It consistently finds one of
the objects, however it is not able to form the complete 3-tuples of tracklets
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of the other objects. Finally the DE algorithm consistently finds correct
associations but is not able to form the complete groups of tracklets either.
The success of the EGA can be accredited to the fact that it takes the
interdependencies among the parameters (tracklets) into account.

5.4.2 Test case 2: four objects in a cluster

The second test case concerns a satellite cluster. Satellite clusters form one of
the most challenging situations in space debris tracking because of the close
proximity that the objects have to each other. Therefore it is an interesting
test case for the proposed algorithms. In Figure 5.19 the observations for
this test case are found.
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Figure 5.19: The observations used in the second test case. These are closely
spaced objects belonging to one of the ASTRA clusters.

In Figure 5.20 the average best solution per generation can be found.

The results show a similar behavior as in the first test case. An interest-
ing observation here is that the GA manages to parallel the performance of
PBIL. This is because a wrong association in this scenario will not necessar-
ily lead to a bad fitness value, due to the tracklets being closely spaced, and
their angular rates being similar to one another. Again the importance of
keeping the best solutions is shown. The EGA clearly outperforms the other
algorithms. In Figure 5.21 the average k-matrices at the end of the run can
be found.
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Figure 5.20: The average best fitness individual found per generation. Aver-
age value is based on 100 runs.

Figure 5.21: The average k-matrix at the end of the run vs. the true k-matrix
for the second test case.

In these results it is again evident that the EGA is the only algorithm capable
of approximating the correct solution in a reliable way. PBIL again gets stuck
in a local minimum, and DE finds good associations but is unable to form
the complete groups of three tracklets.
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5.4.3 Test case 3: mixed case with eight objects

In the third test case the two previous cases are mixed. The expectation
is that the algorithms are able to quickly find the correct associations for
the easy targets and will focus on the cluster afterwards. In Figure 5.22 the
observations used in this test case are seen.
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Figure 5.22: The observations used in the third test case. This test case
contains both, objects that are separated in inclination, as well as an ASTRA
cluster and a single tracklet.

In Figure 5.23 the average best fitness value per generation can be seen.
These results are again in accordance with the results of the previous test
cases. The EGA is clearly the only algorithm capable of finding a reasonable
solution
Figure 5.24 shows the average k-matrix found at generation 150. The first
four columns of this matrix correspond to the four objects that are in the
cluster. It is clear that the EGA would need more time to distinguish these
objects with certainty. Columns five until seven correspond to the objects
2639, 2717 and 858, which are the relatively easy targets. Although the
EGA is still unsure about the objects in the cluster, it has associated these
three easy targets correctly. This shows that the EGA is able to identify the
objects in the more sparsely populated areas with relative ease, after which
it focuses on the high density regions such as satellite clusters. Also, it has
identified the stand-alone tracklet without any issues.



102 CHAPTER 5. RESULTS

Figure 5.23: The average best fitness individual found per generation. Aver-
age value is based on 100 runs.

Figure 5.24: The average k-matrix at the end of the run vs. the true k-matrix
for the third test case.

5.5 Real observations

The algorithm is applied to a set of observations that were taken of the
ASTRA 19.2E cluster. This dataset is chosen because it is very similar to
the simulated datasets used in Section 5.4. If the results differ from those
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Table 5.2: EGA parameter settings

Pop. size pmute pcrossover % copied γ Max. gens
2N 1/N 0.5 10 -39 500

found in the previous simulated test scenarios, it will be purely because of
the difference between simulated and real situations. Table 5.2 displays the
parameter settings that were used by the algorithm.
All observations stem from the night of 17-18 March 2016 and were made
by the ZimSMART telescope. The attributed values are shown in Figure
5.25. Figure 5.26 shows the convergence behavior of the algorithm. The
best fitness value per generation is shown for each individual run as well as
the average best fitness value per generation. The plot can be interpreted
by considering the average best fitness per generation. The lines that are
formed by the individual runs (in gray) give an impression of the uncertainty
during the run. This uncertainty is significant. In some cases the optimum
solution is found after just a few generations, and in some cases the optimum
solution is not found even after 500 generations.
The average k-matrix over 100 runs is shown in Figure 5.27. The result
in Figure 5.27 shows that the EGA works as desired. Even though the
uncertainty in the best fitness value per generation might suggest a high
uncertainty in the final solution, the average k-matrix in Figure 5.27 shows
that this is not the case. It consistently finds four objects, which corresponds
to the number of objects in the ASTRA 19.2E cluster3. The orbit and the
RMS of each of the objects is given in Table 5.3. The RMS is calculated with
respect to the individual observations, it is defined as follows:

RMS =

√
v̄T v̄

n
(5.5)

where v̄ is a vector containing the observed minus computed values, and n
is the number of observations.
Table 5.3 shows that each object is in a near geostationary orbit, which is as
expected. One purpose of this initial orbit is to provide a good starting point
for an orbit improvement. Therefore the difference between the OBVIOD so-
lution and a least squares solution should be small (i.e. on the order of the
observation noise) to ensure convergence of the least squares method. Fig-

3 http://www.ses.com/4232744/19-2-east (Accessed 10.08.2016).
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Figure 5.25: Attributed values of the observed objects in the ASTRA cluster.

ure 5.28 shows the difference in right ascension and declination between the
OBVIOD and SATORB (Beutler, 2004) solutions. SATORB is an implemen-
tation of a least squares estimator used for routine orbit improvements at the
Astronomical Institute of the University of Bern (AIUB). The least squares
estimator employs a purely Keplerian model of the satellite dynamics. This
is done such that the models used by OBVIOD and SATORB are the same.
The uncertainty of a single observation is σob = 1”, which translates to about
5 · 10−6 rad. The difference between the two solutions is smaller than this
uncertainty, therefore the initial orbit provided by the OBVIOD method is
of sufficient quality.

In Figures 5.29 and 5.30 the residuals with respect to the individual obser-
vations can be found. They are shown for each of the four objects. An
important observation to make is that all the objects have residuals that are
consistent to one another. This reinforces the belief that the tracklets are
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Figure 5.26: Average best fitness value per generation, averaged over 100
runs. The results of the individual runs is shown in gray.

correctly associated to each other.
In Figure 5.30 an increase is seen in the residuals of the declination for the
observations 8-14. This can be explained by considering the workings of the
OBVIOD method. The OBVIOD method uses the first and last tracklets in
the orbit determination to define a Lambert problem. Since it uses this Lam-
bert problem the orbit will always precisely intersect the attributed angular
positions of the first and last tracklet. Therefore the residuals with respect
to the individual observations in the first and last tracklet are also expected
to be small. The tracklet that is in between the first and last tracklets is not
involved in the definition of the Lambert problem, and therefore the residuals
might be larger for those observations.
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Figure 5.27: Average k-matrix at the end of 500 generations. The EGA
consistently converges to the same solution.

Table 5.3: Orbital elements as determined by OBVIOD

Sat. nr. a [m] e [-] i [deg] Ω [deg] ω [deg] M [deg] RMS [rad]
1 4.216·107 3.2·10−4 0.04 103.0 204.5 -170.6 8.86·10−7

2 4.216·107 5.7·10−4 0.044 56.6 -86.4 166.7 1.16·10−6

3 4.217·107 2.0·10−4 0.085 99.6 -48.5 85.8 1.08·10−6

4 4.217·107 4.9·10−4 0.091 66.7 -45.9 116.2 1.14·10−6
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Figure 5.28: The difference in right ascension and declination between the
least squares solution and the OBVIOD solution. The x-axis label ‘doy’
stands for ‘day of year’.
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Figure 5.29: Residual in right ascension for each observation and for each
object.
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Figure 5.30: Residuals in declination for each observation and for each object.
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5.6 Time complexity

As mentioned in the introduction, the challenge is to find a good approximate
solution in a reasonable computation time. It is clear that the EGA is capable
of finding a good approximate solution, the question that remains is whether
it can do so in a realistic (polynomial) computation time.
The EGA is a stochastic method. Therefore it is difficult if not impossible to
say anything about its behavior in a deterministic way. In cases where it is
possible to deduce a characteristic, its use is questionable. An example is that
the upper bound on the convergence behavior for a regular GA is the same
as that of an algorithm that generates solutions purely at random (Oliveto
et al., 2007). In the work of (Oliveto et al., 2007) an overview is given of
the recent investigations in the time complexity of Evolutionary Algorithms
(the GA is a type of Evolutionary Algorithm). One of the conclusions is
that the function to be optimized has to be considered when analyzing the
convergence behavior.
With this in mind the following experiment was devised. The EGA is applied
to problems of different sizes. As it is a stochastic algorithm, it is applied
100 times and the average performance is studied. The problem size is said
to change when the number of tracked objects changes. In order to keep the
difficulty of the problem the same when increasing the number of objects
they are spaced at one degree increments in inclination, but are otherwise
in identical orbits. They are geosynchronous objects, a tracklet is observed
every hour for a total of three tracklets per object.
Figure 5.31 shows the average k-matrix at different stages of the computation
for a problem with five objects. Four matrices are shown, at 80%, 90%, 95%
of the optimum value, and the true k-matrix. The computational burden is
concentrated at the beginning of the run. A look up table is used, therefore
the computation time needed per generation quickly becomes relatively low.
The improvement in the solution from 80% to 95% is therefore relatively
cheap from a computational standpoint.

In Figure 5.32 the absolute computation time in seconds is plotted against
the number of objects that are being tracked. It is the time needed to have
a solution at 90% of the optimum fitness value. These tests were performed
on a machine with a 3.16 GHz CPU. The tests involved 11 tracked objects
at maximum. Because for each number of tracked objects the algorithm has
to be run 100 times, it was chosen to not go further than 11 objects (about
two hours of computation) in order to limit the computation time. Two
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Figure 5.31: The average k-matrix found at different stages of the search.
Both the percentage of the optimum fitness as well as the time at which the
solution is found are given. The intensity scale is the same as in Figure 5.27.

Table 5.4: Goodness of fit values for both models.

- polynomial exponential
Sum of Squares due to Error (SSE) 4.44 12.52

R-square 0.999 0.998
adjusted R-square 0.999 0.997

RMSE 0.70 1.18

lines are fitted to these points, a polynomial and an exponential function.
These models were fitted in a least squares sense with the MATLAB curve
fitting toolbox. The goodness of fit values are given in Table 5.4, from this
table it becomes apparent that the data is well described by a polynomial
model. The SSE is the sum of squares of the differences between the model
and the actual data points. The R-squared statistic is the square of the
correlation between the predicted and actual response values. When the R-
squared value is corrected for the number of degrees of freedom the adjusted
R-squared value is found. Finally the RMSE is an estimate of the standard
deviation of the data, it can be found by taking the square root of the SSE
divided by the number of degrees of freedom. The determined parameters for
the exponential function are a = 3.00 and b = 0.29 and for the polynomial
they are a = 0.11 and b = 2.69.
The population size and the number of objects per k-matrix scale linearly
with the total number of tracklets (pop.size = 2N , X ∼ N). This means that
the computation time needed to evaluate a generation will scale withN2. The
parameter b of the polynomial fit is greater than two for several reasons. The
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Figure 5.32: Computation time needed to reach an approximate solution of
a certain quality (90% of optimum) versus the number of tracked objects.
Two lines are fitted, a polynomial and an exponential function. Each point
represents the average computation time over 100 runs.

first is that the number of generations needed to arrive at a good approximate
solution will increase when more objects are tracked. However, due to the
look-up table it is relatively cheap to compute additional generations after
the initial few generations. Therefore, this has a minor impact on the total
computation time. Also the computation time needed by the crossover and
mutation operators is relatively small, but will still make a contribution.
Therefore it is to be expected that a polynomial trend fits well to the data
points. This polynomial behavior holds true for the range that is shown (two
to 11 tracked objects). Although it is expected that the polynomial trend
continues outside of this range, there is no way to be certain without adding
additional data points.

5.7 Improving the convergence rate

The search space reduction algorithm described in Section 5.7.1 is applied
to the third simulated test case. The change in performance is measured
in terms of fitness function values versus the generations, and the average
k-matrix throughout the algorithm run. It is expected that the search space
reduction will reduce the number of wrongly associated tracklets during the
run and that it might result in a faster convergence of the EGA. This section
first explains the implementation of the search space reduction. Afterwards
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the results are presented for the search space reduction scheme and for a
‘smart’ population initialization.

5.7.1 Search space reduction method

Problem specific information has to be used in order to reduce the search
space. In this case the determined orbits can be used to prune the search
space. The idea is that during the EGA run the algorithm is able to identify
the ‘easy’ targets that are in low density environments. These easy targets
are found by propagating an orbit to the epochs of stand-alone tracklets. All
the tracklets that are far away (a to-be-defined metric) from the propagated
state are excluded from possibly being associated to that object. These ex-
cluded association are then removed from the search space. This method will
allow the algorithm to resolve the easy targets quicker, and to concentrate
on the more challenging situations such as satellite clusters.

The decision on whether or not to propagate an object is based on the min-
imized loss function value of that object. This value is the Mahalanobis
distance, and it is χ2 distributed with a degree of freedom f = 4N − 6 where
N is the number of tracklets associated to the object. The Mahalanobis
distance d2 is converted to a probability by taking the probability that a
random sample x of the χ2 distribution will result in a value that is d2 or
larger P (x ≥ d2). This is expressed by the Equation given in 5.6.

P (x ≥ d2) = 1− F (d2; f) (5.6)

Where F (d2; f) is the cumulative distribution function of the χ2 distribution,
it is given in Equation 5.7.

F (d2; f) =
γ(f
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In Equation 5.7 the γ(·, ·) is the lower incomplete gamma function, and the
Γ(·, ·) is the gamma function, which are given in Equations 5.8 and 5.9 re-
spectively.
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This is the chosen way in which to convert a Mahalanobis distance value to a
probability for this application. It could be that there is a better alternative,
but this is not further explored.

In Figures 5.33 and 5.34 the attributed (the values contained in the at-
tributable vector) and propagated angular positions and rates can be seen.
Right away it is seen that the uncertainty of the propagated angular posi-
tions is large with respect to the uncertainty in the attributed values. In the
case of the angular rates the uncertainties are quite similar in magnitude.
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Figure 5.33: The attributed and propagated angular positions at the epoch of
the third tracklet for one object. Although the distributions are centered on
the same position, the uncertainty of the propagated positions is considerable.

In Figures 5.35 and 5.36 the same results as in the previous two figures are
shown, but for all four objects in the cluster.
From these figures it become apparent that the objects are much better sep-
arated in position than in angular rate. To be able to keep a probabilistic
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Figure 5.34: The attributed and propagated angular rates for one object. In
this parameter space the distributions are centered on the same values and
have a similar uncertainty.

approach the covariance of the propagated state is needed. This covari-
ance has to be computed through a finite difference scheme. No analytic
method is possible since the OBVIOD algorithm uses the Lambert problem
to determine the orbit. The Lambert problem uses iterations to find the
correct solution, and therefore it is not possible to analytically derive the
partial derivatives needed. The uncertainties on the individual observations
are propagated to uncertainties on the propagated state. This gives the result
as shown in Figure 5.37 and 5.38.

Note that in this approximation a Gaussian uncertainty is assumed. In this
case the finite difference scheme is able to describe the uncertainty well with a
Gaussian distribution. This might not be the case for more extreme (longer
time of flight, high AMR) examples. But for our current needs (reducing
the search space) it is sufficient. The Mahalanobis distance between the
attributed and propagated state can now be computed. If the Mahalanobis
distance is larger than a set value the association is removed from the search
space. Figure 5.39 shows this χ2 distribution.
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Figure 5.35: The attributed and propagated angular positions at the epoch
of the third tracklet for all four objects in the cluster. Although the distri-
butions are centered on the same position, the uncertainty of the propagated
positions is considerable.

The threshold value of the Mahalanobis distance at which an association is
removed is defined by the probability that a random value sampled from
the χ2

4 distribution is smaller than the set threshold. For instance, for a
probability of P = 0.9999 that value is 23.5.
These ‘illegal’ associations are stored in a table. With this table each new
k-matrix is checked for illegal associations. If an illegal association is found it
is repaired by a separate repair operator. This operator removes the wrongly
associated tracklet from the association and replaces it with an association
that is ‘legal’. The wrongly associated tracklet is put on the diagonal of the
k-matrix, where it represents a new object consisting of one tracklet only.
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Figure 5.36: The attributed and propagated angular rates. In this parameter
space the distributions are centered on the same values and have a similar
uncertainty.
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Figure 5.37: The propagated covariance of the angular position of one object.
The ellipse is drawn at one standard deviation.
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Figure 5.38: The propagated covariance of the angular rates of one object.The
ellipse is drawn at one standard deviation.
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Figure 5.39: The Mahalanobis distance between the attributed and propa-
gated state are distributed according to a four degrees of freedom χ2 distri-
bution.
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5.7.2 Improving the convergence: results

An additional method was implemented in which first the S = 2 problem was
treated. The result of the S = 2 problem is a set of all tracklet pairs and the
minimized Mahalanobis distance that followed from the orbit determination.
This Mahalanobis distance is used to quantify the probability that the two
tracklets stem from the same object (by using Equation 5.6). A k-matrix can
now be generated based on these probabilities. Each tracklet is associated
to another tracklet according to the corresponding probability. If it is not
associated to any other tracklet it is left as a single tracklet (on the diagonal
of the k-matrix). For the result in Figure 5.40 denoted with ‘halfpairs’ the
whole initial population is generated in this fashion. Although the EGA now
starts at a much better point, it converges to the same solution as the original
implementation. To have a part of the initial population spread out uniformly
over the search space one half was replaced with k-matrices that are purely
random. This is the ‘half pairs’ solution in the figures. This method seems
to have the same performance as the one where the total initial population
is based on the pairwise results. Finally the search space reduction and the
‘half pair’ methods are combined, resulting in a similar performance to the
‘half pairs’ solution.
In Figure 5.41 a zoom-in of the final generations can be seen. There are small
differences between the solutions, but it is not clear whether these differences
are due to the random nature of the algorithms or not. In any case, both the
‘pairs’ method and the search space reduction method come with a significant
penalty in terms of computational costs. From these results it seems clear
that it is not worth using these alternative approaches.
Figure 5.42 shows the average k-matrix at the end of 500 generations with
the original implementation. In Figures 5.43 to 5.46 the differences between
the average k-matrix of each alternative implementation and the original
implementation are shown. Also in terms of the average k-matrix no large
differences are found. In conclusion it can be said that the tested methods do
not yield any improvements over the original implementation. Also in terms
of computation time no improvements are found. The numerical propaga-
tion of the covariances that are needed in the Search Space Reduction (SSR)
scheme require a large amount of computation time. Also the ‘smart’ initial-
ization of the population requires an initial computation cost of computing
the pair wise solutions. No precise study has been done on the computation
time due to time constraints.
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Figure 5.40: In this figure the ‘optimum’ solution is the straight line that
represents the true solution. The ‘original’ solution is the algorithm as it was
applied to real data in Section 5.5. The ‘pairs’ solution is the solution where
the full initial population is based on the pairwise checking results, the ‘half
pairs’ solution initializes only half of the population in this manner. The
acronym SSR refers to the search space reduction method being applied.
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Figure 5.41: A zoom-in of the different performance of the different schemes.
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Figure 5.42: The average k-matrix at the end of 500 generations, with the
original implementation of the algorithm.

Figure 5.43: Difference between the search space reduction solution and the
original implementation.
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Figure 5.44: Difference between the ‘pairs’ solution and the original imple-
mentation.

Figure 5.45: Difference between the ‘half pairs’ solution and the original
implementation.
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Figure 5.46: Difference between the ‘shalf pairs search space reduction’ solu-
tion and the original implementation.



Chapter 6

Conclusions

The Cosmos-Iridium collision in 2009, has demonstrated that the threat
that space debris poses is not negligible. Currently about 16000 objects are
tracked, sizes range from a 10 cm cross section in the LEO region to a one
meter cross section in the GEO region. The space debris cataloging problem
is different for the LEO region than for the MEO and GEO regions. This
is mainly due to the perturbations that act on the objects and the different
observables that are available for the different regions. In this work the focus
is on the MEO and GEO regions. Here optical observations are used, and
the perturbations due to Earth’s non-homogeneous gravity field and its at-
mosphere are small. The space debris cataloging problem can be divided into
several sub-problems, for optical observations these are: tracklet-to-catalog
association, tracklet-to-tracklet association, and initial orbit determination.
In this work mainly the tracklet-to-tracklet association and initial orbit de-
termination problems are treated. The current methods that address these
problems perform well for non-dense regions, where the objects are spaced
far from one another. In dense environments such as break-up events and
satellite clusters using these methods can lead to ambiguous solutions. The
MHT method can take into account more data than the other methods, and
is therefore capable of solving the cataloging problem in denser regions. How-
ever, this algorithm possesses an exponential computational complexity and
needs to be simplified in order to work. In the near future the number of
tracked objects is expected to grow by an order of magnitude. With that in
mind the purpose of this thesis is to identify an algorithm capable of address-
ing the problem of space debris cataloging in the GEO region, in particular
for highly dense regions, without possessing a restrictive computational com-
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plexity.

Space debris cataloging can be described by the MTT problem. In this
problem the unknowns are the number of objects in the surveillance region
and their states, and the given information is a set of tracklets divided over
a number of S fences. Each fence consists of tracklets that all stem from
different objects or are false alarms. For S ≥ 3 this is a NP-hard combina-
torial optimization problem. The PBMH algorithms are known to perform
well on NP-hard (combinatorial) problems. They excel at finding a good
approximate result with a reasonable (polynomial) computational complex-
ity. Therefore this family of algorithms could represent an interesting new
approach to address the space debris cataloging problem. Besides that, these
algorithms are left relatively unexplored in the MTT community. This work
could therefore offer new insights to the problem and the way to address
it. The algorithms that were applied are the PBIL, DE, GA, and the EGA
algorithms. They were chosen based on a literature study, where each of the
algorithms was shown to have success when applied to one or more combi-
natorial NP-hard problems. The algorithms were applied to three simulated
test cases. In these test cases all objects followed a Keplerian motion, a Gaus-
sian noise with σ = 1” was added to the individual observations. The first
test case consisted of four easy to track objects (low spatial density case), the
second test case used observations of the ASTRA cluster (high density test
case), and the last test case was a mix of both amounting to eight tracked
objects. The orbits of the objects are determined with the newly developed
OBVIOD method. This method is specifically developed to be used in these
PBMH MTT algorithms, it is based on previous work detailed in (Siminski
et al., 2014). The OBVIOD method is able to determine an orbit for two or
more tracklets, and to give a statistically significant quantity that is related
to the probability that the group of tracklets stems from the same object.
The method from (Siminski et al., 2014) was chosen as a basis for this method
since it seems to be the most promising S = 2 tracklet association method.

In each of the test cases the EGA was the only algorithm able to consistently
converge towards the optimum solution. This can be explained by the fact
that the EGA takes the dependencies between the associations into account
by using the crossover operator, and that it always keeps the most valuable
information in the population (elitism). The regular GA discards the whole
population at the end of every generation, it therefore does not keep the
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best information in the population. The DE algorithm works with difference
vectors between different individuals. These difference vectors have a phys-
ical meaning when applied to a continuous problem (e.g. position, velocity,
or acceleration). However for a combinatorial problem this is not the case,
and therefore the difference vectors do not make much sense. The search is
therefore very random in the case of DE, meaning that it is not able to find
good solutions in a structured way. Finally the PBIL algorithm attempts
to construct a probability distribution from which high fitness (high quality)
individuals can be sampled. The weakness of this method is that it does not
take the dependencies between parameters into account. If the parameters
for the specific problem have strong dependencies then this algorithm will
not perform very well. From the results it becomes clear that in the space
debris cataloging problem in the MEO and GEO regions the parameters are
strongly dependent on each other.

The OBVIOD method is shown to be robust, and it is able to provide good
quality initial orbits that lie within the measurement noise. However, one
should be careful when using this method as its performance depends on
the observation geometry and the orbital regime of the object. If the first
and last tracklets are placed close to half an orbital period or a full orbital
period apart from each other the method is not able to compute a proper
orbit (for near circular orbits). This is because the Lambert problem is
used for the orbit computations, and in those geometries where the angle
between the geocentric position vectors of the object at the first and last
epochs is φ = π+ 2πk or φ = 2πk there are infinite solutions to the Lambert
problem (as the orbital plane is not constrained). The loss function of the
OBVIOD method is the Mahalanobis distance. The topography of this func-
tion is smooth and contains one minimum point whenever the observation
geometry is favorable. When the observations are close to the problematic
geometries the topography might include several local minimum points. An-
other interesting observation is that an increased level of perturbation of the
object does not necessarily translate to worse loss function values. For ex-
ample, if the AMR of an object is increased the orbital parameters are still
able to absorb the effect that has.

After having identified the EGA as being the best algorithm among the tested
PBMH algorithms it was applied to a set of real data. The ASTRA cluster
was observed at three different epochs, providing three tracklets for each of
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the four objects in the cluster. The algorithm performed well on this data
set as well, without showing any large differences to the simulated test cases.

The computational complexity of the EGA applied to the space debris cat-
aloging problem has to be determined through experimentation. An experi-
ment was devised where the number of objects ranged from two to 11, each
observed over three fences. The average computation time needed to reach a
close to optimum solution was measured. A polynomial and an exponential
trend were fitted to these data points. The polynomial curve fits best, how-
ever this is not a proof that the algorithm possesses a polynomial complexity.

A few different strategies were tested to see if the algorithm could converge
faster if problem specific information is introduced. One approach was to im-
plement a so-called search space reduction algorithm, which eliminated parts
of the search space during the EGA run. This was done by propagating or-
bits that have a high probability of being correct. All the tracklets that are
too far away from the propagated state are marked as non valid associations.
In the next generation no k-matrix is allowed to propose such a non valid
association. A different approach was to first solve the S = 2 problem. The
resulting tracklet pairs and their orbits were then used to initialize the popu-
lation of the EGA. Both these approaches, as well as a combination of them,
did not yield satisfactory results. Little difference in performance between
the original implementation and the alternative implementations were found.

One important topic is the application of the algorithm to large data sets of
500-1000 tracklets. It could be straightforward to test this by evaluating all
the individuals in a population in a parallel manner. It is even possible to
get a better-than-linear speed up from implementing the EGA in a parallel
fashion (Calegari et al., 1997).

If the algorithm is shown to work well on large data sets in its given form,
it would be interesting to try to reduce the computation complexity of the
algorithm. In the presented work already some results of the search space re-
duction and ‘smart’ initialization of the population have been shown. These
methods are still not understood well enough and should be studied in more
detail together with other possible ways to improve the computation times.

Something that has not been studied at all and which would be of high inter-
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est is to see how the computation time scales as a function of the dimension
of the problem.

Also the OBVIOD method might be improved. Currently it is restricted to
the use of Keplerian motion, however it should be straightforward to imple-
ment a boundary value shooting method that can take perturbations into
account. This would approximate the motion of the object more accurately.
However, what is perhaps more important is that this modification will also
(to some extent) address the problem of the difficult-to-solve-for geometries.
This could mean that the OBVIOD method could be used even when the
first and last tracklets are place in a troublesome geometry. The downside
of this is that to solve the resulting boundary value problem the object’s
state has to be propagated numerically, which means that it will take more
computation time to compute orbits.

With these results a survey strategy could be designed where the difficult
observation geometries are avoided. Another area of interest would be to
test the algorithm for robustness. Tests can be made where e.g. the object
density, the false alarm rate, or the missed detection probability are increased.
The results from these tests would give new insight to the operational limits
of the algorithm. Furthermore it would be good to compare the performance
of the algorithm directly to a MHT implementation in order to find out in
which regimes it is better to use one over the other.
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