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Abstract

Tool developers frequently leverage data from software ecosys-
tems to improve their tools. Unfortunately, every developer has to
build his own infrastructure to analyse the software ecosystem. This
means identifying the scope of the ecosystem, obtaining the source
code, extracting, storing and updating the data and so on.

We argue that many of these tasks can be automated, freeing
the developer to focus only on how to extract the needed ecosystem
data and how to present it to the developer.

To support our claim, we developed a framework for developing
ecosystem-aware tools, tools that leverage data from the software
ecosystem. This framework automates all routine steps of the pro-
cess and leaves the developer to specify what data to extract from
the ecosystem, and how to use it.

To illustrate how this framework can be used for development
of real-world ecosystem-aware tools we created four such tools us-
ing this framework. These tools are implementations of innovative
approaches that improve the developer experience and were chosen
to be diverse so as to illustrate the flexibility and features of the
framework which is meant to support the needs of a broad range
ecosystem-aware tools.

The tools are individually evaluated and shown to be an improve-
ment on the standard techniques, further supporting the notion that
incorporating ecosystem data into the development process can be
beneficial.
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Introduction

Software systems do not live in isolation. Whether through direct
dependencies or shared libraries all software systems share some
sort of connection with other systems. These systems co-evolve as
changes in one project cause changes in its downstream dependen-
cies, changes in libraries ripple through their clients etc. We call a
group of software systems united by common or mutual dependen-
cies a software ecosystem.

Many aspects of Software Engineering have made great progress
in embracing the concept of software ecosystems in one way or an-
other. For example, modern software build systems such as Maven
make dependencies between projects explicit. This also defines re-
lations between projects and inadvertently defines the scope of an
ecosystem forming around particular libraries and framework. Tools
like this enable us to get the scope of a software ecosystem very
quickly.

On the other hand, creators of development tools have realised
that projects in the same ecosystem tend to share certain traits, and
that identifying these traits can help developers during software en-
gineering tasks. The idea is that if developers of related projects
did things a certain way, there is a strong probability that other



developers, working in the same ecosystem, should do these things
in the same way. This simple idea spawned many directions of re-
search into how data from related projects can be integrated in the
software development process. We qualify as “Ecosystem-aware” any
software development tool that in any way incorporates data from
the software ecosystem.

This large body of work is unfortunately completely fragmented,
with practically every tool relying on data extracted from a differ-
ent set of projects, using custom infrastructure consisting roughly
of a sequence of steps shown in Figure 1.1. These infrastructures
essentially re-implement the same functionality for each individual
tool with little or no concern for re-use by other developers. An-
other negative side effect of this is that it is more difficult for tool
developers to communicate the way their tools work, as one must
understand much about how, and from where, the data is gathered
rather than what data is gathered and why.

Another shortcoming of these custom infrastructures is that they
provide little or no support once the data that is gathered is stale.
This reduces the life span of the tool, as stale data will most likely
reduce the quality of the tool that relies on it.

We argue that much of the process of ecosystem-aware tool de-
velopment can be automated and abstracted away from the tool de-
veloper. We partly draw inspiration from distributed data analysis
platforms such as Hadoop or Spark which allow a developer to write
how the data is to be processed and not where each part of the data
can be found and how the analysis should be run. The framework
is in charge of the routine parts of the process, and the developer
is not burdened by non-important details regarding the execution
of the analysis. Similarly, if the scope of the software ecosystem of
interest to the developer is defined, many of the steps of gathering
ecosystem data can be part of a framework rather than the job of
the developer. These steps include obtaining the source code of the
projects in the ecosystem, executing user specified pre-processing,
analysis and post-processing, storing the data for later use etc. Fig-
ure 1.2 shows the same steps from Figure 1.1 but now divided into
the ones that can be automated and ones that can not.

As a proof of this concept we implemented a framework for de-
veloping ecosystem-aware tools for Pharo Smalltalk!. We call it the
“Ecosystem Monitoring Framework” or EMF for short.

Ihttp://www.pharo-project.org
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Obtaining the
Source Code

l

Defining the Analysis

|

Executing the Analysis

l

Storing the Results

|

Implementing the tool

Figure 1.1: Steps needed to develop an
ecosystem-aware tool.

This framework defines the scope of the Pharo Smalltalk ecosys-
tem, and provides a set of APIs and configuration mechanisms that
enable the developer to specify all steps for gathering the needed
data. Furthermore, the framework automatically keeps this data up
to date by periodically re-analyzing the ecosystem. It also provides
a centralised place to store and read the data.

To illustrate how this framework can be used for development
of real-world ecosystem-aware tools we created several such tools
using this framework. These tools were chosen to be diverse so as
to illustrate the flexibility and features of the framework which is
meant to support the needs of a broad range of ecosystem-aware
tools.

The first tool implemented is a type inference engine, leveraging
ecosystem data on how often methods are invoked on instances of
types to sort candidate types of a variable. This is the canonical
ecosystem-aware tool developed with EMF. To illustrate that EMF
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Executing the Analysis

|

Storing the Results l

Implementing the tool
Fully Automated I

i
Figure 1.2: Steps needed to develop an

ecosystem-aware tool, separated by whether or not
they can be fully automated.

decouples gathering data from presenting it, we augmented a code
browser to show frequently used methods of the current class by
re-using the data gathered for the ecosystem-aware type inference
for a different use case. Since EMF analyses the entire ecosystem,
we can use it to study the state of the ecosystem in order to make
data-driven decisions. We illustrate this by exploring the state of
the method argument names in the ecosystem in order to improve a
heuristics based type inference technique called type guessing. And
finally, since EMF is not limited to static analysis we implemented
an approach to provide tools with objects on demand, by mining
code snippets whose execution produces objects.

1.1 Thesis Statement

We formally state our thesis as follows:
Routine parts of ecosystem-aware tool development can be auto-
mated, providing developers with a framework for tool development

focused only on analysis and presentation of ecosystem data.
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This thesis statement raises several scientific challenges with re-
gards to identifying the scope of the ecosystem, providing a suitable
interface to the developer for analyzing the projects in order to sup-
port ecosystem-aware tools, solving the problem of data staleness
etc.

1.2 Contributions

This section outlines the main contributions of this thesis. They can
roughly be divided in two parts: The idea and proof of concept im-
plementation of the framework for development of ecosystem-aware
tools and the innovative tools developed using this framework. The
contributions consist of both the implementations as well as the
scientific publications that resulted from the studies conducted to
motivate or evaluate the tools.

1.2.1 Ecosystem Monitoring Framework

Integrating ecosystem data into developer tools can be very bene-
ficial but is usually complicated. Our thesis is that automating the
routine parts of this task can reduce the amount of work needed
to develop these tools. To support this claim, we have developed a
framework that allows developers to quickly develop new tools that
use ecosystem data. We call this framework the “Ecosystem Moni-
toring Framework” or EMF for short. The framework automates the
execution of user-defined analyses on ecosystem projects, allowing
the developer to focus only on what ecosystem data is needed for
her tool and how to present it. This is, to the best of our knowledge,
the first attempt to implement a framework for simpler development
of ecosystem-aware tools, and the fact that our implementation of
the framework was robust enough to build the tools that we did is a
testament to the versatility of the idea of a framework for ecosystem-
aware tool development.

1.2.2 Ecosystem-aware Tools

This section gives a short description of the four ecosystem-aware
tools developed using the ecosystem monitoring framework. Each of
these tools is a proof of concept implementation of an idea on how
one could improve the development process by including ecosystem

5



data. Each tool also illustrates one important aspect of the frame-
work. These aspects, as well as their implications are discussed as
part of the description of each tool.

Improved Type Inference for Dynamically Typed Lan-
guages

Dynamically-typed languages lack information about the types of
variables in the source code. Developers care about this information
as it supports program comprehension. Basic type inference tech-
niques are helpful, but may yield many false positives or negatives.

In ecosystem-aware type inference we track how often messages
are sent to instances of available types throughout the source code
for all available projects from the ecosystem. This means that the
back end of the ecosystem-aware type inference builds a weighted
mapping from classes to selectors, where the weight is the number
of times a message with that selector was sent to an instance of that
class.

We use this information to sort the potential types of a variable
based on their likelihood of being the actual type in the context.
The likelihood is computed based on how many times the messages
sent to this variable have been observed to be sent to each potential
type throughout the ecosystem.

Using EMF, we implemented a prototype and used it to evaluate
the approach. We show that, for our implementation, measuring the
frequency of association between a message and a type throughout
the ecosystem source code is helpful in identifying correct types.

Results of this work were published in the proceedings of an
international conference [SLN14a).

This tool illustrates the standard way of developing ecosystem-
aware tools using EMF. It uses EMF to define and execute the
ecosystem analysis and has a simple front end for developers to
interact with.

Documentation and Code Browser Augmentation

Software developers are often unsure of the exact name of the
method they need to use to invoke the desired behavior in a given
context. This results in a process of searching for the correct method
name in documentation, which can be lengthy and distracting to the
developer.



We can decrease the method search time by enhancing the doc-
umentation and code browser of a class with the most frequently
used methods. Usage frequency for methods is gathered by analyz-
ing other projects from the same ecosystem.

Using EMF, we implemented a proof of concept of the approach.
We use the same data gathered for the ecosystem-aware type in-
ference, but a different front end. Since methods are commonly
searched for using a system browser called “Nautilus”, we developed
a plugin for it which adds a section with the most commonly used
methods for the currently observed class.

Results of this work were published in the proceedings of an early
research achievements track of an international conference [SLN14b|
and an international workshop [SLN14c].

This tool illustrates the clear distinction between gathering the
data and presenting it to the developer. This tool uses the exact
same data as the ecosystem-aware type inference, gathered by the
same analysis, and presents it to the developer in a different way to
obtain a different result. This shows that the two concerns of the
developer (data analysis and presenting the data) can be decoupled.

Improved Type Guessing for Method Arguments

A common practice when writing Smalltalk source code is to name
method arguments in a way that hints at their expected type (i.e.,
aString, anlnteger, aDictionary). This practice makes code more
readable and some tools (such as the auto complete feature in the
Pharo Smalltalk code editor) improve the developer experience by
“guessing” the type of the method argument based on these hints.

Using EMF we gather argument names throughout the ecosys-
tem and generate a weekly report containing information about
commonly used ones. This report can be used by the Type-guessing
tool developer to include heuristics for better type guessing. Us-
ing these reports we developed heuristics that improved the Pharo
type-guesser by almost 40%.

Results of this work were published in the proceedings of an
international conference [SLN16].

This tool shows that it is possible to use EMF as a platform for
writing analyses that provide a report on the state of the ecosystem
and don’t necessarily have a standalone front end. In this case, we
used EMF to analyze the state of argument names throughout the

7



ecosystem and used the generated report to make informed decisions
on how to improve type guessing heuristics.

The Object Repository

The Object Repository is just a back end for multiple potential front
ends. The main idea behind the Object Repository is to enable front
end tools to have “Objects on demand”. This means that the Object
Repository mines, from the ecosystem, code snippets that, when
executed, produce an instance of some class. These snippets are
then stored and mapped to the class they can instantiate. A front
end needs only to provide a class name, and the Object Repository
will provide all available snippets that instantiate that class. These
snippets have many potential use cases in software documentation,
testing, program comprehension etc..

Our proof of concept implementation of the Object Repository
relies on brute force execution of code segments obtained by convert-
ing AST nodes of methods to source code. We show that applying
the proposed approach to the Pharo ecosystem, as defined in EMF,
results in an Object Repository that can instantiate almost 80% of
the available classes in these projects.

Results of this work were published in the proceedings of an
international workshop [SGN16].

This tool shows that EMF is not limited to just analyzing the
source code as text, but also supports advanced techniques such as
execution of code, which opens many other doors for ecosystems-
aware tools.

1.3 Outline

The main chapters of this thesis present the ecosystems monitoring
framework and the ecosystems-aware tools developed on top of it.
The thesis is thus organised as follows:

Chapter 2 provides a survey of the literature focusing on work
that is related to software ecosystems, large-scale software
analysis and using ecosystem data in the development of de-
veloper tools.

Chapter 3 presents a technical description of the requirements and
implementation of the ecosystems monitoring framework. This

8



chapter also provides an overview of how to develop a toy
ecosystem-aware tool.

Chapter 4 presents the ecosystem-aware type inference engine.

Chapter 5 presents the improved system browser augmented with
ecosystem data, as well as the study that motivated the aug-
mentation.

Chapter 6 presents the improvements to the type guessing system
in Pharo that where made possible by a reporting tool built
with EMF.

Chapter 7 presents a framework that used EMF to mine the
ecosystem for code snippets which, when executed, produce
objects. These snippets can be used for several different soft-
ware engineering tasks.

Chapter 8 concludes the thesis and outlines open questions.
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State of the art

In this chapter we survey the state of the art in three fields directly
related to this thesis. These fields are software ecosystems, platforms
for large scale software analysis and ecosystem-aware tools.

2.1 Software Ecosystems

The concept “Software ecosystem” was introduced by Messer-
schmitt and Szyperski in 2003 [MS03] and has since then spawned
a wide research field with, as reported by a longitudinal study
by Manikas [Manl16], two dedicated workshops (which have since
merged), a major presence at conferences and 231 publications over
8 years.

There are multiple definitions of a software ecosystem through-
out literature, and we provide a chronological review of the defi-
nitions for a software ecosystem, and discuss how the usage of the
term in this thesis reflects on these existing definitions.

We start with the definition by Messerschmitt et al. :

“Traditionally, a software ecosystem refers to a collection
of software products that have some given degree of symbiotic
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relationships.” [MS05].

This definition is quite vague, so our usage of software ecosystem
falls completely within it, since we assign the symbiotic relationships
to be shared or mutual dependencies and co-evolution.

Jansen et al. provide a very different definition:

“We define a software ecosystem as a set of businesses func-
tioning as a unit and interacting with a shared market for software
and services, together with the relationships among them. These
relationships are frequently underpinned by a common technological
platform or market and operate through the exchange of informa-
tion, resources and artifacts.” [JEB09]

This definition is oriented more towards the business world i.e.,
commercial entities and software ecosystems they interact with. Ex-
amples could include the Google Play store for Android apps or the
Apple App Store for iOS apps. This is a substantially different view
of software ecosystems, as it includes not just the software but also
the legal entities that shape the ecosystem. The main similarity to
our usage of the term is the observation that these ecosystems are
frequently underpinned by a common technological platform, which
is also true in our use of the term.

Bosch et al. define a software ecosystem as follows:

“A software ecosystem consists of a software platform, a set
of internal and external developers and a community of domain
experts in service to a community of users that compose relevant
solution elements to satisfy their needs.” [BBS10]

While we do focus on a particular software platform (Pharo
Smalltalk) our focus is not at all on the community or users of the
solutions built using this platform. While this definition opens more
opportunities for gathering data from alternative sources (mailing
lists, Q&A forums, bug reports, etc.) this thesis is limited, for sim-
plicity, only to the source code of the solutions mentioned in the
definition.

The definition provided by Lungu et al. most closely matches
our own:

12



“A software ecosystem is a collection of software projects that are
developed and evolve together in the same environment.” [LLGR10]

This definition, similar to the one by Messerschmitt, is quite
vague. If we consider the environment to be the platform and com-
monly available libraries used for development, then this definition
fits ours nicely. We just aimed to be a slightly more specific in defin-
ing the term.

Finally, we look at the definition by Manikas et al. :

“A software ecosystem consists of a group of actors, one or
more business models that serve these actors in a possible wider
sense than direct revenues, one or more software platforms that the
business models are built upon and the relationships of the actors
and business models.” [MH13]

This definition is a somewhat improved version of the definitions
provided by Jansen and Bosch. It suffers from the same points dis-
tancing it from our definition. While the definition does include a
software platform and the software (business models) it gives an
explicit inclusion to the actors and their relations as part of the
ecosystem. As mentioned before, including this, while very desir-
able, escapes the scope of this thesis.

Finally, we reflect on our definition of a software ecosystem. It
states:

“A software ecosystem consists of a group of software systems
united by common or mutual dependencies.”

We prefer this definition as it makes explicit our objects of in-
terest — the software systems — as well as the way they are inter-
connected — common and mutual dependencies.

2.2 Platforms for Large-scale Software
Analysis
In this section we present an overview of existing platforms for

large-scale software analysis. This field is motivated by the large
research interest in mining software repositories, and deals with
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analysis of source code, metadata and software evolution. Most of
the approaches use domain specific or query languages to run the
analyses, which can be a burden for developers and they neither
provide automated updating of data nor a centralised repository for
the results.

Since mining software repositories is very often concerned with
studying software evolution, several platforms have been devel-
oped with special focus on software evolution. Tools such as
Minero [ADGO04]| and Bloof [DP03] provide database inspired ap-
proaches for analyzing the history of a project relying on query
languages. These approaches are quite limiting as the project data
is pushed into a rigid schema keeping only the information specified
by the schema thus excluding certain analyses. On the other hand,
Kenyon [BWKGO5] presents a much more flexible framework which
enables the developer to specify the required information through
ORM mappings. This data is later available for post processing by
external evolution analysis tools.

Tools such as these analyse large quantities of historical data
about only one project. Since throughout this thesis we do not fo-
cus on the history of our projects, these approaches are of limited
applicability.

The Pangea [CCSL14] platform offers a way to analyse pre-
defined software corpora in a language agnostic way. It also uses
a domain specific language based on the Moose [NDGO5| analy-
sis platform, which is essentially an advanced query language for
the FAMIX meta model. The main shortcoming of Pangea is that
it deals with software corpora rather than ecosystems. By this we
mean that the corpora are frozen in time i.e., the projects are fixed
to a certain version, and as the projects evolve the data gathered
would be stale. Also, Pangea has no central way of storing the re-
sults, or providing them to clients.

Sourcerer [BOL0Y] is a research project aimed at exploring open
source projects through the use of code analysis. The infrastruc-
ture is for automated crawling, parsing and storage of open source
software at scale. Sourcerer relies on analysing the code in order to
extract textual information as well as structural and metadata in-
formation mainly used to improve code search. They use standard
text retrieval techniques combined with source code specific heuris-
tics to produce a relational representation of the source code which
they claim is suitable for applying machine learning techniques for
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a variety of tasks. Sourcerer suffers from many of the same short-
comings as Pangea does. Primarily, it works with data sets rather
than live projects, and uses a very specific relational representation
of the gathered data.

Boa [DNRN13] is a domain specific language with an accompany-
ing infrastrucure for ultra-large-scale software repository and source
code mining. By leveraging distributed data processing techniques
provided by Hadoop [Whil2] and the Map-Reduce [DGO08] paradigm
Boa is able to process petabytes of software repository data. To pro-
tect the developer from expressing the analysis in the Map-Reduce
paradigm the authors implemented the Boa language that includes
domain specific types such as Project, CodeRepository, Revision
and Person and enables the developer to write procedural code that
gets translated to Map-Reduce jobs. This code is either query like
in nature, or consists of a series of AST visitors that extract the re-
quired data. Boa is accessed through a web interface where users can
submit jobs which will eventually run on the infrastructure. Since
Boa is build on Hadoop, the results of the analyses are stored in
the Hadoop file system but are not available for front-end clients on
demand. Also, the Boa infrastructure is not available so users can-
not run Boa on their own data cluster. Furthermore, Boa includes
a wide range of projects, including their entire histories, written in
different languages so identifying the scope of an ecosystem would
fall on the user.

Finally, it should be noted that none of these platforms support
dynamic analysis in any way, thus ecosystem-aware tools such as the
Object Repository could not be implemented using these platforms.

2.3 Ecosystem-aware Tools

A large body of work exists in the field of ecosystem-aware tools.
Authors generally do not use the label “ecosystem-aware” for their
tools, and more often refer to “mining projects” or “mining software
repositories”. This is because most authors ignore software evolu-
tion and extract the data for their tool from a static snapshot of a
large body of related projects. Nevertheless, all of the approaches
presented in such papers could be implemented using a variation
of the ecosystem monitoring framework, which would address this
issue. Thus, we label all tools that leverage data from a large body
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of related projects as “ecosystem-aware”.

These tools cover a variety of software development issues:
from predicting which parts of the system are likely to have de-
fects [DLR11], to automatically detecting code clones across open
source systems [RCK09|, supporting code search across the web or
large collections of software projects [BOL14] and automatically de-
tecting the license of jar archives [DPGA10].

We can roughly divide these tools in several categories, each with
a corresponding subsection.

2.3.1 API-Related Tools

Research into tools and analyses of API usage directly relates to the
frequently used methods tool presented in Chapter 5. This tool was
implemented to demonstrate the disconnect between the front end
and back end of ecosystem aware tools, but any of the techniques
present in the literature could be used to build a tool using EMF.

One direction of research related to ours is the work on API
specification mining [RBK*13]. In order to detect groups of methods
that are usually called together Nguyen et al. [NNPT09| statically
analyse method call and field access graphs. The mined API patterns
represent sets of methods that are called on a single object. Pradel
and his colleagues used a combination of static and dynamic analysis
to automatically detect illegal uses of APIs [PJAG12] while building
multi-object protocols.

Tools such as MAPO [ZXZ109] focus on mining API methods
that are frequently called together and their usages follow sequen-
tial rules. Other approaches such as those presented by Buse et al.
[BW12] focus on a different kind of static analysis based on com-
bination of path sensitive dataflow analysis, clustering, and pattern
abstraction. A tool called PROSPECTOR [MXBKO05| introduces
the concept of jungloid source code in an attempt to simplify the
mined snippets in order to enable synthesis and combining to form
more complex code fragments.

In their work, Thummalapenta and Xie crawl the web for meth-
ods and classes that are often reused [TX08]. They collect the fre-
quency of calls to methods and classes of a given API in order to
recognize so-called hotspots. The information that they collect is
similar to ours; the difference is in the end-goals — unlike their,
and most of the related work which is targeted at Java systems, we
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have to address challenges inherent to dynamically typed program-
ming languages.

De Roover et al. aim to help understanding of APIs for both
providers and users with a tool called EXAPUS [RLP13]. It is an
IDE-like tool that enables exploration with respect to multiple di-
mensions (hierarchically organized scopes of projects and APIs, API
usage metrics, API metadata, project-centric versus API-centric
views). They exercise their tool with this tool is their QUAAT-
LAS [RLP13] corpus. It is a corpus for API-usage analysis built
on top of the existing QualitasCorpus [TADT 10| by revising it so
that fact extraction can be applyed at a level suitable for API-usage
analysis.

2.3.2 Code Examples

A common approach to help developers understand certain aspects
of code is to provide an example of the explained phenomenon. This
is a common occurrence in software documentation where the exam-
ples are normally provided manually by the documentation author.
Due to the additional effort needed to provide these examples, much
work has been done in an attempt to mine examples from existing
source code.

Examples are most commonly mined from open source reposi-
tories |ZXZ109, HM05, MXBKO05| but other sources are also used
e.g., Google code search [TX07]. Several approaches are used to
present the code examples to the developer. These include search
engines [TX07], IDE augmentations |[ZXZ"09|, adding code exam-
ples to documentation [MBFV13] and others.

Multiple approaches have been proposed to mine relevant code
examples and use them to improve code completion tools. Kim et
al. propose generating so called eXoaDocs or example oriented API
documents which are used to supplement API documentation with
examples [KLHKO09|. Holmes et al. propose Strathcona in an at-
tempt to minimise the effort for the developer to query for exam-
ples [Hol06]. Bruch et al. [BMMO9] explore three different strategies
for using information gathered from existing code repositories. Their
approach, given a set of methods that have been called on a variable
and the enclosing method as context, recommend missing method
calls for that variable. The PARSEWeb tool [TX07], rather than
performing the analysis of open source systems itself, is build atop
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of code search engines in order to try to generalise their approach.
Pavlinovic et al. [PB13] mines code examples that occur more than
a given threshold in a given code repository, and provides relevant
examples on demand and taking into account the developer’s current
context. Zhang et al. focus on automatically filling the parameter
list of APT calls automatically [ZYZ112].

Other work, such as that of Ghafari et al. [GGMT14] focuses on
mining examples from unit tests claiming that this is a good source
of examples as they are concise, relevant and trustworthy.

2.3.3 Inter Project Dependencies

Ossher et al. present a method for automatically resolving depen-
dencies for open source software which works by cross-referencing
the missing type information in a project with a repository of candi-
date artifacts [OBL10]. They build a detailed AST for every individ-
ual system they analyze. The AST is used to analyze an individual
project and detect the missing types. Once the missing types have
been identified, the final step is to match them against the artifacts
in the candidate repository.

Similarly, Lungu et al. have also analyzed inter-system depen-
dencies by analyzing the method call graph, identifying the targets
of calls which do not exist inside of a system, and detecting these
targets elsewhere in the ecosystem [LRL10].

Approaches such as these would be very useful if implemented
as an ecosystem-aware tool since resolving and obtaining all the
required dependencies to build a software system is not a trivial
task.

Decan et al. take this idea further by exploring package depen-
dencies in an inter repository context. Namely, the R ecosystem
had one main repository in use (CRAM) but the rising popularity
of GitHub has produced a divide in the ecosystems. Decan et al.
explore the impact of GitHub on the R ecosystem as well as the
challenges of inter-repository package management [DMCG16].

Mileva et al. mined software repositories to observe popularity
of APIs, and help developers choose a popular API rather than an
unpopular one, claiming that the “wisdom of the crowd” can be used
to measure the quality of an API [MDZ10].

Kula et al. visualize the evolution of the relation between a sys-
tem and its dependencies using two different views [KRGT14]. The
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system-centric dependency plots visualizes the successive library
versions that a system depends on over time enabling insight into
changes in dependencies along the release history of the system. On
the other hand, the library-centric dependants diffusion plot shows
the diffusion of users across different versions of the library. These
visualizations help both the developers of a library as well as its
clients.
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Ecosystem Monitoring Framework

3.1 Introduction

Leveraging ecosystem data in software development by including it
in developer tools can benefit software quality and speed of devel-
opment in many ways. A large body of work already exists deal-
ing with integrating ecosystem data i.e., data from other related
projects, into the development process. Examples of such work deal
with code completion [BMMO09], method and argument recommen-
dations [NNPT09, AXPXO07], library scoring systems [MDZ10], code
snippet recommenders [ZXZ109, HM05, MXBKO05, TX07] and oth-
ers.

Papers published in this field rarely take into account software
evolution. They focus heavily on the usability and helpfulness of
their respective tools and provide no support for the tool once the
data it is based on is out of date. However, tool developers need
tool support to easily gather ecosystem data and keep the data up
to date.

We implemented one such tool for the Pharo Smalltalk ecosys-
tem and named it the “Ecosystem Monitoring Framework” or EMF.
The main goal of this framework is to enable developers to write
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Figure 3.1: Use case diagram of a tool developer using
the ecosystem monitoring framework.

tools that leverage ecosystem data (i.e., ecosystem-aware tools)
without requiring them to spend time on the infrastructure of run-
ning their analyses or keeping the resulting data up to date.

3.2 EMF Requirements

To guide our decision making process in developing EMF we define a
list of requirements for the system. These requirements are informed
by the desired use case scenario for EMF shown in Figure 3.1. This
system has only one user, a tool developer, with one associated use
case — developing a tool that relies on ecosystem data.

Developing an ecosystem-aware tool can be separated into three
tasks:

1. Gathering the required ecosystem data.
2. Writing the source code for the tool that uses that data.

3. Registering the ecosystem aware tool with an instance of the
framework.

Gathering ecosystem data is further broken down into writing
the analysis to gather the data, and storing the results. Registering
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the tool with EMF consists of defining how to set up, run and tear
down the analysis. The framework, aware of these steps, should
execute this analysis on all projects in the context of the ecosystem.
In short, we want the developer to specify how to get the data she
needs, and how to provide it to the developer. The developer should
not have to focus on the technicalities of execution across projects.

With these use cases in mind, we first eliminate those that are
independent of the framework i.e., we eliminate all use cases that
can be fulfilled by the user without interacting with the framework.
Firstly, writing the source code for the tool is solely the developer’s
responsibility and in no way influences the requirements of EMF.
Secondly, writing analyses of Smalltalk source code is straightfor-
ward using Smalltalk itself, thanks to the high reflectivity of the
language [Riv96] (e.g., classes being objects able to provide a list
of their methods as objects which can provide their ASTs as ob-
jects, which can be traversed to extract data) so this also does not
influence the requirements. We only need to provide an abstract in-
terface to all required information about a project being analyzed.
Please note that for less reflective languages where source code is not
modeled within the language (e.g., Java, C++) we would need to
introduce a dedicated way of analyzing projects from their ecosys-
tems. Tools such as Moose [NDGO5| or Rascal [HKV12] would be
good candidates. To store the results of the analysis, any off-the-
shelf database system can be used, and this is the final part of the
use case diagram that does not carry requirements for EMF.

Keeping the desired use case activities in mind we can specify a
set of functional and non-functional requirements from EMF in the
following subsections.

3.2.1 Functional Requirements

FR.1 The system enables a developer to specify actions needed to
execute an analysis.

FR.2 The system provides the developer with an abstract interface
to required information about a project being analyzed.

FR.3 The system provides a centralized database system to store
the results of the analysis.

FR.4 The system executes all the specified analyses on all projects
in the ecosystem.
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FR.5 The system provides control over data staleness i.e., provides
reasonably fresh data from the ecosystem.

FR.6 The system provides access to gathered data for the tools that
need it.

3.2.2 Non-Functional Requirements

NR.1 Compatibility with the Linux operating system.

3.3 EMF Overview

In order to satisfy FR.5 and FR.6 we decided to implement EMF
using a simple client-server architecture. This means that the server
side of the framework is in charge of gathering ecosystem data, stor-
ing it and providing it to clients i.e., developer tools. A high level
overview of EMF is shown in Figure 3.2. We can see the clear dis-
tinction between the server side components and the clients. The
clients gather data through the data providing module, which reads
from the database. For the database module we use MongoDB!. We
chose MongoDB for its schemaless data storage model which en-
ables faster development and experimentation. The data providing
module is an existing implementation of a MongoDB Java REST
server?. These two modules fulfill FR.3 and FR.6 completely.

The remaining module in Figure 3.2 is the data gathering mod-
ule. This module deals with FR.1, FR.4 and FR.5. It has three
distinct parts:

Configuration is an XML file used to fulfill FR.1 and is explained
in detail in Subsection 3.3.2.

EMF Analysis Core® is a Smalltalk package used to provide the
developer with a way to interact with various aspects of the
framework from Smalltalk e.g., obtaining the database con-
nection, obtaining all classes from the project being analyzed
etc. This is put in place to satisfy FR.2 and is further detailed
in Subsection 3.3.3.

Ihttps://www.mongodb.org/
2https://sites.google.com/site/mongodbjavarestserver/
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Figure 3.2: High level overview of the components of
EMF.

Execution Engine is the backbone of the framework. It is the im-
plementation of the execution of analyses defined in the con-
figuration file across the ecosystem projects. To satisfy NR.1
and FR.5 we implemented this part as a set of shell scripts
to be run at a fixed interval through the chronjob framework
of the Linux operating system. A detailed description can be
found in Subsection 3.3.1.

3.3.1 Execution Engine

The EMF data gathering module* is implemented as a set of shell
scripts to be run as at a fixed interval through the chronjob frame-
work of the Linux operating system. This makes the EMF portable
across any Linux operating system supporting shell and the chron-
job framework. It also makes extension, porting and modification
very flexible and easy by editing the scripts.

The entry point for the scripts is the deployment script (de-
ploy.sh). This script is called from the cronjob and it deploys the
entire framework by copying the other scripts to a safe execution
directory (in our case /tmp), executing the next three phases of the

4https://github.com/boris-spas/ecosystemMonitoringFramework
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EMF (main.sh). The next three phases are presented in Figure 3.3
and each phase has a corresponding shell script:

Preparation Phase Prepares the stage for executing the analysis.
In our implementation this includes obtaining a fresh Pharo
image and virtual machine, loading the EMF Analysis Core
package and obtaining the configuration file. The configura-
tion file is obtained from a separate repository to enable mod-
ification of the file independently from the usage. Once the
configuration file is obtained, the script extracts from the con-
figuration file all the source code defined to be executed before
running the analysis and executes it.

Analysis phase This script is in charge of obtaining each project
from the ecosystem and executing each of the analysis source
code chunks defined in the configuration file for every ecosys-
tem project. In our case, we use the configuration browser in
Pharo as the meta-repository that defines the ecosystem i.e.,
projects defined in the configuration browser are considered
the ecosystem. This script contains two modes of execution:
sequential, where projects are processed one by one; and par-
allel, where we leverage the “simple parallel bash” framework®

Shttps://github.com/boris-spas/simpleParallelBash
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Figure 3.4: The structure of the XML schema for the
configuration file represented as a UML diagram.

to process a number of projects in parallel.

Post phase Executes all the post analysis source code from the
configuration file. This is useful if, for example, the gathered
data requires post processing.

3.3.2 Configuration

To satisfy FR.1 we use an XML configuration file. This file allows
the developer to specify how to execute an analysis including any
steps that need to be performed before and after running the analy-
sis on all ecosystem projects. A graphical representation of the XML
schema of the configuration file is given in Figure 3.4.

From the schema we can see that the root element is called “con-
fig” and is defined as a sequence of elements called “target”. Each
target element corresponds to one ecosystem aware tool. It consists
of three elements: “pre” — which contains information on steps to be
executed before running the analysis (e.g., obtaining analysis source
code, setting up a specific collection in the database to store the
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analysis results, etc.); “analysis” — which contains the steps to be exe-
cuted in order to run the analysis on a single project (these steps will
be repeated for every ecosystem project); and finally “post” which
describes any steps that need to be taken after the entire analysis
has been completed (e.g., cleanup of temporary resources, post pro-
cessing the gathered data, etc.). Any of these elements have optional
“sh” and “st” sub elements that respectively wrap shell commands
and Smalltalk code to be executed. A description of an example
configuration file can be found in Subsection 3.5.3.

3.3.3 EMF Analysis Core

EMF Analysis Core® is a Smalltalk package used to provide the
developer a way to interact with various aspects of the framework
from Smalltalk. Its main task is to address FR.2 and FR.3 but it
also provides some useful features inspired by the needs that arose
while developing ecosystem-aware tools using EMF.

The EMF Analysis Core package contains one class:
EMFAnalysisCore. This class provides all the necessary features via
the following class side methods:

baseClasses Returns a set of classes that are part of the base
Smalltalk image i.e., all the classes present in the image before
loading the project to be analyzed.

projectClasses Returns a set of classes that are part of the loaded
project.

projectIndex Returns the index of the loaded project in the config-
uration browser. This enables differentiation between projects.

projectName Returns a String object containing the name of the
loaded project, as displayed in the configuration browser. This
also enables differentiation between projects.

executionID Returns a String object containing a time stamp when
the EMFAnalysisCore class was loaded into the image. This
enables differentiation between different runs of EMF.

Shttp://smalltalkhub.com/#!/~spasojev/EMF
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Figure 3.5: Dependencies between projects in the
Pharo Configuration browser.

3.4 The Ecosystem

In this section we present a short description of the Pharo ecosystem
as defined in the configuration browser. The configuration browser
reads its list of projects from a human maintained meta repository”
containing scripts that automatically load projects and their depen-
dencies. Many of these dependencies are also defined in the same
meta repository, supporting the claim that these projects co-evolve,
and that changes in one project affect others throughout the ecosys-
tem. In Figure 3.5 we can see the dependencies (represented as edges
in the graph) between projects (represented as the nodes) from the
configuration browser. This graph does not show the dependency
to the classes from the base image which all the projects have. It
is clear from the dense network of edges in the graph that these
projects are interdependent.

Thttp://smalltalkhub.com/mc/Pharo/MetaRepoForPharo30/main/
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To discuss the size of the ecosystem, we present Figure 3.6. In
this figure we can see the number of projects in the ecosystem on
the first of each month in the interval between 01.01.2014. and
01.08.2016. We can see that there is linear growth of the number
of projects until mid 2015, after which the number stabilises around
160 projects. This illustrates that this ecosystem evolves not just in
the content of individual projects, but also in its scope, supporting
further the need for providing the ecosystem-aware tools with fresh
ecosystem data. It also illustrates the advantage of using a meta
repository as the source of the ecosystem projects rather than using
a fixed set of projects.

3.5 Implementing Ecosystem-aware
Tools with EMF

In this section we describe the process of implementing a simple
ecosystem aware tool. The tool was chosen to be as simple as possible
while illustrating the features of EMF and the process of ecosystem-
aware tool development.
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{
"className" : "CppTranslatedPrimMethod",
"project" : "CTranslator"

}

Listing 3.1: Example output of the class name clash
prevention tool back end in JSON form.

3.5.1 Class Name Clash Prevention Tool

Pharo Smalltalk does not have a concept of namespace [GR83|. This
means that different projects could define a class with the same
name, which could cause problems if such project needed to co-
exist in the same image. We call this a class name clash. Class name
clash prevention tool® ? is an ecosystem-aware tool that informs
a developer if a newly created class shares a name with another
class in the ecosystem, thus avoiding later class name clashes. This
tool was developed by one developer and took around 5 hours to
develop. This supports the claim that EMF enables fast and easy
development of ecosystem-aware tools.

All ecosystem-aware tools that leverage EMF are developed in 3
steps: developing the back end, registering the back end with EMF
and developing the front end. The following subsections describe
each of the steps in general and in the case of the class name clash
prevention tool.

3.5.2 Back End

The role of the back end part of a ecosystem-aware tool is to gather
relevant data from the ecosystem and store it for later access by a
front end. In the case of the class name clash prevention tool relevant
data are class names from all ecosystem projects associated with the
name of the project that defines it.

Leveraging the projectClasses and projectName feature of
EMFAnalysisCore, creating such an association is trivial. Since the
default database in EMF is MongoDB we store this data as JSON
documents represented in Pharo Smalltalk as Dictionary objects.

8http://smalltalkhub.com/#!/~spasojev/ClassClash
9http://smalltalkhub.com/#!/~spasojev/ClassClashFrontEnd
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ClassClashDataGatherer>>emfAnalysis
| toBeStoredToDbCollection projectName |
projectName := EMFAnalysisCore projectName.
toBeStoredToDbCollection := OrderedCollection new.
EMFAnalysisCore projectClasses
do: [ :pc |
| classToProject |
classToProject := Dictionary new.
classToProject at: ’'className’ put: pc name.
classToProject at: ’'project’ put: projectName.
toBeStoredToDbCollection add: classToProject ].
EMFAnalysisCore
save: toBeStoredToDbCollection
toDB: ’'classClash’
inCollection: ’'classClash’ , EMFAnalysisCore executionID

Listing 3.2: Implementation of the class name clash
prevention tool back end.

An example JSON object is shown in Listing 3.1. All the function-
ality of the class name clash prevention tool back end is wrapped in
the emfAnalysis method of the ClassClashDataGatherer class, the
source code of which is shown in Listing 3.2. As with all EMF back
end analyses, this analysis is written in the context of one project,
but executed on each of the projects in the ecosystem.

On line 3, this method initializes a local variable projectName by
using the EMFAnalysisCore. When this analysis is executed by the
framework on each of the ecosystem projects, this variable will be
initialized to the name of each of the projects.

On line 4, a collection is crated to store the data for batch writes
to the database. Line 5 uses EMFAnalysisCore to obtain all the classes
of the project being analysed, and lines 6 to 11 iterate over each of
the classes creating a Dictionary object associating the class with
the project, and storing it in the collection for later storage to the
database.

Lines 12 to 15 use EMFAnalysisCore to store the gathered data
to a database in a unique collection identified by the executionID
of EMFAnalysisCore
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3.5.3 Config File

As described in Subsection 3.3.2 EMF uses an XML configuration
file to describe the steps needed to perform an analysis on a project.
The configuration file for the class name clash prevention tool is
shown in Listing 3.3. This configuration contains only one target
(lines 2-18) as it is used only for the class name clash prevention
tool. This target has a “pre” step (lines 3-12), specifying the Gofer!°
script that loads the source code of the tool’s back end described
in Subsection 3.5.2 and an “analysis” step (lines 13-17) specifying
how to run the loaded back end code. This is done by invoking
the emfAnalysis method on an instance of ClassClashDataGatherer
(line 15). Since no post processing is needed for this tool, the “post”
step is absent from the configuration.

3.5.4 Front End

Once the EMF cronjob runs, and the data is gathered by the class
name clash prevention tool back end, it is available for serving by

0Gofer is a system for automated loading of source code and dependencies.
A description can be found at the following URL:
http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/
Gofer.pdf
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<config>
<target>
<pre>
<st>
Gofer new
url: 'http://smalltalkhub.com/mc/spasojev/
ClassClash/main/’;
package: ’'ConfigurationOfClassClashBackEnd’;
load.
(Smalltalk at: #ConfigurationOfClassClashBackEnd)
loadDevelopment
</st>
</pre>
<analysis>
<st>
ClassClashDataGatherer new emfAnalysis.
</st>
</analysis>
</target>
</config>

Listing 3.3: EMF configuration file for the class name
clash prevention tool.

the data providing module of EMF. At this point, the front end of
the class name clash prevention tool can function. We implement
the front end as a plugin for Nautilus'! the default system browser
for Pharo. This plugin reacts to a new class being created by send-
ing, via a HTTP POST request, the name of the new class to the
data providing module which returns from the database a list of all
projects that contain a class with that name. This list, if not empty,
is then presented to the developer as a series of pop-up notifications
as shown in Figure 3.7. In this figure we can see the situation right
after a user has created a class called ROView. The dark grey infor-
mation boxes in the bottom left corner of the figure are the pop-up
notifications that the newly created class exists in other projects in
the ecosystem.

lhttp://smalltalkhub.com/#!/~Pharo/Nautilus
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3.6 Conclusion

A large body of work exists about integrating ecosystem data i.e.,
data from other related projects, into the development process. Cur-
rent state of the art in the field relies on custom implementations
for data gathering for each individual tool, we observe that the data
gathering process can be automated and standardized.

We provide a proof of concept implementation for a unified
framework for developing ecosystem-aware tools for Pharo Smalltalk
called the Ecosystem Monitoring Framework or EMF. EMF fully
automates the process of running analyses on the Pharo ecosystem,
storing the resulting data, providing it to tools and keeping it up to
date. Unifying all these steps into one framework enables the devel-
oper to focus on the data the tool requires and ways to make use of
that data rather than on the technical part of loading projects and
gathering the data.

This chapter also presents a very simple tool used to prevent
class name clashes in Pharo Smalltalk projects. This tool illustrates
all the steps needed to develop an ecosystem-aware tool using EMF,
and gives insight into the amount of effort needed to develop one
such tool.
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Ecosystem-Aware Type Inference

4.1 Introduction

Software developers spend more time on maintaining and evolving
existing software than writing new code. Maintenance consumes over
70 percent of the total life-cycle cost of a software product [BB01].
This means that support for reading and understanding code is very
important. Static type information in source code helps developers
understand how the software system works [MHR 12|, but the ex-
pressiveness provided by dynamically typed languages can make de-
velopers more productive [Han10]. Many attempts have been made
at getting the best of both through type inference or optional typing.

Most type inference techniques rely on statically analysing the
source code of the software system in question, and using the gath-
ered data to infer the possible types. A basic approach is to track the
usage of a variable i.e., the messages sent to it, and infer the type
by determining which classes implement the corresponding methods.
This can lead to false positives, i.e., types that match the required
interface but can never actually be reached at run time. More ad-
vanced techniques perform deeper analysis i.e., using data flow or
control flow, but ultimately suffer from the same problem of false
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positives. A developer faced with a provided set of possible types
cannot easily identify the false positives.

This chapter presents an approach to augment existing type in-
ference techniques by supplementing the information available in the
source code of a project with data from other projects from the same
software ecosystem [Lun09]. By using the data from the ecosystem,
it is possible to increase the amount of information used to infer
types and thus help avoid and identify potential false positives. For
all available projects from the ecosystem, we track how often mes-
sages are sent to instances of available types throughout the source
code. With this information, we can sort the potential types of a
variable the developer cares about based on their likelihood of be-
ing the actual type in the context. The likelihood is computed based
on how many times the messages sent to this variable have been ob-
served to be sent to each potential type throughout the ecosystem.

We have implemented a proof-of-concept prototype and used it
to evaluate the approach. We show that, for our implementation,
measuring the frequency of association between a message and a
type throughout the ecosystem source code is helpful in identifying
correct types. The evaluation data shows a substantial increase in
the number of correctly inferred types.

The chapter is organized as follows: Section 4.2 gives a high
level overview of the problem and the proposed approach to solving
it; Section 4.3 presents the related type inference techniques; Sec-
tion 4.4 gives a detailed description of the proposed approach, as well
as the formal model used to describe it; Section 4.5 presents the de-
tails of the implementation of the prototype; Section 4.6 shows the
methods and results of the evaluation of the prototype; and finally
Section 4.7 concludes and discusses future work.

4.2 Overview

To better understand the contributions of this chapter, we take a
look at an existing three-step approach to type inference [PMW09].
We start from this approach because it is simple to understand
and implement, is reasonably fast and is representative of its field.
Other more complex approaches would gather more data about the
system to increase precision, and such complexity is unneeded for
this purpose.
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The approach has three steps:

1. Interface type extraction. This phase reconstructs the type
of a variable of interest by using static analysis to find all
messages sent to it within the context of the given class. The
system is then searched for all classes that implement this set
of messages.

2. Assignment type extraction. This phase reconstructs the type
with respect to the assignments to the variable. This is a
heuristic based analysis of the right side of assignments to
the variable in question.

3. Merger. Merging the results from phases one and two into the
final type results for the variable. Several different ways exist
to do the merge [PMWO09], but we focus on the one that gives
priority to the assignment type, and moves to interface types
if an assignment type does not exist .

This “single-system type inference” (SSTT), is not helpful in cases
where the amount of data gathered by the first two phases is limited.
To understand this limitation consider the example in Listing 4.1.

The example! is written in Pharo Smalltalk. The first part (lines
1-7) declares a new class called MethodBrowser and lists the instance
variables of the class. Special attention for this example is put on the
instance variable toolbarModel. The initialization of this variable is
not shown in the example for simplicity but is done using the factory
design pattern. The second part is the definition of a method named
initializePresenter. This method is the only place toolbarModel
is used and the only usage is sending it the message method:.

Suppose the developer needs to know the type of the
toolbarModel instance variable. She could care about this in or-
der to understand which of the implementations of method: will be
invoked when this code is executed or just use the knowledge of
the type of this variable to better understand the entire system.
In Smalltalk, good practices recommend instance variable names to
match the type of the variable. However, we find no ToolbarModel
class in the system.

1The code snippet is actual code from the Spec system, to be found at
http://smalltalkhub.com/#!/~Pharo/Spec
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ComposableModel subclass: #MethodBrowser
instanceVariableNames: ’'listModel textModel toolbarModel’
category: ’'Spec-Examples-PolyWidgets'’

MethodBrowser>>initializePresenter
listModel whenSelectedItemChanged: [:selection |
selection

ifNil: [
textModel text: '’.
textModel behavior: nil.
toolbarModel method: nil ]

ifNotNil: [:m |
textModel text: m sourceCode.
textModel behavior: m methodClass.
toolbarModel method: m ]].

self acceptBlock: [:t |
self listModel selectedItem inspect ].
self wrapWith: [:item |
item methodClass name, '>>#', item selector ].
Listing 4.1: The type of toolbarModel cannot be
detected by the single-system approach

Applying the previously described approach to this instance vari-
able would produce 21 possible classes. This is due to the fact that
there are no assignments of an explicit type to the variable, only
one method is invoked, and the method in question is defined in all
21 classes. This means that if the developer wishes to understand
which implementation of method: is invoked, she is in an uncom-
fortable position of having 21 possibilities. The actual number of
possible classes is even larger, because we ignore all subclasses of
the classes defining the method in question. Obviously in cases like
this, the information provided to the developer is not helpful. Plu-
quet et al. show that, in their evaluation data, on average less than
40% of instance variables receive enough messages and initializations
to successfully infer one possible type [PMWO09].

An alternative for the developer is to execute the code and ob-
serve the run time value (e.g., using a breakpoint). This is not always
easy to do, as the system might not be easily executable for a num-
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ber of reasons (lack of input to the system, lack of dependencies,
long execution time before reaching the position of interest, etc.).
This is normally countered by observing the execution of unit tests,
but the existence of unit tests is not something we can reliably count
on.

Given a set of possible types provided by the SSTI it would be
helpful to the developer if the set were sorted by how likely each
of the types is to be correct. Since the data we have available is a
set of selectors? that the instance variable receives, we can compare
this set to patterns of message sending in other projects from the
ecosystem. The intuition is that the more often we find that the
same messages are sent to a uniquely identifiable type, the more
likely that type is to be correct.

In our case, after the analysis of other systems in the ecosystem
we find out that the message method: is commonly sent to instances
of 3 classes out of the 21 that implement the method. Those are
MethodToolbar, ZnRequest, and SourceMethodConverter. The actual
type assigned to the instance variable toolbarModel at run time is
MethodToolbar. We argue that type association information from
other projects can be beneficial to recovering types.

The proposed approach (Ecosystem-aware type inference, EATI
for short) automates the process of using ecosystem data for aug-
menting SSTT and it consists of two phases. The first is an analysis
of a large number of systems that results in the data about the
frequency of association of messages and types. The second phase
concerns the developer in need of type inference. To infer a type,
we attempt SSTI and in case the results are ambiguous we query
the data from phase one to receive a collection of possible types
sorted by the number of times the messages were sent to types in
the ecosystem.

4.3 Related Work

EATI addresses type inference for dynamically typed object-oriented
languages to support program comprehension. The scope of this
work is different from classical type inference techniques for stat-
ically typed languages like Scala [OACT06], where type inference

2In Smalltalk jargon, a selector is the name of a message, i.e., + or method:,
used to select the method to respond to the message.
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frees the developer from having to specify types that can be in-
ferred.

Much of modern type system research is based on the work
of Milner who published the description of a polymorphic type-
inference algorithm called “Algorithm W” [Mil78|. It is a fast algo-
rithm, performing type inference in almost linear time with respect
to the size of the source code and was first implemented as part of
the type system of the programming language ML.

A well known type inference algorithm is the Cartesian Product
Algorithm [Age95] (CPA). This algorithm infers concrete types to
support performance of parametric polymorphism. CPA does this by
partitioning the calling contexts of a method based on the types of
the actual arguments passed to the method. It supports dynamically
typed languages, as it is implemented originally for Self, and its
contribution is limited to inferring concrete types from polymorphic
types. CPA is the basis for other type inference engines for other
languages i.e., Starkiller [Sal04], a type inferencer and compiler for
Python.

A fast type inference technique presented by Pluquet [PMWO09]
is used as a basis for the prototype implementation of the type infer-
ence presented in this chapter. This technique is outlined in the mo-
tivating example section. This technique is also used by Milojkovié¢
et al. as a basis for exploring cheap heuristics for type inference
based on information only from the system in question [MN16].

The approaches so far use different kinds and quantities of data
obtained through statical analysis to infer types. None of them ex-
pand to more than one system, so any of them can benefit from
EATI. An implementation of EATI on top of these approaches would
need to be significantly different from the one presented in this chap-
ter, as it would have to manage the different data used.

Other approaches use the execution of a program to gather types.
One such approach is presented by Jong-hoon et al. for the language
Ruby [DGGH11]. This approach uses wrappers for variables that
generate constraints during execution which are later used to infer
types. The inferred types can be used for documentation, and thus
better code comprehension, but all dynamic approaches are lim-
ited by the requirement that the code needs to be runnable, either
through test cases, examples or actual execution. Milojkovi¢ et al.
use class usage frequency from inline caches of previous executions
of unrelated code to improve type inference without the need for
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running the program [MBGN16].

Another field of related work has to do with optional typing. Op-
tional typing attempts to enable developers all the benefits of using
dynamically typed languages, with the option of specifying types
when and where they deem appropriate [ACFT13]. This enables
compile-time type checking for provided types, and also enriches
the source code with static types. Examples of optionally typed
languages are Strongtalk and Gradualtalk — dialects of Smalltalk,
Dart — a language developed by Google, and Typescript — an op-
tionally typed Javascript developed by Microsoft. A type inference
engine for these languages could be used to infer and generate the
optional types. This would free the developer from specifying in-
ferable types, as with Scala. Such engines could also benefit from
ecosystem data.

4.4 Ecosystem-Aware Type Inference

To explain EATI we introduce a simple set-theoretic model in Fig-
ure 4.1 that captures key properties for the entities shown in the
UML diagram in Figure 4.2. For simplicity we ignore temporary
variables and method arguments throughout the chapter. We can
greatly simplify the model and implementation by ignoring them,
and, since the approach works the same for these variables, appli-
cation of the approach to them is trivial.

4.4.1 Core Model

Given all the source code in a software ecosystem, C' is the set of all
classes, F' the set of all instance variables (i.e., fields), M the set of
all methods, and S the set of all “selectors” (i.e., method names).

A given field f is uniquely defined in a class ¢ = def;(f) (Equa-
tion 4.1). Similarly, each method m is defined in a unique class
¢ = def,,(m) (Equation 4.2). Every class ¢ other than Object has a
unique superclass ¢ = sup(c) (Equation 4.3). sup is a partial func-
tion, since sup(Object) = L.

Every method m has a unique method name (i.e., a selector used
to select m) s = sel(m) (Equation 4.4), and every method m sends
a set of message selectors to a given field f, namely sends(m, f)
(Equation 4.4).
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def; : FF — C
def,, - M — C
sup: C = C
sel: M — S
sends: M x F — 25

defy (f) ¢ sup”(def,,(m)) = sends(m, f) =0

Figure 4.1: The core model. F' = fields, C' = classes,
M = methods, S = selectors.

superclass -
! 1.1 ¥
0.7 1.4 ) . o )
Class (- defined in -------=1 Field
A A
1.1, o
defined in
0.7}
0.* :
Method |- send messages to - »<A>
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is selected by

1.1
\2

0.* i
Selector [

Figure 4.2: The core model in UML.

Note that a method m can only access fields defined in the same

class where m is defined, or fields inherited from one of its super-
classes. For all other combinations of m and f, sends(m, f) returns
the empty set (Equation 4.6).

Consider the example class hierarchy Figure 4.3. In the example,
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Object

[—D _Id
DrawEditor +toString

- rect
- tri Shape

+ main

main: + surface

rect surface -
Rectangle Triangle

tri surface - side - side
tri height + isSquare + height |

Figure 4.3: Sample class hierarchy with the
implementation of one method .

instance variables and the method main are defined in the class
DrawEditor. Also, sup(DrawEditor) = sup(Shape) = Object which
is obvious from the hierarchy.

Note that in the example we are implicitly equating fields and
methods with their name, even though multiple fields or methods
could have the same name. This is done for simplicity and will be
done in all further examples in this section.

We can now query the model to compute metrics that will allow
us to rank the results of type inference, as summarized in Figure 4.4.
The interface of a class ¢, ifc(c), is the set? of selectors of all meth-
ods defined in ¢ and its superclasses (Equation 4.7). The selectors
received by a field f, rec(f) is the set of all selectors of messages
sent to f by all methods defined in the same class ¢ = def;(f)
(Equation 4.8)%.

Returning to the example, the interface of the class Rectangle
is:

ifc(Rectangle) = {isSquare, surface, toString}

3Note that we implicitly extend sel, def,,, and other functions in the usual
way to take sets of values as arguments and similarly return sets of values.

4This definition is consistent with classical SSTI [PMWO09]. Later we will
consider messages sent by methods in subclasses as well.
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ifc(c) = sel(def,! (sup*(c))) (4.7

rec(f) = sends(def,, (defy(f)), f) (4.8)

types(f) = {¢ € Clrec(f) < ife(c)} (4.9)

roots(C") = {c € C'|V¥n > 0, sup"(c) ¢ C'} (4.10)

unique(f,c) = {(1) ;"(;ZS(types(f)) ={c} (4.11)

selscore(c, s) = Z unique(f, c) (4.12)
fEF,s€rec(f)

classscore(c, f) = Z selscore(c, s) (4.13)

s€rec(f)

Figure 4.4: Computing class scores over the core
model.

as those are all the methods defined in it and its superclasses. Look-
ing at the implementation of method main we can see that messages
are sent to the instance variables rect and tri. We can express
which messages with

rec(rect) = {surface}

and
rec(tri) = {surface,height}

The set of possible types of a field f, types(f), is the set of classes
whose interface includes all selectors received by f (Equation 4.9).
The roots of the hierarchies of a set of classes C’ is the subset of
those classes without superclasses in C’ (Equation 4.10).

Applying this to our example we get

types(rect) = {Shape,Rectangle, Triangle}

and
types(tri) = {Triangle}

A field f is inferred to be of a unique type c if the set of inferred
types for f has a unique root ¢. The function unique(f,c) returns
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a count of 1 for all such fields (Equation 4.11). This means that
unique( f, c) will, in our example, equal 1 in only two cases.

unique(rect, Shape) = 1

unique(tri, Triangle) = 1

Now we compute the selector score of a class ¢ with respect
to a selector s, selscore(c,s), as the number of fields f that are
determined to be of the unique type ¢, where s is sent to f (Equa-
tion 4.12). A few selector score values for combinations of classes
and selectors from our example are

selscore(Shape, surface) = 1
selscore(Rectangle, surface) =0

selscore(Triangle, height) =1

Finally, we compute the class score of a given class ¢ with respect
to a field f, classscore(c, f), as the sum of all its selector scores for
selectors of messages sent to f (Equation 4.13). The usage of class
score is beyond the scope of our small example, but will be explained
further in the chapter.

4.4.2 Storing Data from the Ecosystem

As with any ecosystem-aware tool, the first step to the proposed ap-
proach is to gather type information from projects in the ecosystem
and information on message sending to instances of those types.

An entry in the stored data consists of a class name ¢ € C,
selectors {s1...sn} € S sent to instances of ¢, and the number of
times each s; € {s;...s,} has been sent to instances ¢. This number
is called the selector score of a class (selscore(c, s)|s € S,c € C),
as messages with the same selector can be sent to instances of dif-
ferent classes, yielding different selector scores. A sample database
is presented in Table 4.1. We aim to show that this information is
sufficient for improving the type inference.

The data needed for EATI can be gathered through dynamic or
static analysis. In this context, dynamic analysis means gathering
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type information from a running system [DGGH11]. This provides
actual run-time types, but requires the system to be runnable and
produces false negatives — a variable may not actually be bound
to a type during the observed execution of the system, but might
during others. Static analysis means running a type inference engine
on the source code. As we saw in the example from the beginning of
Section 4.2, static analysis can often produce false positives — types
deemed “possible” that never occur at run time. Since the ecosystem
data is large, we can ignore the false positives from running static
analysis and avoid false negatives by not doing dynamic analysis.

4.4.3 Using the Stored Data

In order to infer types, we apply SSTI, and in case there is more than
one possible type, the data gathered from the ecosystem is queried
for more information in order to sort the possible types and present
the developer with the more likely candidates. The repository query
for an instance variable f € F’ should contain rec(f), where F’ is
the set of all instance variables in the system being typed by the
user. The result of the query is a set of possible classes {c;...c,} C C,
determined by which classes in the repository have records of their
instances receiving selectors from rec(f). The result of the query
should be sorted by the class score.

For example, given the repository table from Table 4.1, querying
the repository with a set of selectors {substring:, startsWith:}
would return just the class ByteString with a score of 23. ByteString
is the only result because it is the only class found in the repository
whose instances receive the given selectors. The score is due to the
selector substring: having a score of 9 and the selector startsWith:
having a score of 14, yielding 23.

If the query contained only the selector +, the result would have
been a set of classes containing the class Integer with a score of
27 and the class ByteString with a score of 10. Instances of both
classes have been observed to receive this selector, but instances of
class Integer receive it more often.

4.5 Implementation

We have implemented a prototype of EATI using the Ecosys-
tem Monitoring Framework for Pharo Smalltalk. As with other
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Class Name Selector Score

ByteString  substring: 9
toUpperCase 6
+ 10
startsWith: 14
endsWith: 4
Integer + 27
— 63
toString 40
bitAnd: 2

Table 4.1: A sample repository containing
information on the frequency of sending certain
selectors to classes ByteString and Integer

ecosystem-aware tools, the implementation consists of three distinct
subsystems: a data gatherer analysis that mines usage data from the
ecosystem, a GUI available to the developer, and the persistent store
through which the other two subsystems communicate.

4.5.1 Data Gathering

The data gatherer analysis is tasked with populating a database
with information on type-selector relationships from the ecosystem.
It attempts to infer the type of all instance variables in the ecosys-
tem and, if successful, stores the relation between the inferred type
and the selectors sent to the variable. This is the back end of the
ecosystem-aware tool.

The type inference engine used is an improved implementation of
the SSTT described in the example from the beginning of Section 4.2
that takes into account field usage data from the subclasses. This
provides more information for instance variables that are used pre-
dominantly in the subclasses of the class that declares it and requires
a small modification to our model redefining rec as

rec(f) = sends(M, f)

for all f € F. Note that this definition will give empty results for all
m where f is not accessible, so only methods of the class ¢ = def;(f)
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and its subclasses actually contribute selectors to the result.

The prototype iteratively pre-computes selscore(c,s) for all
classes and selectors, starting with the class Object, the root of
the class hierarchy. Performing a depth-first search of the class hi-
erarchy ensures that all the data from the subclasses of each class
are gathered. Once the entire subtree for a particular class has been
traversed, the search for adequate types of the instance variables of
the class begins, based on the data collected from the subtree.

4.5.2 The Store

The pre-computed selscore values are represented as a set of triplets:
(c, s, selscore(c, s))|ce C,s € S

and stored as a key-value JSON document. We group all the triplets
with the same ¢, and use ¢ as the key for that entry in the database.
A textual representation of a sample JSON document follows.

1) {

2 "_id" : ObjectId("51b0df6b44b1392c8e7eebec"),
3 "className" : "Mutex",

4 "selectors"

s |

6 "critical:" : 2,

7 "ifNIl:" ;1

s| }

o }

By the end of the analysis of all the projects the database con-
tains the global score for every available class-selector combination
in EMF’s central database.

4.5.3 The Client

The client is the front end of the entire system, and is the bridge
between the user and the system. We implemented a very simple
GUI that offers the developer the choice which class should be pro-
cessed, and whether or not to include its subclasses in the analysis.
Processing the class consists of running SSTI on its instance vari-
ables, consulting the database when necessary and presenting the
results to the developer. There are many ways to use the provided
data both by tools and by the developer, but the integration of type
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inference results into the development environment is beyond the
scope of this thesis.

4.6 Evaluation

To evaluate the prototype implementation we populate the store
with data from 74 open source projects from the Pharo Smalltalk
ecosystem as defined in the Pharo configuration browser.

A total of 8374 classes were analyzed. This produced 746 entries
in the store. This means that running type inference on all the in-
stance variables of the classes produced 746 classes {c;...cra6} C C
such that

3f € Flunique(f,c) = 1,rec(f) # 0

After populating the store with data gathered from the projects,
we take 97 instance variables from 5 projects. These projects are not
a part of the set used to populate the store and were chosen because
they have unit tests available. We were limited to these 5 projects
because of the relatively small size of the Pharo ecosystem and there
are few projects with high unit test coverage.

The run-time types of the instance variables are recovered by
instrumenting the source code of the projects to log types of objects
assigned to instance variables and running the unit tests. These
types are held to be the actual types, implications of which are
described in the threats to validity section.

Types of these instance variables are then inferred using SSTI
and EATI.

It should be noted that the projects used for testing contain a
total of 402 instance variables, but most of them were ignored for
one of two reasons:

1. A total of 107 instance variables received no messages thus
the instance variable is not a valid candidate for this type
inference technique;

2. Running the unit tests did not provide a run-time type for

198 instance variables. This is most likely due to poor test
coverage.
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Throughout the evaluation we try to answer the following ques-
tions: How well does SSTI work, what is the improvement with
EATI, and when and why does EATI fail? The evaluation discus-
sion is divided into 3 parts, one focusing on discussing successfully
inferred types, one focusing on the false positives and the last com-
menting on the remaining situations in which the single-system ap-
proach failed and no data was provided by the ecosystem-aware
approach. A summary of the evaluation results is given in Table
4.2.

Total Successful False positives No data
Single Eco- Selectors True
system aware only from failures
Y Object
97 21 20 23 25 8

Table 4.2: Summary of the evaluation results

4.6.1 Successful Attempts

EATI provides a sorted list of the most likely types of an instance
variable. In the best case scenario the correct type should be at the
top of the list. We declare two scenarios for a successful attempt:

1. if the SSTT infers the correct type (as provided by running the
unit tests)

2. if the SSTI provides several types and the correct type is at
the top of the sorted list provided by EATI.

The results show 21 instance variable types that have been suc-
cessfully inferred using SSTI and an additional 20 using EATI. This
means that using the EATT almost doubled the number of success-
fully inferred types.

An analysis of the inferred types shows that EATI works reliably
for types from the standard library, as 19 of the 20 instance variables
have run-time types from the standard library. These include Array,
Smalllnteger, ByteString and others. We argue the approach works
well with the standard library because it is so widely used, and
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the data on type-selector relations is abundant. We expect that the
success would generalize to any types sufficiently popular in the
ecosystem.

4.6.2 False Positives

For an inference to be considered a false positive the types provided
by the EATTI should be different than the actual run-time type of
the instance variable (as provided by running the unit tests). This
situation can be more damaging to the comprehension of the source
code than not receiving any result at all. This is because it may lead
the developer to make wrong decisions based on the wrong type of
a variable.

The results show 48 false positives. The number seems unaccept-
ably high, but a second look at the data reveals that almost half of
the false positives were caused by the lack of selectors sent to those
instance variables. A total of 23 instance variables that caused a
false positive received only selectors declared in the Object class,
such as the ifNil: selector used to check if the object in question
is a nil object®. Selectors declared in the Object class, can be sent
to any Smalltalk object. Thus, those selectors carry no useful type
information. We argue that those false positives can be ignored,
as they would very easily be identified by checking if all the given
selectors are defined in Object, which can be easily automated.

Out of the remaining 25 false positives, 6 fail to give the correct
type at the top of the list, but the correct type is present in the top
three. We call these “near misses”.

The remaining 19 false positives each fall into one of two cate-
gories:

1. Run-time types not present in the ecosystem — These types
are specific to the project in question, and as such are not
present in the store i.e., classes only used within this project.
Since EATI cannot access source code that uses these classes,
they can only be identified through SSTT.

2. Domain specific selectors and types — this false positive arises
when selectors used widely for one purpose are used in a dif-
ferent or domain specific manner. For example, the comma

5nil is an object in Smalltalk. It is the sole instance of the
UndefinedObject class.
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selector (“”) when sent to an object of type ByteString is
used to concatenate strings. On the other hand, in the Petit-
Parser [KLR*13| framework this selector is used to create a
sequence of parser combinators. Since concatenation of strings
is far more frequent than parser combinator sequences, the
data in the store suggests that the type of a variable receiving
only the selector , is a ByteString. At this point, it is left
to the developer to use her knowledge of the specifics of the
project in question to detect this kind of false positive. In fu-
ture work we would like to explore whether additional context
information can be exploited to determine the domain of the
project, and adjust the EATT accordingly.

4.6.3 No Data from the EATI

A total of 8 instance variables were completely unidentifiable. The
selectors sent to these variables are declared in more than one class
in the system, thus SSTI results in many false positives. The com-
bination of these selectors has never been linked to a type in the
store, i.e., :

Be € Clunique(f,c) =1

This does not mean that all individual selectors from rec(f) have
never been seen in the ecosystem. It means that during the data
gathering phase no uniquely inferred type has received this combi-
nation of selectors.

These situations leave the developer with no insight into the type
of a variable, but are also not damaging as they do not mislead like
the false positives do.

4.6.4 Threats to Validity

Even though EATI is applicable to any dynamically typed language
we cannot guarantee the evaluation will generalize to other ecosys-
tems. Although the approach should benefit type inference in any
ecosystem, we cannot state in what way without more insight.
Another threat is the fact that unit tests are used to determine
the run-time types for instance variables. Unit tests do not provide a
complete picture of the running system, and their execution provides
a limited set of possible types for instance variables. With that in
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mind, the effort to precision ratio for using unit tests is high, and the
alternatives of symbolic execution or manually running the systems
are significantly more difficult, and are also prone to false negatives.
It is an open question to determine whether a given set of unit tests
offers a representative picture of the actual types that would be
bound during typical (non-test) runs.

It is possible that the selection of SSTI we made could have
affected the results. Even though the SSTT we used is representative
it is hard to say what effect using other techniques to enable EATI
would have on the results. We chose this SSTT for its simplicity and
speed, and as such it served the needs of this evaluation. Since EATI
is meant as a supplement for SSTI, changing the SSTT engine could
increase the SSTI success rate and make EATI seem less potent.
On the other hand, if another SSTI were used in the data gathering
phase of EATI, the results might normalize. In future work we plan
to explore the impact of EATT on other SSTI approaches.

Throughout the chapter we ignore how the fact that different ver-
sions of APIs coexisting in the ecosystem could affect the results.
The magnitude and implications of this escape the scope of the
thesis, but such problems could be addressed by treating different
versions of classes in the ecosystem as different classes. This would
result in diluting the amount of gathered data per class, impact-
ing results for versioned classes. An alternative approach could be
keeping explicit track of the differences between versions and anno-
tating the differences, while keeping the common parts as standard
methods of the class.

Finally, using different type inference engines in the data gath-
ering phase and on the client side could yield very different results.

4.7 Conclusion and Future Work

This chapter presents a novel approach to type inference that sup-
plements the information available in the source code of a project
with data from other projects written in the same language. The
approach requires a large set of projects from the same ecosystem
to be analyzed, statically or dynamically and indexes the times se-
lectors are associated with different types. After a gathering phase,
we store the findings, and a client that infers more than one possible
type for a variable can consult the data to sort the candidates and
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identify the most likely ones.

The prototype implementation, written for the Pharo Smalltalk
ecosystem, enables an analysis of the pros and cons of the approach.
The approach has shown to be particularly useful in inferring stan-
dard types (Smalllnteger, Boolean, ByteString, etc.), and the col-
lection types (Set, Dictionary, etc.). We conclude that this is due
to the massive usage of these types throughout the ecosystem, and
hypothesize that the approach applies to any sufficiently popular
type.

In the situations where the approach fails, three patterns can be
identified.

Firstly, the situations where no relevant selectors are sent to the
instance variable. In these cases the approach will offer either no
solution or an unhelpful one (i.e., Object class). We conclude that
these cases are easily identifiable by presenting to the developer not
just the type recommendations but also the set of selectors sent to
the instance variables in question. If the selectors are too few or too
generic (i.e., the ones defined in the Object class) the developer or
a tool will be able to conclude that the recommendations are based
on insufficient data.

Secondly, the approach does not work on types that are specific
to the project in question. For all the types used only in the project,
the ecosystem data is useless as it is completely oblivious to the
existence of these types. If these types cannot be inferred by the data
available in the project that defines them, they receive no benefit
from ecosystem data either. Such cases can be easily recognized.

Finally, in situations where selectors are commonly used for op-
erations on one type, but less commonly for other operations on
different types, the approach will favor the more frequent one in
all situations. We conclude that these cases are not faulty, as the
EATI generates recommendations solely based on the highest count
of messages sent to types. Once again, it is up to the developer to
be aware of the domain of the project and the issues that may arise
from it. As future work, we plan to explore how knowledge of the
project domain can be used to automatically adjust the rankings.

Throughout the analysis of the approach described in this chap-
ter, several opportunities for improvement have arisen. With more
engineering effort it would be possible to solve some of the short-
comings, i.e., allowing the developer to specify the domain or by
attempting to infer the domain automatically.
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Breaking Alphabetical Ordering

5.1 Introduction

Alphabetical organization of items can be found in both paper-based
telephone books and API documentation systems. While its merits
are incontestable in the former, we argue that it is superfluous in
the latter and we propose that it be replaced with alternatives that
are informed by actual developer needs.

As a testimony to the success of code reuse, an average project
will have several dependencies to source code written by third par-
ties [LPS11]. However, reuse also comes with challenges, one of the
main ones being learning a new API [Sca06]. Since browsing the
source code of upstream dependencies is often not feasible, API
documentation is generated automatically from the source code to
present synthetic details of entities and their behavior.

Mainstream documentation browsers and code browsers present
the methods of an API in alphabetical order. We assume that the
main reason for the existence of such an ordering is the fact that
it is easy to implement rather than that it is easy to use. Indeed,
there are two use cases in which a developer needs to refer to an
API documentation page:
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e When looking up details for a known method.

e When finding the name for a given functionality that he knows
should exist.

In neither case does alphabetical ordering help. In the first case,
search is faster than scrolling and visually hunting the right artefact.
In the second case, alphabetical ordering is as good as any arbitrary
ordering since it does not in any way increase the likelihood of the
desired functionality being found.

We aim to improve the way API documentation is presented to a
developer by obtaining the frequency of use of all the API methods,
and listing the most commonly used ones first, in the case where
such usage information can be obtained.

To motivate our approach we mine the frequency of use of
API methods from the source code of a large number of projects.
Through this analysis we obtain information on all call sites in the
source code — which method is invoked! on an instance of which
class. This data encapsulates the frequency of use of each encoun-
tered method, as the number of invocations directly indicates the
popularity of the method. In Section 5.2 we present more details.

By obtaining the data this way we ignore where the method is
declared, and focus on where it is used. This means that inherited
methods are treated the same as declared methods.

We conduct an analysis of the data gathered from the corpora
in order to conclude if presenting a small number of commonly used
methods first would be beneficial. The aim of this analysis is to
answer two questions:

1. How are invocations of methods of a class distributed?

2. How well does alphabetical sorting reflect the frequency-of-use
data?

We find that typically 60% of the invocations of methods of a
given class are to just 10% of its methods. This shows that a small set
of methods is typically very popular compared to the others, result-
ing in a strongly skewed distribution of method popularity. This is in
line with similar studies of software metric distributions [VLBNO09].
Details on this analysis and its results are given in Section 5.3.

1We use the term “method invocation” to refer to a call site in the source
code, not a run-time invocation
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Our data show that alphabetical sorting of methods is in no way
better than sorting methods randomly, in the context of frequency
of use. We calculated the average distance between the index of a
method when sorted according to frequency of use and the index
when sorted alphabetically. We also made the calculation with the
index of a method in a randomly sorted set, and the results differ
insignificantly. Details on this analysis and its results is given in
Subsection 5.3.2.

Assuming that frequently used methods are frequently searched
for, we propose that documentation browsers should augment docu-
mentation with information on which methods are more frequently
used than others. In Section 5.4 we describe our proposed solution,
as well as give an overview of a proof-of-concept implementation
and its small initial evaluation. In Section 5.7 we conclude.

5.2 Experimental Setup

To obtain the frequency of use of API methods we analyzed the
source code of a large corpus of software systems. We ran our ecosys-
tem analysis on the QualitasCorpus [TADT 10| version 20120401r,
which contains 112 systems written in Java?. We use QualitasCor-
pus as a snapshot of a software ecosystem because all the projects
in the QualitasCorpus share dependencies towards a set of libraries,
and some depend on other projects from the QualitasCorpus.

To run the analysis we used Pangea3, a tool for running lan-
guage independent analyses on corpora of object-oriented software
projects.

The result of our analysis is a set of triplets

(c;m,n) (5.1)

stored in a database. A triplet signifies the following: in all an-
alyzed projects, we found n call sites where the method m was
invoked on an instance of class c¢. Note that, since we are only doing
static analysis of the projects, ¢ is the declared type of the variable
rather then the actual run-time type which could be different (i.e.,
a sublclass of ¢) due to polymorphism.

20ur analysis infrastructure could not handle one of the systems in the corpus
Shttp://scg.unibe.ch/research/pangea — All URLs verified in June 2014.
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The triplets can be grouped by a given class ¢, which means that
the number n, associated with method m summarizes the frequency
of use of that method in the context of class c¢. The total number of
classes found is 101844.

5.3 Analysis

We introduce a simple model of the conducted ecosystem analysis
in Figure 5.1.

Given all the source code in a software ecosystem, C' is the set
of all used classes, M the set of all methods, and I the set of all
call sites in the source code. Each method is defined in one class.
This is described by Equation 5.2. Note that M is the set of all
methods actually invoked throughout the ecosystem — classes po-
tentially define other methods that are not used. Equation 5.3 and
Equation 5.4 state that on every call site only one method can be
invoked on an instance of one class. Equation 5.5 is an inverse of
Equation 5.2 returning all methods of a given class and Equation 5.6
and Equation 5.7 return a set of call sites for a given class or method.

def: M — C (

cse: I = C (

cSm L — M (

methods(c) = def *(c) (

sites(c) = {i € I|es.(i) = ¢} (

sites(m) = {i € I|csy, (i) = m} (

Figure 5.1: The core model. C' = classes, M =

methods, I = call sites. The methods function returns

a set of methods defined in a class, and sites
functions return call sites related with the argument.

Since we are interested in observing API classes, we define C’
in Figure 5.2. This is a subset of all the classes that have more
than 1000 call sites and more than 10 methods invoked on their
instances. The “1000 call sites” criterion is an arbitrary cutoff point
that filters out all the classes that are not popular enough to be
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c'cc (5.8)
Ve € O, |sites(c)| > 1000, |methods(c)| > 10 (5.9)

Figure 5.2: Definition of C’ — the subset of classes
with more than 10 methods used and the highest
number of method invocations.

considered APIT classes, and the “10 methods invoked” filter removes
classes with too few methods invoked, as they are not representative
for creating the distribution. The number of classes in C’ is 342 and
manual inspection shows that they are API classes — classes used
in several different projects.

5.3.1 Method Call Distribution

In this subsection we aim to answer the question: What percentage
of all method invocations of a class constitutes the most popular
10% of methods? Note that we are only looking at invoked methods
of a class, so our results are optimistic, meaning that the resulting
percentage can only be higher if the class declares additional, unused
methods.

The motivation for this framing of the question comes from a
manual inspection of usage data for several popular API classes. We
noticed as a recurring pattern that only a small number of methods
are amongst those most frequently invoked. An example of the dis-
tribution for the java.lang.Thread class is shown in Figure 5.3. All
of the classes we analysed manually exhibit similar distributions.

For all classes in C’ we calculate the invocation inequality grade
of the class. The invocation inequality grade is defined in Equa-
tion 5.10 where top TenPercent of a class is the number invocations
of the most popular ten percent of methods. It is essentially the
ratio of the number of times the most popular top ten percent of
methods were invoked and the total number of call sites, expressed
as a percentage.

Figure 5.5 shows the box plot of the invocation inequality grade
for all classes in C’. The median is 59.64% (59.04% average). The
first and third quartile are 46.54% and 70.96% respectively. From
this distribution we can conclude that classes in C’ tend to have a
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Figure 5.3: Call site distribution per method of class
java.lang. Thread. The horizontal axis shows method
names and the vertical axis shows the number of
times the method was invoked.

. top TenPercent(c, 1)
ii_grade(c) = sites(c)] (%] (5.10)

Figure 5.4: Definition of the invocation inequality
grade of a class c¢. The grade represents the ratio of
the number invocations of the most popular ten
percent of methods and the total number of call sites,
expressed as a percentage

small number of methods invoked frequently.

5.3.2 On Alphabetic Sorting

We argue that sorting methods by frequency of use is a better way to
highlight the more important methods. If we assume this to be true,
the question is how different is alphabetical sorting when compared
to “frequency of use” sorting?

To answer this question we ran another analysis on our data. We
analyzed the C’ set of classes described earlier.
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Figure 5.5: Box plot of the invocation inequality
grade for the classes in C”.

We extend our model with a few new concepts to support this
analysis. For every method m we define f,,, a,, and 7, to be the
location (index) of method m when the list of all methods of the
defining class is sorted respectively by frequency of use, alphabeti-
cally and randomly*.

For all methods, we calculate Spearman’s rank correlation coeffi-
cient (Spearman’s coefficient) [MWO03] between f,,, and a,, and also
fm and 7, for all methods of each class in C’. Of course, randomly
sorting something by its very nature will give differing results for
multiple calculations, so we calculated Spearman’s coefficient be-
tween f,, and r,, a total of 10 times.

Spearman’s coefficient computes agreement between two rank-
ings: two rankings can be opposite (value -1), unrelated (value 0),
or perfectly matched (value 1).

The average Spearman’s coefficient between f,, and a,, is -
0.057414819 (-0.042984891 median) and between f,, and r,, across
all classes and all calculations is 0.000521332 (0.006377102 median)

These numbers suggest that, with respect to frequency of use,
alphabetical sorting of methods is slightly worse than sorting the
methods randomly. Both values are close to zero, meaning that both
alphabetical and random sorting are unrelated to frequency of use.
Again, we stress that this analysis does not include all the methods
of the analyzed classes but just those used throughout the analyzed

4Pseudo-randomly as determined by the /dev/random implementation in
Darwin.
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projects. Including all the methods would yield results that support
our claims even more strongly.

5.4 An Improved Way to Organize Doc-
umentation

The previous analysis leads to two conclusions:

1. In a majority of API classes, a small number of methods is
substantially more frequently used than the rest.

2. Alphabetical ordering is as good as random ordering with re-
spect to the frequency of use of the API of a class

Based on these conclusions, we argue that current documenta-
tion browsers can be improved by displaying the subject artifacts
sorted according to frequency of use. As a further improvement,
the documentation for a class should extend the list of presented
methods to include all the commonly invoked methods, even when
inherited from superclasses.

To increase the chances that such a change will be adopted by de-
velopers, current documentation and code browsing systems should
be augmented rather than replaced. Augmenting the way methods
are presented rather than replacing the existing alphabetical sorting
is preferable as it does not require developers to completely abandon
their current knowledge about the documentation.

Such an augmentation for any given set of API classes requires an
analysis of the ecosystem to which these classes belong. This analysis
needs to be very much like the analysis described in Section 5.2, as
it needs to yield exactly the same data for all interesting classes.
This data needs to quantify the importance of each method in the
context of its class, by counting the number of invocations.

5.5 EMF Based Implementation

The client-server architecture of EMF enables different implementa-
tions of data presentation. This means that the need for presenting
the data in a way that is appealing to the developer can be achieved
by implementing a different view. We aim for the data presentation
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Figure 5.6: A sample presentation of the frequently
used methods in Nautilus. The plugin provides the
strip of buttons above the method source code. Each
button coresponds to a frequently used method.

to be seamlessly integrated with the developers’ existing method
search process.

In order to provide the developer with the most commonly used
methods of the class we first have to determine what those methods
are. This is the exact same data that is gathered by the ecosystem-
aware type inference back end described in Subsection 4.5.1. Recall
that the EATI back end stores for each class-selector combination a
selector score i.e., the number of times the selector was sent to an
instance of the class. This gives us the option of ranking the selectors
of a class by the selector score and getting a list of frequently used
methods of that class. This means that we can re-use the EATT back
end implementation and just provide a different front end for the
same data.

5.5.1 The Nautilus Plugin

Smalltalk libraries include the source code so searching for methods
is done in the source code itself. The default tool for browsing the
source code in Pharo Smalltalk is Nautilus — an advanced imple-
mentation of the original Smalltalk system browser [Tes81].
Nautilus provides a framework for developing plugins. As a built
in feature of this framework plugins can register to be notified of cer-
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tain events by Nautilus. One of these events is triggered when the
user selects a class, and information about that class is presented.
Our plugin, triggered by this event, consults the data provider mod-
ule and presents the frequently used methods.

Our initial solution for the way the methods are presented within
Nautilus is shown in Figure 5.6. Nautilus is organized in 5 panes, 4
on top half, and one on the bottom. The 4 top panes contain, from
left to right, a lists of all packages in the system, a list of classes in
a selected package, a list of method protocols® in the selected class,
and finally a list of methods in the selected protocol. The bottom
pane is context sensitive and shows mainly the source code for a
selected class or method.

The thin line of buttons between the top and bottom panes is
provided by our plugin. Every button corresponds to one frequently
used method, and clicking the button opens a new Nautilus window
with the desired method selected, and the source code shown. The
methods are sorted by frequency from left to right, so that the most
popular ones could be read first. The “View all” button opens a
separate window with all the frequently used methods shown in a
list, similar to the default list of methods in Nautilus.

The general work flow of the plugins is as follows:

1. Detect which class is being viewed by the developer.

2. Consult the data provider module on which are the frequently
used methods of that class.

3. Provide that list in a non-intrusive way.

We do not claim there is a correct way to present the data, nor
do we claim any approach is superior to others. The question of
optimal data presentation is out of the scope of this thesis. The
implementations presented in this chapter are only used as a proof
of concept.

5.6 Observations

To better understand how our approach impacts developers we ob-
served several undergraduate and graduate students using the aug-
mented documentation in their everyday scenarios (course work and

5Protocols are convenient groupings of related methods.
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research). Several situations in which our approach is directly help-
ful have been identified in the initial evaluation. To illustrate, we
present two cases.

One is the case where a popular method is, due to the alpha-
betical sorting of methods, located near the end of documentation
prolonging the method search process. An example of this is the
select: method of the OrderedCollection class. It is, according to
our analysis, the sixth most commonly used method of the class, yet
in documentation it is placed on the 54th place out of 62 methods.

The second case is when a popular method of a class is declared
higher in the class hierarchy. This leads to the developer wasting
time looking through the documentation of a class that does not
declare the required method. An example of that is the method for
concatenation® of ByteStrings in Pharo Smalltalk. This is, according
to our analysis, the most commonly invoked method of the class
ByteString, yet it is declared in the SequenceableCollection class,
which is 4 levels higher in the class hierarchy.

5.7 Conclusion

In this chapter we present 2 studies performed on data extracted
from the usage of API classes used in the QualitasCorpus ecosystem
snapshot. The results of these studies indicate two things

1. In a majority of API classes, a small number of methods are
substantially more frequently used than the rest.

2. Alphabetical sorting gives unfounded precedence (in the con-
text of searching for methods) to some methods, based on the
name of the method rather than its importance or usefulness.

With these two conclusions in mind, we propose an augmenta-
tion of the current documentation browsers to also present a small
number of the most frequently used methods. We also implemented
a proof of concept implementation for the default system browser
in Pharo.

We observed developers using the augmented documentation and
found use cases in which our approach is beneficial to the developer.

6The selector for this method is the comma operator i.e. "Hello ' ,

"World!’. This is a legal Smalltalk method name.
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This shows that the approach has potential, but a larger study of
developer usage is needed to confirm and quantify the impact of the
approach.
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Ecosystem-Aware Type Guessing

6.1 Introduction

Programming languages are usually divided into two groups based
on their type system: statically typed languages and dynamically
typed languages. Dynamically typed languages are usually consid-
ered to be more flexible and more productive [Han10], but lack the
explicit type declarations that typical statically typed languages
provide. These explicit type annotations are helpful for program
comprehension [MHR*12], but can also be used by developer tools
(e.g., code completion) to improve the developer experience and
productivity.

To partially compensate for the lack of explicit type annotations
many Smalltalk developers [GR83] follow a convention of naming
method arguments in a way that hints at the expected type of the
method argument [Bec97]. This means that it is recommended to
name method arguments by prefixing the expected type with the
indefinite article “a” or “an”. We call this convention “type hints”.
Listing 6.1 presents the implementation of the indexOf: method in
the String class in Pharo Smalltalk [BDN09]. The only argument
of this method is named aCharacter clearly hinting that the method
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1
2
3
4
5
6

String>>index0f: aCharacter
aCharacter isCharacter ifFalse: [~ 0].
~ self class
index0fAscii: aCharacter asciiValue
inString: self
startingAt: 1.
Listing 6.1: The implementation of the indexOf:
method in the String class in Pharo Smalltalk. Note
that the argument of the method is named aCharacter
hinting that the expected type is Character.

expects to be called with an object of type Character as the param-
eter.

This convention obviously helps to provide type information
about method arguments in a dynamically typed language, but, as
any convention not strictly enforced, is only as good as the discipline
of developers to follow it.

In this chapter we present a case study of the extent of usage
of this convention. Using EMF, we developed a reporting tool that
gathered all method arguments from 114 Pharo Smalltalk projects
and applied Pharo’s built-in system for extracting type information
from argument names. We found that this system was able to extract
type information from 36.21% of argument names.

Afterwards, guided by the report provided by our tool, we ana-
lyzed the argument names that did not yield any type information
and, based on the data we observed, developed a few simple heuris-
tics that, when applied, can increase the success rate to 50.69%.

We also note a pattern of expressing so called “Duck-Typed”
method arguments i.e., arguments that are expected to be bound to
parameters of multiple different types. Almost 1.5% of all method
arguments are named in this manner, so any tool attempting to
extract type information from method argument names should be
aware of this pattern.

To explore whether type hints actually reflect run-time types of
arguments we conducted a small study by collecting run-time type
information for arguments of two projects and comparing them to
their type hints. We find that, on average 76% of type hints reflect
run-time types. We discuss the misleading arguments, most of which
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would be understood by a developer with domain knowledge, and
classify most of them into several patterns.

This chapter is organized as follows: Section 6.2 describes the
process of gathering the argument names and Pharo’s built-in sys-
tem for extracting type information from argument names; Sec-
tion 6.3 discusses the duck-typed method arguments and explains
that they are treated as a special case; Section 6.4 discusses the
proposed heuristics to improve the success rate; Section 6.5 gives a
final overview of the data and conclusions in the previous sections;
The study of the correlation between type hints are run-time types
is shown in Section 6.6; Section 6.7 discusses future work and finally
Section 6.8 concludes.

6.2 Data Acquisition

To evaluate the scope of usage of type hints we first gather a large set
of method arguments from open source Pharo Smalltalk projects.
We do this by developing a ecosystem-aware tool using EMF.
This tool consists of only the back end which extracts to the central
database argument names from all methods of all classes in the
ecosystem. After that, a post processing step is performed which
generates a report as a comma separated file containing a sorted list
of the most common argument names in the ecosystem as well as the
number of occurrences and list of projects in which the argument
name occurs. This report can be used to guide decision making,
while the raw data is available in the database for further analyses.
From the 114 projects provided by EMF we extracted a total of
146,297 arguments. We call this set of all arguments Arg. To proceed
further in our analysis we first need to understand how the process of
extracting type information from argument names in Pharo works.

6.2.1 The Type Guesser Built into Pharo

The default tool used for extracting type information from argu-
ment names in Pharo is part of the code completion tool. The
code completion tool is called “NEC” and is based on the eCom-
pletion! package developed by Ruben Baker. The process of ex-
tracting type information from argument names is referred to as

Lhttp://uncomplex.net/ecompletion/
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“Type Guessing” and is encapsulated in the class side method
getClassFromTypeSuggestingName: of class NECVarTypeGuesser2.

The implementation of this method is quite simple and is pre-
sented in graphical notation in Figure 6.1. This method first removes
the leading character of the input argument, and attempts to find
and return a class with that name in the system. Failing that, the
method removes all characters before the first capital letter of the
input arguments, and repeats the attempt. Failing both times, the
methods returns nil®.

The edge labels represent the data flow for two example input
strings (argument names) i.e., aCharacter and anInteger.

6.2.2 Initial Results

Using the type guesser in Pharo we divided the Arg set into two
subsets: Succ (Successfully guessed) - those from which a type
was successfully extracted; and Fail (Guess failed) - those that did
not yield any type. The definition of these sets is given in Fig-
ure 6.2. The function guessType is an abstraction of the method
getClassFromTypeSuggestingName, and returns a set of possible
types.

The results of applying NECVarTypeGuesser to our data set are
shown in Table 6.1. We can see that NECVarTypeGuesser guessed the
types of fewer than 37% of all arguments. These arguments contain
clear type hints and thus are of no further interest to us for further
analysis. We continue only on the 63.79% of method arguments that
failed to yield a type (the Fuail set), in an attempt to understand why
this is and to improve the success rate.

6.3 Duck-Typed Method Arguments

After starting the manual inspection of the method arguments for
which NECVarTypeGuesser failed to guess a type, we noticed that
a substantial number of argument names refer to more than one
type. Such method arguments are usually referred to as “Duck-

2This class is part of the base Pharo image which can be obtained at
http://get.pharo.org
3nil is the Smalltalk equivalent of NUll in Java or nullptr in C++
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Get method argument ‘

‘aninteger’ ‘aCharacter’

Remove first character ‘

‘ninteger’ | ‘Character’

Does the
class exist?
No Yes
pd N
Get method argument ‘ ‘ return the class ‘
T T
‘aninteger’ Character class

v
Remove everything
before first capital letter
T

‘Integer’

No Yes
Return nil ‘ ‘ Return the class
nil Integer class

Figure 6.1: An activity diagram of the
implementation of
NECVarTypeGuesser»getClassFromTypeSuggestingName.
Edge labels represent data flow for example inputs
aCharacter and anInteger
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guessType : Arg — { Type} (6.1)
Suce = {ala € Arg, guessType(a) # 0} (6.2)
Fail = {a]a € Arg, guessType(a) = 0} (6.3)

Figure 6.2: The core sets. Arg = all arguments, Succ
= type guessed, Fail = type not guessed.

# % of |Args|
|Arg] 146,297 100%
|Suce] 52,981 36.21%
|Fail] 93,316 63.79%

Table 6.1: The number and percentage of method
arguments which do and do not produce a type using
NECVarTypeGuesser.

Typed”® [TFH09]. The term comes from the duck test, attributed
to James Whitcomb Riley: “When I see a bird that walks like a duck
and swims like a duck and quacks like a duck, I call that bird a duck”.
In the context of method arguments, this means that the method
does not expect a parameter of a particular type, but rather of any
type that follows a certain interface. For the sake of simplicity, we
consider any method argument that specifies multiple possible types
to be duck-typed.

We find that the pattern for expressing that an argument can
take on multiple potential types is to concatenate all possible types
with the word “Or”. For example, one of the most common argument
names with this property is aString0rByteArray appearing 99 times
in our corpus. To a developer this is a clear message that this argu-
ment should be either of type String or ByteArray, but the imple-
mentation of NECVarTypeGuesser does not consider this pattern and
unsuccessfully attempts to find a class called String0rByteArray.

4We acknowledge that all arguments in Smalltalk are potentially “Duck-
Typed”. We use this term to note the user-specified occurrence of an argument
being potentially bound to different types at run time.
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6.3.1 Impact of Duck-Typed Arguments

To calculate the impact of duck-typed arguments, we extracted all
argument names that match the following regular expression.

% Or[A — Z].x (6.4)

The word “Or” should be followed by a capital letter to ensure
that, due to Camel Notation [WHH11|, we only match that word
and not words like “Original”, “Ordered” etc. A total of 2139 method
arguments matched this regular expression.

Manual inspection revealed that 36 occurrences of the ex-
tracted arguments do not in fact refer to multiple types.
These are all occurrences of two different argument names:
aBlockWithZeroOrOneParameter and aZeroOrOneArgBlock. It is ob-
vious that these argument names refer to a varying number of argu-
ments of a BlockClosure i.e., Lambda expression, and not multiple
possible types.

So the very simple regular expression based heuristic we used
thus far can easily be integrated in any tool, and on our data
set has a false positive rate of only 1.68%. We consider all argu-
ments whose name match the regular expression from Equation 6.4
but are not duck-typed to be false positives i.e., 36 occurrences
of aBlockWithZeroOrOneParameter and aZeroOrOneArgBlock. A more
complex heuristic based on natural language processing could also
be an option.

With this in mind, we define the set of duck-typed
method arguments (Duck) in Figure 6.3 as the set that
matches our regular expression from Equation 6.4 excluding
aBlockWithZeroOrOneParameter and aZeroOrOneArgBlock. The name
function extracts the name of the argument as a string.

The Duck set contains a total of 2,103 method arguments or
1.44% of the Arg set. This is not an insignificant percentage and
any tool attempting to guess types should be aware of the existence
of this pattern.

6.3.2 Distribution of Number of Types in Duck-
Typed Arguments

A followup question regarding duck-typed method arguments is
how many different types are hinted at in these arguments.
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Duck = {ala € Fuail,
regexMatch(a,“. « Or. x [A — Z]”),
name(a) # “aBlockWithZeroOrOneParameter”,
name(a) # “aZeroOrOneArgBlock”}

(6.5)

Figure 6.3: The Duck set contains all arguments that
hint at multiple types.

The distribution is presented in Table 6.2. As per intuition, the
vast majority (94.82%) of duck-typed arguments hint at two
types (e.g., aStringOrByteArray, aUrlOrString, aStringOrText).
Around 7% hint at three types (e.g., aString0rCollection0rBlock,
aDateOrNumberOrString), and less than half of a percent hint at
more. The maximum number of different hinted types is 5, with the
argument name aSelectorOrElementOrjQueryOrBooleanOrNumber
[sic]. This might be considered an unwieldy argument name, but on
the other hand, it completely defines the number of expected types
within the source code with no need for additional documentation.

Different Number of % %

hinted types  occurrences (of |Arg|) (of | Duck])
5 ) 0.00% 0.24%
4 5 0.00% 0.24%
3 149 0.10% 7.09%
2 1994 1.36% 94.82%

Table 6.2: Distribution of the number of different
types in duck-typed method arguments.

6.4 Heuristics for Type Hints

We continue the manual inspection of arguments that failed to yield
a type on the set Fnd defined as
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Fnd = Fail\ Duck (6.6)

This is a set of all arguments from the Fail set that are not duck-
typed (Fnd — failed, non duck-typed). It contains 91,213 arguments
which is 62.35% of the Arg set or 97.75% of the Fail set. The aim
of further inspection is to identify subsets of Fnd that contain type
hints, and identify heuristics for identifying the types.

6.4.1 spec and html

In the Fnd set we find a frequent occurrence of the arguments spec
and html.

Inspection of the source code reveals that spec is the standard
name used for specifications of Metacello versions. Metacello is a
package management system for Monticello, a distributed version
control system for Smalltalk. The implementation details are not
important, but we can claim that the arguments named spec are of
type MetacelloAbstractVersionConstructor, as it is the superclass
for all classes used to construct Metacello versions. So we define the
Spec set as

Spec = {ala € Fnd, name(a) = “spec’} (6.7)

This set contains 6,132 elements or 4.19% of the Arg set.

A similar situation exists with the arguments named html. A
common practice when writing applications using Seaside [DLRO7],
a web development framework for Smalltalk, is to pass the object
representation of the HTML element as an argument to methods
of objects that perform an action on it (usually the object renders
itself on the HTML element). All of these arguments are instances
of WAHtmlCanvas. As with the spec argument name we define the
Html set (which contains 2,935 elements or 2.01% of the Arg set) as

Html = {ala € Fnd, name(a) = “html”} (6.8)

6.4.2 Blocks, Strings and Collections

Using block closures in Smalltalk is common practice. The class
BlockClosure offers the default implementation. Unfortunately for
the default type guessing algorithm, a majority of method argu-
ments that are expected to be an instance of BlockClosure are
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not named aBlockClosure (only 47 occurrences of arguments named
aBlockClosure in Arg) but rather aBlock (6,167 occurrences of argu-
ments named aBlock in Arg) as Figure 6.4 summarizes. Using aBlock
rather than aBlockClosure is even present in the book “Smalltalk
Best Practice Patterns” [Bec97] by Kent Beck.

To give more context to arguments hinting at BlockClosure,
developers often add additional descriptors to the argument
name. Examples of such argument names are toBlock, fromBlock,
anErrorBlock, aOneArgBlock, aFormatBlock etc. Also, a substantial
number of arguments are named simply block, ignoring the article.

In order to group all these different ways of specifying arguments
of type BlockClosure we define a set called Block' as the set of all ar-
guments whose name matches the regular expression “.x(B|b)lock.x”.
This is formally defined in Figure 6.5 Equation 6.12.

Following the same logic we define two more sets. The first at-
tempts to group all arguments hinting at the Collection type —
Coll (Figure 6.4 Equation 6.13) and the second for arguments hint-
ing at the String type — String (Figure 6.4 Equation 6.14).

The number of elements in all of these sets can be found in Ta-
ble 6.3. It is worth noting that the set Block’ contains over a thou-
sand more elements than set Block, showing that using the simple
heuristic can attach a type to a much larger set of arguments.

i % (|Argl)
|Block!| 7,886 5.39%
| Coll 559 0.38%

|String] 1,793 1.23%

Table 6.3: The cardinalities of the Block’, Coll and
String sets.

6.4.3 Duplicate Entries in Sets Block', Coll and
String

The regular expression based definitions of sets Block’, Coll and
String are quite naive, and further inspection of the elements of
these sets reveals that certain arguments appear in multiple sets as
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|{ala € Arg, name(a) = “aBlockClosure”’}| = 47 (6.9)
Block = {ala € Arg, name(a) = “aBlock”} (6.10)

| Block| = 6,167 (6.11)

Figure 6.4: Many more arguments are named aBlock
than aBlockClosure

shown in Figure 6.5 Equation 6.17. The problem arises in argument
names that match multiple regular expressions.

The number of such elements is fairly small. A total of
18 arguments appear in the String and Coll sets, and all are
named aCollection0fStrings. Their name is a clearly hinting
at the type Collection rather than String. Similarly, 12 argu-
ments appear in the Block' and String sets, and are all named
aBlockAnsweringAString, hinting at the type BlockClosure and not
String. No arguments are present in both Block’ and Coll sets.

With this in mind we can conclude that, in the Fnd set, a clear
rule can be observed for dealing with these ambiguities. We notice
that all arguments that appear in these three sets can be placed
in the adequate set by following a strict hierarchy of set priorities:
blocks are higher priority than collections which are higher priority
than strings.

Namely, all duplicate arguments from the Coll set, are prop-
erly placed, since the duplicates named aCollection0fStrings
are clearly collections, thus collections have a higher prior-
ity than strings. Similarly, all duplicate arguments from the
Block set, are properly placed, since the duplicates named
aBlockAnsweringAString are clearly blocks. Thus blocks have a
higher priority than strings. We artificially introduce the rule that
blocks are higher priority than collections in order to make our
heuristic complete. This rule might cause false positives in the cases
such as the hypothetical argument name aCollection0fBlocks, plac-
ing such an argument in the set of blocks rather than in the set of
collections where it would belong.

Another approach to removing duplicate entries requires a more
thorough analysis of these cases, either by natural language pro-
cessing techniques or by focusing on splitting the argument name
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Block' = {ala € Fnd,
regexMatch(a,“.  (b|B)lock. x7)}

Coll = {ala € Fnd,
regexMatch(a,*. x (c|C)ollection. )}

String = {ala € Fnd,
regexMatch(a,*. x (s]|S)tring. x”)}

Coll = {ala € Fnd/Block
regexMatch(a,*. x (c|C)ollection. )}

String = {ala € Fnd/(Block' U Coll'),
regexMatch(a,“. * (s|S)tring. )}

Block' n Coll =0
| Block' N String| = 12
|String N Coll| = 18

BlocK 0 Coll =)
Block N String = 0
String N Coll = ()

Figure 6.5: Sets of arguments based on regular

expressions
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DuckF = Duck\ DuckS (6.19)

Figure 6.6: The DuckF set contains all duck-typed
arguments whose type could not be guessed.

by “Of” and determining the priorities by the order. We feel this
would introduce a lot of complexity for not much gain and leave out
such attempts.

We apply these hierarchy rules in defining the sets Coll (Fig-
ure 6.5 Equation 6.15) and String (Figure 6.5 Equation 6.16), and
ensure that there is no overlap between these sets (Figure 6.5 Equa-
tion 6.18).

6.4.4 Guessing Types of Duck-Typed Arguments

All the sets defined in this section thus far are subsets of Fnd, mean-
ing that the arguments we defined as duck-typed are not included in
any of the sets. To determine the set of duck-typed arguments whose
type can be guessed (DuckS C Duck) we follow a simple algorithm:

1. Split the name of the argument a € Duck by the keyword Or

2. Treat each of the sub-names as a valid name of a hypothetical
argument b

3. If guessType(b) # () then we guessed the type of a, and a €
DuckS.

4. If not, assume that b € Fnd

5. If it holds that
b€ SpecV b€ HtmlV b € Block Vb€ Coll Vb e String then
we guessed the type of a, and a € DuckS.

6. If not, a ¢ DuckS

Essentially, if we can guess one of the types that the argument
name hints at, we declare the argument type guessed. So the set
DuckS holds all arguments from the set Duck whose type can be
guessed. The remaining arguments make up the DuckF set defined
in Figure 6.6. The cardinality of these sets is given in Table 6.4.
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7 % (|Argl)

\DuckS| 1,905  1.30%
| DuckF) 198 0.14%

Table 6.4: The cardinality of the DuckS and DuckF
sets.

6.5 Final Results

With all the heuristic based sets defined in Section 6.4 we have
exhausted the ways in which we can guess types in the Arg set.
The potential for other heuristics still exists, e.g., arguments named
index can be considered to be integers, plural nouns can be con-
sidered collections etc. but without additional studies dedicated to
these situations we cannot claim that these potential heuristics are
well-reasoned.

The set H, defined in Figure 6.7 Equation 6.20, is the union of all
sets defined by heuristics and accounts for 13.18% of all arguments.
Now, we can finally define a set of all arguments whose type can
be guessed from the name. We call this set Succ’ and define it in
Figure 6.7 Equation 6.21. Also, in Figure 6.7 Equation 6.23, we
define the set Fuail, as the set of all arguments whose types can
not be guessed from the name. It is defined as the union of all
duck-typed arguments whose type is not guessable (DuckF) and all
non-duck-typed arguments whose type is not guessable (F').

The cardinality of these sets, as well as all their subsets is pre-
sented in Table 6.6. We can see that the default type guessing im-
plementation can be substantially improved by incorporating the
proposed heuristics. The total number of arguments whose type can
be guessed is 74,161 or 50.69% of all arguments. This set is by no
means complete. If we look at just the top ten most frequent names
of arguments from the F' set show in Table 6.5, we can see that there
are still argument names that contain hints i.e., aName, aBrick and
aValue. These hints are more delicate and might carry a lot more
meaning for a developer with domain knowledge, but providing tool
support for such cases is a more challenging task. With all this in
mind, we can thus conclude that type hints are a commonly used
way to name method arguments in Smalltalk projects, and that even
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Argument name # % (|Arg|)

n 1511 1.03%
aName 1440 0.98%
a 1118 0.76%
lda 1092 0.75%
nodes 868 0.59%
aBrick 825 0.56%
work 816 0.56%
aValue 786 0.54%
info 753 0.51%
evt 670 0.46%

Table 6.5: The top ten most frequent argument names
in the F' set.

H = Spec U HtmlU Block' U Coll' U String (6.20)
Sucd = Suce U H U DuckS (6.21)

F = Fnd\H (6.22)

Fail = F U DuckF (6.23)

Figure 6.7: The H set contains all arguments all sets
defined by heuristics in Section 6.4, the Succ’set
contains all arguments whose type is guessable and
Fail contains all arguments whose type is not
guessable.

fairly simple tool support can work about 50% of the time.

6.6 Quality of Type Hints

So far we have focused on the quantity of type hints in a large
number of Smalltalk projects. In this section we conduct a sepa-
rate analysis on the quality of type hints in two Smalltalk projects:
Glamour [BGR™09], a framework for describing navigation flow of
GUI data browsers; and Roassal [ABC'13], a visualization engine
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4 %

|[Args|

| Arg] 146,297 100%
|— | Succ| 74,161 50.69%
\ |— | Succ| 52,981  36.21%
| | | Ducks| 1,905  1.30%
| - IH]| 19275 13.18%
\ |— | BlocK | 7,886 5.39%
\ |— |String | 1,793 1.92%
\ |— | Coll'| 559 0.38%
\ |— | Spec]| 6,132 4.19%
| - | Himl) 2935  2.01%
= | Fuil 71938 49.31%

|— | DuckF]| 198 0.14%

| IF| 71,938 49.17%

Table 6.6: The cardinality of all defined sets.
Hierarchy represents subset relation.

for Smalltalk. The reason we chose these two projects for our anal-
ysis is their rich example library which enables us to easily run a
dynamic analysis similar to real-world usage of these projects. The
end goal of this analysis is to verify whether types extracted from
type hints match run-time types of arguments.

6.6.1 Acquisition of Run-Time Types

In order to collect run-time types of method arguments in our case
projects we instrumented the source code of these projects using a
slightly modified version of a tool called “Variable Tracker”> used for
gathering run-time type information from Smalltalk projects. The
modification was to limit the tool to method arguments only.
After instrumenting the source code, we executed the examples
for each project. Glamour defines 68 examples of which one failed
to execute. Roassal defines 63 examples of which four failed to ex-
ecute. This is by no means an exhaustive dynamic analysis, but

Shttp://smalltalkhub.com/#!/~rostebler/VariableTracker
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it does provide a usage similar to real world applications of these
frameworks.

The result of this is presented in the “Total arguments” entry
of Table 6.7. As the table shows, we collected run-time type in-
formation on 251 and 559 arguments from Glamour and Roassal
respectively.

During normal execution some of these arguments might get
multiple different types due to Smalltalk’s dynamic type system.
We did not encounter such situations during our dynamic analysis.
A more thorough dynamic analysis might yield such cases.

Glamour Roassal

Total arguments 251 559
Contain type hint 141 159
Good type hints 126 103
Misleading type hints 15 56

Table 6.7: A summary of the dynamic analysis results.

6.6.2 Type hints and run-time types

To assess the quality of type hints we first extract the arguments
that contain type hints. We include all arguments that contain type
hints according to the type guesser described in Subsection 6.2.1 as
well as all those that match the heuristics described in Section 6.4.
The result is presented in the “Contain type hint” entry in Table 6.7.
A total of 141 and 160 arguments contain type hints in Glamour and
Roassal.

Finally, we separate the arguments whose names contain type
hints that match the run-time type or one of its subclasses. We
include the subclasses of the run-time type in order to include oc-
currences of subtype polymorphism [CW85]. A typical toy exam-
ple would be an argument named anAbstractShape getting the type
Circle (a subclass of AbstractShape) at run time. The results of this
separation is shown in the “Good type hints” entries in Table 6.7.
We can see that in Glamour 89.36% of type hints are good, meaning
the guessed type or one of its subtypes is used at run time. In Roas-
sal this number is 64.77% and the average across both applications
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is 76%.

6.6.3 Misleading Type Hints

The last entry in Table 6.7 (“Misleading type hints”) shows the num-
ber of arguments whose type hint did not match the run-time type.
There is a total of 71 such arguments, 15 from Glamour and 57 from
Roassal. Many of these arguments are misleading to our tools, but
might not be to a developer with more context and domain knowl-
edge. An overview of all these arguments is presented in Table 6.8.

We can notice a few distinct patterns in this data, and their
description follows. All but 11 arguments (15.49%) fall into one of
these patterns.

Class Conflict

This situation emerges when the guessed type exists, but the run-
time type has a similar name and no hierarchical connection. Ex-
amples of this are

e Arguments that hint at the type Browser (a class present in
the default Pharo image) but at run time receive GLMBrowser
(GLM stands for Glamour)

e Arguments that hint at the type Shape or Canvas (both classes
present in the default Pharo image) but at run time receive
some subclass of TRShape or TRCanvas (TR stands for Trachel,
a module used in Roassal) etc.

This pattern accounts for 36.62% (26 out of 71) arguments with
misleading type hints.

Any Object Data Model

Roassal is a very flexible visualization engine and can visualize any
set of objects and their connections. To make this possible, it relies
on using any object as a data model for generating the visualization,
and specifying through dynamic features of Smalltalk i.e., metapro-
gramming, how to interact with the model. That is why it is common
to find arguments named aModel that get bound to many different
types at run time. The problem comes due to the fact that Model
is a class in the default Pharo image. In our set of misleading type
hints this pattern accounts for 8.45% (6 out of 71) arguments.
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Block or Value

In 18.3% (13 out of 71) cases of misleading types we notice a duck-
typed argument that starts with avalue and also hints at expecting a
BlockClosure. A “Value” in this case can be any object, and in case
a BlockClosure is provided, it is assumed that evaluating it will
produce the expected value. A more exhaustive dynamic analysis
might produce cases where this argument is bound to an instance of
BlockClosure. This pattern is very similar to “any object as a data
model” but we separate them because Model is a class in the Pharo
image, and Value is not. The type hint in this pattern comes from
the hinted option of using instances of BlockClosure.

The reason why Roassal can expect any object as a value is that
it extends the class Object® with the method rtValue: which is the
only method invoked on arguments from this pattern. The default
implementation of this method just returns the receiver object, but
it is overridden in the BlockClosure class to evaluate the closure
with the method arguments.

Block or Symbol

A common idiom in Smalltalk source code is that methods that
expect an instance of BlockClosure can also accept an instance of
Symbol [BDNT09].

This is illustrated well by the filtering method select: of the
collections package in Smalltalk. This method expects an instance
of BlockClosure that describes the criterion for selection of elements
of the collection. If this criterion is to only invoke a single method
with no arguments (for example, the isZero method of class Number),
than we can provide just the selector (method name) as an instance
of Symbol. The result is smaller code that is more readable. This
idiom exploits duck-typing by implementing the value: method —
normally associated with block closures — for the Symbol class in
the obvious way.

This pattern accounts for 18.3% (13 out of 71) of the misleading
type hints. As with the “Value or Block” pattern, a more thorough
dynamic analysis would most likely find cases where these arguments
would be bound to instances of BlockClosure.

6 All classes in Smalltalk eventually inherit from the Object class
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Convertible

We found only two occurrences of this pattern, but it is a situation
that can theoretically happen much more often. Essentially, the ar-
gument was hinting at expecting an instance of the class Float,
but received an instance of the class SmallInteger at run time. The
SmalllInteger class is not a specialization of the Float class, but
implicitly, because N C R, any integer is also a float.

The usage of this argument is restricted to arithmetic operations
making the instance of SmallInteger completely indistinguishable
from an instance of Float. This is because all the arithmetic opera-
tions in Pharo provide an implicit coercion to the appropriate type
when necessary i.e., before invoking the VM primitive that performs
the calculation.

6.7 Future Work

We envision three directions of future work: continuously monitor-
ing the way arguments in given projects change over time (Subsec-
tion 6.7.1); attempting to integrate dynamic analysis to infer pat-
terns between argument names and their run-time types (Subsec-
tion 6.7.2); and performing a comparison to type inference engines
(Subsection 6.7.3).

6.7.1 Continuous monitoring

Code evolves, and with time new patterns in type hints might ap-
pear. A heuristic based type guessing tool would be only as good
as its heuristics, so continuously monitoring argument names from
projects of interest could identify emerging trends in argument
names, and notify the tool developer of the new patterns. This would
prompt the developer to investigate the new patterns, develop an
appropriate heuristic and integrate it into the tool. Since the tool
used to guide the study presented in this chapter is based on EMF,
the data is automatically periodically refreshed, and a new report is
generated. This means that supporting this future work is implicit
in EMF.
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6.7.2 Dynamic analysis

An alternative to observing static changes in source code could be
observing a system in question at run time, and attempting to find
patterns of mappings between argument names and run-time types.
This could be done automatically through machine learning tech-
niques, and could be tailored to the project domain helping with
some of the bad type hints from Section 6.6 i.e., an argument named
aShape can hint at the Shape class or TRShape class, and run-time
information can distinguish which.

6.7.3 Comparison with Type Inference Engines

The standard approach for statically obtaining type information in
dynamically typed languages is to perform type inference. Many dif-
ferent type inference approaches exist [Mil78, CF91] and some ap-
proaches have existing implementations in Pharo [SLN14a, PMWO09,
MBGN16]. The question is whether type hints or type inference can
provide more type information for method arguments in Smalltalk,
or whether their combination is worth the effort.

6.8 Conclusion

In this chapter we present two case studies, one on how frequently
type hints are used in method argument names in Smalltalk and
one on the quality of those type hints in relation to run-time types.

In the first study we analyze a total of 146,297 arguments taken
from 114 Pharo Smalltalk projects, and conclude that the existing
tool for type guessing has a 36.21% success rate. We manually ana-
lyze the arguments that failed to yield a type, and propose several
heuristics that improve the percentage of guessed types to 50.69%.
This percentage is not final, as many other heuristics potentially
exist, but further inquiry and more domain knowledge is required
to formulate them. So the main conclusion of the study is that at
least one in two method arguments in Smalltalk projects contains a
useful type hint. Another conclusion drawn from this case study is
that 1.44% of method arguments hint at multiple types. We present
a very simple heuristic for identifying such method arguments with
a false positive rate of only 1.68% in our data set.
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In the second study we collected run-time types of method ar-
guments from two projects with a rich set of examples used as in-
put, and compared the run-time types to the types extracted from
type hints. We find that in 76% of cases the type hint matches the
run-time type when controlling for subtype polymorphism. We also
present an analysis of the misleading type hints, and identify sev-
eral patterns that better our understanding of why the type hints
are misleading.

We propose several directions of future work, most on improv-
ing Smalltalk tools for type guessing using the information from the
conducted studies. Beside that, replicating these studies with differ-
ent languages would help broaden and generalize the understanding
of type hints.
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The Object Repository

7.1 Introduction

Every object-oriented language includes a mechanism for creating
new objects, and developers leverage this mechanism to create com-
plex objects needed in software systems. Most classes contain a de-
fault constructor, a way to create a default instance of that class,
but some classes do not have a default representation, and are in-
stantiated through more complex construction mechanisms such as
parametrized constructors, factory methods, the builder design pat-
tern and so on. Fully formed objects can also be created through any
valid object usage protocol, which may include an arbitrary number
of interacting objects and method invocations.

Finding a way to properly instantiate classes can be non-trivial,
yet, code snippets that instantiate these classes exist throughout
their client classes. Existing approaches for mining code snippets
provide useful information about object creation and usage, but they
lack the feature of being executable which is important to enable
approaches that require objects on demand.

We propose to mine available software projects for code snippets
that instantiate classes, henceforth referred to simply as snippets.
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We aim to create a repository of such snippets, which can be used
to facilitate several software engineering tasks such as augmenting
documentation, new testing approaches, support for program com-
prehension and others.

We realize this approach by extracting all AST nodes from all
methods of all available classes, converting them to their source code
representation and attempting to execute them. If the execution is
successful, i.e., produces an object, we save the snippet in a database
and associate it to the type of the produced object.

We implemented this approach using EMF and applied it to 141
open source Pharo projects and a selection of classes contained in
the base Pharo image!. We find that the result of this approach is
that around 10% of AST nodes, when converted to source code and
executed, produce objects for almost 80% of all the analysed classes.
We check several aspects of the snippets to better understand their
properties and also analyse the nodes that failed to produce objects,
and discuss how to tackle the reasons for the failures.

The chapter is organised as follows: Section 7.2 discusses po-
tential uses of the Object Repository, Section 7.3 describes the ap-
proach, the formal set model and discusses implementation details,
Section 7.4 describes the results of applying the formal model to the
Pharo projects and the analysis of the produced data, Section 7.5
discusses future work, and finally Section 7.6 concludes.

7.2 Motivation

This section presents some of potential use cases for the Object
Repository. Though there are several software engineering tasks that
can benefit from the availability of such a repository, our discussion
advocates three that we found most applicable.

7.2.1 Software Documentation

Documentation, when available and up to date, is still the most re-
liable and widely used resource for understanding software systems
and APIs. Much work has been done around the idea of mining
usage examples to enrich documentation [BW12, ZXZ*09, HMO05],

1The classes in the base image are similar to the standard library in languages
such as C++ or Java.
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however, none of the example snippets given are usable to directly
create objects. Code snippets from the Object Repository could be
used as a complementary source for such examples, with the addi-
tional knowledge that the snippets are immediately executable. The
main requirement for this use case is to have concise and represen-
tative snippets.

Also, since the snippets in the Object Repository produce ob-
jects, one could introduce a concept of a “playground” within the
documentation where a developer could experiment with a given
live instance of the class whose documentation she is reading. Many
similar “playgrounds” exist for languages such as Go? and Haskell3,
allowing developers to simply try out parts of the language.

This requires at least one snippet associated with the docu-
mented class. Unlike the previous case, the quality of snippets is
of no importance, as the user is only meant to interact with the
object rather then the snippet which created it.

7.2.2 Software Testing

Modern approaches to inspecting objects rely on object specific rep-
resentations [CGNS15]. This means that the author of a class, or
anyone else through extensions, can specify a way that the object
can visually represent itself to the user of the object inspector. The
object inspectors provide the user all available ways to represent the
object, and the user chooses one that suits the current context.

According to our discussion with researchers in the field, testing
new representations is laborious since they are usually required to
create the objects manually. Alternatively, the Object Repository
could provide a set of objects gathered from the ecosystem as a test
suite that enables testing if a new representation of an object is
stable automatically.

Testing software by generating random test inputs is a well re-
searched field [DN81, PLEB07, CKMNO03]|. Integrating objects from
the Object Repository with the random input generated by these
approaches could help cover the corner cases that are hard to de-
tect with raw random testing by focusing the attention on the part
of the search space that is more representative of real world usage.

2https://play.golang.org/
3https://tryhaskell.org/
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Moreover, starting from actual instances from the Object Reposi-
tory instead of, or in combination with, random ones could improve
the results. For instance in case of genetic algorithms [MMS01], this
can guide the genetic algorithm to an acceptable population of input
data much faster while also avoiding local maximums.

Method arguments are usually checked for validity at the begin-
ning of a method. In case the argument is not valid (e.g., defies the
contract or the preconditions), the method should signal this fact
to the caller in a expected manner e.g., by throwing an exception,
or returning an error value. In order to test this a developer would
require multiple instances of the argument type both valid and in-
valid in the context of being input for that method. Assuming that
arguments of the method are of a type that is present throughout
the ecosystem, the Object Repository should contain code snippets
needed to create such instances. This facilitates, to some extent, ver-
ifying automatically that the validation of the method arguments
behaves as expected.

To realize these use cases the Object Repository should contain
as many snippets associated with a class as possible. The snippets
should also produce representative and diverse objects.

7.2.3 Software Evolution and Maintenance

While studying source code is the main way that developers inter-
act with programs [KDV07, KBR14| many program comprehension
tasks require runtime observation [LM10a, LM10b|. Nevertheless,
running a system and placing it in a desired state can be challenging
for several reasons like lack of input to the system, lack of knowl-
edge about the system, long system running time before reaching a
desired point.

Having a way to create a live object of a required type could
spawn a running system at any point in the source code by filling all
the gaps in the execution context with blank objects of the adequate
type. These objects should be presented in an object-inspector-like
interface allowing the developer to set the values of these context
objects and guide the execution of the program, as one would do in
a debugging session. One example of one such usage could be in the
domain of application security. Executing parts of source code in
a sandbox created from objects taken from the Object Repository
could ensure that the execution does not have any unexpected side
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effects.

Objects taken from the Object Repository could be used to help
disambiguate results of type inference engines for dynamically typed
languages [SLN14a|. Many of these type inference engines provide
a list of potential candidate types for a variable. Thanks to the Ob-
ject Repository, having instances of those types, and attempting to
execute the code with each of those objects assigned to the variable
in question could shed some light on the types which are more likely
false positives.

The main requirement for these use cases is to have an Object
Repository that contains snippets associated to as many classes as
possible, extending the applicability of this use case to more project.

7.3 The Approach

We aim to mine code snippets from projects by transforming all
available methods into their abstract syntax tree (AST) represen-
tation, transforming each AST node? into its source code represen-
tation, attempting to execute it and observing the return value of
the execution. We ignore this code snippet if the execution fails to
compile, or to produce a return value. The ones that return an ob-
ject are saved to the Object Repository and associated to the type
of object produced by their execution.

For example, Listing 7.1 shows a method from the Pomodoro
project®. This method checks if an instance variable progressBar is
nil (line 2) and, if so, assigns it a new instance of ProgressBarMorph
(line 3). Finally, it returns this instance variable (line 5).

PomodoroMorph>>progressBar
progressBar ifNil: [
progressBar := ProgressBarMorph new
1.
~ progressBar

Listing 7.1: Example method used to illustrate the
approach.

4Each AST node is technically an AST tree i.e., the subtree of the AST of
the method with the node in question at the root. We use the term “AST node”
in place of “AST subtree with the node at the root” for simplicity.

Shttp://smalltalkhub.com/#!/~TorstenBergmann/Pomodoro
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MethodNode

MessageNode 8 )ReturnNode

VariableNode
VariableNode

Figure 7.1: Abstract syntax tree of the method in
Listing 7.1.

We first parse this method and build the AST. Figure 7.1 shows
a graphical representation of this AST with all the nodes indexed
and the type of the node shown next to it. We then transform each
node into a source code snippet, and attempt to execute it.

Table 7.1 summarizes the results. This table represents each AST
node by index, the type of the node, the source code representation
of the node, and finally the type of the value obtained by executing
the snippet. We can see from this table that out of the 9 AST
nodes only 2 are, when transformed into source code, executable
and produce objects.

7.3.1 Formal Model

To better explain the proposed approach, we introduce a small set-
theoretical model. This subsection discusses domains and sets used
in this model, the function that models the execution of the snippets,
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C : Domain of classes (
M : Domain of methods (
def,, : M — C (

N : Domain of AST nodes (
def, : N — M (

S : Domain of snippets (
toCode : N — S (

O : Domain of objects (
(

7

7

7

7

I e e e S e e
© 0 N S O~ W N~

N e N D N N N s =

Oy =0U0
instanceof : O — C
execute : S — Oy
Nezee = {n € N| (ezecute o toCode)(n) # 0}
Sezec = {toCode(n),¥n € Negec}
objectRepo(c € C) = {s € Sezec|

(instanceof o execute)(s) = c}

Figure 7.2: The core domains and functions of the
formal model.

as well as the function used to retrieve snippets for a given class.

As shown in Figure 7.2, C (Equation 7.1) is the domain of classes,
M (Equation 7.2) is the domain of methods defined in the classes
and N (Equation 7.4) is the domain of AST nodes defined in the
methods. Each method is defined in one class (Equation 7.3), and
each node is defined in one method (Equation 7.5).

The conversion of the AST nodes into source code is defined as
a function toCode (Equation 7.7). The codomain of this function is
S, the domain of all code snippets. Since multiple AST nodes in N
can have the same source code representation, toCode is a surjective
function, and thus for any N’ C N and the corresponding S’ it holds
that |S'| < |N'|.

The execution of source code from S is defined as a function
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called ezecute (Equation 7.11). Since not all snippets from S will,
when executed, yield an object, the codomain of this function is the
set Og (Equation 7.9). This set is defined as the union of object do-
main (Equation 7.8) and an empty set, used to denote a failed snip-
pet execution. Each object is an instance of a class (Equation 7.10).

With all this in place, we define the set Negee (Equation 7.12)
as the set of all AST nodes that, when converted to source code
and executed, produce an instance of any class from C. We call
members of this domain “executable AST nodes”. Correspondingly,
Sexzec (Equation 7.13), defines the domain of all “executable” code
snippets.

Lastly, the objectRepo function (Equation 7.14) returns, for a
given class from C, a set of snippets from S¢... that, when executed,
produce an instance of the given class.

7.3.2 Implementation

We implemented the approach using EMF. We specify only the back
end, leaving open the potential for multiple front ends dealing with
the software engineering tasks described in Section 7.2.

Most of the needed implementation was readily available in
Pharo i.e., parsing the source code to the AST, converting AST
nodes to code snippets, etc. The main challenge was implementing
the execute function

First, we wrap a code snippet inside a closure. We then create a
temporary method in a temporary class of which the source code is
solely the execution of the mentioned closure. We then compile this
method and, if the compilation is successful, we execute it wrapped
in the Smalltalk equivalent of a try-catch block that catches all
possible errors and exceptions.

This setup is enough to catch errors caused by a snippet not
being compilable (e.g., containing an undeclared variable) and the
snippet failing to execute (e.g., throwing a division by zero excep-
tion).

During the execution of code snippets, we encountered some
never terminating executions. Further investigation revealed that
such issues arise due to concurrency. For example, the snippet might
wait on a signal from a different thread to continue the execution.
However, we only execute a single snippet at a time, which means
there is no chance of receiving such a signal. To restrain such exe-
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cutions, we limit the execution time for each snippet to 10 seconds.

The time interval was chosen as an arbitrary cut of point with
the reasoning that the execution of any snippet should terminate in
less than 10 seconds in order for the snippets to be usable in any
way. Although, a vast majority of snippets terminate quite quickly,
we chose a very long timeout to include as many snippets whose
execution will eventually terminate.

7.4 Evaluation

To evaluate our approach we ran it on all classes taken from 141 open
source Pharo projects provided by EMF. We do not include all the
classes from the base image because a large part of the functionality
of the Pharo language is implemented in Pharo itself. Executing
code snippets from such classes caused many errors that could not
be handled from within the language, but required intervention at
the Virtual Machine level. Examples are the contents of packages
such of the Kernel, Compiler, Debugger, NativeBoost and others.

This evaluation includes a set of classes we call C’ containing
13,909 classes. Correspondingly, the set of all methods from C’ is
noted as M’ and contains 256,362 methods. These methods are
comprised of 1,525,914 AST nodes defined in a set called N’. The
number of nodes that are executable is only [N/ .| = 154,904 or
10.15% of all the nodes. Converting these nodes into code produces
|5 el = 92,460 unique snippets of code. Table 7.2 presents the
cardinalities of these sets.

In the rest of this section we define several sets, shown in Ta-
ble 7.3, using which we discuss our findings from different perspec-
tives.

We define a set Cy as the domain of the objectRepo function as
shown in Figure 7.4, Equation 7.15. The cardinality of this set is
10,917 or 78.49% of all classes used in the evaluation. Being able
to instantiate almost 80% of all the classes seems to be a promising
result considering the minimalistic approach of extracting snippets.

7.4.1 Snippet Distribution

We call the set of all classes that can be instantiated through only
one snippet C; as shown in Figure 7.4, Equation 7.16. This set helps
us to better understand the quality of the snippets, by showing that
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Set Cardinality

c 13,909
M’ 256,362
N 1,525,914
N/... 154,904 (10.15% of |N|)
! 92,460

exec

Table 7.2: The cardinalities of the core sets used in
the evaluation.

Set Cardinality — %|C'|  %|Cd]  %|C4]

Cy 10,917 78.49% - -
Ch 8,779 63.12%  80,42% -
Chew 2,384 17.14% 21.84% 27.16%
C 6,091 43.79% 55.79%  69.38%
c, 2442 17.56% 22.37% -

Table 7.3: Cardinalities of the sets defined in
Figure 7.4 and their relations.

8,779 classes, or 80,42% of all instantiable classes, have only one
associated snippet.

This, plus the fact that |S.,..| = 92,460 shows that the distribu-
tion of snippet counts is heavily skewed to a minority of classes i.e.,
about 20%. Further inspection of the snippets shows that the ten
classes with the most snippets accumulate over 60% of all snippets.
Table 7.4 presents some information about these classes.

Most of the classes from Table 7.4, namely Array, BlockClosure,
ByteString, ByteArray, Point and Association, have a very specific
construction pattern. Some, like Array, ByteString, and ByteArray,
have an idiomatic way of construction. For example, anything in
source code between square brackets is considered a BlockClosure,
anything between single quotation marks is a ByteString. Other
classes, like Point or Association, have a very distinctive construc-
tor, e.g., two integers with the @ character between define a point
with those integers as coordinates.

With all of this in mind we conclude that the heavy skewing of
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Figure 7.3: Distribution of classes in Cy according to
the number of snippets that can instantiate each
class.

snippets is not surprising, but it might have a very negative impact
on the usability of an Object Repository built with this approach.
Although the Object Repository can instantiate almost 80% of all
available classes, over 80% of those classes can be instantiated in
only one way, and only a handful of classes account for a majority
of snippets. In Figure 7.3 we show a distribution of classes in Cy
according to how many snippets can instantiate that class. We can
see that just under 17% of classes can be instantiated by between
two and ten snippets, while less than 3% with ten or more.

7.4.2 Trivial and Literal Snippets

To further focus on the quality of the snippets we define the Cjeqp
set in Figure 7.4, Equation 7.17. This set includes all classes that
have only one associated snippet, and that snippet is “trivial” i.e.,
the default way of creating instances in Pharo. This is achieved
by matching snippets with a regular expression that checks if the
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cel |objectRepo(c)| %| S|

Array 16,907 18.29%
ByteString 14,968 16.19%
BlockClosure 8,826  9.55%
ByteSymbol 4,199  4.54%
ByteArray 3,807  4.12%
Point 2725 2.95%
Smalllnteger 2,502  2.71%
Association 1,237 1.34%
FixedDate 855  0.92%
Measure 759  0.82%
> 56,785 61.42%

Table 7.4: Ten classes with the most associated code
snippets.

snippet is of form “ Class new”. An example of such a snippet would
be Dictionary new which trivially creates a Dictionary object.

The cardinality of this set, as shown in Table 7.3, is 2,384 . This
accounts for 27.16% of the classes with a single associated snippet,
or 21.84% of all classes from |Cy|. Considering that this is the default
pattern of instantiating objects in Pharo, the percentage of classes
instantiated only in this manner is not as high as might be expected.

We move on to other poor quality snippets by defining the C
set as shown in Figure 7.4, Equation 7.18. This set is a subset of
C1, and contains all classes whose sole associated snippet is just
one literal. This set is quite large as can be seen in Table 7.3. It
has a cardinality of 6,091 or 55.79% of Cy. The size of this set
is a result of Smalltalk’s high reflective nature. Namely, following
the “everything is an object” philosophy, each class in Smalltalk
is essentially an instance of a corresponding metaclass, which in
turn is an instance of the Metaclass class [GR83]. This leads to the
phenomenon that executing a class name literal in Smalltalk will
result in the object representing that class i.e., an instance of the
corresponding metaclass. This phenomenon accounts for all but 8
of the elements of C; which are global variables mapped to concrete
instances of regular (not meta) classes.
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Cqy={ce | 3s €S, objectRepo(s) = c} (7.15)
Cy = {c € C4] |objectRepo(c)| = 1} (7.16)
Chew = {c € C1| 3s € objectRepo(c),

regexMatch(s, “"[a-zA-Z0-9 _|* new$”)} (7.17)

C; = {c € (4| 3s € objectRepo(c), (7.18)
regexMatch(s, “*[a-zA-Z0-9 _|*$7)}

Cy=Cy\ (Crew UCTY) (7.19)

Co,={ceC|3In € N.,.., (def,, o def,)(n) = c} (7.20)

Figure 7.4: Sets used during the evaluation of the
Object Repository.

7.4.3 Promising Snippets

An interesting set to focus on is the set of all classes that can be
instantiated by the objectRepo function in a non-trivial and non-
literal way. This is essentially the domain of the objectRepo function
excluding the sets C),¢, and Cp, and is defined as such in Figure 7.4,
Equation 7.19. This set, named Cy, is actually containing the kind
of data we wish to have to realize different use cases introduced in
Section 7.2.

As shown in Table 7.3 this set contains 2,442 elements, or 17.56%
of all classes included in the evaluation. This is not a large percent-
age of the classes analysed, but considering the minimalistic ap-
proach seems promising as the first step towards realizing the idea
of building an Object Repository.

7.4.4 Snippet size

The sizes of snippets in the Object Repository varies greatly. The
smallest snippets are only one character long, an integer con-
stant producing an instance of SmallInteger. The largest snippet
is 1,279,918 characters long and is a declaration of a ByteArray ob-
ject. Table 7.5 summarizes the distribution of snippet sizes. We can
see by the first quartile (16), median (28) and third quartile (51)
that the distribution of the snippet sizes is heavily centred around
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Minimum 1

25% Quartile 16
Median 28
75% Quartile 51
Maximum 1,279,918

Table 7.5: Five number summary of snippet sizes.

1000
900
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400

300
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0

Figure 7.5: A sorted plot of sizes of snippet less than
1000 characters long.

a much more reasonable size.

Since the maximum is so far away from the third quartile, we
assumed there are outliers that need to be excluded. But, our at-
tempt to exclude outliers using one and a half times the interquartile
range as the limit marked 10.44% of the data as outliers, and we
thus include all the data points.

Figure 7.5 demonstrates a sorted plot of all the sizes below 1000,
a total of 90,839 snippets or 97.2% of the data set. The remainder
of the set was excluded from the plot because the drastic increase
in values made the plot very difficult to understand. We can see
from the plot that values are mostly under 100, after which a small
number of values rises dramatically.
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7.4.5 Origin of Snippets

To better understand our approach and the resulting snippets we
look at where the snippets are coming from. Firstly, we wish to un-
derstand how many classes in the C’ set actually contributed snip-
pets to the Object Repository. We call these classes “origin classes”
and they are members of the C, set defined in Figure 7.4, Equa-
tion 7.20. This set contains 9,138 elements, or 65.70% of C’. Man-
ual inspection of a sample of the classes not in this set reveals that
they are mostly classes with no or very few declared methods. These
are very often meta classes with no functionality outside the trivial
instantiation of objects.

We further investigate this set by identifying which classes in
this set are meta classes or test classes. We find that meta classes
account for 9.78% (894 elements) of C, which indicates meta classes
are less likely to contain snippets, but should not be discarded from
the analysis. Test classes account for 16.45% (1,503 elements) of C,,.
This initially seems to be not much better than the meta classes
but adjusting for the number of test classes in C’ we can see that
the contribution of test classes is much greater. Namely, there is a
total of 1,797 test classes in C’, which means that over 80% of the
available test classes contributed an executable node.

We also find that only 112 classes (1.23% of C,) contributed a
snippet that produces an instance of the same class (a snippet that
originated in ¢ € C” and of which the execution results in an instance
of ¢). This, coupled with the fact that the remaining 73.77% of C,
are regular classes suggests that the clients of a class are the best
place to look for snippets to instantiate that class.

Finally, we aim to answer which types of AST nodes are common
sources for snippets. Table 7.6 shows the percentage of occurrences
of each type in N/ __. with simple, synthetic examples for easier un-
derstanding. As one might expect, the most common type of AST
node is the LiteralValueNode, as it represents a value in the source
code and is thus executable by default. The second most common
type is the MessageNode, which represents sending a message. This
is also typical, since in Smalltalk everything happens by sending
messages. Third on the list is VariableNode, which in our data de-
notes global variables i.e., meta classes. The remainder of the list
can be divided into two categories: wrappers and literals that we
discuss in the following.
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Node Type %  Example snippet
LiteralValueNode 33.68% 'A String’

MessageNode 22.34% Dictionary new.
VariableNode 17.50% Dictionary
SequenceNode 9.45% -
ReturnNode 7.59% ~ 'A String’
BlockNode 6.20% [ 1+1]
LiteralArrayNode  2.63% #(1 2 3)
CascadeNode 0.34%  XMLWriter new
tag: 'one’;
tag: ’'two’
ArrayNode 0.27% {1 2 3}

Table 7.6: The distribution of types of executable
nodes with examples. The SequenceNode represents a
sequence of other nodes so no example is given.

The wrappers are SequenceNode, ReturnNode and CascadeNode.
The SequenceNode represents a sequence of nodes. For instance, the
node indexed 4 in Figure 7.1 represents a sequence of one node in-
dexed 5 and thus yields the same snippet. The ReturnNode just
adds the return character® in front of the node that it is wrapping.
In Smalltalk, the last evaluated expression is returned by default
and the return statement may not change the result of executing
the snippet. For example, the snippets for LiteralValueNode and
ReturnNode in Table 7.6 have the same execution result. A Casca-
deNode represents a series of message sends to one object. These
types of nodes together account for 17.38% of executable nodes.

The literals are BlockNode, LiteralArrayNode and ArrayNode.
Closures are very commonly used in Smalltalk and even have their
own AST node representation, the BlockNode. The other two types
of nodes represent a compile time array (LiteralArrayNode) and a
run time array (ArrayNode). These together account for 9.1% of
N/

exec*

6The " character is the Smalltalk equivalent of the return keyword
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7.4.6 Failed Executions

Studying the reasons why about 90% of AST nodes failed to execute
would be necessary towards improving the approach. We primarily
hypothesized that a node execution may fail for following reasons:

e Undefined variable in snippet

e Error or exception”

e Code snippet returns nil

As one might suspect, the execution of the majority of nodes, i.e.,
over 82%, where prevented because the source code representation
of the node failed to compile due to the snippet referring to an
undefined variable.

The other two hypothesised faults are not as numerous. Errors
and exceptions account for 1,880 AST nodes (0.12% of the total
failing AST nodes), and returning nil accounts for 17,425 AST nodes
(1.14% of the total failing AST nodes).

Surprisingly an additional 113,954 nodes (8.31% of the total fail-
ing ones) fall outside the hypothesised faults. Manual inspection of
a sample of the available logs identifies that the main reason for
failure was the snippets expecting interactions from the user e.g.,
opening a dialog for the user to choose a file. Such attempts were
immediately shut down due to our code snippets being executed in
a headless Pharo environment, meaning that no GUI elements are
possible.

7.4.7 Missing Classes

To understand why certain classes have no snippets attached to
them, we took a sample of 20 such classes and did a manual inves-
tigation.

In our sample, 6 classes were test classes. It is not surprising that
test classes are never explicitly instantiated, as they are only used
by the unit testing framework. Out of all classes with no attached
snippets in our data set, around 25% are test classes. Furthermore,
4 classes of our sample were meta classes, and manual inspection
shows that these classes, as well as their instances i.e., corresponding

TThis also includes the nodes terminated by our timeout mechanism de-
scribed in Subsection 7.3.2
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non-meta classes, are never used. Looking at all the classes without
associated snippets, we find that around 21% are meta classes. The
remaining 10 elements of our sample are regular classes, and manual
inspection finds that these classes are simply never instantiated.
Some are never mentioned in the source code, and some have only
class side methods® invoked.

None of the sample classes where abstract, but it is understood
that all abstract classes would have no snippets associated with
them as they, by definition, cannot have instances.

7.5 Future Work

We identify several directions for potential future work. The main
focus of the future work should be bringing the use cases described in
Section 7.2 to fruition, and performing user studies to determine how
beneficial the Object Repository would be to developers. This means
both improving the approach for building up the object repository,
as well as implementing the necessary tools that would serve as the
front end facing the developer.

Developing and evaluating these tools is one direction. In Sec-
tion 7.2 we hypothesized many different tools and approaches and
they each raise questions about how useful they would be to the
developer and how they would compare to the state of the art.

On the other hand, improving the approach for snippet gathering
is also a great challenge. The approach described in this chapter is
only a first attempt, with little complexity, and thus, is far from
ideal.

In Subsection 7.4.6 we identified that the main reason execut-
ing AST nodes fails is that code snippets contain undefined vari-
ables. In a statically typed language, this could, to a large extent,
be addressed by bootstrapping the Object Repository i.e., using
the Object Repository to instantiate all undefined variables at the
beginning of the snippet, making all undefined variables not just de-
fined, but instantiated. Lacking static type information would make
this not so easily applicable, but still possible through type infer-
ence [Mil78, SLN14a, SLN16|, or brute force. The downside of this
approach is that the instances created would be somewhat synthetic
rather than directly pulled from the ecosystem.

8The Smalltalk equivalent of static methods in Java
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The approach can be improved in many ways by including more
static analysis of the source code to build up better snippets before
attempting to execute them. Such analysis could be variations on
simple compiler analyses [Muc97, ASU86] such as control and data
flow analysis, constant propagation, function inlining etc.

Also, once we have an approach that is shown to be beneficial to
developers, we would like to branch out to different programming
languages and examine how different language features such as type
systems, reflectivity or mode of execution (compiled vs interpreted)
affect the benefits or usability of the Object Repository.

A somewhat related idea to potentially explore is to create a
repository of serialised objects at run time. This would require a
dynamic analysis approach, through code instrumentation or vir-
tual machine manipulation and would hence be significantly more
complex and would introduce run time overhead. On the other hand,
this type of approach could give much more representative object
instances than the ones mined statically.

7.6 Conclusion

In this chapter we propose the idea of an Object Repository, a repos-
itory of code snippets that, when executed, produce an instance of
a class. We present multiple software engineering tasks that could
be improved by the Object Repository.

We further present an initial attempt at implementing the Ob-
ject Repository, through mining AST nodes and converting them to
code snippets. We evaluated the approach on 141 projects written
in Pharo Smalltalk, and from the gathered data conclude that our
implementation can be used to instantiate almost 80% of all classes
encountered in the analysis.

We acknowledge that good data for the proposed Object Repos-
itory is for each instantiable class to have multiple ways to be in-
stantiated. Unfortunately, the number of snippets per class is heavily
skewed to a small number of classes. In our gathered data, we find
that slightly less than 20% of instantiable classes have 2 or more as-
sociated snippets. Keeping the simplicity of our approach in mind,
this is still a promising result.

We also take a look at the percent of AST nodes that actually
produce a type, and discuss the main reasons why other nodes fail
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to do so. We find that the main reason for this is undefined vari-
ables, accounting for more than 90% of nodes that failed to produce
an instance. This is not unexpected, and can be addressed in sev-
eral ways, including using data from a previous run of the Object
Repository itself to instantiate missing variables.
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Conclusion

In this thesis we have argued that it is possible to improve the
way ecosystem-aware tools are developed by automating the rou-
tine parts, thus freeing the developer to focus on the more impor-
tant parts of this process: ecosystem data and its presentation. We
provide a proof of concept implementation of a framework for devel-
oping ecosystem-aware tools, and evaluate its applicability by using
it to developing four different tools, each illustrating one aspect of
the framework’s functionality.

In this chapter we review the main contributions and conclusions
drawn throughout the thesis and discuss what we consider to be the
most important open questions arising from this work.

8.1 A Unified Framework for Ecosystem
Aware Tools

The Ecosystem Monitoring Framework fulfills all the requirements
to work as a unified framework for developing ecosystem aware

tools. It automates all the routine and mundane parts of the de-
velopment process: defining the ecosystem, loading the source code
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for each individual project, executing the user specified analyses as
well as storing, providing and periodically refreshing the data that
the ecosystem-aware tool needs. Unifying all these steps under one
framework ensures that the developer is free from mundane tasks,
as well as minimizing the required dependencies.

The full power of EMF can be seen not from EMF itself but
from the ecosystem-aware tools that we built using it. The bene-
fits of these tools is clearly shown throughout the thesis, providing
significant support for the claim that integrating ecosystem data
into developer tools can be beneficial to the developer experience.
The type inference approach from Chapter 4 was improved almost
100% by the introduction of ecosystem data which could be reused
to help novice developers with unfamiliar APIs as shown in Chap-
ter 5. Developing data supported heuristics for the Type Guesser
tool in Pharo was greatly simplified by the reports that our tool from
Chapter 6 generated. The Object Repository presented in Chapter 7
opens a whole new dimension of possible tool augmentations by pro-
viding objects on demand to any tool developer that might wish to
integrate such features into her tool.

These tools are very diverse, each one illustrating one notewor-
thy feature that EMF provides to tool developers. The ecosystem-
aware type inference and the frequently used methods plugin show
the clear divide between the back end and front end parts of the
tools, by having one back end serve for two different front ends.
This is also why we are confident that the Object Repository back
end can be used to serve a wide variety of front ends discussed in
Section 7.2. The Object Repository itself shows that EMF is not
limited to static analysis of source code as text, since the extrac-
tion of object-producing code snippets requires the execution of said
snippets to verify the type of the result. Since EMF is completely ag-
nostic to the type of analysis the developer wishes to run, any static
analysis that a tool developer would need as part of their ecosystem-
aware tool is supported, provided that the developer provides the
implementation. Finally, as shown by the arguments analysis from
Chapter 6, EMF can power tools that have no direct user but rather
generate reports on the state of the ecosystem. These reports can
further be used to guide development decisions for tools and helping
these decisions be supported by the current state of the ecosystem.

Developing these tools individually, by re-implementing the fea-
tures provided by EMF would have been a much greater develop-
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ment effort. Also, as with any code reuse, many other benefits come
from relying on one implementation of shared features. The work
presented throughout this thesis strongly supports the conclusion
that developing ecosystem-aware tools should be done through a
unified framework that frees the developer from all the mundane
parts of the development, allowing her to focus only on the impor-
tant parts: the ecosystem data and the way to present it.

8.2 Open Questions

This section provides and overview of our picks for the most im-
portant open questions arising from this thesis. These questions are
outside the scope of this thesis but leave an open space for discussion
and future work.

8.2.1 Data Freshness

In order to provide fresh data to the front end tools, EMF has
to periodically re-run all the analyses on new versions of source
code. In our implementation we chose a one week interval, but for
some tools and some quickly evolving ecosystems this might not be
enough. The main challenge here is that if we wish to have com-
pletely fresh data we need to re-run the analyses on every commit
to every project in the ecosystem. This is especially problematic if
the projects are hosted by a third party (e.g., GitHub, smalltalkhub)
which are not willing to give us notifications and full access at every
commit, requiring us to poll these repositories for changes. One way
this issue could be solved is if the code hosting providers offered a
cloud solution for running analyses on the source code. Much like
other “infrastructure as a service” solutions this should offer tool de-
velopers access to computing machines with preloaded source code
of required projects, allowing the developer access to fresh data and
providing a source of monetization for the hosting service.

If we manage to obtain every commit in real time there is still
the issue that for every commit we need to re-analyze the entire
ecosystem. Alternatively, we could express the analyses in such a
way as to operate on single commits (i.e., “diffs” in the source code)
which would make them much less elegant and understandable. Fur-
thermore we could define the analyses in terms of a model of the
ecosystem which is easier to update in real time, relying on source
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code only when absolutely necessary. In time, the model would have
to be updated as new user needs are identified.

8.2.2 Ecosystem Scope

Another important open question is how to define the scope of an
ecosystem. In our implementation we relied on a human maintained
meta-repository to define our ecosystem. It would be interesting to
try to find a way to express certain constraints that would define
the ecosystem of interest e.g., all projects using a particular library
or framework. This ecosystem definition would allow to automati-
cally extend or shrink the ecosystem scope as the individual projects
evolve e.g., adopt or abandon the library we are interested in.

An interesting recent development related to this question is the
joint project by GitHub and Google to bring all the GitHub Data to
Google’s BigQuery data analysis platform®. This enables developers
to query, using a SQL like query language, all the data on GitHub.
This could very well be used as an abstract definition off the scope
of an ecosystem, i.e., all projects matching a certain query are part
of the ecosystem. The limitation of using BigQuery as the basis for
EMF is that the query language provided is quite limited, and not
suitable for source code analysis.

Furthermore, we also must ask how much control over the ecosys-
tem scope should the tool developer have. In our implementation of
EMF, the ecosystem was pre-defined and all the tools were devel-
oped using data from all the ecosystem projects. This might not be a
good solution for some tools that require very domain specific data.
Allowing the developer to specify which parts of the ecosystem to
include or exclude on a per-tool basis might provide better results
for some tools.

8.2.3 Project History

Throughout this thesis we focused only on providing fresh data to
developer tools. This means that we ignore the history of the ecosys-
tem in favor of only acting on the newest versions of the projects.
This need not be so, and another version of EMF could offer a way
to analyse the source code of all previous versions of the projects as

Ihttps://cloud.google.com/bigquery/public-data/github
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well, opening up the space for a whole new type of ecosystem-aware
tools that include historical data.

Another source of historical data is the data gathered by previous
runs of EMF. Since EMF allows for unique identification of each
execution it is possible, as shown in the class name clash back end
example in Listing 3.2, to save the data from each execution in a
separate collection. This enables a historical overview of the data
gathered by the ecosystem-aware tool and rather then the history
of the project. This is important for monitoring the evolution of the
tool as well as the impact the tool is having on the ecosystem (e.g.,
the ecosystem-aware type guessing heuristics could shape the way
developers in the ecosystem name their method arguments).

8.2.4 Beyond Smalltalk

Much of the simplicity of writing tools with EMF is owed to the
reflective nature of Smalltalk. Smalltalk allows us to express both
the analyses and the tool front ends in the same general purpose
language with little or no need for additional knowledge or tools. In
order to port it to more popular languages such as Java we would
need a concise and expressive way to analyse the source code of
Java projects. This is mainly not trivial for other languages, and
we would need to use additional tools (e.g., Moose or Rascal) to
analyse the source code. The implications of these additional tools
on the ease of development using EMF is very much unknown.

In the future, it might also be worthwhile considering porting
EMF to cross language ecosystems e.g., the JVM ecosystem — the
ecosystem of all languages that compile to Java byte code. This
raises a whole new set of questions and challenges regarding inter-
language analysis, mapping concepts from one language to another,
etc. Many of these can be addressed by using a language agnostic
meta-model (e.g., Famix) but using any model reduces the amount
of available information so finding the right level of abstraction is
imperative. Projects such as Graal and Truffle [Wuel4| aim to bring
all languages to one virtual machine, with interlanguage interoper-
ability as a high priority. This might lead to a future where all
ecosystems could merge into one mega ecosystem, which would re-
quire researchers to rethink the very notion of an ecosystem.
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8.2.5 Beyond Source Code

Throughout this thesis we develop ecosystem-aware tools relying
only on source code of the projects in the ecosystem. Software
development today produces a wide range of different artifacts
that supplement the source code and are used as additional data
sources for ecosystem-aware tools. Including this additional data
into EMF would open new possibilities for developing different kinds
of ecosystem-aware tools, but also raise a series of challenges on how
to obtain, analyze or keep that data fresh.

8.2.6 Beyond Our Tools

Finally, we still need a comprehensive study on user needs when it
comes to ecosystem-aware tools. The tools we developed were based
on our own intuition and the need to demonstrate the features of
EMF. Even though our analyses show that ecosystem data improves
these tools, future work would be best served by finding exact user
needs, and ensuring that EMF can support tools that tackle those
problems. The work of Haenni et al. [HLSN13, HLSN14] would be
a good foundation for defining exact user needs.
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8.3 Summary

We propose a unified framework for developing ecosystem-aware
tools. By automating the routine parts of the process (defining
the ecosystem scope, loading individual projects, executing anal-
yses, gathering and providing the results, etc.) we enable the de-
veloper to focus only on answering the two important questions for
an ecosystem-aware tool — what data is needed from the ecosystem
and how should it be presented? A proof of concept framework is
implemented and four different ecosystem-aware tools where devel-
oped to illustrate that this type of framework is viable. Each of the
tools was evaluated resulting in several noteworthy observations.

The first tool we implemented was a type inference engine relying
on measuring the frequency of association between a message and a
type throughout the ecosystem source code. We find that this data is
helpful in identifying correct types and that it leads to a substantial
increase in the number of correctly inferred types.

The second tool aims to improve the time a developer spends
browsing documentation in order to find the name of a method for
a particular functionality. We conducted a case study which shows
that most API classes have only a small number of methods which
are frequently invoked. Guided by this observation we augmented a
documentation browser to show the most frequently invoked meth-
ods of the current class, thus aiding the developer to, in most cases,
quickly find the method of interest.

We further focused on type guessing, the process of concluding
the type of a method argument based on its name. We developed a
tool that generates a report on the state of the argument names in
the ecosystem. We used the report to formulate several new heuris-
tics for guessing types and also concluded that at least one in two
method arguments in Smalltalk projects contains a useful type hint
and that 1.44% of method arguments hint at multiple types. We
compared our guesses with run-time types and found that in 76%
of cases the type hint matches the run-time type.

And finally we mined the ecosystem for code snippets that pro-
duce objects in order to support several hypothesised tools. We
found that even a naive approach can extract snippets for almost
80% of the analyzed classes, but the snippets are of very poor qual-
ity. We also conclude that the best place to mine snippets that
instantiate a class is in the clients and the tests of the class.
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