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and monodromies, Christine Riedtmann for an interesting conversation about
Coxeter-Dynkin diagrams and Livio Liechti for explaining monotone signature
functions to me.

During my PhD, I have had the chance to meet many mathematicians at various
places. I especially would like to express my thanks for that to Christian Urech,
Elena Frenkel, Pierre Dehornoy, Maÿlis Limouzineau and Maria Hempel.
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Introduction

This thesis is situated in the mathematical field of low-dimensional topology which
studies manifolds of dimension four or less and their interrelations. Specifically, it
is about fibred links and their Seifert surfaces.

A link L in the three-sphere S3 is fibred if its complement S3\L can be filled by a
continuous family of surfaces that pairwise intersect in their common boundary L.
These surfaces, called fibre surfaces, are the main objects of study in this thesis.

Fibred links and their fibre surfaces exist in abundance and appear in various
settings – links of singularities, Lorenz links and, more generally, closures of posi-
tive braids are known to be fibred. Many other interesting classes of links have a
non-trivial intersection with the class of fibred links, for example alternating links,
rational links, hyperbolic links and pretzel links each have fibred and non-fibred
members. At the same moment, fibredness is an extremal property: for example,
the Alexander polynomial of a fibred link is always monic and has the maximal
possible degree for a link of its genus.

+ −

Figure 1: The positive and the negative Hopf band.

The basic example of a fibre surface is the Hopf band, an unknotted annulus
with a positive or negative full twist, illustrated in Figure 1. Using a geometric
operation called plumbing, or Murasugi sum, Hopf bands can be glued together
to form more complicated fibre surfaces (see for example Figure 2). The reverse
operation of deplumbing corresponds to removing a Hopf band, which amounts to
a surgery along an arc. By Giroux’ work on contact structures and open books
in three-manifolds, every fibre surface has a Hopf plumbing structure, that is, it
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can be obtained from the standard disc by a sequence of Hopf plumbings and
deplumbings. In fact, Giroux and Goodman prove in their article [GiGo] that
every pair of fibre surfaces in S3 has a common stabilisation, that is, a third fibre
surface which can be reached from both using plumbing only. In particular, every
fibre surface can be reached from the standard disc by some sequence of Hopf
plumbings, followed by some deplumbings.

Figure 2 shows an example of a fibre surface that can be obtained by Hopf
plumbing on the disc. Before we even discuss the precise definition of plumbing in
the next chapter, we trust the reader can already clearly see one particular way of
constructing this surface using Hopf bands.

Figure 2: An example of a fibre surface obtained by plumbing Hopf bands.

Our main goal is to study the plumbing structure of fibre surfaces. More pre-
cisely, the problem can be formulated as follows. Consider the graph whose vertices
are isotopy classes of fibred links (or, equivalently, fibre surfaces) and connect two
vertices whenever the associated surfaces are related by a single Hopf plumbing
or deplumbing. By Giroux and Goodman’s theorem, this graph is connected. We
think of the edges as being oriented in the direction of plumbing and decorated
by the sign of the Hopf band involved. Furthermore, we can refine our graph
by allowing multiple edges between vertices, namely one for each distinct way of
plumbing or deplumbing. This can be made precise by representing every vertex
by a fixed embedding of the corresponding fibre surface. Under this circumstance,
whenever S ′ is given by plumbing a Hopf band onto S, we obtain an embedding
i : S ↪→ S ′, and i is determined by the plumbing up to isotopy in the target S ′.
Every isotopy class of embeddings S ↪→ S ′ coming from a Hopf plumbing gives
rise to an edge in our refined graph. Denoting the refined graph by F , we ask for
the detailed structure of F .
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For example, we can ask the following basic questions:

• What can we say about the degree of a given vertex of F? For which vertices
is the number of incoming edges finite?

• Is the number of edges between two given vertices of F bounded? Is the
number of shortest paths between two given vertices bounded?

• Does F contain loops? Are the lengths of such loops bounded?

Summary of results

In Chapter 1 we collect and briefly discuss the basic notions used in the rest of the
thesis (fibred link, fibre surface, monodromy, Murasugi sum and Hopf plumbing,
Seifert form, Alexander polynomial) and give some examples of fibre surfaces and
fibred links.

Chapter 2 is a short note in which we prove the following statement about the
monodromy of a fibred knot.

Theorem 1. Let K be a fibred knot of genus g with monodromy ϕ. Then any
representation of ϕ as a product of Dehn twists involves at least 2g distinct factors.

This bound is sharp for fibred knots whose fibre surface is obtained by plumbing
Hopf bands. Melvin and Morton gave examples of fibre surfaces of genus two that
cannot be obtained as Hopf plumbings [MeMo], showing that the deplumbing
operation is indeed necessary for constructing all fibre surfaces. In terms of the
graph F (defined above), there exist vertices that cannot be reached from the
standard disc by an oriented path. In Chapter 3, we present another family of
examples for this phenomenon, consisting of genus one surfaces with two boundary
components (Theorem 2).

In Chapter 4, we consider edges pointing to a given vertex of F , that is, differ-
ent Hopf deplumbings from a given fibre surface. We restrict our attention to two
classes of fibred links, namely torus links and arborescent (or tree-like) plumbings
of positive Hopf bands (the surface in Figure 2 is in fact an example for both). It
turns out that the number of such inward edges is infinite in most of the cases,
with some interesting exceptions. The precise statements are formulated below in
terms of cutting arcs that preserve fibredness. These are properly embedded inter-
vals α in a given fibre surface S such that cutting S along α results in another fibre
surface. In certain cases, cutting along an arc has the same effect as deplumbing a
Hopf band, as indicated in Figure 3. This does not hold for arbitrary cutting arcs
that preserve fibredness. However, it is true for fibre surfaces whose monodromy
is right-veering (cf. Definition 6), which comprises all positive Hopf plumbings and
hence all torus links and positive tree-like Hopf plumbings.
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Theorem 3. Let n,m > 4 or n = 3,m > 6. Then the fibre surface S of the torus
link T (n,m) contains infinitely many homologically distinct cutting arcs preserving
fibredness.

Theorem 4. Let S be the fibre surface obtained by plumbing positive Hopf bands
according to a finite tree T . There are, up to isotopy, only finitely many cutting
arcs in S preserving fibredness, if and only if T is one of the Coxeter-Dynkin trees
An, Dn, E6, E7 or E8.

−→
S

Figure 3: Hopf deplumbing corresponds to cutting along an arc.

The proofs of Theorems 3 and 4 rely on a theorem by Buck et al. [BIRS],
characterising cutting arcs that preserve fibredness in terms of the monodromy.
It immediately implies the following theorem, which serves our purpose.

Theorem 5 (compare Theorem 1 in [BIRS]). Let L be a fibred link with fibre
surface S and right-veering monodromy ϕ : S → S. Then, a cutting arc α preserves
fibredness if and only if α ∩ ϕ(α) = ∂α after minimising isotopies on α and ϕ(α).

A simple method for constructing cutting arcs is to repeatedly apply the mon-
odromy to a given cutting arc. If S is a fibre surface with monodromy ϕ and
α ⊂ S is a cutting arc that preserves fibredness, then ϕn(α) is a cutting arc that
preserves fibredness, for every n ∈ Z. This method is not useful for proving The-
orem 3 though, since the monodromy of a torus link is periodic. However, we do
apply it to prove the following.

Theorem 6. Let S be a fibre surface whose monodromy ϕ : S → S is pseudo-
Anosov and right-veering. Assume that a Hopf band can be deplumbed from S.
Then S contains infinitely many non-isotopic cutting arcs preserving fibredness.

The contents of Chapter 4 will be published as an article in the Bulletin of
the SMF (Société Mathématique de France) and is available on the arXiv preprint
server, see [Mi1].
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A different approach to the study of plumbing structures is given in Chapter 5,
where we look at Hopf bands in arborescent Hopf plumbings, up to homology.

Theorem 7. Let T be a finite plane tree and S ⊂ S3 the corresponding positive
arborescent Hopf plumbed surface. Then the set of homology classes of Hopf bands
C1(S) is finite if and only if T is spherical.
In contrast, if T is hyperbolic and ∂ST is a knot, C1(S) consists of infinitely many
orbits of the monodromy.

Chapter 5 is published as an article preprint on arXiv, see [Mi2].

A short history of fibre surfaces and fibred links

The notion of a fibred knot goes back to the 1960s, when such knots were known
as Neuwirth knots. Indeed, Neuwirth [Ne1] had originally studied an algebraic
property of knots: for G = π1(S3 \ K) the fundamental group of a knot K, he
considered its commutator group [G,G] and proved that [G,G] is a free group of
rank 2g(K) if it is finitely generated. Here, g(K) denotes the minimal genus of all
Seifert surfaces for K. The geometric meaning of this algebraic assumption was
subsequently given by Stallings in 1961 [St1], who proved that the complement
of a Neuwirth knot has the structure of a surface bundle over the circle – the
definition of fibredness we use today. The commutator group plays the role of the
fundamental group of the associated fibre surface.

In 1962, Murasugi [Mu] described a geometric glueing operation to construct
Seifert surfaces from simple pieces. Using his operation, now known as the Mura-
sugi sum, he proved that the Alexander polynomial detects fibredness among al-
ternating links: if the (reduced) Alexander polynomial of an alternating link has
leading coefficient 1, then the link is fibred.

In 1968, Milnor [Mil] proved his fibration theorem for singularities of algebraic
hypersurfaces. Namely, every isolated singular point of a complex algebraic plane
curve C = {f(x, y) = 0} gives rise to a fibred link. Away from C, the argument
of the polynomial f defines a locally trivial fibre bundle over S1 when restricted
to a small sphere (real three-dimensional) around the singular point in question.
We come back to this construction in the next chapter in more detail.

Stallings’ Constructions of Fibered Knots and Links [St2] from 1978 consist of
three basic geometric operations on fibre surfaces: plumbing (a generalisation of
Murasugi’s glueing operation to arbitrary fibre surfaces), twisting (a Dehn surgery
along an unknotted zero framed curve on a fibre surface) and companionisation.
Through these operations, Stallings implicitly gave a myriad of new examples
of fibred links and fibre surfaces. Using the plumbing operation, he showed for
example that every positive braid link and, more generally, every homogeneous
braid link is fibred.
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Gabai emphasised the importance and usefulness of Murasugi’s and Stallings’
operations in his 1983 article The Murasugi Sum is a Natural Geometric Operation
(see [Ga1]), where he proved that Murasugi sums preserve fibredness (in both
directions; that is, a Murasugi sum of two surfaces is a fibre surface if and only if
both summands are), incompressibility and minimal genus.

As it turned out in 1982 through Harer’s work, Stallings’ constructions already
encompass all fibre surfaces in S3. More precisely, Harer proved [Ha, Theorem 1]
that every fibred link is related to the unknot via a sequence of Hopf plumbings,
Stallings twists, and Hopf deplumbings. He also asked whether the twisting op-
eration could be omitted. A positive answer, relying on Giroux’ work on contact
structures in 3-manifolds, was given by Giroux-Goodman [GiGo] in 2006: every
fibre surface in the three-sphere can be obtained from the standard disc by plumb-
ing and deplumbing Hopf bands. In 1986, Melvin and Morton [MeMo] gave a
family of examples showing that deplumbing is indeed necessary for constructing
all fibre surfaces.

We have mentioned Murasugi’s result that an alternating link whose Alexan-
der polynomial has leading coefficient 1 is fibred. This criterion does not carry
over to arbitrary links – take for example the connected sum of any fibred link
with any nontrivial knot with Alexander polynomial 1 (the constant polynomial).
Knot Floer homology, which can be seen as a refined (or, categorified) version of
the Alexander polynomial, does however detect fibredness among all links. An
important step was done by Ghiggini, who gave a strategy for proving the conjec-
ture and settled it for genus one knots. Using Ghiggini’s strategy, Ni proved the
general result in his thesis in 2007 (see [Ni1, Ni2]). The proof also relies on work
by Gabai and Ozsváth-Szabó. Another aspect in this context is the uniqueness of
minimal genus Seifert surfaces. Fibred links do have a unique Seifert surface of
minimal genus, namely their fibre surface (see [Ko]). Juhász proved [Ju] (see also
[Ban]) that the top rank of knot Floer homology bounds the number of distinct
Seifert surfaces of minimal genus g for a given knot K, as follows: if n > 0 is an

integer such that rank ĤFK(K, g) < 2n+1, then K has at most n pairwise disjoint
non-isotopic genus g Seifert surfaces.

More recently, intervals with endpoints on the boundary of a Seifert surface
turned out to be very useful objects in the context of fibredness, in two ways.
First, Baader and Graf [BaGr] (see also Graf’s thesis [Gr]) gave a new charac-
terisation of fibre surfaces in 2014. They proved that a Seifert surface S is a
fibre surface if and only if every elastic chord lying on the positive side of S with
ends attached to the boundary can be taken to the negative side of S through
S3 \ S. Second, Buck et al. [BIRS] gave a simple characterisation of cutting arcs
that preserve fibredness in terms of the monodromy, which we use in Chapter 4
to study deplumbings from given fibre surfaces. In fact, the effect of deplumbing
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a Hopf band H from a Seifert surface S can equally be achieved by cutting S
along a properly embedded arc α ⊂ S (take a spanning arc of H, compare Fig-
ure 3). Passing from Hopf deplumbings to cutting arcs that preserve fibredness,
Buck et al. show that a cutting arc either corresponds to a Hopf deplumbing or
to a certain generalised Hopf deplumbing. Since generalised deplumbing does not
appear for the particular families of fibre surfaces we study here, deplumbing and
fibredness-preserving cutting are the same.

While the above short history highlights developments that concern this thesis,
fibred links and fibre surfaces have also been looked at from different angles; for
example via branched coverings (see Birman [Bir]), in connection with concordance
of knots and contact structures (see for example Baker [Bak]), as well as in three-
manifolds other than S3 and in higher dimensions.
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Chapter 1

Preliminaries

1 Fibre surfaces and monodromy

Knots, links and Seifert surfaces are understood to be smooth, compact, oriented
and embedded in the three-dimensional sphere S3, and are considered up to smooth
ambient isotopy (smooth deformation through a family of diffeomorphisms of the
ambient space S3). For S to be a Seifert surface for a link L = ∂S, we always
require that the orientations of L and S be compatible and S be connected.

For an introduction to knot theory we refer to Rolfsen’s book [Ro] and to the
book by Burde and Zieschang [BZH].

Definition 1. A Seifert surface S ⊂ S3 is called a fibre surface if its interior S̊ is
the fibre of a locally trivial fibre bundle p : S3 \ ∂S → S1.

Definition 2. A link L ⊂ S3 is fibred if it is the boundary of a fibre surface.

A fibre surface S always comes with a mapping class ϕ : S → S called the
monodromy, fixing ∂S pointwise, which captures how the fibres organise around
the boundary link L = ∂S. There are several ways of describing the monodromy
map; since it plays a crucial role in the study of fibred links and fibre surfaces,
we review some of these below. Let p : S3 \ ∂S → S1 be the locally trivial fibre
bundle associated to the fibre surface S.

Monodromy as a glueing map

If we cut open the base circle S1, we obtain an interval I over which p restricts
to a trivial bundle p−1(I) ∼= S̊ × I since I is contractible. The monodromy is the
glueing map ϕ : S → S necessary to recover the original bundle over S1, that is,
S3 ∼= (S × [0, 2π])/∼, where (p, 2π) ∼ (ϕ(p), 0) for p ∈ S and (p, t) ∼ (p, t′) for
p ∈ ∂S. In this way, S3 \ ∂S becomes the mapping torus of ϕ|S̊. The idea of
cutting the base circle S1 open can also be used to construct the infinite cyclic
cover of S3 \ ∂S. In that picture, the lift of the monodromy generates the group
of deck transformations.
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Monodromy as the flow of a vector field

We assume that the fibre bundle map p is given by a submersion. Since the fibre
surface S is oriented, it carries a field of normal vectors, and so do all the fibres of
the fibre bundle p. Organise these normal vectors to a vector field Θ on S3 that
projects to a unit tangent vector field on S1. By continuity, Θ vanishes on ∂S,
where p is not defined. Let ϕt be the flow of Θ and assume that S̊ = p−1(1). By
construction, ϕt maps the fibre p−1(1) to the fibre p−1(eit), and ϕ2π : S → S is the
monodromy. In terms of the previous description, Θ is given by the vertical unit
vector field on S × [0, 2π].

Monodromy in terms of proper arcs

An even more pictorial way to understand the monodromy of a fibre surface is given
by its action on properly embedded arcs. Under the flow ϕt of the monodromy
vector field described above, the fibre surface S turns around its boundary ∂S
through S3. In particular, every figure drawn on S is moved through S3 \ S by ϕt
when t runs from 0 to 2π. In this sense, every arc α ⊂ S with endpoints on ∂S
can be dragged from one side of S to the other while keeping its endpoints fixed.

Sϕπ(α)

α ϕ2π(α)

Figure 1.1: A Seifert surface of the positive trefoil knot and a proper arc α.

During this process, the interior of α stays in the different fibres of the fibre
bundle and does therefore not intersect S, except at the initial and at the final
moment. When it returns to S from below, α takes a new position on S, namely
ϕ2π(α). Thus, the monodromy can be studied by looking at how it acts on properly
embedded arcs. This is explained in detail in Graf’s thesis [Gr].

10



In [BaGr], Baader and Graf prove the following characterisation of fibre surfaces
among all Seifert surfaces.

Theorem (see [BaGr], Theorem 2.1). Let S ⊂ S3 be a Seifert surface. If every
arc α ⊂ S can be dragged to the other side of S, then S is a fibre surface.

As a corollary, Baader and Graf obtain a new and simple proof of the fact that
Murasugi sums preserve fibredness (see Section 3 for the definition of Murasugi
sum). Since it suffices to check the assumption of the above theorem for finitely
many arcs that cut the surface into discs, it also provides a practical method to
check fibredness of a given Seifert surface in simple cases.

Periodic, pseudo-Anosov and reducible monodromies

As a surface mapping class, the monodromy is subject to the Nielsen-Thurston clas-
sification of surface diffeomorphisms into periodic, pseudo-Anosov and reducible
mapping classes [Th1, FLP, FM]. The geometry of the fibred link’s complement
reflects these types as follows [Th2, Th3].

type of monodromy fibred link complement

periodic Seifert fibred

pseudo-Anosov complete hyperbolic metric of finite volume

reducible existence of an incompressible torus

All types of mapping classes are in fact realised by monodromies of fibred knots,
although not all individual mapping classes are. Examples proving the first part
of the statement are discussed in detail in the Section 4 below. The next chapter,
Chapter 2, discusses an obstruction to the realisability of a given mapping class as
monodromy of a fibred knot, in terms of word length in the mapping class group.

2 The Seifert form and the monodromy

For fibre surfaces, the Seifert form has a close relation to the monodromy, as we
explain below.

Definition 3. The Seifert form of a Seifert surface S is the bilinear form

(. , .) : H1(S,Z)×H1(S,Z) −→ Z

defined on homology classes of simple closed curves α, β ⊂ S by

(α, β) = lk(α, β+),

where β+ ⊂ S3\S is the curve obtained by pushing β off S in the normal direction
given by the orientation of S, and lk denotes the linking number of two knots in S3.
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If S is a fibre surface and ϕt is the flow of the monodromy vector field, we
can take β+ = ϕπ(β) in the above definition. This has the following consequence
(see [Sa, Lemma 8.3]).

Lemma 1 (see [Sa]). Let S be a fibre surface with monodromy ϕ : S → S and
Seifert form (. , .). Let ϕ∗ : H1(S,Z) → H1(S,Z) be the linear map on homology
induced by ϕ. Then (v, w) = (ϕ∗w, v), for all v, w ∈ H1(S,Z).

Proof. We use the flow ϕt of the monodromy vector field again. By definition of
the flow and the monodromy, we have ϕ = ϕ2π = ϕπ ◦ ϕπ. It suffices to check the
assertion for v, w ∈ H1(S,Z) represented by simple closed curves α, β. Using the
symmetry of the linking number and the fact that ϕπ arises from an isotopy, it
follows

(v, w) = lk(α, ϕπ(β)) = lk(ϕπ(α), ϕ2π(β))

= lk(ϕπ(α), ϕ(β)) = lk(ϕ(β), ϕπ(α)) = (ϕ∗w, v).

In a basis e1, . . . , en of H1(S,Z), the Seifert form and the monodromy are given
by matrices A and M , respectively. Concretely, if x, y are the coordinate vectors
of v, w ∈ H1(S,Z), we have x>Ay = (v, w), and My is the coordinate vector of
ϕ∗w. The above lemma then reads

A = A>M, or M = A−>A.

Indeed, the Seifert matrix A of a fibre surface is always invertible over Z; com-
pare [BZH, Lemma 8.6].

The Alexander polynomial and the monodromy

Let L be a link and let S be a Seifert surface for L. As before, choose a basis of
H1(S,Z) and denote the corresponding Seifert matrix by A. Then the Alexander
polynomial ∆L ∈ Z[t] can be defined as follows:

∆L(t) = det(tA− A>) = det(tA> − A).

It is symmetric in the following sense: ∆L(1/t) = (−t)−n∆L(t), where n denotes
the rank of H1(S,Z). Suppose now that L is a fibred link. Then det(A) = ±1 and
M = A−>A, as mentioned above. Therefore we obtain the following, where I is
the n× n identity matrix.

∆L(t) = det(tA> − A) = det(A>) det(tI − A−>A) = ± det(tI −M).

12



In other words, the Alexander polynomial of a fibred link is the characteristic
polynomial of the monodromy M . In particular, the zeros of ∆L are the eigenvalues
of M . Moreover, ∆L is monic (that is, its leading coefficient is ±1) and of degree n.
If L is a knot, n = 2g, where g is the genus of L (since M acts on the homology
of a fibre surface, which has minimal genus). If L is a link with r components,
n = 2g + r − 1. Note also that the characteristic polynomials of M and M−1

coincide.

3 Geometric operations on fibre surfaces

Murasugi sum and Hopf plumbing

Given two disjoint and unlinked Seifert surfaces S1 and S2 in the three-sphere and
discs D1 ⊂ S1, D2 ⊂ S2 as shown in Figure 1.2, we can glue them together by
matching the discs. The resulting surface is said to be a Murasugi sum of S1, S2.

−→

D1

D2

S1

S2

S

D

→

→

Figure 1.2: The Murasugi sum of two Seifert surfaces.

Here is a more precise definition.

Definition 4. A Seifert surface S is a Murasugi sum of two other Seifert surfaces
S1 and S2 along D if the following conditions hold (after suitable isotopies of S1

and S2).

• S = S1 ∪ S2,

• D = S1 ∩ S2 is a disc whose boundary is contained in ∂S1 ∪ ∂S2,

• S1 and S2 are separated by a two-sphere.

The last point means that there exist three-dimensional balls B1 ⊃ S1 and B2 ⊃ S2

whose union is S3, B1 ∩B2 = ∂B1 = ∂B2 and ∂B1 ∩ S = ∂B2 ∩ S = D. This is to
prevent the summand surfaces S1 and S2 from linking.
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The Murasugi sum plays an essential role in the study of fibre surfaces, since
it does in fact preserve fibredness in both directions, and the monodromy of a
Murasugi sum can easily be computed from the monodromies of the summands:

Theorem ([St2, Ga2]). Let S be a Murasugi sum of two Seifert surfaces S1, S2.
Then S is a fibre surface if and only if both S1 and S2 are fibre surfaces. If ϕ, ϕ1, ϕ2

are the monodromies of S, S1, S2 respectively, and S2 is glued on top of S1 (that
is, on the positive side), then ϕ = ϕ1 ◦ ϕ2, where ϕ1 and ϕ2 are extended to maps
on S by the identity.

One implication was proved by Stallings in 1978 (the Murasugi sum of two
fibre surfaces is a fibre surface), whereas the converse is due to Gabai in 1983. The
Murasugi sum generalises the boundary connected sum of two Seifert surfaces as
shown in Figure 1.3.

S2

S1

D1

D2

S

D−→

Figure 1.3: The connected sum of two Seifert surfaces is a Murasugi sum.

Gabai generalised the additivity of the genus to Murasugi sums, in the following
sense: if S1 and S2 are minimal genus Seifert surfaces, then every Murasugi sum
S of S1 and S2 is of minimal genus for the link ∂S. In addition, the Murasugi sum
of two incompressible Seifert surfaces is incompressible [Ga1].

−→

−→

=

below

top

Figure 1.4: Hopf plumbing on top or from below a surface has the same effect.

Another special case of the Murasugi sum is Hopf plumbing, where one of the
two summands is a positive or negative Hopf band (compare Figure 1.5). In order
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to define the plumbing of a Hopf band H onto a Seifert surface S, it suffices to
specify an embedded interval α ⊂ S with endpoints on the boundary which is
nowhere tangent to ∂S (an arc for short). The glueing disc D ⊂ S is a rectangular
neighbourhood of α in S. In fact, the resulting Seifert surface only depends on
the sign of the Hopf band and the isotopy class of α in S. Figure 1.4 proves that
it does not matter from which side of S the Hopf band is plumbed. However, the
side from which the Hopf band is plumbed does in general have an effect on the
monodromy when writing it as a composition of the summand monodromies.

H

S

α

D

−→
S ∪H

Figure 1.5: Plumbing a Hopf band H to a surface S along α.

Since the monodromy of a positive (negative) Hopf band is a positive (negative)
Dehn twist along its core curve (this can be seen by dragging proper arcs, for
example), the above theorem has the following corollary.

Corollary 1. If S is given as an iterated plumbing of Hopf bands on the standard
disc, the monodromy of S is a composition of Dehn twists along the core curves
of these Hopf bands. The signs of the Dehn twists correspond to those of the Hopf
bands.
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4 Examples

4.1 Links of singularities

Given an algebraic curve C ⊂ C2 defined by a two-variable polynomial f ∈ C[x, y],
that is, C = {(x, y) ∈ C2 | f(x, y) = 0}, consider a small sphere S3

ε ⊂ C2 ∼= R4

centered at an isolated singular point q ∈ C. The intersection L = C ∩S3
ε is a link

in the three-sphere S3
ε . Near q, the curve C is a cone over L with cone point q,

so the local topology of the pair (C,C2) near q is completely determined by the
link L. Milnor [Mil] proved that the argument map

arg(f) =
f

|f | : S3
ε \ L→ S1

is a locally trivial fibre bundle. Thus, every link L arising in this way is a fibred
link, and the fibres of arg(f) are the associated fibre surfaces. In fact, each of
these links of complex plane curve singularities is an iterated cable on the unknot,
where the so-called Puiseux inequalities characterise the cabling coefficients that
can appear (see [BK, EN]).

Torus links

If a, b are positive integers, the (a, b)-cable of the unknot is the torus link T (a, b),
realised by the polynomial f = ya− xb. Here, S3

ε can be taken to be the sphere of
radius one and center (0, 0), so the link is explicitly given by

L = {(x, y) ∈ C2 | xb = ya, |x|2 + |y|2 = 1} ⊂ S3.

In polar coordinates (x, y) = (reiα, seiβ) ∈ L, the conditions on x and y read

ra = sb, r2 + s2 = 1, aβ − bα ∈ 2πZ.

Since the pair (r, s) ∈ [0, 1]2 is uniquely determined by the first two equations,
we have L ⊂ (r · S1) × (s · S1), so L is contained in the surface of a standard
torus T 2. By the last condition, L consists of d = gcd(a, b) parallel curves that
each make a/d turns, respectively b/d turns in the meridional and longitudinal
direction. In other words, L represents the class (a, b) in Z2 ∼= H1(T 2,Z). Note
that orientations play a role here: the negative trefoil knot does not appear as the
link of a singularity, and neither does the link obtained from T (2, 2n) by switching
one of its component’s orientations. In fact, every link of a singularity is the closure
of a positive braid (see [BK]).
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The monodromy of a torus link is periodic

The following description of the monodromy of a torus link T (a, b) is perhaps
best suited to see its periodicity. We assume for simplicity that a, b are coprime.
Observe that the defining polynomial f = ya−xb is quasihomogeneous with weights
w(x) = a, w(y) = b and quasihomogeneous degree ab, that is,

f(ζax, ζby) = ζabf(x, y), ∀ζ ∈ C.

In particular, taking ζ = ζt = exp(2πit/ab), we conclude that

ϕt : C2 → C2, (x, y) 7→ (ζat x, ζ
b
t y)

defines a smooth family of diffeomorphisms from the fibre {arg(f) = 1} to the
fibre {arg(f) = e2πit}. Up to adding a fractional Dehn twist along the fibre sur-
face boundary (in order to have ϕt restrict to the identity on L), ϕt describes the
monodromy flow. Since (ϕ1)ab is the identity, the monodromy of T (a, b) is (freely)
isotopic to a periodic diffeomorphism, as is the monodromy of any quasihomoge-
neous singularity link.

While every fibred knot with periodic monodromy is necessarily a torus knot
(see [Gr]), there exist fibred links with periodic monodromy which are not torus
links. For example, the polynomial xy2 − x5 is quasihomogeneous with weights
w(x) = 1, w(y) = 2 and quasihomogeneous degree 5, but the associated link at 0 is
not a torus link. However, the monodromy of a singularity does always decompose
into periodic pieces in the sense of Nielsen and Thurston’s classification, which
can be computed using a blow-up diagram of the singularity (compare [AC3]).
A fibred link whose monodromy is pseudo-Anosov (such as the figure eight knot)
can therefore not be the link of a singularity.

4.2 Positive braids and homogeneous braids

A braid with n strands is positive if it can be written as a product of the standard
generators σ1, . . . , σn−1 of the braid group on n strands (all of which have to occur
at least once), without using their inverses (see Figure 1.6, left, for an example).
The i-th standard generator σi consists of the i-th strand overcrossing the (i+1)-st
strand bottom-up, that is, a positive crossing. Closures of positive braids generalise
links of singularities. For example, the torus link T (a, b) can be written as the
closure of (σ1 · · ·σa−1)b. In turn, a positive braid is a special case of a homogeneous
braid. A braid is homogeneous if each generator σi occurs to the same exponent
εi ∈ {+1,−1}. In other words, a braid is homogeneous if all crossings between
any two neighbouring strands are of the same sign. The following theorem is due
to Stallings.
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Theorem ([St2], Theorem 2). The closure of any homogeneous braid is fibred, and
the associated fibre surface is an iterated plumbing of Hopf bands.

Proof. Let β be a homogeneous braid and let S be the associated standard Seifert
surface of the closure of β. That is, S is constructed by taking a vertical disc for
each strand and glueing half-twisted bands, one for each crossing, as in Figure 1.6.
Now consider the two leftmost vertical discs D1, D2 and between them the top
two half-twisted bands b1, b2 (if there is only one band, we can reduce the number
of strands by a destabilisation). Now connect the two intervals along which b1 is
attached to D1 and D2 by an arc α ⊂ D1 ∪ b2 ∪D2. Observe that S is obtained
from S \b1 by plumbing a Hopf band along α. Here we use that the two half twists
of b1 and b2 add up to a full twist, which holds by the homogeneity of β. Finally,
S \ b1 is again the standard Seifert surface of a homogeneous braid, with fewer
crossings, and the claim follows by induction on the braid word length.

Figure 1.6: Left to right: the positive braid σ1σ
2
2(σ1σ2)2, its associated fibre surface,

an isotopic copy thereof and the associated brick diagram.

A positive braid can be represented by a brick diagram obtained from a braid
diagram (drawn vertically) by replacing every crossing by a short horizontal bar
connecting the involved strands, as indicated in Figure 1.6. The brick diagram of
a braid can be identified with a spine of the associated standard Seifert surface S,
and the bricks correspond to positive Hopf bands in S. The monodromy of S is
the product of positive Dehn twists along these Hopf bands, applied in the order
from top left to bottom right brick, column by column.
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4.3 Other examples

Another interesting family of fibre surfaces are the tree-like Hopf plumbings, given
by plumbing Hopf bands together according to a finite plane tree. They are the
protagonists of Chapter 5, and they also appear in Chapter 4.

The fibred links given in [MeMo] cannot be obtained by plumbing Hopf bands
and are therefore not the closures of homogeneous braids, by the above theorem.
Similarly, our examples in Chapter 3 (see Figure 3.1) cannot arise as homogeneous
braids for this reason.

Examples of non-fibred links can easily be found by realising a non-monic
Alexander polynomial. For example, the twist knots are not fibred except for
the positive and negative trefoil knot and the figure eight knot. At least for twist
knots with an even number of half twists, this can be seen without referring to
the Alexander polynomial, as follows. If L is the twist knot with n full twists, a
Seifert surface S for L can be constructed by plumbing a Hopf band to an annulus
A with n full twists and unknotted core curve. Since L is not the unknot, S has
the minimal genus (one). If it is a fibre surface, the annulus A is a fibre surface,
since deplumbing preserves fibredness. Using Baader and Graf’s characterisation
of fibre surfaces in terms of proper arcs (described in Section 1), we only have to
check whether the unique non-separating arc α ⊂ A can be dragged to the other
side. If this were possible, α would trace out a disc D under the monodromy flow,
and the interiors of D and A would not intersect. In particular, the linking num-
ber of the core curve of A with a curve interior to D and parallel to its boundary
would have to be zero. This is only possible if |n| = 1, that is, if A is a positive or
a negative Hopf band.
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Chapter 2

The Dehn twist length of the monodromy

In this short chapter, we prove the following theorem, which gives a restriction to
the surface mapping classes that are realised by monodromies of fibred knots.

Theorem 1. Let K be a fibred knot of genus g with monodromy ϕ. Then any
representation of ϕ as a product of Dehn twists involves at least 2g distinct factors.

Recall from the previous chapter that the monodromy of an iterated Hopf
plumbing involving n Hopf bands is a product of n Dehn twists. Hopf plumbing
decreases the Euler characteristic of a surface by one. A surface of genus g with
one boundary component has Euler characteristic 1 − 2g. Therefore, if a fibred
knot can be obtained from the unknot by Hopf plumbing, its monodromy can be
written as a product of 2g Dehn twists. So the above bound on the number of
Dehn twist factors is sharp.

The proof of Theorem 1 has three main ingredients. Firstly, the Alexander
polynomial ∆K(t) ∈ Z[t] of a fibred knot K with fibre surface Σ equals the char-
acteristic polynomial of the homological action ϕ∗ : H1(Σ,R) → H1(Σ,R) of the
monodromy ϕ, that is

∆K(t) = χϕ∗(t) = det(t id− ϕ∗).

Secondly, if K is a knot, ∆K(1) = 1. This does not hold for links of more than
one component. In fact, ∆L(1) = 0 if L is a link with at least two components.
Thirdly, the homological action of a Dehn twist T about a simple closed curve γ in
Σ can be described as follows. Let α be any simple closed curve in Σ and denote
by a = [α] and c = [γ] the classes of α and γ in H1(Σ,R). Then we have (see [FM])

T∗(a) = a+ i(a, c)c,

where i(. , .) denotes the intersection pairing.

Proof of Theorem 1. Suppose to the contrary that ϕ could be written as a product
of Dehn twists with n < 2g distinct factors T1, . . . , Tn, where Tj = Tcj denotes a
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Dehn twist about a simple closed curve cj in Σ. Let

V = 〈[c1], . . . , [cn]〉 < H1(Σ,R)

be the subspace of H1(Σ,R) spanned by the classes of the cj. Consider the orthog-
onal complement of V in H1(Σ,R) with respect to the intersection form i,

V ⊥ = {x ∈ H1(Σ,R) | i(x, y) = 0 ∀y ∈ V }.

Since dimV 6 n < 2g = dimH1(Σ,R) and i is non-degenerate, we have dimV ⊥ >
2g − n > 0, i.e. there exists a non-zero vector v ∈ V ⊥. We claim that v is an
eigenvector of ϕ∗ : H1(Σ,R) → H1(Σ,R) for the eigenvalue 1. Indeed, we may
write v as a finite linear combination v = λ1a1 + . . .+λrar, with λk ∈ R and where
a1, . . . , ar ∈ H1(Σ,R) can be represented by simple closed curves α1, . . . , αr in Σ.
For every fixed k ∈ {1, . . . , r}, we have

Tk(v) =
r∑

j=1

λjTk(aj) =
r∑

j=1

λj(aj + i(aj, ck)ck)

=
r∑

j=1

λjaj + i(
r∑

j=1

λjaj, ck)ck = v + i(v, ck)ck = v + 0 · ck,

hence ϕ∗(v) = v as claimed. But then, 1 = ∆K(1) = χϕ∗(1) = 0, a contradiction.
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Chapter 3

Fibred links of genus one that cannot be
obtained by plumbing Hopf bands

There are infinitely many (hyperbolic) fibred two component links of genus one
that cannot be obtained by Hopf plumbing. We show this by finding a simple
obstruction to the Alexander polynomials of links that are plumbings of three
Hopf bands, as it was done by Melvin and Morton for genus two [MeMo].

Theorem 2. Let c be an even integer, |c| > 6. Then none of the (two component,
genus one, fibred, hyperbolic) links Kc depicted in Figure 3.1 can be obtained by
Hopf plumbing. They can all be distinguished by their Alexander polynomials.

2(c− 4) crossings

Figure 3.1: The link Kc with ∆Kc(t) = t3 − ct2 + ct − 1 with its fibre surface.
If 2(c− 4) < 0, the corresponding crossings are negative.

Recall the definition of Hopf plumbing as the Murasugi sum of a Seifert surface
S with a Hopf band H from Chapter 1. The resulting surface only depends on the
free isotopy class of an arc α ⊂ S whose neighbourhood is the glueing disc used
for the plumbing. Note that Hopf plumbing decreases the Euler characteristic of
the surface by one and changes the number of link components by ±1, depending
on whether the endpoints of α lie on the same or on different components of ∂S.
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Therefore, a surface obtained from the disc by successively plumbing at most three
Hopf bands has either genus zero (and at most four boundary components) or genus
one (and at most two boundary components). Since a Hopf band is homeomorphic
to an annulus, there are only two types of arcs (up to isotopy). One class consists
of arcs joining the two boundary circles and the other arcs have their endpoints on
the same boundary component. Thus the only possible Hopf plumbings involving
two bands are:

• The positive and negative trefoil fibre surfaces, obtained by plumbing two Hopf
bands of the same sign.

• The figure eight knot fibre surface, obtained by plumbing a positive and a neg-
ative Hopf band.

• The connected sum of two Hopf bands (which arises by plumbing along an arc
that separates off a disc).

In the first two cases, we obtain a torus with one boundary component, whereas
the result is a pair of pants in the last case. The next step is to consider plumbing
a third Hopf band, which yields already an infinite number of possible links. The
following lemma describes the possible Alexander polynomials that can occur.

Lemma 2. Suppose the surface S ⊂ S3 is obtained by plumbing three Hopf bands
and let K = ∂S be the two component link bounded by S. Then the Alexander
polynomial of K takes the form

∆K(t) = t3 − ct2 + ct− 1, c = ±p2 ± q2 ± pq + η,

where η ∈ {2, 4} and p, q ∈ Z are either both zero or coprime.

Proof. We have to study a Hopf plumbing S = S ′ ∪H, where S ′ itself is built up
of two plumbed Hopf bands. Denote the core curves of the three Hopf bands by
e1, e2 ⊂ S ′ and e3 ⊂ H. Up to orientations to be chosen, (e1, e2, e3) form a basis
of H1(S,Z). In order to compute ∆K for K = ∂S, it suffices to know the Seifert
Matrix M with respect to this basis, whose entry Mij is the linking number of ei
with ej pushed slightly off S in the normal direction. So the diagonal entries will be
±1, depending on the signs of the respective Hopf bands. If S ′ was the connected
sum of two Hopf bands, e1 and e2 are disjoint and do not link, so M12 = M21 = 0
in this case. Otherwise, S ′ is a torus, and e1, e2 intersect transversely in one point.
We may choose the orientations and the order of e1 and e2 in such a way that
M12 = 1 and M21 = 0. The remaining entries involve linkings with e3. If again S ′

is the connected sum, then S ′ is a pair of pants, so there are only nine free isotopy
classes of arcs α = e3 ∩ S ′:
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• For every boundary component, there is a class of arcs that cobound a disc with
the boundary component.

• For every boundary component, there is a class of arcs that do not cobound a
disc with the boundary.

• For every pair of distinct boundary components, there is exactly one isotopy
class of arcs connecting them.

For the first six cases, one obtains a diagonal Seifert matrix M . (In the first three
cases, e3 can even be chosen to be disjoint from and not linked with e1, e2.) In
the last three cases, α intersects each of e1 and e2 transversely in at most one
point. So we have for each i ∈ {1, 2} that Mi3M3i = 0 and at most one of Mi3 or
M3i is ±1. However, we may choose the orientations of the ei, the side of S ′ on
which we plumb H as well as the orientation of S such that M31 = M32 = 0 and
M13,M23 ∈ {0, 1}. Indeed, changing the orientation of S results in transposing the
Seifert matrix, so the Alexander polynomial will not be affected (up to factors of
±t±1). Put differently, plumbing H on the other side results in the same link, and
it is known that the fibre surface of a fibred link is unique up to isotopy (see [Ko]).
On the other hand, if S ′ is a torus, then α = e3 ∩ S ′ is determined up to isotopy
by two coprime integers p and q (namely the algebraic intersection numbers of α
with e1 and e2). Again we may choose the orientation of S and the side where the
Hopf band H is plumbed, so M31 = M32 = 0 and M13 = p, M23 = q (because the
pushed off curve e3 will link the other curves exactly where they intersected on S).
We therefore obtain the Seifert matrix

M =



±1 ε p

0 ±1 q

0 0 ±1


 ,

where ε ∈ {0, 1} is the intersection number of e1 and e2. We can now compute the
Alexander polynomial of K = ∂S:

∆K(t) = det(tM −M>) = ±(t− 1)3 − t(t− 1)(±ε2 ± p2 ± q2 ± εpq).

Normalising to have leading coefficient +1, we obtain

c = 3± ε± p2 ± q2 ± εpq

for the two middle coefficients. If S ′ was a pair of pants (that is, ε = 0), the entries
p and q can each take the values 0 or 1, so we find a finite number of possible middle
coefficients: c ∈ {1, 2, 3, 4, 5}, and they can all be written as claimed. Otherwise
(S ′ is a torus, ε = 1), we have c = ±p2 ± q2 ± pq + η with η = 3 ± 1 ∈ {2, 4} as
claimed.
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Remark 1. One obtains c = 1, 3, 5 for the following links in Rolfsen’s notation:
L4a1 (c = 1), L5a1 (Whitehead link, c = 3), L6a1 (c = 5), whereas c = 2, 4 can
be achieved by taking the connected sum of the figure eight knot or a (positive or
negative) trefoil knot with a (positive or negative) Hopf link. For the connected
sum of three Hopf bands, c = 3 as well.

Corollary 2. Assume K is a link with ∆K(t) = t3− ct2 + ct− 1 such that c ∈ 2Z
and |c| > 6. Then K cannot be obtained by plumbing three Hopf bands.

Proof. Suppose to the contrary K were a plumbing of three Hopf bands. Then
the middle coefficient c of ∆K from Lemma 2 reduces to p2 + q2 + pq mod 2. If
pq = 0, then |c| < 6. Otherwise p, q are coprime and nonzero, whence p and q
cannot be both 0 mod 2. But then, c ≡ p2 + q2 + pq ≡ 1 mod 2, so c is odd.

Given any monic polynomial f(t) ∈ Z[t] of odd degree with f(0) = 0 and
f(t) = −tdeg ff(t−1), Stoimenow constructs in [Sto] explicitly a fibred hyperbolic
two component link K that has Alexander polynomial f(t). Using his algorithm,
one obtains the fibred links Kc with Alexander polynomials t3−ct2+ct−1 depicted
in Figure 3.1. These links are fibred, hyperbolic and of genus one by Stoimenow’s
work. By Corollary 2, they cannot be obtained as plumbings of three Hopf bands
if c is even and |c| > 6. We thus obtain the theorem stated at the beginning:

Theorem 2. Let c be an even integer, |c| > 6. Then none of the (two component,
genus one, fibred, hyperbolic) links Kc depicted in Figure 3.1 can be obtained by
Hopf plumbing. They can all be distinguished by their Alexander polynomials.

It would be interesting to study geometric properties of this family of fibred
links; for example:

Question. How does the geometric dilatation of the (pseudo-Anosov) monodromy
behave with respect to its homological dilatation? Can the monodromy be written
as a product of three Dehn twists?
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Chapter 4

Cutting arcs for torus links and trees

The content of this chapter will be published in the form of an article in the
Bulletin de la Société Mathématique de France and is also available on the arXiv
preprint server [Mi1].

Among all torus links, we characterise those arising as links of simple plane
curve singularities by the property that their fibre surfaces admit only a finite
number of cutting arcs that preserve fibredness. The same property allows a
characterisation of Coxeter-Dynkin trees (i.e., An, Dn, E6, E7 and E8) among all
positive tree-like Hopf plumbings.

1 Introduction

Let L ⊂ S3 be a fibred link with fibre surface S. Cutting S along a properly
embedded interval α (an arc for short) results in another Seifert surface S ′ for
another link ∂S ′ = L′. If L′ is again a fibred link with fibre S ′, we say that α
preserves fibredness. For example, α could be the spanning arc of a plumbed Hopf
band, and cutting along α amounts to deplumbing that Hopf band. In [BIRS],
Buck et al. give a simple criterion for when an arc preserves fibredness in terms of
the monodromy ϕ : S → S. As a corollary, they prove that each of the torus links
of type T (2, n) admits only a finite number of such arcs up to isotopy. It turns
out that among torus links, this is an exception:

Theorem 3. Let n,m > 4 or n = 3,m > 6. Then the fibre surface S of the torus
link T (n,m) contains infinitely many homologically distinct cutting arcs preserving
fibredness.

The remaining torus links T (2, n), T (3, 3), T (3, 4) and T (3, 5) happen to be
exactly those torus links that can also be obtained as plumbings of positive Hopf
bands according to a finite tree (namely T (2, n)=An−1, T (3, 3)=D4, T (3, 4)=E6

and T (3, 5) = E8), where vertices correspond to positive Hopf bands and edges
indicate plumbing.
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Theorem 4. Let S be the fibre surface obtained by plumbing positive Hopf bands
according to a finite tree T . There are, up to isotopy, only finitely many cutting
arcs in S preserving fibredness, if and only if T is one of the Coxeter-Dynkin trees
An, Dn, E6, E7 or E8.

To prove the “only if” part of Theorem 4, we consider orbits of a fixed arc
under the monodromy to produce families of arcs that preserve fibredness. The
basic idea is that such an orbit is infinite if the monodromy has infinite order. For
example, we show that in fact every (prime) positive braid link with pseudo-Anosov
monodromy admits infinitely many non-isotopic arcs preserving fibredness. This
suggests the following question: is it true that among all (non-split prime) positive
braid links, the ADE plane curve singularities are exactly those that admit just a
finite number of fibredness preserving arcs up to isotopy?

Plan of the article

We use the shorthand ADE links to refer to the links of the positive tree-like Hopf
plumbings according to the trees An, Dn, E6, E7 or E8. The subsequent section
combines a criterion on arcs to preserve fibredness from [BIRS] with the property
of monodromies of positive Hopf plumbed surfaces to be right-veering. This allows
for the following simple test for an arc to preserve fibredness, in our situation: an
arc preserves fibredness if and only if it does not intersect its image under the
monodromy (up to free isotopy).

Section 3 contains descriptions of the fibre surfaces and the monodromies of
the links we consider (torus links and the ADE links). Alongside, we give a
constructive proof of Theorem 3.

In Section 4, we explain the idea of proof for the finiteness result that provides
the “if” part of Theorem 4, and list the fibred links obtained by cutting the fibre
surfaces of the ADE links along an arc in Table 4.1.

Section 5 accounts for the cases where the monodromy has infinite order. This
concerns in particular the positive tree-like Hopf plumbings that correspond to
trees different from the ADE trees and settles the “only if” part of Theorem 4.

At the beginning of Section 6, we set up the notation and methods needed for
the proof of the finiteness part of Theorem 4, which we split into Proposition 1
(concerning torus links) and Proposition 2 (concerning tree-like Hopf plumbings).
The rest of that section is devoted to the proofs of these propositions.
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2 Right-veering surface diffeomorphisms

and cutting arcs that preserve fibredness

In the sequel we would like to make statements on the relative position of two
arcs α, β in a surface S with boundary (that is, α, β are embedded intervals with
endpoints on the boundary of S that are nowhere tangent to ∂S). The following
definition will simplify matters.

Definition 5. Let S be an oriented surface with boundary and let α, β ⊂ S be
two arcs. A property P (α, β) is said to hold after minimising isotopies on α and
β, if P (α̃, β̃) holds, where α̃ and β̃ are obtained from α, β by two isotopies (fixed
at the endpoints) that minimise the geometric number of intersections between
the two arcs.

The remainder of this section will recall the fact that every positive braid link
(that is, the closure of a braid word consisting only of the positive generators of
the braid group, without their inverses) is fibred and has so-called right-veering
monodromy (see below for a definition). The torus links T (n,m) provide examples,
since they can be viewed as the closures of the positive braids (σ1 · · ·σn−1)m, where
the σi denote the (positive) standard generators of the braid group.

Definition 6 (see [HKM], Definition 2.1). Let S be an oriented surface with
boundary and ϕ : S → S a diffeomorphism that restricts to the identity on
∂S. Then ϕ is called right-veering if for every arc α : [0, 1] → S, the vectors
((ϕ◦α)′(0), α′(0)) form an oriented basis after minimising isotopies on α and ϕ◦α.

This means basically that arcs starting at a boundary point of S get mapped
“to the right” under a right-veering diffeomorphism ϕ : S → S.

By Stallings’ theorem mentioned in Section 4.2 of Chapter 1, every positive
braid can be obtained as an iterated plumbing of positive Hopf bands [St2]. Since
a Hopf band is a fibre and plumbing preserves fibredness, every positive braid
link is fibred. Moreover the monodromy is a product of positive Dehn twists,
since the monodromy of a (positive) Hopf band is a (positive) Dehn twist and the
monodromy of a plumbing is the composition of the monodromies of the plumbed
surfaces (see [Ga2]). A product of positive Dehn twists is right-veering [HKM]. So
we conclude that every positive braid link is fibred with right-veering monodromy.
Together with a theorem by Buck et al., this property implies the following simple
geometric criterion for when an arc preserves fibredness.

Theorem 5 (compare Theorem 1 in [BIRS]). Let L be a fibred link with fibre
surface S and right-veering monodromy ϕ : S → S. Then, a cutting arc α preserves
fibredness if and only if α ∩ ϕ(α) = ∂α after minimising isotopies on α and ϕ(α).
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Proof. This is a special case of Theorem 1 in [BIRS], saying that the arc α pre-
serves fibredness if and only if α is clean and alternating or once unclean and
non-alternating (see Figure 4.1), without the assumption on ϕ to be right-veering.
But for a right-veering map, every arc is alternating, by definition. Finally, α is
clean if and only if α ∩ ϕ(α) = ∂α after minimising isotopies on α and ϕ(α).

ϕ(α) α ϕ(α) α

clean and
alternating

once-unclean and
non-alternating

1

Figure 4.1: (Adapted from [BIRS])

Remark 2. An arc α is clean if and only if ϕk(α) is clean, for all k ∈ Z. This is
clear since α∩ϕ(α) = ∂α after minimising isotopies if and only if ϕk(α)∩ϕk+1(α) =
∂α after minimising isotopies. Similarly, if τ : S → S is a homeomorphism such
that ϕ ◦ τ ◦ ϕ = τ , then α is a clean arc if and only if α′ = τ(ϕ(α)) is. Indeed,
α ∩ ϕ(α) = ∂α ⇔ τ(α) ∩ τ(ϕ(α)) = ∂α′ ⇔ ϕ(τ(ϕ(α))) ∩ τ(ϕ(α)) = ∂α′ ⇔
ϕ(α′) ∩ α′ = ∂α′.

3 Monodromy of torus links, E7 and Dn.

The links that correspond to the trees An, E6 and E8 are torus links, namely
An−1 = T (2, n), E6 = T (3, 4) and E8 = T (3, 5). Together with D4, which is
T (3, 3), these form the intersection between torus links and positive tree-like Hopf
plumbings. In order to prove the “if” direction of Theorem 4, it therefore suffices
to study torus links, E7 and the Dn family.

The monodromies ϕ : S → S of the links in question are particular examples of
tête-à-tête twists, a notion invented by A’Campo and further developed by Graf in
his thesis [Gr]. This means that there exists a ϕ-invariant spine Γ ⊂ S, called tête-
à-tête graph. Cutting S along the tête-à-tête graph results in finitely many annuli,
on which ϕ descends to certain twist maps. More precisely, each of these annuli has
one component of ∂S as one boundary circle and a cycle consisting of edges of Γ as
the other. ϕ fixes ∂S pointwise and rotates the edge-cycles by some number ` of
edges. The number ` ∈ Z is called the twist length of the corresponding boundary
annulus. After an isotopy (fixing the boundary of S), we may therefore assume

30



that ϕ is periodic except on some annular neighbourhoods of ∂S. It is thus easy
to understand the effect of ϕ on an arc α, up to isotopy, given the combinatorics
of the action of ϕ on Γ and the amount of twisting on each annulus. Note that
tête-à-tête twists define periodic mapping classes in the sense that some power is
freely isotopic to the identity. However, this isotopy cannot be taken to be fixed
on the boundary of S.

In a way dual to the tête-à-tête graph, we will find in each case a finite set of
disjoint arcs that are permuted by ϕ and which decompose S into finitely many
polygons, one for each vertex of Γ. The combinatorics of how these polygons are
permuted will be used to prove Theorems 3 and 4.

Monodromy of torus links

The fibre surface S of the torus link T (n,m) can be constructed as thickening
of a complete bipartite graph on n and m vertices in the following way, as in
Figure 4.2. Arrange n collinear points a1, . . . , an (in this order) in a plane and,
similarly, another m points b1, . . . , bm along a line parallel to the ai. Connect ai
and bj by a straight segment kij, for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Avoid
intersections between the segments by letting kij pass slightly under kpq if i > p
and j < q (in a slight thickening of the plane containing the points ai and bj).
Use the blackboard-framing to thicken ai, bj, kij to disks Ai, Bj and bands Kij.
Choose the thickness of the bands Kij so that they do not intersect outside the
disks Ai, Bj. It can be seen that S :=

⋃
iAi∪

⋃
j Bj∪

⋃
i,jKij ⊂ R3 ⊂ S3 is isotopic

to the minimal Seifert surface of T (n,m) in S3 (compare [Ba]). In addition, the

a1 a2

b1 b2 b3

k11 k23

A1 A2

B1 B2 B3

K11 K23

1

Figure 4.2: The complete bipartite graph on 2 and 3 vertices and blackboard
framed thickening.

monodromy ϕ : S → S is a tête-à-tête twist along the above graph. In each of the
gcd(n,m) complementary annuli, ϕ fixes ∂S pointwise and rotates the edge-cycles
two edges to the right with respect to the orientation of S. Using this description,
it is possible to see that ϕ acts on the graph as follows: ϕ(ai) = ai−1, ϕ(bj) = bj+1,
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ϕ(kij) = ki−1,j+1, where the indices i, j are to be taken modulo n,m respectively.
A subarc of α that travels near kij will be mapped to a subarc of ϕ(α) that travels
near ki−1,j+1. The edges kij induce a decomposition of ∂Ai into circular arcs lying
between points of the form kij ∩∂Ai (and the same for Bj). If n,m > 3, it is hence
meaningful to speak of points on ∂Ai between kij and ki,j+1.

Theorem 3. Let n,m > 4 or n = 3,m > 6. Then the fibre surface S of the torus
link T (n,m) contains infinitely many homologically distinct cutting arcs preserving
fibredness.

Proof. For n,m > 4 consider the following arcs in S, using the notation from
above (compare Figure 4.3):

B1 B2 Bm−1 Bm

An−3 An−2 An−1 An

· · ·

· · · · · ·

γ1

γ2γ3
γ3

γ4

1

Figure 4.3: The arc α1 = γ1 ∗ γ2 ∗ γ3 ∗ γ4 (solid line) and its image under the
monodromy (dotted line). Note that these two arcs do not intersect, except at
their endpoints.

• Let γ1 be a straight segment starting at a point of ∂An between kn1 and knm
and ending at the vertex an.

• Let γ2 start at an, follow the edges kn,m−1 and kn−2,m−1, thus ending at an−2.

• γ3 starts at an−2, runs along kn−2,1, kn1, kn,m−1, kn−2,m−1 and ends again at an−2.

• γ4 is a straight segment from an−2 to a point of ∂An−2 between kn−2,1 and kn−2,m.
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From γ1, γ2, γ3, γ4 we can build an infinite family (αr)r∈N of arcs in S, taking
αr = γ1∗γ2∗γ3 ∗ . . . ∗ γ3︸ ︷︷ ︸

r−times

∗γ4. Here, ∗ denotes concatenation of paths. Replacing the

r consecutive copies of γ3 by r parallel copies, the αr can be thought of as embedded
arcs. It is now easy to check that αr and its image ϕ∗αr under the monodromy
ϕ have only their endpoints in common. In addition, ϕ is right-veering since it
is a composition of right-handed Dehn twists (compare Section 4.2 of Chapter 1).
Using Theorem 5 it follows that each αr preserves fibredness. Finally, the αr
are homologically pairwise distinct. This can be seen in the following way: let
[c] ∈ H1(S,Z) be the cycle represented by a simple closed curve c whose image is
knm ∪ kn−1,m ∪ kn−1,m−1 ∪ kn,m−1. After an isotopy, c will intersect αr transversely
in r + 1 points. Now, the linear form on H1(S, ∂S,Z) that sends α to i(c, α),
the number of intersections with c (counted with signs), defines an element c∗ of
H1(S, ∂S,Z) such that c∗(αr) = r + 1, hence the claim.

If n = 3,m > 6, take the following arcs (compare Figure 4.4):

• γ1 is a straight segment from a point of ∂A3 between k31 and k3m to a3.

• γ2 starts at a3, follows the edges k3,m−1 and k2,m−1, thus ending at a2.

• γ3 starts at a2, follows k23, k13, k11, k31, k3,m−1 and k2,m−1, ending at a2.

• γ4 is a straight segment from a2 to a point of ∂A2 between k22 and k23.

B1 B2 B3 B4 Bm−1 Bm

A1 A2 A3

· · ·

γ1

γ2

γ3

γ4

1

Figure 4.4: The arc α1 (solid line) and its image under the monodromy (dotted
line) for a T (3,m) torus link, m > 6. Again, the two arcs do not intersect.
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As above, we get a family (αr)r∈N of homologically distinct arcs preserving
fibredness, where αr = γ1 ∗ γ2 ∗ γ3 ∗ . . . ∗ γ3︸ ︷︷ ︸

r−times

∗γ4, using the curve with image k3m ∪

k1m ∪ k1,m−2 ∪ k3,m−2 to distinguish the αr.

Monodromy of E7 and Dn

In order to obtain a similar model for the fibre surface S of E7 or Dn, start with two
disjoint planar disks D,D′ in R3 and connect them by half twisted bands b1, . . . , bn,
where n = 7 in the case of E7. The embedded surface S ′ = D ∪D′ ∪ b1 ∪ . . . ∪ bn
is then a fibre surface for the T (2, n) torus link. Let p ∈ ∂D be a point between
b2 and b3 in the case of Dn, respectively between b3 and b4 in the case of E7. Let
I be an arc in D from a point of ∂D between b1 and bn to p. Finally, define
S to be the surface obtained from S ′ by plumbing a positive Hopf band along I
below the surface S ′. Denote the core curve of that plumbed Hopf band by e1

(so e1 ∩ S ′ = I). Each pair of consecutive bands bi, bi+1, 1 6 i 6 n, gives rise
to a closed curve ei+1 that runs from D to D′ through bi and back to D through
bi+1. The incidence graph for the system of curves e1, . . . , en in S is exactly the
respective Coxeter-Dynkin tree E7 or Dn (compare Figure 4.5). The ei are core

e7 e6 e5
e4 e3 e2

e1

	

Figure 4.5: E7 fibre surface with homology basis coming from the plumbing tree.
ϕ is the product of the right handed Dehn twists on the cuves ei.

curves of positive Hopf bands and S is a tree-like positive Hopf plumbing according
to the respective tree. In particular, the monodromy ϕ of S is the product of the
right handed Dehn twists about the curves e2, e3, . . . , en, e1, in this order. Just as
in the case of torus links, we will find a finite number of disjoint arcs in S that are
permuted (up to free isotopy) by ϕ and such that these arcs cut S into polygons.
For E7, let k1 be the spanning arc of b7, and let ki+1 = ϕi(k1), i = 1, . . . , 8, up
to free isotopy (compare Figure 4.6). Up to free isotopy, ϕ(k9) = k1. This can
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A1

A2

A3

1 2

3 4

5

6

7

8

9

1

Figure 4.6: Decomposition of the surface into three hexagons A1, A2, A3. Hexagon
A3 is shaded grey. The monodromy permutes the intervals ki (marked 1, 2, . . . , 9)
cyclically.

be seen by applying the Dehn twists about the ej to the ki, as described above.
Another more visual way to see this is via dragging arcs. Imagine the arcs ki to be
elastic bands whose ends are attached to the surface boundary and whose interiors
are pushed slightly off the surface into the positive normal direction. Applying
the monodromy ϕ amounts to dragging the arc through the complement of S to
the negative side of the surface, while its endpoints stay fixed on ∂S. Since we
are only interested in the position of ϕ(ki) up to free isotopy, the endpoints of the
dragging arc may move freely along ∂S during that process. Let A1, A2, A3 be the
three disc components of S \⋃9

i=1 ki. The boundary of Aj alternates between parts
of ∂S and the ki. We choose the order as in Figure 4.7, where the components of
∂Aj ∩ ∂S are shrunk to points.

1 2 38 9 1

7 8 92 3 4

4 5 65 6 7

A1 A2 A3

Figure 4.7: Edges with the same label are glued. The monodromy sends Aj to
Aj+1, indices taken modulo 3, such that edge ki is sent to edge ki+1, modulo 9.

Examination of the action of ϕ on the ki reveals that the Ai are cyclically permuted
by ϕ, in the order A1 7→ A2 7→ A3 7→ A1. In Figure 4.7, the Ai are drawn in such
a way that A1 7→ A2 7→ A3 by translation to the right, and A3 is mapped to A1 by
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a translation, followed by a clockwise rotation through 1/3. To obtain the tête-
à-tête graph Γ, put a vertex in the middle of each hexagon Aj and connect them
by edges through the center of every ki, connecting the vertices of the adjacent
hexagons. The tête-à-tête twist lengths on the two boundary annuli are 1 and 2,
respectively.

1

2

3

4

n

n+1

n+2

n+3

n−1

n−2

2n−3

A1

A2

A3

An−1

2n−2

1

Figure 4.8: Decomposing arcs k1, . . . , k2n−2 on the fibre surface of Dn for odd n.

For the case of Dn, n odd, take k1 to be the spanning arc of b1 and let ki+1 =
ϕi(k1), i = 1, . . . , 2n− 3. As before, we have ϕ(k2n−2) = k1, and the ki decompose
S into n − 1 disks A1, . . . , An−1, as in Figure 4.8. In Figure 4.10 (top), ϕ maps
A1 7→ A2 7→ · · · 7→ An−1 by right translations and sends An−1 back to A1 by a
rotation of 180◦.

1′ 2′ 3′ 4′ 1

2

3

4

5

(n−1)′

n−1(n−3)′ (n−2)′

n−3

n−2

A1

A2

A3

An−2An−1

1

Figure 4.9: Decomposing arcs k1, . . . , kn−1, k
′
1, . . . , k

′
n−1 on the fibre surface of Dn

for even n.

If n is even, we use two orbits of intervals instead of one: define k1, . . . , kn−1

and k′1, . . . , k
′
n−1 by letting k1, k

′
1 be the spanning arcs of b1, bn respectively and

ki+1 = ϕi(k1), k′i+1 = ϕi(k′1). Again, the union of the ki and the k′i decomposes S
into disks A1, . . . , An−1 (see Figure 4.9). In Figure 4.10 (bottom), the monodromy
maps A1 7→ A2 7→ · · · 7→ An−1 7→ A1 by translations. The tête-à-tête graphs for
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Dn have one vertex at the center of each square and edges pass through the ki and
k′i. Twist lengths on the boundary annuli are 1, n − 2 for odd n, and 1, 2, n

2
− 1

for even n.

1 2 3 4 · · ·
2 3 4 5

n

n
+

1

n
+

2

n
+

3

n+1 n+2 n+3 n+4

n
−

1

n

1

2
n

−
2n

−
2

n−1

2n−2

2
n

−
3

A1 A2 A3 A4 An−2 An−1 26 | n

1 2 3 4 · · ·

1′ 2′ 3′ 4′

2′ 3′ 4′ 5′

3 4 5 6

n
−

1

(n−1)′

2

1′

n
−

2

(n−2)′

1

(
n

−
1
)
′

A1 A2 A3 A4 An−2 An−1 2|n

Figure 4.10: Description of the monodromy of Dn, for odd n (top) and for even n
(bottom).

4 The finite cases.

In [BIRS, Corollary 2], Buck et al. show that T (2, n) admits only finitely many
arcs preserving fibredness (up to isotopy). More precisely, they show that every
clean arc is isotopic (free on the boundary) to an arc that is contained in one of the
disks A1, A2 from the above description of the monodromy of torus links. Apart
from this infinite family of torus links, there are only three more torus links with
just a finite number of arcs that preserve fibredness:

Proposition 1. The torus links T (3, 3), T (3, 4) and T (3, 5) admit, up to isotopy
(free on the boundary), only a finite number of cutting arcs that preserve fibredness.

For positive tree-like Hopf plumbed surfaces we similarly obtain:

Proposition 2. The positive tree-like Hopf plumbings associated to any of the
Coxeter-Dynkin trees An, Dn, E6, E7 or E8 admit, up to isotopy (free on the
boundary), only a finite number of cutting arcs that preserve fibredness.

The proofs of Propositions 1 and 2 are rather technical and will be given in
Section 6. Nevertheless, the idea is very simple: let S be the fibre surface of any
torus link T (n,m), given as thickening of a complete bipartite graph on n and m
vertices, or of Dn or E7, as described in Section 3. An arc α ⊂ S is determined up
to isotopy by its endpoints and by the sequence of bands K it passes through. Now
start listing all possible such sequences that yield clean arcs, for increasing length
of the sequence. In order to prove finiteness of this list, we use three Lemmas,
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also given in Section 6. The intuitive meaning of Lemma 3 and Lemma 4 can be
phrased as follows: if α and ϕ(α) intersect and this intersection seemingly cannot
be removed by an isotopy, then α is indeed unclean. Lemma 5 asserts that a
clean arc cannot stay in the complement of the graph for a distance of more than
` consecutive bands, where ` is the tête-à-tête twist length on the corresponding
boundary annulus (for example, ` = 2 for all torus links).

This is made precise in Section 6, using a notion of arcs in normal position
(cf. Definition 7). Along with this case-by-case analysis, one can find all possible
fibred links obtained from An−1 = T (2, n), D4 = T (3, 3), Dn, E6 = T (3, 4), E7

and E8 = T (3, 5) by cutting along an arc. Consult Table 4.1 for a complete list.

From one obtains by cutting along a clean arc

T (2, n) T (2, n− 1), T (2,m1)#T (2,m2) for m1 +m2 = n

T (3, 3) T (2, 4), (T (2, 2)#T (2, 2)#T (2, 2))∗1

T (3, 4) D5, T (2, 6), T (2, 5)#T (2, 2),

T (2, 3)#T (2, 3)#T (2, 2), (T (2, 3)#T (2, 2)#T (2, 3))∗2

T (3, 5) E7, D7, T (2, 8), (D5#T (2, 3))∗3 ,

T (2, 5)#T (2, 4), T (2, 7)#T (2, 2), T (3, 4)#T (2, 2),

T (2, 5)#T (2, 3)#T (2, 2), (T (2, 5)#T (2, 2)#T (2, 3))∗4

Dn T (2, n), Dn−1, Dm1#T (2,m2) for m1 +m2 = n,

T (2, 2)#T (2, 2)#T (2, n− 2)

E7 E6, D6, T (2, 7), T (2, 4)#T (2, 2)#T (2, 3),

T (2, 6)#T (2, 2), T (2, 5)#T (2, 3)

K1#K2 denotes the connected sum of K1 and K2, Dn denotes the closure of the
braid σn−2

1 σ2σ
2
1σ2, n > 3, and En denotes the closure of the braid σn−3

1 σ2σ
3
1σ2,

n = 6, 7, 8.

∗1 chain of four successive unknots.
∗2 both Hopf link components are summed to one trefoil knot each.
∗3 both possible sums appear (trefoil summed with the unknot component of D5 as well as trefoil

summed with the trefoil component of D5).
∗4 one component of the Hopf link in the middle is summed to T (2, 5) and the other is summed

to the trefoil.

Table 4.1: Fibred links obtained from the exceptional torus links by cutting along
an arc.
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5 Arcs for links with infinite order monodromy

Theorem 6. Let S be a fibre surface whose monodromy ϕ : S → S is pseudo-
Anosov and right-veering. Assume that a Hopf band can be deplumbed from S.
Then S contains infinitely many non-isotopic cutting arcs preserving fibredness.

Proof. By Theorem 5, an arc in S preserves fibredness if and only if it is clean, since
the monodromy ϕ is right-veering by assumption. Let S ′ be a surface obtained
from S by deplumbing a Hopf band and denote by c the core curve of that Hopf
band. S ′ is again a fibre surface because deplumbing preserves fibredness, and ϕ
is the monodromy of S ′ followed by a Dehn twist along c (compare [Ga2]). Let α
be an arc dual to c that does not enter S ′. Then, applying ϕ, only the Dehn twist
along c affects α (in particular, the deplumbed Hopf band is necessarily positive
since ϕ is right-veering). It follows that α is clean, and therefore ϕn(α) is also
clean by Remark 2. Since ϕ is pseudo-Anosov and α is essential, the length of
ϕn(α) (with respect to an auxiliary Riemannian metric) grows exponentially as n
tends to infinity (compare [FM, Section 14.5]). In particular, the arcs ϕn(α) are
pairwise non-isotopic and clean.

Corollary 3. Let S be a surface obtained by iterated plumbing of positive Hopf
bands and suppose the monodromy ϕ : S → S is pseudo-Anosov. Then S contains
infinitely many non-isotopic cutting arcs preserving fibredness.

Proof. The monodromy ϕ is a composition of right Dehn twists along the core
curves of the Hopf bands used for the construction of S as a Hopf plumbing. This
implies that ϕ is right-veering [HKM, Lemma 2.5]. Now apply Theorem 6 to the
last plumbed Hopf band.

Proposition 3. Let S be a surface obtained by plumbing positive Hopf bands ac-
cording to a tree other than An, Dn, E6, E7 and E8. Then S contains infinitely
many non-isotopic cutting arcs preserving fibredness.

Proof. The proposition is basically a consequence of A’Campo’s work on slalom
knots [AC1]. These are tree-like Hopf plumbings whose plumbing tree is obtained
from a rooted tree by subdividing every edge except the root edge. A’Campo
proved that a slalom knot has pseudo-Anosov monodromy if and only if the cor-
responding plumbing tree is different from A2n, E6 and E8 [AC1, Theorem 1]. In
fact, his argument carries over to general trees except the ones of type ADE and
the affine Coxeter-Dynkin trees D̃n, Ẽ6, Ẽ7, Ẽ8 (compare [AC1, AC2, Th1]). Up
to these exceptions, the statement can therefore be seen as a special case of Corol-
lary 3. In the affine cases, the monodromy ϕ is not pseudo-Anosov, but still has infi-
nite order. In fact, the corresponding links are T (2,m)-satellites of T (2, 2)#T (2, 2)
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and T (2, 4) respectively, so ϕ is reducible with periodic reducible pieces. To prove
the assertion, we therefore have to find a clean arc α which is not contained in
one periodic piece in these cases. To this end, let S be any surface obtained by
positive Hopf plumbing according to an affine Coxeter-Dynkin tree. Denote the
induced action of the monodromy on H1(S,Z) by ϕ∗ and let e1, . . . , en ∈ H1(S,Z)
be the basis vectors represented by the core curves of the Hopf bands used in the
plumbing construction. As mentioned above, ϕ∗ has infinite order. The reason
for this is the existence of Jordan blocks of size 2 × 2 to the eigenvalue −1. We
can hence find a vector v ∈ H1(S,Z) whose orbit under the monodromy is infinite.
Choose j ∈ {1, . . . , n} such that the j-th coordinate of (ϕ∗)

k(v) is unbounded. Let
α ⊂ S be a spanning arc of the Hopf band with core curve ej. Then α is clean,
since cutting along α yields a connected sum of positive tree-like Hopf plumbings,
which is fibred. Moreover we have |i(v, ϕ−k(α))| = |i(ϕk(v), α)| → ∞ for k → ∞
by construction, and the arcs ϕ−k(α) are all clean by Remark 2. In particular,
there are infinitely many non-isotopic cutting arcs preserving fibredness.

Proof of Theorem 4. Combine Propositions 2 and 3.

6 Proof of Propositions 1 and 2

Before we begin with the proofs, some notation and remarks are necessary. Let
S be the fibre surface of either T (n,m), Dn or E7, and let ϕ : S → S be the
monodromy. Precisely as in Section 3, we decompose S into finitely many disjoint
polygonal disks Ai (and Bj in the case of torus links) that are glued using bands
(Kij for the torus links and neighbourhoods of the ki, k

′
i for Dn and E7). We use

the letter D to denote any of the disks and the letter K to denote any of the bands.
Let U be the union of all the disks and let N ⊂ S be the neighbourhood of the
tête-à-tête graph on which ϕ is assumed to be periodic.

Definition 7. An arc α ⊂ S is in normal position if the following conditions hold:

(a) The endpoints of α lie in ∂U .

(b) For every band K, α ∩ K \ U consists of finitely many straight segments
parallel to the edges of the tête-à-tête graph.

(c) The number of such segments in K is minimal among all arcs isotopic to α.

(d) α intersects the graph transversely in finitely many points of U .

(e) α \ N ⊂ U , that is, before α enters N and after it leaves N , it stays in the
disks that contain its endpoints.

(f) α ∩ U consists of finitely many straight arcs.
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Remarks 3 (on normal position).

• Any arc can be brought into normal position by a free isotopy.

• If α is in normal position, then ϕ(α) can be brought into normal position keeping
N fixed. Indeed, it suffices to straighten the two subarcs ϕ(α) \N (or, undoing
the twisting that occurs in the respective annuli), sliding the endpoints of ϕ(α)
along ∂S, see Figure 4.11.

 

7→

slide

→



N αϕ(α)

graph

∂S

1

Figure 4.11: How to bring ϕ(α) in normal position, keeping N fixed.

• If α and ϕ(α) are in normal position as above, we may isotope ϕ(α) with end-
points fixed and keeping it in normal position, such that α and ϕ(α) intersect
transversely in finitely many points of U . In particular, the sets α \ U and
ϕ(α) \ U are now disjoint (cf. Figure 4.12).

 

N αϕ(α)

graph

∂S

1

Figure 4.12: How to make α, ϕ(α) intersect transversely, keeping normal position.

• Let α be in normal position and suppose it passes through at least one band.
Let K be the first (respectively last) band traversed by α after (before) it starts
(ends) at a boundary point p of one of the disks, say D. Then p cannot lie
between K and one of the two bands adjacent to K on ∂D. Otherwise an
isotopy sliding the starting point (endpoint) of α along ∂K would decrease the
number of segments in K, contradicting part (c) of Definition 7.

Remarks 4 (compare the bigon criterion, Proposition 1.7 in [FM]). Suppose α
intersects ϕ(α) in its interior. If α is clean, there must be a bigon ∆ ⊂ S whose
sides consist of a subarc of α and a subarc of ϕ(α). If α, ϕ(α) are in normal
position, such ∆ takes a particularly simple form:

• ∆ cannot be contained in U (i.e., in one of the disks Ai or Bj). This would
contradict part (f) of the above Definition 7.
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• None of the two sides of ∆ is contained in U , since the other side of ∆ would
have to leave U through one of the bands K and return through the same K.
The disc ∆ would then yield an isotopy reducing the number of segments of
α ∩K or ϕ(α) ∩K, contradicting part (c) of Definition 7.

• For every band K, ∆ ∩ K \ U consists of rectangles with two opposite sides
parallel to the edge passing through K.

• ∆ ∩ U consists of topological disks δ connected to at least one rectangle.

• Construct a spine T for ∆ as follows: put a vertex for each δ and connect two
vertices by an edge if the corresponding disks δ connect to the same rectangle.
T is a tree, for ∆ is contractible. Two of its vertices correspond to the vertices
of the bigon ∆. Among the other vertices of T , there is none of degree one
because the adjacent edge would correspond to a rectangle in some K whose
sides parallel to its core edge both belong to the same arc (α or ϕ(α)). In other
words, either α or ϕ(α) would pass through K and immediately return through
K in the opposite direction. This would contradict part (c) of Definition 7.
Therefore, T is a line consisting of some number of consecutive edges, and the
two extremal vertices correspond to the vertices of ∆.

For the next two lemmas, note that ∂U is a disjoint union of circles, each
partitioned into finitely many circular arcs that alternate between parts of ∂S and
the regions where bands attach to a disc. We call the latter band attaching regions.

Lemma 3. Let α, ϕ(α) be in normal position and suppose they intersect in a point
p ∈ D, where D is one of the disks Ai (or Bj in the torus link case). Let α′, α′′

be the components of α ∩ D,ϕ(α) ∩ D containing p. If no two of the four points
∂α′ ∪ ∂α′′ ⊂ ∂D lie in the same band attaching region, then α cannot be clean.

D

p

α′ α′′

α ϕ(α)

1

Figure 4.13: α cannot be clean by Lemma 3.
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Remark 5. Note that we did not exclude the possibility that one of the endpoints
of α or ϕ(α) lie in ∂α′ ∪ ∂α′′. In other words, endpoints of α′ and ϕ(α′) may lie
on ∂S ∩ ∂U as well as on band attaching regions.

Proof of Lemma 3. If α were clean, there would be a bigon. After possibly remov-
ing a certain number of such bigons, we are left with a bigon ∆ with vertex p.
By Remark 4, ∆ has to leave D through one of the adjacent bands. Since one of
the sides of ∆ is a subarc of α and the other side is a subarc of ϕ(α), we find two
points among ∂α′∪∂α′′ that lie in the attaching region of this band, contradicting
the assumption on α′, α′′.

The second lemma is a generalisation of Lemma 3 to subarcs α′, α′′ that can
pass through bands and visit several disks rather than staying in one disc.

Lemma 4. Let α, ϕ(α) be in normal position and let α′, α′′ be subarcs of α, ϕ(α)
respectively (not necessarily contained in U). Suppose that the four endpoints of α′

and α′′ are contained in ∂U and that no two of them lie in the same band attaching
region. We further assume that α′ and α′′ intersect in exactly one point and that
α′, α′′ traverse the same sequence of bands (see Figure 4.14). Then α cannot be
clean.

KijAi

Bj

α

ϕ(α)

ϕ(α)

α

p

· · ·
α′′

α′

α′′

α′

Figure 4.14: α cannot be clean by Lemma 4.

Proof. Assume α′ ∩ α′′ = {p}, then p ∈ U . As in the proof of Lemma 3, study a
bigon ∆ that starts at p. ∆ consists of a sequence of rectangles as described in
Remarks 4. Starting at p, it therefore has to follow α′ and α′′ through the sequence
of bands they traverse. Since p is the only intersection between α′ and α′′, ∆ has
to pass through at least one more band. But this is impossible by the assumption
on the endpoints of α′ and α′′.

In order to formulate the third lemma we recall the description of the mon-
odromy ϕ : S → S as a tête-à-tête twist from Section 3: cutting the surface S
along the tête-à-tête graph Γ results in d annuli O1, . . . , Od, where d is the number
of components of ∂S = L. Each annulus Oi has a link component as one boundary
and a cycle consisting of edges of the graph as the other boundary. We call the
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latter the graph boundary of Oi and denote by ri its length (that is, the number
of edges). The monodromy ϕ keeps the link boundary of Oi fixed and rotates the
neighbourhood N of the graph boundary by some number of edges `i called the
twist length. In all cases we consider, we have 1 6 `i 6 ri − 1. A sequence of
bands K(1), K(2), . . . is consecutive, if the set (

⋃
rK

(r) ∪⋃iAi ∪
⋃
j Bj) \ Γ has a

connected component that intersects all bands K(r) of the sequence in this order,
i.e. it is possible to stay on the same side of the graph when walking along the
bands.

Lemma 5. A clean arc in normal position cannot traverse more than ` consecutive
bands along an annulus of twist length `.

Proof. Let α be a clean arc in normal position that traverses n consecutive bands
with respect to an annulus O of twist length `. Suppose that n > ` + 1. We
may assume that n is the maximal number of consecutively traversed bands with
respect to O. In these bands as well as the adjacent disks, isotope α such that it
stays on one side of the graph, keeping it in normal position.

p

L

C

DE

∆ α′

φ(α′)

φ(y)

y φ(x)
x

graph

O
φ(x) φ(y) x y

p p′

∆

D′
D E

1

Figure 4.15: A normal arc passing through more than ` consecutive bands has to
intersect its image under the monodromy (here ` = 2). This can happen in two
possible ways. Part of an a priori possible bigon ∆ in grey.

In O, we will see a subarc α′ ⊂ α that has exactly its endpoints x, y in common
with the graph and travels near the graph boundary for a distance of n consecutive
edges (Note that α′ cannot have any endpoint on ∂S. This would contradict
part (c) of Definition 7. We also have that n cannot exceed the length of the graph
boundary of O, since α does not intersect itself). Let C be the disc bounded by α′

and the graph. Since n > `+ 1, the disks C and ϕ(C) have to overlap, and either
one or both of the endpoints of ϕ(α′) lie in C. Accordingly, the four endpoints
of α′ and ϕ(α′) either appear in the cyclic order x, ϕ(x), y, ϕ(y) or x, ϕ(y), ϕ(x), y
for a suitable choice of orientation of the graph boundary of O. Now bring ϕ(α)
in normal position transverse to α as described in the Remarks 3. Let D,D′, E
be the disks (Ai or Bj) containing the points ϕ(x), ϕ(y), y, respectively. Note that
D,D′ coincide if n equals the graph boundary length. Nonetheless, the part of
E shown in Figure 4.15 is disjoint from D,D′ since n > ` > 1. In the first case,
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where x, ϕ(x), y, ϕ(y) appear in this order, we may assume that α′, ϕ(α′) intersect
in exactly one point p ∈ D (compare Figure 4.15, left). In the second case, where
the order is x, ϕ(y), ϕ(x), y, we can arrange that α′, ϕ(α′) intersect in exactly two
points p ∈ D, p′ ∈ D′, as shown in Figure 4.15, right. However, α is clean, so
there must be a bigon in S whose sides consist of a subarc of α and a subarc of
ϕ(α), in both cases. After possibly removing a certain number of such bigons, we
will be left with a bigon ∆ starting at p. Our goal is now to prove that ∆ must
be attached to the point p in the way shown in Figure 4.15. We will then see
that this forces α to pass through one more consecutive band, contradicting the
assumption on n being maximal. Firstly, we know from the Remarks 4 that ∆ has
to leave D and consists of a sequence of rectangles. Let R be the first rectangle
in this sequence, i.e. R is contained in a band adjacent to D. Let K−, K+ be
the two bands adjacent to D that contain segments of α′, K+ being the one that
also contains a segment of ϕ(α′) (see Figure 4.16). Let β be the component of

p

ϕ(x)

β

α′
ϕ(α′)

︸ ︷︷ ︸
K+

︸ ︷︷ ︸
K−

︸ ︷︷ ︸
D

∂S

graph

Figure 4.16: Part of the annulus O, where the arcs α′ and ϕ(α′) intersect in a
point p ∈ D.

ϕ(α) \ {p} that contains ϕ(x). We claim that β cannot leave D through K− nor
K+. Indeed, if β would leave D through K−, ϕ(α) would traverse n+1 consecutive
bands, contradicting the assumption on n being maximal. On the other hand, if β
would leave D through K+, we could reduce the number of segments in ϕ(α)∩K+,
contradicting the normal position of ϕ(α), i.e. part (c) of Definition 7. In contrast,
α leaves D, starting from p in both directions, through K− and K+. Consider
now the subarcs of α and ϕ(α) that constitute two opposite sides of the rectangle
R. Since R is contained in a band adjacent to D, these two subarcs arrive at ∂D
through the same band, and they connect directly to p ∈ D. Therefore, we must
have R ⊂ K+, since K+ is the only band containing two subarcs of α and ϕ(α)
that directly connect to p ∈ D. Furthermore, R has to be the region enclosed by
α′ ∩K+ and ϕ(α′) ∩K+. Following ϕ(α′) in the direction from ϕ(x) to p, we see
that it leaves D through K+ as one of the sides of R and continues staying on the
same side of the graph for exactly n− 1 more edges. By assumption, α′ and ϕ(α′)
intersect at most in p and p′. In addition, no intersection between α′ and ϕ(α) (or
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between α and ϕ(α′)) can occur in any of the n − ` disks visited by ϕ(α′) on its
way after leaving D and until it arrives in E. Indeed, the first such intersection
would necessarily be the ending vertex of ∆, implying that it were an intersection
between α′ and ϕ(α′). However, none of the points p, p′ lies in any of these disks.
Therefore, the bigon ∆ has to pass through at least n− ` + 1 rectangles through
consecutive bands starting at p. Similarly, the sides of these rectangles that are
subarcs of α have to traverse at least n− `+1 consecutive bands starting at p. We
obtain a contradiction to the maximality of n, because α′ ends after n − ` bands
starting from p, since ϕ rotates the graph boundary by ` edges. This finishes the
proof.

Proof of Proposition 1. We will concentrate on the most complicated case of the
torus knot T (3, 5). It contains all difficulties appearing in the proofs for T (3, 3) and
T (3, 4) which go along the same lines with fewer cases to consider. For each link
appearing in Table 4.1 of Section 4, we will indicate one (but not every) possible
choice of a cutting arc that yields the link in question. Let hence S be the fibre
surface of T (3, 5) and let α ⊂ S be any arc that preserves fibredness, i.e. a clean
arc. Bring α into normal position using an isotopy (not fixing the boundary), cf.
Remarks 3. Since ϕ permutes the vertices {ai} cyclically as well as the vertices
{bj}, it suffices to show that there are only finitely many clean arcs starting at a
point of ∂A1 or at a point of ∂B1, up to isotopy. We may further assume that α
starts either at a point of ∂A1 between k11 and k15 or at a point of ∂B1 between
k21 and k31.

Case A. α starts at ∂A1, between k11 and k15. Then, α cannot continue through
either of the bands K11 nor K15 by the last item of Remarks 3. So, either α stays
in A1 (and there are only four such arcs up to isotopy), or it continues through
K12, K13 or K14. If α stays in A1, the links obtained by cutting are E7 (e.g. if α
ends between k11 and k12) and D7 (e.g. if α ends between k12 and k13).

Case A.1. α continues throughK12. Arriving inB2, there are three possibilities:
either α ends at a point of ∂B2 between k22 and k32 (and cutting along α yields
T (3, 4)#T (2, 2)), or it continues through K22 or K32 (ending at other points of
∂B2 is impossible by the last item of Remarks 3).

Case A.1.1. α continues through K22. Arriving in A2, α can end at a point
of ∂A2 (cutting yields T (2, 7)#T (2, 2) if α ends between k24 and k25, and T (2, 3)
summed with the unknot component of D5 if α ends between k23 and k24), or it can
continue through K23 or K24. It cannot continue through K21, since K12, K22, K21

is a sequence of three consecutive bands, so α would not be clean by Lemma 5.
Finally, α cannot continue through K25. If it did, α and ϕ(α) would intersect in a
point of A1, and Lemma 3 would imply that α cannot be clean (see Figure 4.17,
top left). Note that we do not know whether the mentioned intersection is the
only one since we do not know how α ends.
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Case A.1.1.1. α continues through K23. From B3, it cannot continue through
K13, for K22, K23, K13 are consecutive (Lemma 5). If it continues through K33

it cannot continue through any band adjacent to A3. Indeed, K23, K33, K32 are
consecutive, so α cannot continue through K32. If it would continue through K34

or K35 or K31, we could apply Lemma 4 to the band K33 to show that α is not
clean (see Figure 4.17).

Case A.1.1.2. α continues through K24. If it ends in B4 between k14 and k34, we
obtain T (2, 5)#T (2, 4) after cutting. Otherwise, it can continue from B4 through
K14 or through K34.

Case A.1.1.2.1. If it continues through K14, it cannot go further. Firstly,
K24, K14, K15 are consecutive, so K15 is no option (Lemma 5). Neither can it
proceed through K11 (this would produce a self-intersection of α) nor K12 (for
otherwise we could apply Lemma 3 to an intersection between α and ϕ(α) in A1).
If it continues through K13, it cannot go on through K23 since K14, K13, K23 are
consecutive (Lemma 5). Suppose it continues through K33. From A3, it cannot
proceed through any of K31, K35, K34, for otherwise we could apply Lemma 4 to
the bands K13 and K33, with an intersection between α and ϕ(α) occuring in A3

(see Figure 4.17 left). However, α cannot continue through K32 either, because we
could again apply Lemma 4, this time for the band K24 and an intersection in A2

(see Figure 4.17 right).
Case A.1.1.2.2. α continues from B4 through K34. If it ends in A3 between

k35 and k31, cutting yields T (2, 5)#T (2, 2)#T (2, 3). Otherwise, it cannot continue
from A3 through K33 since K24, K34, K33 are consecutive. Neither can it proceed
through K32 (apply Lemma 3 to A3). So α can only continue through K35 or K31.

Case A.1.1.2.2.1. If it continues through K35, the only option to go further is
through K15, since K34, K35, K25 are consecutive. From A1 (compare Figure 4.17),
it cannot continue through K11 nor K12 (apply Lemma 4 to K15 with an inter-
section occuring in A1). Neither can it continue through K14, since K35, K15, K14

are consecutive. So it has to go through K13. Arriving in B3, it cannot continue
through K23 (apply Lemma 4 to K34 with an intersection occuring in B4). There-
fore α has to continue through K33. From A3, it cannot proceed further. Firstly,
K32 is not an option (otherwise apply Lemma 4 to K34 and K24 with an intersec-
tion in A2). Neither can it go through K34 or K35 (apply Lemma 4 to K15, K13, K33

with an intersection occuring in A3). Finally, it cannot pass through K31 either
(apply Lemma 4 to the bands K15, K13, K33 with an intersection occuring in A3).
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Figure 4.17: Schematic illustration for a selection of the cases in the proof of
Proposition 1. The arc α is drawn as solid line, whereas ϕ(α) is shown as a dotted
line.
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Case A.1.1.2.2.2. If it continues through K31 and arrives in B1, it cannot pro-
ceed through K11 (apply Lemma 4 to K22 with an intersection occuring in B2,
see Figure 4.17 left). So it has to go through K21. From A2, it cannot proceed
through K22, for K31, K21, K22 are consecutive. Neither can it go through either
of K23 nor K24 (apply Lemma 3 to an intersection occuring in A2, see Figure 4.17
right). Finally, K25 can be ruled out by Lemma 4, applied to the bands K22 and
K12, with an intersection occuring in A1.

Case A.1.2. α continues through K32 (see Figure 4.17). Arriving in A3, it
cannot continue through any band. Firstly, K12, K32, K33 are consecutive, so α
cannot continue through K33. If it would continue through any of the other bands
adjacent to A3, α would intersect ϕ(α) in a point of A3 such that we could apply
Lemma 3 to obtain a contradiction to α being clean.

Case A.2. α proceeds through K13. If it ends in B3 between k23 and k33, we
obtain T (2, 8) after cutting. From B3, it can continue through K23 or through K33.

Case A.2.1. α continues through K23. It cannot go on via K22, for K13, K23, K22

are consecutive. Neither can it continue through K21 or K25 by Lemma 3 applied
to an intersection in A1. If it next passes through K24, it cannot go on through
K14, because K23, K24, K14 are consecutive. Proceeding through K34, it can end in
A3 between k31 and k32 (this yields T (2, 5)#T (2, 3)#T (2, 2)). However, the only
possibility for α to go further is via K32, for K24, K34, K33 are consecutive (so K33

is no option), and α cannot continue through K35 nor K31 by applying Lemma 4
to the band K34 with an intersection of α, ϕ(α) in A3. So α continues through K32

and arrives in B2. From there, it cannot continue through K12 (apply Lemma 4 to
K22 and an intersection in B3). If it continues through K22, it cannot go further:
K23 is impossible because K32, K22, K23 are consecutive, K24 can be excluded by
Lemma 3, applied to A2, and K21 as well as K25 can be ruled out by Lemma 4,
applied to K23 and K13 with an intersection occuring in A1.

Case A.2.2. α continues through K33. This is similar to Case A.2.1. Again
there is always a single option to go on, until there is no possibility left after four
more steps.

Case A.3. α continues through K14. This is analogous to Case A.1.

Case B. α starts at ∂B1 between k21 and k31. Then, it can only continue
through K11 by the last item of Remarks 3. From A1, it can proceed through four
distinct bands.

Case B.1. α continues through K15. Since K11, K15, K25 are consecutive, it can
a priori only continue through K35. But this is impossible as well by Lemma 3,
applied to the intersection between α and ϕ(α) occuring in B1.

Case B.2. α continues through K12. This is analogous to Case B.1.
Case B.3. α continues through K14. Arriving in B4, it can end between k24

and k34 (this results in T (2, 3) summed with the trefoil component of D5).
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Case B.3.1. α continues through K24. From A2, it cannot continue through K23

because K14, K24, K23 are consecutive (Lemma 5). Neither can it go on through
K22 nor K21 (apply Lemma 3 to A1). Suppose α continues through K25. From
B5, it cannot go on via K35 since K24, K25, K15 are consecutive. If it proceeds via
K35, we can apply Lemma 4 to the band K11 with an intersection in B1 to obtain
a contradiction.

Case B.3.2. α continues through K34. From A3, there are only two options for
α to proceed further. Indeed, K14, K34, K35 are consecutive, so K35 is out of the
question. K31 can be ruled out by Lemma 3 for A3. The remaining possibilities
are K32 and K33.

Case B.3.2.1. α continues through K32. From there, it cannot continue through
K22 (apply Lemma 4 to K32). So it has to branch off via K12 to A1. From
there, it cannot continue through K15 since otherwise α would self intersect in
A1. K11 is impossible as well, for K32, K12, K11 are consecutive. K15 can be
ruled out using Lemma 3 for A3. So α can only continue through K13, and from
there only through K23 (K12, K13, K33 are consecutive). From A2, it cannot go on
through any band except K25. Indeed, K22 is impossible because K13, K23, K22 are
consecutive. K21 and K24 can be ruled out by applying Lemma 4 to (K34, K14) and
K23 respectively. After passing through K25, α cannot go further: K15 is impossible
by Lemma 4 (applied to K23, K25) and K35 can be ruled out by applying Lemma 4
to K34, K14, K11.

Case B.3.2.2. α continues through K33. Then, K13 cannot be next since
K34, K32, K13 are consecutive. Thus α passes through K23. From A2, it can-
not go on via K24, for K33, K23, K24 are consecutive. K21 and K22 are impossible
as well (apply Lemma 4 to K14). So α has to go through K25. Then, it cannot
proceed through K15 (apply Lemma 4 to K25). It cannot go via K35 either (apply
Lemma 4 to K14, K11), so α cannot continue at all.

Case B.4. α continues through K13. This is analogous to Case B.3 and finishes
the proof.

Proof of Proposition 2. We will present a case by case analysis for the possible
clean arcs α in the fibre surface S of each of E7 and Dn. The reader interested
in studying the proof is advised to follow the arguments along with a pencil and
copies of Figures 4.7 and 4.10, top and bottom. As in the proof of Proposition 1
above, we will make extensive use of Lemma 5 to exclude further polygon edges
that α might cross on its way from its starting point to its end. In order to keep the
proof short, we will usually refer to such situations by just saying “α is trapped”,
or by saying that an edge “is a trap”, meaning that α would traverse too many
consecutive bands to be clean.
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(E7) First, let S be the fibre surface of E7, denote its monodromy ϕ and
let α ⊂ S be a clean arc. Bring α into normal position with respect to k1, . . . , k9.
Note that the set of vertices of the hexagons A1, A2, A3 decompose into two orbits
under ϕ, namely the orbit of the vertex of A1 between k1 and k2, and the orbit of
the vertex of A1 between k2 and k7. We may therefore assume by Remark 2 that
α starts at one of these two vertices.

Case 1. α starts at the vertex of A1 between k1 and k2. Define an involution
τ : S → S as follows: τ interchanges hexagons A1 and A2 and then reflects
A1, A2, A3 along the diagonals parallel to k7, k8, k1 respectively, whereby it induces
the permutation (13)(49)(58)(67) on the edges (k1, . . . , k9). We have ϕ◦ τ ◦ϕ = τ ,
τ ◦ϕ fixes the vertex of A1 between k1 and k2 and swaps the edges k4, k8 as well as
the edges k5, k7. By Remark 2, we may therefore assume that α continues through
k4 or through k5.
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Figure 4.18: Illustration of two of the steps in Case 1.1. The arc α is drawn as
solid line, whereas ϕ(α) is shown as a dotted line.

Case 1.1. α continues through k4. From A3, it can only choose k9. Indeed, k7,
k6 and k1 would imply an intersection in A1 (Lemma 3, compare Figure 4.18, left),
and k3 is consecutive to k4 (Lemma 5, applied to the component with twist length
one). Arriving in A2, k2 and k6 would imply an intersection in A2, so continuation
is possible through k3, k5, k8 only. But if α continues through k5 or k8, it will be
trapped (compare Figure 4.18, right). Therefore it goes through k3. Arriving in
A3, it has to go through k4 (k9 implies an intersection in A3 and k1, k6, k7 imply
intersections in A1). However, passing through k4, α is trapped.

Case 1.2. α continues through k5. From A2, it can continue through k3, k6, k8

or k9 (k2 implies an intersection in A2). If it passes through k6 or k9, it is trapped.
So k8 and k3 are the only possiblities left.

Case 1.2.1. α continues through k8. Upon arrival in A1, it cannot continue
through k2, k5 (intersection in A2) nor through k1 (this would imply an intersection
in A1). But if it continues through either of k7 or k4, it is trapped.

Case 1.2.2. α continues through k3. From A3, α cannot go on through k9, k1

(this would imply an intersection in A3). If it passes through k4, it is trapped.
Suppose it continues through k6. Arriving in A2, it cannot continue through k9,
k8, k3 (this would produce an intersection in A3), nor through k2 (intersection
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in A2). Finally, continuing through k5, it will be trapped. Therefore α has to
continue from A3 through k7. Arriving in A1, it can continue through k2, k8 or k4

(k1 implies an intersection in A1 and k5 implies an intersection in A2). But all of
these are traps.

Case 2. α starts at the vertex of A1 between k2 and k7. Define an involution
σ : S → S as follows: σ interchanges A1 and A2 and then reflects A1, A2, A3

along the diagonals parallel to k1, k2, k4 respectively, inducing the permutation
(19)(28)(37)(46) on the edges. As in Case 1, we have ϕ ◦ σ ◦ ϕ = σ, and σ ◦ ϕ
fixes the vertex of A1 between k2 and k7, swapping k4 and k5 as well as k1 and
k8. By Remark 2, we may therefore assume that α continues through either k1

or k5. However, if α continues through k1, it is trapped. Therefore it continues
through k5. From A2, it can continue through k8 or k9 (k6 is a trap and k2, k3

imply intersections in A2).
Case 2.1. α continues through k8. From A1, it cannot continue through any

of k2, k1, k5, because this would produce an intersection in A2, and k7 is a trap.
Therefore, it continues through k4 and arrives in A3. Continuation through k1

produces an intersection in A3, and k6, k7, k3 imply intersections in A1. Finally,
k9 is a trap.

Case 2.2. α continues through k9. Arriving in A3, it can only continue through
k1 or k4 (any other continuation produces an intersection in A1). However, both
k1 and k4 are traps, ending the proof for E7.

(Dn, n even) Now, suppose n is even and let α be a clean arc in the
fibre surface S of Dn in normal position with respect to k1, . . . , kn−1, k

′
1, . . . , k

′
n−1.

Define an involution τ : S → S as follows: τ permutes the disks Ai according to
the rule τ(Ai) = An−i+2 for i = 1, . . . , n − 1 and then reflects every Ai on the
diagonal that contains the vertex between ki and ki+2 (all indices are to be taken
modulo n). Again ϕ◦ τ ◦ϕ = τ , and τ ◦ϕ fixes the vertex of A1 between k′1 and k′2
as well as the vertex between k1 and k3, and swaps the other two vertices. We may
therefore assume that α starts at a vertex of A1 which is not the vertex between
k′2 and k3.

Case 1. α starts at the vertex of A1 between k1 and k′1. If it continues through
k′2, it is already trapped. So it has to continue through k3. Arriving in A3, it can
continue through k′3, k′4 or k5.

Case 1.1. α continues from A3 through k′3. From A2, it cannot continue through
k2 (otherwise it would intersect with ϕ(α)), so it can only proceed through k′2 or
k4. However, both are traps.

Case 1.2. α continues from A3 through k′4. This is similar to Case 1.1: arriving
in A4, α can only continue through k′5 (which is a trap) or k4. If it goes through
k4, it has to continue from A2 through k′3 (k2 produces an intersection in A2 and
k′2 produces an intersection in A3). Then however, it is trapped again.
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Case 1.3. α can therefore continue from A3 through k5 only. In A5, the same
situation reproduces, except that all indices in consideration are now shifted by
+2. Therefore the only way for α to continue from A5 is by passing through the
edges k7, k9, k11, . . . After at most n/2 more steps, α will be trapped.

Case 2. α starts at the vertex of A1 between k′1 and k′2. Using τ again, we may
assume that it continues through k1 to An−2. If it goes through k′n−1 next, it is
trapped since it is forced to follow the sequence of edges kn−1, k

′
n−2, kn−2, k

′
n−3, . . .

If it goes through k′n−2 to An−3 instead, it can only continue from there through
k′n−3 or kn−1, and these are traps again. So it has to continue from An−2 through
kn−2. In An−4, the same situation as one step earlier (where α arrived through
k1 in An−2) reproduces, except that all indices appearing in the consideration are
now shifted by −2. Hence the only way α can continue from An−4 is by going
through the sequence of edges kn−4, kn−6, kn−8, . . . After at most n/2 steps, α will
be trapped.

Case 3. α starts at the vertex of A1 between k1 and k3. Using the involution
τ from above, we may assume that it continues through k′2. From A2, it cannot
go on through k4, for this would imply an intersection in A2. However, the two
possibilities that remain (k′3 and k2) are traps, which ends the proof for Dn, n
even.

(Dn, n odd) Finally, let n be odd and let S be the fibre surface of Dn.
Suppose again we have a clean arc α ⊂ S in normal position with respect to
k1, . . . , k2n−2. Since the monodromy permutes the Ai cyclically and since there
are only two orbits of vertices of the Ai, we may assume that α starts in A1, at
the vertex between k1 and k2, or at the vertex between k2 and kn. As before, we
then make use of Remark 2 with the help of the involution τ : S → S defined as
follows: τ(Ai) = An−i+2 by translations followed by a reflection on the diagonal of
Ai that contains the vertex between kn+i−1 and kn+i for i = 1, 2 and reflection on
the diagonal of Ai that contains the vertex between ki and ki+1 for i = 3, . . . , n−1.
Applying Remark 2 as before, we may assume that α either starts at the vertex of
A1 between k1, k2 and continues through kn (say), or that it starts at the vertex
of A1 between k2 and kn, continuing through k1 (say). So there are two cases to
consider, one being very similar to Case 1 above and the other similar to Case 3.
No new arguments are needed.
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Chapter 5

Hopf bands in
arborescent Hopf plumbings

The content of this chapter is published as a preprint on the arXiv [Mi2].
For a positive Hopf plumbed arborescent Seifert surface S, we study the set

of Hopf bands H ⊂ S, up to homology and up to the action of the monodromy.
The classification of Seifert surfaces for which this set is finite is closely related to
the classification of finite Coxeter groups.

1 Introduction

Let S ⊂ S3 be a Seifert surface of a link L, and let q be the quadratic form
on H1(S,Z) associated with the Seifert form. Every oriented simple closed curve
α ⊂ S can be thought of as a framed link in S3, where the framing is induced by the
surface S and encoded by the value q takes on the homology class represented by
α. For a fixed integer n, we are interested in the set Cn(S) of isotopy classes of n-
framed unknotted oriented curves α ⊂ S. By Rudolph’s work [Ru] on quasipositive
surfaces we know for example Cn(S) = ∅ whenever n 6 0 and S is quasipositive1.
Here, we focus on positive arborescent (tree-like) Hopf plumbings, where S is a
surface obtained by an iterated plumbing of positive Hopf bands according to a
finite plane tree T . Positive arborescent Hopf plumbings are particular examples of
quasipositive surfaces. At the same time, they are fibre surfaces, i.e. pages of open
books with binding K = ∂S. In fact every fibre surface in S3 can be obtained from
the standard disc by successively plumbing and deplumbing positive or negative
Hopf bands. This results from Giroux’ work on open books and contact structures
(see the article [GiGo] by Giroux and Goodman). Not much is known about how
(non-)unique a presentation of a given fibre surface S as a plumbing of Hopf bands
may be. In our previous article [Mi1], we have studied embedded arcs in fibre
surfaces cutting along which corresponds to deplumbing a Hopf band, and we gave

1For n = 0, we exclude the trivial isotopy class in the definition of Cn(S).
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examples showing that the plumbing structure can be highly non-unique. Here,
we take a similar, but different approach to understanding the plumbing structure
of S by studying the set Cn(S) in the case n = 1, whose elements correspond to
Hopf bands that can potentially be deplumbed. The monodromy ϕ : S → S of
the open book acts on the set Cn(S) as well as on its image Cn(S) in H1(S,Z),
thus providing it with additional structure. Finite trees can be divided into three
families named spherical, affine and hyperbolic, according to the classification of
Coxeter groups (compare [AC2, Hu]). The spherical trees comprise two families,
called An and Dn, plus three more trees named E6, E7, E8, whereas the affine trees
are denoted D̃n, Ẽ6, Ẽ7, Ẽ8. Up to these exceptions, all trees fall into the class of
hyperbolic trees.

Theorem 7. Let T be a finite plane tree and S ⊂ S3 the corresponding positive
arborescent Hopf plumbed surface. Then the set of homology classes of Hopf bands
C1(S) is finite if and only if T is spherical.
In contrast, if T is hyperbolic and ∂ST is a knot, C1(S) consists of infinitely many
orbits of the monodromy.

Interestingly, the above correspondence between Coxeter groups and tree-like
Hopf plumbings does not seem to be of purely homological nature: in the excep-
tional cases that correspond to affine Coxeter groups, there are in fact infinitely
many ϕ-orbits of homology classes a ∈ H1(S,Z) such that q(a) = 1. However, it
is conceivable that only finitely many orbits can be realised by honest Hopf bands
(that is, by unknotted embedded simple closed curves in S). We prove this for the
smallest affine tree D̃4, where it already suffices to exclude homology classes that
are not representable by simple closed curves. In the case Ẽ6, for example, in-
finitely many orbits can be realised by embedded (possibly knotted) simple closed
curves. We did not succeed in finding unknotted representatives of these homology
classes, though.

In the spherical cases, the set C1(S) coincides with q−1(1) ⊂ H1(S,Z) and
consists of the “obvious” Hopf bands only, that is, simple combinations of the
ones used in the plumbing construction, and their images under the monodromy.
It might be interesting to study Cn(S) or Cn(S) for other n and other classes of
Seifert surfaces, as well as the case where unknotted curves are replaced by curves
of a fixed knot type.

Throughout, S denotes a Seifert surface in S3. The Seifert form (. , .) induces
a quadratic form q : H1(S,Z)→ Z by q(a) = −(a, a). For a simple closed curve α,
the integer −q(α) describes the framing2 of an annular neighbourhood of α in S.
Recall from Chapter 1 that the Seifert matrix V of a fibre surface S with respect to
a basis of H1(S,Z) is invertible and that the matrix M of the homological action of

2The sign makes sure that q = +1 on positive Hopf bands.
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the monodromy with respect to the same basis can be computed using the formula
M = V −>V .

The above theorem is a consequence (in fact, a summary) of three propositions.
Proposition 4 concerns the spherical trees and is given in Section 4. In Section 5,
the affine trees are discussed in Proposition 5. Finally we address the hyperbolic
case with Propostion 6 in the last section.

2 Positive arborescent Hopf plumbings

Given a finite plane tree T , construct a fibre surface S = ST by taking one positive
Hopf band for every vertex of T and use plumbing to glue all pairs of Hopf bands
that correspond to adjacent vertices in T , respecting the cyclic order of the edges
adjacent to each vertex. A Seifert surface S obtained in this way is called a
positive arborescent Hopf plumbing. This construction is described and studied
in greater generality by Bonahon and Siebenmann in their work on arborescent
knots [BS]. For example, if T is the tree An shown in Figure 5.2, ST is the
standard Seifert surface of the (2, n + 1) torus link. For T = D4, we obtain the
standard Seifert surface of the (3, 3) torus link. Yet another example is illustrated
in Figure 5.1 below. The core curves (with a chosen orientation) of the Hopf bands

Figure 5.1: The spherical tree D5 and the corresponding Hopf plumbing SD5 .

used for the construction form a basis of H1(S,Z). Relative to a basis, the Seifert
quadratic form q is a homogeneous polynomial of degree two in r variables, where
r = rankH1(S,Z) equals the number of vertices of T , or, equivalently, the number
of Hopf bands used to construct ST .
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Remark 6 (on different notions of positivity). There are different possible ways
to define a Hopf band to be positive or negative. Here, by a positive Hopf band we
mean an unknotted oriented band whose boundary link with the induced orienta-
tion is a positive Hopf link, so the core curve of a positive Hopf band has framing
−1. Positive braid links are plumbings of positive Hopf bands. The subsequent
statements can be translated into statements about negative Hopf plumbings.

3 Quadratic forms and Coxeter-Dynkin trees

Let T be a finite tree with vertices {v1, . . . , vn}. Use the same symbols vi to
denote the basis of H1(ST ,Z) ∼= Zn consisting of the core curves of the plumbed
Hopf bands. We define the matrix AT to be the symmetric integral r × r-matrix
whose diagonal entries are 2’s and whose off-diagonal ij-th entry is −1 if vi and
vj are connected by an edge in T and 0 otherwise. The orientations of the core
curves may be chosen such that

qT (x1v1 + . . .+ xnvn) =
1

2
xATx

>, ∀x = (x1, . . . , xn) ∈ Zn.

Indeed, two non-adjacent Hopf bands being disjoint corresponds to the zero entries
in AT and positive Hopf bands being (−1)-framed fits the diagonal entries. Finally,
the core curves vi, vj of two plumbed Hopf bands intersect exactly once and do
not link otherwise. Thanks to the arborescent structure of the plumbing, we can
choose orientations such that {lk(vi, v

+
j ), lk(vj, v

+
i )} = {0, 1}. In other words,

−AT = V + V >,

where V is the Seifert matrix of ST with respect to the basis v1, . . . , vr.
The quadratic form qT is

• positive definite if T corresponds to a spherical Coxeter group,

• positive semidefinite if T corresponds to an affine Coxeter group,

• indefinite otherwise.

Accordingly, we call a tree T spherical, affine, hyperbolic. Compare Figure 5.2 for
a list of the spherical trees and Figure 5.4 for the affine trees. Any finite plane tree
not appearing in one of these lists is hyperbolic. In fact, the so-called slalom knots
introduced by A’Campo can be described as arborescent Hopf plumbings, and the
slalom knots given by a hyperbolic tree are exactly the ones whose complements
admit a complete hyperbolic metric of finite volume [AC2, Theorem 1].
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As we already suggested in the introduction, there is a bijective correspon-
dence between positive Hopf bands H embedded in ST (up to isotopy in ST )
and (−1)-framed unknotted simple closed curves α ⊂ ST (up to isotopy in ST ).
The correspondence is given in one direction by assigning to a Hopf band H its core
curve α, and in the other direction by setting H to be a regular neighbourhood of
α in ST . Passing to homology classes, we can think of an element x ∈ H1(ST ,Z)
as the homology class of a positive Hopf band if and only if x can be realised as
the homology class of an unknotted simple closed curve in ST and qT (x) = 1.

Definition 8. We denote by C1(ST ) the set of homology classes of positive Hopf
bands in ST . Note that C1(ST ) ⊂ q−1

T (1) ⊂ H1(ST ,Z).

We complete this section with a few remarks that concern the above definition
and which are important for the rest of the article.

Remark 7. If ∂ST is a knot, x ∈ H1(ST ,Z) is representable by a simple closed
curve if and only if it is primitive, i.e., if it cannot be written as a multiple of
another vector (see [FM, Proposition 6.2] for a proof in the closed case). In par-
ticular, any x ∈ q−1

T (1) can be realised by a (possibly knotted) simple closed curve
if ∂ST is a knot.

Remark 8. Let T be a finite plane tree, ST the corresponding surface and ϕ :
ST → ST the monodromy. If w ∈ H1(ST ,Z) is a homology class represented by an
unknotted simple closed curve α, then ϕ(α) is again an unknotted simple closed
curve, since the flow of the monodromy vector field describes an isotopy from α to
ϕ(α) in S3. In addition, ϕ(α) represents the homology class ϕ∗(w), whose framing
equals the framing of w. In particular, w ∈ C1(ST ) iff (ϕ∗)

n(w) ∈ C1(ST ), ∀n ∈ Z.

Remark 9. If T ′ is a subtree of a tree T (that is, T ′ is obtained from T by
contracting edges), ST ′ can be viewed as a subsurface of ST in such a way that the
map on homology induced by the inclusion is injective. In particular, C1(ST ′) can
be identified with a subset of C1(ST ).

Remark 10. We immediately spot a certain number of Hopf bands in an arbores-
cent Hopf plumbing ST , such as the Hopf bands corresponding to the vertices vi
of T that were used in the Hopf plumbing construction. Based on this observation
we say that x ∈ C1(ST ) is a standard Hopf band if x ∈ C1(ST ′) for some sub-
tree T ′ ⊂ T of type An. See Figure 5.3 for an example and the paragraph after
Proposition 4 for a complete description of all standard Hopf bands in SAn .
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4 The spherical Coxeter-Dynkin trees

If T is one of the spherical trees An, Dn, E6, E7 or E8 depicted in Figure 5.2, the
quadratic form qT is positive definite. Therefore, the equation qT (x) = k has only
finitely many integral solutions, for any fixed k and in particular for k = 1. In the
rest of this section, we explicitely determine all solutions to qT (x) = 1 for each of
the spherical trees. These were already studied and classified in the context of Lie
algebra theory and Coxeter groups; see for example the book by Humphreys [Hu].
The following proposition summarises the results of this section (see Remark 10
for the definition of a standard Hopf band).

Proposition 4. If T is a spherical tree, then the set of integral solutions to qT (x) =
1 is finite. Moreover, every solution is contained in the orbit of a standard Hopf
band under the monodromy and is therefore realisable as an unknotted simple closed
curve in ST . In particular, C1(ST ) = q−1

T (1).

Figure 5.2: The simply laced spherical Coxeter trees correspond to finite Coxeter
groups. The numbers indicate the order of the chosen homology basis vectors.

First let T = An. The associated quadratic form q then takes the following
form with respect to the basis of H1(ST ,Z) ∼= Zn described above:

q(x) = x2
1 + . . .+ x2

n − x1x2 − x2x3 − . . .− xn−1xn

=
1

2
((x1 − x2)2 + . . .+ (xn−1 − xn)2 + x2

1 + x2
n)

For any integral solution x to q(x) = 1, necessarily |x1|, |xn| 6 1. Therefore, we
obtain

C1(SAn) = {±(0r,1s,0t) ∈ Zn | r, t > 0, s > 1},
where cν stands for ν consecutive occurences of the number c. It is easily seen
that all n(n+1) elements of the above set can be represented by unknotted simple
closed curves in SAn , see Figure 5.3 for an example.
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For T = Dn, one finds:

q(x) = x2
1 + . . .+ x2

n − x1(x2 + x3 + x4)− x4x5 − . . .− xn−1xn

= (
1

2
x1 − x2)2 + (

1

2
x1 − x3)2 +

1

2
(x1 − x4)2

+
1

2
((x4 − x5)2 + . . .+ (xn−1 − xn)2) +

1

2
x2
n

Let x ∈ Zn be a solution of q(x) = 1. Then |xn| 6 1, since otherwise the last
summand would already be larger than one. If xn = 0, then x ∈ C1(SDn−1).

Figure 5.3: A standard Hopf band (in grey) in SA5 , representing the homology
class (0, 1, 1, 0, 0) with respect to the homology basis described above. The arrows
indicate the chosen orientations of the homology basis vectors.

Otherwise, we may assume xn = 1, up to changing the sign of x. If x1 = 0,
then x2, x3 cannot be both nonzero, so we can view x ∈ C1(SAn−1). Hence we may
assume x1 6= 0. If x1 is odd, then the first two squares are in 1

4
N \N while the last

summand is equal to 1
2
. This implies that the rest vanishes, i.e., x1 = x4 = x5 =

. . . = xn = 1, and hence x2, x3 ∈ {0, 1}. If x1 is even, the first two squares are in
N and must therefore vanish, while

(x1 − x4)2 + (x4 − x5)2 + . . .+ (xn−2 − xn−1)2 + (xn−1 − 1)2 = 1.

This implies that exactly one of these squares equals one and the rest vanishes, so
we obtain the following solutions (recall that x1 6= 0 by assumption).

x = (2, 1, 1,2r,1s) ∈ Zn, r > 0, s > 1

If M denotes the matrix of the homological action of the monodromy with respect
to the basis v1, . . . , vn, the following relations hold for r > 0, s > 1.

(1r+3,0n−r−3)> = (−1)r+1M r+2(0n−r−1,1r+1)>

(2, 1, 1,2r,1s,0n−r−s−3)> = (−1)r+1M r+1(1, 0, 0,1s−1,0n−s−2)>
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Hence all solutions to q(x) = 1 are contained in orbits of standard Hopf bands
under the monodromy and are therefore realisable by unknotted simple closed
curves in ST . In total, we obtain

C1(SDn) = {±(2, 1, 1,2r,1s,0t) ∈ Zn | r, t > 0, s > 1}
∪ {±(1, x2, x3,1r,0s) ∈ Zn | x2, x3 ∈ {0, 1}, r, s > 0}
∪ {±(0r,1s,0t) ∈ Zn | r > 3, s > 1} ∪ {±v2,±v3}.

A combinatorial calculation shows that #C1(SDn) = 2n(n− 1).
For T = E6, the quadratic form q takes the following form.

q(x) = x2
1 + . . .+ x2

6 − x1(x2 + x3 + x4)− x3x5 − x4x6

= (
1

2
x1 − x2)2 +

1

3
((x1 −

3

2
x3)2 + (x1 −

3

2
x4)2)

+(
1

2
x3 − x5)2 + (

1

2
x4 − x6)2 +

1

12
x2

1

E6 contains A5 and D5 as subtrees, whose sets of Hopf bands we know. Let x be
a solution of q(x) = 1 different from these (in particular, x2, x5, x6 6= 0). From the
condition 1

12
x2

1 6 1 we obtain |x1| 6 3. If x1 = 0, at most one of x2, x3, x4 can be
nonzero. It follows that x is supported in one of the arms of the tree, which we
excluded. Therefore we may assume x1 ∈ {1, 2, 3} (up to changing the sign of x).
If x1 = 3, then 1

12
x2

1 = 3
4

and (1
2
x1−x2)2 ∈ 1

4
N\N. So x2 ∈ {1, 2} and x3 = x4 = 2,

x5 = x6 = 1, hence
x = (3, x2, 2, 2, 1, 1), x2 ∈ {1, 2}.

If x1 = 2, then x2 = 1 (otherwise (1
2
x1 − x2)2 + 1

12
x2

1 > 1), and similarly x3, x4 ∈
{1, 2}, which implies x5 = x6 = 1 (remember we excluded x5 = 0 or x6 = 0). This
yields the four possibilities

x = (2, 1, x3, x4, 1, 1), x3, x4 ∈ {1, 2}.
Finally, if x1 = 1, we can successively deduce |xi| 6 1 for i = 2, . . . , 6, hence

x = (1, 1, 1, 1, 1, 1).

It turns out that all of these homology classes can be realised by unknotted simple
closed curves. In fact, they all lie, up to sign, in the orbits of v1, v1 + v2, v1 +
v3, v1 +v4 under the monodromy. In total, we have 14 vectors plus 2 ·(#C1(SD5))−
#C1(SD4)+2 = 58 vectors coming from the subtrees D5 and A5, so #C1(SE6) = 72.
For E7, we obtain

q(x) = x2
1 + . . .+ x2

7 − x1(x2 + x3 + x4)− x3x5 − x4x6 − x6x7

= (
1

2
x1 − x2)2 +

1

3
((x1 −

3

2
x3)2 + (x4 −

3

2
x6)2)

+
2

3
(
3

4
x1 − x4)2 + (

1

2
x3 − x5)2 + (

1

2
x6 − x7)2 +

1

24
x2

1
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The vectors x satisfying q(x) = 1 that are not supported on the D6 or E6 subtrees
are (up to sign)

(4, 2, 3, 3, x5, 2, 1), (3, x2, 2, x4, 1, 2, 1), (2, 1, x3, 2, 1, x6, 1),

(4, 2, 2, 3, 1, 2, 1), (3, x2, 2, 2, 1, 1, 1), (2, 1, x3, 1, 1, 1, 1),

(1, 1, 1, 1, 1, 1, 1),

where x2, x3, x5, x6 ∈ {1, 2} and x4 ∈ {2, 3} can be freely chosen. As before, these
homology classes are contained in the orbits of the Hopf bands v1, v2, v3, v1 + v3,
v1 + v4, v4 + v6, v1 + v4 + v6 under the monodromy, hence realisable by unknotted
simple closed curves. A count of elements yields #C1(SE7) = 126.
Finally, for E8

q(x) = x2
1 + . . .+ x2

8 − x1(x2 + x3 + x4)− x3x5 − x4x6 − x6x7 − x7x8

= (
1

2
x1 − x2)2 +

1

3
((x1 −

3

2
x3)2 + (x6 −

3

2
x7)2) +

2

5
(x1 −

5

4
x4)2

+
3

8
(x4 −

4

3
x6)2 + (

1

2
x3 − x5)2 + (

1

2
x7 − x8)2 +

1

60
x2

1

The vectors not supported on the D7 or E7 subtrees are

(6, 3, 4, 5, 2, 4, 3, x8), (6, 3, 4, 5, 2, x5, 2, 1), (6, 3, 4, 4, 2, 3, 2, 1),

(5, x2, 4, 4, 2, 3, 2, 1), (5, x2, 3, 4, y5, 3, 2, 1), (4, 2, 3, 4, y5, 3, 2, 1),

(4, 2, 2, 4, 1, 3, 2, 1), (4, 2, 3, 3, y5, 3, 2, 1), (4, 2, 3, 3, y5, 2, x7, 1),

(4, 2, 2, 3, 1, x6, 2, 1), (4, 2, 2, 3, 1, 2, 1, 1), (3, y2, 2, 3, 1, 3, 2, 1),

(3, y2, 2, 3, 1, 2, x7, 1), (3, y2, 2, 2, 1, 2, x7, 1), (3, y2, 2, 2, 1, 1, 1, 1),

(2, 1, x3, 2, 1, 2, x7, 1), (2, 1, x3, x4, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1),

where x3, x4, x7, x8, y2, y5 ∈ {1, 2}, x2, x6 ∈ {2, 3}, x5 ∈ {3, 4}. Again, these vectors
all lie in the orbits of v1, v2, v3, v4, v1+v2, v1+v3, v1+v4, v6+v7, v7+v8, v1+v4+v6

under the monodromy and are therefore represented by unknotted simple closed
curves. Together with the vectors supported on the D7 and E7 subtrees, they add
up to a total count of #C1(SE8) = 240.
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5 The affine Coxeter-Dynkin trees

Proposition 5. If T is an affine tree, the set of solutions to qT (x) = 1 contains at
least one infinite orbit of a standard Hopf band under the monodromy. In partic-
ular, the set C1(ST ) is infinite. More precisely, there exist vectors u,w1, . . . , wd ∈
H1(ST ,Z), such that every solution x to qT (x) = 1 is of the form x = wi + ku for
some k ∈ Z, i ∈ {1, . . . , d}.

Let T be an affine tree and let n be the number of vertices of T . Observe
that T is obtained by adding one edge and one vertex vn to a suitable spherical
subtree T ′.

Figure 5.4: The simply laced affine Coxeter trees.

In terms of the associated quadratic forms qT , qT ′ this means: there exists a
subspace of codimension one on which qT has a positive definite restriction, i.e.,
the radical kerAT of qT (x) = 1

2
xATx

> is one-dimensional. Let u ∈ Zn be such that
Zu = kerAT . Observe that

qT (w + ku) = qT (w) + k wATu
> + k2qT (u) = qT (w),

for all w ∈ Zn, k ∈ Z. Let V be the Seifert matrix of ST with respect to the
basis v1, . . . , vn of H1(ST ,Z) and denote by M the matrix of the monodromy of
ST with respect to the same basis. As mentioned in Chapter 1 and in Section 3
respectively, the Seifert matrix V is invertible and the following relations hold.

M = V −>V, −AT = V + V >

Since u ∈ kerAT , we have V u = −V >u and therefore Mu = −u. Moreover, we
will see that the last coordinate of u (corresponding to the vertex vn of T ) equals
±1. Therefore, k ∈ Z can be chosen such that w + ku is supported in T ′, so

q−1
T (1) = {w + ku | w ∈ q−1

T ′ (1)× {0}, k ∈ Z}.

To simplify notation, we identify the vector (x1, . . . , xn−1) ∈ Zn−1 with the vector
(x1, . . . , xn−1, 0) ∈ Zn. It should be clear from the context when a last entry equal
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to zero is to be deleted from a vector and when a zero should be appended to a
vector.

The smallest example of an affine tree T is the the “X”-shaped tree D̃4 with
five vertices v1, . . . , v5 where v1 has degree four and v2, . . . , v5 have degree one
(compare Figure 5.4). In that case, q(x) = qT (x) can be written as a sum of four
squares:

q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x1(x2 + x3 + x4 + x5)

= (
1

2
x1 − x2)2 + (

1

2
x1 − x3)2 + (

1

2
x1 − x4)2 + (

1

2
x1 − x5)2

One easily finds that the vector u = (2, 1, 1, 1, 1) spans the radical. The subtree
whose vertices are v1, . . . , v4 is of type D4. Therefore, all solutions x to q(x) = 1
are of the form x = w + ku, where k ∈ Z and w ∈ C1(SD4) ⊂ Z4. We know
from the previous section on spherical trees that C1(SD4) consists of the following
vectors, up to sign and up to permutation of the last three entries:

w1 = (2, 1, 1, 1), w2 = (1, 1, 1, 1), w3 = (1, 1, 1, 0),

w4 = (1, 1, 0, 0), w5 = (1, 0, 0, 0), w6 = (0, 1, 0, 0).

The matrix M of the (homological) monodromy with respect to the basis v1, . . . , v5

of H1(ST ,Z) can be computed using the formula in terms of the Seifert matrix V
mentioned above. Concretely:

M =




−3 1 1 1 1

−1 1

−1 1

−1 1

−1 1




The following relations hold:

M2(w1) = w1 + u, M2(w2) = w2 − u, M2(w3) = w3

M2(w4) = w4 + u, M2(w5) = w5 + 2u, M2(w6) = w6 − u

We will now deduce from these relations that the set of homology classes of Hopf
bands C1(ST ) decomposes into finitely many orbits under the action of the mon-
odromy M . Indeed, the above relations imply that the families {wi + ku}k∈Z,
i 6= 3, fall into finitely many orbits. On the other hand, each of the vectors
w(k) := w3 + ku, k ∈ Z, is fixed by M2, so they cannot be contained in a finite
union of M -orbits. However, w(k) /∈ C1(ST ) for k 6= 0,−1, since these homology
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classes cannot be represented by a simple closed curve in ST , as we demonstrate
now. ST is a surface of genus one with four boundary components. If we forget
about the embedding of ST ⊂ S3, we can abstractly glue three disks to cap off
all but one boundary component. The result is an abstract (non-embedded) once
punctured torus. Therein, a nonzero first homology class c can be represented by
a simple closed curve if and only if c is a primitive vector, that is, if c = λc′ implies
|λ| = 1 for λ ∈ Z (compare Remark 7). To make use of this criterion, we change
the basis (v1, . . . , v5) of H1(ST ,Z) to the basis (v1, v2, v2 − v3, v3 − v4, v4 − v5).
The last three elements of this new basis can be represented by three of the four
boundary curves of ST . Therefore, capping off these three boundary components
has the effect of deleting the last three entries of the corresponding coordinate
vectors. Rewriting w(k) in the new coordinates yields the vector

(2k + 1, 4k + 2,−(3k + 1),−2k,−k).

Under the inclusion of ST into the capped-off surface, we obtain the vector

(2k + 1, 4k + 2) = (2k + 1) · (1, 2),

which is primitive for k ∈ {0,−1} only. Hence w(k) /∈ C1(ST ) for k 6= 0,−1 and
the set C1(ST ) decomposes into finitely many orbits under M .
For the other members of the D̃n family (n > 5), we obtain

q(x) = (
1

2
x1 − x2)2 + (

1

2
x1 − x3)2

+
1

2

(
(x1 − x4)2 + (x4 − x5)2 + . . .+ (xn−2 − xn−1)2

)

+(
1

2
xn−1 − xn)2 + (

1

2
xn−1 − xn+1)2

whose radical is spanned by u = (2, 1, 1,2n−4, 1, 1). As for D̃4, the solutions to
q(x) = 1 are the vectors of the form wi + ku, where k ∈ Z and wi ∈ C1(SDn),
i ∈ {1, . . . , 2n(n − 1)}, are the homology classes of Hopf bands supported in the
Dn subtree of D̃n. A calculation with the monodromy matrix M and the first
standard Hopf band v1 shows that Mn−2v1 = (−1)n(v1 + 2u). Since Mu = −u,
this implies

M (n−2)kv1 = (−1)nk(v1 + 2ku), ∀k ∈ Z.

Therefore, there is at least one infinite orbit of homology classes of Hopf bands in
C1(ST ). In contrast, there do exist wi such that the family {wi + ku}k∈Z does not
fall into finitely many orbits under the monodromy and still consists of homology
classes of simple closed curves. For example, the vectors w = (0r,1s,0t) ∈ Zn+1,
3 6 r 6 n − 1, 1 6 s 6 n − r − 1, are in fact all fixed by M2(n−2), and w + ku
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is realisable as a simple closed curve, for every k ∈ Z. However, we do not know
whether it can be realised as an unknotted simple closed curve for k /∈ {0,−1}.
The same situation occurs for Ẽ6, Ẽ7 and Ẽ8. For T = Ẽ6, the corresponding
quadratic form q can be written as follows.

q(x) =
1

3

(
(x1 −

3

2
x2)2 + (x1 −

3

2
x3)2 + (x1 −

3

2
x4)2

)

+(
1

2
x2 − x7)2 + (

1

2
x3 − x5)2 + (

1

2
x4 − x6)2

The radical of q is spanned by the vector u = (3, 2, 2, 2, 1, 1, 1), and M2v1 = v1 +u,
where M and v1 denote again the monodromy and the first standard Hopf band,
respectively. This implies that the orbit of v1 under the monodromy is infinite.
For the tree Ẽ7, we have:

q(x) = (
1

2
x1 − x2)2 + (

1

2
x5 − x8)2 + (

1

2
x6 − x7)2

+
2

3

(
(
3

4
x1 − x3)2 + (

3

4
x1 − x4)2

)

+
1

3

(
(x3 −

3

2
x5)2 + (x4 −

3

2
x6)2

)

The radical is generated by u = (4, 2, 3, 3, 2, 2, 1, 1) and one verifies the relation
M3v1 = −v1 − u. Finally, for Ẽ8, we obtain:

q(x) = (
1

2
x1 − x2)2 + (

1

2
x3 − x5)2 + (

1

2
x8 − x9)2

+
3

5
(
5

6
x1 − x4)2 +

2

5
(x4 −

5

4
x6)2 +

2

3
(
3

4
x6 − x7)2

+
1

3

(
(x1 −

3

2
x3)2 + (x7 −

3

2
x8)2

)

The radical is the span of u = (6, 3, 4, 5, 2, 4, 3, 2, 1), M5v1 = −v1 − u.
In summary, every solution x to the equation qT (x) = 1 (T affine) is of the

form x = wi + ku for some k ∈ Z, where u generates the radical of qT and the wi
are finitely many homology classes of Hopf bands contained in ST ′ for a spherical
subtree T ′ ⊂ T . For certain i, the family {wi + ku}k∈Z is contained in finitely
many orbits under the monodromy M of ST , while the members of the remaining
families are fixed by some power Md. Among the latter, there are homology classes
that cannot be realised by simple closed curves, and there are such families whose
members are realisable by simple closed curves.

Question. Can these homology classes be realised by unknotted simple closed
curves? In other words, does C1(ST ) decompose into finitely many orbits under
the monodromy, for any affine tree T?
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6 Infinite sets of orbits for hyperbolic trees

As described above, C1(ST ) is finite for the spherical trees and infinite for the affine
trees. However, C1(ST ) could still decompose into finitely many orbits under the
monodromy. We claim this is not anymore true for hyperbolic trees, at least when
∂ST is a knot.

Proposition 6. Let T be a hyperbolic tree, let ST be the corresponding fibre surface
and denote the monodromy by ϕ. If ∂ST is a knot, then the set C1(ST ) of homology
classes of Hopf bands consists of infinitely many ϕ∗-orbits.

The key idea for proving the proposition is to take an affine subtree T ′ ⊂ T
and to compare the action of the monodromy ϕ′∗ on H1(ST ′ ,Z) with the action
of ϕ∗ on H1(ST ,Z). In the previous section, we found ϕ′∗-orbits of Hopf bands
consisting of vectors vk ∈ H1(ST ′ ,Z) that grow linearly in k ∈ Z with respect to
any norm. This was possible because the Jordan normal form of ϕ′∗ has Jordan
blocks of size two to eigenvalues which are roots of unity. However, it turns out
that the monodromy ϕ∗ of the larger surface ST does not have such Jordan blocks.
Therefore, the family vk cannot be a union of finitely many orbits under ϕ∗ since
the “gaps” between consecutive members of an orbit must either stay bounded
or grow exponentially. More specifically, the proposition will follow from the two
subsequent lemmas.

Lemma 6. Let T be a hyperbolic tree such that ∂ST is a knot, and denote the
corresponding monodromy by ϕ : ST → ST . The Jordan normal form of ϕ∗ :
H1(ST ,Z) → H1(ST ,Z) cannot contain any Jordan block of size greater than one
to an eigenvalue of modulus one.

Proof. The main ideas for the proof are contained in an appendix by Feller and
Liechti to an article of Liechti [Li1]; see also [GL]. However, we choose to reformu-
late them here for the reader’s convenience. Let A be a Seifert matrix for ST with
respect to some basis of H1(ST ,Z). Then, the monodromy ϕ∗ has matrix A−>A
with respect to that basis. Given an eigenvalue ω of ϕ∗, we denote the algebraic
and geometric multiplicities of ω by malg(ω) and mgeom(ω), respectively. Thus,
malg(ω) is the multiplicity of the zero ω of the characteristic polynomial of ϕ∗,
while mgeom(ω) is the number of Jordan blocks to ω in the Jordan normal form
of ϕ∗. Our goal is to prove mgeom(ω) = malg(ω) for every eigenvalue ω ∈ S1 of
ϕ∗, or, equivalently, of ϕ−1

∗ . Suppose to this end that ω ∈ S1 is an eigenvalue of
ϕ−1
∗ = A−1A>. Then we have

0 = det(A) det(ωI − ϕ−1
∗ ) = det(ωA− A>) = ∆K(ω),
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where ∆K(t) denotes the Alexander polynomial of the knot K = ∂ST and I denotes
the identity map on H1(ST ,Z). For ω ∈ S1, the ω-signature (after Levine and
Tristram [Tr]) is defined to be the signature σω ∈ Z of the Hermitian matrix

Mω = (1− ω)A+ (1− ω̄)A> = −(1− ω̄)(ωA− A>),

that is, the number of positive eigenvalues minus the number of negative eigen-
values of Mω. As ω = eπit traverses one half of the unit circle for t ∈ (0, 1],
the ω-signature σω stays constant except at zeros ω0 of ∆K (by the first equation
above), where it may jump by some even amount 2jω0 . In addition, if ω ∈ S1 is
an eigenvalue of ϕ−1

∗ ,

|jω| 6 null(Mω) = null(ωI − ϕ−1
∗ ) = mgeom(ω) 6 malg(ω),

where null(B) denotes the nullity of a matrix B, that is, the geometric multiplicity
of the eigenvalue 0 of B. For ω ∈ S1 near 1 we have σω = 0 (see Feller and Liechti’s
appendix of [Li1]), whereas for ω = −1, σω takes the value of the classical signature
invariant for knots, σ(K). This implies

σ(K) = σ−1(K) 6 2 ·
∑

ω∈S1
+

|jω| 6 2 ·
∑

ω∈S1
+

malg(ω) = σ(K),

where S1
+ = {eπit | t ∈ (0, 1]} denotes the upper half of the unit circle. The last

equality follows from the fact that the number of zeros of ∆L on S1 (counted
with multiplicity) equals σ(L) + null(L) for any tree-like Hopf plumbing L, where
null(L) = null(M−1) equals zero if L is a knot. This is proven in a preprint by
Liechti [Li2]. Therefore the above inequalities are in fact equalities, which implies
mgeom(ω) = malg(ω) for all zeros ω ∈ S1

+ of ∆K . By the symmetry of Alexander
polynomials, the same holds for the zeros ω of ∆K(t) such that −ω ∈ S1

+. Finally,
∆K(1) 6= 0 because K is a knot. This ends the proof.

Lemma 7. Let Φ be a matrix of size n× n with coefficients in C, and let v ∈ Cn

be any vector. Suppose that the Jordan normal form of Φ does not contain any
Jordan block of size greater than one to an eigenvalue of modulus one. Then the
sequence {Φk(v)}k∈N is either bounded or grows exponentially (with respect to any
norm ‖.‖ on Cn).

By exponential growth of a sequence {vk}k∈N ⊂ Cn with respect to a norm ‖.‖ we
mean the existence of constants h > 1, c > 0, d > 0, such that ‖vk‖ > chk − d for
all k ∈ N.

Proof of Lemma 7. We may first assume that Φ is already in Jordan normal form,
and second that Φ consists of just one Jordan block to some eigenvalue λ. If v = 0,
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the conclusion is clear, so we assume v 6= 0. If |λ| < 1, the sequence Φk(v) is
bounded, if |λ| > 1, it grows exponentially and if |λ| = 1, Φ is of size one, so Φk(v)
is bounded.

Proof of Proposition 6. Let T be a hyperbolic tree. Since T contains an affine
subtree T ′, we have at least one infinite family {vk}k∈N of elements vk ∈ C1(ST ′) ⊂
C1(ST ) which grow linearly in k when seen as a sequence of vectors in H1(ST ,Z) ⊂
H1(ST ,C) ∼= Cn. More precisely, the vk are pairwise distinct, and there exist
constants a > 0, b > 0, such that

‖vk‖ 6 ak + b, ∀k ∈ N.

Indeed, we found such families for every affine tree in the preceding section. As-
sume now that ∂ST is a knot. While the family {vk} could still decompose into
finitely many orbits under the monodromy ϕ′∗ of the smaller surface ST ′ , we will
show this cannot be the case for orbits of ϕ∗, the monodromy of ST . Namely,
assume to the contrary that there were r indices k1, . . . , kr ∈ N such that the
ϕ∗-orbits of vk1 , . . . , vkr covered the whole sequence {vk}k∈N. By Lemma 6 and
Lemma 7 (applied to Φ = ϕ∗), we obtain the following, for every i ∈ {1, . . . , r}.
Either the ϕ∗-orbit of vki is bounded and thus finite, or there exist hi > 1, ci > 0,
di > 0, such that ‖ϕk∗(vki)‖ > cih

k
i −di for all k ∈ N. Replacing hi, ci, di by minimal

or maximal values h > 1, c > 0, d > 0 respectively, we have

‖ϕk∗(vki)‖ > chk − d, ∀k ∈ N.

Now, let K ∈ N be large (to be specified later) and set R := aK + b. We would
like to compare the numbers

p := #{k ∈ N | ‖vk‖ 6 R},
q := #{(k, i) ∈ N× {1, . . . , r} | ‖ϕk∗(vki)‖ 6 R}.

First, p > K, since ‖vk‖ 6 aK + b = R for all k 6 K, and the vk are pairwise
distinct. Second, taking N :=

⌊
K
r

⌋
− 1, we have K > rN , and

chN − d = chb
K
r
c−1 − d > aK + b = R,

for large enough K, since h, c > 1. Then, we have q 6 rN , since ‖ϕk∗(vki)‖ >
chN − d > R as soon as k > N . Thus p > K > rN > q, contradicting our
assumption on the sequence vk being covered by the ϕ∗-orbits of its members
vk1 , . . . , vkr . This finishes the proof.

Question (by Pierre Dehornoy). Can every embedded Hopf band in ST be ob-
tained from one of the Hopf bands vi by successively applying the monodromies
of ST ′ , where T ′ ranges over suitable subtrees of T?
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