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1 Abstract

This thesis investigates how the atmospheric circulation and ozone distribution
of a planet with the size, the mass, the continental distribution and topography,
the oceans, and the atmospheric composition and circulation of the present day
Earth (Earth-like planet) is altered by local and global radiative forcing changes
using three-dimensional simulations. These simulations are generated using the cou-
pled 3D chemistry-climate model CESM1(WACCM), which incorporates the entire
atmosphere up to an altitude of 140 km, as well as parametrizations for the full atmo-
spheric chemistry, photochemistry, cloud microphysics and small-scale gravity wave
�ux. These features allow for a realistic simulation of the composition and dynamics
of the Earth's atmosphere.

The investigation is composed of three studies. In the �rst study, the e�ects
in the lower tropospheric dynamics generated by a local radiative forcing change
on the present day Earth are investigated. The forcing change is implemented by
changing the local soil colour and therefore the local albedo. In order to isolate
the generated perturbation from the background waves, a small-scale perturbation
analysis is performed for the �rst 5 days of the simulation. The soil colour change
generates an upwards propagating convective perturbation, which induces a radially
propagating circular wave at an altitude of 2 km. This wave has a mean wave velocity
of 〈v〉 = 200 ± 50 m/s, a mean horizontal wavelength 〈λ〉 = 3000 ± 500 km and a
mean wave period 〈p〉 = 4 ± 1 h. In addition to this wave, a secondary wave is also
generated over the tropical Amazon convection zone when the primary wave collides
with it. The secondary wave has a mean wave velocity 〈v〉 = 220 ± 40 m/s, a mean
horizontal wavelength 〈λ〉 = 2600± 600 km and a mean wave period 〈p〉 = 3± 1 h.

The second study expands the scope of the �rst study by investigating how a
global radiative forcing change a�ects the atmospheric circulation and ozone distribu-
tion of an Earth-like planet orbiting a Sun-like star. In this study, the forcing change
is implemented by tidally locking the planet. The simulations reveal that, when the
full photochemistry and atmospheric dynamics are included, the planet's middle at-
mosphere adjusts to the new conditions within a relatively short time (roughly 80
days from the start of the simulation) and its atmospheric circulation and ozone
distribution are altered.

The Brewer-Dobson circulation is replaced by a day side upwelling and a night
side downwelling. The total ozone content of the tidally locked planet is reduced by
19.3% compared to the Earth due to radiation and transport changes. Speci�cally,
the total ozone content mean is reduced by 23.21% on the day side and by 15.52%
on the night side. The middle stratospheric ozone accumulates on the day side of
the planet resulting in a day-night variation of 40%. In comparison, the Earth's day-
night variation is only 2%. The lower stratospheric ozone is mainly in�uenced by the
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altered circulation and is characterised by enhanced night side zone and depleted day
side regions. The planet's mesospheric ozone is similar to the Earth's mesospheric
ozone distribution, with decreased ozone on the day side and enhanced ozone on the
night side. For a distant observer, the planet's total ozone content will vary up to
23% during its revolution around its parent star.

Finally, the third study is an extension of the second study. It investigates, in
more detail, the 3D atmospheric circulation of a tidally locked planet. An intercom-
parison with the fast rotating Earth is performed and the e�ects of the sea surface
temperature (SST) on the middle atmosphere of the tidally locked planet are simu-
lated and analysed. For this study, two extreme SSTs are used: a present day Earth
SST and a tidally locked aquaplanet SST. The simulation shows that the SST has
a limited in�uence on the middle atmosphere. The warmer present day Earth SST
generated, on average, a lower tropospheric heating of 3.7 K, an upper tropospheric
cooling of 4 K, a lower stratospheric heating of 3.8 K, a lower mesospheric cooling
of 1.13 K and an upper mesospheric heating of 4.3 K. The lower stratospheric heat-
ing is possibly generated by the increased infrared radiation �ux from the warmer
present day Earth SST surface, as the lower stratospheric ozone will absorb the in-
creased infrared radiation at 9.6 µm. The SST change has no signi�cant in�uence
on the primary ozone layer, while the warmer SST leads to a strong increase of the
secondary ozone layer. The tropospheric and stratospheric results are in agreement
with past studies of the in�uence of SST variability on the Earth's troposphere and
stratosphere. The lower mesospheric cooling is consistent with increased mesospheric
wave-breaking due to the warmer present day Earth SST. Both simulations are char-
acterised by an upwelling on the day side and downwelling on the night side, while
the stratospheric and mesospheric circulation is only weakly in�uenced by the under-
lying SST. Generally, the reduced Coriolis force of the tidally locked planet leads to
enhanced meridional mixing and consequently to a relatively isothermal temperature
distribution of the middle atmosphere. The occurrence of large-scale vortices and
variable jet streams depends, to some extent, on the SST distribution.



2 Introduction

A change in the radiative balance of an Earth-like planet is expected to alter its
atmospheric dynamics and composition. The subject has not been extensively inves-
tigated so far and this thesis aims to �ll this gap. Initially, the e�ect of a small local
perturbation of the radiative balance is investigated in order to study the coupling
processes between the Earth's surface and the atmosphere, by changing the regional
surface colour. Then, the investigation is expanded to the e�ects of a global radiative
forcing change by changing the planet's incident stellar radiation �ux distribution.
This is achieved by tidally locking the planet and altering its sea-surface temperature
to �t the tidally locked energy distribution. The study focuses on the planet's middle
atmosphere, as such studies have not been performed in the past. Ideas from the �rst
and second studies are then combined in the third study, where the radiative balance
of the tidally locked Earth-like planet presented in the second study is altered by
changing its sea-surface temperature. One aim of the study is to investigate how
strongly the SST a�ects the planet's middle atmosphere.

Earth receives most of its energy from the Sun, whose spectrum can be seen in
Figure 2.1. The incident solar radiation �ux at the top of the atmosphere is indicated
with the solid line, while the observed spectrum at sea level is indicated by the grey
area. At the bottom of the �gure (Salby, 2012b), the ultraviolet (UV), visible and
infrared parts of the spectrum are indicated by the purple, the yellow and the red
regions, respectively.

The incident solar radiation �ux at the top of the atmosphere, integrated over
the wavelength, is given by the solar constant So = 1372 W/m2. The global average
of the solar irradiance Finc (Finc = So/4 = 343 W/m2) is equal to the quotient of
the incoming solar power (πR2So) and the Earth's surface area (4πR2). The Earth's
radiative balance can be seen in Figure 2.2. Approximately 31 % of the Finc (106
W/m2) is re�ected back towards space: 21 W/m2 by the air, 69 W/m2 by the clouds
and 16 W/m2 by the surface. Of the remaining energy, 68 W/m2 are absorbed by the
atmosphere: 48 W/m2 by atmospheric H2O, O3 and aerosols, and 20 W/m2 by the
clouds (Salby, 2012b). Radiation with wavelengths smaller than 200 nm is absorbed
by mesospheric O2 molecules above 80 km altitude, while radiation with wavelengths
between 200 nm and 300 nm is absorbed by stratospheric ozone molecules between 25
km and 50 km altitudes (Saha, 2008). This mechanism is responsible for the cut-o�
visible at 300 nm in Figure 2.1. The remaining 169 W/m2, which comprise nearly
49 % of the incoming shortwave energy, reach the ground and are absorbed by the
Earth's surface (Salby, 2012b).

The energy absorbed by the atmosphere is re-emitted in the form of longwave
radiation. In total, 327 W/m2 are emitted by the atmosphere towards the surface (120
W/m2 by the clouds and 248 W/m2 by H2O, O3, and aerosols). The surface absorbs
the incident shortwave and longwave radiation and re-emits it in the form of longwave
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UV visible IR

Figure 2.1: The Solar Spectrum. Solid line: Incident radiation at the top of the at-
mosphere. Grey area: The observed spectrum on the Earth's surface. Purple
area: ultraviolet spectrum (UV). Yellow area: visible radiation spectrum. Red
area: infrared spectrum. (Adapted from Salby (2012b))

Figure 2.2: Earth radiative budget (From Salby (2012b))

radiation. A total of 390 W/m2 are emitted upwards. Of this energy, 368 W/m2 are
re-absorbed by the atmosphere and 22 W/m2 are released into space. The surface
net radiative forcing of the surface is given by the sum of the incident shortwave and
longwave absorption minus the outgoing longwave emission (169 W/m2 + 237 W/m2

- 390 W/m2 = 106 W/m2) (Salby, 2012b). Since the radiative forcing of the surface
is positive, the surface is radiatively heated. Then, the heat is released in the form
of sensible heat (16 W/m2) and latent heat (90 W/m2) �ux. The planet's radiative
equilibrium is maintained through the processes described in the above paragraphs.
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A planet's radiative balance can be altered by several factors such as the solar en-
ergy intensity, the re�ectivity of clouds or gases, the absorption by greenhouse gases,
the absorption of shortwave radiation by the planet's surface, and the absorption and
emission of longwave radiation by the planet's surface. This change in the planet's
radiative balance is called radiative forcing. The most important factors in�uencing
the Earth's radiative balance are the shortwave solar energy intensity, the re�ectivity
of clouds or gases, and the nature of the planet's surface. The atmospheric e�ect of a
regional soil color change has only been investigated to a small extent by 2-3 studies.
Manzini et al. (2006) investigated the e�ects of the interannual sea surface tem-
peratures (SSTs) variations on the Northern Hemispheric winter polar stratospheric
circulation with the ECHAM5 model. The model was forced with SSTs observed
during the 1980 to 1999 period. The study determined that the winter ENSO phe-
nomenon generates an enhanced planetary wave disturbance which increases the polar
stratospheric air by a few degrees in late winter and early spring resulting in a weak-
ening of the polar vortex. Cohen (2011) investigated how the Siberian snow cover
variability, which also changes the Siberian surface albedo, in�uences the weather
in remote regions several months later. They determined that increased snow cover
and, therefore, increased upwelling shortwave radiation leads to the emergence of a
stratospheric warming and a January tropospheric negative winter Arctic Oscillation
response.

The surface albedo is de�ned as the ratio between the incident radiation re�ected
by a surface and the radiation incident on the surface. The Earth's surface albedo
varies widely depending on the nature and composition of the land (Saha, 2008). A
list of typical values of surface albedo can be seen in Table 2.1. As expected, the
lighter the surface's colour is, the higher the surface's albedo (Saha, 2008).

Table 2.1: Typical surface albedo. The values were taken from Saha (2008) and Ency-
clopedia of Earth (2013)

Surface Type Albedo
Fresh Snow 0.8

Coniferous Forest 0.05-0.15
Light coloured Sand 0.15
Dark Coloured Sand 0.25

A deepening of the surface colour results in increased absorption of the incident
shortwave radiation by the surface and leads to the heating of the surface itself and
the air located directly above it. For the radiative equilibrium to be maintained, the
majority of the absorbed radiation must be re-emitted through the sensible and the
latent heat, as well as the longwave radiation �ux (Petty, 2006). This mechanism
leads to the generation of atmospheric gravity waves.

The generation, propagation and dissipation of atmospheric waves were studied
by Nicholls and Pielke (2000) and Gardner and Schunk (2010) using idealised model
simulations. Nicholls and Pielke (2000) investigated the atmospheric waves induced
by a tropical thunderstorm using an idealised 3D, fully compressible atmospheric
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model and concluded that it generated thermal compression and atmospheric gravity
waves. Gardner and Schunk (2010) studied the e�ect of a large scale atmospheric
perturbation using a high-resolution global thermosphere-ionosphere model. They
concluded that such a perturbation would lead to the generation of multiple Traveling
Atmospheric Disturbances which travel coincidently from the northern and southern
auroral zones towards the Equator and into the conjugate hemisphere.

According to Seitz (2013), the in�uence of regional albedo changes on the Earth's
radiation energy balance and, by extent, on the atmosphere and climate system have
not been adequately researched either through observations or simulations. Past
studies have focused on the long-term climate change e�ects (Walland and Simmonds
(1996), Held and Suarez (1974), Kirschbaum et al. (2011a), Betts (2000)) and how
they can be utilised to combat global warming through geoengineering projects (Ridg-
well et al., 2007). Furthermore, to my knowledge, the generation of atmospheric grav-
ity waves by a regional soil colour change has not yet been modelled. The gravity wave
research was mainly focused on orographically and convectively induced atmospheric
gravity waves and jet stream waves (Alexander et al., 2010).

Currently, large renewable energy projects with large areas of solar panels in the
desert (e.g., DESERTEC (The DESERTEC Foundation, 2015)) have been proposed as
possible solutions to the expected increased energy needs of the future. Such programs
would signi�cantly alter the surface albedo of the area chosen for the project. Many
geoengineering ideas which involve the surface albedo change of big tracks of the
Earth's surface have also been proposed to combat global warming. Therefore, these
projects make imperative the increase of our understanding of the e�ects of a regional
albedo change on the atmosphere.

The planet's radiative balance can also be altered as a result of changes in the
planet's shortwave radiation distribution, a�ecting the planet's ozone distribution
and atmospheric circulation. This change would occur if the planet became tidally
locked to its parent star, with one hemisphere permanently facing the star. Such
planets have been often detected orbiting in the habitable zones of M dwarf stars. An
analysis of the Kepler mission data indicated that there could be as many as 40 billion
terrestrial exoplanets in the Milky Way, orbiting the habitable zones of G and M stars.
Of those, only 9 have so far been positively identi�ed and currently nothing is known
about their circulation patterns. Of course, a planet orbiting a G star at a distance
of 1 AU, such as the Earth, can only be tidally locked by incidence (e.g Venus).
However, simulating a tidally locked Earth at 1 AU permits the intercomparison
of its atmospheric circulation and composition with past studies as well as the fast
rotating, present day Earth.

This setup has been used in the past as an approximation for the simulation
of tidally locked Earth-like planets and aquaplanets orbiting in the Habitable zones
of Red dwarf stars (0.02 - 0.2 AU), also known as M stars (Tarter et al. (2007)
Grenfell et al. (2014), Joshi (2003), Merlis and Schneider (2010), Yang et al. (2013),
Segura et al. (2005), Edson et al. (2011), Kaspi and Showman (2015) and Menou
(2013)). M stars comprise 76 % of the main-sequence stars in the vicinity of the
Sun. Planets revolving around M stars are easy to detect due to the high star to
planet mass and radius ratio (Tarter et al., 2007). This, coupled with their high
chance of habitability, makes them prime candidates for the search for habitable
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extraterrestrial planets. Haberle et al. (1996), Joshi et al. (1997), Joshi (2003) and
Segura et al. (2005) demonstrated that planets located in the M star's habitable zone
would be habitable. Segura et al. (2005) reported that the �aring activity of M stars,
which is stronger than the �aring activity of the Sun, should not present a threat to
the surface organisms of such tidally locked planets.

Past studies of tidally locked Earth-like exoplanet atmospheres have largely been
focused on the troposphere (Merlis and Schneider (2010), Joshi et al. (1997), Showman
and Polvani (2011), Carone et al. (2014), Edson et al. (2011)).

Merlis and Schneider (2010) simulated the troposphere of an Earth-like, tidally
locked aquaplanet with a rotation period equal to one Earth year using an ideal gas
GCM with an active hydrological cycle, a gray radiation scheme and a slab ocean
lower. They concluded that no atmospheric collapse occurred on the night side and
predicted the presence of an upwelling over the day side and a downwelling over the
night side. The upwelling was centred on the subsolar point and the downwelling
on the antisolar point. They also showed that, irrespective of rotation rate, the
troposphere of a tidally locked Earth-like aquaplanet located at a distance of 1 AU
from a Sun-like star would display equatorial mid-tropospheric superrotating mean
zonal winds. Furthermore, the superrotation speed of a planet rotating with a period
of 365 Earth days would be slower compared to the superrotation speed of a planet
rotating with a period of 1 Earth day (Merlis and Schneider, 2010).

Yang et al. (2013) demonstrated that a tidally locked aquaplanet would be hab-
itable at even twice the Earth incident solar �ux as long as clouds were present in its
troposphere, ensuring the planet's habitability.

As opposed to the Sun, whose spectrum peaks in the visible yellow light, the
spectrum of M stars peaks in the IR (Grenfell et al., 2014). One dimensional studies
by Segura et al. (2003), Segura et al. (2005), Selsis (2000), Hedelt et al. (2013),
Grenfell et al. (2014) and one 3D study by Godolt et al. (2015) showed that a change
in the stellar spectral energy distribution leads to di�erent ozone radiative heating
rates and di�erent vertical stratospheric structures for the same total amount of stellar
energy incident at the top of the atmosphere of a non-tidally locked Earth-like planet.
This results in a much shallower stratospheric temperature increase and impacts its
middle atmospheric circulation. It is possible that such a change would also a�ect the
middle atmospheric chemistry and circulation patterns of a tidally locked Earth-like
planet orbiting an M star, complicating the cause-e�ect attribution analysis. It would
also make it exceedingly di�cult to correctly attribute the observed changes to either
the tidal lock or the spectral energy distribution change. Therefore, the Earth-like
planet, Sun-like star setup simpli�es the tidal lock cause-e�ect analysis. Besides, it
also facilitates the comparison with older studies, where similar setups were also used.

Grenfell et al. (2014) showed that the infrared spectrum of an Earth-like exo-
planet was strongly in�uenced by the 200�350 nm UV output of its parent star, using
a 1D stationary, hydrostatic, global-mean, 0 - 70 km, atmospheric column model.
The planetary ozone pro�le was strongest when the UV radiative �ux of the parent
star was ten times stronger than the UV radiative �ux of an M7 star.

Godolt et al. (2015) investigated the changes in the ozone concentration, strato-
spheric temperature, climate and potential habitability of an Earth-like extrasolar
planets orbiting an F, G and K star, respectively, using a state-of-the-art 3D Earth
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climate model. The planets' position was chosen such that the total amount of energy
received from the parent stars would be equal to the solar constant. The atmospheric
composition of both planets was identical to that of the present day Earth. The
study revealed that di�erent stellar spectral energy distributions result in di�erent
ozone heating rates and, therefore, di�erent vertical temperature structures, in ac-
cordance with Selsis (2000), Segura et al. (2003), Segura et al. (2005), Grenfell et al.
(2007), Rugheimer et al. (2013) and Rauer et al. (2011). When orbiting a cooler
K star, which emits a smaller portion of its radiation in the UV part of the spec-
trum, the stratosphere was characterised by lower ozone heating rates and shallower
stratospheric temperature increases compared to the Earth (Godolt et al., 2015). As
shown above, all but two Earth-like exoplanet studies have been 1D studies (Selsis
(2000), Rugheimer et al. (2013), Rauer et al. (2011), Grenfell et al. (2014)) and only
one was devoted to the study of the exoplanet's stratosphere (Godolt et al., 2015).
Furthermore, only one study of the troposphere of a tidally locked Earth-like exo-
planet exists (Merlis and Schneider, 2010) and no study has investigated the middle
atmosphere of tidally locked Earth-like exoplanets. This thesis aims to address this
gap by investigating their 3D ozone distribution and middle atmospheric circulation.

It is not unreasonable to expect that changes in the planet's radiative balance
could in�uence a planet's habitability. Two parameters determine a planet's habit-
ability: the presence of liquid water and the presence of ozone. Whereas liquid water
determines the emergence of life (Cardenas et al., 2014), ozone determines the survival
of the emergent life. The ozone layer acts as a protective shield for the organisms
on the surface of the planet by absorbing the majority of the solar UV radiation
between 200 nm and 300 nm, principally in the Hartley and Huggins bands (Saha
(2008), Wallace and Hobbs (2006)). This can be seen in Figure 2.1, where a cut-o�
is visible below 300 nm. On Earth, the maximum ozone concentration is found in
the lower stratosphere between 18 km and 26 km altitude, while the highest ozone
volume mixing ratio is found in the middle stratosphere between 30 km and 40 km
altitude (Saha, 2008). Due to the absorption of UV radiation and the high ozone
density, the stratospheric temperature is increased compared to the tropospheric and
the mesospheric temperatures. Therefore, ozone also determines the vertical strato-
spheric temperature pro�le (Wallace and Hobbs, 2006).

In a pure oxygen atmosphere, ozone is destroyed through the exothermic two-
body collision with atomic oxygen

(k3); O + O3 → 2O2 (2.1)

as well as through the absorption of UV radiation, which results in the photodis-
sociation of ozone

(J3); O3 + hv→ O2 + O (2.2)

(Brasseur and Solomon, 2005). Due to the high air density and high molecular oxygen
content at stratospheric altitudes, the photodissociated ozone is regenerated through
the exothermic three body recombination reaction of atomic (O) and molecular oxygen
(O2)

(k2); O + O2 + M→ O3 + M (2.3)
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where M is a third body that acts as a catalyst and is needed for the conservation
of energy and momentum in the recombination reaction. This third body is usually
an N2 or an O2 molecule, as they are the most abundant atmospheric components
(Wallace and Hobbs, 2006). The reaction shown above is the only process by which
ozone is generated in the middle atmosphere. The atomic oxygen necessary for reac-
tion 2.3 is produced mainly by the photodissociation of O2 by the UV radiation in
the Herzberg continuum, near 242 nm:

(J2); O2 + hv→ O + O (2.4)

Furthermore, the atomic oxygen can also be produced by the photolysis of ozone in
the Hartley and Huggins bands near 310 nm (reaction 2.2) (Saha, 2008).

Equations 2.1, 2.2, 2.3, 2.4 describe the Chapman cycle. This cycle describes the
ozone photochemistry in a pure oxygen atmosphere (Brasseur and Solomon (2005),
Wallace and Hobbs (2006)). The rate coe�cients J2, J3, k2, k3 indicate the speeds
of the reactions and, therefore, determine the lifetimes of the species (Brasseur and
Solomon, 2005), (Salby, 2012a). The ozone loss rate k3 increases with temperature
so that the upper stratospheric ozone is anticorrelated with temperature. Although
ozone is constantly converted to atomic oxygen through equation 2.4 and then back
to ozone through equation 2.3, their sum, also known as the odd oxygen family
(Ox), remains relatively constant in the middle atmosphere. Therefore, the use of
odd oxygen, as opposed to ozone, allows us to correctly identify the true sinks and
sources. In the stratosphere, (Ox) ≈ (O3), so a reduction of Ox indicates the presence
of an ozone sink. In the mesosphere, (Ox) ≈ (O), so a reduction of Ox indicates the
presence of an atomic oxygen sink. In the lower stratosphere, Ox has a lifetime of the
order of several weeks, while above 30 km it has a lifetime of the order of less than 1
day. For these reasons, odd oxygen is used to discuss the signi�cant generation and
destruction of ozone in this thesis.

In the stratosphere, the two major sinks of odd oxygen (and consequently, of
ozone) are the NO and OH catalytic cycles. Di�erent catalytic processes are important
in di�erent altitude ranges (Brasseur and Solomon, 2005).

NO + O3 → NO2 + O2

NO2 + O→ NO + O2

(2.5)

plays an important role in the destruction of ozone in the middle stratosphere (Wallace
and Hobbs, 2006), with maximum e�ciency between 35 and 45 km (Brasseur and
Solomon, 2005).

OH + O3 → HO2 + O2

HO2 + O→ OH + O2

(2.6)

is responsible for the destruction of ozone in the middle and upper stratosphere
(Brasseur and Solomon, 2005).

OH + O3 → HO2 + O2

HO2 + O3 → OH + 2O2

(2.7)
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is important below 30 km (Wallace and Hobbs, 2006) and close to the troposphere
(Brasseur and Solomon, 2005). In the same altitude range

OH + O→ H + O2

H + O2 + M→ HO2 + M

HO2 + O3 → OH + 2O2

(2.8)

and

OH + O→ H + O2

H + O3 → OH + O2

(2.9)

are also responsible for the destruction of odd oxygen (Brasseur and Solomon, 2005).
In the mesosphere, the major sinks of odd oxygen are OH catalytic cycles. One

is equation 2.9 shown above and the other is

OH + O→ H + O2

H + O2 + M→ HO2 + M

HO2 + O→ OH + O2

(2.10)

They lead to the rapid loss of odd oxygen (Brasseur and Solomon, 2005).
All catalytic ozone depletion cycles require sunlight. As a result, on Earth,

ozone depletion stops during the night time. In the Earth's mesosphere, this results
in enhanced night-time ozone. On a tidally locked Earth-like exoplanet, the night side
of the planet never receives sunlight. Therefore, no ozone depletion should occur.

The stratospheric ozone maximum is found over the tropics, due to the higher
incident UV radiation, compared to the extra-tropics. However, the maximal total
ozone content in both the Northern and the Southern hemisphere appear at mid and
polar latitudes due to the Brewer-Dobson circulation.

As can be seen in Figure 2.3, the tropospheric air is uplifted over the tropics and
enters the tropic stratosphere where the odd oxygen-rich air is generated. This air is
then transported polewards and downwards towards the middle and polar latitudes
and deposited back into the extra-tropical troposphere by the Brewer-Dobson circu-
lation (Andrews (2010), Müller (2012), Brasseur and Solomon (2005), Wallace and
Hobbs (2006)).

The in�uence of the underlying sea-surface temperature (SST) on the middle
atmosphere has also been investigated to only a limited extent on Earth and not at
all on exoplanets. On Earth, most studies focused on the e�ects of the underlying
SST on the troposphere rather than the middle atmosphere. A few studies have been
performed with a focus on the lower stratosphere; however, none exist for the upper
stratosphere and mesosphere.

Braesicke and Pyle (2004) investigated the dynamics and ozone sensitivity to
di�erent SSTs using the Met O�ce Uni�ed Model. They performed a set of 20
year simulations, each with a di�erent prescribed SST and the same simpli�ed ozone
chemistry. Their results showed that the occurrence of extreme events in the northern
hemisphere winter stratosphere were strongly correlated with the underlying SSTs.

16



Figure 2.3: The Brewer Dobson circulation. The Brewer-Dobson circulation on Earth.
The Hadley, Ferrel and Polar cells are visible in the �gure for both hemispheres.
The thick white arrows indicate the transformed eulerian mean mass stream-
function. The wavy orange arrows indicate two-way mixing processes. The
thick green lines indicate the presence of stratospheric transport and mixing
barriers. (Adapted from Bönisch et al. (2011))

Rosenlof and George (2008) discovered an anticorrelation between the lower
stratospheric temperature trends over the western Tropical Paci�c Ocean and the
underlying SST variations, using data from the NOAA/CIRES Climate Diagnostics
Center. They suggested the existence of a fairly direct in�uence between the SST
and the lower tropical stratosphere and that the anticorrelation appears as a result
of increased deep tropospheric convection generated by the SST warming.

Deckert and Dameris (2008) investigated the change in the strength of the trop-
ical upwelling using two simulations with the same boundary conditions and concen-
trations of ozone-depleting substances, but di�erent SSTs and greenhouse gas con-
centrations. They reported the presence of ampli�ed deep convection over warmer
tropical SSTs, accompanied by a lower stratospheric cooling.

Chen et al. (2010) investigated the tropospheric winds and stratospheric Brewer-
Dobson circulation sensitivities to SST warmings using an Earth aquaplanet general
circulation model. However, their study aimed to investigate how the Earth's large-
scale atmospheric circulation would be a�ected by a warming ocean as a result of
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global warming rather than study an actual Earth-like exoplanet. Their results in-
dicated that the location and sign of the SST perturbations gradient was strongly
correlated with the changes in the tropospheric jet and the Hadley cell. They also
reported that low latitude warming resulted in increased Brewer-Dobson circulation
while high latitude warming resulted in decreased Brewer-Dobson circulation when
the warming extended to the subtropics.

The aim of this thesis is to study the e�ects of radiative forcing changes on
Earth-like planets by performing 3D simulations with the publicly available 3D, high
resolution, chemistry-climate model CESM1(WACCM). The model is designed specif-
ically for the research of the middle atmosphere, where photochemistry and nonlinear
wave-mean �ow interactions play the most important role. The objective of this work
is to answer the following three open research questions:
Research question 1. What e�ect does a regional soil color change have on the Earth's
tropospheric dynamics?
Research question 2. What is the 3D global middle atmospheric ozone distribution
and circulation of a tidally locked Earth-like planet?
Research question 3. How does the sea-surface temperature a�ect the middle atmo-
sphere of tidally locked Earth-like exoplanets?

These three questions are investigated and answered in the three publications
presented in this thesis. These questions deal with di�erent e�ects of the radiative
forcing on atmospheric dynamics, composition and circulation which have not been
su�cient addressed in the literature. First, the CESM1(WACCM) model is brie�y
described in Chapter 3, since it plays an essential role in all three publications. In
the following chapters, the answers to each of the research questions are presented,
along with the research strategy and the results.

The �rst research question is answered in Chapter 4 by simulating the e�ects of
the darkening of a small area in Eastern Sahara, using the CESM1(WACCM). The
outgoing atmospheric wave generated over the region of soil colour change is analysed
and discussed in detail.

The second research question is answered in Chapter 5. The large scale radiative
forcing change is introduced by tidally locking the planet. CESM1(WACCM) was
modi�ed to simulate a tidally locked Earth-like exoplanet orbiting around a Sun-like
star at a distance of 1 AU. The global 3D distribution of the middle atmospheric
ozone of the tidally locked planet is then compared to those of the present day Earth.

The third research question is answered in Chapter 6. Using the simulation
setup presented in Chapter 5, two tidally locked Earth-like exoplanets with di�erent
sea-surface temperature distributions orbiting identical Sun-like stars are simulated
using CESM1(WACCM). The middle atmospheric circulations and vertical ozone dis-
tributions are analysed and compared. The degree of SSTs in�uence on the middle
atmospheric circulation, the temperature vertical pro�le and the ozone vertical dis-
tribution is analysed and discussed.

In Chapter 7, the results are summarised and an outlook for future research
projects is presented.
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3 Model

The Community Earth System Model 1 (CESM1) was used to perform the simula-
tions presented in this thesis. It is a publicly available, coupled, 3D, high resolution,
chemistry-climate Earth model, mainly developed by US researchers and supported
by the National Science Foundation (NSF). An overview of its general characteristics
and applications was presented by Hurrell et al. (2013). The model can realistically
simulate the Earth's atmosphere, land and oceans utilizing fully coupled geophysical
models and a coupler (CPL) (Figure 3.1).

CESM is composed of �ve geophysical models: the atmosphere (ATM), land
(LND), ocean (OCN), sea-ice (ICE) and land-ice (GLC) model. The models can be
set to be fully prognostic (active), data, dead or stub. Active components are fully
prognostic, with their output altered depending on the input data and its interactions
with the rest of the geophysical models. They provide state-of-the-art climate predic-
tion and are computationally intensive. Data components are used for testing, spin-
up and model parametrization. They cycle input data retrieved through observations
and long-term CESM simulations performed by the National Center for Atmospheric
Research (NCAR). They can also substitute one or more of the computationally in-
tensive active components in �stand-alone" simulations, where the presence of one or
more of the prognostic components is not necessary, in order to reduce the computa-
tional load. The term �stand-alone simulations" refers to partly coupled simulations
where one or more geophysical models are data or stub. Stub components are used
to satisfy the interface requirements when the presence of a component is not neces-
sary for the model con�guration. The dead components are used only during system
testing, during which the dead ATM, LND, OCN, ICE and GLC components must
all be run together. Dead components must never be combined with active or data
components. Both, the stub and the dead components, do not produce scienti�cally
valid output data (Vertenstein et al., 2012).

For this thesis, the perpetual year 2000 geophysical model set (a.k.a component
set) (F_2000_WACCM) is used. The component set is composed of a present day
(calendar year 2000) active atmosphere (WACCM) and land (CLM) models, a data
ocean (docn) and data sea-ice (cice) models, and a stub land ice (sglc) model. The
WACCM, CLM, docn and cice component initialization datasets are provided by
previously performed long-term NCAR CESM simulations (Neale et al., 2012).

3.1 The Atmosphere geophysical model

The atmosphere geophysical model used is the Whole Atmosphere Community Cli-
mate Model (WACCM) version 5 (Neale et al., 2012). It has been used for the sim-
ulation of circulation, thermal tides, gravity waves, wave-mean �ow interaction, and
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Figure 3.1: CESM coupled modeling framework. Figure taken from �The Community
Earth System Model (CESM)" by David Lawrence.

atmospheric composition changes (e.g., ozone hole, greenhouse e�ect) in the lower,
middle and upper atmosphere (Pedatella et al. (2014), Pedatella and Liu (2013), Lu
et al. (2012), Tan et al. (2012a), Tan et al. (2012c), Tan et al. (2012b), Davis et al.
(2013), Smith et al. (2012)). It uses a Finite-Volume (FV) dynamical core with a fully
compressible horizontal discretization and a quasi-Lagrangian vertical discretization.

The model has 66 vertical output levels from the ground up to 5 · 10−6 hPa.
The top of the model is located at ∼ 150 km. The vertical resolution is 1.1 km in
the troposphere, 1.1�1.4 km in the lower stratosphere, 1.75 km at the stratopause
and 3.5 km above 65 km. The model has fully compressible horizontal and a quasi-
Lagrangian vertical discretization (Neale et al., 2012). The vertical acceleration term
of the momentum equation is not included. The vertical coordinate is terrain following
below 100 hPa and purely isobaric above.

The horizontal resolution used in this study is 4ox5o (latitude x longitude). The
input and output datasets have 72 longitude grid points, 46 latitude grid points and 66
altitude grid points. For any model, the smallest horizontal resolvable area is twice the
grid size (Holton and Hakim, 2013). Therefore, the selected model setup can resolve
changes with a horizontal dimension of dhorizontal > 1000 km and a vertical dimension
of dvertical > 2.2 km (Neale et al., 2012). The prognostic variables are updated
sequentially, �rst by the FV dynamics and then by the FV physics implementation.
The model is set to output hourly snapshot values for each parameter. The coupler
timestep is set to ∆t = 30 minutes, while the dynamical equations time step is
∆τ = ∆t/8 (Neale et al., 2012). CESM1(WACCM) has full atmospheric chemistry,
with 57 chemical species (Neale et al., 2012). The model's main physical processes
are:

• the conversion to and from dry and wet mixing ratios for trace constituents

• the moist turbulence scheme

• the shallow and the deep convection scheme
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Figure 3.2: Atmospheric geophysical model. The �gure from Jarvis (2001) was slightly
modi�ed by Michael Mills in his presentation "WACCM: The High Top Model"
by Michael Mills.

• the evaporation of convective precipitation

• the cloud microphysics and macrophysics

• the aerosols

• the condensed phase optics

• the radiative transfer

• the surface exchange formulations

• the dry adiabatic adjustment

• the prognostic greenhouse gases

(Neale et al., 2012). The gase-phase chemistry is coupled to the Modal Aerosol Model
(Neale et al., 2012).

The model uses the realistic synthesized solar spectrum generated using the
Kurucz method (Kurucz, 1994). The total irradiance at the top of the model is TSI
= 1368.22 W/m2. The model distinguishes between the direct and scattered radiation
in both the shortwave and the longwave spectrum (Neale et al., 2012). As a result, all
parameters which are a�ected by radiation are also divided into direct and scattered
terms.
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The incident shortwave and longwave �ux values are determined by means of the
daily values of the solar radio �ux (F10.7), which are provided by the National Oceanic
and Atmospheric Administration's Space Environment Center (2015) (NOAA).

In the shortwave spectrum (0.2 µm to 12.2 µm), the radiative transfer is calcu-
lated over 14 bands. In the longwave spectrum (3.1 µm to 1000.0 µm), the radiative
transfer is calculated over 16 bands, which includes the spectral interval below 3.1 µm
infrared contribution. The spectral interval between the soft x-rays and extreme ultra-
violet irradiances (0.05 nm to Lyman-α (121.6 nm), as well as between the Lyman-α
(121.6 nm) and the 100 µm radiation, is included for altitudes above 65 km (Neale
et al., 2012). The modelled sources of absorption and scattering in the shortwave
are H2O, O3, CO2, O2, CH4, N2, clouds, aerosols, and Rayleigh scattering. In the
longwave spectrum, the model calculates the molecular, cloud and aerosol absorption
and emission. The longwave modelled sources of absorption are H2O, CO2, O3, N2O,
CH4, O2, N2, CFC− 11 and CFC− 12. Currently the longwave scattering e�ects are
not included in the model calculations. For negative elevation angles, the shortwave
electromagnetic radiation is not calculated (Neale et al., 2012).

The photochemical equilibrium is calculated for 36 photochemical species: O2,
O3, N2O, NO, NO2, N2O5, HNO3, NO3, HO2NO2, CH3OOH, CH2O, H2O, H2O2, Cl2,
ClO, OClO, Cl2O2, HOCl, HCl, ClONO2, BrCl, BrO, HOBr, BrONO2, CH3Cl, CCl4,
CH3CCl3, CFC11, CFC12, CFC113, HCFC22, CH3Br, CF3Br, CF2ClBr, CO2, CH4.
The model uses the Ox, NOx, HOx, ClOx, and BrOx chemical families, excluding CH4

and its degradation products as tracers. The reaction rate equation of ozone is:

d(O3)

dt
+ JO3(O3) + k3(O)(O3) + a2(H)(O3) + a6(OH)(O3)+

a6b(HO2)(O3) + b4(NO)(O3) + b9(NO2)(O3) + d2(Cl)(O3)+

e2(Br)(O3) = k2(M)(O2)(O)

(3.1)

It is used to calculate the photochemical and chemical interactions responsible for
changing the atmospheric ozone concentration. The model includes a polar strato-
spheric cloud parameterization scheme. When the cosine of the solar zenith angle is
larger than zero at stratospheric altitudes and the stratospheric temperature drops
below 195 K, the polar stratospheric cloud parameterization scheme is activated.

3.2 The Surface geophysical model

The surface geophysical model used is the Community Land Model (CLM) (Oleson
et al., 2010). It has parametrisations for the atmosphere-surface coupling, the sur-
face colour variability, the surface albedo calculation, the absorption, re�ection and
transmittance of solar radiation, the absorption and emission of longwave radiation,
the sensible and latent heat �uxes (ground and canopy), and the heat transfer in
soil and snow. The surface albedo values at each grid cell were provided by the
Moderate-resolution Imaging Spectroradiometer (MODIS), which orbits the Earth
on board the Terra and Aqua satellites, at local solar noon time and, therefore, varies
with the landscape (Oleson et al., 2010). The surface albedo is area-averaged for
each atmospheric column. The upward longwave radiation is given by the di�erence
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Figure 3.3: Community Land Model. Figure taken from CESM CLM website:
www.cesm.ucar.edu/models/clm/

between the incident and absorbed �uxes, while the atmospheric radiation balance
is calculated using the momentum, sensible heat �ux, latent heat �ux, land surface
albedos and upward longwave radiation (which incorporates the surface emissivity).
The surface parameter �uxes provided by the land model (LND) provide the surface
�uxes of momentum, sensible and latent heat. They serve as the lower �ux boundary
conditions for the turbulent mixing, the planetary boundary layer parameterization,
the vertical di�usion and the gravity wave drag. Since F_2000_WACCM uses active
land and stub land-ice geophysical models, the land �uxes will be prognostic.

3.3 The Ocean geophysical model

The F_200_WACCM component set uses a prescribed data model ocean, which
does not run prognostically, but rather reads in the Sea Surface Temperature (SST)
and Sea Ice Concentration (SIC) datasets and then sends them to the coupler. The
SST and SIC dataset is a merged surface boundary forcing dataset that provides the
SST and SIC boundary data. This dataset was initially developed for uncoupled
simulations with the Community Atmosphere Model (CAM) atmospheric component
and is generated through the merging of the monthly mean Hadley Centre sea ice
and SST dataset version 1.1 (HadISST1) and the OI SST analysis technique (OI.u2)

23



dataset. HadISST1 is a combination of monthly, gridded, bias adjusted globally
complete SST and SIC �elds. The OI.u2 dataset is a combined quality-controlled
ship and buoy observations, and satellite-derived SST dataset. The ocean and sea-ice
surface parameter �uxes provide the surface momentum, sensible and latent heat.
Since F_2000_WACCM uses data ocean, and also sea-ice, geophysical models, the
ocean and sea-ice �uxes will be prognostic.
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4 A traveling atmospheric wave
generated by a regional soil
colour change on the present
day Earth

4.1 Research strategy

The Earth's radiative balance is maintained through a complex interaction between
the energy received from the Sun, the energy re�ected, absorbed and re-emitted by
the atmosphere, and the energy absorbed and re-emitted by the surface. As stated
in the Introduction, the Earth receives So = 1372 W/m2 from the Sun, with a global
average of Finc = So/4 = 343 W/m2. Of that energy, 31 % is re�ected back into
space, 20 % is absorbed by the atmosphere and 49 % by the surface. The surface and
the atmosphere re-emit part of the absorbed energy in the form of longwave radiation.
The surface re-emitted longwave radiation is emitted towards the atmosphere, while
the atmosphere re-emitted longwave radiation is emitted both towards the surface
and towards space, as shown in Figure 4.1.

The surface is radiatively heated, as its net radiative forcing indicates, which
is given by the sum of the incident shortwave and longwave absorption minus the
outgoing longwave emission. The heat is then released in the atmosphere in the form
of sensible and latent heat �ux as well as longwave radiation, as shown in Figure 4.1.
This mechanism permits the radiative equilibrium to be maintained.

The Earth's surface albedo plays an important role in the planet's radiative
equilibrium, as it determines the fraction of shortwave solar radiation absorbed by
the surface and the amount of longwave radiation, sensible and latent heat emitted
by it. In the visible part of the spectrum, the surface albedo is determined by the
surface's colour. Therefore, the surface colour plays a central role in the Earth's
radiative balance.

A region's surface albedo varies with the altitude, latitude, longitude, climate
and its proximity to large water bodies. Light coloured surfaces, such as ice, sand or
light coloured rocks, have a high albedo. They re�ect more and absorb less shortwave
radiation. Consequently, they emit less longwave radiation and release less sensible
and latent heat back into the atmosphere. Dark coloured surfaces, such as deep
oceans, dark forests or dark coloured rocks like basalts and granites, have a lower
albedo and ,therefore, re�ect less and absorb more shortwave radiation. As a result,
the surface temperature is increased and the surface emits more longwave radiation
and releases more sensible and latent heat back into the atmosphere (Saha, 2008).
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Figure 4.1: Global annual mean of the Earth's energy budget for the March 2000 - May
2004 period. The width of the arrows is proportional to the strength of the
energy �ow. (Trenberth et al., 2009)

Humans have changed the Earth's surface albedo since prehistoric times. With
the advent of geoengineering and numerous projects intended to combat climate
change, even larger changes are expected. Unfortunately, the impact of albedo vari-
ability on the atmospheric dynamics is currently largely unknown (Seitz, 2013). Past
albedo change studies focused either on its e�ects on long-term climate change (Wal-
land and Simmonds, 1996), (Held and Suarez, 1974), (Kirschbaum et al., 2011b),
(Betts, 2000) or on climate change combating geoengineering projects (Ridgwell et al.,
2007). One study attributed changes in the polar vortex to increased sudden snow
fall in Eurasia (Cohen, 2011). Another investigated the relation between sea surface
temperatures variations and a weakening of the polar vortex (Manzini et al., 2006).

Hegyi et al. (2014) investigated the initial transient response of the boreal win-
ter Northern Hemisphere stratospheric polar vortex to localised sea-surface warm-
ing events. To that end, they conducted 20 perpetual winter simulations using the
CESM1(WACCM). They reported a weakening of the polar vortex due to changes in
the eddy-driven mean meridional circulation and the presence of negative anomalies
in the eddy momentum �ux convergence. They further showed that the initial state
and subsequent internal variation of the extratropical atmosphere is as important as
the type of SST forcing in determining the response of the stratospheric polar vortex.
Furthermore, the interactions between the internal variability of the vortex and the
SST-driven wave anomalies determine the nature of the response of the polar vortex
to the forcing.

Our study investigates the e�ects of a regional surface colour change on the tro-
pospheric dynamics using CESM1(WACCM) and whether a cause-e�ect study can
be performed under the relatively realistic atmospheric conditions provided by the
model. CESM1(WACCM) is a realistic model that includes full 3D photochemistry,
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atmospheric transport processes and surface-atmosphere interactions. The inclusion
of these interactions enables the study of atmospheric perturbations generated by
land-atmosphere interactions like the soil colour change presented here. It also re-
sults in a computationally intensive model that provides output data reminiscent of
observations. This makes the attribution of climate forcing and the recognition of
the relevant climate processes challenging and requires advanced methods of data
analysis and interpretation (Alexander et al. (2010), Walland and Simmonds (1996),
Kirschbaum et al. (2011b)), making it a fundamental problem of complex system
analysis. One way to overcome this problem is to perform a small perturbation anal-
ysis over a short-time interval of the order of a few days. This method allows us to
isolate the forcing generated perturbations from the background waves and study the
radiative and dynamical processes of land-atmosphere interactions.

The simulation setup of the study is fairly simple. The surface colour of a 10◦ × 8◦

(3×3 model pixels) Eastern Saharan region, is darkened. The region is located at 10o-
20o longitude and 18o-26o latitude. The change can be safely implemented, because
the surface colour change involves the alteration of only one model parameter. The
simplicity of the setup facilitates the interpretation of the results.

The soil colour of the selected region is altered from sand coloured to dark forest
green by changing the soil colour index parameter. The parameter is the measure of
the darkness of the surface colour. A lower soil colour index indicates a lighter colour
(white snow = 0), while a higher soil colour index indicates a darker colour (deep
forest green = 20).

Apart from the soil colour change simulation (which will be referred to as the
perturbed run henceforth), a control run is also performed, in which the model is
allowed to run with no alterations. The soil colour maps for the control and perturbed
run can be seen in Figure 4.2, along with the di�erence between the two setups. An
abrupt colour change between the darkened region and its vicinity would result in
a discontinuity in the soil colour map and generate artefacts in the simulation. To
avoid this, we change the soil colour gradually by deepening the surface colour by
50 % on the edge and by 100 % on the center of the region. Both simulations are
run for 5 model days, starting at 0:00 UT on 01.01.2000 and ending at 23:00 UT on
05.01.2000.

Figure 4.2: Soil colour setup. (a) Control run soil colour index, (b) Perturbed run soil
colour index, (c) the di�erence between the perturbed and the control run soil
colour indices.

To ensure the validity of our results, an ensemble simulation is also performed.
The start dates of the seven simulations are the 1st, 6th, 11th, 16th, 21st, 26th and 31st
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of January, respectively. Each simulation is run for 5 model days, starting at 0:00
UT of the �rst day of the simulation and ending at 23:00 UT on the last day of the
simulation.

To analyse the results a small perturbation analysis is performed on the vertical
wind speed Ω. First, the control data are subtracted from the perturbed data ∆Ω.
Then, the standard deviation of the ∆Ω for the �rst day at 23 UT, its zonal mean
and its surface area preserving global mean (σ) are calculated. Finally, to identify the
signi�cant atmospheric waves generated by the soil colour change, the ∆Ω is divided
by the σ. Variations with values > 2σ have a signi�cance of 95%.

In the next subsection, the e�ects of the soil colour change on the wind �eld at
an altitude of 2 km are presented and discussed.

4.2 Results

The CESM1(WACCM) simulation described in Section 4.1 allows us to study the
e�ects of a regional surface colour change on the troposphere. It results in the gener-
ation of an outwards propagating perturbation. At 2 km altitude, this perturbation
generates a buoyancy oscillation that rises and falls as the day progresses and an
outwards propagating circular wave.

The process by which the perturbation is generated is as follows. At sunrise
(local time ≈ 06:00 UT), the altered region starts absorbing higher amounts of the
incident solar radiation, compared to its surrounding regions, due to its darker surface
colour. It also re�ects lower amounts of the incident solar radiation (Figure 4.3a).
The change in the shortwave re�ected radiation over the course of the day can be seen
in Figure 4.3. As the solar zenith angle decreases, the surface absorbs an increased
amount of solar radiation. This results in a decreased amount of re�ected radiation
as can be seen in Figures 4.3a and 4.3b.

Due to the increased absorbed solar radiation, the region's surface temperature
changes with approximately an hour delay (Figure 4.4). One hour after the local
sunrise, only a small region close to the eastern border of the region shows signs
of increased surface temperature (Figure 4.4a). At 12:00 UT, the region's surface
temperature has increased by 3 K compared to the surrounding regions (Figure 4.4b).
One hour after the local sunset, the region's temperature is 1.5 K higher (Figure 4.4c).
By 23:00 UT, the temperature di�erence is reduced by a small amount, as can be seen
in Figure 4.4d.

The elevated temperature leads to increased emission of longwave radiation from
the region starting approximately 1 hour after local sunrise (Figure 4.5a), increasing
through the day (Figure 4.5b) and decreasing slightly after local sunset as the region's
temperature decreases (Figures 4.4c, 4.5c). At 23:00 UT, the surface temperature of
the soil colour altered region is still increased compared to the surrounding regions
(Figure 4.4d). As a result, the longwave emission is still present, albeit with decreased
intensity, seven hours after local sunset (Figure 4.5d).

The higher surface temperature results in the convective heating of the air lo-
cated directly above the region and the generation of an atmospheric perturbation.
According to Petty (2006), if two dry bare regions are located side by side, then the
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Figure 4.3: Direct re�ected shortwave radiation at (a) 07:00 UT, (b) 12:00 UT, (c)
16:00 UT and (d) 17:00 UT. The �gure depicts the di�erence in the amount of
re�ected solar radiation between the perturbed and control run. The change
in the amount of re�ected solar radiation is dependant on the radiation's angle
of incidence.
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Figure 4.4: Surface temperature change at (a) 07:00 UT, (b) 12:00 UT, (c) 17:00 UT
and (d) 23:00 UT. As can be seen the temperature di�erence between the region
and the surrounding areas persists long after the local sunset (16:00 UT).
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Figure 4.5: Emitted longwave radiation at (a) 07:00 UT, (b) 12:00 UT, (c) 18:00 UT
and (d) 23:00 UT. The region's increased temperature results in increased
longwave radiation, which persists long after local sunset (16:00 UT).

surface temperature of the darker region will increase faster compared to that of the
lighter region. The temperature gradient between the two regions will result in con-
vective air motions, as the warmer air is lifted and replaced by cooler air, �owing
horizontally from the lighter region. Air located above the lighter region sinks to
replace the horizontally moved air.

The perturbation in our simulation, which can be seen in Figure 4.6, is generated
through the same mechanism and is convective in nature. It shares similarities with
the core of a supercell, otherwise known as a rotating thunderstorm, as can be seen
in Figures 4.6a - 4.6d. The air located over the Sahara region is characterised by
an updraft and a downdraft, both of which are rotating clockwise around the centre
of the region. Therefore, our results indicate that, in agreement with Petty (2006),
the perturbation is convective in nature at tropospheric altitudes, as can be seen in
Figure 4.6.

The surface colour change results in the generation of a primary perturbation,
which �rst appears over the region at 09:00 UT (four hours after sunrise) (Figure
4.6). Figures 4.6a - 4.6d show a nearly circular wave ring moving outwards from the
region. Its amplitude increases over time A > 5σ, and gives us a 5σ con�dence level
(σ = 2 ·10−4 Pa/s). Its mean wave velocity is 〈v〉 = 200±50 m/s, its mean horizontal
wavelength is 〈λ〉 = 3000 ± 500 km and its mean wave period is 〈p〉 = 4 ± 1 h. The
uncertainties re�ect the azimuthal variations of the wave parameters generated by
changes in the background wind �ow, topography, convective activity, Coriolis force
and other factors which modulate the radial propagation of the wave rings.
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Figure 4.6: Evolution of the primary wave above the Sahara desert during the

�rst day The di�erence between the vertical wind at 2 km altitude of the
perturbed run minus the control run is shown at (a) 9:00 UT, (b) 12:00 UT,
(c) 15:00 UT, (d) 23:00 UT. Shades of blue indicate upward motion of the air,
while shades of red indicate downward motion.

Weisman and Rotunno (2000) performed a series of idealised supercell storm
simulations using the Klemp and Wilhelmson (1978) numerical cloud model. The
storms were generated by an ellipsoidal bubble of warm air. The bubble had a hor-
izontal radius of 10 km and vertical radius of 1400 m with a maximum temperature
perturbation of 1 K at the center of the bubble and decreasing to zero at its edges.
The e�ects of the Coriolis parameter were ignored. Their simulation generated a
convective rotational updraft 40 minutes after the start of the simulation.

Morrison and Milbrandt (2011) performed idealised 3D supercell simulations
using the compressible, non-hydrostatic, 3D mesoscale Advanced Research Weather
Research and Forecasting model (ARW-WRF). The surface �uxes were set to zero
and the radiative transfer was neglected. They generated a supercell using a ther-
mal perturbation at 1.5 km altitude. Their simulation also generated a convective
rotational updraft.

The air motion generated in our simulation develops naturally and evolves self
consistently, unlike Weisman and Rotunno (2000) and Morrison and Milbrandt (2011),
who set the initial thermal condition by means of an arti�cial thermal air perturbation
set and tuned the wind �eld.

The horizontal speed of the primary wave generated in our study is similar to
those of Nicholls and Pielke (2000) and Gardner and Schunk (2010). Nicholls & Pielke
simulated the horizontally outwards propagating circular wave from a thunderstorm
region. They concluded that the generated waves were n1 and n2 wave mode Lamb
waves moving with the speed of sound. The n1 mode resulted in a subsidence warm-
ing, while the n2 mode resulted in an uplift (Nicholls and Pielke, 2000), in accordance
with our own results (Figure 4.6a). Our primary wave looks like an atmospheric grav-
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ity wave, as its speed is well below the speed of sound (similar to the waves simulated
by Nicholls & Pielke). Waves with horizontal propagation speeds close to the speed
of sound and long wavelengths, like the ones generated by the surface colour change,
were classi�ed as large-scale atmospheric gravity waves by Gardner and Schunk (2010)
and Vadas and Liu (2013).

As the primary perturbation propagates outwards, it reaches the Amazon con-
vection zone at 16:00 UT (Figure 4.7a), seven hours after its generation over the
Eastern Sahara (Figure 4.6a). As the wave front comes in contact with the tropical

Figure 4.7: Evolution of the secondary wave above Brazil during the �rst day

The di�erence between the vertical wind at 2 km altitude of the perturbed run
minus the control run is shown at (a) 16:00 UT, (b) 17:00 UT, (c) 19:00 UT,
(d) 23:00 UT. Shades of blue indicate upward motion of the air, while shades
of red indicate downward motion.

convection zone, it scatters and generates a secondary wave, clearly visible (Figures
4.7a - 4.7b) as outgoing, periodically oscillating, concentric wave rings from the center
of the tropical convection zone (10o S, 55o W).

Three hours later, at 19:00 UT, the next primary wave front reaches the tropical
convection zone, scattering and amplifying the secondary perturbation (Figure 4.7c).
The scattering leads to a change in the vertical air motion located over the convection
zone. The upwards moving air condenses moist air and leads to the release of latent
heat, which further ampli�es the secondary perturbation. The strong amplitude of
the secondary wave points to such a non-linear ampli�cation process (Figures 4.7a-
4.7c).

The secondary wave has a mean wave velocity of 〈v〉 = 220 ± 40 m/s, which
is ∼ 70% of the speed of sound for this altitude. Its mean horizontal wavelength
is 〈λ〉 = 3000 ± 500 km and its mean wave period is 〈p〉 = 3 ± 1 h. Convectively
generated primary and secondary gravity waves with characteristics similar to those
of our own simulation were simulated by Vadas and Liu (2009). Vasiliy (2005) also
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reported the generation of secondary oceanic waves through interaction between the
underlying oceanic topography. Their generation mechanism was reminiscent of the
interaction of our wave and the tropical convection zone.

The primary and secondary waves are present in both the ensemble average and
in each individual run, though a seasonal variation in the azimuthal wave speeds is
visible. This seasonal variation can be attributed to the seasonal variation of the
mean �ow and the thermal structure of the lower troposphere.

The perturbation extends to the stratosphere and mesosphere as can be seen in
Figure 4.8. The stratospheric perturbation is radiative in nature, generated through
the absorption of the outgoing infrared radiation produced by the hot underlying
surface. This is made evident by its strength compared to the surface perturbation
and by the very short time interval between the surface and the stratospheric pertur-
bation, which makes it unlikely for the perturbation to be convective in nature. The
mesospheric perturbation is probably connected to global teleconnections based on
wave-mean �ow interactions.
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Figure 4.8: Longitude-altitude cross section at 09:00 UT on the �rst day of the

simulation. It is centred on the 1stmeridian. Shades of blue indicate upward
air motion, while shades of red indicate downward motion.

Five days after the initialisation of the simulation, the circular patterns are no
longer visible. Instead, enhanced �uctuations are present at seemingly random loca-
tions all over the globe as well as over Sahara and the convective zones of Brazil and
Indonesia, as can be seen in Figure 4.9.

The global mean standard deviation σ increases linearly from σ = 2 ·10−4 on the
�rst day to σ = 27 · 10−4 on the �fth day, as can be seen in Figure 4.10.

This linear increase indicates that the perturbed run diverges from the control
run as the length of the simulations increases. As a result, the attribution of cause and
e�ect, and the isolation of the soil colour-induced atmospheric perturbation becomes
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Figure 4.9: Evolution of the secondary wave above Brazil during the �fth day

The di�erence between the vertical wind at 2 km altitude of the perturbed run
minus the control run is shown at (a) 00:00 UT, (b) 12:00 UT, (c) 16:00 UT,
(d) 23:00 UT. Shades of blue indicate upward motion of the air, while shades
of red indicate downward motion.

Figure 4.10: Temporal evolution of σ Evolution of the global mean standard deviation
σ from the �rst to the �fth day

increasingly di�cult. Therefore, the small perturbation analysis can be used only
for the �rst two days of the simulations, when the perturbation waves can be clearly
separated from the random background atmospheric waves.
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Our study demonstrated the potential of wave propagation studies with 3D real-
istic climate models, which contain all the interactions between generated waves and
the atmospheric jets, circulation cells, solar tides, planetary waves, random gravity
waves, orography and tropical convection zones. This provided the advantage that
the generation and propagation of the waves generated by the colour darkened region
can be studied under realistic atmospheric conditions. This resulted in the appear-
ance of the secondary wave over Brazil. Such an e�ect would not have appeared in a
1D or 2D idealised model.

It was demonstrated that it is possible to perform cause-e�ect, small-scale per-
turbation analysis in 3D models for the �rst few days of the simulation, as long as the
amplitude of the generated perturbation remains small. The coupling of the reported
primary and secondary waves indicates that the small perturbation analysis could be
used for the study of similar couplings between migrating and non-migrating tides.
This analysis permits the detailed study of the propagation of the generated waves
in the troposphere and beyond. It also enhances our understanding of the possible
e�ects geoengineering projects can have on the tropospheric dynamics.
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5 Characterizing the
three-dimensional ozone
distribution of a tidally locked
Earth-like planet

5.1 Research strategy

As mentioned in the Introduction, a change in the planet's rotation rate will alter
the spatio-temporal distribution of the incoming stellar radiation �ux and change
the magnitude of the Coriolis force. These e�ects will in turn modify its sea and
land surface temperatures, its ozone distribution and its circulation. Read (2011)
described how fundamental parameters such as planetary size, planetary rotation
rate and atmospheric thermal strati�cation play a central role in the circulation of
terrestrial planets. He emphasized that the in�uence of other factors such as tidal
locking and luminosity of the parent star must also be investigated. A planet with
the size, the mass, the continental distribution and topography, the oceans, and the
atmospheric composition and circulation of the present day Earth (Earth-like planet)
would experience such changes if it became tidally-locked to its parent Sun-like star.
Here, we mainly investigate the characteristics of the 3D ozone distribution of a
tidally-locked Earth-like planet. Until now, there are only two other 3D simulation
studies about the middle atmosphere of exoplanets (Yang et al. (2014), Godolt et al.
(2015)).

An Earth-like habitable planet orbiting a G star at a distance of 1 AU has a
lower probability of becoming tidally locked. However, retrograde planetary spin can
still occur, e.g., in our own Solar System (Venus). The simulation setup used in
our study has been used in past simulations to approximate tidally locked Earth-like
planets and aquaplanets orbiting M stars stars by (Tarter et al., 2007), (Grenfell et al.,
2014),(Joshi, 2003), (Merlis and Schneider, 2010), (Yang et al., 2013), (Segura et al.,
2005), (Edson et al., 2011), (Kaspi and Showman, 2015) and (Menou, 2013). Haberle
et al. (1996), Joshi et al. (1997), Joshi (2003), Segura et al. (2005) and Segura et al.
(2010) demonstrated that such planets would be habitable.

The di�erences in the spectral energy distribution of M and G stars would result
in di�erent ozone radiative heating rates and di�erent vertical thermal structures
for the same total amount of stellar energy incident at the top of the atmosphere.
This will lead to stratospheric temperature increases and will impact the planet's
middle atmospheric circulation (Selsis (2000), Segura et al. (2003), Segura et al.
(2005), Grenfell et al. (2007), Rugheimer et al. (2013), Rauer et al. (2011) and Godolt
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et al. (2015)). Therefore, one can reasonably expect that the middle atmospheric
chemistry of a tidally locked Earth-like planet will be altered. Since the aim of this
study is to investigate the e�ects of the tidal lock on the planet's ozone distribution,
such an e�ect would complicate the cause-e�ect attribution analysis and make it
exceedingly di�cult to correctly ascribe the observed changes to either the tidal lock
or the spectral energy distribution change. Therefore, the Earth-like planet - Sun-like
star setup simpli�es the tidal lock cause-e�ect analysis and facilitates its comparison
with older studies, where similar setups were also used (Merlis and Schneider (2010),
Grenfell et al. (2014), Joshi (2003), Yang et al. (2013), Segura et al. (2005), Joshi
(2003), Edson et al. (2011), Kaspi and Showman (2015), Menou (2013)). These
studies were focused mainly on the troposphere (Merlis and Schneider (2010), Joshi
et al. (1997), Showman and Polvani (2011), Carone et al. (2014), Edson et al. (2011)).

The habitability of a tidally locked Earth-like planet orbiting a Sun-like star
was investigated by Merlis and Schneider (2010), Yang et al. (2013), and Grenfell
et al. (2014). Merlis and Schneider (2010) found that the tidal lock would generate
an upwelling over the day side and a downwelling over the night side in the planet's
troposphere.

Our study is characterised by a more complicated setup compared to the study
presented in Chapter 4. The shortwave solar radiation distribution is altered by
reducing the planet's rotation rate to 1/365th of the Earth's rotation rate. Two 90
day simulations are performed: one for the present day Earth (PDE), whose rotation

rate is ΩPDE = 1

(
rotation

days

)
; and one for a tidally locked Earth-like exoplanet, whose

rotation is ΩTLE =
1

365

(
rotation

days

)
. On the tidally locked Earth (TLE), the subsolar

point is permanently located over the same geographical region rather than moving
on the globe as is the case in the PDE. The planet-star distance, the eccentricity and
the stellar irradiance So at the top of the model are the same for both simulations.
The PDE has the obliquity of the present day Earth, while the TLE has an obliquity
of 0◦. In order to simplify our analysis, both simulations are launched on the day
of the spring equinox (21.03.2000). To achieve the tidal lock, the following model
parameters are changed:

• the number of seconds in a siderial day is altered from 86164 seconds/day to
3.15 · 107 seconds/day

• the planet's rotation velocity is set to 2.31 · 10−12 rad/s

• the planet's new rotation rate is 1◦ every 87600 seconds (the Earth rotation rate
is 1◦ every 240 seconds)

• the position of the subsolar point is set to (0.17◦ N, -178.17◦ E) for the duration
of the simulation. The simulation is initialised using model data from the year
2000 Spring Equinox, at 00:00 UT.

• the Sea Surface Temperature (SST) is changed to resemble the SST of the tidally
locked Earth-like aquaplanet reported by Merlis and Schneider (2010)
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• The solar zenith angle (SZA) is set to a constant value by means of the PDE
Julian date.

By setting the Julian date to a constant value, the periodic 24-hour variation of SZA
is stopped at all grid points of the TLE. The SZA is the central parameter used for
the assessment of the incoming solar radiation in the CESM model world. The above
changes result in a perpetual equinox simulation. The shortwave solar radiation �ux
at the top of the model for the TLE simulation is shown in Figure 5.1. The solar
point is depicted by a white dot on both sides of the �gure, while the anti-solar point
is depicted by a magenta point in the centre of the �gure.
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Figure 5.1: TLE Incident shortwave radiation at the top of the model Shades
of red indicate high incoming solar radiation and de�ne the day side of the
planet, while shades of blue indicate low incoming solar radiation. The dark
blue visible in the center of the plot indicates a lack of incoming solar radiation
and de�nes the night side of the planet. The subsolar point is indicated with
a white point on both sides of the �gure. It is centred approximately at (0◦,
180◦) over the Paci�c Ocean. The antisolar point is indicated with a magenta
point in the centre of the �gure and is centred approximately at (0◦,0◦).

The model is forced with an SST that resembles the SST reported by Merlis
and Schneider (2010) to ensure the energetic self-consistency of the model. They
performed a long-term simulation of an Earth-like tidally locked aquaplanet, orbiting
a Sun-like star, at a distance of 1 AU. The altered SST can be seen in Figure 5.2.
The CESM1(WACCM) requires the presence of an active land model. Therefore, the
general topography and continents of the Earth are maintained. The atmospheric
and surface initialization data are identical for both the PDE and the TLE runs and
both simulations start with same PDE 3D ozone and wind �elds.

The total ozone content (TOC =
∫ 110

5
[O3]dz), vertical wind Ω, the zonal and

meridional wind (U , V ) and the atmospheric temperature T are calculated between 5
and 110 km altitude to avoid the data gaps generated by the presence of several high
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Figure 5.2: TLE Sea Surface Temperature setup. Shades of red indicate high tem-
peratures and de�ne the day side of the planet. Shades of blue indicate low
temperature and de�ne the night side of the planet. The subsolar point is
indicated with a white point on either side of the �gure. The antisolar point
is indicated with a magenta point in the center of the �gure.

mountains and mountain ranges (e.g Himalayas, Kilimanjaro) and the air density
data gaps above 110 km altitude. The partial ozone content (POC) is calculated for
the altitude ranges of 5 to 28 km, 30 to 45 km and 55 to 100 km altitude.

In the next subsection, the e�ects of the tidal lock on the total ozone content
(TOC), the vertical wind Ω, the zonal wind U , the horizontal wind HW and the
atmospheric temperature T for the present day Earth (PDE) and the tidally locked
Earth (TLE) are presented and discussed. First, the latitude-longitude ozone concen-
tration cross sections of the TLE are discussed and compared to the PDE. Then, the
TLE lower and middle stratospheric and mesospheric POCs and TOC are described
and compared with the PDE POCs and TOCs. Next, the global means of the TOC
and POCs are determined by calculating their zonal means as a function of latitude
and weighted them with the surface area of the latitude belts (surface area preserving
mean). Afterwards, the change in % of TOC and POC between the PDE and TLE
is calculated.

∆TOC% =
TOCTLE − TOCPDE

TOCPDE
∗ 100 (5.1)

∆POC% =
POCTLE − POCPDE

POCPDE
∗ 100 (5.2)

∆TOCDU = TOCTLE − TOCPDE (5.3)

∆POCDU = POCTLE − POCPDE (5.4)

Lastly, the hemisphere means (HM) of the PDE and TLE (TOCHM(PDE), TOCHM(TLE))
as well as their di�erences (∆TOCHM(PLE,TLE), ∆TOCHM(TLE,TLE), ∆TOCHM(PDE,PDE))
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are calculated.

∆TOCHM(PLE,TLE) =
TOCHM(PDE) − TOCHM(TLE)

TOCHM(TLE)

(5.5)

∆TOCHM(TLE,TLE) =
TOCHM(TLE(0◦)) − TOCHM(TLE(φ))

TOCHM(TLE(φ))

(5.6)

∆TOCHM(PDE,PDE) =
TOCHM(PDE(0◦)) − TOCHM(PDE(φ))

TOCHM(PDE(φ))

(5.7)

The TOC hemisphere mean is de�ned as the TOC mean of one side of the planet,
which spans between 180◦ in longitude and 180◦ in latitude. The ∆TOC(PLE,TLE)

is de�ned as the di�erence between the TLE and the PDE hemisphere means, while
the ∆TOC(TLE,TLE) is de�ned as the di�erence between the TLE hemisphere centred
around the 0◦ meridian and the hemisphere centred around the φ meridian. Finally,
the ∆TOC(PDE,PDE) is given by the di�erence between the PDE hemisphere centred
around the 0◦ meridian and the hemisphere centred around the φ meridian.

5.2 Results

The CESM1(WACCM) simulation described in Section 5.1 allows us to study how
the radiative forcing and Coriolis force changes, which appear as a result of the tidal
lock, a�ect an Earth-like planet.

Our study reveals that the middle atmosphere adjusts to the new radiative and
dynamical conditions in the surprisingly short time of 80 days. The adjustment times
of the TLE total ozone content (TOCTLE), the global mean stratospheric horizontal
wind (HWTLE), the global mean stratospheric vertical wind (ΩTLE) and the global
mean stratospheric temperature (TTLE) for the 30 - 40 km altitude range can be seen
in Figure 5.3. The temporal evolution of the PDE TOCPDE, HWPDE, ΩPDE and
TPDE are also shown for comparison. The e-folding times of the TOCTLE, HWTLE,
ΩTLE and TTLE are 30, 20, 15 and 40 days, respectively and can be seen, along with
their PDE equivalents and standard deviations (σ), in Table 5.1. Therefore, the
adjustment times TOCTLE, HWTLE, ΩTLE and TTLE are 60, 40, 30, 26 and 80 days,
respectively. A comparison between the TLE and PDE σ reveals that the PDE has
higher standard deviations (σPDE) compared to the TLE standard deviations (σTLE).

Table 5.1: Comparison of TOC and POC e-folding times, steady-state mean values and
their standard deviations obtained for the PDE and TLE simulation on day 90.

PDE σPDE TLE σTLE
TOC (DU) 280.1 1.44 248.7 1.00

HW30−45km (m/s) 21.19 5.21 14.21 1.00
Ω30−45km (Pa/s) −8.6 · 10−7 9.6 · 10−7 −1.7 · 10−7 1.3 · 10−7

T30−45km (K) 239.9 0.85 238.4 0.43
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Figure 5.3: TLE temporal evolution of the TLE and PDE atmosphere (a) the
TOC, (b) the HW , (c) the Ω, (d) the T , respectively. The TLE TOC, HW ,
and T are exponentially decaying to their steady-state value with an e-folding
time of 30, 20 and 40 days, respectively. The TLE Ω is exponentially increasing
to its steady-state value with an e-folding time of 15 days.

The tidal lock a�ects the TLE's vertical thermal structure only to a limited
extent. It actually has a very similar vertical structure to the PDE with a troposphere,
stratosphere and mesosphere located in the same approximate locations. However,
the distribution of the atmospheric gases, temperature and atmospheric circulation
is very di�erent in each one of the two planets.

The tidal lock results in the breakdown of the Brewer Dobson circulation (Figure
2.3) and is replaced by a very di�erent atmospheric circulation (Figures 5.4, 5.5 and
5.6). The vertical circulation is replaced by an upwelling centred on the day side
and a downwelling centred on the night side, which extends from the surface to the
mesosphere (Figure 5.4).

The day side upwelling is generated by the upwards movement of the radiatively
heated air, due to the constant solar radiation �ux it receives. The night side up-
welling, on the other hand, is generated by the downward movement of the radiatively
cooled night side air, which receives no solar radiation. A similar vertical circulation
was predicted by Merlis and Schneider (2010) for the troposphere of a tidally locked
aquaplanet with a similar size, mass, atmospheric chemistry and circulation to the
present day Earth. The reported upwelling was attributed to radiative heating and
the downwelling to radiative cooling of the atmosphere.

Figure 5.5 shows the PDE and TLE zonal mean zonal wind. The PDE zonal
mean zonal wind is characterised by eastward winds in the Northern hemisphere and
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Figure 5.4: Longitude-Latitude Vertical wind circulation in the TLE (a) Vertical
wind at 10 km, (b) Vertical wind at 30 km, (c) Vertical wind at 40 km, (d)
Vertical wind at 50 km, (e) Vertical wind at 60 km, (f) Vertical wind at 70
km. Warm colours (positive values) indicate a downwelling wind. Cold colours
(negative values) indicate an upwelling wind. Each �gure is centred on the
antisolar point which is indicated with a black dot. The subsolar point is
indicated with a white dot on either side of each �gure.

westward winds in the Southern hemisphere in the altitude range of approximately
20 - 80 km (Figure 5.5). The TLE zonal mean zonal wind, on the other hand,
is characterised by alternating bands of eastward or westward wind spanning both
hemispheres.

Figure 5.6 shows the TLE horizontal wind at 24 km, 36 km and 60 km altitude. It
showcases the di�erences in the horizontal circulations at di�erent altitudes, especially
between stratospheric and mesospheric altitudes. As can be seen in Figure 5.6, at
lower and middle stratospheric altitudes, jet streams form at tropical latitudes.

Unlike the PDE (Figure 5.7), the TLE horizontal wind is unidirectional. At 20 -
35 km altitude, the jet stream is eastward, while the jet stream is westward at 35 - 40
km altitude. The strong natural variability of the lower stratospheric wind �eld leads
to considerable periodic changes (≈ 15 days) in the distribution patterns of lower
stratospheric ozone (16 - 28 km). Therefore, the middle atmospheric wind system of
the TLE shows a high degree of spatio-temporal variability, with the direction and
location of the TLE jet stream completely changing over height intervals of 10 km.
In comparison, the PDE circulation is largely eastward in the Northern hemisphere
and westward in the Southern hemisphere, with no vortices present.
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Figure 5.5: PDE and TLE zonal mean zonal wind latitude-altitude cross-sections

(a) PDE zonal mean zonal wind, (b) TLE zonal mean zonal wind. Warm
colours indicate movement from the west to the east, while cold colours indicate
movement from the east to the west.
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Figure 5.6: TLE Horizontal circulation at select altitudes (a) Horizontal wind at 24
km, (b) Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black
arrows indicate the wind vector while the color shading shows the wind speed.

The altered solar radiation distribution results in changes in the TLE ozone
distribution, as can be seen in Figure 5.8. The �gure depicts the TLE and PDE
O3VMR distribution along the 180th and the 1st meridian.
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Figure 5.7: PDE Horizontal circulation at select altitudes (a) Horizontal wind at 24
km, (b) Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black
arrows indicate the wind vectors while the color shading shows the wind speed.

Compared to the PDE, the TLE primary ozone layer (located between 30 and
40 km altitude) is enhanced on the day side (Figures 5.8b, 5.8d), due to the day side
constant solar radiation, and depleted on the night side (Figures 5.8a, 5.8c), due to
the lack of solar radiation. The TLE day-night side variation is ∼ 40%, which is one
order of magnitude larger than the PDE day-night variation (< 2 %).

The TLE does not posses a tertiary night-time ozone layer, as can be seen in
Figure 5.8c. The chemical and dynamical processes responsible for its disappearance
are currently unknown, but the phenomenon could be related to the slowdown of the
transport of air from the day to the night side. On the PDE, the day side to night
side transport of air is fast in comparison, due to the planet's fast rotation.

As can be seen in Figures 5.8a, 5.8c, a secondary ozone layer, present only during
the night time, occurs in both the PDE and the TLE. A comparison between the two
�gures reveals that the TLE secondary ozone layer is enhanced, compared to the
PDE. This phenomenon is the result of the transport of atomic oxygen rich air from
the day to the night side through both the horizontal and the vertical circulation,
where it recombines to form ozone. This transport of air from the day side to the
night side in the 55 - 100 km altitude region through the horizontal circulation and
the vertical circulation can be seen in Figures 5.5 and 5.6, respectively. The physical
process responsible for the altitude increase of the TLE secondary ozone layer to 90
- 110 km altitude (from 80 - 100 km in the PDE) is currently an open question.

At mesospheric altitudes, the photochemistry plays a dominant role in both
planets. At these altitudes, ozone is photodissociated constantly towards O by the UV
radiation during daytime (equation 2.2) and has a very short lifetime (∼ 1 minute) as a
result. During night time, the generated O2 and O recombine to form ozone (equation
2.3). Due to the stationary subsolar point, which results in permanent night on the
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Figure 5.8: Height-latitude cross section of the O3VMR along the meridian

through the subsolar point and the antisolar point for the PDE and

TLE (a) Vertical cross section of the PDE night-time hemisphere. (b) Vertical
cross section of the PDE daytime hemisphere. (c) Vertical cross section of the
TLE night side hemisphere. (d) Vertical cross section of the TLE day side
hemisphere.

night side of the planet, the TLE night side mesospheric ozone concentration increases
by ∼ 17.9 % compared to the PDE (Figures 5.9e, 5.9a). On the day side, the ozone
remains depleted and relatively unchanged compared to the PDE (Figures 5.9e, 5.9a).
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Figure 5.9: Comparative TOC and POC maps for the PDE and the TLE (a)
POCPDE(55−110), (b) POCPDE(30−45), (c) POCPDE(5−28), (d) TOCPDE at
00:00 UT on the day of the spring equinox, respectively. (e) POCTLE(55−110),

(f) POCTLE(30−45), (g) POCTLE(5−28), (h) TOCTLE on the 90th day of the
TLE simulation, respectively. All �gures are centred on the antisolar point
which is indicated with a black dot. The subsolar point is indicated with a
white dot on either side of each �gure.

The middle stratosphere extends in the 30 - 40 km altitude region, where the
primary ozone layer is located in both the PDE and the TLE. At these altitudes, the
photochemistry plays a dominant role in both the PDE and the TLE. In the PDE,
the ozone molecules are photodissociated towards atomic and molecular oxygen by
the UV radiation during the day (equation 2.2). Then, due to the higher air and
molecular oxygen density, they immediately recombine to form ozone (equation 2.3)
(Figure 5.9b). In the TLE, the ozone generation follows a similar process. Odd
oxygen is only generated on the day side. Due to the higher stratospheric air density
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(compared to the mesosphere), the generated atomic oxygen is immediately converted
to ozone. (Figure 5.9f).

On the night side, the lack of shortwave radiation �ux and the reduced mixing
rates between the day and the night side lead to a visibly depleted night side POC
and a high day-night side variation (Figure 5.9f). The mixing rates are reduced due to
the day to night side transport velocities reduction in the TLE compared to the PDE
(vPDE = 25 m/s, vTLE = 13 m/s). Due to the horizontal atmospheric circulation, the
TLE has a much smaller temperature gradient compared to the PDE (Figure 5.10).
The depletion is further enhanced by the large scale meridional mixing, generated as
a result of the decreased TLE Coriolis force.
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Figure 5.10: Comparative view of the PDE and TLE atmospheric temperatures

at 36 km altitude (a) TPDE , (b) TTLE . The antisolar point is indicated
with a white point in the center of the �gure. The subsolar point is indicated
with a black point on either sides of the �gure. The middle stratospheric TLE
temperature is clearly decreased compared to the PDE.

The mean night side POCTLE(30−40) = 45 DU, while the mean day side POCTLE(30−40)

= 58 DU. Therefore, the day - night side middle stratospheric ozone variation is ap-
proximately 29% with respect to the night side, one order of magnitude larger than
the PDE middle stratospheric diurnal variation (< 5%).

The TLE and PDE tropospheric (5 - 14 km) POC is lower by two orders of
magnitude compared to the lower stratospheric TOC (14 - 28 km) and, therefore,
does not contribute considerably to the tropospheric and lower stratospheric POC
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(POC(5−28)) presented here. The TLE and PDE POC(5−28) ((POCTLE(5−28)) and
(POCPDE(5−28))) can be seen in Figure 5.9. At these altitudes, the lifetime of odd
oxygen (and therefore ozone) is several months long due to the attenuation of the UV
radiation �ux at higher altitudes. Consequently, the ozone distribution is in�uenced
mainly by the lower stratospheric dynamics. In the TLE, the lower stratospheric
ozone, which was concentrated in extra-tropical latitudes at the start of the simula-
tion, is transported through the horizontal and vertical circulation to the night side
of the planet where it accumulates, generating the pronounced high POC levels.

As can be seen in Figure 5.9g, the POCTLE(5−28) is depleted on the day side
and enhanced on the night side. The lack of strati�ed structure visible in the
POCTLE(5−28) is generated by the large scale mixing that takes place, as a result
of the small value of the Coriolis force. The mean night side is POCTLE(5−28) = 181
DU, while the mean day side is POCTLE(5−28) = 158 DU (Figure 5.9g). Therefore, the
lower TLE stratospheric day-night side variation is ∼ 13 % with respect to the day
side. The POCPDE(5−28) diurnal variation is ∼ 0.1 %. Therefore, the POCTLE(5−28)

is two orders of magnitude higher compared to the POCPDE(5−28).

The main characteristics of the TLE total ozone content (TOCTLE) are formed
in the lower and middle stratosphere, as a comparison between Figures 5.9e, 5.9g and
5.9h reveals. The TOCTLE day side features are generated by the enhanced middle
stratospheric POC (Figure 5.9f) and the depleted day side lower stratospheric POC
(Figure 5.9g) and are, therefore, produced by a combination of photochemistry and
dynamics. The depleted region located over the American continent originates partly
in the lower and partly in the middle stratosphere. The enhanced TOCTLE night
side features, on the other hand, originate in the lower stratosphere (Figure 5.9e). As
can be seen in Figure 5.9h, the TOCTLE is characterised by enhanced O3 columns on
the day and night side and a well mixed meridional TOC distribution. Therefore, it
presents a very di�erent picture compared to the PDE total ozone content TOCPDE,
which can be seen in Figure 5.9d.

The TOCPDE and TOCTLE global means (TOCPDE(GM) and TOCTLE(GM), re-
spectively) are presented in Table 5.2. The day and night side TOCPDE and TOCTLE
hemisphere means (TOCPDE(HM) and TOCTLE(HM), respectively) are presented in
Table 5.3. The TOCTLE(GM) is reduced by 19.3 % compared to the TOCPDE(GM).
Therefore, the TOCTLE is depleted compared to the equivalent PDE, but not to the
extent that would render the planet uninhabitable. The day side TOCTLE is de-
pleted compared to the daytime TOCPDE, as can be seen in Figure 5.9, though it
still remains within the limits of habitability.

Compared to the PDE, the POCTLE(5−28) global mean (POCTLE(5−28)(GM)) is
reduced by 27.7%, while the POCTLE(30−45) global mean (POCTLE(30−40)(GM)) is in-
creased by 0.8%. The POCTLE(5−28)(GM) reduction can be attributed to the changed
dynamics, which play a dominant role at these altitudes. The increased POCTLE(30−45)(GM),
on the other hand, can be attributed equally to the in�uence of dynamics and pho-
tochemistry. The POCTLE(55−110) global mean (POCTLE(55−110)(GM)) is increased by
7.2% compared to the PDE and can be attributed to the e�ects of photochemistry
and transport of atomic oxygen. This increase has no major impact on the TOCTLE
due to the small POCTLE(55−110) value (< 1 DU). As the majority of the TOCTLE
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Table 5.2: Comparison of the PDE and TLE TOC and POC global means. The ∆ (%)
and ∆ (DU) are de�ned by equations (5.1), (5.2), and (5.3), (5.4), respectively

PDE TLE ∆ ∆
(DU) (DU) (%) (DU)

TOCGM 291.14 244.05 19.3 47.09
POC(5−28)GM 216.35 169.42 27.7 46.93
POC(30−45)GM 46.45 46.84 -0.8 -0.39
POC(55−110)GM 0.31 0.34 -7.2 -0.03

Table 5.3: Comparison of the PDE and TLE, TOC and POC day side and night side
means, respectively.

PDE Day side PDE Night side TLE Day side TLE Night side
Mean (DU) Mean (DU) Mean (DU) Mean (DU)

TOCGM 295 287 240 249
POC(5−28)GM 220 213 158 181
POC(30−45)GM 52 51 58 45
POC(55−110)GM 0.23 0.40 0.28 0.40

is located at stratospheric altitudes, the reduction of the TOCTLE can be attributed
equally on the changed dynamics and photochemistry.

As the planet orbits it parent star, only one side will be visible to the observers
and the side will change with time, as can be seen in Figure 5.11.

  φ = 180°

φ = 0°

φ = 270°

φ = 90°

by Winn (2010)

Figure 5.11: Phases of an exoplanet as seen by an observer The phases ϕ = 0◦,
ϕ = 90◦, ϕ = 180◦ , ϕ = 270◦ have been marked. In phase ϕ = 0◦ only the
planet's day side is visible. In phases ϕ = 90◦and ϕ = 270◦ half of the day
side and half of the night side are visible. In phase ϕ = 180◦ only the night
side is visible.

Consequently, four hemisphere phases (ϕ = 0◦, ϕ = 90◦, ϕ = 180◦, ϕ = 270◦) of
the TOCTLE (Figures 5.12e - 5.12h) are presented and compared with the equivalent
TOCPDE phases (Figures 5.12a - 5.12d). Their values are radially integrated from the
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surface to the top of the atmosphere, where the phases ϕ follow the marked phases
in Figure 5.11.
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Figure 5.12: Comparative view of four di�erent phases of the TOCPDE and

TOCTLE (a) ϕ = 0◦ of TOCPDE , (b) ϕ = 90◦ of TOCPDE , (c) ϕ = 180◦ of
TOCPDE , (d) ϕ = 270◦ of TOCPDE . (e) ϕ = 0◦ of TOCTLE , (f) ϕ = 90◦ of
TOCTLE , (g) ϕ = 180◦ of TOCTLE , (h) ϕ = 270◦ of TOCTLE . The antisolar
point is indicated with a white point. The subsolar point is indicated with a
black point.

As can be seen in Figures 5.12a - 5.12d, the PDETOC displays high TOC values
at extra-tropical latitudes and low TOC values at tropical latitudes. As a result, a
distant observer would be unable to di�erentiate them, as the di�erence between the
phases is relatively small. In the case of the TLE, on the other hand, the depletion
or enhancement (depending on the observed phase) would be evident, as can be seen
in Figures 5.12e - 5.12h.
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In Table 5.4, the TLE and PDE di�erences between the TOC hemisphere mean
in phase φ with respect to the TOC hemisphere mean in phase 0◦ (∆TOC(TLE,TLE)

and ∆TOC(PDE,PDE), respectively) are shown.

Table 5.4: Comparison of the TLE and PDE di�erences between the TOC hemisphere
mean in phase φ with respect to the TOC hemisphere mean in phase 0◦

. The values were derived using equations 5.5, 5.6 and 5.7.
Phase ∆TOCHM(PDE,TLE) ∆TOCHM(PDE,TLE) ∆TOCHM(TLE,TLE) ∆TOCHM(PDE,PDE)

ϕ (DU) (%) (%) (%)
0◦ -56 23 0 0
90◦ -51 22 2.2 3.5
180◦ -39 16 -3.8 2.7
270◦ -13 12 -8.1 1.4

The TOCTLE(90◦) is depleted compared to the TOCTLE(270◦) and is characterised
by low O3 columns, with the depleted region coinciding with the TLE dusk re-
gion (Figure 5.12f). The TOCTLE(180◦) (Figure 5.12g) is enhanced compared to the
TOCTLE(0◦) (Figure 5.12e). High O3 concentrations are present between the antisolar
point and subsolar point. Low concentrations are present towards the North-West
part of the hemisphere. The TOCPDE hemisphere mean (TOCHM(PDE)) and TOCTLE
hemisphere mean (TOCHM(TLE)) values can be seen in Table 5.5. A comparison shows
that the TOCTLE is depleted compared to the TOCPDE regardless of the hemisphere
observed.

Table 5.5: Comparison of TOCHM(PDE) and TOCHM(TLE) for di�erent phases of the
planet

Phase TOCPDE TOCTLE
ϕ (DU) (DU)
0◦ 295 239
90◦ 285 234
180◦ 287 249
270◦ 291 260

Therefore, the TOCTLE distribution will change depending on the observed
phase. The TOCTLE phases decrease by a maximum of 23% compared to the TOCPDE.
The di�erence between the four TLE phases is ±5.15 %. A planet's spectral ozone
signature is derived from the planet's TOC. It also depends on the planet's temper-
ature structure and distribution, its vertical ozone pro�le, the line of sight towards
the observer and other factors. Therefore, 23% ± 5.15% is the uppermost limit for
the di�erences between the PDE and TLE spectral signatures.

Selsis (2000), Segura et al. (2003), Segura et al. (2005), Rugheimer et al. (2013),
Rauer et al. (2011) and Grenfell et al. (2007) predicted that the observed spectra
of exoplanets orbiting F, G, K and M stars would possess a visible ozone spectral
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signature, using 1D models. The strength of the signature would vary depending on
the star's UV radiation emission as well as the planet's molecular oxygen content.
Selsis (2000) determined that an Earth-like planet orbiting a K2 star would have a
visible spectral signature, while an Earth-like planet orbiting an F9 star would not
have a distinguishable ozone spectral signature. Segura et al. (2003) determined that
the ozone 9.6 µm spectral line would be visible if the planet's O2 concentration was
at least 10−3 PAL. Segura et al. (2005) found that the ozone 9.6 µm spectral line of
an Earth-like planet orbiting an M star would be similar to that of the present day
Earth's. Grenfell et al. (2007) showed that the ozone concentration of an Earth-like
planet orbiting a G2V, a F2V, and a K2V star, respectively would increase as the
planet moves further away from the parent star. Rugheimer et al. (2013) determined
that an increase in either the parent star's UV radiation or its temperature would
result in increased O3 concentrations and stronger O3 spectral features. Rauer et al.
(2011) predicted planets orbiting quiet M0 to M3 dwarfs would have stronger ozone
emission spectra compared to the emission spectrum of the present day Earth, while
planets orbiting very cool and quiet M4 to M7 stars would have weaker ozone emission
spectral.

Our study indicates that a tidally locked Earth-like planet will have a visible
ozone signature and the tidal lock will result in a 19.3 % decrease of the total ozone
content global mean compared to the present day Earth. Furthermore, the total ozone
content will vary ± 5.15% depending on which phase of the planet is visible.

The observational measurement errors of exoplanets currently range between 10
- 30% (Burrows, 2014). Therefore, the spectral change calculated in this study will
not be critical for current exoplanet observations. However, when bigger telescopes
are built and improved observational and data analysis techniques are developed, the
di�erences in the TOC of a tidally locked Earth-like exoplanets will be detectable.

Therefore, we conclude that the middle atmosphere of a tidally-locked Earth-like
exoplanet can be simulated using the realistic, high-resolution, 3D chemistry-climate
model (CESM1(WACCM)) and that the planet's middle atmosphere achieves a steady
state within 80 days.

The study reveals that the 3D ozone distribution of a tidally locked Earth-like
planet orbiting a Sun-like star greatly di�ers from that of the present day Earth
due to the reduced Coriolis force, the break down of the Brewer-Dobson circulation
and the stationary nature of the subsolar point. The breakdown of the Brewer-
Dobson circulation results in the generation of an upwelling centred over the day side
and a downwelling centred over the night side, extending from the surface to the
mesosphere. Furthermore, the horizontal middle atmospheric circulation is greatly
altered, especially in the mesosphere.

As a result of the changes in photochemistry and dynamics, the day side primary
ozone layer is enhanced, while the night side primary ozone layer is depleted compared
to its PDE equivalent. The night side secondary ozone layer is enhanced for the TLE
compared to the PDE, while the day side remains relatively unchanged. The tertiary
ozone layer disappears. The global mean TOCTLE is reduced by 19.3 % compared to
the TOCPDE and the TOCHM(TLE) is reduced by a maximum of 23 % compared to
its PDE equivalent. Furthermore, the TOCHM(TLE) will vary be ± 5.15% depending
on which phase of the planet is visible to the observer. Since our current observations
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have ≈ 30 % error margin, it is not possible to detect the di�erences between the
PDE and the TLE with our current technology. Therefore, the observations will not
be a�ected.

Finally, it is important to emphasise that this is the �rst study investigating
the e�ects of the tidal lock on a tidally locked Earth-like planet using a realistic,
high-resolution, 3D chemistry-climate model.
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6 The middle atmospheric
circulation of a tidally locked
Earth-like planet and the role of
the sea surface temperature

6.1 Research strategy

This study is an extension of the paper presented in Chapter 5 and aims to investi-
gate the in�uence of the sea-surface temperature (SST) on the circulation and ozone
distribution of a tidally-locked Earth-like planet orbiting a Sun-like star. The subject
is of great interest, as it will determine the level of SST accuracy needed in future
simulations of observed exoplanets.

On Earth, the in�uence of the sea-surface temperature on the tropospheric and
lower stratospheric temperature and dynamics has been investigated by several re-
searchers.

Braesicke and Pyle (2004) used the Met O�ce Uni�ed Model with simple strato-
spheric chemistry to investigate the dynamics and ozone sensitivity to di�erent SSTs.
They performed a set of multi-annual simulations, each lasting 20 years. Each simu-
lation had a di�erent prescribed SST and the same simpli�ed ozone chemistry. They
reported that the appearance of extreme events in the northern hemisphere winter
stratosphere had a stronger correlation with the underlying SSTs than with changes
in the ozone.

Rosenlof and George (2008) investigated the long-term tropical lower strato-
spheric temperature trends over the western Tropical Paci�c Ocean, in relation to
variations in the SST, using data from the NOAA/CIRES Climate Diagnostics Cen-
ter. They reported the discovery of an anticorrelation between stratospheric tempera-
ture anomalies and SST anomalies and proposed that a fairly direct in�uence between
the underlying ocean and the lower tropical stratosphere exists. Furthermore, they
speculated that the anticorrelation appears due to the increased deep tropospheric
convection generated by an SST warming.

The presence of a lower stratospheric cooling as a result of higher tropical SSTs
was reported by Deckert and Dameris (2008). They investigated the change in the
strength of the tropical upwelling in two di�erent simulations. Both simulations
had the same concentrations of ozone-depleting substances but di�erent SSTs and
greenhouse gas concentrations. Deckert and Dameris (2008) reported the presence of
ampli�ed deep convection due to higher SSTs. The generated waves reached the low-
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latitude upper troposphere and lower stratosphere, bringing ozone-poor tropospheric
air into the lower stratosphere, lowering the ozone concentration as a result.

Hegyi et al. (2014) investigated the initial transient response of the boreal win-
ter stratospheric polar vortex to localised sea-surface warming events. To that end,
they conducted 20 perpetual winter simulations using the CESM1(WACCM). They
reported a weakening of the polar vortex due to changes in the eddy-driven mean
meridional circulation and the presence of negative anomalies in the eddy momentum
�ux convergence. They further showed that the initial state and subsequent internal
variation of the extratropical atmosphere is as important as the type of SST forc-
ing in determining the response of the stratospheric polar vortex. Furthermore, the
interactions between the internal variability of the vortex and the SST-driven wave
anomalies determine the nature of the response of the polar vortex to the forcing.

For non-Earth planets, on the other hand, only one such study has been per-
formed by Chen et al. (2010). They studied the tropospheric winds and stratospheric
Brewer-Dobson circulation sensitivities to SST warmings using an Earth aquaplanet
general circulation model. However, the study aimed to investigate the relationship
between a warming ocean due to global warming and a change in the Earth's large-
scale atmospheric circulation rather than an actual exoplanet. They investigated the
relationship between the zonal mean tropospheric and lower stratospheric circulation,
and di�erent SST warming patterns. They reported that the location and sign of the
SST perturbations gradient strongly a�ects the tropospheric jet and the Hadley cell.
The Brewer-Dobson circulation increased when low latitude warming was present. For
high latitude warmings, the Brewer-Dobson circulation decreased when the warming
extended to the subtropics.

To our knowledge, no study investigating the correlation between the SST and
the middle stratosphere and mesosphere exists for either the Earth or exoplanets.
The sensitivity of the mesospheric conditions to SST variations is also important
for the observations of other spectral signatures, like atomic oxygen and hydroxyl,
whose spectral signatures will be a�ected by altered temperatures and/or circulation
patterns.

In this study, the e�ects of two extreme SST cases on the middle atmospheric
circulation and ozone distribution of a tidally locked Earth-like planet (TLE) are
investigated. Two 90-day simulations are performed using two di�erent SSTs. The
SST of the �rst simulations is similar to that of the present day Earth, which is
characterised by temperatures of 290 - 300 K in the tropics and 270 - 280 K in the
polar regions. On account of the overall warm SST, the simulation using it will be
henceforth called Warm TLE (WTLE). We emphasize that this SST distribution is
correct only for the fast rotating Earth and is used only in an attempt to force an
extreme SST. The SST of the second simulations is similar to the SST reported by
Merlis and Schneider (2010), who used an ideal gas GCM with an active hydrological
cycle, a gray radiation scheme and a slab ocean lower boundary condition to simulate
a tidally locked aquaplanet with the size, mass and atmospheric composition of the
present day Earth and a rotation period equal to one Earth year. The SST generated
by their study was characterised by a uniform night side SST temperatures of ≈ 250
K and a monotonically and isotropically increasing day side SST which reaches a
maximum ≈ 300 K in the regions surrounding the subsolar point. On account of
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the overall cooler SST, the simulation using it will henceforth be called Cold TLE
(CTLE). Both SSTs can be seen in Figure 6.1.
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Figure 6.1: CTLE and WTLE Sea Surface Temperature setups. (a) CTLE: Shades
of red indicate high temperatures and de�ne the day side of the planet. Shades
of blue indicate low temperature and de�ne the night side of the planet (b)
WTLE: Shades of red indicate high temperatures. Shades of blue indicate low
temperature. The subsolar point is indicated with a white point on either side
of the �gure. The antisolar point is indicated with a magenta point in the
center of the �gure for both simulations.

Both simulations have the same planet-star distance, eccentricity, stellar irradi-
ance at the top of the model, rotation rate and subsolar point location. Speci�cally,
the planet-star distance is set to 1 AU, the eccentricity to 0 < e < 1 and the stellar
irradiance at the top of the model to 1366.96 < So < 1368.60. The rotation rate is
set to 1/365th of the Earth's rotation rate. The subsolar point is permanently located
over the Paci�c ocean at (0.17◦ N, -178.17◦ E), which is the position of the Earth's
subsolar point at 00:00 UT on the day of the Spring Equinox (21.03.2000).
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To achieve the tidal lock the following model parameters are changed:

• the number of seconds in a siderial day is altered from 86164 seconds/day to
3.15 · 107 seconds/day

• the planet's rotational velocity is set to 2.31 · 10−12 rad/s

• the planet's new rotation rate is 1◦ every 87600 seconds (the Earth rotation rate
is 1◦ every 240 seconds)

• the position of the subsolar point is set to the subsolar point at 00:00 UT on
the Spring Equinox (0.17◦ N, -178.17◦ E) for the duration of the simulation

• the Sea Surface Temperature (SST) is changed to resemble the SST reported
by Merlis and Schneider (2010)

• The solar zenith angle (SZA) is set to a constant value by means of the present
day Earth (PDE) Julian date.

The SZA is the main parameter used for the assessment of the incoming solar radiation
in the CESM model world. Setting the Julian date to a constant value stops the
periodic 24-hour variation of the SZA at all grid points. Through the implemented
changes, a perpetual equinox is achieved. The shortwave solar radiation �ux at the
top of the model for the WTLE and CTLE simulations is shown in Figure 6.2. The
solar point is depicted by a white dot on either side of the �gure, while the anti-solar
point is depicted by a magenta point in the centre of the �gure.

The CESM1(WACCM) requires the presence of an active land model. Therefore,
the general topography and continents of the Earth are maintained. The atmospheric
and surface initialization data are identical for both the CTLE and the WTLE runs
and both simulations start with same 3D ozone and wind �eld.

The ozone volume mixing ratio (O3 VMR), total ozone content (TOC =
∫ 110

5
[O3]dz),

vertical wind Ω, the zonal and meridional wind (U , V ), the horizontal wind (HW )
and the atmospheric temperature (T ) are calculated between 5 km and 110 km alti-
tude to avoid the data gaps generated by the presence of several high mountains and
mountain ranges (e.g Himalayas, Kilimanjaro) and the air density data gaps above
110 km altitude.

In the next subsection, the middle atmospheric circulation (Ω, U , HW ), tem-
perature (T ) and ozone distribution (TOC, O3 VMR) of the two simulations are
presented and the degree by which they are in�uenced by the two extreme SSTs is
discussed. First, the atmospheric adjustment time of the two tidally locked Earths
(TLEs) is discussed and compared to that of the present day Earth. Then, their
atmospheric circulation is presented. Next, the T global average is presented and
discussed. Lastly, their latitude-longitude O3VMR cross section is presented. The
TOC, O3VMR, HW and T global means are determined by calculating their zonal
means as a function of latitude and then weighting them with the surface area of the
latitude belts (surface area preserving mean). The change in % between the CTLE
and WTLE parameters is calculated using the following equation:

∆ =
parameterCTLE − parameterWTLE

parameterWTLE

∗ 100 (6.1)
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Figure 6.2: Incident shortwave radiation at the top of the model for both the

CTLE and the WTLE Shades of red indicate high incoming solar radiation
and de�ne the day side of the planet. Shades of blue indicate low incoming
solar radiation. The dark blue visible in the center of the plot indicates a
lack of incoming solar radiation and de�nes the night side of the planet. The
subsolar point is indicated with a white point on either side of the �gure. It
is centred approximately at (0◦, 180◦) over the Paci�c Ocean. The antisolar
point is indicated with a magenta point in the center of the �gure and is centred
approximately at (0◦,0◦).

The term parameter is used to refer to any of the TOC, O3 VMR,U , HW and T .
The day and night side means (DSM and NSM, respectively) change is calculated

using the following equations:

∆parameterDSM(CTLE,WTLE) =
parameterDSM(CTLE) − parameterDSM(WTLE)

parameterDSM(WTLE)

(6.2)

∆parameterNSM(CTLE,WTLE) =
parameterNSM(CTLE) − parameterNSM(WTLE)

parameterNSM(WTLE)

(6.3)

6.2 Results

The CESM1(WACCM) simulation described in Section 6.1 allows us to perform a
sensitivity study and determine the in�uence of the SST on the middle atmospheric
circulation and ozone distribution of a tidally locked planet.

The study reveals that the CTLE and WTLE middle atmosphere adjusts to the
new radiative and dynamical conditions within 80 days. The adjustment times of
the CTLE and WTLE total ozone column (TOC), global mean stratospheric hor-
izontal wind (HW ), global mean stratospheric vertical wind (Ω) and global mean
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stratospheric temperature (T ) for the 30 - 40 km altitude range are shown in Figure
6.3. The temporal evolutions of the PDE TOC, HW , Ω and T are also shown for
comparison.

As can be seen in Figures 6.3a, 6.3b and 6.3c, the CTLE and the WTLE TOC,
HW and Ω adjustment times and values are not signi�cantly altered by the SST
change. The % change in their adjustment times can be seen in Table 6.1. The CTLE
and WTLE T is visible in Figure 6.3d. Their adjustment times are also similar despite
their altered slope. However, the CTLE values are decreased compared to the WTLE.
This di�erence is also visible in the CTLE and WTLE T global average which will
be presented later.
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Figure 6.3: CTLE, WTLE and PDE atmospheric temporal evolution (a) the TOC,
(b) the HW , (c) the Ω and (d) the T , respectively. The CTLE and WTLE
TOC, HW , and T are exponentially decaying to their steady-state value with
an e-folding time of 30, 20 and 40 days, respectively. The CTLE and WTLE
vertical winds are exponentially increasing to their steady-state value with an
e-folding time of 15 days.

The CTLE and WTLE e-folding times of the TOC, HW , Ω and T are, respec-
tively, 30, 20, 15 and 40 days, and can be seen, along with their PDE equivalents and
standard deviations (σ), in Table 6.1. Therefore, their adjustment times are 60, 40,
30 and 80 days, respectively. A comparison between the CTLE, the WTLE and the
PDE σ reveals that the PDE has higher standard deviations (σPDE) compared to the
CTLE and WTLE standard deviations (σCTLE and σWTLE), as can be seen in Table
6.1.

60



Table 6.1: Comparison of the PDE, CTLE and WTLE TOC, HW , Ω and T e-folding
times, steady-state mean values and their standard deviations on day 90.

PDE σPDE CTLE σCTLE WTLE σWTLE

TOC (DU) 280.1 1.44 248.7 1.00 248.64 1.42
HW (m/s) 21.19 5.21 14.21 1.00 16.10 2.22
Ω (Pa/s) −8.6 · 10−7 9.6 · 10−7 −1.7 · 10−7 1.3 · 10−7 −2.0 · 10−7 −9.7 · 10−8

Tstrat (K) 239.9 0.85 238.4 0.43 239.6 0.27

The tidal lock results in a breakdown of the Brewer-Dobson circulation (Figure
2.3) in both the CTLE and the WTLE and is replaced by a di�erent atmospheric
circulation (Figures 6.4, 6.5, 6.6, 6.7), though the atmospheric structure is still com-
prised of a troposphere, a stratosphere and a mesosphere. The description of the
atmospheric circulation of the two simulations is presented below.

We begin with the vertical wind. The CTLE and WTLE vertical wind is shown
in Figures 6.4 and 6.5, respectively.
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Figure 6.4: CTLE Longitude-Latitude Vertical wind circulation (a) Vertical wind
at 10 km, (b) Vertical wind at 30 km, (c) Vertical wind at 40 km, (d) Vertical
wind at 50 km, (e) Vertical wind at 60 km, (f) Vertical wind at 70 km. Warm
colours (positive values) indicate a downwelling wind. Cold colours (negative
values) indicate an upwelling wind. Each �gure is centred on the antisolar
point which is indicated with a black dot. The subsolar point is indicated with
a white dot on either side of each �gure.

A comparison between the two �gures reveals that both simulations are charac-
terised by an upwelling over the day side and a downwelling over the night side. In
both simulations, the day side upwelling is generated by the upwards movement of
air, which is radiatively heated by the constant shortwave radiation �ux it receives.
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Figure 6.5: WTLE Longitude-Latitude Vertical wind circulation (a) Vertical wind
at 10 km, (b) Vertical wind at 30 km, (c) Vertical wind at 40 km, (d) Vertical
wind at 50 km, (e) Vertical wind at 60 km, (f) Vertical wind at 70 km. Warm
colours (positive values) indicate a downwelling wind. Cold colours (negative
values) indicate an upwelling wind. Each �gure is centred on the antisolar
point which is indicated with a black dot. The subsolar point is indicated with
a white dot on either side of each �gure.

The night side air, on the other hand, is radiatively cooled as a result of receiving no
solar radiation and, therefore, sinks towards the surface of the planet. This result is in
agreement with the results of Merlis and Schneider (2010), who reported the presence
of a tropospheric dayside upwelling and night side downwelling in their tidally locked
Earth-like 3D aquaplanet simulation. Our simulations show that this upwelling and
downwelling behaviour also occurs in the stratospheres and mesospheres of tidally
locked planets, whose heating and cooling processes di�er from those of the tropo-
sphere and surface.

A comparison between Figures 6.4 and 6.5 reveals that the vertical winds of
the two simulations are characterised by di�erent small-scale variability at lower tro-
pospheric and mesospheric altitudes as a result of the presence of vortices and jets
of di�erent magnitudes and locations. Furthermore, WTLE is characterised by a
greater small-scale variability than the CTLE. We can, therefore, conclude that the
SST change has only a limited e�ect on the vertical wind.

The CTLE and WTLE horizontal wind at 24 km, 36 km and 60 altitude can be
seen in Figures 6.6 and 6.7, respectively. The lower stratospheric CTLE horizontal
wind at 24 km can be seen in Figure 6.6a, while the lower stratospheric WTLE hori-
zontal wind at 24 km can be seen in Figure 6.7a. In both simulations, the horizontal
wind is characterised by the formation of a global eastward zonal jet stream.

The CTLE and WTLE stratospheric horizontal wind at 36 km is shown in Fig-
ures 6.6b and 6.7b. In both simulations, the horizontal wind is characterised by the
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Figure 6.6: CTLE Horizontal circulation at select altitudes (a) Horizontal wind at
24 km, (b) Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black
arrows indicate the wind vector while the color shading shows the wind speed.
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Figure 6.7: WTLE Horizontal circulation at select altitudes (a) Horizontal wind at
24 km, (b) Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black
arrows indicate the wind vector while the color shading shows the wind speed.

presence of a westward global zonal jet stream with an accompanying vortex located
at polar latitudes. The vortex can be seen on the left hand side of the Southern
and Northern Hemispheres in Figures 6.6b and 6.7b. The blue coloured regions on
the right hand side of the Southern and Northern hemispheres, on the other hand,
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are regions of low HW speeds. Similar to the 24 km circulation, the WTLE HW is
slightly weaker and characterised by a wider jet stream compared to the CTLE HW .

The picture changes at mesospheric altitudes. At 60 km, the zonal jet stream is
replaced by large-scale vortices in both the CTLE and the WTLE, whose locations
di�er. This phenomenon may be explained through the mesospheric wave-breaking
mechanism. According to Nappo (2013), gravity waves are generated by tropospheric
convection followed by the release of latent heat. The gravity waves then propagate
upwards and break in the mesosphere, depositing their energy and decelerating the
wind �ow. Due to the di�erent SST heat distributions, the convectively induced grav-
ity waves are generated at di�erent locations and have di�erent energy budgets. As a
result, their mesospheric wave breaking results in di�erent energy distributions across
the globe and, therefore, into the di�erent HW wind circulations. Gravity waves are
also generated through interaction between the planet's surface orography and the
lower tropospheric wind �eld. When the lower tropospheric winds encounter a hill,
mountain or mountain range, they are forced upwards. This vertical displacement of
the stably strati�ed �ow results in the generation of gravity waves, which transport
energy and mean-�ow momentum towards the middle and upper atmosphere where
it is deposited Nappo (2013). While the two simulations have the same orography,
their lower tropospheric horizontal wind distributions di�er by 1.4 m/s on average.
This results in a di�erent terrain-generated gravity wave distribution and, therefore,
a di�erent energy deposition and wind deceleration pattern in the mesosphere, where
the wave-breaking occurs. Therefore, the reported changes in the mesospheric hor-
izontal wind are consistent with the mesospheric wave-breaking of convectively and
orographically generated gravity waves.

The mesospheric circulation is more sensitive to the underlying SST compared
to the stratospheric circulation, as is made evident by the regional di�erences in the
vertical and horizontal wind maps. The discrepancy between the stratospheric and
mesospheric circulation can be explained by the fact that the stratospheric dynamics
are mainly driven by the insolation of stratospheric ozone.

The temperature structure of the CTLE and WTLE atmospheres is shown in
Figure 6.8a. As mentioned above, both simulations possess a troposphere, a strato-
sphere and a mesosphere. As can be seen in Figure 6.8, the WTLE's lower troposphere
(z<3 km) is characterised by warmer temperatures compared to the CTLE equiva-
lent by a factor of 3.7 K on average. This temperature di�erence is generated by the
increased upwelling longwave radiation, sensible heat and latent heat, by the warmer
underlying WTLE SST.

In the region (between 10 km and 16 km), the WTLE temperature is cooler by 4
K on average compared to the CTLE, as can be seen in the purple highlighted region
of Figure 6.8b. The cooling is adiabatic in nature and generated by the increased
upwelling due to the warmer WTLE SST. This result is in agreement with the studies
performed by Rosenlof and George (2008), Braesicke and Pyle (2004), Deckert and
Dameris (2008), who reported the generation of a upper tropospheric cooling by an
SST warming.

At stratospheric altitudes, between 18 km and 30 km, ozone absorbs the increased
upwelling longwave radiation emitted from the warm WTLE SST and radiatively
heats the WTLE stratosphere by 3.8 K on average. The WTLE stratospheric warming
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Figure 6.8: CTLE and WTLE temperature global average on day 90 The CTLE
temperature is depicted using the blue colour line. The WTLE is depicted
using the red colour line. The altitude range is 0 - 120 km.

can be seen in the green highlighted region of Figure 6.8b. This is in agreement with
expectations of radiative coupling between the surface infrared emission and the lower
stratosphere.

This e�ect can also be seen in Figures 6.9 and 6.11. Figure 6.9 shows the scatter
plot between the ∆T at 1 km (∆T1km) and the ∆T at 24 km altitude (∆T24km). Figure
6.11 shows the degree of correlation between the ∆SST and ∆T24km. ∆Taltitude and
∆SST are calculated using equations 6.4 and 6.5.

∆Taltitude = TWTLE − TCTLE (6.4)

gives the di�erence between the WTLE and the CTLE temperatures at a given alti-
tude and geographic location, while

∆SST = SSTWTLE − SSTCTLE (6.5)

gives the di�erence between the WTLE SST and the CTLE SST at a given geographic
location.

As can be seen in Figure 6.9, a linear correlation exists between the ∆SST and
∆T24km, which suggests that SST changes have a direct radiative e�ect on the lower
stratospheric temperature. Using the least squares method, we determine that the
relationship between the ∆T1km and the ∆T24km is given by

∆T24km(∆SST ) = (0.006± 0.0009)∆SST + 3.78± 0.027 (6.6)

Therefore, a 30 K change of the SST corresponds to a 0.18 K change of the lower
stratospheric temperature. The inclination of the regression line is rather small.
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Figure 6.9: Scatter plot of ∆SST and ∆T24km The plot shows the correlation between
the surface ∆SST and the ∆T at 24 km altitude, together with a linear re-
gression to the data.

This may be due to the strong mixing and quasi-isothermal behaviour of the lower
stratosphere of tidally locked Earth-like planets.

A linear correlation also exists between the ∆SST and ∆T1km, as can be seen
in Figure 6.10. The �gure suggests that SST changes have a direct radiative e�ect
on the lower tropospheric temperature. Using the least square method, we determine
that the correlation between the ∆SST and the ∆T1km is given by

∆T24km(∆SST ) = (0.028± 0.014)∆SST + 0.9± 0.43 (6.7)

Therefore, a 30 K change of the SST corresponds to a 8.6 K of the lower stratospheric
temperature, which is 48 times the change generated at 24 km altitude.

A linear correlation also exists between the ∆T1km and ∆T24km. This indicates
that the SST variation generates the temperature changes in both the lower tropo-
sphere and lower stratosphere. Using the least square method, we determine that
correlation between the ∆T1km and the ∆T24km is given by

∆T24km(∆T1km) = (0.01± 0.0019)∆T1km + 3.8± 0.022 (6.8)

Therefore, a 30 K change of the lower tropospheric temperature corresponds to a 0.3
K of the lower stratospheric temperature.

The above results indicate that the increased thermal radiation emitted by the
WTLE's surface as well as its upwelling sensible and latent heat are absorbed by its
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Figure 6.10: Scatter plot of ∆SST and ∆T1km The plot shows the correlation between
the surface ∆SST and the ∆T at 1 km altitude, together with a linear re-
gression to the data.

lower tropospheric greenhouse gases increasing its temperature by 8.6 K for every
30 K SST change. The longwave radiation not absorbed by the lower troposphere
reaches the lower stratosphere and is absorbed by the ozone 9.6 µm absorption band,
a band expected to be present in the spectra of exoplanets able to maintain ozone
layers. This leads to an increase in the stratospheric temperature of 0.1 K for every
30 K SST change. Therefore, a stronger absorption line could be expected for warmer
SSTs.

In the lower mesosphere, on the other hand (70 km - 80 km), the WTLE tem-
perature is lower by 1.13 K on average compared to the CTLE. The temperature
di�erence can be explained through the mesospheric wave-breaking mechanism. The
warm WTLE SST generates a higher number of gravity waves, which carry more
energy compared to the CTLE as a result of the increased WTLE SST temperature.
The wave momentum deposition occurring during the mesospheric wave breaking,
leads to increased mesospheric upwelling and consequent adiabatic cooling.

In the upper mesosphere (90 km - 110 km), the WTLE temperature is higher
by 4.3 K on average. Di�erent gravity wave �uxes from below may induce this tem-
perature di�erence by circulation changes, but the details of the underlying processes
remain an open question.

Therefore, the biggest SST generated e�ect is present in the upper mesosphere
rather than in the troposphere or stratosphere. Furthermore, the degree of the global
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average temperature change in the middle atmosphere is much smaller than expected,
both of which are unexpected results. Another interesting result is that increased SST
leads to enhanced temperatures in the lower stratosphere of a tidally locked Earth-like
exoplanet. Our analysis indicates that this lower stratospheric heating could be due
to the enhanced upwelling of infrared radiation from the warm SST.

Next, we analyse the ozone distribution of the two simulations. The CTLE and
WTLE day side and night side ozone volume mixing ratio O3 VMR distribution can
be seen in Figure 6.12. It depicts the cross section of the CTLE and WTLE O3VMR
distribution along the 1st and the 180th meridian, respectively.

A comparison between Figures 6.12b and 6.12d reveals that the SST change
does not signi�cantly a�ect the primary ozone layer (30 - 40 km altitude). The
WTLE day side O3VMR(30−40) decreases by 1.8% compared to the CTLE, while the
night side O3VMR(30−40) decreases by 1.27% due to the increased middle atmospheric
temperature, visible in Figure 6.8.

The night time secondary ozone layer, located in both cases in the 85 - 110 km
altitude range, is signi�cantly a�ected. The WTLE O3VMR(85−110) is enhanced by
40.5% compared to the CTLE. The mesospheric circulation changes, generated by
the di�erent upwelling gravity wave �uxes, could be responsible for the changes in
the secondary ozone layer, but the details of the underlying processes remain an open
question. We can, therefore, conclude that the use of an inaccurate SST in a tidally
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locked Earth-like exoplanet may signi�cantly a�ect the secondary ozone layer, while
the primary ozone layer remains almost una�ected.

The gap visible over the WTLE equator at mesospheric altitudes in Figure 6.12a
is a result of the local upwelling of ozone poor air from lower altitudes. This upwelling
is localised in the regions close to the Atlas mountains and is possibly generated by
upwelling gravity waves.

The sensitivity of a tidally locked Earth-like exoplanet atmosphere to its under-
lying SST was studied by simulating the atmospheric circulation, temperature and
ozone distribution changes generated by the use of two extreme SSTs. One Earth-like
SST and one tidally locked Earth-like aquaplanet SST were used.
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Our results show that the lower tropospheric temperature global average is in-
creased on average by 3.7 K in the WTLE compared to the CTLE due to the warmer
WTLE SST. Due to the WTLE tropospheric warming, the hot air ascends and cools
adiabatically, generating a cooling between 10 km and 16 km altitude, of the order of
4 K on average, compared to the CTLE. This result is in agreement with past studies
of the e�ects of SST warmings on the Earth's upper troposphere. A stratospheric
heating of 3.8 K on average, between 18 km and 30 km, is present in the WTLE
compared to the CTLE, generated by the absorption of the upwelling longwave radi-
ation by ozone through the 9.6 µm line. The enhanced, upwelling longwave radiation
is generated by the warmer WTLE SST. The warmer WTLE SST also generates a
lower mesospheric cooling of the order of 1.13 K on average due to increased wave
generation and subsequent wave-breaking in the mesosphere. Lastly, an upper meso-
spheric warming of the order of 4.3 K on average is present in the WTLE compared
to the CTLE. Its generation mechanism is currently an open question and under
investigation.

The vertical and horizontal winds remain relatively insensitive to the underlying
SST, but their small-scale structure is a�ected due to the presence of di�erent hori-
zontal circulations. The largest changes appear at mesospheric altitudes, possibly due
to di�erences in the upwelling gravity wave �ux. The dependence of atmospheric tides
and planetary waves on the SST distributions could also play a role in the altered
circulation.

The primary ozone layer is also not signi�cantly a�ected by the SST change. The
WTLE day side primary ozone layer decreases by 1.8%, while the night time primary
ozone layer decreased by 1.27%. The WTLE secondary ozone layer, on the other
hand, increased by 40.5%. The generation mechanism is currently an open question
and under investigation.
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7 Conclusions and Outlook

The aim of this thesis was to investigate how changes in the local and global radiative
forcing of an Earth-like planet a�ected its atmospheric dynamics and ozone distri-
bution using the realistic 3D coupled chemistry-climate model CESM1(WACCM).
The model features photochemistry, wave-mean �ow interactions and other processes
from the surface to the thermosphere. Therefore, the atmospheric jets, circulation
cells, solar tides, planetary waves, gravity waves, orography and tropical convection
zones were all included in the simulations and allowed us to study the e�ects of the
radiative forcing change under realistic conditions.

In the �rst study, the local radiative forcing change was implemented by changing
the surface colour of a small area of the Eastern Sahara on the present day Earth. The
surface colour change increased the absorbed downwelling shortwave radiation and,
consequently, its surface temperature. The increased upwelling of sensible and latent
heat, as well as longwave radiation, generated an upwards propagating convective per-
turbation over the region. The generated perturbation, in turn, induced an outwards
propagating large-scale gravity wave at 2 km altitude. The wave had an amplitude
A > 5σ, 〈λ〉 = 3000 ± 500 km, 〈v〉 = 200 ± 50 m/s and 〈p〉 = 4 ± 1 h. Seven hours
after the start of the simulation, the wave reached the Amazon tropical convection
zone and generated a secondary perturbation and an outgoing concentric, large-scale
gravity wave. The latent heat released by the moist air of the convection zone could
explain the strong amplitude of the secondary wave whose amplitude is equal to that
of the primary wave. The secondary wave was characterised by 〈λ〉 = 2600± 600 km,
〈v〉 = 220± 40 m/s 〈p〉 = 3± 1 h.

The soil colour-induced temperature perturbation of the Eastern Sahara ex-
tended from the lower troposphere into the stratosphere and mesosphere. In the
stratosphere, the initial generated perturbation was radiative in nature, while the
mesospheric perturbation was probably related to upward atmospheric wave �ux and
circulation changes (teleconnections). In order to isolate the generated waves from
the background waves, a small perturbation analysis was used. The method worked
very well for the �rst day of the simulation. By the �fth day, however, the wave pat-
terns were no longer visible. Instead, enhanced �uctuations were present at seemingly
random locations all over the globe due to the divergence of the simulation from the
control run, making the attribution of cause and e�ect di�cult. Therefore, the small
perturbation analysis can be used successfully only for the �rst two days of the simu-
lations but has a high potential for the study of gravity wave generation, propagation
and dissipation.

Our results indicated that the perturbation propagatesd outwards into the strato-
sphere and mesosphere. Therefore, further research should be devoted into analysing
and interpreting how it e�ects the middle atmosphere and the wave modes of the
upward propagating disturbances. Moreover, the small perturbation analysis we de-
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veloped is a promising technique that can be used for the detailed study of the direct
e�ect of the soil colour-induced long wave radiation perturbation on the stratosphere.
The perturbation over the Amazon tropical convection zone was visible not only in
the vertical wind �eld, but also in the atmospheric pressure and temperature �elds.
Therefore, it would be of interest to investigate how this generated perturbation will
a�ect the rainfall and cloud formation in the region and, thereby, the underlying cli-
mate. For that, a higher resolution simulation will be needed, as the 4◦x5◦ grid is too
coarse.

In order to investigate the broader e�ects of a global rather than a local radia-
tive forcing change, the global downwelling stellar radiation distribution was altered
in the second study by tidally locking the planet. The radiative forcing was further
altered by changing the prescribed sea-surface temperature to that of a tidally locked
aquaplanet. Our study demonstrated that CESM1(WACCM) is suited for simula-
tions of Earth-like exoplanets. The tidally locked Earth-like (TLE) planet's middle
atmosphere adjusted to the new radiative forcing condition within approximately 80
days from the start of the simulation. The tidal lock altered both the atmospheric
circulation and the ozone distribution of the planet and the Brewer-Dobson circula-
tion was replaced by an upwelling on the day side and a downwelling on the night
side. Furthermore, the reduction of the Coriolis force, as a result of the decreased
rotation rate due to the tidal lock, contributed to the altered horizontal wind, with
larger changes present in the mesosphere compared to the stratosphere.

The TLE ozone distribution was radically changed and the total ozone content
was reduced by ∼ 19.3 % compared to the Earth (PDE). The TLE day and night
side total ozone content means were reduced by 23.21 % and 15.52 %, respectively,
compared to the PDE. The TLE middle stratospheric ozone accumulated on the day
side of the planet leading to a day-night variation of 40 %. For comparison, the PDE's
day-night variation is 2%. The TLE lower stratospheric ozone was mainly in�uenced
by the altered circulation and characterised by enhanced night-side and depleted
day-side regions. Its mesospheric ozone was similar to the PDE's mesospheric ozone
distribution, with decreased ozone on the day side and enhanced ozone on the night
side. For a distant observer of the planet, its was determined that the TLE's total
ozone content would vary up to ± 5.15% during its revolution around its parent star.
Since our current instruments and data analysis techniques have an error margin 1.5
times higher than the TOC change, observations of tidally locked planets should not
be a�ected by the TOC change.

The study could be extended in the future by exchanging the solar spectrum with
that of an M or K star, while maintaining an orbital distance that would maintain
the top of the model solar irradiance at S0 = 1368.22 W/m2. This would simulate a
tidally locked exoplanet orbiting an M or K star, around which a planet is more likely
to become tidally locked. After such a study has been performed, a change of the
incoming stellar radiation at the top of the atmosphere could also be included. This
would allow the simulation of planets orbiting at varied distances from the parent
star. A future study could also investigate the physical processes responsible for the
disappearance of the tertiary ozone layer.

The last part of this thesis was devoted to investigating the e�ects of a di�er-
ent form of radiative forcing, namely a change in the planet's underlying sea-surface
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temperature (SST), which could impact the thermal structure, circulation and compo-
sition of the lower and middle atmosphere of a tidally locked Earth-like exoplanet. To
that end, we simulated the atmospheric circulation and ozone distribution of a tidally
locked Earth-like exoplanet, using two di�erent underlying SSTs. The �rst SST was
the tidally locked aquaplanet SST acquired from Merlis and Schneider (2010) and
was characterised by a hot subsolar ocean and a frozen antisolar ocean surface. This
simulation was named Cold TLE (CTLE). In order to force a big change, the sec-
ond SST was the well-observed SST of the fast rotating present day Earth (PDE),
which lacks a frozen night side ocean and was therefore named Warm TLE (WTLE).
The investigation revealed that, even though the di�erence between the WTLE and
CTLE SSTs was of the order of 23.7 K, its e�ects on the middle atmosphere were
rather limited.

Surprisingly, it was the mesosphere, specially, its upper layers, which were more
strongly a�ected rather than the stratosphere, as would be expected by its closer
proximity to the planet's surface. Therefore, it was important to determine whether
the middle atmosphere was primary altered through radiative or dynamical processes
as a result of the altered SST. Our results showed that the SST had a limited in�uence
on the middle atmosphere. The warmer present day Earth SST resulted in a mean
lower tropospheric heating of 3.7 K, a mean upper tropospheric cooling of 4 K, a
mean lower stratospheric heating of 3.8 K, a mean lower mesospheric cooling of 1.13
K and a mean upper mesospheric heating of 4.3 K. The lower stratospheric heating
could be explained by the absorption of the increased infrared radiation �ux from
the warmer Earth surface, as the lower stratospheric ozone will absorb the infrared
radiation at 9.6 µm. The upper tropospheric cooling and lower stratospheric heating
were in agreement with past studies on the in�uence of the SST variability on the
Earth's troposphere and stratosphere. The cooling of the WTLE middle mesosphere
compared to the TLE middle mesosphere could be attributed to dynamical forcing, as
a result of the increased WTLE gravity wave generation. The generation mechanism
of the upper mesospheric WTLE warming, compared to the CTLE, is currently an
open question.

The primary ozone layer, where the majority of the ozone is located, was also not
signi�cantly a�ected by the SST change, with a 1.8% decrease on the WTLE day side
and a 1.27% decrease on the WTLE night side compared to the CTLE. The decrease
was a result of the higher WTLE middle stratospheric temperature. The secondary
WTLE ozone layer was signi�cantly a�ected, increasing by 40.5%, compared to the
CTLE.

Generally, the selection of the SST distribution induced middle atmospheric tem-
perature changes of less than 8 K. It also altered the surface winds, generating upward
propagating orographic and convective waves, which in turn in�uenced the middle at-
mospheric dynamics. This resulted in changes in the small-scale variability by altering
the positions of vortices and jet streams.

A future study would aim to explain the physical processes responsible for the
upper mesospheric temperature increase and subsequent increase of the secondary
ozone layer at these altitudes.
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RESEARCH LETTER Open Access

A traveling atmospheric disturbance
generated by a soil colour change in a
high-resolution climate model experiment
Elisavet Proedrou1,2*† and Klemens Hocke1,2,3†

Abstract

The climate model CESM-WACCM is used to study the way a soil colour change of the eastern region of the Sahara
affects the dynamics of the troposphere. The soil colour is darkened for 5 days. The difference between the perturbed
model run and the control model run is used to isolate the soil colour change-induced atmospheric perturbation
from random atmospheric waves which are stronger by an order of magnitude or more. The perturbation generates a
circular wave radially propagating away from the Sahara on the first day of the simulation. After nine hours, the wave
front reaches the convection zone in Brazil where a secondary wave is generated and can be clearly seen until
23:00 UT. The mean wave velocities of the traveling atmospheric disturbances are 〈v〉 = 200 ± 50 m/s for the primary
wave and 〈v〉 = 220 ± 40 m/s for the secondary wave. The mean horizontal wavelengths are 〈λ〉 = 3000± 500 km
for the primary wave and 〈λ〉 = 2600± 600 km for the secondary wave. The mean wave periods are 〈p〉 = 4 ± 1 h for
the primary wave and 〈p〉 = 3± 1 h for the secondary wave. Since the perturbed model run diverges from the control
run with the passage of time, the attribution of cause and effect becomes difficult after a few days. Analysis of the
simulation data of the first day leads to a deeper understanding of global teleconnections, radiative transfer and
wave-coupling processes between the surface and the atmospheric layers.

Keywords: Small perturbation analysis; Traveling atmospheric disturbance; Secondary wave generation;
Land-atmosphere interaction; Surface albedo; Lower troposphere; High-resolution climate model

Background
In our study we investigate whether a high-resolution
global climate model can be used to study the genera-
tion, propagation and dissipation of atmospheric waves
induced by a soil colour change. We are especially inter-
ested to know if a cause-effect study can be performed
under realistic atmospheric conditions. The attribution of
cause and effects is a fundamental problem of complex
systems.
At present two types of numerical models are available

for studying the climate processes. The idealized mod-
els and the realistic models [1]. Idealized models allow

*Correspondence: elisavet.proedrou@iap.unibe.ch
†Equal contributors
1Institute of Applied Physics, University of Bern, Sidlerstrasse 5, Bern,
Switzerland
2Center for Space and Habitability, University of Bern, Bern, Switzerland
Full list of author information is available at the end of the article

us to conduct detailed studies and hence increase our
understanding of simplified or isolated processes. Due to
their simplicity these models neglect the role of more
complex interactions and hence do not provide a holistic
view of the climate system. Realistic models on the other
hand, consider almost all processes of the climate system
and provide high-resolution climate data, which are rather
close to the observations. As a result realistic model data
are almost as difficult to understand as the observations.
Therefore the recognition of the relevant climate pro-
cesses, the attribution of climate forcing and their effect
on the climate requires advanced methods of data analysis
and interpretation (e.g [2-4]).
The generation, propagation and dissipation of atmo-

spheric waves are often studied by means of ideal-
ized model simulations. Nicholls & Pielke [5] con-
ducted such a study using an idealised three-dimensional,
fully compressible atmospheric model. Their goal was

© 2014 Proedrou and Hocke; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.
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to investigate the properties of the atmospheric waves
induced by a tropical thunderstorm. Their study showed
that the thunderstorm generated not only atmospheric
gravity waves, but also thermal compression waves.
Gardner & Schunk [6] used a high-resolution global
thermosphere-ionosphere model to examine the effect a
large scale perturbation (in this case a pulsating geomag-
netic storm) has on the atmosphere. They concluded that
this type of storm generates multiple Traveling Atmo-
spheric Disturbances (TADs) coincidently travelling from
the northern and southern auroral zone towards the equa-
tor and into the conjugate hemisphere.
Atmospheric disturbances are also induced by albedo

changes, which can be due to changes in the type of
the vegetation, the soil colour, the formation of clouds
and other causes. Surface albedo itself can include snow
cover, surface water and vegetation change too. Only in
the case of a desert like the Sahara, surface albedo might
be mainly governed by the soil color. Seitz [7] gives a
brief survey about the influences of albedo changes on the
Earth’s radiation energy balance. According to Seitz [7],
the effects of regional albedo changes on the climate sys-
tem are still not well observed, simulated and understood.
Past regional albedo change studies have focused on the
effects on long-term climate change [3,4,8,9] and how
it can be utilized in geoengineering projects to combat
global warming [10]. To our knowledge, there is only one
study, which attributed a sudden snow cover in Eurasia to
a polar vortex change [3].
Our study is the first to extract and discuss the tropo-

spheric waves induced by a regional soil colour change
using a realistic high-resolution 3-D climate model. In
the simulation, we change the soil colour of a desert
region since this change can be safely implemented in the
complex climate model which we use. Furthermore, this
simple scenario will allow a clear interpretation of the
simulation results.
In the present study, we concentrate on the effects the

soil colour change has on the lower troposphere. The gen-
erated atmospheric perturbation has a small amplitude so
that a small-scale perturbation analysis can be applied to
the first 1-2 days of the model simulation. This allows us
to study the global propagation of the TADs through the
lower troposphere in detail.

Model description
The Community Earth System Model (CESM) version
1.04 was used to perform our simulation. It is composed
of a coupler (CPL) and five fully coupled geophysical mod-
els: atmosphere (ATM), land (LND), ocean (OCN), sea-ice
(ICE), land-ice (GLC). The models can be set as fully
prognostic, data, or stub and are “state-of-the-art climate
prediction and analysis tools” [11] when set in prognostic
mode.

The ATM in our simulation is the Whole Atmosphere
Community Climate Model (WACCM) version 5 [12].
WACCM is often used for the simulation of circulation,
thermal tides, gravity waves, wave-mean flow interac-
tion, and atmospheric composition changes in the middle
atmosphere [13-20].
It has a fully compressible horizontal discretization, and

a quasi-Lagrangian vertical discretization approximation,
which ignores the acceleration term in the vertical com-
ponent of themomentum equation. This approximation is
good for scales greater than 10 km [12]. It has 66 vertical
levels from the ground up to 5 · 10−6 hPa (2.5 – 149 km).
The vertical coordinate is purely isobaric above 100 hPa,
but is terrain following below that level. The model top
is ∼ 150 km. The vertical resolution is 1.1 km in the tro-
posphere, 1.1-1.4 km in the lower stratosphere, 1.75 km at
the stratopause and 3.5 km above 65 km. The horizontal
resolution of our simulation is 4° × 5° (latitude × longi-
tude), with 72 longitude and 46 latitude grid points. The
coupler timestep is �t = 30 minutes while the time step
for the dynamics equations is �τ = �t/8 [12].
The smallest wavelength that our model experiment can

resolve by the finite differencing (that is used by default
in WACCM) is twice that of the grid size [21]. There-
fore the resolvable waves in the equatorial troposphere
have a horizontal wavelength of λhorizontal > 1000 km,
a vertical wavelength of λvertical > 2.2 km, a period of
phorizontal > 2 h and a wave velocity of v < �x/�τ =
�x/(�t/8) = 500/(1800/8) ≈ 2200 m/s. Thus the
simulation can adequately resolve large scale waves [21].
The land model provides the surface albedo, area-

averaged for each atmospheric column, and the upward
longwave surface flux, which incorporates the surface
emissivity, for input into the radiation scheme. The sur-
face fluxes of momentum, sensible heat, and latent heat
serve as the lower flux boundary conditions for the plan-
etary boundary layer parameterization, the vertical diffu-
sion and the gravity wave drag. The atmospheric radiation
is calculated using the momentum, sensible heat flux,
latent heat flux, land surface albedos and upward long-
wave radiation. The upward longwave radiation is cal-
culated by taking the difference between the incident
and absorbed fluxes. The incident flux values are deter-
mined by means of the daily values of the solar radio
flux (F10.7) which are provided by the National Oceanic
and Atmospheric Administration’s (NOAA) Space Envi-
ronment Center [22].
The land model used was the Community Land Model

(CLM), which has atmosphere-surface coupling, surface
colour variability, surface albedo calculation, absorption,
reflection, and transmittance of solar radiation, absorp-
tion and emission of longwave radiation, sensible heat
(ground and canopy) latent heat fluxes and heat trans-
fer in soil and snow [23]. The surface albedo calculation
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depends on whether the top surface is a vegetated canopy
or bare ground.
In the case of bare ground the surface albedo calcula-

tion requires only the soil colour, which varies with the
colour class (soil colour index). The term bare ground
refers to any surface that is not covered by vegetation
and can therefore be a glacier, a lake, a wetland, snow cov-
ered soil or bare soil. In the case of our simulation the only
parameter that affects the surface albedo of the perturbed
east Saharan area is the soil colour, which is determined
by the value of the soil colour index of the area.
The CLM soil colour indices are prescribed so that

they reproduce the observed Moderate-resolution Imag-
ing Spectroradiometer (MODIS) local solar noon surface
albedo values at the CLM grid cell [23]. MODIS is a set
of spectroradiometers in orbit on board the Terra and
Aqua satellites. They provide measurements of large scale
global dynamics (e.g changes in the cloud cover, radiation
budget, processes on the oceans, the land and lower atmo-
sphere). They capture data in 36 spectral bands (0.4 μm -
14.4 μm) at varying spatial resolutions and image the
entire Earth every 1 - 2 days [24].

Methods
Simulation setup
In the simulation setup we used the perpetual year 2000
component set (F_2000_WACCM) [11]. A component
set is the assemble of a particular mix of geophysical
models along with geophysical model-specific configu-
rations and namelist settings. In this case it is a set of
two fully prognostic, present day, coupled atmosphere and
land geophysical models (WACCM,CLM), a prescribed
data ocean geophysical model (docn), a prescribed sea-
ice (CICE) geophysical model and no land-ice geophysical
model ([11]). With it, we conduct two simulations. In the
first one, from now on referred to as control run, all the
input parameter fields remain unchanged. In the second
one, from now on referred to as perturbed run, the colour
of a small region of the east Sahara, that spans 3 × 3 pix-
els (longitude: 10°-20°, latitude: 18°-26°), is darkened from
beige (bright sand) to very dark green (the colour of the
darkest forests). To avoid a discontinuity in the soil colour
map, the soil colour change is gradually performed with a

small change of 50% at the edge of the Sahara array (soil
colour index = 15) and a maximal change in the center of
the array (soil colour index= 20) as shown in Figure 1. The
simulation spans 5 days starting at 0:00 UT on 01/01/2000
and ending at 23:00 UT on 05/01/2000.

Data analysis
The surface albedo, the surface temperature, the atmo-
spheric pressure and the vertical wind are extracted from
the output datasets for the control and the perturbed run.
In the present letter, we only show the results obtained
for the vertical wind at 2 km altitude. A comprehensive
study of the disturbances in all parameters at all altitudes
is planed as a follow-up-study. In addition we have to
design advanced algorithms for the analysis of different
wave modes. However the initial data analysis presented
here already provides many new results.
As a first step the above parameters are interpolated to

the altitude of 2 km from 0:00 UT to 23:00 UT. Then the
control run is subtracted from the perturbed run at each
timestep. The mean standard deviation σ = 2 · 10−4 Pa/s
for the first day at 23:00 UT is taken as reference for the
normalization of the vertical wind fluctuations. To calcu-
late it we derive at first the zonal means of σ as a function
of latitude for 23:00 UT. Then we obtain the global mean
of sigma σ from the zonal means of sigma σz by calcula-
tion of the surface area preserving mean. For recognition
of significant atmospheric waves in the global plots, we
divide the vertical wind fluctuations d� by σ . Variations
> 2σ have a significance (confidence level) of 90%.

Results and discussion
The change in surface colour resulted in the appearance
of fast propagating primary and secondary waves at 2 km
altitude.

Primary perturbation
As can be seen in Figure 2a, the primary perturbation,
appears over the Sahara at 9:00 UT (four hours after
sunrise). The surface colour change causes a convective
perturbation in the lower troposphere, a buoyancy oscil-
lation that rises and falls as the day progresses (Figure 2).
The warm colours in the figure indicate downward air

Figure 1 Simulation setup. (a) soil colour index of the control run, (b) soil colour index of the perturbed run, (c) difference between the soil colour
indices of the perturbed and the control run.
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Figure 2 Evolution of the atmospheric perturbation due to the soil colour change in Eastern Sahara during day 1. The difference between
the vertical wind at 2 km altitude of the perturbed run minus the control run is shown at (a) 9:00 UT, (b) 12:00 UT, (c) 15:00 UT, (d) 23:00 UT. Shades
of blue indicate upward motion of the air, while shades of red indicate downward motion.

motion and the cold colours indicate upwardmotion since
WACCM provides the vertical wind in [Pa/s].
As can be seen in Figure 2b,c,d the perturbation ampli-

tude increases with time to a value of A > 5σ . We have
therefore a 5σ confidence (σ = 2 · 10−4 Pa/s at this
altitude).
Figure 2b shows a nearly circular wave ring outgoing

from the surface colour change region in the eastern
Sahara. The wave ring is also visible in Figure 2c (15:00
UT). The mean horizontal wavelength 〈λ〉 of the wave is
calculated as follows:

i. The center of the disturbance is known for the
primary wave (22° N, 15° E). In the case of the
secondary wave, its center is determined by an
educated guess (10° S, 55° W).

ii. The positions of the inner and outer ring of the wave
(Rinner and Router) are visible in the global maps of the
vertical wind fluctuations at 12:00 UT). Then the ring
positions are manually determined, from the center
towards the North, East, South and West direction.
This gives us four values for the inner and four values
for the outer ring.

iii. Then the mean horizontal wavelength is calculated:
〈λ〉 = < λ >= 2 · (< Router > − < Rinner >).

The calculated values for < Rinner > and < Router >

together with their standard deviations can be seen in
Figure 3. The calculated mean horizontal wavelength of
the primary wave is 〈λ〉 = 3000 km.
The mean wave speed v is calculated as follows. First

the mean horizontal speeds of the inner and outer radii
are taken from the inclination of the above mentioned
linear regression lines: vinner = dRinner/dt = 240 m/s,
vouter = dRouter/dt = 170 m/s. Then the mean of
the above calculated horizontal speeds is taken 〈v〉 =

(vinner + vouter)/2 ≈ 200 m/s. Its standard deviation is
σv = 50 m/s.
The mean wave period is calculated taking the ratio of

the mean horizontal wavelength and the mean horizontal
velocity of the wave 〈p〉 = 〈λ〉/〈v〉 = 4 h. Its uncertainty is
calculated using the Gaussian error propagation law σp =√

(σλ/〈v〉)2 + (〈λ〉 · σv/〈v〉2
)2 = 1 h.

The derived uncertainties mainly reflect the azimuthal
variations of the wave parameters. These variations are
possibly due to azimuthal changes in the backgroundwind
flow, topography, convective activity, Coriolis force and
other factors whichmodulate the radial propagation of the
wave rings.
In summary, the soil colour change induced a circu-

lar large scale wave with a wave speed close to the speed

Figure 3 Evolution of the inner and outer radius of the primary
wave ring. The three point pairs of the inner and outer radius are at
10:00 UT, 11:00 UT and 12:00 UT. The horizontal wavelength is two
times the mean distance between the two linear regression lines.
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of sound. The wave characteristics are quite similar to
those in the numerical simulation of Nicholls & Pielke
[5]. They interpreted the horizontally propagating circular
wave outgoing from a thunderstorm region with the speed
of sound as a Lamb wave mode n1 and n2. The n1 mode
moved faster and resulted in deep subsidence warming,
while the second mode propagated at half the speed and
resulted in weak-low level uplift. The appearance of an
uplift as a result of a thermally induced gravity wave is in
accordance with our own results (Figure 2a). Parallel to
Nicholls & Pielke, the primary wave in our simulation is
mostly soliton-like which might be interpreted as a shock
wave front (as done by Nicholls & Pielke). On the other
hand large scale waves with speeds close to the speed of
sound are often found in the thermosphere. They have
periods of several hours and horizontal wavelengths of a
few thousands kilometres. Gardner & Shunk [6] as well as
Vadas [25] classify these large-scale waves as atmospheric
gravity waves.
In the case of our simulation, the surface colour change

resulted in an increase in the fraction of solar radiation
absorbed by the region. This resulted in an increase in
the surface temperature and therefore in an increase in
the temperature of the air located directly over the per-
turbed region. The observed buoyancy oscillation at 2 km
altitude could be a result of either convective or radiative
heating. The convective heating would be consistent with
the evolution of the central perturbation, as the air seems
to rise over the perturbation and then fall as the day pro-
gresses, with the opposite happening to the air around it
(Figure 2).

Secondary perturbations
Surprisingly, two secondary perturbations (or secondary
waves) appear in Figure 4. The first appears over Indonesia
at 14:00 UT. The pathway between this perturbation and
the source region, in the Sahara, is unclear because the

primary wavefront has not arrived in Indonesia at the time
the perturbation appears.
Later the wave front of the primary wave approaches

Brazil at 15:00 UT (Figure 2c) and reaches its tropical
convection zone at 16:00 UT (Figure 4a).
As the wave front comes in contact with the tropical

convection zone, it scatters and a secondary wave is gen-
erated. The secondary wave is clearly visible as concentric
wave rings outgoing from the center of the tropical con-
vection zone (10° S, 55° W). The vertical wind in the
tropical convection zone also has a periodic oscillation
which can be seen in Figure 4a. The outward propa-
gation of the generated secondary wave can be seen in
Figure 4a,b.
As can be seen in Figure 4c at 19:00 UT another wave

front generated by the perturbation over the Sahara, scat-
ters on the Brazilian tropical convection zone. Besides
wave scattering based on the Huygens-Fresnel principle,
we think that the latent heat release by periodic, verti-
cal advection of moist air masses is another reason for
the generation and amplification of a secondary wave over
Brazil (Figure 4a,c).
The parameters of the secondary wave are estimated for

the time interval between 19:00 UT and 23:00 UT. The
wave parameters are derived in the samemanner as for the
primary wave. The point pairs of the inner and outer rings
and their linear regression lines are shown in Figure 5. The
estimated wave parameters are: 〈λ〉 = 2600 ± 600 km,
〈v〉 = 220 ± 40 m/s, 〈p〉 = 3 ± 1 h.
In summary, the soil colour change induced a secondary

circular large scale wave with a wave speed ∼ 70% of the
speed of sound.
The generation of secondary waves from convectively

generated gravity waves was simulated by Vadas [26], with
the wave characteristics being quite similar to those in our
simulation. The generation of secondary oceanic waves
through interaction with the topography in a manner

Figure 4 Evolution of the secondary wave above Brazil during day 1. The difference between the vertical wind at 2 km altitude of the
perturbed run minus the control run is shown at (a) 16:00 UT, (b) 17:00 UT, (c) 19:00 UT, (d) 23:00 UT.
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Figure 5 Evolution of the inner and outer radius of the
secondary wave ring outgoing from Brazil. The five point pairs of
the inner and outer radius are at 19:00 UT, 20:00 UT, 21:00 UT,
22:00 UT and 23:00 UT. The horizontal wavelength is two times the
mean distance between the two linear regression lines.

similar to the interaction of our wave with the tropical
convection zone, was reported by Vlasenko [27].
The scattering of the primary wave front results in a

change in the vertical motion. Updrafts might produce
condensation of moist air resulting in latent heat release
whichmay further amplify the secondary wave. Indeed the
strong amplitude of the secondary wave points to such an
amplification processwhich would affect the precipitation
rate and the regional climate.
An ensemble simulation was also performed, between

01.01.2000 and 01.06.2000, with a 5 day gap between
each run. The main features (primary wave and excita-
tion of secondary waves) are present in both the ensem-
ble average and in each individual run. However the
shape of the primary wave ring can differ indicating a
seasonal variation in the azimuthal wave speeds, which
is likely due to a seasonal variation of the mean flow
and the thermal structure of the lower troposphere. For
example, in June the southward propagation of the pri-
mary wave is enhanced compared to January. In March,
a secondary wave is generated in the vicinity of Lake
Victoria (Tanzania), where a tropical convention zone
is present during that time of the year (rainy season)
[28]. These examples show the potential of wave prop-
agation studies with a realistic high-resolution climate
model.

Evolution five days later
Five days after the initiation of the simulation, no circular
wave patterns are visible. And while enhanced fluctua-
tions are visible in the vicinity of the Sahara and the
convective zones over Brazil and Indonesia, disturbances
are also visible in a seemingly random distribution all over

the globe. Furthermore the global mean standard devia-
tion σ linearly increases over the 5 days of our simulation
from σ = 2 · 10−4 on the first day to σ = 27 · 10−4 on the
fifth day. This indicates that the perturbed run diverges
more andmore from the control run with increase of time,
making the attribution of cause and effect difficult. Our
small perturbation analysis is only applicable for the first
two days when the perturbation waves can be clearly sep-
arated from the random atmospheric waves. The coupling
of the primary and secondary waves in our study could
be exemplary to a similar coupling between migrating and
non-migrating tides.

Conclusions
The soil colour change of a surface area in the eastern
Sahara generates a traveling atmospheric disturbance. The
advantage of our high-resolution climate model experi-
ment is that we can study, for the first time, the gener-
ation and propagation of the TAD under realistic atmo-
spheric conditions. This means that all the interactions
between the TAD and the atmospheric jets, circulation
cells, solar tides, planetary waves, random gravity waves,
orography and tropical convection zones are included in
the simulation. We find that the interaction of the TAD
with the tropical convection zones over Brazil is most
obvious.
The soil colour perturbation generates a primary atmo-

spheric wave outgoing from the source region in the
Sahara. It has an amplitude of A > 5σ , a mean horizontal
wavelength of 〈λ〉 = 3000± 500 km, a mean wave velocity
of 〈v〉 = 200± 50 m/s and a mean period of 〈p〉 = 4± 1 h.
As the primary wave reaches Brazil, the wave front

scatters at the tropical convection zone and generates
secondary atmospheric outgoing waves. The latent heat
release by moist air amplify the secondary wave to an
amplitude of A > 5σ . The wave has a mean horizontal
wavelength of 〈λ〉 = 2600± 600 km, a mean wave velocity
of 〈v〉 = 220± 40 m/s and a mean period of 〈p〉 = 3± 1 h.
In the present letter we only discussed the dynami-

cal response of the global troposphere at 2 km height
to the soil colour change in Sahara. This brief analysis
of the numerical experiment already gave new results on
the land-atmosphere interaction, global teleconnections
and wave dynamics. We expect that a future analysis of
the simulation data at different altitudes will provide us
with a better understanding of how regional soil colour
changes affect the atmospheric layers above. For exam-
ple how much energy and momentum are transported by
wave coupling and radiative transfer, which wave modes
are most important and which role do the soil colour
changes play on the generation of non-migrating atmo-
spheric tides.
Another topic would be the investigation of the depen-

dences of the primary and secondary TAD parameters on
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the location, size and strength of the sources. Such studies
are relevant for geoengineering as well as for understand-
ing of the climate processes and wave-wave interactions.
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7.2 Second article

The study was submitted in Earth, Planets and Space Science in March 2015. The
reprint is the latest version of the article (submitted on 12.01.2016) and di�ers from
the �nal published manuscript.
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Abstract

We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using
the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how
the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from
that of our present day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere
reaches a steady state asymptotically within the first 80 days of the simulation. An
upwelling, centred on the subsolar point is present on the day side, while a
downwelling, centred on the antisolar point is present on the night side. In the
mesosphere, we find quite similar global ozone distributions for the TLE and the
PDE with decreased ozone on the day side and enhanced ozone on the night side.
In the lower mesosphere, a jet stream transitions into a large-scale vortex around a
low pressure system located at low latitudes of the TLE night side. In the middle
stratosphere the odd oxygen concentration is approximately equal to the ozone
concentration ((Ox) ≈ (O3)). At these altitudes the lifetime of odd oxygen is ∼ 16
hours, and the transport processes significantly contribute to the global distribution
of stratospheric ozone. Compared to the PDE where the strong Coriolis force acts as
a mixing barrier between low and high latitudes, the transport processes of the TLE
are governed by jet streams variable in zonal and meridional direction. In the middle
TLE stratosphere, we find high ozone values on the day side, due to the increased
atomic oxygen production on the day side where it immediately recombines with
molecular oxygen to form ozone. On the night side on the other hand, the ozone is
depleted. The downwelling air on the night side contributes to the decreased night
side stratospheric ozone. As a result of the reduced Coriolis force the tropical and
extratropical air masses are well mixed and the global temperature distribution of
the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to
the PDE, the total ozone column global mean is reduced by ∼ 19.3 %. The day
side and the night side total ozone column means are reduced by 23.21 % and
15.52 %, respectively. Finally we present the TOC maps which would be seen by a
remote observer for 4 phases of the TLE during its revolution around the star. The
mean TOC values of the four phases of the TLE vary by up to 23%.

Keywords: exoplanet; tidally locked Earth; middle atmosphere; circulation; ozone
layer; photochemistry; total ozone; daytime; day side; night side

1. Introduction
In this study we simulate and analyse the middle atmospheric ozone distribution of a

tidally locked Earth-like exoplanet orbiting Sun-like star (TLE) using a realistic, high-

resolution, 3D chemistry-climate model. Our main aim is to investigate the evolution

of the TLE’s ozone layer towards a steady state, determine its main characteristics and

compare them to those of the present day Earth (PDE). This comparative study aims

to increase our understanding of the role of photochemistry and transport processes

in the middle atmosphere of exoplanets. We are also interested in the planet’s total

94



Proedrou and Hocke Page 2 of 29

ozone column (TOC) and its day side-night side variation. In the case of the present

day Earth, the day - night variation of the total ozone column is less than 2%.

An exoplanet’s ozone layer can be observed by means of the 9.6 micrometer absorp-

tion line. The importance of the existence of an ozone layer lies in its ability to protect

life on the surface of the planet from the harmful stellar UV radiation. It has been

determined that for the generation of a protective ozone layer only a small amount of

oxygen (0.1 of the present atmospheric levels) is sufficient enough[1].

Yang et. al (2014) [2] studied the dependence of a planet’s habitability on its rota-

tion rate using two 3D models, CAM3 and CCSM3. CAM3 was a 3D GCM standalone

atmospheric circulation model, which calculated the atmospheric circulation and ra-

diative transfer, as well as the small-scale vertical convection, clouds, and precipita-

tion. CCSM3 was a 3D GCM coupled ocean-atmosphere model. Its ocean component

calculated the ocean circulation using an ocean with uniform depth and albedo and no

circulation. The CCSM3’s atmospheric components were CAM3 or CAM4. They were

able to simulate the marine stratus layered shallow convective, the deep convective

clouds and the liquid and ice cloud condensates. CAM4 was a cloud scheme similar to

CAM3 and an improved deep convection scheme. Both models were precursors of the

model used in this paper. Their study focused on the troposphere of the simulated

planets. They demonstrated that a slow rotating Earth-like planet (rotation speed =

1 rotation/243 days), located at a distance of 0.7 AU away from a Sun-like star would

be habitable. They also determined that a Earth-like planet rotating at a rate of 1

rotation/day required half the stellar flux compared to a Earth-like planet rotating

at a rate of 1 rotation/243 days to maintain an Earth like climate.

The abundance and close proximity of M stars, as well as their ease of detection due

to a better mass and radius ratios of star and planet, make them prime targets for

the search for terrestrial habitable exoplanets [3]. Due to the relatively small distance

between an M star and its habitable planets, the planets have a high probability of

becoming tidally locked.

Habitability studies performed for such tidally locked exoplanets by Haberle et al.

(1996) [4], Joshi et al. (1997) [5], Joshi (2003) [6] have shown that terrestrial planets

located in an M star’s habitable zone (0.02 - 0.2 AU) [3] would be habitable as long

as liquid water and the chemical constituents necessary for the emergence of life

were present on them for a sufficiently long period of time. Furthermore, Segura et al.

(2010) [7] concluded that the flares emitted by M stars should not present a threat for

the surface life of an orbiting habitable planet. In our study we investigate the ozone

distribution, and therefore the habitability, of a tidally locked exoplanet revolving

around an M star using.

M stars have a weaker UV and visible emission, than the Sun, with the spectrum

peeking in the infrared. The impact of different stellar spectral energy distributions

on the ozone distribution of habitable non-tidally locked terrestrial extrasolar planets

has been studied by [8], [9], [10], [11], [12], [13] and [14].

Selsis (2000) used a 1D atmospheric model to simulate the evolution of the chemical

and thermal structure of the Earth if it was orbiting a F9 and K2 star. His simulations

revealed that the amount of ozone increased with the increase of the UV/visible ratio.

F9 stars have a higher UV/visible ratio than the Sun. K2 stars on the other hand, have

a lower UV/visible ratio. The study also showed that the thickness of the ozone layer

increased with the strength of the UV flux, resulting in higher amounts of ozone for the

F9 planet and lower amounts for the K2 planet, compared to the Earth. Despite the
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decreased amounts of ozone, the K2 planet would have a visible O3 spectral signature

as a result of the temperature contrast between the surface and the atmosphere. The

F9 planet would have no distinguishable ozone spectral signature, despite the planet’s

higher atmospheric ozone levels. [8].

Segura et al. (2003) used a 1D coupled radiative-convective photochemical model to

calculate the spectra of Earth-like planets orbiting a F2V, a G2V, a K2V [9] and an

M star [10], respectively. They determined that in the case of the F2V, G2V and K2V

orbiting planets, the ozone 9.6 µm spectral line should be visible if the planet’s O2

concentration was at least 10−3 of the present Earth atmospheric levels (PAL). They

also determined that at 1 PAL O2 levels, the ozone concentration in an F2V planet,

would be weaker than around a G2V or a K2V star. This result contrasts with the

results produced by the [8] study. For the case of an active M star orbiting planet,

Segura et al. found that an Earth-like ozone layer similar would develop, resulting in

an observable O3 9.6 µm spectral line, comparable to the Earth’s [10].

Grenfell et al. (2007) used a 1D coupled radiative-convective photochemical col-

umn model to calculate the atmospheric composition changes on a planet with the

Earth’s atmospheric composition, when subjected to 5-10% changes of its orbital po-

sition around a solar-type G2V, F2V, and K2V star. They found that as the planets

were moved outwards, the ozone increased by ∼ 10 %, as a result of the decreased

stratospheric temperature [11].

Rugheimer et al. (2013) simulated the spectra of clear and cloudy Earth-like planets

orbiting F, G and K stars, at the 1 AU equivalent distance, using a geometrical 1D

model global atmosphere model. They determined that an increase in either the parent

star’s UV radiation or its temperature, resulted in increased O3 concentrations and

stronger O3 spectral features. An increase in the star’s temperature also resulted in

increased O3 concentrations and stronger O3 spectral features [12].

Rauer et al. (2011) calculated the molecular molecular absorption bands of super-

Earth planetary atmospheres orbiting M stars, using a plane-parallel, 1D climate

model, coupled with a chemistry model. They predicted that the ozone emission

spectra observed during a secondary eclipse for planets orbiting quiet M0 to M3

dwarfs would be stronger than the PDE. On the other hand, the ozone emission

spectra of planets orbiting very cool and quiet M4 to M7 stars would be weaker, as a

result of increases in their mid-atmospheric temperatures [13].

Grenfell et al. (2013) performed a sensitivity study of the atmosphere of an Earth-

like planet, using a global-mean radiative-convective-photochemical column model.

They varied the stellar class and planetary gravity of the planet and investigated how

the changes affected the resulting photochemistry and climate and hence the potential

observed biosignatures. Their study revealed that for an M0 star, the stratospheric

ozone generation is still dominated by the Chapman cycle, but it is somewhat sup-

pressed (89.2 % ) compared to the Sun scenario (90.5 %). The ozone generation

through the smog mechanism is increased (9.1 %) compared to the Sun scenario

(0.8 %). The balance between the Chapman mechanism and the smog mechanism is

shifted towards the smog mechanism as one moves towards cooler stars. For cool M5-

M7 stars, the ozone photochemistry has shifted completely the Chapman production

to smog-dominated stratospheric ozone production [15].

Godolt et al. (2015) studied the influence of F, G and K stars on the stratospheric

temperature, climate and potential habitability of Earth-like extrasolar planets using

a state-of-the-art 3D Earth climate model which accounts for local and dynamical
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processes. The planets were positioned at such orbital distances around the stars,

so that the total amount of energy received from the parent stars would equal the

solar constant. A fixed Earth-like atmosphere was used and no atmospheric chemistry

calculations were performed. The study revealed that, similar to [8], [9], [10], [11], [12],

[13] and [14], different stellar spectral energy distributions result in different ozone

heating rates and therefore different vertical temperature structures. The stratosphere

of planets orbiting K stars, which are cooler than our Sun and therefore emit a smaller

portion of their radiation in the UV part of the spectrum, was characterised by lower

ozone heating rates and shallower stratospheric temperature increases compared to

the Earth [14].

The above studies demonstrated that for the same total amount of stellar energy in-

cident on the top of the atmosphere, changes in the stellar spectral energy distribution

result in ozone radiative heating rate changes. This leads to different stratospheric

temperature structures in Earth-like exoplanets. For non-tidally locked, M star or-

biting, planets, the reduced UV radiation emission, could result in the development

of a cooler stratosphere and changes in their stratospheric ozone concentration. It is

reasonable to assume that tidally locked planets would be equally affected.

The study of the ozone concentration of a tidally locked planet, would need to ac-

count for both the effects of the tidal lock and the altered stellar irradiance spectrum.

This would complicate the cause effect attribution analysis making the attribution of

the ozone distribution changes on either the tidal lock or the altered UV radiation

exceedingly challenging. We therefore chose to not include the effects of the altered

UV radiation in our study and focus only on the magnitude of the impact of tidal

locking on the Earth-like planet orbiting a Sun-like star.

Past studies on the atmospheres of tidally locked Earth-like exoplanets were focused

on the troposphere. Merlis and Schneider (2010) [16] used an ideal gas GCM with an

active hydrological cycle, a gray radiation scheme and a slab ocean lower boundary

condition to simulate the troposphere of an Earth-like, tidally locked aquaplanet with

a rotation period equal to one Earth year. Their study revealed that while the subsolar

point temperature in the lower troposphere is∼ 300 K, the antisolar point temperature

is much smaller but it never drops below 240 K and therefore no atmospheric collapse

occurs on the night side. Furthermore, they reported the presence of a strong upwelling

above the subsolar point on the day side, due to radiative heating. On the night side

they reported the presence of a downwelling, generated by radiative cooling, centred

over the antisolar point.

Yang, Cowan and Abbot (2013) [17] showed that the presence of clouds in the

troposphere of a tidally locked aquaplanet, especially over the subsolar point, can

ensure habitability at almost twice the solar flux on Earth.

Grenfell et al. (2014) [18] performed a 1D simulation of an Earth-like exoplanet

atmosphere using a global-mean, stationary, hydrostatic, atmospheric column model

which extends from the surface up to ∼ 70 km, with the starting composition, pres-

sure and temperature of the 1976 U.S Standard Atmosphere [19]. In the simulation,

the UV emission of a cool M7 star was varied and the resulting climate-photochemical

response of the planetary atmosphere including numerous, catalytic processes of O3

depletion was calculated. The study showed that the strongest O3 emission is gener-

ated at ten times the stellar UV radiative flux of an M7 star and that an exoplanet’s

O3 9.6 mum spectral line profile is strongly influenced by the 200–350 nm UV output

of the parent star.
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A fundamental parameter for the description and the observation of the planetary

ozone layer is the total ozone column (TOC). Currently the Earth’s TOC is mea-

sured by several satellite missions such as Aura/OMI [20] and Metop/GOME-2 [21]

providing global maps of TOC with a horizontal resolution of 80 km x 40 km. The

O3 distribution is determined primarily by the Brewer-Dobson circulation and the

photochemistry [22].

Below, we first describe the model used for our simulations and the simulation setup.

Next we present the partial ozone content (POC) and TOC of the planet. Lastly we

present four different phases of the planet’s TOC as seen by an observer.

2. Model Description
The Community Earth System Model (CESM) version 1.04 is used to perform our

simulation. It consists of five fully coupled geophysical models: atmosphere (ATM),

land (LND), ocean (OCN), sea-ice (ICE), land-ice (GLC). The models can be set as

fully prognostic, data or stub and are “state-of-the-art climate prediction and analysis

tools” [23] when set in prognostic mode.

The surface parameter fluxes are provided by the land (LND), the ocean (OCN), the

surface ice (GLC) and the sea ice (ICE) models. They provide the lower flux boundary

conditions for the turbulent mixing, the planetary boundary layer parametrization,

the vertical diffusion, and the gravity wave drag. In our simulation the OCN, GLC

and ICE use prescribed data while the LND is an active model (Community Land

Model (CLM)). CLM calculates among other parameters, the absorption, reflection

and transmittance of solar radiation, the absorption and emission of longwave ra-

diation, the surface colour variability, the surface albedo calculation, the sensible

heat, the latent land surface heat fluxes, the heat transfer in soil and snow and the

atmosphere-surface coupling [24].

The atmospheric model used in our simulation is the Whole Atmosphere Community

Climate Model version 4 (CESM1(WACCM)) [24]. CESM1(WACCM) has been used

to simulate the circulation, gravity waves and atmospheric composition changes due

to chemistry and photochemistry in the lower, middle and upper atmosphere [25],

[26], [27], [28], [29], [30], [31], [32]. Furthermore it is fully coupled to the land, and

ocean models [23].

It has 66 vertical levels from the ground up to 5 · 10−6 hPa (150 km) and is purely

isobaric above 100 hPa. It has a vertical resolution of 1.1 km in the troposphere,

1.1-1.4 km in the lower stratosphere, 1.75 km at the stratopause and 3.5 km above

65 km. The coupler timestep is ∆t = 30 minutes while the timestep for the dynamics

equations is ∆τ = ∆t/8 [24]. It has a composition identical to that of the present day

Earth on 21.03.2000 [24].

CESM1(WACCM) has full tropospheric and stratospheric chemistry as well as meso-

spheric chemistry, with 57 chemistry species [24]. The gas-phase chemistry is coupled

to the Modal Aerosol Model [24]. The stratospheric distributions of long-lived species

are taken from previously performed CESM1(WACCM) simulations [24]. The main

physical processes included in the model are:

• the conversion to and from dry and wet mixing ratios for trace constituents

• the moist turbulence

• the shallow and the deep convection

• the evaporation of convective precipitation

• the cloud microphysics and macrophysics
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• the aerosol processes

• the condensed phase optics

• the radiative transfer

• the surface exchange formulations

• the dry adiabatic adjustment

• the prognostic greenhouse gases

[24].

The radiative transfer calculations in the longwave and shortwave are provided by

the radiation code RRTMG ([33], [34], which is an accelerated and modified version

of the correlated k-distribution model, RRTM. It efficiently calculates the irradiance

and heating rate in broad spectral intervals, while retaining a high level of accuracy

relative to measurements and high-resolution line-by-line models. It also distinguishes

between the direct and scattered solar radiation.

The radiative transfer is calculated over 14 bands in the shortwave spectrum (0.2

µm to 12.2 µm) and 16 bands in the longwave spectrum (3.1 µm to 1000.0 µm).

The 16th longwave band includes the infrared contribution from the spectral interval

below 3.1 µm. Above 65 km the model also covers the spectrum interval between soft

x-rays and extreme ultraviolet irradiances (0.05 nm to Lyman-α (121.6 nm) and the

spectrum interval between the Lyman-α (121.6 nm) and 100 µm [24].

The total shortwave fluxes have an accuracy of 1-2 W/m2 compared to the standard

RRTM SW (using DISORT with 16 streams) for clear sky conditions and with aerosols

and an accuracy of 6 W/m2 in overcast sky conditions. The total longwave fluxes have

an accuracy of 1.0 W/m2 at all levels. ”Longwave radiative transfer is performed over

a single angle for one upward and one downward calculation” [24]. The absorption

coefficients for the k-distributions for both the shortwave and the longwave radiation

calculations in RRTMG are obtained from the line-by-line radiation model LBLRTM

([35], [36]).

The calculation of the photolysis coefficients is divided into the 120 nm - 200 nm and

200 nm - 750 nm regions. The total photolytic rate constants are calculated by the

model by integrating the product of the wavelength dependent exo-atmospheric flux,

the atmospheric transmission function, the molecular absorption cross-section and

the quantum yield for each absorbing species. The exo-atmospheric flux is provided

by observations and varies over the 11-year solar sunspot cycle. The transmission

function is wavelength-dependent and a function of the model abundance of ozone

and molecular oxygen. For wavelengths above 200 nm the molecular absorption cross-

section and the quantum yield are calculated by the model, while below 200 nm,

their values are pre-defined. This approach works for all species except NO and O2

for which detailed photolysis parametrisations are included in the model. The impact

of clouds on photolysis rates is parametrised but the impact of tropospheric and

stratospheric aerosols on photolysis rates is not calculated [24].

The CESM model uses the Kurucz solar source function whose radiative transfer cal-

culation is based upon solar measurements. It assumes a total solar irradiance at the

top of the atmosphere of TSI = 1368.22 W/m2. The value is then ”scaled in each spec-

tral band through the specification of a time-varying solar spectral irradiance” [24].

The model uses a combination of solar parametrizations to specify spectral irradiances

over two spectral intervals (soft x-ray to Lyman-α (λ= 121.6 nm) and from Lyman-α

to 100 µm). The first spectral interval fluxes are calculated using the parametrization

of [37]. It accepts as input the 10.7 cm solar radio flux (f 10.7), whose daily values
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are obtained from the NOAA’s Space Environment Center (www.sec.noaa.gov) and

its 81-day average (f 10.7a). The second spectral interval fluxes are calculated using

the empirical model of the wavelength-depending sunspot and facular influences ([38]

and [39]) ([24]).

In the shortwave, H2O, O3, CO2, O2, CH4, N2, clouds, aerosols, and Rayleigh scat-

tering are the modelled sources of absorption and scattering. In the longwave, H2O,

CO2, O3, N2O, CH4, O2, N2, CFC − 11 and CFC − 12 are the molecular sources of

absorption. The shortwave radiation is calculated only for zenith angles larger than

zero [24].

The model computes the chemical equilibrium of 36 photochemical species (O2,

O3, N2O, NO, NO2, N2O5, HNO3, NO3, HO2NO2, CH3OOH, CH2O, H2O, H2O2,

Cl2, ClO, OClO, Cl2O2, HOCl, HCl, ClONO2, BrCl, BrO, HOBr, BrONO2, CH3Cl,

Ccl4, CH3CCl3, CFC11, CFC12, CFC113, HCFC22, CH3Br, CF3Br, CF2ClBr, CO2,

CH4). The model atmospheric tracers are Ox, NOx, HOx, ClOx, and BrOx chemi-

cal families, excluding O2, along with CH4 and its degradation products. The main

photochemical and chemical interactions responsible for changing the atmospheric

ozone concentration are described by the reaction rate of ozone
d(O3)

dt
+ JO3(O3) +

k3(O)(O3)+a2(H)(O3)+a6(OH)(O3)+a6b(HO2)(O3)+ b4(NO)(O3)+b9(NO2)(O3)+

d2(Cl)(O3) + e2(Br)(O3) = k2(M)(O2)(O).
d(O3)

dt
is the production rate of O3. The JO3 is the photolysis rate of ozone and

its values were taken from different sources depending on its molecular absorption

cross-section σ and the quantum yield (φ) (σ: 136.5-175 nm (Tanaka et al. (1953))),

σ: 175-847 nm (Ackerman (1971)), σ: 185-350 nm (WMO (1985)), σ: 185-350 nm φ

< 280 nm (Marsh (1999)), φ > 280 nm ([40])). The k3, a2, a6, a6b, b4, b9, d2, e2, k2(M)

are the chemical rate constants of the reactions and are taken from JPL06-2 [40].

A polar stratospheric cloud parametrization scheme is incorporated in the model. It

is activated when the cosine of the solar zenith angle is larger than zero at stratospheric

altitudes and the stratospheric temperature drops below 195 K [24].

The starting values of the zonal mean climatology of the local O3 concentration,

the temperature, the overhead column O3 and other chemicals used by the model are

based on satellite and in-situ Earth observations [24]. A detailed model description

can be found in [24].

3. Methods
3.1. Simulation Setup

We perform two simulations, one for the present day Earth (PDE) with a rotation rate

of ΩPDE = 1

(
rotation

days

)
and a second one for a tidally locked Earth-like exoplanet

with a rotation rate of ΩTLE =
1

365

(
rotation

days

)
. Therefore, the TLE rotation rate is

(
1

365
)th of the PDE rotation rate. The slow TLE rotation rate results in one side of

TLE permanently facing the Sun-like star.

The Sun-Earth distance is 1 AU in both cases and the eccentricity is that of the

present day Earth on the day of the Spring Equinox. In our simulation we use active,

fully prognostic atmosphere and land geophysical models and a data ocean geophysical

model. The solar irradiance at the top of the atmosphere is S0 = 1368.22 W/m2 [24].

The simulation begins on the day of the spring equinox (21.03.2000). The duration of
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the simulation is 90 days. Several model parameters are changed to obtain a tidally

locked planet:

• obliquity

• the number of seconds in a siderial day

• the number of seconds the planet needs to rotate by 1 degree

• the cosine of the solar zenith angle (SZA)

• the position of the subsolar point

• the Sea Surface Temperature (SST)

The TLE’s obliquity is set to 0 ◦ for the duration of the simulation. The number of

seconds in a siderial day is altered from 86164 sec/day to 3.15 · 107 sec/day. As a

result the earth’s rotation velocity changes from 8.43 · 10−10 rad/sec to 2.31 · 10−12

rad/sec. The planet is set to rotate one degree every 87600 seconds (the Earth rotates

one degree every 240 seconds). The SZA is set to a constant value by means of the

PDE Julian date. By setting the Julian date to a constant value, the periodic 24-hour

variation of SZA is stopped at all grid points of the TLE. The SZA is the central

parameter for the assessment of the incoming solar radiation in the CESM model

world. The position of the subsolar point is set to remain constant at (0.17◦ N, -

178.17◦ E), which is the position of the subsolar point at 00:00 UT on the Spring

Equinox.

The subsolar point and the distribution of the shortwave solar radiation at the top

of the model for the duration of the simulation can be seen in Figure 1. Shades of

red indicate high incoming solar radiation on the day side of the planet while shades

of blue indicate low incoming solar radiation. The dark blue visible in the center

of the figure indicates zero incoming radiation on the night side of the planet. The

subsolar point is indicated with a white point on either side of Figure 1. It is centred

approximately at (0◦, 180◦) over the Pacific Ocean. The antisolar point is indicated

with a magenta point in the center of the figure and is centred approximately at

(0◦,0◦).

The prescribed SST input dataset was altered to closely resemble the SST reported

by Merlis and Schneider [16], which can be seen in Figure 2. The SST is highest at

the subsolar point with a temperature ≈ 300 K and decreases monotonically and

isotropically as one moves away from the subsolar point. The night side SST has a

uniform value of 250 K.

The continents and topography of the Earth were maintained as the use of the

standalone atmospheric geophysical model CESM1(WACCM) without an active land

model is not supported. We emphasize that the initialization data is the same for

both runs. This means that the TLE simulation run starts with the same 3D ozone

and wind field as the PDE simulation run.

Although the possibility of tidal locking of an Earth-like planet within the habitable

zone of a Sun-like star is low, the existence of Venus shows that a slow rotating planet

can occur. As mentioned in the Introduction, Yang et. al. [2] demonstrated that very

slowly rotating and tidally locked planets located at a distance of 0.7 AU from a Sun-

like star, can maintain an Earth-like atmosphere despite their close distance to the

parent star. Their models were designed for tropospheric simulations and lacked the

full stratospheric chemistry and resolution available in CESM1(WACCM). Further-

more, several past studies of tidally locked exoplanets orbiting M stars used models

with solar spectrum and atmospheric composition similar to that of the PDE [16],

[6], [17], [41], [42], [43]. Our method therefore also fosters the intercomparison and
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interpretation of the differences with these past models. Lastly the use of the Earth’s

starting atmospheric composition for our simulations simplifies the intercomparison

and interpretation of the differences between the PDE and TLE model runs.

3.2 Ensemble simulation

To verify the validity of our results, an ensemble simulation with 5 runs, is performed.

This is the typical sensitivity setup used in atmospheric physics simulation studies.

The first two runs are set 5 and 10 days before the spring equinox, respectively.

One run is set on the day of the spring equinox. The last two runs are set 5 and

10 days after the spring equinox, respectively. The main features of the simulation,

described in detail in the Results and Discussion section (Section 4), are present in

the ensemble average and in each individual run, with the extend of the enhanced

and depleted TOCTLE regions varying slightly, in accordance with the variability of

the starting conditions. The deviation from the ensemble average is of the order of

∼ 1 % and can be seen in Table 1.

3.3 Data Analysis

The O3 volume mixing ratio, the air density, the zonal, meridional and vertical wind

as well as the downward shortwave flux are extracted from the output datasets of the

simulation run. As a first step the above parameters are interpolated for the altitudes

of 1 to 140 km with a variable step 1.7 < step < 104 km. Then the O3 concentration

is calculated by multiplying the O3 volume mixing ratio with the air number density

[O3] = O3VMR · [air]. It is useful to note that trace gases like ozone and atomic oxygen

are usually given in volume mixing ratio (VMR).

As a next step, the POCs (partial ozone column densities) for the troposphere and

lower stratosphere, middle stratosphere and mesosphere (5 to 28 km, 30 to 45 km and

55 to 100 km) are calculated by interpolating the O3 concentration from the lower

to the higher limits for each case POC5−28 =
∫ 28

5
[O3]dz, POC30−45 =

∫ 45

30
[O3]dz,

POC55−110 =
∫ 110

55
[O3]dz.

Due to the presence of several high mountains and mountain ranges (e.g Himalayas,

Kilimanjaro) and the presence of data gaps in the air density parameter above the

altitude of 110 km, we calculate the TOC between the altitudes of 5 and 110 km

(TOC =
∫ 110

5
[O3]dz).

As a next step, the global means of the TOC and POCs are calculated by calculating

their zonal means as a function of latitude and then weighting them with the surface

area of the latitude belts (surface area preserving mean). Then, the change in % of

TOC and POC between the PDE and TLE is calculated.

∆TOC% =
TOCTLE − TOCPDE

TOCPDE
∗ 100 (1)

∆POC% =
POCTLE − POCPDE

POCPDE
∗ 100 (2)

∆TOCDU = TOCTLE − TOCPDE (3)
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∆POCDU = POCTLE − POCPDE (4)

Lastly, we calculate the hemisphere means (HM) of PDE and TLE (TOCHM(PDE),

TOCHM(TLE)) as well as their differences (∆TOCHM(PLE,TLE), ∆TOCHM(TLE,TLE),

∆TOCHM(PDE,PDE)). The TOC hemisphere mean is the TOC mean of one side of

the planet which spans 180 ◦ in longitude and 180 ◦ in latitude. First calculating

the hemisphere TOC zonal mean as a function of latitude and then weight it with

the surface area of the hemisphere latitude belts (surface area preserving mean).

∆TOC(PLE,TLE) is the difference between the hemisphere mean of the TLE and

PDE. The ∆TOC(TLE,TLE) is the difference between the TLE hemisphere centred

around the 0◦ meridian and the hemisphere centred around the φ meridian. The

∆TOC(PDE,PDE) is the difference between the PDE hemisphere centred around the

0◦ meridian and the hemisphere centred around the φ meridian.

∆TOCHM(PLE,TLE) =
TOCHM(PDE) − TOCHM(TLE)

TOCHM(TLE)
(5)

∆TOCHM(TLE,TLE) =
TOCHM(TLE(0◦)) − TOCHM(TLE(φ))

TOCHM(TLE(φ))
(6)

∆TOCHM(PDE,PDE) =
TOCHM(PDE(0◦)) − TOCHM(PDE(φ))

TOCHM(PDE(φ))
(7)

3.4 Terminology

A tidally locked planet can be divided into the day side and the night side. The day

side is the permanently illuminated hemisphere that is always facing the parent star.

The position of the maximum solar flux, located at the centre of the day side is the

subsolar point. The night side is the hemisphere that is never illuminated by the

parent star. The position at the centre of the night side, located 180◦ away from the

subsolar point, is the antisolar point. The border region of these two hemispheres,

the terminator [3], is located 90◦ away from the subsolar and antisolar points and

stretches from the North to the South Pole. This region can be divided into the

dawn terminator region (located 90◦ to the West of the subsolar point) and the dusk

terminator region (located 90◦ to the East of the subsolar point).

The VMR gives the amount of a trace gas in parts per million (ppmv), e.g. 10

ppmv means 10 ozone molecules per 1 million air molecules. The TOC is measured in

Dobson units (DU). One Dobson unit ”refers to a layer of gas that would be 10 µm

thick under standard temperature and pressure” [44] and is equal to 2.69 1016 ozone

molecules/cm2, or 2.69 1020 ozone molecules/m2 [44].
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4. Results and Discussion
4.1 Atmospheric steady state

The TLE middle atmosphere adjusts to the new conditions within 80 days. The ad-

justment times of the TLE total ozone column (TOCTLE), the global mean horizontal

wind (HWTLE), the global mean vertical wind (VWTLE) and the global mean strato-

spheric temperature (Tstrat(TLE)) to the new tidally locked conditions can be seen in

Figure 3. The HWTLE, VWTLE and Tstrat(TLE) are calculated for the altitude region

of 30 - 40 km altitude. In the figure the temporal evolution of the PDE TOCPDE,

HWPDE, VWPDE and Tstrat(PDE) is also showed for comparison.

The steady atmospheric state is reached at double the e-folding time. The e-folding

time is the time interval in which an exponentially decreasing quantity decreases by

a factor of e. The e-folding times of the above mentioned parameters along with their

steady-state mean values and their standard deviations can be seen in Table 2. A

comparison between the TLE and the PDE standard deviations reveals that the PDE

standard deviations are actually bigger than the TLE standard deviations.

The TOCTLE, HWTLE, VWTLE, Tstrat(TLE) have an e-folding time of 30, 20, 15 and

40 days, respectively. Therefore the steady state is reached in approximately 60, 40, 30

and 80 days, respectively. A comparison between the PDE and the TLE adjustment

times reveals that the TLE middle atmosphere adjusts to the new conditions within

approximately 2.5 months and with global mean of total ozone maintaining a value

of approximately 249 DU (Table 2).

4.2 Ozone distribution

The Earth has a primary, secondary and tertiary ozone layer, all of which can be

seen in Figures 4a, 4b. They depict the ozone O3VMR distribution of the present day

Earth at 00:00 UT, on the day of the Spring Equinox (21.03.2000) along the prime

and the 180◦ meridian.

The primary ozone layer is located in the stratosphere between 20 and 50 km and

displays a maximum in the vicinity of the tropics at an altitude of 34-36 km [22].

It is present during both the daytime and the night-time, though a small (< 2 %)

diurnal variation has been detected [45]. The tropopause is characterized by altitude

variations (visible in Figures 4a and 4b). It is located at higher altitudes in the tropics

and lower altitudes in the poles.

The secondary ozone layer is located in the mesosphere between 80 and 100 km,

with a maximum at ∼ 90 km. As can be seen in Figures 4a, 4b, the ozone is depleted

during the daytime (∼ 1 ppmv) compared to the night-time (∼ 2.5 to 8 ppmv) [46],

[47].

During daytime the stratospheric and mesospheric molecular oxygen is photodisso-

ciated towards atomic oxygen by the solar UV radiation (λ < 242.4 nm):

(J2); O2 + hv → O +O (8)

It then recombines with molecular oxygen, through the three body process recombi-

nation, to produce ozone.

(k2); O +O2 +M → O3 +M (9)
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M is a third body catalyst needed for the conservation of energy and momentum. In

the stratosphere, the ozone generated through reaction 9 is photodissociated towards

atomic oxygen by the UV radiation (λ < 320 nm) (Figure 4b).

(J3); O3 + hv → O2 +O (10)

Due to the high air and molecular oxygen density O2 and O rapidly recombine to

form ozone through reaction 9. As a result the stratospheric diurnal variation is of

the order of 2 % (Figures 4a,b).

In the mesosphere, the generated ozone is either photodissociated by UV radiation

(λ < 320 nm) towards atomic oxygen through reaction 10 or converted to O2 through

a two-body collision with atomic oxygen.

(k3); O +O3 → 2O2 (11)

During the night time, the absence of UV radiation results in the increase of the

mesospheric ozone, through reaction 9 and the emergence of the secondary ozone

layer (Figure 4a).

Ozone is destroyed not only through photodissociation by the incident UV radiation

and interaction with O, but also through catalytic cycles with NO and OH. In the

middle stratosphere [48] O3 is destroyed by NO through

NO +O3 → NO2 +O2

NO2 +O → NO +O2

(12)

This catalytic cycle is most efficient between 35 and 45 km [22]. It is the most impor-

tant ozone depletion cycle in the stratosphere. In the middle and upper stratosphere

[22], O3 is destroyed through

OH +O3 → HO2 +O2

HO2 +O → OH +O2

(13)

Below 30 km [48] and close to the troposphere [22], O3 is destroyed through interaction

with OH, by

OH +O3 → HO2 +O2

HO2 +O3 → OH + 2O2

(14)

In the same altitude range

OH +O → H +O2

H +O2 +M → HO2 +M

HO2 +O3 → OH + 2O2

(15)

and

OH +O → H +O2

H +O3 → OH +O2

(16)
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are also responsible for the destruction of ozone [22].

In the mesosphere, ozone is destroyed primarily by OH [22].

OH +O → H +O2

H +O3 → OH +O2

(17)

The quantities of atomic oxygen and ozone fluctuate during the day as a result of

the rapid cycles of photolysis and recombination. However their sum, also known as

odd oxygen Ox remains almost constant. A reduction of ozone could indicate either

the presence of a sink or an impermanent change towards atomic oxygen. A reduction

of odd oxygen, on the other hand, reveals the presence of a sink a permanent sink.

Consequently odd oxygen will be used to discuss the generation and destruction of

ozone in this paper.

The PDE possesses a tertiary night-time ozone layer can be seen in Figure 4a in the

region between 60 and 80 km in the vicinity of the North Pole. It was first detected

and modelled by Marsh et al. [49] and is present only within a small region at high

latitudes during the night-time.

The atmosphere of the TLE has a vertical structure similar to the PDE, with a

troposphere, stratosphere and mesosphere. However the characteristics of these layers

differ markedly from those of the PDE. Due to the tidal lock, the geographic locations

of the daytime and night-time hemispheres are static.

Figures 4c, 4d depict the O3VMR distribution of the tidally locked Earth along the

meridians intersecting the antisolar and subsolar points, respectively. The day side

O3VMR of the TLE primary ozone layer (Figure 4d) is characterised by a higher

O3VMR and a wider coverage area compared to its PDE daytime equivalent (Fig-

ure 4b). The night side of the TLE primary ozone layer on the other hand (Figure

4c), appears depleted compared to its PDE night-time equivalent (Figure 4b). Since

the production of odd oxygen requires shortwave radiation, the night side displays

a reduced ozone concentration compared to the day side. The TLE day-night side

variation of the primary ozone layer is ∼ 40%, one order of magnitude larger than

that of the PDE (< 2 %). The global mean altitude averaged middle atmospheric

horizontal wind is 13.2 m/s in the TLE and 27.5 m/s in the PDE. The enhanced

day-night side variation can be explained by this reduction in the transport velocities

of ozone from the day side to the night side in the TLE stratosphere compared to

the PDE stratosphere as well as the static locations of the daytime and night-time

hemispheres. The primary TLE ozone layer is also characterised by altitude variations

(Figures 4c, 4d), which are present in both the day and the night side, but are much

less pronounced compared to the PDE (Figures 4a, 4b).

The TLE secondary ozone layer can also be seen in Figures 4c, 4d. As in the case

of the rotating Earth, the secondary ozone layer is only present during night-time.

The formation mechanism of the secondary ozone layer of TLE is similar to the

observed night-time ozone layers present both the Earth’s mesosphere and the upper

atmosphere of Venus [50].

The day side TLE O3VMR (Figure 4d) is similar to the daytime PDE primary

ozone layer (Figure 4b). The TLE night side secondary ozone layer (Figure 4c), is

characterised by an enhanced O3VMR compared to the PDE night-time (Figures 4d,

4a, respectively). This is due to the transport of odd oxygen from the day side to the

night side through both the horizontal and vertical circulation, where it recombines
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to form ozone. The transport of air from the day side to the night side in the 55 - 100

km altitude region through the horizontal circulation and the vertical circulation can

be seen in Figures 6 and 8, respectively.

The TLE does not possess a tertiary night-time ozone layer as can be seen in Figure

4c. The chemical and dynamical processes that cause the disappearance of the TLE

tertiary layer are currently an open question. It could be related to the fact that

the air is not rapidly brought from the day to the night side in the case of the TLE

compared to the PDE.

4.3 Atmospheric circulation

The PDE stratospheric ozone distribution is determined by the atmospheric wave

driven Brewer-Dobson circulation, which is responsible for the transport of the air

from the equatorial troposphere to the stratosphere. As can be seen in Figure 5,

air rises from the tropical troposphere into the stratosphere. It is then transported

towards the poles and descends back into the troposphere in middle and high latitudes,

as a result of the conservation of mass [51], [52]. Due to the land-ocean distribution

differences in the Southern and Northern Hemisphere, the Brewer-Dobson circulation

differs in the two hemispheres, with a much stronger Southern winter polar vortex

compared to the Northern winter polar vortex. As a result, the horizontal mixing

seldom reaches the Antarctic region and is confined to lower latitudes in the Southern

Hemisphere. In the Northern Hemisphere on the other hand, the horizontal mixing

often reaches the North pole region [52].

In the TLE the vertical air transport is achieved through a different mechanism,

as a result of the breakdown of the Brewer-Dobson circulation, which can be seen in

Figures 6, 7 and 8. The middle atmospheric wind system of the TLE shows a high

degree of spatio-temporal variability, with the direction and location of the TLE jet

stream completely changing over height intervals of 10 km (Figure 6).

Figure 6 shows the zonal mean of the zonal wind for the PDE (Figure 6a) and the

TLE (6b), from 5 to 110 km altitude. A comparison between the two figures reveals

that the TLE zonal mean zonal wind is markedly different from the PDE equivalent.

In the PDE the a southward air motion contributes to the geostrophic zonal wind. In

the TLE on the other hand, the air motion is southward in the Northern Hemisphere

and northward motion in the Southern hemisphere at tropospheric, middle strato-

spheric and mesospheric altitudes. It is therefore clear that there is a tendency for

the formation of only one jet stream over the globe with a high wind speed in merid-

ional or zonal direction at different altitudes. In the lower stratosphere, atmospheric

transport can occur over the poles or along the equator from the day to the nightside

depending on the altitude.

The meridional wind zonal mean of the TLE is smaller compared to the PDE,

possibly due to smaller horizontal gradients in the temperature field of the TLE and

the lack of the overturning circulation cells at the poles.

Figure 7 shows the horizontal wind at the select altitudes 24 km (Figure 7a), 36

km (Figure 7b) and 60 km (Figure 7c). As can be seen, the horizontal circulation

differs greatly between different altitudes and this applies to the entire atmosphere.

It also differs from the equivalent PDE circulation, which is not shown here. At

lower and middle stratospheric altitudes jet streams are present, which encompass

the entire globe, and whose strongest component is located in the equator. At 20

- 35 km the jet stream is eastward while at 35 - 40 km altitude the jet stream is
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westward, as can be seen in Figures 7a and 7b. The strong natural variability of the

lower stratospheric wind field leads to considerable periodic changes (≈ 15 days) in the

distribution patterns of lower stratospheric ozone (16-28 km), while at the same time

the global mean of total ozone is maintained. The PDE circulation at these altitudes

is characterised by the presence of a westward equatorial jet stream and two eastward

extra-tropical jet streams. At mesospheric altitudes, the meandering jet stream can

transit into large-scale vortices as can be seen in Figure 7c). In comparison, in the

PDE the circulation is largely eastward in the Northern hemisphere and westward in

the Southern hemisphere, with no vortices present.

The Brewer-Dobson circulation is replaced by an upwelling on the day side of the

planet and a downwelling on the night side. The upwelling is centred in the subsolar

point, while the downwelling is centred on the antisolar point. Both extend from the

surface to the middle mesosphere. The day side receives a constant flux of solar radi-

ation and is radiatively heated. The upwards movement of the heated air creates the

reported upwelling. The night side on the other hand, receives no solar radiation and

is therefore radiatively cooled, with the cooler air sinking and creating the reported

downwelling. However compared to the PDE the TLE has a much smaller tempera-

ture gradient compared to the PDE, as can be seen in Figure 9 for the altitude of 36

km.

Merlis and Schneider [16] also predicted the presence of an upwelling on the day

side, centred on the subsolar point and a downwelling on the night side, centred over

the antisolar point, in their simulated tidally locked aquaplanet troposphere. They

also attributed the upwelling to radiative heating and the downwelling to radiative

cooling.

4.4 Mesospheric Partial Ozone Column

On the Earth’s mesospheric daytime hemisphere, the atomic oxygen is more abundant

than ozone, so atomic oxygen can be used as a measure of odd oxygen ((Ox) ≈ (O)).

Figure 10a depicts the PDE mesospheric POC (POCPDE(55−110)) at 00:00 UT on

the day of the spring equinox. The ozone is depleted on the daytime side of the

planet and enhanced on the night-time side of the planet. A sharp transition region,

between the daytime and the night-time hemispheres is present. The partitioning of

odd oxygen is towards atomic oxygen on the daytime and towards ozone on the night-

time hemisphere, respectively. At these altitudes the lifetime of odd oxygen ranges

between a few hours at 55 km, to ∼ 1 month at 95 km. After sunset, the atomic oxygen

rapidly recombines to form ozone as can be seen in Figure 10a. The mean PDE night

side POC is 0.40 DU and the mean PDE day side POC is 0.23 DU. Therefore the

PDE mesospheric diurnal variation is ∼ 74% with respect to the daytime.

The night-time mesospheric TLE ozone is well mixed from the equator to the poles

(Figure 10e). The day side ozone is visibly depleted due to the planet’s tidal lock,

with O2 and O3 constantly photodissociated towards odd oxygen. Due to its long

lifetime, odd oxygen is then transported, through the horizontal circulation, as can

be seen in Figure 6, from the day to the night side where it recombines to form

ozone. The ozone is further enhanced by the transportation of odd oxygen-rich air

to the night side through the vertical circulation by means of an upwelling centred

over the subsolar point and then a downwelling centred on the antisolar point, where

it recombines to form ozone. Consequently the POC appears enhanced on the night

side compared to its PDE counterpart. From Figure 10e we have determined that the
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mean TLE night side POC is 0.40 DU and the mean TLE day side POC is 0.28 DU.

Therefore the TLE mesospheric day-night side variation is ∼ 43 % with respect to

the day side. This is a considerable decrease compared to its PDE counterpart.

4.5 Stratospheric Partial Ozone Column

The O3VMR is much more abundant than atomic oxygen in the Earth’s stratosphere.

Therefore in the stratosphere odd oxygen is used as a measure of ozone ((Ox) ≈ (O3)).

4.5.1 Middle Stratospheric Partial Ozone Column

The PDE middle stratosphere ranges from 30 to 45 km and is the region with the

highest stratospheric O3VMR. At these altitudes the ozone distribution is governed

mainly by the photochemistry and to a smaller degree by the dynamics. Odd oxygen is

mainly generated during the daytime through photolysis of molecular oxygen (reaction

(8))and has an average lifetime of τOx ∼ 16.5 days. It is destroyed during the night-

time through recombination with atomic oxygen (reaction (11)) and catalytic chemical

reactions by NO and OH [22].

In Figure 10b, the Earth’s middle stratospheric ozone is displayed. The increased

solar radiation flux that the equatorial latitudes receive, leads to enhanced ozone

generation. Due to its relatively long lifetime as well as the strong Coriolis force

odd oxygen remains enhanced during the night-time and therefore displays a small

diurnal variation (< 5%) [45]. As can be seen in Figure 10b the POC has a zonal

latitudinal dependence as a result of the strong Coriolis force which creates a mixing

barrier. Consequently the middle stratospheric POC (POCPDE(30−45)) is enhanced in

the tropics and depleted in the poles.

In Figure 10f, the TLE’s middle stratospheric ozone is displayed. On the TLE the

ozone is only generated on the day side and transported to the night side through the

horizontal circulation. On the night side ozone is depleted through reactions with O

and catalytic cycles. The global mean transport velocities between the day and the

night side of the middle stratosphere (13 m/s) are smaller by 47 % compared to the

mesosphere (25 m/s), so the mixing between the day and the night side occurs at

a slower rate. Furthermore, the middle stratospheric global mean temperature is re-

duced in the TLE compared to the PDE as can be seen in Figure 9. As a consequence

the ozone generation rates on the day side will be increased, resulting in a visibly en-

hanced POC. On the night side, a combination of the lack of shortwave radiation flux,

increased destruction rates and slow transport velocities leads to a visibly depleted

night side POC and a high day-night side difference. The above effects are further

enhanced by the large scale meridional mixing due to the small Coriolis force. As can

be seen in Figure 10f, the mean night side POC is 45 DU and the mean day side POC

is 58 DU. Therefore the TLE day - night side middle stratospheric ozone variation is

∼ 29 % with respect to the night side, one order of magnitude larger than the PDE

middle stratospheric diurnal variation.

4.5.2 Lower Stratospheric and Tropospheric Partial Ozone Column

The PDE lower stratosphere ranges from 14 to 28 km and the troposphere ranges

from the surface to 14 km approximately. Figure 10c displays the PDE lower strato-

spheric and tropospheric POC (POCPDE(5−28)). At these altitudes the odd oxygen

(and therefore ozone) has a lifetime of several months due to the attenuation of the
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UV radiation flux at higher altitudes and as a result the ozone distribution is influ-

enced mainly by the dynamics. The Brewer-Dobson circulation transports ozone-rich

air from the mid-stratosphere to the polar regions where the overturning circulation

cell shifts the ozone-rich air into the lower polar stratosphere [22] where it accumu-

lates. The PDE lower stratospheric diurnal variation is ∼ 0.1 %, which is in agreement

with the diurnal variation observed by the SMILES experiment on the International

Space Station [45]. The PDE tropospheric [O3] is lower by an order of magnitude

compared to the stratosphere and therefore does not contribute considerably to the

POCPDE(5−28).

In the lower TLE stratosphere the ozone, which was concentrated in extra-tropical

latitudes at the start of the simulation, was transported, through the horizontal and

vertical circulation, to the night side of the planet where it accumulated, generating

the high levels of ozone visible in the Southern night side. Furthermore any ozone

generated on the day side of the planet is transported, through the horizontal and

vertical circulation, to the night side of the planet where it accumulates due to its

long lifetime. As a result, the POCTLE(5−28) appears depleted on the day side and

enhanced on the night side (Figure 10g).

Due to the small value of the Coriolis force, large scale meridional mixing takes

place. The mean night side POC is 181 DU and the mean day side POC is 158 DU

(Figure 10g). Therefore the lower TLE stratospheric day-night side variation is ∼ 13 %

with respect to the day side, which is two orders of magnitude higher compared to the

PDE. The TLE tropospheric [O3] is lower by two orders of magnitude compared to the

stratosphere and therefore also does not contribute considerably to the POCTLE(5−28).

4.6 Total Ozone Column

Selsis [8], Segura et al. [10], Rugheimer et al. [12], Rauer et al. [13], Grenfell et al.

(2007) [11] and Kaltenegger et al. [53] predicted that exoplanets orbiting around F,

G, K and M stars would produce a visible ozone spectral signature, with the strength

of the signature varying depending on star’s UV radiation emission as well as the

planet’s molecular oxygen content. A planet’s spectral ozone signature is derived from

the planet’s TOC, though the relation is not linear, as it also depends on the planet’s

temperature structure and the distribution, the vertical ozone profile, the line of sight

towards the observer, other atmospheric constituents and other factors.

The TOCTLE (Figure 10h) displays enhanced O3 columns on both the day and

the night side and is characterised by a well mixed meridional TOC distribution

(TOCTLE). A comparison between Figures 10f, 10g and Figure 10h reveals that the

main characteristics of the TOCTLE are formed in the lower and middle stratosphere.

Specifically, the enhanced TLE night side TOC features originate in the lower strato-

sphere and are due to transportation of ozone generated on the day side to the night

side (Figures 10h, 10g) through the horizontal and vertical circulation. The enhanced

TLE day side TOC features are generated by the combined enhanced middle strato-

spheric POC (Figure 10f) and the depleted day side lower stratospheric POC (Figure

10g) and are therefore produced by a combination of photochemistry and dynamics.

The depleted feature present on the left side of the globe (over the American con-

tinent) originates partly in the lower and partly in the middle stratosphere. In the

lower stratosphere (Figure 10g) the depletion appears as a result of the transport of

the ozone depleted air present at the start of the simulation in the tropics, to their
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current location through the horizontal and vertical circulation. In the middle strato-

sphere (Figure 10f) the depletion is the result of the lack of UV radiation on the night

side of the planet combined with downwelling of ozone poor air from the mesospheric

day side (Figure 10e).

The PDE and TLE TOC global means are presented in Table 3. The day and night

side PDE and TLE hemisphere means are presented in Table 4. The TOCTLE global

mean is 244.05 DU, while the TOCPDE global mean is 291.14 DU. The TOCTLE

global mean is therefore reduced by 19.3 % compared to the TOCPDE global mean.

Therefore the TLE O3 global concentration is depleted compared to the equivalent

PDE, but not the extent that would render the planet hostile for life. The day side

TLE O3 concentration is also depleted compared to the daytime PDE O3 daytime

concentration, though it still remains within the limits of habitability.

The POCTLE(5−28) global mean is reduced by 27.7%, while the POCTLE(30−45)

global means is increased by 0.8%, respectively compared to the PDE. As mentioned

before, due to the long lifetime of odd oxygen (and hence ozone) at these altitudes,

the POCTLE(5−28) reduction can be attributed to the changed dynamics, which play

a dominant role at these altitudes. The increased POCTLE(30−45) on the other hand

can be attributed equally to the influence of dynamics and photochemistry, due to the

shortened lifetimes of odd oxygen at these altitudes. The POCTLE(55−110) global mean

is increased by 7.2% compared to the PDE and at these altitudes can be attributed

to the effects of photochemistry and transport of atomic oxygen. This increase has

no major impact on the TOCTLE due to the small POCTLE(55−110) value (< 1 DU).

As the bulk of the TOCTLE is provided by the stratosphere, the reduction of the

TOCTLE can be attributed equally on the changed dynamics and photochemistry.

4.7 Phases of the TLE

As the planet moves around its parent star, different phases of the planet become

visible to the observer (Figure 11). The figure is an alteration of a figure by Winn

[54]. At any given time, only one side of the planet will be visible to the observers.

It is therefore of interest to present the hemisphere TLE TOC and compare it with

that of the PDE.

We present the hemispheric TOC maps of the phases ϕ = 0◦, ϕ = 90◦, ϕ = 180◦

and ϕ = 270◦ of our simulated exoplanet. In phase ϕ = 0◦, only the planet’s day side

is visible. In phases ϕ = 90◦ and ϕ = 270◦, half of the day side and half of the night

side become visible. In phase ϕ = 180◦ only the night side is visible. Only the TOC

values which are radially integrated from the surface to the top of the atmosphere are

shown.

Figures 12a, 12b, 12c, 12d show these phases for the PDE. The phases are charac-

terised by high ozone values at high latitudes. An observer at a far distance would

not notice a difference in the TOC maps of the PDE.

The situation is different for the TLE. An observer would notice TOC depletion or

enhancement depending on the observed hemisphere. This can be seen in Figures 12e,

12f, 12g and 12h which present the TOCTLE of the subsolar hemisphere (TOCTLE(0◦)),

the dusk hemisphere (TOCTLE(90◦)), the antisolar hemisphere (TOCTLE(180◦)) and

the dawn hemisphere (TOCTLE(270◦)), respectively.

The % change ∆TOC(TLE,TLE) in their hemisphere mean compared to the

(TOCTLE(0◦)) can be seen in Table 6. It is clear that the TOCTLE(90◦) is depleted
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compared to the TOCTLE(270◦). It is characterised by low O3 columns, with the de-

pleted region coinciding with the TLE dusk region (Figure 12f).

The TOCTLE(180◦) (Figure 12g) is enhanced compared to the TOCTLE(0◦) (Figure

12e) and is characterised by high O3 concentrations between the antisolar point (de-

picted with a white point) and the subsolar point (depicted with a black point), and

low concentrations towards the North-West part of the hemisphere.

A comparison between the TOCPDE and TOCTLE values in Table 5 reveals that

the TOCTLE is depleted compared to the TOCPDE no matter which hemisphere is

observed.

It is therefore clear that the TOCTLE distribution will differ depending on which

side of the planet is observed. The difference of the four phases between the PDE and

the TLE is on average ∆TOC ∼ 20 %. Depending on the temperature structure of the

atmosphere, the vertical ozone profile and other factors the change in the observed

spectral line can be at most 10 %. Since the measurement errors of the observed exo-

planet spectra currently range between 10-30% [55], the difference will not be critical

for observations at present. However as bigger telescopes and improved observing and

data analysis techniques are developed, the hemispheric TOC differences of the tidally

locked exoplanets might be detectable.

5. Conclusions
We discussed and compared the 3D ozone distributions of the present day Earth

(PDE) and a tidally-locked Earth-like exoplanet revolving around a Sun-like star

(TLE). We demonstrated that it is possible to simulate the middle atmosphere of a

tidally-locked Earth-like exoplanet using the realistic, high-resolution, 3D chemistry-

climate model (CESM1(WACCM)). We further demonstrated that the simulation

achieves a steady state for the middle atmosphere within 80 days.

A comparison between the middle atmospheres of the PDE and TLE reveals that

the TLE ozone distribution is greatly altered due to the reduced Coriolis force and

the break down of the Brewer-Dobson circulation. The TLE simulation shows an

upwelling centred over the day side and a downwelling centred over the night side.

The primary ozone layer is enhanced on the day side and depleted on the night side

compared to its PDE equivalent. The secondary ozone layer is enhanced on the night

side, while the day side remains relatively unchanged and the tertiary ozone layer

disappears.

We studied the TOC of four phases of the planet, with respect to a remote observer.

The TOC hemisphere means are reduced by ∼ 19.8 % compared to the PDE.

The observations conducted with our existing telescopes have a 30 % error margin,

which is approximately 1.5 times higher than the ≈ 20% TOC change. Therefore

even though the TOC of the TLE greatly differs from that of the PDE, it is not

possible, with our current technology, to detect the difference and the observations

will therefore not be affected.

The atmospheric phenomena discussed in this paper are generated as a result of

the interplay between photochemistry and dynamics, making the study of the middle

atmosphere of Earth-like planets a new branch of research.

112



Proedrou and Hocke Page 20 of 29

In the present paper we focused on the ozone distribution of an Earth-like tidally

locked planet, only briefly mentioning the planet’s atmospheric circulation. However,

the variable jet streams and large-scale vortices in the middle atmosphere of the

TLE are astonishing. More investigations with advanced data analysis techniques are

required to describe the 3D circulation of the TLE. A 3D study of a tidally locked

Earth-like planet orbiting an M dwarf star where both the different stellar spectrum

and the tidal lock are included in the model is also a possible future project.

When only atmospheric chemistry is considered, as in the case of Segura et al.

2005 [10], the total ozone column of an Eartn-like planet is determined by the stellar

spectrum’s UV radiation. The use of a flaring M star spectrum, whose UV radiation

output in the 200 nm region is comparable to the Sun’s, results in no decrease and

even an increase of the total ozone column. The use of a quiescent M star spectrum

on the other hand, whose UV output in the 200 nm region is more than three order

of magnitude lower than the Sun’s, results in a decrease of the total ozone column by

40 %.

When dynamics but no photochemistry or atmospheric chemistry are considered, as

in the case of the 3D Godolt et. al 2015 study [14] the stratospheric temperature of an

Earth-like planet is also determined by the stellar spectrum’s UV radiation. Higher

UV radiation (e.g an F star spectrum) results in increased stratospheric temperatures,

while lower UV radiation (e.g a K star spectrum) leads to decreased stratospheric tem-

peratures. Had the simulations included photochemistry and atmospheric chemistry,

their outcomes would possibly show a different behaviour than described above.

The ozone generation and destruction rates depend on the ambient temperature, the

abundance of atomic and molecular oxygen, and the photodissociation of the ozone

molecules by the stellar UV radiation. Therefore, the final total ozone column will

depend on the balance reached between these three processes, whose prediction is not

trivial. A combination of tidal locking and a spectrum change, will probably result

in the overall decrease of the planet’s total ozone column, compared to a spectrum

change-only simulation.

List of abbreviations used

ATM = Atmosphere model

CESM = Community Earth System Model

CICE = Sea-Ice data model

CLM = Community Land Model

CPL = Coupler to CESM

GLC = Land-Ice geophysical model in CESM

ICE = Sea-Ice geophysical model in CESM

docn = prescribed data ocean model

LND = Land geophysical model in CESM

MODIS = Moderate-resolution Imaging Spectroradiometer

OCN = Ocean geophysical model in CESM

WACCM = Whole Atmosphere Community Climate Model

NOAA = National Oceanic and Atmospheric Administration

PDE = present day Earth

TLE = tidally locked Earth

TOC = Total ozone column

POC = Partial ozone column

TOCPDE = TOC for the PDE

TOCTLE = TOC for the TLE

POCPDE = POC for the PDE

POCTLE = POC for the TLE

POCPDE(5−28) = POC(5−28) for the PDE

POCTLE(5−28) = POC(5−28) for the TLE

TOCPDE(0◦) = 0◦ phase of the PDE

TOCTLE(0◦) = 0◦ phase of the TLE
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Figure 1 Simulation Setup Downward shortwave top of the model flux setup for the TLE
simulation. The subsolar point is indicated with a white point and the antisolar point with a
magenta point. Shades of red indicate high incoming solar radiation and define the day side of the
planet. Shades of blue indicate low incoming solar radiation. The dark blue visible in the center of
the plot indicates lack of incoming solar radiation and defines the night side of the planet.
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Figure 2 Sea Surface Temperature Tidally locked Earth SST. The subsolar point is indicated with
a white point and the antisolar point with a magenta point. Shades of red indicate high
temperatures and define the day side of the planet. Shades of blue indicate low temperature. It
defines the night side of the planet. The subsolar point is indicated with a white point on either side
of the figure. The antisolar point is indicated with a magenta point in the center of the figure.
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Figure 3 TLE temporal evolution of the TLE and PDE atmosphere (a) the TOC, (b) the HW, (c)
the VW, (d) the Ekin, (e) the Tstrat, respectively. The TLE TOC, HW, Ekin and Tstrat are
exponentially decaying to their steady-state value with an e-folding time of 30, 15, 13 and 20 days,
respectively. The TLE VW is exponentially increasing to its steady-state value with an e-folding
time of 15 days.
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Figure 5 The Brewer-Dobson circulation in the PDE The Hadley, Ferrel and Polar cells are visible
in the figure for both hemispheres (Adapted from Schmidt et al.).
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wind, (b) TLE zonal mean zonal wind. Warm colours indicate movement from the west to the east,
while cold colours indicate movement from the east to the west.
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Figure 7 TLE Horizontal circulation at select altitudes (a) Horizontal wind at 24 km, (b)
Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black arrows indicate the wind vector
while the color shading shows the wind speed.
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Figure 8 Longitude-Latitude Vertical wind circulation in the TLE (a) Vertical wind at 10 km, (b)
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respectively. (e) POCTLE(55−110), (f) POCTLE(30−45), (g) POCTLE(5−28), (h) TOCTLE on the

90th day of the TLE simulation, respectively. All figures are centred on the antisolar point which is
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Figure 11 Phases of an exoplanet as seen by an observer The phases ϕ = 0◦, ϕ = 90◦, ϕ = 180◦ ,
ϕ = 270◦ have been marked. In phase ϕ = 0◦ only the planet’s day side is visible. In phases
ϕ = 90◦and ϕ = 270◦ half of the day side and half of the night side are visible. In phase ϕ = 180◦

only the night side is visible.
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Figure 12 Comparative view of four different phases of the TOCPDE and TOCTLE (a) ϕ = 0◦

of TOCPDE, (b) ϕ = 90◦ of TOCPDE, (c) ϕ = 180◦ of TOCPDE, (d) ϕ = 270◦ of TOCPDE. (e)
ϕ = 0◦ of TOCTLE, (f) ϕ = 90◦ of TOCTLE, (g) ϕ = 180◦ of TOCTLE, (h) ϕ = 270◦ of
TOCTLE. The antisolar point is indicated with a white point. The subsolar point is indicated with a
black point.

Table 1 Comparison of the deviation of the TOCTLE Global Mean of the ensemble runs from the
ensemble average

Date of the start TOCGM Deviation Deviation
of the simulation (DU) (DU) (%)

11.03 245.3 -2.01 -0.93
16.03 242.4 0.88 0.37
21.03 244.1 -0.8 -0.33
26.03 243.5 -0.22 0.08
31.03 243.6 -0.35 0.12

ensemble average 243.3 0 0
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Table 2 Comparison of TOC and POC e-folding times, steady-state mean values and their standard
deviations obtained for the PDE and TLE simulation on day 90.

PDE σPDE TLE σTLE

TOC (DU) 280.1 1.44 248.7 1.00
HW (m/s) 21.19 5.21 14.21 1.00
Ω (Pa/s) −8.6 · 10−7 9.6 · 10−7 −1.7 · 10−7 1.3 · 10−7

Tstrat (K) 239.9 0.85 238.4 0.43

Table 3 Comparison of TOC and POC global means obtained for the PDE and TLE simulation on day
90. The ∆% are defined in equations (1) and (2), while ∆DU are defined in equations (3) and (4).

PDE TLE ∆% ∆DU

(DU) (DU) (%) (DU)
TOCGM 291.14 244.05 19.3 47.09

POC(5−28)GM 216.35 169.42 27.7 46.93
POC(30−45)GM 46.45 46.84 -0.8 -0.39
POC(55−110)GM 0.31 0.34 -7.2 -0.03

Table 4 Comparison of TOC and POC day side and night side means obtained for the PDE and TLE
simulation on day 90.

PDE Day side PDE Night side TLE Day side TLE Night side
Mean (DU) Mean (DU) Mean (DU) Mean (DU)

TOCGM 295 287 240 249
POC(5−28)GM 220 213 158 181
POC(30−45)GM 52 51 58 45
POC(55−110)GM 0.23 0.40 0.28 0.40

Table 5 Comparison of TOCHM(PDE) and TOCHM(TLE) hemisphere means for different phases of the
planet

Phase TOCPDE TOCTLE

ϕ (DU) (DU)
0◦ 295 239
90◦ 285 234
180◦ 287 249
270◦ 291 260

Table 6 Comparison of difference TOCHM(PDE) and TOCHM(TLE) hemisphere means for different
phases of the planet

Phase ∆TOCHM(PDE,TLE) ∆TOCHM(PDE,TLE) ∆TOCHM(TLE,TLE) ∆TOCHM(PDE,PDE)

ϕ (DU) (%) (%) (%)
0◦ -56 23 0 0
90◦ -51 22 2.2 3.5
180◦ -39 16 -3.8 2.7
270◦ -13 12 -8.1 1.4
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7.3 Third article

The study was submitted in Progress in Earth and Planetary Science in June 2015.
The reprint is the latest version of the article (submitted on 22.01.2016). The article
is currently under review.
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The middle atmospheric circulation of a tidally
locked Earth-like planet and the role of the sea
surface temperature
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Abstract

We investigate the influence of the sea surface temperature (SST) changes on the middle atmosphere of a
tidally locked planet using the coupled 3D chemistry-climate model CESM1(WACCM). Two 90 day simulations
are performed using two extreme SSTs: a present day Earth-like SST and a tidally locked aquaplanet SST. Our
results show that changes in the SST have an influence on the lower stratospheric temperature and the
secondary ozone layer. Both atmospheres exhibit a day side upwelling and a night side downwelling extending
from the surface to the mesosphere. They are also characterised by comparable lower and middle stratospheric
horizontal winds and relatively different mesospheric horizontal winds. The temperature of the warm Earth-like
SST (WTLE) atmosphere is altered as a result of the SST changes, compared to the Earth-aquaplanet SST
(CTLE). Specifically the WTLE lower tropospheric temperature is increased by 3.7 K on average, due to the
absorption of the increased upwelling longwave radiation and the increased sensible and latent heat. The
WTLE upper troposphere temperature is decreased by 4 K on average, is adiabatic in nature and is generated
by the increased WTLE upwelling. The WLTE lower stratospheric temperature is increased by 3.8 K on
average due to the absorption of the increased upwelling longwave radiation. The lower mesospheric
temperature is decreased by 1.13 K on average due to increased mesospheric wave breaking. The upper
mesospheric temperature is increased by 4.3 K and its generation mechanism is currently unknown.
Furthermore, the secondary ozone layer O3VMR is increased by 40.5%. The occurrence of large-scale vortices
and variable jet streams depends, to some extent, on the SST distribution.
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1 Introduction
In this study, we simulate and analyse how differences in the underlying sea-surface

temperature (SST) of a tidally locked Earth-like planet orbiting a Sun-like star

alter its circulation and ozone distribution using a realistic, high-resolution, 3D

chemistry-climate model. For the simulation two different SSTs were used. The first

is a present day Earth (PDE) SST, while the second is the tidally locked aquaplanet

SST generated by Merlis and Schneider (2010) [Mer10]. We compare the evolution

of the ozone layer towards a steady-state and determine their atmospheric structure

and circulation. The study aims to determine the level of SST accuracy needed in

simulations and observations of future simulations of observed exoplanets.

The importance of the presence of an ozone layer in a planetary atmosphere in its

ability to protect lifeforms from the harmful stellar UV radiation. It is ,therefore,

important to determine whether very different underlying SSTs will significantly

alter a planet’s ozone layer is of high importance for habitability studies.

Currently, planets located in the Habitable Zones of M stars are considered prime

targets for the search for terrestrial habitable exoplanets (Tarter et al. (2007)
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[Tar07]). This is due to the abundance of M-stars and a good mass and radius

star-to-planet ratio. Furthermore, the detection of planets orbiting an M star is

easier due to the close proximity of the habitable zone to the M star and leads to

higher probability of the planet becoming tidally locked.

Haberle et al. (1996) [Hab96], Joshi et al. (1997) [Jos97] and Joshi (2003) [Jos03]

showed that terrestrial planets located in an M star’s habitable zone (0.02 - 0.2 AU)

(Tarter et al. (2007) [Tar07]) would be habitable provided that liquid water and the

chemical constituents necessary for the emergence of life existed for sufficiently long

time period. The flaring activity of M stars has been cited as a danger for the

habitability of such planets, however, Segura et al. (2010) [Seg10] showed that the

flares should not present a threat for the surface life. In our study we investigate

the ozone distribution and, therefore, one condition for the habitability of a tidally

locked exoplanet revolving around an M star.

Due to being less massive than the Sun, M stars have weaker UV and visible

emission and their spectrum peaks in the infrared. However, the enhanced stellar

activity of M stars can result in EUV and UV emissions are stronger than those

of the quiet Sun. The different stellar spectral energy distributions will impact the

planet’s ozone distribution and the atmospheric temperature structure. Selsis et al.

(2000) [Sel00], Segura et al. (2003) [Seg03], Segura et al. (2005) [Seg05], Grenfell

et al. (2007) [Gre07], Rugheimer et al. (2013) [Rug13], Rauer et al. (2011) [Rau11]

and Godolt et al. (2015) [God15] investigated the impact of different stellar spec-

tral energy distributions on the ozone distribution of habitable non-tidally locked

terrestrial extrasolar planets.

Selsis (2000) [Sel00] simulated the evolution of the chemical and thermal atmo-

spheric structure of an Earth-like planet’s when placed in the orbit of a F9 and K2

star using a 1D atmospheric model. He reported that an increase in the UV/visible

light ratio results in the thickening of the planetary ozone layer compared to the

Earth.

Segura et al. (2003) [Seg03] calculated the spectra of Earth-like planets orbiting a

F2V, a G2V and a K2V star using a 1D coupled radiative-convective photochemical

model and determined that the F2V planet would have a lower ozone concentration

compared to the G2V or a K2V planet. This contrasts with the results of Selsis et

al. (2000) [Sel00].

Segura et al. (2005) [Seg05] calculated the spectra of Earth-like planets orbiting

a M star and determined that an ozone layer similar to that of the Earth would

develop.

Grenfell et al. (2007) [Gre07] calculated the atmospheric composition changes

of an Earth-like planet when subjected to 5-10% changes of its orbital position

around a G2V, a F2V, and a K2V star using a 1D coupled radiative-convective

photochemical column model. As the planet moved outwards, the ozone increased

by ∼ 10 % due to the decreased stratospheric temperature.

Rugheimer et al. (2013) [Rug13] used a geometrical 1D model global atmosphere

model to simulate the spectra of clear and cloudy Earth-like planets orbiting a F,

a G, and a K star at the 1 AU equivalent distance. They reported that an increase

in either the parent star’s UV radiation or its temperature resulted in increased O3

concentrations and stronger O3 spectral features.
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Rauer et al. (2011) [Rau11] used a plane-parallel, 1D climate model, coupled

with a chemistry model to calculate the molecular absorption bands of super-Earth

planetary atmospheres orbiting M stars. They reported that the ozone emission of

planets orbiting quiet warm M0 - M3 dwarfs would be stronger than the Earth’s.

The ozone emission spectra of planets orbiting cool and quiet M4 - M7 on the

other hand, stars would be weaker due to increases in the planet’s mid-atmospheric

temperatures.

Grenfell et al. (2013) [Gre13] used a global-mean radiative-convective-photochemical

column model to perform a sensitivity study on the atmosphere of an Earth-like

planet. The stellar class and planetary gravity of the planet was varied and the

effects of the resulting photochemistry and climate changes investigated. According

to their results, the stratospheric ozone generation of an Earth-like planet orbiting

an M0 star is still dominated by the Chapman cycle but to a lesser extent compared

to the Earth and the smog generation mechanism is strengthened. Moving towards

cooler stars the Chapman mechanism is weakened and the smog mechanisms is

strengthened. For cool M5-M7 stars, the ozone photochemistry shifted completely

from the Chapman production to smog-dominated stratospheric ozone production.

Godolt et al. (2015) [God15] studied the influence of F, G and K stars on the

stratospheric temperature, climate and potential habitability of Earth-like exoplan-

ets planets using a state-of-the-art 3D Earth climate model which accounts for local

and dynamical processes. They used a fixed Earth-like atmosphere with no atmo-

spheric chemistry and positioned the planets at orbital distances that ensured, that

the total amount of energy received from the parent stars would equal the solar

constant. The results of the study confirmed that when the atmospheric chemistry

is maintained unaltered, different stellar spectral energy distributions will result

in different ozone heating rates and therefore, different vertical temperature struc-

tures, in accordance with Segura et. al (2000) [Sel00], Segura et al. (2003) [Seg03],

Segura et al. (2005) [Seg05], Grenfell et al. (2007) [Gre07], Rugheimer et al. (2013)

[Rug13] and Rauer et al. (2011) [Rau11]. Specifically the stratospheres of Earth-

like planets orbiting stars less massive than the Sun will be characterised by lower

ozone heating rates and shallower stratospheric temperature increases compared to

the Earth.

The above studies demonstrated that for non-tidally locked, M star orbiting, plan-

ets the reduced UV radiation emission would result in a cooler stratosphere and

changes in their stratospheric ozone concentration. It is reasonable to assume that

tidally locked planets would be equally affected.

The ozone concentration of a tidally locked Earth-like planet orbiting an M star

would be altered by the effects of the tidal lock and the altered stellar irradiance

spectrum and make the attribution of the ozone distribution changes on either the

tidal lock or the altered UV radiation exceedingly challenging. Therefore, we chose

not to include the effects of the altered UV radiation in our study and focus only

on the impact of the tidal locking on the Earth-like planet orbiting a Sun-like star.

Past studies of tidally locked Earth-like atmospheres limited themselves to the

troposphere (Merlis and Schneider (2010) [Mer10], Yang, Cowan and Abbot (2013)

[Yan13], Grenfell et al. (2014) [Gre14]).

Merlis and Schneider (2010) [Mer10] simulated the troposphere of an Earth-like,

tidally locked aquaplanet with a rotation period equal to one Earth year using an
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ideal gas GCM with an active hydrological cycle, a gray radiation scheme and a

slab ocean. They reported a maximum subsolar point surface temperature of ∼
300 K and a minimum antisolar point temperature of 240 K. Since the surface

temperature never dropped below 240 K, no atmospheric collapse occurred on the

night side. They also reported the presence of a strong upwelling above the subsolar

point on the day side and a downwelling, centred over the antisolar point, on the

night side. The upwelling was generated by the increased radiative heating, while

the downwelling was generated by the increased radiative cooling.

Yang, Cowan and Abbot (2013) [Yan13] demonstrated that clouds in the tropo-

sphere of a tidally locked aquaplanet, especially when located over the subsolar

point, can ensure habitability at almost twice the Earth stellar flux.

Grenfell et al. (2014) [Gre14] used a global-mean, stationary, hydrostatic, atmo-

spheric column model, extending from the surface to ∼ 70 km, to perform a 1D

simulation of an Earth-like exoplanet atmosphere. The planet’s atmosphere had

the starting composition, pressure and temperature of the 1976 U.S Standard At-

mosphere [Wik15]. The UV emission of a cool M7 star was varied and the resulting

climate-photochemical response of the planetary atmosphere including numerous

catalytic processes of O3 depletion were calculated. Grenfell et al. (2014) [Gre14]

showed that the strongest O3 emission is generated when the stellar UV radiative

flux is ten times that of an M7 star. They also reported that the exoplanet’s O3 9.6

µm spectral line profile is influenced strongly by the 200–350 nm UV output of the

parent star.

The influence of the sea-surface temperature on the tropospheric and lower strato-

spheric temperature and dynamics has been investigated by several researchers for

the present day Earth but not for exoplanets.

Braesicke and Pyle (2004) [Bra04] investigated the dynamics and ozone sensitivity

to different SSTs using the Met Office Unified Model with simple stratospheric

chemistry. They performed multi-annual simulations, each lasting 20 years. The

simulations shared the same simplified ozone chemistry but different prescribed

SSTs. According to their results, the appearance of extreme events in the winter

stratosphere were more strongly correlated with the underlying SSTs rather than

with changes of the ozone layer.

Rosen and Reid (2008) [Ros08] used data provided by the NOAA/CIRES Climate

Diagnostics Center to investigate the long-term tropical lower stratospheric temper-

ature trends over the western Tropical Pacific Ocean, in relation to variations in

the SST. Their study revealed the presence of an anticorrelation between strato-

spheric temperature anomalies and SST anomalies. Rosenlof and Reid proposed the

existence of a fairly direct influence between the underlying ocean and the lower

tropical stratosphere and speculated that the anticorrelation is generated by the

increased deep tropospheric convection generated by the SST warming.

Decker and Dameris (2008) [Dec08] reported the presence of a lower stratospheric

cooling due to higher tropical SSTs. Their study investigated how the strength of the

tropical upwelling is influenced by changes in the underlying SST and greenhouse

gas concentrations. To that end, they performed two simulations with different

SSTs and greenhouse gas concentrations. They concluded that the deep convec-

tion was amplified by the higher underlying SST and waves were generated. The
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waves enhanced the residual meridional circulation and the upwelling of ozone-poor

tropospheric air into the lower stratosphere in the tropics.

One study by Hegy et al. (2013) [Heg14] was performed using the CESM1(WACCM)

model version 1.0.2 to investigate the initial transient response of the boreal win-

ter stratospheric polar vortex to localised SST warming events. They conducted

twenty perpetual winter simulations. According to their results, the polar vor-

tex was weakened by changes in the eddy-driven mean meridional circulation and

negative anomalies appeared in the eddy momentum flux convergence. They also

demonstrated that the initial state and subsequent internal variation of the extrat-

ropical atmosphere is equally important to the type of SST forcing in determining

the response of the stratospheric polar vortex. Furthermore, they found that the

interactions between the internal variability of the vortex and the SST-driven wave

anomalies govern the nature of the polar vortex response to the forcing.

Chen et al. (2010) [Che10] used an Earth-like aquaplanet general circulation model

to study the tropospheric winds and stratospheric Brewer-Dobson circulation sensi-

tivities to SST warmings. The main aim of the study was to investigate the relation-

ship between a warming ocean due to global warming and a change in the Earth’s

large-scale atmospheric circulation. The authors concluded that the location and

sign of the SST perturbations gradient strongly influenced the tropospheric jet and

the Hadley cell. They reported an increase in the Brewer-Dobson circulation in the

presence of a low latitude warming and a decrease in the presence of a high latitude

warming extending to the subtropics.

To the extent of our knowledge, the correlation between the SST and the middle

atmosphere has not been investigated for a tidally locked Earth-like planet whose

circulation largely differs from the Brewer-Dobson circulation of the fast rotating,

present day Earth. The sensitivity of the mesospheric conditions to SST variations

is crucial for the observations of the spectral signatures of mesospheric gases, who

will be affected by altered temperatures and/or circulation patterns.

Below, we first describe the model used and the simulation setup. Next we present

and analyse the atmospheric evolution to a steady-state, the atmospheric circula-

tion, the atmospheric temperature structure and the ozone volume mixing ration

distribution (O3VMR).

2 Model Description
The simulation is performed using the Community Earth System Model (CESM)

version 1.04 which consists of five fully coupled geophysical models: atmosphere

(ATM), land (LND), ocean (OCN), sea-ice (ICE), land-ice (GLC). The models

have five possible different modes: fully prognostic, data, stub and dead. The fully

prognostic mode provides “state-of-the-art climate prediction and analysis tools”

(Vertenstein et al. (2012) [Ver12]).

The atmospheric model used to perform our study is the Whole Atmosphere Com-

munity Climate Model version 4 (CESM1(WACCM)) (Neal et al. 2012) [Nea12]).

CESM1(WACCM) has been used to simulate the circulation, gravity waves and at-

mospheric composition changes of the present day Earth by Pedatella et al. (2014)

[Ped14], Pedatella et al. (2013) [Ped13], Lu et al. (2012) [Lu12], Tan et al. (2012a)

[Tan12a], Tan et al. (2012b) [Tan12c], Tan et al. (2012c)[Tan12b], Davis et al.
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(2013) [Dav13], Smith et al. (2012) [Smi12]. It is fully coupled to the land, ocean

and ice models (Vertenstein et al. (2012) [Ver12]).

It has a fully compressible horizontal discretization and a quasi-Lagrangian ver-

tical discretization approximation which is good for scales larger than 10 km (Neal

et al. (2012) [Nea12]). It has 66 vertical levels starting on the surface of the planet

and up to 5 · 10−6 hPa (2.5 - 149 km). The model top is located at ∼ 150 km. The

vertical coordinate is terrain following below 100 hPa and purely isobaric above 100

hPa. The vertical resolution is 1.1 km in the troposphere, 1.1–1.4 km in the lower

stratosphere, 1.75 km at the stratopause and 3.5 km above 65 km (Neal et al. (2012)

[Nea12]).

CESM1(WACCM) has full tropospheric, stratospheric and mesospheric chem-

istry, with 57 chemical species (Neal et al. (2012) [Nea12]). The gas-phase chem-

istry is coupled to the Modal Aerosol Model (Neal et al. (2012) [Nea12]). The

stratospheric distributions of long-lived species are taken from previously performed

CESM1(WACCM) simulations.

The longwave and shortwave radiative transfer calculations are provided by the

radiation code RRTMG (Iacono et al. (2008) [Iac08], Mlawer et al. (1997) [Mla97]).

It is capable of efficiently calculating the irradiance and heating rate in broad spec-

tral intervals, while retaining a high level of accuracy relative to measurements

and high-resolution line-by-line models. It also distinguishes between the direct and

scattered solar radiation.

The shortwave radiative transfer is calculated over 14 bands (0.2 µm to 12.2 µm)

while the longwave radiative transfer is calculated over 16 bands (3.1 µm to 1000.0

µm). The 16th longwave band includes the infrared contribution from the spectral

interval below 3.1 µm. Above 65 km the model covers the spectrum interval between

soft x-rays and extreme ultraviolet irradiances (0.05 nm to Lyman-α (121.6 nm) and

the spectrum interval between the Lyman-α (121.6 nm) and 100 µm (Neale et al.

(2012) [Nea12]).

The total shortwave fluxes are accurate within 1-2 W/m2 compared to the stan-

dard RRTM SW for clear sky conditions and aerosols, and 6 W/m2 in overcast sky

conditions. The total longwave fluxes are accurate within 1.0 W/m2 at all levels.

“‘The longwave radiative transfer is performed over a single angle for one upward

and one downward calculation” (Neale et al. (2012) [Nea12]). The absorption coeffi-

cients for the k-distributions for both the shortwave and the longwave radiation cal-

culations in RRTMG are obtained from the line-by-line radiation model LBLRTM

(Clough and Iacono (1995) [Clo95], Clough et al. (2005) [Clo05]).

The calculation of the photolysis coefficients is divided into the 120 nm - 200 nm

and 200 nm - 750 nm regions. The total photolytic rate constants are calculated by

the model by integrating the product of the wavelength dependent exo-atmospheric

flux, the atmospheric transmission function, the molecular absorption cross-section

and the quantum yield for each absorbing species. The exo-atmospheric flux is taken

from observations and varies over the 11-year solar sunspot cycle. The transmission

function is wavelength-dependent and a function of the model abundance of ozone

and molecular oxygen. For wavelengths above 200 nm the molecular absorption

cross-section and the quantum yield are calculated by the model, while below 200

nm, their values are pre-defined. For NO and O2 detailed photolysis parametrisa-

tions are included in the model. The impact of clouds on the photolysis rates is
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parametrised. The impact of tropospheric and stratospheric aerosols on photolysis

rates on the other hand, is not calculated (Neale et al. (2012) [Nea12]).

The CESM model uses the Kurucz solar source function, whose radiative transfer

calculation is based upon solar measurements. The model assumes a total solar

irradiance at the top of the atmosphere equal to TSI = 1368.22 W/m2. The value

is then ”scaled in each spectral band through the specification of a time-varying

solar spectral irradiance” (Neale et al. (2012) [Nea12]). A combination of solar

parametrizations is used to specify spectral irradiances over the soft x-ray to Lyman-

α and the Lyman-α to 100 µm spectral interval. The first spectral interval fluxes are

calculated using the parametrization of Solomon and Qiang (2005) [Sol05]. It accepts

as input the 10.7 cm solar radio flux (f 10.7), whose daily values are obtained from

the NOAA’s Space Environment Center (www.sec.noaa.gov) and its 81-day average.

The second spectral interval fluxes are calculated using the empirical model of the

wavelength-depending sunspot and facular influences (Lean et al. (2000) [Lea00]

and Wang et al. (2005) [Wan05]) (Neal et al. (2012) [Nea12]).

The modelled sources of radiation absorption and scattering in the shortwave

electromagnetic spectrum are H2O, O3, CO2, O2, CH4, N2, clouds, aerosols, and

Rayleigh scattering. The sources of molecular radiation absorption in the longwave

electromagnetic spectrum are H2O, CO2, O3, N2O, CH4, O2, N2, CFC − 11 and

CFC − 12. The shortwave electromagnetic radiation is calculated only for zenith

angles larger than zero (Neale et al. (2012) [Nea12]). The zonal mean climatology

of the local O3 concentration, the temperature, the overhead column O3 and other

chemicals is based on satellite and in-situ Earth observations (Neal et al. (2012)

[Nea12]).

The model computes the chemical equilibrium of 36 photochemical species (O2,

O3, N2O, NO, NO2, N2O5, HNO3, NO3, HO2NO2, CH3OOH, CH2O, H2O, H2O2,

Cl2, ClO, OClO, Cl2O2, HOCl, HCl, ClONO2, BrCl, BrO, HOBr, BrONO2, CH3Cl,

Ccl4, CH3CCl3, CFC11, CFC12, CFC113, HCFC22, CH3Br, CF3Br, CF2ClBr,

CO2, CH4). The model atmospheric tracers are Ox, NOx, HOx, ClOx, and BrOx

chemical families, excluding O2, along with CH4 and its degradation products. The

main photochemical and chemical interactions responsible for changing the atmo-

spheric ozone concentration are described by the reaction rate of ozone
d(O3)

dt
+

JO3
(O3) +k3(O)(O3) +a2(H)(O3) +a6(OH)(O3) +a6b(HO2)(O3)+ b4(NO)(O3) +

b9(NO2)(O3)+d2(Cl)(O3)+e2(Br)(O3) = k2(M)(O2)(O).
d(O3)

dt
is the production

rate of O3. JO3
is the photolysis rate of ozone. k3, a2, a6, a6b, b4, b9, d2, e2, k2(M) are

the chemical rate constants of the reactions and are taken from JPL06-2 (Sander

et al. (2006) [San06]).

A polar stratospheric cloud parametrization scheme is incorporated in the model.

It is activated when the cosine of the solar zenith angle is larger than zero at

stratospheric altitudes and the stratospheric temperature drops below 195 K (Neal

et al. (2012) [Nea12]).

The momentum, sensible heat flux, latent heat flux, land surface albedos and

upward longwave electromagnetic radiation are used to calculate the atmospheric

radiation. The upward longwave radiation is given by the difference of the incident

and the absorbed fluxes. The incident flux values are in turn, determined from the
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daily values of the solar radio flux (F10.7) which are provided by the National

Oceanic and Atmospheric Administration’s (NOAA) Space Environment Center

[Nat15].

The starting values of the zonal mean climatology of the local O3 concentration,

the temperature, the overhead column O3 and other chemicals used by the model

are provided by satellite and in-situ Earth observations (Neal et al. (2012) [Nea12]).

A detailed model description can be found in Neal et al. (2012) [Nea12].

3 Methods
3.1 Simulation Setup

We perform two 90-day simulations with different SST distributions for a tidally

locked Earth-like planet (TLE). The first first SST distribution is that of the present

day Earth. It is characterised by temperatures of 290 - 300 K in the tropics and 270

- 280 K in the polar regions. Due to the overall warm SST, the simulation using

this SST it will be hereafter called Warm TLE (WTLE). This SST distribution is

only used to force an extreme SST and is otherwise incorrect for a tidally locked

planet. The second SST distribution resembles the SST reported by Merlis and

Schneider (2010) [Mer10]. It was characterised by a uniform night side SST 250 K

temperature and a monotonically and isotropically increasing day side SST that

reached a maximum of 300 K within a 30 degrees radius centred on the subsolar

point. On account of the overall cooler SST the simulation will be called Cold TLE

(CTLE). Both SSTs can be seen in Figure 1.

The tidally locked planet is located at a distance of 1 AU from the parent star,

has an eccentricity of 0 < e < 1, a stellar irradiance at the top of the model

1366.96 < So < 1368.60 and a rotation rate that is 1/365th of the Earth’s rotation

rate. The subsolar point is permanently located (0.17◦ N, -178.17◦ E) in the Pacific

Ocean, which is the position of the Earth’s subsolar point at 00:00 UT on the day

of the Spring Equinox (21.03.2000).

The parameters altered to achieve the tidal lock and a perpetual equinox are:

• the number of seconds in a siderial day: altered from 86164 seconds/day to

3.15 · 107 seconds/day

• the planet’s rotational velocity: set to 2.31 · 10−12 rad/s

• the planet’s new rotation rate: set to 1◦ every 87600 seconds (the Earth rota-

tion rate is 1◦ every 240 seconds)

• the position of the subsolar point: set to (0.17◦ N, -178.17◦ E) for the duration

of the simulations

• the Sea Surface Temperature (SST): changed to resemble the SST reported

by Merlis and Schneider (2010)[Mer10]

• The solar zenith angle (SZA): set to a constant value by means of the present

day Earth (PDE) Julian date.

The SZA is the main parameter used for the assessment of the incoming solar

radiation in the CESM model. By setting the Julian date to a constant value we

stop the periodic 24-hour variation of the SZA at all grid points. Figure 2 shows the

shortwave solar radiation flux at the top of the model for the WTLE and CTLE

simulations. The solar point is depicted by a white dot located on either side of

the figure, while the anti-solar point is depicted by a magenta point located in the

centre of the figure.
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The CESM1(WACCM) requires the presence of an active land model and, there-

fore, has the general topography and continents of the Earth. The atmospheric and

surface initialization data are identical for all simulations and all start with same

3D ozone and wind field.

In the next subsection we present the middle atmospheric circulation (Ω, HW ),

temperature (T ) and ozone distribution (TOC, O3VMR) of the two simulations

and we discuss the degree by which they are influenced by the two extreme SSTs.

We first discuss the atmospheric adjustment time of the two tidally locked Earths

(TLEs) and compare it to the present day Earth. Then, we present and discuss

their atmospheric circulation, their atmospheric temperature structure and their

latitude-longitude O3VMR cross section.

It should be noted that while the possibility of tidal locking of an Earth-like planet

within the habitable zone of a Sun-like star has a low probability, the similarity of the

solar spectrum and atmospheric composition to the PDE fosters the intercomparison

and interpretation of the differences in the model runs. Furthermore, since several

past studies of tidally locked exoplanets have used models with solar spectrum

and atmospheric composition similar to that of the PDE, this setup fosters the

intercomparison and interpretation of the changes with past models.”

3.2 Data Analysis

The zonal wind (U), the meridional wind (V ), the vertical wind (Ω), the atmospheric

temperature (T ), the air number density (M) and the ozone volume mixing ratio

(O3VMR) are extracted from the output datasets of the simulation run. The above

parameters are then interpolated for the altitudes of 1 to 140 km. Next the zonally

averaged zonal, meridional and vertical wind are calculated from 5 to 110 km. The

O3 concentration is calculated for the altitudes of 1 to 110 km by multiplying the

ozone volume mixing ratio with the air number density ([O3] = O3VMR · [air]). As a

next step, the total ozone column density (TOC) is calculated by interpolating the

O3 concentration between the altitudes of 5 and 110 km (TOC =
∫ 110

5
[O3]dz). The

altitude limits are imposed in order to avoid the data gaps generated by the presence

of several high mountains and mountain ranges at low altitudes (e.g Himalayas,

Kilimanjaro) and the air density data gaps above 110 km altitude. The TOC, HW ,

Ω and T global means are determined by calculating their zonal means as a function

of latitude and then weighting them with the surface area of the latitude belts

(surface area preserving mean). The change in % between the CTLE and WTLE

parameters is calculated using the following equation:

∆ =
parameterCTLE − parameterWTLE

parameterWTLE
∗ 100 (1)

where the term parameter is used to refer to any of the TOC, Ω, HW , T and

O3VMR.

3.3 Terminology

The day side of a tidally locked planet is the permanently illuminated hemisphere

that is always facing the parent star, while the night side is the hemisphere that is

never illuminated by the parent star. The subsolar point is defined as the position
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of maximum solar flux, located at the centre of the day side and has a solar zenith

angle (SZA) equal to zero (SZA = 0◦). The antisolar point is defined as the centre

of the night side (SZA = 180◦).

4 Results and Discussion
4.1 Atmospheric steady state

According to our results, the middle atmospheres of the CTLE and WTLE adjust

to the new radiative and dynamical conditions within 80 days from the start of the

simulation. Figure 3 shows the adjustment times of the CTLE and WTLE total

ozone column (TOC), and the global mean stratospheric horizontal wind (HW ),

global mean stratospheric vertical wind (Ω) and global mean stratospheric temper-

ature (T ) for the 30 - 40 km altitude range. The temporal evolutions of the PDE

TOC, HW , Ω and T are also provided.

The CTLE and the WTLE TOC, HW and Ω adjustment times and values are

not significantly altered by the SST change, as can be seen in Figures 3a, 3b and

3c. The % change in their adjustment times is shown in Table 1. The CTLE and

WTLE T adjustment times are shown in Figure 3d. As one can see their adjustment

times are comparable despite their altered slope and the CTLE values are decreased

compared to the WTLE. This difference is also visible in the CTLE and WTLE T

global average which will be presented in Section 4.3.

The CTLE and WTLE e-folding times of the TOC, HW , Ω and T along with

their PDE equivalents and standard deviations (σ) are shown in Table 1. They are

30, 20, 15 and 40 days, respectively. Therefore, their adjustment times are 60, 40,

30 and 80 days, respectively. A comparison between the CTLE, the WTLE and the

PDE σ in Table 1 reveals that the PDE has higher standard deviations (σPDE)

compared to the CTLE and WTLE standard deviations (σCTLE and σWTLE).

4.2 Atmospheric circulation

The tidal lock results in a breakdown of the Brewer-Dobson circulation (Figure 4)

in both the CTLE and the WTLE. As can be seen in Figures 5, 6, 7, 8 it is replaced

by a very different atmospheric circulation. Despite the different atmospheric a

troposphere, a stratosphere and a mesosphere is present in both simulations. Below

we present a description of the atmospheric circulation of the two simulations.

4.2.1 Vertical wind

The CTLE and WTLE vertical wind are shown in Figures 5 and 6, respectively.

The day side air rises as a result of being radiatively heated by the constant short-

wave radiation flux it receives from the parent star. On the night side the lack of

incoming radiation results in the radiatively cooling of the air which subsequently

sinks towards the surface. This results in the appearance of a day side upwelling and

a night side downwelling extending from the surface to the mesosphere. Merlis and

Schneider (2010) [Mer10] predicted the presence of such a vertical wind setup for

the troposphere of a tidally locked Earth-like aquaplanet orbiting a Sun-like star.

A comparison between Figures 5 and 6 reveals that the vertical winds of the

two simulations are very similar. They are characterised by different small-scale
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variability showing vortices and jets of different magnitudes and locations in the

CTLE and WLTE simulations. The WTLE atmosphere is characterised by a greater

small-scale variability compared to the CTLE. We can, therefore, conclude that the

SST change has only a limited effect on the vertical wind.

4.2.2 Horizontal wind

The CTLE and WTLE horizontal wind at stratospheric and mesospheric altitudes

are shown in Figures 7 and 8. The CTLE horizontal wind at 24 km is shown in

Figure 7a, while the WTLE horizontal wind at 24 km is shown in Figure 8a. A

comparison between the two figures reveals that in both simulations, the horizontal

wind is characterised by the presence of a global eastward zonal jet stream.

The CTLE and WTLE stratospheric horizontal wind at 36 km is shown in Figures

7b and 8b. In both simulations, a westward global zonal jet stream with an accom-

panying vortex located at polar latitudes is present. The vortex can be seen on the

left hand side of the Southern and Northern Hemispheres in Figures 7b and 8b. The

blue coloured regions on the right hand side of the Southern and Northern hemi-

spheres, on the other hand, are regions of low HW speeds. The WTLE horizontal

wind is slightly weaker and has a wider jet stream compared to the CTLE.

The situation is different at mesospheric altitudes. At 60 km altitude, the zonal

jet stream is replaced by large-scale vortices in both the CTLE and the WTLE,

located at different geographical locations.

The mesospheric wave-breaking mechanism may explain this phenomenon. Grav-

ity waves are generated by tropospheric convection followed by the release of latent

heat. They then propagate upwards and break when they reach the mesosphere.

There they deposit their energy and, in the process, decelerate the wind flow (Nappo

(2013) [Nap13]). As a result of the different SST heat distributions in the WTLE and

CTLE, the convectively induced gravity waves are generated at different locations

with different energy budgets. This leads to different wave-breaking patterns and

different gravity wave energy dissipation rates, and gives rise to different horizontal

wind circulations patterns in the two simulations.

Gravity waves are also generated through interaction between the planet’s sur-

face orography and the lower tropospheric wind field (Nappo (2013) [Nap13]). The

encounter between the tropospheric wind and a hill, mountain or mountain range

vertically displaces the stably stratified wind flow upwards. This leads to the gen-

eration of upwards propagating gravity waves which transport energy and mean-

flow momentum towards the middle and upper atmosphere. There it is deposited

through the wave-breaking mechanism (Nappo (2013) [Nap13]). In the case of the

WTLE and CTLE, both simulations have the same Earth-like orography but dif-

ferent SSTs. As a result different sea and land breezes are generated, which lead

to different lower tropospheric horizontal wind distributions (1.4 m/s in average)

and therefore different terrain-generated gravity wave distributions. Consequently,

the mesospheric energy deposition and wind deceleration are different for the two

simulations. Therefore, the reported changes in the mesospheric horizontal wind are

possibly induced by differences in the energy and momentum fluxes of the convec-

tively and orographically generated gravity waves of the two simulations.

As can be seen in Figure 3b, the middle atmospheric horizontal wind speeds of the

CTLE and the WTLE are slower compared to the PDE. They are also characterised
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by stronger and wider jet streams and the presence of large scale vortices at various

geographical locations. The slower wind speeds could be attributed to the smaller

CTLE and WTLE Coriolis force, compared to the PDE.

We can, consequently, conclude that the mesospheric circulation is more sensitive

to the underlying SST compared to the stratospheric circulation, as is made evident

by the regional differences in the vertical and horizontal wind maps. The discrepancy

between the stratospheric and mesospheric circulation can be explained by the fact

that the stratospheric dynamics are mainly driven by the insolation of stratospheric

ozone.

4.3 Atmospheric temperature structure

Next we present the temperature structure of the CTLE and WTLE atmospheres,

which can be seen in Figure 9(a). An inspection of Figures 9(a) and 9(b) shows

that the WTLE’s lower troposphere (z<3 km) is warmer than its CTLE equivalent

by a factor of 3.7 K on average. This temperature is generated by the increased

upwelling longwave radiation, sensible and latent heat from the underlying WTLE

SST which is warmer by approximately 23.7 K compared to the CTLE.

In the 10 km - 15 km region, the WTLE temperature is cooler by 4 K on average

compared to the CTLE, as can be seen in the purple highlighted region of Figure

9(b). The adiabatic cooling is generated by the increased upwelling of the subsolar

region air, which is radiatively and convectively heated by the warm WTLE SST.

This result is in agreement with the studies performed by Rosenlof and Reid (2008)

[Ros08], Breasicke and Pyle (2004) [Bra04], Decher and Dameris (2008) [Dec08],

who reported the generation of an upper tropospheric cooling by an SST warming.

In the lower stratosphere, between between 18 km and 30 km, the increased up-

welling longwave radiation emitted from the warm WTLE SST is absorbed by ozone

and radiatively heats the WTLE stratosphere, increasing its temperature by 3.8 on

average. This warming is shown in the green highlighted region of Figure 9(b) and

is in agreement with expectations of radiative coupling between the surface infrared

emission and the lower stratosphere.

To investigate this coupling, we correlate the atmospheric temperature differences

with the SST differences obtained from the two simulations. The difference values

are calculated by the following equations:

∆Taltitude = TWTLE − TCTLE (2)

gives the difference between the WTLE and the CTLE temperatures at a given

altitude and geographic location, while

∆SST = SSTWTLE − SSTCTLE (3)

gives the difference between the WTLE and the CTLE SSTs at a given geographic

location.

Figure 10 shows the relationship between the ∆SST and the ∆T at 1 km altitude

(∆T1km). The figure indicates that there is a linear correlation between the two

quantities and that the SST changes have a direct radiative effect on the lower
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tropospheric temperature. Using the least squares method, we determine that the

correlation between the ∆SST and the ∆T1km is given by:

∆T24km(∆SST ) = (0.028 ± 0.014)∆SST + 0.9 ± 0.43 (4)

Therefore, a 30 K change of the SST corresponds to a 8.6 K change of the lower

stratospheric temperature.

Figure 11 shows the relationship between the ∆T at 1 km (∆T1km) and the ∆T at

24 km altitude (∆T24km). There is a linear correlation between the two quantities

and it demonstrates that the SST variation generates the temperature changes in

both the lower troposphere and lower stratosphere. Using the least square method,

we determine that the relationship between the ∆T1km and the ∆T24km is given by:

∆T24km(∆T1km) = (0.01 ± 0.0019)∆T1km + 3.8 ± 0.022 (5)

Therefore, a 30 K change of the lower tropospheric temperature corresponds to a

0.3 K change of the lower stratospheric temperature.

Figure 12 shows the relationship between the ∆SST and ∆T24km. As can be seen,

a linear correlation exists between the ∆SST and ∆T24km, which suggests that SST

changes have a direct radiative effect on the lower stratospheric temperature. Using

the least square method, we determine that the correlation between the ∆T1km and

the ∆T24km is given by

∆T24km(∆SST ) = (0.006 ± 0.0009)∆SST + 3.78 ± 0.027 (6)

Therefore, a 30 K change of the SST corresponds to a 0.18 K change of the lower

stratospheric temperature. The inclination of the regression line is rather small.

This may be due to the strong mixing and quasi-isothermal behaviour of the lower

stratosphere of tidally locked Earth-like planets.

The above results suggest that the increased thermal radiation emitted by the

WTLE’s surface together with the upwelling sensible and latent heat are absorbed

by the lower tropospheric greenhouse gases. They then increase the WTLE’s tem-

perature by 8.6 K for every 30 K SST increase. The longwave radiation not absorbed

by the lower troposphere reaches the lower stratosphere. There it is absorbed by

the ozone 9.6 µm absorption band, a band expected to be present in the spectra

of exoplanets capable of sustaining an ozone layer. The result is a stratospheric

temperature increase of 0.1 K for every 30 K SST increase. Therefore, a stronger

absorption line could be expected for warmer SSTs.

The lower mesospheric temperature (70 km - 80 km) on the other hand, is cooler

by 1.13 K on average compared to the CTLE. This temperature difference can be

explained using the mesospheric wave-breaking mechanism mentioned above. The

higher number and more energetic gravity waves generated by the warm WTLE

SST, lead to higher wave momentum deposition in the lower mesosphere and, there-

fore, to a lower mesospheric adiabatic cooling.
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The picture reverses in the upper mesosphere (90 km - 110 km), where the WTLE

temperature is higher by 4.3 K on average, compared to the CTLE. This tempera-

ture difference may be induced by circulation changes generated by different gravity

wave fluxes from below, but the details of the underlying processes remain an open

question.

We can therefore conclude, that increased SST leads to enhanced temperatures in

the lower stratosphere of a tidally locked Earth-like exoplanet. Our results indicate

that this lower stratospheric heating could be due to the enhanced upwelling of

infrared radiation from the warm SST. Generally, the difference between the WLTE

and the CLTE simulation is smaller than we expected.

4.4 Ozone volume mixing ratio distribution

Figure 13 shows the CTLE and WTLE day side and night side ozone volume mixing

ratio O3VMR distribution. It depicts the cross section of the CTLE and WTLE

O3VMR distribution along the 1st and the 180th meridian, respectively.

A comparison between Figures 13b and 13d reveals that the primary ozone layer

(30 - 40 km altitude) is not significantly affected. The increased WTLE middle

atmospheric temperature (Figure 9) results in the decrease of the WTLE day side

O3VMR by 1.8% and a night side decrease of 1.27%.

On the other hand, the night time secondary ozone layer, located in both cases

in the 85 - 110 km altitude range, is significantly affected. The WTLE O3VMR

is enhanced by 40.5% compared to the CTLE. It is possible that the mesospheric

circulation changes, generated by the different upwelling gravity wave fluxes, are

responsible for the changes in the secondary ozone layer, but the details of the

underlying processes remain an open question.

We can, therefore, conclude that the use of an inaccurate SST in a tidally locked

Earth-like exoplanet may significantly affect the secondary ozone layer, while the

primary ozone layer remains almost unaffected.

The gap visible at mesospheric altitudes over the WTLE equator in Figure 13a

appears as a result of local upwelling of ozone poor air from lower altitudes and is

located in the regions close to the Atlas mountains and the Atlantic Ocean. It is

possibly generated by upwelling gravity waves, not present in the CTLE.

5 Conclusions
We studied the sensitivity of a tidally locked Earth-like atmosphere to its underlying

SST by simulating the atmospheric circulation, temperature and ozone distribution

changes generated by two different SST distributions. The first SST distribution

represented the well-observed SST of the fast rotating, present day Earth and the

simulation using it was called WLTE. The second SST distribution was the SST

of a tidally locked Earth-like aquaplanet. It was provided by Merlin and Schneider

(2010) [Mer10] and the simulation using it was named CLTE.

Our results show that the tidal lock results in the breakdown of the Brewer-

Dobson circulation, which is replaced by a dayside downwelling, centred on the

subsolar point and a night side upwelling, centred on the antisolar point. The tidal

lock also alters the horizontal wind at all altitudes, resulting in lower wind speeds,

wider and stronger jet streams and the appearance of large scale vortices at various

locations compared to the PDE, possibly due to the reduced TLE Coriolis force.
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We determined that the vertical and horizontal winds are relatively insensitive to

changes of the underlying SST. However, the small-scale variability is affected by

the SST changes. A strong effect appears at mesospheric altitudes, possibly due to

differences in the upwelling gravity wave flux. The dependence of atmospheric tides

and planetary waves on the SST distributions could also play a role.

We found that the WTLE lower tropospheric temperature global average is in-

creased, on average, by 3.7 K compared to the CTLE due to the warmer WTLE

SST. The WTLE tropospheric warming causes the hot air to ascend and cool adi-

abatically, generating a cooling of 4 K on average in the altitude regions between

10 km and 15 km, compared to the CTLE. This result is in agreement with past

studies of the effects of SST warmings on the Earth’s upper troposphere. Between

18 km and 30 km, a stratospheric heating of 3.8 K on average, is present in the

WTLE compared to the CTLE, generated by the absorption of the upwelling long-

wave radiation by ozone through the 9.6 µm line. The enhanced, upwelling longwave

radiation is generated by the warmer WTLE SST.

The lower mesospheric cooling (1.13 K) on average is also generated by the warmer

WTLE, due to increased wave generation and subsequent wave-breaking in the

mesosphere. An upper mesospheric warming (4.3 K) is also present in the WTLE

compared to the CTLE but its generation mechanism is currently an open question

and under investigation.

The primary ozone layer is not significantly affected by the SST change with the

WTLE day side primary ozone layer decreasing by 1.8% and the night time primary

ozone layer decreasing by 1.27%. The WTLE secondary ozone layer, on the other

hand, increased by 40.5%. The generation mechanism is currently an open question

and under investigation.

A future study would aim to explain the physical processes responsible for the

increase of the upper mesospheric temperature and strengthening of the secondary

ozone layer accompanying the increase in the underlying SST.
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Figure 3 CTLE, WTLE and PDE atmospheric temporal evolution (a) the TOC, (b) the HW ,
(c) the Ω and (d) the T , respectively. The CTLE and WTLE TOC, HW , and T are exponentially
decaying to their steady-state value with an e-folding time of 30, 20 and 40 days, respectively.
The CTLE and WTLE vertical winds are exponentially increasing to their steady-state value with
an e-folding time of 15 days.
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Figure 4 The Brewer Dobson circulation The Brewer-Dobson circulation on Earth. The Hadley,
Ferrel and Polar cells are visible in the figure for both hemispheres. The thick white arrows
indicate the transformed eulerian mean mass streamfunction. The wavy orange arrows indicate
two-way mixing processes. The thick green lines indicate the presence of stratospheric transport
and mixing barriers. (Adapted from Bonisch et al. 2011 [Bön11])
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Figure 5 CTLE Longitude-Latitude Vertical wind circulation (a) Vertical wind at 10 km, (b)
Vertical wind at 30 km, (c) Vertical wind at 40 km, (d) Vertical wind at 50 km, (e) Vertical wind
at 60 km, (f) Vertical wind at 70 km. Warm colours (positive values) indicate a downwelling
wind. Cold colours (negative values) indicate an upwelling wind. Each figure is centred on the
antisolar point which is indicated with a black dot. The subsolar point is indicated with a white
dot on either side of each figure.
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Figure 6 WTLE Longitude-Latitude Vertical wind circulation (a) Vertical wind at 10 km, (b)
Vertical wind at 30 km, (c) Vertical wind at 40 km, (d) Vertical wind at 50 km, (e) Vertical wind
at 60 km, (f) Vertical wind at 70 km. Warm colours (positive values) indicate a downwelling
wind. Cold colours (negative values) indicate an upwelling wind. Each figure is centred on the
antisolar point which is indicated with a black dot. The subsolar point is indicated with a white
dot on either side of each figure.
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Figure 7 CTLE Horizontal circulation at select altitudes (a) Horizontal wind at 24 km, (b)
Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black arrows indicate the wind
vector while the color shading shows the wind speed.
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Figure 8 WTLE Horizontal circulation at select altitudes (a) Horizontal wind at 24 km, (b)
Horizontal wind at 36 km, (c) Horizontal wind at 60 km. The black arrows indicate the wind
vector while the color shading shows the wind speed.
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Figure 9 CTLE and WTLE temperature global mean on day 90 The CTLE temperature is
depicted using the blue colour line. The WTLE is depicted using the red colour line. The altitude
range is 0 - 120 km.
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Figure 10 Scatter plot of ∆SST and ∆T1km The plot shows the correlation between the
surface ∆SST and the ∆T at 1 km altitude, together with a linear regression to the data.
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Figure 11 Scatter plot of ∆T1km and ∆T24km The plot shows the correlation between the
∆T at 1 km altitude and the ∆T at 24 km altitude, together with a linear regression to the data.
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Figure 12 Scatter plot of ∆SST and ∆T24km The plot shows the correlation between the
surface ∆SST and the ∆T at 24 km altitude, together with a linear regression to the data.

147



Proedrou et al. Page 25 of 26

  

120

100

80

60

40

20

A
lt

itu
de

   
(k

m
)

0 45-45 North
Pole

Latitude (°)

45 -450

10

8

6

4

2

0

O
3 
V

M
R

  (
pp

m
v)

Latitude (°)

0

120

100

80

60

40

20

A
lt

itu
de

   
(k

m
)

10

8

6

4

2

O
3 
V

M
R

  (
pp

m
v)

Daytime (WTLE)Night-time (WTLE)

Day side (CTLE)Night side (CTLE)

(a)

(c)

(b)

(d)

South
Pole

South
Pole

0 45-45 North
Pole

45 -450South
Pole

South
Pole

Figure 13 WTLE and CTLE Height-latitude cross section of O3VMR along the meridian
through the subsolar point and the antisolar point (a) Vertical cross section of the WTLE
night-time hemisphere. (b) Vertical cross section of the WTLE daytime hemisphere. (c) Vertical
cross section of the CTLE night side hemisphere. (d) Vertical cross section of the CTLE day side
hemisphere.
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Table 1 Comparison of the PDE, CTLE and WTLE TOC and the middle stratospheric HW , Ω and
T e-folding times, steady-state mean values and their standard deviations.

PDE σPDE CTLE σCTLE WTLE σWTLE

TOC (DU) 280.1 1.44 248.7 1.00 248.64 1.42
HW (m/s) 21.19 5.21 14.21 1.00 16.10 2.22
Ω (Pa/s) −8.6 · 10−7 9.6 · 10−7 −1.7 · 10−7 1.3 · 10−7 −2.0 · 10−7 −9.7 · 10−8

Tstrat (K) 239.9 0.85 238.4 0.43 239.6 0.27
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