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Motivation and goal of the study 

Background 

Knowing the electron density is fundamental for all chemistry. Chemical reactions and molecular 
responses, supramolecular assemblies and materials properties all depend on the distribution and 
movement of the electrons.1 The chemist frequently uses the quantum-mechanical understanding of 
the electronic structure in order to not only explain chemical bonding mechanisms or predict 
molecular geometries,2 but also to efficiently synthesize a molecule or fabricate a functional material. 
The importance of the electron density is due to its relation to energy3 and to the fact that it is an 
observable, therefore it can be not only calculated from first-principles, but also measured, in particular 
using X-ray diffraction from crystals.4 

Many progresses occurred since the first experimental observations of the so-called aspherical, 
deformation densities in crystals of small organic molecules.5 Nowadays, deformation densities are 
obtained for ever-larger molecules, perhaps containing heavy transition metals, so even when the more 
polarizable valence electrons are few compared to the almost spherical core electrons. Recently, it has 
become possible to observe core polarizations from X-ray diffraction.6 

Analogous progresses took place on the theoretical side, especially due to Density Functional Theory 
(DFT), that provides accurate molecular properties at low computational costs. Calculations of larger 
molecules and extended structures, within periodic boundary conditions, are frequent nowadays. 
Moreover, the number of investigations combining theoretical and experimental modelling of electron 
density distributions is growing fast, for instance, opening the possibility to optimize X-ray constrained 
molecular orbitals.7 

Apart from more accurate techniques, electron density analysis has become more informative thanks 
to the development and application of the Quantum Theory of Atoms in Molecules (QTAIM).8 
Among the most relevant results, one can mention the comprehensive understanding of bonding 
involving transition metals, such as coordination of inorganic ligands,9 agostic interactions10 and 
metal-metal bounded clusters,11 and the characterization of so-called weak interactions, which include 
hydrogen,12 halogen13 and chalcogen bonds.14 These results confirm that qualitative and even 
quantitative insights in the interactions between atoms and molecules are now possible from the 
analysis of the electron density. 

On the side of materials properties, a few research groups have pioneered the applications of electron 
density analysis. 

Overgaard et al.15 adopted the analysis of the crystal electron density through QTAIM for magnetic 
metal-organic materials. The experimentally available d-orbital occupations for the metal centers, in 
conjunction with magnetic susceptibility measurements, allow insight on the actual magnetization and 
exchange mechanisms. The spin density is potentially available from polarized neutron diffraction on 
single crystals, and increasing interest was generated by the possibility to simultaneously refine the 
electron and the spin densities by combining X-ray and polarized neutron scattering.16 
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Macchi et al.17 have correlated the measured or DFT-calculated refractive indices of crystalline amino 
acid derivatives with the main features of their electron densities, focusing on the role of intermolecular 
interactions and the crystal packing on determining the optical linear properties of organic materials. 
Moreover, atomic polarizabilities have been calculated from QTAIM partition of the total electron 
density18 and eventually used to analyse the origin of the linear susceptibility in the crystals. 

Scherer et al.19 have used QTAIM to characterize subtle features of the chemical bonds in inorganic 
low-dimensional superconductors. The topology of the electron density at the Valence Shell Charge 
Concentration (VSCC) region of transition metals have been used to correlate the changes of the 
electronic structure induced by structural phase transitions with the bulk behaviour of the materials. 
Additionally, organometallic systems presenting agostic or anagostic M⋅⋅⋅H–C interactions have been 
investigated,20 and bonding models proposed that are based on electron localization/delocalization 
profiles along the relevant bond paths. 

Spackman et al.21 have proposed a tool to understand crystal packing in organic molecular crystals 
based on so-called energy frameworks. The approach combines efficient calculation of meaningful 
intermolecular interaction energies with a graphical representation of their magnitude in such a way 
that structure-property correlations can be derived. In particular, mechanical properties such as 
shearing and brittleness have been rationalized in terms of the anisotropy of the topology of these 
pairwise intermolecular interaction energies. 

Modern research in electron density analysis spans a broad range of experimental and theoretical 
investigations. Crystallization and crystal morphology, polymorphism, supramolecular ensembles, 
crystal structure determination and prediction and the measurement of crystal thermal, magnetic, 
linear and non-linear optical properties, all have the common focus on rationally design crystalline 
materials with desirable chemical or physical properties. Fundamental outcomes of these researches 
exploit the insight gained from an in-depth understanding of the ways crystalline materials are formed 
from their component atoms, chemical bonds, functional groups and molecules. 

Additionally, as discussed by Spackman,22 engineering materials implies the selection of adequate 
molecular carriers of specific functionalities, and their optimal arrangement in a periodically 
homogeneous system. Some functions and indicators, readily available from the electron density 
analyses, can be used for the comprehension of the role played by a given functional group on 
determining specific properties. 

Aim of this thesis 

This puts the bases for the investigations carried out in this thesis. The general goal is correlating 
observable properties of organic and metal-organic materials with their ground-state electron density 
distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to 
predict materials properties from the electron density of their building blocks, thus allowing to 
rationally engineering molecular materials from their constituent subunits, such as their functional 
groups.17b 

In particular, this thesis has focused on linear optical properties of naturally occurring amino acids and 
their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. 
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This is mainly because of the well-defined formalism that connects the microscopic, atomic or 
molecular property to the macroscopic, crystalline behaviour of the materials. For optical materials, 
one defines (hyper)polarizabilities at atomic and molecular levels; summation of these quantities over 
the crystal lattice enables the calculation of the macroscopic electric susceptibilities. For magnetic 
materials, one defines exchange-coupling constants between two paramagnetic building blocks at the 
molecular level; lattice summation of these energy contributions enables estimation of the macroscopic 
magnetic susceptibility. 

For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular 
building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the 
molecular or crystalline electron densities, however, in Chapter 4, we have also investigated a new 
approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can 
be used in future to extracted the electron densities of crystal subunits. 

With the purpose of rationally engineering linear optical materials, we have calculated atomic and 
functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their 
metal-organic frameworks. This has enabled the identification of the most efficient functional groups, 
able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played 
by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated 
building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron 
basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of 
theory to estimate susceptibilities of molecular-based materials. 

With the purpose of rationally design molecular magnetic materials, we have investigated the electron 
density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. 
High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic 
exchange pathways and to establish relationships between the electron densities and the exchange-
coupling constants. Moreover, molecular orbital and spin-density analyses were employed to 
understand the role of different magnetic exchange mechanisms in determining the bulk magnetic 
behaviour of these materials.  

As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction 
technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental 
electron densities, but also enables one to derive transferable molecular orbitals strictly localized on 
atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials 
properties of large systems, currently challenging to calculate from first-principles, such as 
macromolecules or polymers. In this thesis, we point out advantages, needs and pitfalls of the 
technique. 

This work fulfils, at least partially, the prerequisites to understand materials properties of organic and 
metal-organic materials from the perspective of the electron density distribution of their building 
blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived 
assembling of building blocks could be extremely important for rationally design new materials, a field 
where accurate but expensive first-principles calculations are generally not used. This research could 
impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, 
electron density analysis. 
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Chapter 1 

Materials Properties from Electron Density Distributions 
This chapter provides the fundamental definitions of charge, electron and spin-electron densities, as 
well as an introduction on the methodologies to obtain accurate electron density mapping in molecules 
and crystalline materials, from both theory and experiment. The concept of extracting materials 
properties from electron density distributions is examined and past efforts are reviewed. In particular, 
the deep connection between the coherent and elastic X-ray scattering and the first-principles quantum 
mechanics is highlighted. The entanglement of X-ray diffraction and quantum mechanics finds 
applications on a broad range of problems of interest to solid-state chemistry and physics and 
eventually it sheds light on the search for new materials and on how to modify their properties for 
desired applications. 

1.1. Charge, electron and spin-electron densities 
The quantum-mechanical nature of small particles travelling at high speed guarantees that one can 
only know a probabilistic distribution of electrons in molecules that is an averaged probability to find 
any electron at a given position in space. Considering a molecular system of N electrons and M nuclei, 
the probability of finding any of its electrons at a position 𝒓𝒓1 regardless of the position of the other 
electrons is ρ1(𝒓𝒓1)𝑑𝑑𝒓𝒓1, where the corresponding probability density, the one-electron density, is defined 
as1 

ρ1(𝒓𝒓1) = 𝑁𝑁�Ψ𝑒𝑒𝑒𝑒
∗ (𝒓𝒓1, 𝒓𝒓2, … , 𝒓𝒓𝑁𝑁; {𝑹𝑹}).Ψ𝑒𝑒𝑒𝑒(𝒓𝒓1,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁; {𝑹𝑹})𝑑𝑑𝒓𝒓2 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.1) 

Within the Schrödinger formalism and following the Born-Oppenheimer approximation, Ψ𝑒𝑒𝑒𝑒 is the 
stationary wavefunction describing the N electrons at fixed nuclear coordinates {𝑹𝑹}. The one-electron 
density may be obtained either from experiment, for example by means of coherent and elastic (Bragg) 
X-ray scattering, or from ab initio calculations.2 The charge density is instead the sum of electronic and 
nuclear densities. Even though the terms “charge density” and “electron density” are often used 
interchangeably, the former emphasizes situations where both electronic and nuclear distributions are 
simultaneously determined, as it happens in ab initio molecular dynamics.3 

The notation ρ1 refers to one particle; but it is also possible to introduce probability densities for any 
number of particles. Thus, the two-electron density 

ρ2(𝒓𝒓1,𝒓𝒓2) =
𝑁𝑁(𝑁𝑁 − 1)

2
�Ψ𝑒𝑒𝑒𝑒

∗ (𝒓𝒓1, 𝒓𝒓2, … , 𝒓𝒓𝑁𝑁; {𝑹𝑹}).Ψ𝑒𝑒𝑒𝑒(𝒓𝒓1,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁; {𝑹𝑹})𝑑𝑑𝒓𝒓3 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.2) 

defines the probability density of finding two electrons simultaneously at positions 𝒓𝒓1 and 𝒓𝒓2. In 
general, the p-order electron density ρ𝑝𝑝�𝒓𝒓1, 𝒓𝒓2, … 𝒓𝒓𝑝𝑝� determines the probability of p electrons being 
found simultaneously at the positions from 𝒓𝒓1 to 𝒓𝒓𝑝𝑝. 
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However, in order to describe completely the correlation among the electrons, more general functions 
than the p-order electron densities are necessary. These are called p-order density matrices. A density 
matrix of order p for an N-electron system is given by 

𝛾𝛾𝑝𝑝�𝒓𝒓1,𝒓𝒓2, … , 𝒓𝒓𝑝𝑝;𝒓𝒓′1, 𝒓𝒓′2, … , 𝒓𝒓′𝑝𝑝�

= �
𝑁𝑁
𝑝𝑝
��Ψ𝑒𝑒𝑒𝑒

∗ �𝒓𝒓1, 𝒓𝒓2, … , 𝒓𝒓𝑝𝑝,𝒓𝒓𝑝𝑝+1, … , 𝒓𝒓𝑁𝑁�.Ψ𝑒𝑒𝑒𝑒�𝒓𝒓′1,𝒓𝒓′2, … , 𝒓𝒓′𝑝𝑝, 𝒓𝒓′𝑝𝑝+1, … , 𝒓𝒓′𝑁𝑁�𝑑𝑑𝒓𝒓𝑝𝑝+1 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.3) 

where {𝒓𝒓} and {𝒓𝒓′} are two sets of independent electron coordinates, �𝑁𝑁
𝑝𝑝
� is a binomial coefficient 

which ensures normalization, and the parametric dependence on the nuclear coordinates {𝑹𝑹} have 
been omitted. A value is assigned to 𝛾𝛾𝑝𝑝 by two sets of indices. Therefore, 𝛾𝛾𝑝𝑝({𝒓𝒓}; {𝒓𝒓′}) is a matrix 
element. In particular, the first- and second-order density matrices are written as 

𝛾𝛾1(𝒓𝒓1; 𝒓𝒓′1) = 𝑁𝑁�Ψ𝑒𝑒𝑒𝑒
∗ (𝒓𝒓1,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁).Ψ𝑒𝑒𝑒𝑒(𝒓𝒓′1,𝒓𝒓′2, … , 𝒓𝒓′𝑁𝑁)𝑑𝑑𝒓𝒓2 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.4) 

𝛾𝛾2(𝒓𝒓1,𝒓𝒓2; 𝒓𝒓′1, 𝒓𝒓′2) =
𝑁𝑁(𝑁𝑁 − 1)

2
�Ψ𝑒𝑒𝑒𝑒

∗ (𝒓𝒓1, 𝒓𝒓2, … , 𝒓𝒓𝑁𝑁).Ψ𝑒𝑒𝑒𝑒(𝒓𝒓′1,𝒓𝒓′2, … , 𝒓𝒓′𝑁𝑁)𝑑𝑑𝒓𝒓3 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.5) 

The functions ρ1 and ρ2 are the traces of 𝛾𝛾1 and 𝛾𝛾2, respectively. 

Density matrices allow one to relate expectation values of operators directly to the electron 
distributions, providing a powerful tool for discussing the behaviour of many-electron systems.1 
Noteworthy, all one-electron properties can be evaluated using the first-order density matrix (1.4) and 
all two-electron properties using the second-order matrix (1.5). Eventually, a subset of one-electron 
properties may be obtained from the electron density ρ1 alone. Those are, at least formally if not 
operationally, available from the elastic and coherent X-ray scattering. 

On the one hand, higher p-order density matrices are in principle necessary for describing many-body 
effects. But because the second-order density matrix tell us how the motion of two different electrons 
are correlated due to their interaction, distribution functions of order p > 2 are certainly less relevant 
for the interpretation of the chemical bonding. On the other hand, the knowledge of the one-electron 
density ρ1 alone is not able to reveal the whole nature of the chemical interactions.4 

In recent years, more information concerning chemical bonding has become available from both 
experiment and theory. 

The incoherent and inelastic (Compton) X-ray scattering, produced by the off-diagonal terms of 𝛾𝛾1, 
have been combined with Bragg scattering in order to determine the full 𝛾𝛾1 matrix.5 Many papers also 
report on the possibility of recovering 𝛾𝛾1 from Bragg X-ray scattering only, either by jointly 
minimizing the energy or imposing mathematical constraints.6  
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From the theoretical side, two-electron density functions have been used to derive important 
descriptors for chemical bond analysis.2 Among them, the localization and delocalization indices are 
certainly necessary towards a full comprehension of the chemical bonding. However, all of the so-
called pair-density functions suffer from being not directly available from X-ray scattering. For this 
reason, Gatti proposed the use of the source function,7 an observable of the one-electron density. 
Although he has stressed the ability of source functions to represent the localization and delocalization 
of electrons, this view received some criticism.8 

Finally, to describe an electron fully, the specification of its spin is necessary. In the context of a 
nonrelativistic treatment, we introduce two spin functions, 𝛼𝛼(𝜔𝜔) and 𝛽𝛽(𝜔𝜔), and describe an electron 
not only by the three spatial coordinates 𝒓𝒓, but also by one spin variable 𝜔𝜔. We denote these four 
coordinates by 𝐱𝐱 = {𝒓𝒓,𝜔𝜔}. Because electrons obey Fermi-Dirac statistics, two identical-spin electrons 
cannot occupy the same position in space whereas two opposite-spin electrons tend to pair in order to 
lower their energy. Additionally, some multi-electronic systems may be characterized by unpaired 
electrons, thus giving rise to an excess of electrons of a given spin. A formulation of density matrices 
in terms of 𝐱𝐱 is quite straightforward.1,2 The spin-electron density, i.e. the excess of electron density of 
a given spin, is  

ρ𝛼𝛼(𝒓𝒓1) − ρ𝛽𝛽(𝒓𝒓1)

= 𝑁𝑁�Ψ𝑒𝑒𝑒𝑒
∗ (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹}).Ψ𝑒𝑒𝑒𝑒(𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹})𝑑𝑑𝜔𝜔𝛼𝛼𝑑𝑑𝒓𝒓2 …𝑑𝑑𝒓𝒓𝑁𝑁

− 𝑁𝑁�Ψ𝑒𝑒𝑒𝑒
∗ (𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹}).Ψ𝑒𝑒𝑒𝑒(𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹})𝑑𝑑𝜔𝜔𝛽𝛽𝑑𝑑𝒓𝒓2 …𝑑𝑑𝒓𝒓𝑁𝑁 

(1.6) 

The scattering of spin-active particles, such as polarized neutrons, can reveal the excess of electronic 
spin, and hence the spin density. Moreover, a method combining experimental information from 
Bragg X-ray diffraction and polarized neutron diffraction has been proposed for the determination of 
spin-dependent electron densities.9 

In this work, we focus on the applications of the one-electron density in chemistry and materials 
science. Minor reference is made to theoretically predicted spin-electron densities. We start by 
considering how these functions can be predicted from first-principle quantum-mechanical 
calculations (section 1.2). We briefly discuss the familiar Hartree-Fock procedure that not only sets 
the stage for more accurate methods, but also finds relevance for the investigation of X-ray constrained 
and unconstrained molecular orbitals, considered in Chapter 4. Then, we describe the state-of-the-art 
approaches to include electronic correlation in wavefunctions and their related densities. This is of 
relevance because it allows accurate estimation of properties and provide benchmark densities that are 
explored in details in all forthcoming chapters. After mentioning the periodic boundary conditions 
that enables calculation of extended systems, we discuss how the theoretical methods can be used to 
yield the properties of interest in this thesis, magnetic, Chapter 3, and linear optical properties, 
Chapter 2. 
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Section 1.3 is devoted to modelling of electron densities from the coherent and elastic X-ray scattering. 
We begin by a description of X-ray diffraction in crystals and consider the approximations that enable 
one to write the electron density distribution within a unit cell as the Fourier transform of its structure 
factors. We discuss how to fit an electron density model against the set of measured intensities, initially 
considering the spherical, independent atom model that is the current paradigm for crystal structure 
determination and analysis. The inability to deal with electronic polarization due to chemical bonding 
makes this model quite limited for estimating the materials properties of interest in this thesis. Thus, 
we turn to more sophisticated, aspherical electron density models, and describe in some detail the 
multipolar formalism applied in the crystalline materials considered in Chapters 3 and 4. Then, we 
mention an alternative to the multipolar fitting, namely, wavefunctions constrained to X-ray 
intensities. This is further explored in Chapter 4. Of relevance for the electric properties treated in 
Chapter 2 are the advances and limitations in X-ray diffraction under electric fields, considered in the 
last part of the section. 

In the final part of this chapter, section 1.4, we briefly mention the key aspects of topological analysis 
by means of Quantum Theory of Atoms in Molecules (QTAIM), used throughout all this research. 
Finally, we critically examine the recent advances in correlation between density functions and 
materials properties, focusing on electrical, optical, and magnetic properties, but also considering 
many other properties of relevance for materials science.           

1.2. Electron densities from ab initio quantum mechanics 
Eqn. 1.1 leads to different expressions for ρ1(𝒓𝒓), depending on the functional form of Ψ𝑒𝑒𝑒𝑒. In this 
section, we describe the adopted theoretical methods to obtain Ψ𝑒𝑒𝑒𝑒 with high accuracy. Most of these 
methods allow the derivation of an electron density matrix,2 hence provide theoretical electron density 
distributions. 

1.2.1. Molecular electronic problem 

The electronic structure and properties of a molecular system in a stationary state is determined by its 
electronic wavefunction Ψ𝑒𝑒𝑒𝑒({𝐱𝐱}; {𝑹𝑹}), a mathematical function that depends on the spatial and spin 
coordinates of each electron in the system. Ψ𝑒𝑒𝑒𝑒 is the solution of the nonrelativistic time-independent 
Schrödinger equation that, for a system of N electrons moving in the potential field due to M nuclei, 
takes the form1 

𝐇𝐇Ψ𝑒𝑒𝑒𝑒(𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹}) = 𝐸𝐸Ψ𝑒𝑒𝑒𝑒(𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁; {𝑹𝑹}) 

(1.7) 

where E is the energy of the N electrons moving in the field provided by the nuclei and 𝐇𝐇 is the 
electronic Hamiltonian operator 

𝐇𝐇 = −
1
2
�∇𝑖𝑖2 −
𝑁𝑁

𝑖𝑖=1

��
𝑍𝑍𝑘𝑘

|𝒓𝒓𝑖𝑖 − 𝑹𝑹𝑘𝑘| + ��
1

�𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑗𝑗�

𝑁𝑁

𝑗𝑗>𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

 

(1.8) 
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Here 𝑍𝑍𝑘𝑘 is the atomic number of nucleus 𝑘𝑘 and the Laplacian operator ∇𝑖𝑖2 involves second-
differentiation with respect to the spatial coordinates of the i-th electron. The first term is the operator 
for the kinetic energy of the electrons; the second term represents the potential energy of the electrons 
in the field of the nuclei; the third term represent the repulsion between electrons. Eqn. 1.7 is an 
eigenvalue equation characterized by possessing valid Ψ𝑒𝑒𝑒𝑒 solutions only for certain values of the 
eigenvalue E. The solutions Ψ𝑒𝑒𝑒𝑒 are the eigenfunctions of the operator 𝐇𝐇 and the corresponding 
eigenvalues are the quantized electronic energies of the allowed stationary states of the molecular 
system. The ground-state wavefunction being associated with the lowest eigenvalue E. 

The fact that electrons are fermions, indistinguishable particles with spin quantum number 1/2, places 
an important restriction on Ψ𝑒𝑒𝑒𝑒: it must be antisymmetric with respect to the interchange of the 
coordinate 𝐱𝐱 of any two electrons10 

Ψ𝑒𝑒𝑒𝑒�𝐱𝐱1, … , 𝐱𝐱𝑖𝑖, … , 𝐱𝐱𝑗𝑗 , … , 𝐱𝐱𝑁𝑁� = −Ψ𝑒𝑒𝑒𝑒�𝐱𝐱1, … , 𝐱𝐱𝑗𝑗 , … , 𝐱𝐱𝑖𝑖, … , 𝐱𝐱𝑁𝑁� 

(1.9) 

Therefore, the exact wavefunction not only has to satisfy (1.7), but also (1.9). However, owing to the 
presence of the electron-electron repulsion terms in the Hamiltonian, the solutions of the eigenvalue 
Eqn. 1.7 cannot be obtained in closed form. We make approximations in its solution, providing 
simplified descriptions that incorporate the most relevant features of the electronic system.11a 

We define a molecular orbital as a single-electron wavefunction in a molecular system. A spatial orbital 
𝜑𝜑𝑖𝑖(𝒓𝒓) describes the spatial distribution of an electron in such a way that 𝜑𝜑𝑖𝑖∗(𝒓𝒓).𝜑𝜑𝑖𝑖(𝒓𝒓)𝑑𝑑𝒓𝒓 is the 
probability of finding the electron in a volume element 𝑑𝑑𝒓𝒓 surrounding 𝒓𝒓. The description of the 
electronic spin is made by two orthogonal functions, 𝛼𝛼(𝜔𝜔) and 𝛽𝛽(𝜔𝜔). The one-electron wavefunction 
that describes both spatial and spin distributions is a spin orbital χ𝑖𝑖(𝐱𝐱). From each spatial orbital, two 
different spin orbitals can be formed: 

χ(𝐱𝐱) = �
𝜑𝜑𝑖𝑖(𝒓𝒓).𝛼𝛼(𝜔𝜔)
𝜑𝜑𝑖𝑖(𝒓𝒓).𝛽𝛽(𝜔𝜔) 

(1.10) 

For a fictitious system of N non-interacting electrons (this means neglecting the electron-electron 
repulsion terms in Eqn. 1.8), the exact wavefunction takes the form of a Slater determinant, i.e. an 
antisymmetric product of N spin molecular orbitals 

Ψ𝑒𝑒𝑒𝑒(𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁) =
1
√𝑁𝑁! �

�

χ𝑖𝑖(𝐱𝐱1) χ𝑗𝑗(𝐱𝐱1) … χ𝑘𝑘(𝐱𝐱1)
χ𝑖𝑖(𝐱𝐱2) χ𝑗𝑗(𝐱𝐱2)
⋮             ⋮

χ𝑖𝑖(𝐱𝐱𝑁𝑁) χ𝑗𝑗(𝐱𝐱𝑁𝑁)

… χ𝑘𝑘(𝐱𝐱2)
⋮

… χ𝑘𝑘(𝐱𝐱𝑁𝑁)
�� 

(1.11) 

The single-Slater determinant incorporates exchange correlation, which means that the motion of two 
electrons with parallel spins is correlated.10 However, since the motion of electrons with opposite spins 
remains uncorrelated, it is common to refer to a single-determinant wavefunction as uncorrelated. 
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For a system of interacting electrons, the exact wavefunction is not a single-Slater determinant. 
Nevertheless, we may take this particularly simple form as an ansatz for an approximate description of 
the electronic system. To generate the best possible ground-state single-determinant wavefunction, we 
use the variation principle10 and minimize the expectation value of the Hamiltonian with respect to 
the one-electron molecular orbitals, 

𝐸𝐸 = min
χ𝑖𝑖(𝐱𝐱)

�Ψ𝑒𝑒𝑒𝑒
∗ 𝐇𝐇Ψ𝑒𝑒𝑒𝑒𝑑𝑑𝐱𝐱1𝑑𝑑𝐱𝐱2, … ,𝑑𝑑𝐱𝐱𝑁𝑁 ≥ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

(1.12) 

subject to the constraint that the set of orbitals {χ(𝐱𝐱)} remains orthonormal. 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 denotes the exact 
ground-state electronic energy and the ground-state eigenfunction Ψ𝑒𝑒𝑒𝑒 is normalized. 

The variational flexibility in the wavefunction is in the choice of the spatial orbitals. Within the linear 
combination of atomic orbitals (LCAO) approach, the molecular orbital 𝜑𝜑𝑖𝑖(𝒓𝒓) is expanded in a set of 
K basis functions 

𝜑𝜑𝑖𝑖(𝒓𝒓) = �𝐶𝐶𝜇𝜇𝑖𝑖φ𝜇𝜇(𝒓𝒓)
𝐾𝐾

𝜇𝜇=1

 

(1.13) 

In particular, φ𝜇𝜇(𝒓𝒓) is referred to as an atomic orbital, that has associated with it some coefficient 𝐶𝐶𝜇𝜇𝑖𝑖, 
and it is usually taken to be a finite set of simple analytical functions centered on the atomic nuclei.12  

For a closed-shell system in which the molecular orbitals are of type (1.13), the one-electron density 
ρ1 assumes the form2 

ρ1(𝒓𝒓) = ��𝐏𝐏𝜇𝜇𝜇𝜇φ𝜇𝜇
∗ (𝒓𝒓).φ𝜇𝜇(𝒓𝒓)

𝐾𝐾

𝜇𝜇=1

𝐾𝐾

𝜇𝜇=1

 

(1.14) 

where the matrix 𝐏𝐏𝜇𝜇𝜇𝜇 is the representation of the one-electron density matrix 𝛾𝛾1 in the basis {φ(𝒓𝒓)} 
and is composed of the following elements: 

𝐏𝐏𝜇𝜇𝜇𝜇 = 2�𝐶𝐶𝜇𝜇𝑖𝑖∗ 𝐶𝐶𝜇𝜇𝑖𝑖

𝑁𝑁/2

𝑖𝑖=1

 

(1.15) 

1.2.2. Hartree-Fock approximation 

The Hartree-Fock procedure is the cornerstone of molecular wavefunction theory because it 
constitutes the starting point for more accurate approximations. To derive the Hartree-Fock equations, 
we replace the exact electron-electron repulsion term in Eqn. 1.8 by a “mean field” that each electron 
experiences due to the presence of the other electrons, and use the variational principle to minimize 



1     Materials Properties from Electron Density Distributions 

 

17 
 

the electronic energy of the molecular system with respect to the spin orbitals that compose the single-
determinant wavefunction. This leads to a set of N one-electron eigenvalue equations, in which a given 
spin orbital χ𝑖𝑖(𝐱𝐱) is an eigenfunction of its own operator 𝐟𝐟𝑖𝑖,10 

𝐟𝐟𝑖𝑖χ𝑖𝑖(𝐱𝐱) = 𝜀𝜀𝑖𝑖χ𝑖𝑖(𝐱𝐱) 

(1.16) 

The one-electron operator 𝐟𝐟𝑖𝑖 takes the form 

𝐟𝐟𝑖𝑖 = −
1
2
∇𝑖𝑖2 −�

𝑍𝑍𝑘𝑘
|𝒓𝒓𝑖𝑖 − 𝑹𝑹𝑘𝑘| + 𝐕𝐕𝑖𝑖{𝑗𝑗}

𝑀𝑀

𝑘𝑘=1

 

(1.17) 

where 𝐕𝐕𝑖𝑖{𝑗𝑗} represents an averaged interaction potential for the i-th electron with all the other 𝑁𝑁 − 1 
electrons. In fact, the essence of the Hartree-Fock method is to replace the N-electron problem by a 
set of N one-electron problems in which the electron-electron repulsion is treated only in average. The 
expression for 𝐕𝐕𝑖𝑖{𝑗𝑗} can be found in textbooks.10 We just point out that it involves two terms. The 
first is a Coulomb operator interpreted as the electrostatic potential acting on the electron in the orbital 
χ𝑖𝑖, that arises from the remaining electrons in the other spin orbitals; the second term is an exchange 
operator that arises from correlation effects unique to electrons of the same spin. 

The Hartree-Fock equation (1.16) is an eigenvalue problem with the spin orbitals as eigenfunctions 
and the corresponding energies as eigenvalues. The operator 𝐕𝐕𝑖𝑖{𝑗𝑗} has a functional dependence on the 
set of N occupied spin orbitals. However, once 𝐕𝐕𝑖𝑖{𝑗𝑗} is known, 𝐟𝐟𝑖𝑖 becomes well defined and (1.16) 
leads to an infinite number of eigenfunctions. The N spin orbitals with the lowest energies are the 
occupied spin orbitals, used to construct the ground-state single-determinant wavefunction according 
to (1.11), which we denote by Ψ𝐻𝐻𝐻𝐻 . The remaining unoccupied orbitals are virtual spin orbitals. 
Noteworthy, the expectation value of the total electronic energy for Ψ𝐻𝐻𝐻𝐻  is not just the sum of the 
individual occupied-orbital energies 𝜀𝜀𝑖𝑖.10 

Because the Hartree-Fock potential 𝐕𝐕𝑖𝑖{𝑗𝑗} depends on the spin orbitals, the operator 𝐟𝐟𝑖𝑖 depends on its 
eigenfunctions. Therefore, (1.16) must be solved iteratively. The procedure is the self-consistent field 
(SCF) method. It consists of calculating 𝐕𝐕𝑖𝑖{𝑗𝑗} by making an initial guess at orbitals in the form of 
Eqn. 1.13. Then, the eigenvalue problem (1.16) can be solved for a new set of orbitals. By using these 
new trial spin orbitals, new fields can be obtained. The procedure is repeated until self-consistency is 
reached, i.e. 𝐕𝐕𝑖𝑖{𝑗𝑗} no longer change and the spin orbitals used to construct 𝐟𝐟𝑖𝑖 are the same as its 
eigenfunctions. 

However, the exact solutions to (1.16), which correspond to the exact Hartree-Fock spin orbitals, 
cannot be obtained by introducing an uncomplete set of basis functions for expansion of the orbitals. 
Only as the basis set approaches completeness, will the obtained spin orbitals approach the exact 
Hartree-Fock spin orbitals. Using a basis set of K functions φ𝜇𝜇(𝒓𝒓) results in a set of 2K spin orbitals. 
This leads to N occupied spin orbitals and a complementary set of 2𝐾𝐾 − 𝑁𝑁 virtual orbitals. The single-
Slater determinant formed from the occupied spin orbitals is the variational Hartree-Fock 
wavefunction of the ground state and constitutes the best approximation to the ground state of the 
molecular system of the single-determinant form. 
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Figure 1.1. Electron density differences between some of the correlated and uncorrelated Hamiltonians considered in this 
work for the zwitterionic glycine molecule. Isodensity surfaces are shown at the values of ± 0.002 au, with the positive 
surface in green and the negative one in magenta. The d-aug-pVDZ basis set was used in all cases, and the DFT calculation 
was performed with the CAM-B3LYP hybrid functional.  

Typical errors of the Hartree-Fock model are 0.5% in the total energy, 1% in bond distances and 5-
10% in many other molecular properties such as dipole moments and force constants.11a To improve 
upon this description, one must take into account the instantaneous correlation among the electrons. 
However, this is usually very computationally demanding and the Hartree-Fock procedure is still the 
choice for various larger molecular systems. 

Nevertheless, electronic correlation is significant to accurate estimations of electron density 
distributions. As shown in Fig. 1.1 for the glycine molecule, the usual effect of correlation is to deplete 
electron density from the chemical bonds and the lone pairs, and to increase it around the atomic 
nuclei and at the periphery of the molecules.11b-d   

1.2.3. Correlated methods 

Within the LCAO, the Hartree-Fock procedure leads to 2K spin orbitals, the ground state being 
constructed from the subset of the N occupied ones. However, this is only one of many determinants 
that can be formed from the 2𝐾𝐾 > 𝑁𝑁 spin orbitals. To produce the other determinants, we consider 
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the Hartree-Fock ground state as a reference and describe the other determinants in terms of electronic 
excitations from the occupied to the virtual spin orbitals.10 These determinants can be used in linear 
combination with Ψ𝐻𝐻𝐻𝐻  for a more accurate description of the ground state of the electronic system. 

If we denote the occupied orbitals by {χ𝑒𝑒, χ𝑏𝑏 , … } and the virtual spin orbitals as {χ𝑟𝑟 , χ𝑠𝑠, … }, a singly 
excited determinant is one in which an electron occupying χ𝑒𝑒 in the ground state is promoted to χ𝑟𝑟. 
This is denoted by Ψ𝑒𝑒

𝑟𝑟 . Analogously, a doubly excited determinant is Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠 . Therefore, all possible 

determinants can be classified as either the ground state or singly, doubly, triply, ..., excited states. 

The configuration interaction (CI) method is based on excited determinants as basis functions for the 
expansion of the exact states of the N-electron system. Within the one-electron subspace spanned by 
the 2K spin orbitals, the exact wavefunction for any state of the system can be written as 

Ψ𝐶𝐶𝐶𝐶 = 𝑐𝑐0Ψ𝐻𝐻𝐻𝐻 + ��𝑐𝑐𝑒𝑒𝑟𝑟Ψ𝑒𝑒
𝑟𝑟

2𝐾𝐾

𝑟𝑟=1

𝑁𝑁

𝑒𝑒=1

+ ��𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠

2𝐾𝐾

𝑟𝑟<𝑠𝑠

𝑁𝑁

𝑒𝑒<𝑏𝑏

+ � � 𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒Ψ𝑒𝑒𝑏𝑏𝑒𝑒
𝑟𝑟𝑠𝑠𝑒𝑒

2𝐾𝐾

𝑟𝑟<𝑠𝑠<𝑒𝑒

𝑁𝑁

𝑒𝑒<𝑏𝑏<𝑒𝑒

+ ⋯ 

(1.18) 

where 𝑐𝑐0, 𝑐𝑐𝑒𝑒𝑟𝑟 , 𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠 , 𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒 , … are coefficients to be variationally determined, and the restrictions on the 
summation indices ensure that a given excited determinant is included only once. 

The extremely large number of excited determinants to be included in (1.18) prevents the application 
of the so-called full-CI method for most systems, even for small molecules and minimal basis sets. 
Thus, in practice one truncates the full-CI expansion and uses only a small number of possible 
determinants. The importance of these determinants as approximate representations of the true states 
diminishes with the number of excitations. Therefore, the most important determinants are certainly 
the singly and doubly excited ones.10,11a The corresponding approaches are called CI singles (only singly 
excited determinants, CIS), CI doubles (double excitations only, CID) and CI singles and doubles 
(both single and double excitations, CISD). Because the Hartree-Fock ground state is unaffected by 
the inclusion of single excitations alone*, CIS finds no application for ground states, although it can 
be useful for describing the excited states of a system. According to these definitions, the CISD 
expansion corresponds to 

Ψ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐0Ψ𝐻𝐻𝐻𝐻 + ��𝑐𝑐𝑒𝑒𝑟𝑟Ψ𝑒𝑒
𝑟𝑟

2𝐾𝐾

𝑟𝑟=1

𝑁𝑁

𝑒𝑒=1

+ ��𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠

2𝐾𝐾

𝑟𝑟<𝑠𝑠

𝑁𝑁

𝑒𝑒<𝑏𝑏

 

(1.19)  

The CID and CISD methods usually recover 80-90% of the correlation energy while errors for many 
molecular properties are usually around 5%.10 The next levels of improvement are inclusion of the 
triply and quadruply excited determinants, thus giving the CISDT and CISDTQ methods. The latter 
gives results quite close to the full-CI limit, but truncating the excitations at fourth order produces so 
many configurations that it can only be applied to small molecules. 

                                                           
*One might expect the singly excited determinants to give the leading corrections to the ground state. However, if one 
considers only the single excitations, then the variationally determined coefficients 𝑐𝑐𝑒𝑒𝑟𝑟 are all zero. The Hartree-Fock ground 
state cannot be improved by mixing it with singly excited determinants only. Thus, the double excitations provide the 
leading corrections to Ψ𝐻𝐻𝐻𝐻. This result is the Brillouin’s theorem. 
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In truncated-CI descriptions, double or higher excitations are not allowed to occur as a result of 
applying lower excitations multiple times to the ground state. For example, in the CISD description, 
double excitations do not occur due to pairs of single excitations. These subtle features are included 
in a related series, called coupled-cluster (CC).10,11a The CC approach leads to the following expansion 
up to doubly excited determinants : 

Ψ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐0Ψ𝐻𝐻𝐻𝐻 + ��𝑐𝑐𝑒𝑒𝑟𝑟Ψ𝑒𝑒
𝑟𝑟

2𝐾𝐾

𝑟𝑟=1

𝑁𝑁

𝑒𝑒=1

+ ��(𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠 )Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠

2𝐾𝐾

𝑟𝑟<𝑠𝑠

𝑁𝑁

𝑒𝑒<𝑏𝑏

+ � � (𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒 + 𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒)Ψ𝑒𝑒𝑏𝑏𝑒𝑒
𝑟𝑟𝑠𝑠𝑒𝑒

2𝐾𝐾

𝑟𝑟<𝑠𝑠<𝑒𝑒

𝑁𝑁

𝑒𝑒<𝑏𝑏<𝑒𝑒

+ � � (𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑡𝑡 + 𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑡𝑡 + 𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑡𝑡)Ψ𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐
𝑟𝑟𝑠𝑠𝑒𝑒𝑡𝑡

2𝐾𝐾

𝑟𝑟<𝑠𝑠<𝑒𝑒<𝑡𝑡

𝑁𝑁

𝑒𝑒<𝑏𝑏<𝑒𝑒<𝑐𝑐

+ ⋯ 

(1.20) 

The CCS description, similarly to CIS, is not of interest to us. In Eqn. 1.20, 𝑐𝑐𝑒𝑒𝑏𝑏𝑟𝑟𝑠𝑠Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠  is known as a 

connected cluster, while 𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑏𝑏𝑠𝑠Ψ𝑒𝑒𝑏𝑏
𝑟𝑟𝑠𝑠  is an unconnected one. In CCSD, all clusters involving three or more 

electrons are disconnected. The compact description of the disconnected processes as products renders 
to CC the key to its success compared to CI, where all excitations are either described as connected 
clusters, or not described at all. At the limit of no truncation, the CC and CI wavefunctions become 
equivalent, differing only in their parameterization. In this situation, the CI linear parameterization is 
usually preferable to the CC non-linear one.10d,11a  

The CCSD level of theory is able to describe the most important correlation effects in the electronic 
system. At this level, the errors in the correlation energy typically reduce to less than 10% and many 
molecular properties can be described within 3-5% of accuracy. At the next level, connected triple 
excitations are introduced, arriving at the CCSDT level of theory, often sufficient for full agreement 
with experiments. If needed, further improvements are in principle possible, although not always in 
practice. This includes connected quadruple or quintuple excitations at the CCSDTQ and 
CCSDTQ5 levels of theory.10d 

The coefficients of coupled-cluster wavefunctions are not determined variationally, but by application 
of a non-variational iterative projection technique.10d To further reduce the computational costs and 
extend the applications of CC, they are sometimes determined by perturbation methods. Thus, at the 
CCSD(T) level of theory, the coefficients relative to the single and double excitations are generated 
iteratively in the usual projective manner, whereas the more expensive connected triple excitations are 
determined by perturbation theory. It has been demonstrated that this approach introduces an error 
of about 10% in the description of the triply excited determinants.11a However, because triple 
excitations are a rather small correction to the CCSD description, this error is of little importance. 

Independently, perturbative methods can be seen as alternatives to CI and CC. In particular, we 
consider the perturbation theory due to C. Mφller and M. S. Plesset, called MP perturbation theory.10 
It is referred to by the acronym MPn, where n is the order at which the perturbation is truncated. The 
Hartree-Fock energy corresponds to the MP energy corrected through first-order. Therefore, MP1 
does not advance beyond the Hartree-Fock level and MP2 provides the leading term for estimate the 
correlation energy. 
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Figure 1.2. Scaling of the computational methods used in this work as a function of the number of basis functions. For 
Hartree-Fock, the formal scaling is also compared to the practical one, typically observed. Several of the post-Hartree-Fock 
methods become prohibitively costly as the basis-set rank increases. 

The fundamental problem with MP theory is that only low-order perturbation can be carried out, 
because if taken to sufficiently high order, it usually diverges, i.e. it does not approach the full-CI limit 
as the description is refined. It is understood that, for sufficiently large basis sets, MP3 and MP4 are 
typically very accurate and that MP2 usually overestimates the correlation effects. However, in cases 
where moderate-sized basis sets are used, MP2 often gives better answers than MP3. 

For accurate calculation of properties, it is necessary to carry out sequence of electronic calculations 
where the flexibility of the N-electron descriptions and the one-electron basis sets is systematically 
explored, and the convergence of the property is carefully monitored. In the N-electron description, 
improvements are obtained by including higher excitations in the wavefunction. In terms of 
computational cost, Fig. 1.2 shows the scaling for the post-Hartree-Fock methods discussed in this 
section. 

The electron density accumulation observed in the bonds and lone pairs of molecules calculated at the 
Hartree-Fock level typically diminishes as the level of electronic correlation is increased.11b-d In Fig. 
1.1, having CC electron densities as benchmark, it is clear that CISD gives too small shifts of electronic 
charge to the nuclei. In fact, significant electron density is still accumulated at the oxygen lone pairs, 
see CCSD – CISD difference in that picture. Conversely, MP2 tends to exaggerates the shift of density 
from bond and lone-pair regions to nuclei, see CCSD – MP2 difference.  

1.2.4. Density functional theory 

A different route to the molecular electronic problem is provided by density functional theory (DFT). 
All information about the electronic system is extracted from the electron density distribution, rather 
than from the wavefunction. DFT is based on the Hohenberg-Kohn theorems, according to which 
the one-electron density uniquely defines the ground-state energy and the corresponding properties of 
an electronic system.13a Therefore, the electronic energy is regarded as a functional of the one-electron 
density, 𝐸𝐸[ρ1(𝒓𝒓)], in the sense that there is a one-to-one correspondence between ρ1(𝒓𝒓) and E. 
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Current applications are based on the formalism developed by W. Kohn and L. J. Sham.13b They 
provided a practical manner to solve the Hohenberg-Kohn theorems for a set of interacting electrons 
starting from a fictitious system of non-interacting electrons for which the ground-state electron 
density equals the density of some real system of interest where electrons do interact. Following the 
orbital formulation of the Kohn-Sham approach, the ground-state electronic energy is10 

𝐸𝐸[ρ1(𝒓𝒓1)] = −
1
2
��𝜑𝜑𝑖𝑖∗(𝒓𝒓1)∇𝑖𝑖2𝜑𝜑𝑖𝑖(𝒓𝒓1)𝑑𝑑𝒓𝒓1 −
𝑁𝑁

𝑖𝑖=1

��
𝑍𝑍𝑘𝑘

|𝒓𝒓1 − 𝑹𝑹𝑘𝑘|ρ1
(𝒓𝒓1)𝑑𝑑𝒓𝒓1

𝑀𝑀

𝑘𝑘=1

+
1
2
�
ρ1(𝒓𝒓1)ρ1(𝒓𝒓2)

|𝒓𝒓1 − 𝒓𝒓2| 𝑑𝑑𝒓𝒓1𝑑𝑑𝒓𝒓2 + 𝐸𝐸𝑋𝑋𝐶𝐶[ρ1(𝒓𝒓1)] 

(1.21) 

The first term represents the kinetic energy of the non-interacting electrons, the second term accounts 
for the nucleus-electron interactions, and the third term corresponds to the electrostatic repulsions 
between the charge distributions at 𝒓𝒓1 and 𝒓𝒓2. The fourth term, known as exchange-correlation term, 
accounts for the correlation arising from the interacting nature of the electrons and all non-classical 
corrections to the electron-electron repulsion energy. The challenge in DFT is the accurate description 
of 𝐸𝐸𝑋𝑋𝐶𝐶[ρ1(𝒓𝒓1)].14 

The Kohn-Sham orbitals 𝜑𝜑𝑖𝑖(𝒓𝒓) are determined by solving equations that assume the form of (1.16). 
Similar to the Hartree-Fock procedure, the Kohn-Sham equations are derived by applying the 
variational principle to 𝐸𝐸[ρ1(𝒓𝒓)].14a The Kohn-Sham Hamiltonian 𝐟𝐟𝑖𝑖𝑲𝑲𝑲𝑲 can be written as 

𝐟𝐟𝑖𝑖𝑲𝑲𝑲𝑲 = −
1
2
∇𝑖𝑖2 −�

𝑍𝑍𝑘𝑘
|𝒓𝒓𝑖𝑖 − 𝑹𝑹𝑘𝑘| + �

ρ1(𝒓𝒓2)
|𝒓𝒓𝑖𝑖 − 𝒓𝒓2|𝑑𝑑𝒓𝒓2 + 𝐕𝐕𝑖𝑖𝑿𝑿𝑿𝑿{𝑗𝑗}

𝑀𝑀

𝑘𝑘=1

 

(1.22) 

where 𝐕𝐕𝑖𝑖𝑿𝑿𝑿𝑿{𝑗𝑗} is a so-called functional derivative.14 The solution of the Kohn-Sham equations proceeds 
in a self-consistent fashion, starting from a trial electron density. An approximate form of the 
functional describing the dependence of 𝐸𝐸𝑋𝑋𝐶𝐶 on the electron density is used to calculate 𝐕𝐕𝒊𝒊𝑿𝑿𝑿𝑿. 
Although exact DFT is variational, this is not true once approximations to 𝐸𝐸𝑋𝑋𝐶𝐶 are adopted. The 
exchange-correlation energy is typically divided into two separate terms, an exchange 𝐸𝐸𝑋𝑋[ρ1] and a 
correlation 𝐸𝐸𝐶𝐶[ρ1] contribution. Both are themselves functionals of the density and can be either local 
or gradient corrected.14b 

The local density approximation (LDA) is the simplest approach to represent the exchange-correlation 
energy. It assumes that 𝐸𝐸𝑋𝑋𝐶𝐶 at any point in space is a function of ρ1 at that point only, and it is given 
by the electron density of a corresponding homogeneous electron gas. The approach usually refers to 
the exchange functional of Slater and to the correlation functional proposed by Vosko, Wilk and 
Nusair.15 
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However, molecular systems are different from a homogeneous electron gas because they have spatial 
varying electron densities. Generalized gradient approximations (GGA) take into account this feature 
by making 𝐸𝐸𝑋𝑋𝐶𝐶 dependent not only on ρ1 but also on its gradient ∇ρ1(𝒓𝒓). These semi-local 
approximations represent significant improvements over local approaches but they are usually still not 
enough for accurate description of many molecular properties.14b Recently, a new class of functionals 
based on GGAs was developed by including additional non-local information beyond ∇ρ1(𝒓𝒓). These 
methods, termed meta-GGAs (M-GGAs), represent significant improvement in the accuracy of several 
properties, with performances sometimes comparable to hybrid functionals. 

Hybrid density functionals, H-GGAs, combine 𝐸𝐸𝑋𝑋𝐶𝐶 of a conventional GGA with a percentage of 
Hartree-Fock exchange. The weight factor for the components of the functionals that are mixed is 
fitted semi-empirically for a representative set of molecules.10b These functionals have allowed 
tremendous improvement over GGAs, with accuracy often comparable to that of post-Hartree-Fock 
methods. Hybrid meta-GGA methods (HM-GGAs) comprise a new class of functionals based on a 
similar concept to meta-GGAs, with the difference of deriving from M-GGAs rather than GGA 
functionals. 

For the treatment of all but the smallest systems, non-covalent interactions play important role for 
structure, energetics and various properties. In general, although hybrid functionals normally give 
reliable results for covalent and hydrogen bonds, a crucial drawback of all local and semi-local DFT 
formulations is their inability to provide the correct dependence of the dispersion interaction energy 
on the interatomic and intermolecular distances. Several approaches have been developed to tackle this 
problem.16 In this work, we use only two widely accepted methods (see Chapter 2), but a systematic 
investigation on the accuracy of the available schemes is highly desirable, in particular for electric 
properties like dipole moments and polarizabilities. 

Finally, we carefully note that, unlike post-Hartree-Fock methods, no procedure has been devised for 
improving the approximate DFT energy functionals in a systematic, controlled manner, making 
possible to improve the description of the system towards the exact solution. In view of this drawback, 
the electron density generated by DFT has been systematically studied by comparison with post-
Hartree-Fock methods, in an attempt to identify the correlation effects that are covered by particular 
density functionals.17 Fig. 1.1 indicates that some functionals, in particular CAM-B3LYP, are able to 
provide electron densities very similar to those calculated using highly correlated Hamiltonians. 

Because DFT methods provide a very efficient manner to include electronic correlation effects, though 
in a rather incomplete empirical approach, it is desirable to identify the most accurate functionals able 
to estimate materials properties, using calculations of high-level electronic correlation as benchmarks. 
For many systems, it has been founded that the accuracy of post-Hartree-Fock methods is not 
sufficiently higher than that of DFT to justify the tremendous increase in computational cost. Thus, 
the approach used in Chapter 2 is to benchmark DFT formulations against highly correlated methods 
in order to select the most efficient density functional for calculation of polarizabilities, i.e. to select 
the functional that maximizes the accuracy/cost ratio for this property. 
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1.2.5. Periodic boundary conditions 

Because the potential energy of an infinite crystal is a periodic function with the same periodicity as 
the crystal lattice, the Schrödinger equation for such system must also be translation invariant. This is 
equivalent to the requirement that after a translation by any direct-lattice vector 𝐠𝐠, the solutions of the 
equation 

𝐇𝐇({𝒓𝒓 − 𝐠𝐠}; {𝑹𝑹− 𝐠𝐠})Ψ𝑒𝑒𝑒𝑒({𝒓𝒓 − 𝐠𝐠}; {𝑹𝑹− 𝐠𝐠}) = 𝐸𝐸Ψ𝑒𝑒𝑒𝑒({𝒓𝒓 − 𝐠𝐠}; {𝑹𝑹 − 𝐠𝐠}) 

(1.23) 

coincide with those of Eqn. 1.7, when a periodic potential is assumed. 

It has been demonstrated that the eigenfunctions of (1.23) must also obey the Bloch theorem:18 

𝑢𝑢(𝒓𝒓 + 𝐠𝐠;𝐤𝐤) = 𝑒𝑒𝑖𝑖𝐤𝐤.𝐠𝐠𝑢𝑢(𝒓𝒓;𝐤𝐤) 

(1.24) 

This equation provides a relationship between the values of an eigenfunction at equivalent points in 
the crystal lattice and indicates that its periodicity is generally different from that of the lattice. A 
function that satisfies (1.24) is called Bloch function and depends not only on the 𝒓𝒓 position, but also 
on the reciprocal space wave vector 𝐤𝐤, which is a parameter labelling different solutions. 

Fortuitously, the use of Bloch functions as basis set allows one to solve the Schrödinger equation for a 
periodic system in reciprocal space at a finite number of 𝐤𝐤 points. The solutions {𝜑𝜑(𝒓𝒓;𝐤𝐤)} are called 
crystalline orbitals and are linear combinations of one-electron Bloch functions 𝑢𝑢𝜇𝜇: 

𝜑𝜑𝑖𝑖(𝒓𝒓;𝐤𝐤) = �𝐶𝐶𝜇𝜇𝑖𝑖(𝐤𝐤)𝑢𝑢𝜇𝜇(𝒓𝒓;𝐤𝐤)
𝐾𝐾

𝜇𝜇=1

 

(1.25) 

In principle, if an infinite basis set was considered, atomic orbitals and plane waves would be equivalent 
choices to represent Bloch functions, but they are not equivalent in the practical case of finite basis. 
In this work, we prefer the use of atomic orbitals because they are linked to the chemical concept of a 
crystal composed by its building blocks: atoms, functional groups and molecules. The one-electron 
local basis sets used in periodic calculations are similar to that used in molecular calculations, with the 
additional requirement that 𝑢𝑢𝜇𝜇(𝒓𝒓;𝐤𝐤) must obey (1.24).18a 

For practical reasons, most of the periodic calculations are performed within DFT approaches but the 
debate is still open about the most appropriate functionals to be applied for different properties and 
chemical systems. LDA is still popular, as well as various GGA and H-GGA methods. In a few cases, 
Hartree-Fock is preferred. Perturbation theory applied to these wavefunctions are possible, but at 
enormous computational costs.18b     

Present first-principles implementations for periodic systems have provided valuable information on 
ρ1(𝒓𝒓), but also on the full 𝛾𝛾1 matrix.19 This helps crystallographers for the analysis and interpretation 
concerning Bragg peaks and Compton profiles, including their dependence on non-ambient 
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conditions, such as pressure, electric and magnetic fields, and mechanical stress. However, 
discrepancies from experiment require advanced description of the Hamiltonians, in particular the 
inclusion of excited determinants in the frame of post-Hartree-Fock procedures. Larger atomic basis 
sets are sometimes required, in particular for accurate estimation of electric properties. Plane waves 
provide a reference in this respect. Results based on atomic orbitals can approach the plane-wave results 
only when extensive sets, including polarization and possibly diffuse functions, are used. 

1.2.6. Calculations under electric fields 

A number of molecular properties, including (hyper)polarizabilities, can be formulated in terms of 
derivatives of the energy E, with respect to perturbation parameters.10c In general, let us write E as a 
Taylor expansion in some perturbation vector 𝐗𝐗: 

𝐸𝐸(𝐗𝐗) = 𝐸𝐸(𝟎𝟎) +
∂𝐸𝐸
∂𝐗𝐗
�
𝐗𝐗=𝟎𝟎

.𝐗𝐗 +
1
2!
∂2𝐸𝐸
∂𝐗𝐗2

�
𝐗𝐗=𝟎𝟎

.𝐗𝐗2 +
1
3!
∂3𝐸𝐸
∂𝐗𝐗3

�
𝐗𝐗=𝟎𝟎

.𝐗𝐗3 + ⋯ 

(1.26) 

If 𝐗𝐗 refers to an electric field applied to the molecule, the first derivative defines the permanent dipole 
moment µ, the second derivative defines the polarizability α, the third derivative defines the first-
order hyperpolarizability β, and so on. 

Derivative techniques consider the energy in the presence of the perturbation 𝐗𝐗, perform 
differentiation of the energy n times to derive the nth-order property, and make the perturbation 
strength go to zero.10c This can be done either analytically or numerically. 

Because differentiation of the energy with respect to a perturbation is equivalent to differentiation of 
the expectation value of the corresponding Hamiltonian, Eqn. 1.26 provide a simple manner to 
calculate many properties through numerical differentiation. All that is required is a calculation of the 
energy in the absence of the perturbation, and a modification of the Hamiltonian to include the 
perturbation.10b For example, the first derivative in 1.26 can be computed as 

∂𝐸𝐸
∂𝐗𝐗
�
𝐗𝐗=𝟎𝟎

=
∂
∂𝐗𝐗

⟨Ψ𝑒𝑒𝑒𝑒|𝐇𝐇′|Ψ𝑒𝑒𝑒𝑒⟩|𝐗𝐗=𝟎𝟎 = lim
𝐗𝐗→𝟎𝟎

⟨Ψ𝑒𝑒𝑒𝑒|𝐇𝐇′|Ψ𝑒𝑒𝑒𝑒⟩ − ⟨Ψ𝑒𝑒𝑒𝑒|𝐇𝐇|Ψ𝑒𝑒𝑒𝑒⟩
𝐗𝐗

 

(1.27) 

where 𝐇𝐇 is the perturbation-free Hamiltonian, 𝐇𝐇′ includes the perturbation operator, and the 
expectation values are written using Dirac notation.10a  

This procedure is called finite-field approach and (1.27) must be solved for each component of the 
particular property, which is generally a tensor. Of course, the approach can be easily generalized for 
higher derivatives.  

Computationally, it is usually more convenient to derive analytic expressions that allow direct 
calculation of higher-order energy derivatives. In the framework of the so-called coupled-perturbed 
Hartree-Fock procedure (CPHF), this can be done by, additionally to the energy expression (1.26), 
expanding also the Hartree-Fock Hamiltonian and its eigenfunctions in terms of the perturbation 
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parameter 𝐗𝐗.10c The perturbed molecular orbitals {𝜑𝜑′} are given by a simple unitary transformation of 
the unperturbed orbitals: 

𝜑𝜑′𝑖𝑖(𝒓𝒓) = �𝑈𝑈𝑗𝑗𝑖𝑖𝜑𝜑𝑗𝑗(𝒓𝒓)
𝐾𝐾

𝑗𝑗=1

 

(1.28) 

The 𝑈𝑈𝑗𝑗𝑖𝑖 matrix elements describes how the molecular orbitals 𝜑𝜑𝑗𝑗(𝒓𝒓) change upon perturbation, i.e. 

𝜑𝜑𝑗𝑗(𝒓𝒓) → 𝐗𝐗�𝑈𝑈𝑗𝑗𝑖𝑖
(1)𝜑𝜑𝑗𝑗(𝒓𝒓) + 𝐗𝐗2�𝑈𝑈𝑗𝑗𝑖𝑖

(2)𝜑𝜑𝑗𝑗(𝒓𝒓) + 𝐗𝐗3�𝑈𝑈𝑗𝑗𝑖𝑖
(3)𝜑𝜑𝑗𝑗(𝒓𝒓) + ⋯

𝐾𝐾

𝑗𝑗=1

𝐾𝐾

𝑗𝑗=1

𝐾𝐾

𝑗𝑗=1

 

(1.29) 

where 𝑈𝑈𝑗𝑗𝑖𝑖
(𝑛𝑛) are the elements that characterize the nth-order unitary matrix 𝐔𝐔(𝑛𝑛). These elements 

contain the derivatives of the molecular orbitals with respect to the perturbation and can be expressed 
in closed form as functions of the atomic orbital expansion (1.13). The size of 𝐔𝐔(𝑛𝑛) is the number of 
occupied molecular orbitals times the number of virtual orbitals, but the CPHF equations are linear 
and can be solved by standard iterative procedures.10c  

There is one CPHF equation to be solved for each perturbation. In the case 𝐗𝐗 is a homogeneous 
electric field, i.e. 𝐗𝐗 = 𝑋𝑋𝒓𝒓, there will be in general three equations. In this case, the perturbation 
operator that augments the Hamiltonian 𝐇𝐇 to produce 𝐇𝐇′ will be simply 𝒓𝒓. The permanent dipole 
moment µ is shown to be:10c 

𝛍𝛍 = −
∂𝐸𝐸
∂𝐗𝐗
�
𝐗𝐗=𝟎𝟎

= −⟨Ψ𝑒𝑒𝑒𝑒|𝒓𝒓|Ψ𝑒𝑒𝑒𝑒⟩ − 2 �∂Ψ𝑒𝑒𝑒𝑒
∂𝐗𝐗 �𝐇𝐇�Ψ𝑒𝑒𝑒𝑒� 

(1.30) 

Eqn. 1.30 reduces to the well-known quantum-mechanical expression for the dipole moment as soon 
as the basis functions are independent of the electric field, which is normally the case for small field 
magnitudes. This equation holds for Hartree-Fock and all correlated wavefunctions previously 
discussed. However, the analytical expression for second order properties, in particular the 
polarizability α, depends on whether the wavefunction is variationally optimized with respect to all 
parameters or not. This is indeed the case for Ψ𝐻𝐻𝐻𝐻 , and α is expressed as10c 

𝛂𝛂 = −
∂2𝐸𝐸𝐻𝐻𝐻𝐻
∂𝐗𝐗2

�
𝐗𝐗=𝟎𝟎

= −2 �∂Ψ𝐻𝐻𝐻𝐻
∂𝐗𝐗 �𝒓𝒓�Ψ𝐻𝐻𝐻𝐻� 

(1.31) 

Eqn. 1.31 shows that only the first-order change in Ψ𝐻𝐻𝐻𝐻  is necessary. For wavefunctions not 
completely optimized with respect to all parameters, CI, CC and MP, the second derivative of the 
energy assumes the more general form10c 
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1
2
∂2𝐸𝐸
∂𝐗𝐗2

�
𝐗𝐗=𝟎𝟎

= �∂
2Ψ𝑒𝑒𝑒𝑒
∂𝐗𝐗2 �𝐇𝐇�Ψ𝑒𝑒𝑒𝑒� + 2 �∂Ψ𝑒𝑒𝑒𝑒

∂𝐗𝐗 �𝒓𝒓�Ψ𝑒𝑒𝑒𝑒� + �∂Ψ𝑒𝑒𝑒𝑒
∂𝐗𝐗 �𝒓𝒓� ∂Ψ𝑒𝑒𝑒𝑒

∂𝐗𝐗 � 

(1.32) 

This expression can be computed analytically only for methods for which second derivatives of Ψ𝑒𝑒𝑒𝑒 
are available in closed form. This usually excludes CI and CC methods. 

Finally, we note that the CPHF procedure may be generalized to higher order. Extending the 
expansion to third-order allows one to derive an equation for the third-order change in the molecular 
orbitals, which yields the hyperpolarizability β. Analogous formulation for DFT yields the coupled-
perturbed Kohn-Sham equations.10c 

1.2.7. Open-shell determinants and spin operators 

So far, we have described the electronic spin by two spin functions, 𝛼𝛼(𝜔𝜔) and 𝛽𝛽(𝜔𝜔), and considered 
restricted Slater determinants that are formed from two spin orbitals whose spatial parts are restricted 
to be the same, see Eqn. 1.10. Furthermore, Eqn. 1.14 that gives ρ1(𝒓𝒓) in terms of atomic orbitals is 
valid only for closed-shell determinants, those in which each spatial orbital 𝜑𝜑𝑖𝑖(𝒓𝒓) is doubly occupied. 
In view of the open-shell systems considered in Chapter 3, we now discuss spin in some detail and 
generalize (1.14) for open-shell determinants. 

The spin angular momentum of a single electron is the vector operator10a 

𝒔𝒔 = 𝒔𝒔𝑒𝑒𝑖𝑖 + 𝒔𝒔𝑦𝑦𝑗𝑗 + 𝒔𝒔𝑧𝑧𝑘𝑘 

(1.33) 

in Cartesian coordinate system. The squared magnitude of 𝒔𝒔 is the scalar operator 𝒔𝒔2. The spin 
functions characterizing the complete set of spin states of the electron are simultaneous eigenfunctions 
of 𝒔𝒔2 and a single component of 𝒔𝒔, say 𝒔𝒔𝑧𝑧. That is 

𝒔𝒔2𝜏𝜏𝑠𝑠
𝑚𝑚𝑠𝑠(𝜔𝜔) = 𝑠𝑠(𝑠𝑠 + 1)𝜏𝜏𝑠𝑠

𝑚𝑚𝑠𝑠(𝜔𝜔) 

𝒔𝒔𝑧𝑧𝜏𝜏𝑠𝑠
𝑚𝑚𝑠𝑠(𝜔𝜔) = 𝑚𝑚𝑠𝑠𝜏𝜏𝑠𝑠

𝑚𝑚𝑠𝑠(𝜔𝜔) 

(1.34) 

where the eigenvalues are characterized by the quantum numbers 𝑠𝑠, which describes the total spin of 
the electron (𝑠𝑠 = 1/2) and 𝑚𝑚𝑠𝑠, which describes only its z spin-component (𝑚𝑚𝑠𝑠 = ±1/2). Thus, the 

complete set of spin states for the single electron is simply {𝜏𝜏𝑠𝑠=1/2
𝑚𝑚𝑠𝑠=1/2, 𝜏𝜏𝑠𝑠=1/2

𝑚𝑚𝑠𝑠=−1/2} = {𝛼𝛼,𝛽𝛽}. For an N-
electron system, the total spin angular momentum operator 𝑲𝑲 is the vector sum of the spin vectors 𝒔𝒔 
of each electron:10a 

𝑲𝑲 = �𝒔𝒔(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

(1.35) 
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Of course, this equation implies that 𝑲𝑲𝑧𝑧 is simply the sum of the 𝒔𝒔𝑧𝑧 component of each electron. The 
squared magnitude of the total spin is 

𝑲𝑲2 = ��𝒔𝒔(𝑖𝑖). 𝒔𝒔(𝑗𝑗)
𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

(1.36) 

In the nonrelativistic treatment, the exact eigenfunctions Ψ𝑒𝑒𝑒𝑒({𝐱𝐱}) of the Hamiltonian operator (1.8) 
are also eigenfunctions of 𝑲𝑲2 and 𝑲𝑲𝑧𝑧: 

𝑲𝑲2Ψ𝑒𝑒𝑒𝑒,𝐶𝐶
𝑀𝑀𝑆𝑆 ({𝐱𝐱}) = 𝑆𝑆(𝑆𝑆 + 1)Ψ𝑒𝑒𝑒𝑒,𝐶𝐶

𝑀𝑀𝑆𝑆 ({𝐱𝐱}) 

𝑲𝑲𝑧𝑧Ψ𝑒𝑒𝑒𝑒,𝐶𝐶
𝑀𝑀𝑆𝑆 ({𝐱𝐱}) = 𝑀𝑀𝐶𝐶Ψ𝑒𝑒𝑒𝑒,𝐶𝐶

𝑀𝑀𝑆𝑆 ({𝐱𝐱}) 

(1.37) 

where 𝑆𝑆 and 𝑀𝑀𝐶𝐶 are the quantum numbers describing the total spin and its z component of the 
particular N-electron state Ψ𝑒𝑒𝑒𝑒,𝐶𝐶

𝑀𝑀𝑆𝑆 ({𝐱𝐱}). The number 𝑆𝑆 assumes one of the values 0, 1/2, 1, 3/2, …, 
while 𝑀𝑀𝐶𝐶 assumes 2𝑆𝑆 + 1 values, −𝑆𝑆,−𝑆𝑆 + 1,−𝑆𝑆 + 2, … , 𝑆𝑆 − 2, 𝑆𝑆 − 1, 𝑆𝑆. The state characterized by 
a particular 𝑆𝑆 is said to have multiplicity 2𝑆𝑆 + 1 = 1, 2, 3, … and it is called singlet, doublet, triplet, 
..., accordingly. However, we note that, unlike the exact wavefunctions Ψ𝑒𝑒𝑒𝑒,𝐶𝐶

𝑀𝑀𝑆𝑆 , approximate solutions 
of the Schrödinger equation, in particular single-Slater determinants, are not necessarily pure spin 
states, i.e. they are not necessarily eigenfunctions of 𝑲𝑲2 and 𝑲𝑲𝑧𝑧 simultaneously. 

It is usual to refer to Slater determinants by the number of open shells they contain. Because all the 
electron spins are paired in a closed-shell determinant, it is not surprising that it is in fact a pure singlet 
state. Open-shell determinants, on the other hand, are generally not eigenfunctions of 𝑲𝑲2. However, 
for open-shell restricted determinants, it is usually possible to form spin-adapted configurations that are 
eigenfunctions of 𝑲𝑲2 by taking appropriate linear combinations of non-pure spin states.10a Unrestricted 
determinants cannot be spin-adapted. For this reason, they are said to be spin-contaminated solutions. 

Unrestricted determinants are formed from spin orbitals having different spatial orbitals for different 
spins. Given two sets of K orthonormal spatial orbitals {𝜑𝜑𝛼𝛼(𝒓𝒓)} and {𝜑𝜑𝛽𝛽(𝒓𝒓)}, one can form an 
orthonormal set of 2K unrestricted spin orbitals: 

χ(𝐱𝐱) = �
𝜑𝜑𝑖𝑖𝛼𝛼(𝒓𝒓).𝛼𝛼(𝜔𝜔)
𝜑𝜑𝑖𝑖
𝛽𝛽(𝒓𝒓).𝛽𝛽(𝜔𝜔)

 

(1.38) 

It is possible to show that unrestricted wavefunctions can be expanded in terms of pure spin states of 
higher multiplicities,10a thus the expectation value of 𝑲𝑲2 for an unrestricted solution is always too large 
because the contaminant spin states have larger values of 𝑆𝑆. In spite of spin contamination, unrestricted 
determinants are often used as first approximations for pure spin states with 𝑆𝑆 ≥ 2 because they 
certainly have lower energies than the corresponding restricted wavefunctions. Afterwards, the 
contaminations can be minimized, typically using annihilation operators.10b  
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For unrestricted wavefunctions, because electrons with 𝛼𝛼 and 𝛽𝛽 spin have different spatial 
distributions, it is convenient to define the one-electron spin density 𝜌𝜌1𝐶𝐶(𝒓𝒓) according to (1.6). The 
generalization of (1.14) and (1.15) is straightforward, and it yields the following representation of 
ρ𝛼𝛼(𝒓𝒓) and ρ𝛽𝛽(𝒓𝒓) in the basis of the atomic orbitals {φ(𝒓𝒓)}: 

ρ𝜏𝜏(𝒓𝒓) = ��𝐏𝐏𝜇𝜇𝜇𝜇
𝜏𝜏 φ𝜇𝜇

∗ (𝒓𝒓). φ𝜇𝜇(𝒓𝒓)
𝐾𝐾

𝜇𝜇=1

𝐾𝐾

𝜇𝜇=1

,   𝜏𝜏 = 𝛼𝛼,𝛽𝛽 

(1.39) 

where the density matrices 𝐏𝐏𝜇𝜇𝜇𝜇
𝜏𝜏  are defined as: 

𝐏𝐏𝜇𝜇𝜇𝜇
𝜏𝜏 = �𝐶𝐶𝜇𝜇𝑖𝑖∗𝜏𝜏𝐶𝐶𝜇𝜇𝑖𝑖

𝜏𝜏

𝑁𝑁𝜏𝜏

𝑖𝑖=1

,   𝜏𝜏 = 𝛼𝛼,𝛽𝛽 

(1.40) 

In the basis of the {φ(𝒓𝒓)} orbitals, 𝜌𝜌1(𝒓𝒓) and 𝜌𝜌1𝐶𝐶(𝒓𝒓) are simply: 

𝜌𝜌1(𝒓𝒓) = 𝐏𝐏𝛼𝛼 + 𝐏𝐏𝛽𝛽 

𝜌𝜌1𝐶𝐶(𝒓𝒓) = 𝐏𝐏𝛼𝛼 − 𝐏𝐏𝛽𝛽 

(1.41) 

1.3. Electron densities from high-resolution X-ray diffraction 
The X-ray diffraction experiment do not provide directly the one-electron density of a crystalline 
material because only a finite number of structure factors can be collected and their phases cannot be 
measured. Therefore, ρ1(𝒓𝒓) is usually reconstructed by fitting a model against the collected intensities. 
In this section, we discuss how this can be done within the kinematic approximation.   

1.3.1. Elastic X-ray scattering and the independent-atom formalism 

Upon interaction with crystalline matter, X-ray photons are either scattered or absorbed by its 
constituent atoms.20a However, it is usually convenient to treat the material as a purely mathematical 
space lattice, consisting of identical scattering points. When plane waves sweep through, each lattice 
point becomes the source of spherically scattered waves whose amplitude diminishes as the distance to 
the point increases. This phenomenon yields non-negligible intensities only in discrete directions, due 
to constructive and destructive interference of the wavelets scattered by different lattice points, and it 
can be expressed by the Laue equations.20b,e The resulting scattered intensity in a particular direction 
can only be predicted when the lattice points are replaced by the actual group of atoms that form each 
unit cell of the crystal structure. 

In most that follows, we consider the incident X-ray waves hardly modified by the crystal as they passes 
through. This condition is called kinematical approximation and neglects multiple-scattering effects 
that may become important.20a Furthermore, we suppose that no absorption either of the incident or 
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the scattered radiation takes place within the crystal. Finally, we are mainly interested in the elastic 
and coherent scattering. 

Quantum-mechanically, the total scattering of an X-ray photon by a single atom contains both elastic 
and inelastic components. The inelastic, incoherent scattering is known as the Compton effect and, as 
anticipated in section 1.1, can be used to model the off-diagonal terms of the first-order density matrix 
𝛾𝛾1. The formalism of Compton scattering can be found in textbooks20 and it is not further considered 
here. Instead, the electric-field vector scattered elastically by a free particle of mass 𝑚𝑚 and electric 
charge 𝑒𝑒 in a direction defined by the polar angle φ  and at a distance 𝑅𝑅 from the particle was first 
given by J. J. Thomson as20b 

𝐄𝐄(φ, 𝑡𝑡) = 𝐄𝐄0
𝑒𝑒2

𝑚𝑚𝑐𝑐2
sin φ
𝑅𝑅

exp[𝑖𝑖𝜔𝜔(𝑡𝑡 − 𝑅𝑅/𝑐𝑐)] 

(1.42) 

where 𝐄𝐄0 exp(𝑖𝑖𝜔𝜔𝑡𝑡) is the electric vector incident at the particle at the time 𝑡𝑡. Eqn. 1.42 shows that 
the intensity scattered elastically and coherently by an atom is essentially determined by its electron 
density distribution because the electrons, much lighter particles, scatter X-rays more efficiently than 
nuclei.  

According to (1.42), when E0 = 1, the amplitude of the spherical wave radiated at unit distance by a 
free point electron in the φ = 0 direction is 𝑒𝑒2/𝑚𝑚𝑐𝑐2. This is the Thomson scattering length of the 
electron that assumes the value 2.82 × 10−5Å, and it is usually taken as the unit of scattered 
amplitude.20 For an ensemble of N non-interacting electrons, interference occurs between waves 
scattered by the different centers. If the incident beam defines the direction of the wave vector 𝐤𝐤 and 
the diffracted beam the direction of 𝐤𝐤′, the phase difference between the scattered wave from an 
electron at the origin and one at 𝒓𝒓𝑗𝑗 is 𝐊𝐊. 𝒓𝒓𝑗𝑗, where the familiar 𝐊𝐊 scattering vector is equal to 𝐤𝐤 − 𝐤𝐤′ 
and has length 4𝜋𝜋(𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠)/λ.20a,e Thus, the amplitude 𝐴𝐴(𝐊𝐊) scattered elastically by the N non-
interacting electrons assumes the form: 

𝐴𝐴(𝐊𝐊) =
𝑒𝑒2

𝑚𝑚𝑐𝑐2
� exp(𝑖𝑖𝐊𝐊.𝒓𝒓𝑗𝑗)
𝑁𝑁

𝑗𝑗=1

 

(1.43) 

For a continuous electron density distribution ρ1(𝒓𝒓), the summation over waves of different phase 
must be replaced by an integral.20c Therefore, the amplitude of the elastic and coherent X-ray scattering 
at a reciprocal-space direction 𝐊𝐊 is the Fourier transform of the one-electron density: 

𝐴𝐴(𝐊𝐊) = 𝐹𝐹𝐹𝐹[ρ1(𝒓𝒓)] = �ρ1(𝒓𝒓) exp(𝑖𝑖𝐊𝐊.𝒓𝒓)𝑑𝑑𝒓𝒓 

(1.44) 

where 𝑒𝑒2/𝑚𝑚𝑐𝑐2 has been taken as the scattering unit.  
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Furthermore, electrons in atoms occupy discrete energy levels. If the energy of the X-ray photons are 
not tremendously larger than the binding energy of the atomic electrons, the response of these 
electrons is reduced by virtue of the fact they are bound. Therefore, we expect a reduction on the 
scattering length of an atom in this condition. The correction to 𝐴𝐴(𝐊𝐊) is called anomalous dispersion 
and have both real and imaginary components:20a,d 

𝐴𝐴𝜔𝜔(𝐊𝐊) = 𝐴𝐴(𝐊𝐊) + 𝑓𝑓′(𝜔𝜔) + 𝑖𝑖𝑓𝑓′′(𝜔𝜔) 

(1.45) 

where 𝑓𝑓′ and 𝑓𝑓′′ are known as the dispersion corrections to 𝐴𝐴(𝐊𝐊). It is typically necessary to correct 
the X-ray scattering amplitudes for anomalous dispersion before the calculation of ρ1(𝒓𝒓) by Fourier 
inversion of (1.44). 

To emphasize the assumption of non-interacting electrons, the result (1.44) is referred to as the form-
factor approximation.20c,d When ρ1(𝒓𝒓) is the one-electron density of a crystal unit cell, 𝐹𝐹𝐹𝐹[ρ1(𝒓𝒓)] is 
known as the structure factor, 𝐹𝐹(𝐊𝐊). 

The density distribution ρ1(𝒓𝒓) within a unit cell is determined from X-ray diffraction intensities by 
introducing an electron density model that yields theoretically computed structure factors known in 
both magnitude and phase as a function of some adjustable, refinable parameters. The parameters are 
evaluated by minimizing the difference between the structure-factor amplitudes calculated from the 
model and measured experimentally, using a least-squares refinement procedure.20d An alternative to 
this method is represented by the maximization of the information entropy, which however would not 
return an electron density separated from the thermal smearing.21  

The electron density of the crystal unit cell is approximated by a summation over discrete densities, 
typically taken as pseudo-atomic densities centered at the corresponding nuclear positions {𝑹𝑹}: 

ρ1(𝒓𝒓) = � ρ1,𝑘𝑘(𝒓𝒓 − 𝑹𝑹𝑘𝑘)
𝑀𝑀

𝑘𝑘=1

 

(1.46) 

where M denotes the number of atomic centers in the unit cell. Substitution of (1.46) into (1.44) 
yields the structure factor expression20 

𝐹𝐹(𝐊𝐊) = �𝑓𝑓𝑘𝑘(𝐊𝐊) exp(𝑖𝑖𝐊𝐊.𝑹𝑹𝑘𝑘)
𝑀𝑀

𝑘𝑘=1

 

(1.47) 

in which 𝑓𝑓𝑘𝑘(𝐊𝐊) is the Fourier transform of the pseudo-atomic density ρ1,𝑘𝑘(𝒓𝒓) at 𝐊𝐊. For atomic 
densities constructed from Slater-type or Gaussian-type orbitals, 𝑓𝑓𝑘𝑘(𝐊𝐊) can be expressed in simple 
closed form.20d The atomic scattering factor is represented in Fig. 1.3 for the F, C and H atoms, along 
with the individual contributions from their core and valence electrons. The inverse relation between 
direct and reciprocal space is clear, as more compact electron densities have the more diffuse scattering 
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Figure 1.3. Atomic scattering factors and individual core and valence contributions to the total scattering for fluorine, 
carbon and hydrogen.  

factors. Moreover, the scattering of the valence electrons are concentrated in the low-order region of 
the reciprocal space, while the core scattering persists to high-resolution. Of course, the scattering of 
hydrogen is rather small and concentrated at low values of (𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠)/λ because this atom has only one 
valence electron. 

In X-ray crystal structure determination, the atomic densities are spherically symmetric, with a radial 
dependence equal to that of the Hartree-Fock ground-state atom. Only atomic coordinates and 
thermal parameters are refined against the experimental structure-factor amplitudes. This characterizes 
the so-called independent-atom model (IAM). Because the electron density distributions assume 
maximum values at nuclei, the IAM is a remarkably good approximation for the heavier atoms, for 
which the valence electrons contribute only to a minor part of the total scattering. However, IAM is 
much less accurate for lighter atoms, in particular for hydrogen, which lacks inner electronic shells. 
The mean of the electron density of H atoms covalently connected to heavier elements is displaced 
inwards into the X–H bond because of the overlap density involved in those interactions. 
Consequently, when an IAM hydrogen scattering factor is used in the least-squares refinement to 
adjust the atomic positions, the centroid of the electron density associated with the H atom is shifted 
in the direction of the bond, thus producing too-short X–H bonds. It has been demonstrated that this 
apparent shortening is far beyond the precision of X-ray structure determination and that it is of 
significance for second-row elements as well.20d Finally, IAM assumes all atoms in the unit cell to be 
neutral and it is unable to describe the redistribution of the atomic densities due to chemical bonding 
effects. 

1.3.2. Generalized scattering factors and Hansen-Coppens formalism     

A very simple modification of the IAM that allows for charge transfer between atoms is the κ-
formalism. It separates the atomic core density, kept fixed with respect to the neutral atom, from the 
atomic valence density, which can expand or contract with respect to the neutral atom and for which 
the electronic population can accordingly be refined. The model represents substantial improvement 
over the IAM, despite the refinement of only two more parameters per atom, the valence population 
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𝑃𝑃𝑣𝑣𝑒𝑒𝑒𝑒 and the exponent κ that scales the radial coordinate of the valence density function.20d Thus, the 
pseudo-atomic density is formulated as 

ρ1,𝑘𝑘(𝑟𝑟) = ρ1,𝑘𝑘
𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒(𝑟𝑟) + 𝑃𝑃𝑣𝑣𝑒𝑒𝑒𝑒κ3ρ1,𝑘𝑘

𝑣𝑣𝑒𝑒𝑒𝑒(κ𝑟𝑟) 

(1.48) 

When κ > 1, the same density is obtained at a smaller value of 𝑟𝑟, therefore the valence shell is 
contracted with respect to the neutral atom. Conversely, when κ < 1, the valence shell is relatively 
expanded. The factor κ3 satisfies normalization requirements.20d The assumption of unperturbed core 
electron density is amply supported. However, very-high-resolution studies suggest that small 
perturbations predicted by theory are also accessible experimentally.22 

The κ-formalism yields atomic charges in good agreement with electronegativity concepts and 
molecular dipole moments close to those derived from other experiments or calculated from first-
principles.20d However, it allows only a crude representation of ρ1(𝒓𝒓). Nowadays, it is used only as an 
intermediate step during a multi-step refinement procedure.2 An accurate treatment of X-ray scattering 
must also contain non-spherical density functions.  

An extremely useful guidance for improving the scattering formalism upon the κ-formalism can be 
obtained from Eqn. 1.14 that expresses the one-electron density as combination of products of atomic 
orbitals φ𝜇𝜇(𝒓𝒓). According to (1.14), the generalized scattering factor 𝑓𝑓𝜇𝜇𝜇𝜇  is the Fourier transform of 
an atomic-orbital product:23 

𝑓𝑓𝜇𝜇𝜇𝜇(𝐊𝐊;𝑹𝑹) = � φ𝜇𝜇
∗ (𝒓𝒓).φ𝜇𝜇(𝒓𝒓) exp(𝑖𝑖𝐊𝐊.𝒓𝒓)𝑑𝑑𝒓𝒓 

(1.49) 

The orbitals φ𝜇𝜇 and φ𝜇𝜇 are either on the same atomic center or on two different centers, and 𝑹𝑹 is the 
inter-nuclear vector for the two-center case. For 𝜇𝜇 = 𝛿𝛿 and 𝑹𝑹 = 𝟎𝟎, 𝑓𝑓𝜇𝜇𝜇𝜇  is the scattering by a part of 
the atomic density function; for 𝜇𝜇 ≠ 𝛿𝛿 and 𝑹𝑹 = 𝟎𝟎, 𝑓𝑓𝜇𝜇𝜇𝜇  is the scattering contribution by two distinct 
orbitals in the same atom, the product of which is associated with a hybridized density function; for 
𝑹𝑹 ≠ 𝟎𝟎, 𝑓𝑓𝜇𝜇𝜇𝜇  may be seen as scattering from the overlap density in the bond.23 

The nuclear centered pseudo-atomic models represented by Eqn. 1.46 do not account explicitly for 
the two-center terms of (1.49). However, this is not a severe limitation because the bonding densities 
usually project efficiently in the atomic functions, provided they are sufficiently diffuse.20d 
Additionally, non-atom-centered density models necessarily have “ghost” charge clouds located 
between atoms and in lone-pair regions, thus hampering straightforward interpretation in terms of 
chemically intuitive building blocks.    

A number of atom-centered deformation-density models are available.24 In most of them, the pseudo-
atomic units are described by a multipole expansion that gives the best possible fit to the structure-
factor amplitudes within the approximation (1.46). Among the so-called multipolar models, the 
Hansen-Coppens formalism24e is particularly useful to us because of the usage of local coordinate 
systems. Each set of atomic functions is defined with respect to a Cartesian system, which is 
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independent from the unit-cell framework and from the reference systems of all other atoms. Proper 
choice of local reference for a pseudo-atom, defined using other pseudo-atoms in the unit cell, allows 
one to export atomic electron densities from relatively simple molecules (usually experimentally refined 
or theoretically calculated with high accuracy) to atoms belonging to much larger systems (for which 
experimental refinement or theoretical prediction cannot be performed so accurately). In fact, the 
transferability of multipolar densities characterizes most applications of modern electron density 
analysis on the field of biocrystallography.25 Furthermore, local coordinate systems allow one to impose 
chemical equivalences to atoms not crystallographically equivalent, and to define constraints or 
restraints if a pseudo-symmetry is present in the molecule but not coincide with a crystallographic 
symmetry.4  

The Hansen-Coppens approach augments each atomic electron density of the κ-formalism with 
deformation density terms that are products of radial and angular density functions:20d 

ρ1,𝑘𝑘
𝑐𝑐𝑒𝑒𝑑𝑑(𝒓𝒓) = � κ′3𝑅𝑅𝑒𝑒(κ′𝑟𝑟)

𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒=0

. � 𝑃𝑃𝑒𝑒𝑚𝑚±𝑑𝑑𝑒𝑒𝑚𝑚±(𝑠𝑠,𝜗𝜗)
𝑒𝑒

𝑚𝑚=0

 

(1.50) 

The parameters 𝑃𝑃𝑒𝑒𝑚𝑚± and κ′ can be refined within a least-squares procedure together with the usual κ 
and 𝑃𝑃𝑣𝑣𝑒𝑒𝑒𝑒 parameters of the κ-formalism, as well as with atomic positions and thermal parameters. The 
angular functions 𝑑𝑑𝑒𝑒𝑚𝑚± are real linear combinations of the well-known imaginary spherical harmonics 
𝑌𝑌𝑒𝑒𝑚𝑚(𝑠𝑠,𝜗𝜗).12 They can be written as 

�
𝑑𝑑𝑒𝑒𝑚𝑚+(𝑠𝑠,𝜗𝜗) = 𝑁𝑁𝑒𝑒𝑚𝑚𝐿𝐿𝑒𝑒𝑚𝑚(cos𝑠𝑠) cos(𝑚𝑚𝜗𝜗) 
𝑑𝑑𝑒𝑒𝑚𝑚−(𝑠𝑠,𝜗𝜗) = 𝑁𝑁𝑒𝑒𝑚𝑚𝐿𝐿𝑒𝑒𝑚𝑚(cos𝑠𝑠) sin(𝑚𝑚𝜗𝜗) 

(1.51) 

with 0 ≤ 𝑚𝑚 ≤ 𝑙𝑙. The functions 𝐿𝐿𝑒𝑒𝑚𝑚(cos𝑠𝑠) are the associated Legendre polynomials. The 
normalization constant 𝑁𝑁𝑒𝑒𝑚𝑚 ensures that a population parameter 𝑃𝑃00 = 1 for the spherically 
symmetric function 𝑑𝑑00 corresponds to one electron, and that the population parameters 𝑃𝑃𝑒𝑒𝑚𝑚± of non-
spherical functions (𝑙𝑙 > 0) represent a shift of density from the negative to the positive regions of the 
corresponding 𝑑𝑑𝑒𝑒𝑚𝑚± harmonics.20d 

The spherical harmonic functions to be included in the description of a particular pseudo-atom may 
be symmetry restricted, depending not only on the crystallographic symmetry of the site, but also on 
the local symmetry imposed by a constraint.26 The function 𝑑𝑑00 is of course spherically symmetric. 
For 𝑙𝑙 ≠ 0 and 𝑚𝑚 = 0, the 𝜗𝜗 dependence disappears and the functions are cylindrically symmetric 
around the Cartesian z axis. Functions with 𝑙𝑙 even are symmetric with respect to inversion through 
the origin of the local reference, while the functions with 𝑙𝑙 odd are antisymmetric.20d The monopole 
𝑑𝑑00 is usually omitted for first- to third-row elements, but it is often necessary to describe the outer s-
electron shell of transition metals, which is significantly more diffuse than the outermost d-subshell. 
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The choice of the radial functions of both spherical and aspherical parts of the total pseudo-atomic 
density ρ1,𝑘𝑘(𝒓𝒓) is crucial for a successful modelling of the crystalline electron density distribution. The 

core and spherical valence densities are taken from the isolated atom and modified by the κ expansion-
contraction parameter. Typically, they are linear combinations of products of atomic Slater-type 
Hartree-Fock orbitals,27a but relativistic effects can also be taken into account if necessary.27b,c The 
radial deformation densities 𝑅𝑅𝑒𝑒(κ′𝑟𝑟) must instead be more diffuse to describe density accumulation 
in the bond regions. They are defined as20d 

𝑅𝑅𝑒𝑒(κ′𝑟𝑟) =
(2ζ𝑒𝑒)

𝑛𝑛𝑙𝑙+3

(𝑠𝑠𝑒𝑒 + 2)!
(κ′𝑟𝑟)𝑛𝑛𝑙𝑙 exp�−2κ′ζ𝑒𝑒𝑟𝑟� 

(1.52) 

The κ′ parameter is generally numerically different from the κ applied to the spherical valence, as in 
Eqn. 1.48, and may be selected to vary among the different deformation functions on a particular 
atom. ζ𝑒𝑒 assumes a value for each electronic subshell of the isolated atom, as optimized by Clementi 
and Raimondi.27d The integer coefficient 𝑠𝑠𝑒𝑒 is chosen for each subshell according to the rules of 
multiplication of spherical harmonic functions.20d  

For transition metals, it is sometimes preferable to use Hartree-Fock-orbital densities27a for the higher 
multipoles as for the core and spherical valence because the rather contracted nature of the d-subshell 
makes the densities constructed from combinations of Slater-type orbitals more adequate.   

The sum of the direct Fourier transform of Eqns. 1.48 and 1.50 yields the atomic scattering factor 
corresponding to the Hansen-Coppens multipolar pseudo-atom.20d Due to Fourier-invariance of the 
spherical harmonics, its analytical expression is 

𝑓𝑓𝑘𝑘(𝐊𝐊) = 𝑓𝑓𝑘𝑘,𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒(K) + 𝑃𝑃𝑣𝑣𝑒𝑒𝑒𝑒𝑓𝑓𝑘𝑘,𝑣𝑣𝑒𝑒𝑒𝑒(K/κ) + 4𝜋𝜋 � 𝑖𝑖𝑒𝑒𝐽𝐽𝑒𝑒(𝐻𝐻/κ′)
𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒=0

. � 𝑃𝑃𝑒𝑒𝑚𝑚±𝑑𝑑𝑒𝑒𝑚𝑚±(𝛽𝛽, 𝛾𝛾)
𝑒𝑒

𝑚𝑚=0

 

(1.53) 

where 𝐽𝐽𝑒𝑒 is the 𝑙𝑙th-order Fourier-Bessel transform of 𝑅𝑅𝑒𝑒, and 𝑑𝑑𝑒𝑒𝑚𝑚±(𝛽𝛽, 𝛾𝛾) are reciprocal-space spherical 
harmonic functions with 𝛽𝛽 and 𝛾𝛾 being the angular coordinates of 𝐊𝐊. When the expansion (1.53) is 
truncated at 𝑙𝑙 = 0, 𝑃𝑃𝑣𝑣𝑒𝑒𝑒𝑒 is made equal to the number of valence electrons of the isolated atom, and 
κ = 1, the IAM is recovered. 

Obviously, the physical content of the experimentally refined pseudo-atoms is subject to data quality, 
approximations and inadequacies inherent to the scattering model and ambiguities associated with the 
least-squares refinement.28 Extremely accurate diffracted X-ray intensities, measured up to relatively 
high-resolution and at sufficiently low temperature are mandatory for meaningful electron density 
determination and analysis. High resolution is needed to precisely locate core-density maxima and 
adequately deconvolute thermal smearing effects from density deformations due to chemical bonding. 
Low temperature is required to minimize thermal diffuse scattering and thus increase the signal-to-
noise ratio of the reflections.2,28 
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1.3.3. Extended electron density models 

Electron density distributions reconstructed using the Hansen-Coppens formalism does not 
necessarily adhere to quantum-mechanical requirements such as nuclear-cusp condition and proper 
asymptotic behaviour. However, this does not limit its applicability because extremely accurate radial 
wavefunctions have been used to improve the pseudo-atomic description at both regions, very close 
and very far from the nuclei.27e,f Additional requirements, such as positivity, can be imposed by 
constraints. 

Despite the large number of refinable parameters, the traditional Hansen-Coppens formalism is 
known to be not flexible enough and to produce bias in the resulting electron density. This becomes 
evident when comparing theoretically calculated electron densities with those obtained by applying 
multipolar models to the theoretical structure factors.28 In view of these results, modified and extended 
formalisms have been proposed.        

However, as anticipated, the pseudo-atom expansion (1.46) does not explain exactly the X-ray 
scattering due to overlap densities in the bond region between two atomic centers. Consequently, 
within multipolar formalisms, higher multipoles than those based on pure orbital assumptions are 
necessary to obtain satisfactory, though not exact or unique, convergence of the expansion.2 For 
example, it is common to obtain significant octupole populations for C, N and O atoms. For transition 
metal atoms, the electron density is highly of one-center type because of the low overlap with the 
ligand density. For these atoms, hexadecapolar functions usually suffice.4 This feature motivates the 
first extension of the Hansen-Coppens formalism that is to include at least a few more harmonics in 
the series, usually truncated at the 𝑙𝑙𝑚𝑚𝑒𝑒𝑒𝑒 = 4 level. This could be of particular importance in modelling 
the experimental electron density of compounds containing actinides or lanthanides29 

As discussed, electron densities undergo contractions and expansions from their ground state due to 
interactions with other atoms or molecules in the crystal. An atom involved in chemical bonds is 
anisotropically distorted, and one could consider, even in the same electronic shell, the possibility of 
different contraction-expansion in different directions. Of course, this implies much more parameters 
as each multipole 𝑙𝑙𝑚𝑚 has now a different radial function along with its particular κ′-scaling.4 An 
intermediate level of flexibility would be to use the contraction-expansion parameter as they appear in 
(1.50), but without imposing κ𝑒𝑒′ = κ′. 

The evidences for core-polarization observed in very-high-resolution X-ray diffraction experiments 
have opened the possibility to perform core-electron density refinements.22 Apart from the very small 
extents of core deformations, the core refinement within the Hansen-Coppens formalism is not 
particularly different from that of the valence density. Thus, in a minimal refinement of core density, 
one would simply include the core population 𝑃𝑃𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒 in (1.50) as a refinable variable. Notably, within 
the closely related Stewart formalism, 𝑃𝑃𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒 parameters are already routinely refined for each electronic 
shell but the aspherical density is superimposed on the spherical one without treating explicitly the 
expansion or contraction of the valence shell.30 Furthermore, it has been encoded using a single crystal-
coordinate system, rather than individual local-coordinate references.30b Additional steps would be to 
refine a scaling factor κ𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒 together with 𝑃𝑃𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒 to account for the contraction-expansion of the core 
with respect to that of the unperturbed atom, then to refine a full set of multipoles starting from orbital 
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products of the atomic wavefunctions. In an extremely flexible approach, the refinement of different 
sets of multipoles and κ factors for each electronic shell of the core could be considered.4 

With all these possibilities, Eqn. 1.50 becomes 

ρ1,𝑘𝑘
𝑐𝑐𝑒𝑒𝑑𝑑(𝒓𝒓) = � �𝑃𝑃𝑛𝑛κ𝑛𝑛3ρ𝑛𝑛(κ𝑛𝑛𝑟𝑟) + � � κ𝑛𝑛𝑒𝑒𝑚𝑚′ 3𝑅𝑅𝑛𝑛𝑒𝑒𝑚𝑚(κ𝑛𝑛𝑒𝑒𝑚𝑚′ 𝑟𝑟)𝑃𝑃𝑒𝑒𝑚𝑚±𝑑𝑑𝑒𝑒𝑚𝑚±(𝑠𝑠,𝜗𝜗)

𝑒𝑒

𝑚𝑚=0

𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒=0

�
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛=1

 

(1.54) 

Of course, flexible models imply many more parameters to describe small portion of the residual 
density left by a traditional multipolar refinement. Most of these approaches require extremely 
accurate, ultra-high-resolution data, much more than what is often available, and can possibly be 
applied only to highly symmetric and simple crystal structures. Moreover, the noise accompanying a 
residual map could hide systematic effects that are incidentally absorbed by too-flexible models, thus 
spoiling the interpretation of subtle features of the electron density distributions. In such 
circumstances, residual-density analyses could reveal systematic errors not only due to improperly 
corrected diffraction intensities, but also because of deficiencies in the density models. The state-of-
the-art residual analysis uses the statistical test proposed by Meindl and Henn31 to ascertain whether 
only normally distributed noise affects the residual electron density in the unit cell. 

Larger precision than that provided by (1.54) would require models much more computationally 
expensive not only for the refinement, but also for the calculation of density-derived properties.28 At 
this point, the calculation of molecular orbitals constrained to X-ray diffraction intensities become 
more competitive. 

1.3.4. X-ray constrained wavefunctions 

An X-ray constrained wavefunction is one that, other than minimizing the associated energy, as stated 
by Eqns. 1.7 and 1.12, reproduces a set of experimentally collected X-ray structure-factor amplitudes 
within a predefined precision. The first attempt to constrain a wavefunction to experimental measures 
dates back to 1963, when Hartree-Fock Slater-type molecular orbitals were constrained to reproduce 
the experimental dipole moment of the HF molecule.32a Since then, many methods have appeared. 
We postpone a brief literature review to Chapter 4. For a rather detailed description of previous 
methods, the reader is referred to Refs. 6a and 32b. Here, we only describe the most promising 
strategy, the one developed by Jayatilaka and co-workers.6a 

The most important reason to determine an X-ray constrained wavefunction is to condense the 
experimental data into an object that, unlike the pseudo-atomic expansion (1.46), is of quantum-
mechanical significance. The fact that the object is a wavefunction has the advantage of allowing the 
derivation of properties rather different from those used to construct the model.32b  

Noteworthy, according to the Hohenberg-Kohn theorem,13a the one-electron density suffices to 
determine all ground-state properties, but the corresponding functionals are usually unknown. Indeed, 
this is another reason to extract molecular orbitals from X-ray diffracted intensities: to learn something 
about the relationship between the one-electron density and the ground-state wavefunction.32c-e  
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The strategy proposed by Jayatilaka provides a single-Slater determinant in the form of Eqn. 1.11 for 
which the spatial molecular orbitals 𝜑𝜑𝑖𝑖(𝒓𝒓) are constrained to X-ray diffraction data.6a It is necessary 
not only to minimize the energy associated with the Hartree-Fock Hamiltonian (1.17), but also to 
reproduce a set of collected structure-factor amplitudes within a predetermined agreement. This is 
achieved by searching for the orbitals {𝜑𝜑(𝒓𝒓)} that minimize the following functional: 

𝐿𝐿[{𝜑𝜑}]  = 𝐸𝐸[{𝜑𝜑}]  +  𝜆𝜆 (𝜒𝜒2[{𝜑𝜑}] − Δ) 

(1.55) 

where [{𝜑𝜑}] indicates the functional dependence on the set of occupied molecular orbitals {𝜑𝜑(𝒓𝒓)}, 
and E is the energy associated with the Slater determinant for a suitably chosen crystal unit. 𝜆𝜆 is the 
Lagrange multiplier representing the strength of the constraint associated with the experimental data. 
Δ is the desired agreement between the structure-factor amplitudes experimentally measured, 𝐹𝐹𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠, 
and those calculated from the model wavefunction, 𝐹𝐹𝐊𝐊,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝜒𝜒2 is the agreement statistics between 
𝐹𝐹𝐊𝐊,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐹𝐹𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠:6a 

𝜒𝜒2 =
1

𝑁𝑁𝑟𝑟 − 1
 �
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𝐊𝐊

 

(1.56) 

with 𝑁𝑁𝑟𝑟 as the number of experimental reflections and  𝜎𝜎𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠 as the standard uncertainty associated 
with the experimental structure-factor amplitude 𝐹𝐹𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠, i.e. 𝜎𝜎𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠 = 𝜎𝜎(𝐹𝐹𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠). All the calculated 
structure factors are multiplied by an overall K-independent scale factor 𝜂𝜂.33 

Following Jayatilaka, the set of structure-factor amplitudes �𝐹𝐹𝐊𝐊,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� can be computed by assuming 
that the crystal is an ensemble of non-interacting crystal units.6a This allows writing the global 
wavefunction for the crystal as 

Ψ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁) = �Ψ𝑘𝑘�𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁𝑘𝑘�
𝑁𝑁𝑢𝑢

𝑘𝑘=1

  

(1.57) 

where 𝑁𝑁 and 𝑁𝑁𝑘𝑘 are the number of electrons in a crystal unit cell and in the crystal unit 𝑘𝑘, respectively, 
whereas 𝑁𝑁𝑡𝑡 is the number of crystal units in an unit cell. The crystal-unit wavefunctions Ψ𝑘𝑘 assume 
the single-Slater-determinant form of (1.11) and, apart from being related to each other by the crystal 
symmetry operations, they are formally identical to a reference wavefunction for the crystal fragment, 
Ψ0. Since we are particularly interested in molecular crystals and in the effects of the crystalline 
environment on isolated molecular units, it is convenient to use Ψ0 for a molecule or maybe a small 
set of molecules. Eqn. 1.57 is exact, but an approximation is introduced when Ψ0 is calculated for the 
crystal unit in isolation. 

For practical calculations, the atomic orbital approximation (1.13) is used to obtain Ψ0. Finding the 
𝜑𝜑𝑖𝑖(𝒓𝒓) molecular orbitals that minimize the functional (1.55) is equivalent to solve self-consistently a 
set of N one-electron eigenvalue problems very similar to (1.16). The presence of the experimental 
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constraint merely adds an extra contribution to the one-electron operator 𝐟𝐟𝑖𝑖.6a If the Lagrange 
multiplier 𝜆𝜆 equals zero in (1.55), the usual Hartree-Fock equations are recovered, 𝜆𝜆 is simply chosen 
sufficiently large to give the desired agreement Δ.     

In order to properly compute the set of structure-factor amplitudes �𝐹𝐹𝐊𝐊,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�, one must take into 
account the effect of the atomic thermal vibrations, which smear the electron density from that 
calculated for fixed nuclei. There are a number of choices for the atomic thermal parameters.34 
Additionally, the effect of secondary extinction must be corrected before comparison with �𝐹𝐹𝐊𝐊,𝑐𝑐𝑏𝑏𝑠𝑠�. 
This effect has been analysed in some detail,35a but typically the simplest empirical method35b is used. 

Owing to the experimental errors in the collected intensities, it is not necessary to force 𝜒𝜒2 equal to 
zero, but it is better to set the value of the desired agreement Δ equal to 1, so that, at the end of the 
calculations, the computed values are on average within one standard deviation of the experimental 
data. However, the convergence towards the desired agreement is not always fast and straightforward.36 
In order to avoid that large values of 𝜆𝜆 produce only minimal improvements in the 𝜒𝜒2 statistics and 
large unphysical changes of the energy, the following termination criteria have been recently 
proposed:33 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜒𝜒

2 < 1
 

�
Δ𝜒𝜒2

Δλ
�
𝑖𝑖

=
𝜒𝜒𝑖𝑖2 − 𝜒𝜒𝑖𝑖−12

𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖−1
 > −5 × 10−1

 
�𝐸𝐸𝜆𝜆𝑖𝑖 − 𝐸𝐸𝜆𝜆=0�

�𝐸𝐸𝜆𝜆=0�
 >  5 × 10−4

 

(1.58) 

While the first criterion is the traditional one that checks if the statistical agreement Δ = 1 has been 
reached, the second one avoids that a very large Lagrange multiplier produces only very small 
improvements in the statistics. The third criterion assures that the energy does not excessively change 
compared to the unconstrained situation. Although these criteria are quite reliable and well defined, 
the termination of the fitting procedure in the X-ray constrained approaches is still an open problem 
and it will deserve further investigations in the future. 

In principle, the X-ray constrained wavefunction approach is capable to produce all the properties 
obtained from first-principle calculations, including those that require highly correlated Hamiltonians 
and largely extended basis sets to be estimated accurately, with the advantage of including, at least 
partially, crystal-field effects through the experimental constraint. Comparison with calculations is 
facilitated by the fact that the same level of theory can be used. However, in practice, acceptable 
convergence can only be achieved when rather small basis sets are used.33 

Nevertheless, Jayatilaka has calculated “in-crystal” electric properties of simple organic molecules using 
his constrained wavefunction method.36a,b He concluded that despite the fact that a constrained 
wavefunction is only a single-Slater determinant that minimizes the Hartree-Fock energy, the additional 
experimental constraint results in a wavefunction that reflects the effects of both electron correlation and 
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intermolecular interactions experienced by the molecule in the crystal.32b Our preliminary work on 
deconvoluting electronic correlation from crystal field effects shows that the experimental constraint 
is not capable to recover these features in full. Furthermore, the perturbation caused by intermolecular 
interactions seems to be more easily recovered than correlation effects, see Chapter 4. 

Significant challenges remain in the field of experimentally constrained wavefunctions.32b From the 
technical point of view, not only the termination criteria is an open question, but also how to make 
the method faster and more reliable, so larger basis sets and possibly better wavefunctions than the 
single-Slater approximation can be considered. The most exciting scientific opportunities concern the 
prediction of new properties. Reasonable spin densities have been calculated from X-ray constrained 
open-shell determinants.36c 

It is clear that, for accurate description of electron density distributions, the nuclear degrees of freedom 
must be accurately known as well. A very efficient approach is to refine nuclear positions and 
displacement parameters against X-ray diffraction data using multipolar models. Atomic coordinates 
are then used in constrained or unconstrained wavefunction methods without change. Eventually, 
atomic displacement parameters may be used to thermally smear the partitioned atomic densities. For 
some applications, even an IAM refined against experimental structure factors can be used without 
further optimization. However, a remarkably accurate procedure for crystal structure refinement have 
appeared, it is called Hirshfeld method.37 Aspherical pseudo-atomic electron densities are obtained by 
partitioning a quantum-mechanical molecular density using the Hirshfeld scheme.41b Then, atomic 
positions and displacement parameters are adjusted to fit the X-ray diffraction data. After that, a new 
electron density could be calculated at the new nuclear positions, and the parameters re-refined until 
no change is observed. The computational cost is of course dominated by the quantum-mechanical 
determination of the electronic wavefunctions, but the method is able to produce parameters very 
close to those observed for neutron diffraction experiments, even for H atoms.32b        

1.3.5. X-ray diffraction under electric fields                

X-ray diffraction is a established technique for revealing the electronic nature and behaviour of solids 
upon application of a number of external perturbations.38 We are interested in X-ray diffraction under 
electric fields due to the possibility of deriving electric response properties, in particular 
(hyper)polarizabilities, see next section. However, no experiment under electric field was performed 
for this thesis. 

The response of a crystal to an externally applied electric field can be separated into two main 
contributions.39a The first is a polarization of the electron density distribution. The second corresponds 
to a change of molecular geometry and thermal displacement parameters due to internal strain, which 
may be accompanied by a break of the crystal symmetry. As shown in Fig. 1.4 for the water molecule, 
the displacement of nuclei and electron density under the influence of an external field changes the 
scattered intensity, in particular at lower angles. Thus, a proper description of X-ray scattering by a 
crystal under external electric fields must take into account the two distinct responses.  
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Figure 1.4. Effect of an applied electric field on molecular geometry, electron density distribution and structure-factor 
amplitudes. For the electron density difference surfaces, ρ1

𝐸𝐸(𝒓𝒓) denotes the one-electron density calculated under the 
applied field, but using the ground-state, unrelaxed geometry, thus only the effect of electronic polarization is considered. 
Isodensity surfaces are shown at the values of ± 0.002 au, with the positive surface in green and the negative one in magenta. 
For the structure-factor differences, in the unrelaxed case (blue points), the ground-state geometry is used to calculate both 
densities, ρ1

𝐸𝐸(𝒓𝒓) and ρ1
𝐸𝐸=0(𝒓𝒓), while in the relaxed one (red points), ρ1

𝐸𝐸(𝒓𝒓) is calculated using the geometry optimized 
under the electric field. Therefore, the relaxed situation takes into account both effects, electronic polarization and nuclear 
geometry changes. Calculations were performed at the B3LYP/d-aug-cc-pVDZ level of theory. 

The understanding of how specific features of the structural framework respond to the electric field is 
still a challenge for modern X-ray diffraction. However, a quantum-mechanical description of the X-
ray scattering by crystals under an external field was already proposed. Therefore, expressions for the 
electric field induced changes to atomic scattering and structure factors are available.39a,b This 
formalism shows that the applied field disturbs mainly the valence electronic shells, as illustrated by 
the structure-factor differences shown in Fig. 1.4. The pure electron polarization gives approximately 
as much contribution to the diffracted intensities as the changes related to the displacement of the 
atoms from their ground-state equilibrium positions. Furthermore, probing the changes in the 
diffracted intensities is not a trivial task as they are overall small, in the range of 10−5 to 10−4 𝑒𝑒 per 
atom in the unit cell, for the field magnitudes typically used in nowadays X-ray experiments (1 −
10 kV mm−1). For this reason, only a few experimental studies exist dealing with the electronic and 
structural changes induced by electric fields in crystals. Synchrotron radiation is usually required to 
reduce the statistical error of the intensities and to accumulate a number of photons sufficient to detect 
the effect in a reasonable time. 
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Nevertheless, chemical bond distortions induced by electric fields have been correlated to indicators 
available from the analysis of the accurate ground-state electron density in simple inorganic crystals 
such as α-GaPO4 and Li2SO4.H2O.39c Interestingly, interactions predominantly ionic have been 
observed to be more sensitive to the applied fields than those characterized by largely covalent 
contributions. For example, the distortion of the Li–O closed-shell interaction is proportional to the 
projection of the electric field on the bond path. 

These pioneering investigations are certainly the beginning of a comprehensive analysis of bond 
sensitivity to an applied electric field. As will be discussed in next section, this is highly desirable in 
view of the possibility to elucidate microscopic mechanisms governing the phenomena of dielectric 
polarization, piezo-, ferro- and pyroelectricity.39c Finally, optical pulses have been recently used to 
initiate structural or electronical changes in materials. The measurement of diffraction intensities from 
different delay times of the X-ray pulse with respect to the excitation laser provides transient atomic 
positions or electron density distributions.38b 

1.4. Molecular and crystal properties from electron densities 
So far, we have considered methods to obtain accurate electron density distributions, either from 
theory or from experiment. Now, we turn to the analysis of ρ1(𝒓𝒓) and its applications to rationalize 
chemical bonding and molecular or crystal properties. 

1.4.1. Topological analysis of electron density distributions 

The hypothesis that the molecular structure is a collection of atoms linked by a network of bonds is 
routinely adopted by chemists. It is extremely useful for simplified descriptions of phenomena like 
chemical reactions or bonding mechanisms, and to predict molecular geometries. However, it suffers 
from the fundamental drawback of being not directly related to the quantum mechanics that governs 
the motion of nuclei and electrons in a molecular system. As noted by R. F. W. Bader, chemists have 
an understanding based on a scheme that is both powerful and, because of its empirical nature, limited. 
What remains is to show that atomic domains do exist and their properties can be predicted by 
quantum mechanics.40a Typically, some experimental procedures are available for determination of a 
molecular or crystal property, but in general, measurements cannot probe the properties of particular 
atoms or groups of atoms in materials. 

Although it has been demonstrated that a quantum-mechanical definition of atoms in molecules is 
possible,41a many partitioning schemes have been devised and applied, depending on the properties of 
interest.41 They can be realized in real or Hilbert space, and are usually classified as fuzzy-boundary or 
discrete-boundary schemes. In the latter, the electron density at each point in space is assigned to a 
specific atomic domain, whereas in the former, the density at a point may be assigned to overlapping 
functions centered at different domains. In this respect, the pseudo-atom formalisms represented by 
(1.46) could be seen as a fuzzy-boundary scheme, because the electron density at a point within the 
unit cell is reconstructed as a sum of density contributions, either spherical or aspherical, from different 
pseudo-atoms.      
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Hilbert-space based partitioning schemes have the disadvantage of being built upon an object that is 
generally imaginary and that is a function of the four 𝐱𝐱 = {𝒓𝒓,𝜔𝜔} coordinates of each electron of the 
system. Additionally, many of the concepts related to chemical bonding, such as covalency, ionicity, 
aromaticity and resonance, and to atomic or functional-group properties, such as charge and volume, 
are typically difficult to recover or not unambiguously defined using many-electron wavefunctions.42 
It is however generally recognized that the analysis of electron density distributions may provide both 
chemically appealing and physically founded answers to some of these concepts. This is the reason as 
to why ρ1(𝒓𝒓), a relatively simple three-dimensional real-space based function, is preferable. 
Furthermore, the topological analysis of ρ1(𝒓𝒓) as proposed by Quantum Theory of Atoms in Molecules 
(QTAIM) is special because it is capable to provide visual representation of many chemical concepts.40 

The principles of QTAIM are well detailed,40 and an enormous literature describes the characterization 
of chemical bonds in terms of topological analysis of ρ1(𝒓𝒓), despite the well-documented problems 
with this scheme.43 We limit our discussion to a few concepts that will prove to be of relevance in the 
next chapters. In particular, we briefly consider the topological definition of an atom in a molecule or 
crystal, and how this yields atomic or functional-group properties. Of relevance for Chapter 3 is also 
the topology of ∇2ρ1(𝒓𝒓), the Laplacian of the electron density, which maps the curvature of ρ1(𝒓𝒓) at 
each point in space. Nevertheless, topological analysis of other real-space scalar functions, such as 
electrostatic potential and electron localization function, along with its associated partitioning into 
disjoint domains has also offered significant insights into the nature of many chemical concepts.44a,b 
Sometimes, the topology of vector fields like the Ehrenfest force field has also shed some light into 
chemical bonding phenomena.44c  Not all of these functions are available experimentally nor can be 
obtained directly from ρ1(𝒓𝒓). For this reason, the most general indicators are based on density 
matrices.42 Noteworthy, QTAIM has been applied extensively also to electron density models fitted 
against experimental structure-factor amplitudes. In this case, obviously ignoring nuclear motion. 

The QTAIM topological analysis leads to an exact partitioning scheme, in the sense that the electron 
density at any point in space is necessarily attributed to one, and only one, atomic domain or atomic 
basin, which is thus defined as a region in which all the electrons are bound to a particular nucleus. 
Moreover, the atomic basins can be regarded as open quantum subsystems, because they are free to 
exchange charge and momentum with their neighbours, and the sum of the energies of the individual 
atoms equals the total quantum-mechanical energy of the system.40 QTAIM also provides fairly 
additive and transferable atomic domains. The first feature is related to the fact that the atomic values 
for a property should, when summed over all atoms, yield the average molecular property, whereas the 
latter accounts for the observation that, within certain series of molecules, the atoms, functional groups 
and their properties are exportable from one molecule to another.40a        

The topological features of ρ1(𝒓𝒓) are conveniently summarized in terms of the number and kind of 
its critical points. The gradient vector field of the electron density, ∇ρ1(𝒓𝒓), vanishes at any critical point, 
and whether it is a maximum, a minimum or a saddle depends on the three independent curvatures 
of ρ1 at this point.40 All the curvatures are of the same sign for local maxima and minima, while one 
of the curvatures has opposite sign for saddles. A critical point is classified as (𝜔𝜔,𝜎𝜎), where the rank 
𝜔𝜔 at this point is equal to the number of nonzero independent curvatures, and its signature 𝜎𝜎 is the 
algebraic sum of the signs of the curvatures. Because ρ1(𝒓𝒓) is a three-dimensional function, molecular 
structures are defined in terms of critical points with 𝜔𝜔 = 3. There are only four possible signature 
values for critical points with rank three.40 
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Figure 1.5. The QTAIM partitioning of the molecular p-nitroaniline electron density, as obtained from a DFT calculation. 
Gradient paths and interatomic surfaces are shown for all atomic basins. Bond critical points are small green spheres and 
the ring critical point is the small red one. Larger spheres represent nuclear attractors and the line connecting each pair of 
atoms is the bond path. 

Local maxima of ρ1 are critical points of (3,−3) type, and are recognized as nuclear attractors. Notably, 
derivatives of the electron density distribution at nuclei are formally not defined because the gradient 
is discontinuous at nuclear cusps. However, because the exact ρ1(𝒓𝒓) is approximated by a sum of 
atomic orbital products, see Eqn. 1.14, that are typically linear combinations of Gaussian functions, 
the critical point at nuclear position is easily defined in practice. Non-nuclear maxima were also found 
in some cases, normally very far from the nuclear sites, their interpretation is still debatable though.45 

Critical points of the (3,−1) type correspond to maxima of ρ1 in the plane defined by the directions 
of negative curvatures, and to minima along the direction of the third curvature. These saddles are 
defined as bond critical points, normally found between every pair of nuclei linked by a chemical bond. 
Conversely, at (3, +1) points, ρ1 is a minimum in the plane defined by the positive curvatures, while 
it is a maximum along the direction of the third one. These saddles are found at the center of a ring 
of bonded atoms and are called ring critical points. Finally, a (3, +3) critical point is a local minimum. 
It is known as cage critical point because it is found at the center of a cage formed by atoms linked 
through chemical bonds. 

An atomic domain in the scalar field ρ1(𝒓𝒓) is defined by boundaries constructed from its associated 
∇ρ1(𝒓𝒓) field.40 The topology of the electron density distribution allows atomic basins Ω to be 
separated by interatomic surfaces defined such that all gradient vectors at any point on the surface 𝑆𝑆 
are perpendicular to the vector 𝐧𝐧 normal to the surface, i.e. 

∇ρ1(𝒓𝒓) ∙ 𝐧𝐧(𝒓𝒓) = 0,   ∀ 𝒓𝒓 ∈ 𝑆𝑆(Ω,𝒓𝒓) 

(1.59) 

where 𝑆𝑆(Ω,𝒓𝒓) is referred to as a zero-flux surface, because it is not crossed by any trajectory of ∇ρ1(𝒓𝒓). 
It is these surfaces that separate atomic domains and define the volume of the basins. Fig. 1.5 shows 
the gradient density partitioning for the p-nitroaniline molecule. Blue lines represent all the gradient 
trajectories, which terminate at nuclear attractors. The solid black lines are the interatomic surfaces. 
Two nuclei are connected by lines of maximum electron density, the bond paths. The collection of 
bond paths, defines the particular molecular graph.40 
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Figure 1.6. The hypothetical electron density of a second row element along with its corresponding Laplacian function. 
The green area is the valence shell charge concentration region of the atom. The region from the origin to 𝑟𝑟2 corresponds 
to the K shell, after that, the L shell extends to infinity. 

The chemical interpretation of the bond paths is still not completely clear. In the potential energy 
distribution of an equilibrium geometry, the bond paths certainly indicate directions of energy 
lowering, thus corresponding to chemical bonds. Because of the homeomorphism between this 
function and the electron density distribution, Bader has argued that the presence of a bond path in 
ρ1(𝒓𝒓) assures the presence of chemical bonding.46a However, because the homeomorphism between 
these two distributions is only visual, and not formally demonstrable, this interpretation has been 
strongly criticized.46b In fact, bond paths are frequently found between atoms that chemists would 
hardly considered to be bound.46c,d 

As anticipated, the electron density distribution is not the only function from which chemical 
information can be extracted. Indeed, its Laplacian contains information complementary to that 
contained in ρ1(𝒓𝒓), and it is usually useful to reveal the deep fine structure of the electron density 
distribution.40 The Laplacian of the electron density, ∇2ρ1(𝒓𝒓), is the scalar field defined in Cartesian 
coordinates as 

∇2ρ1(𝒓𝒓) =
𝜕𝜕2ρ1(𝒓𝒓)
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2ρ1(𝒓𝒓)
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2ρ1(𝒓𝒓)
𝜕𝜕𝑧𝑧2

 

(1.60) 

that is invariant with respect to the choice of coordinate axes, and has a topology of its own, usually 
more complicated than that of ρ1(𝒓𝒓). The function determines whether the electronic charge at a 
point in space is relatively concentrated or depleted. When ∇2ρ1(𝒓𝒓) < 0, the electron density is locally 
concentrated at 𝒓𝒓; when ∇2ρ1(𝒓𝒓) > 0, it is locally depleted at that point. This outstanding feature of 
the Laplacian is responsible to reveal the shell structure of an atom, which is not evident in the 
electronic distribution through space. Fig. 1.6 shows the Laplacian of a typical electron density for a 
second row atom. While ρ1(𝒓𝒓) decreases quite monotonically and seems to be featureless, ∇2ρ1(𝒓𝒓) 
oscillates heavily around zero. In fact, the zeroes of the Laplacian are nodes confining regions of charge 
concentration or depletion. The region from the origin to the point 𝑟𝑟2 corresponds to the K atomic 
shell. The second shell L extends from this point to infinity.40b  
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The outermost region of negative Laplacian is called the valence shell charge concentration (VSCC). 
Analyses of this region has been extremely elucidative for rationalize properties of materials using their 
electron density distributions.47 In Chapter 3, we apply this tool for help understanding the magnetism 
of metal-organic polymers. Here, we simply note that, because it is intuitive to associate a positive 
value to a concentration of charge and a negative value to depletion, topological analyses are typically 
performed in terms of 𝐿𝐿(𝒓𝒓) = −∇2ρ1(𝒓𝒓), rather than the Laplacian itself.40 The VSCC regions of 
𝐿𝐿(𝒓𝒓) are usually characterized by (3,−3) critical points, corresponding to non-bonding maxima, and 
by (3, +1) and (3,−1) saddles, corresponding to depletion along particular directions. Inside the 
VSCC all critical points will have at least one negative curvature, thus (3, +3) points can never be 
encountered. In analogy to the molecular graph, the topological object constituted by the critical 
points of 𝐿𝐿(𝒓𝒓) are called atomic graph. Noteworthy, for many molecules, the (3,−3) critical points 
within the VSCC provide a one-to-one mapping of electron pairs of the Lewis model. In fact, this has 
been used to support the Valence Shell Electron Pair Repulsion Model (VSEPR) of Gillespie.48 
However, this mapping is only visual, as no analysis of the two-electron density supports the existence 
of localized electron pairs.40b  

The QTAIM topological partitioning of the real, molecular or crystal, space into atomic domains Ω 
enables the partitioning of the corresponding electronic properties into atomic or functional group 
contributions. The expectation value of an operator 𝑨𝑨 averaged over all space is the sum of the 
expectation values of this operator averaged over all the atoms in the molecule or crystal:40c 
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(1.61) 

Because we are particularly interested in cases where 𝑨𝑨 is a simple non-imaginary multiplier, usually 
some function of the coordinate 𝒓𝒓, Eqn. 1.61 reduces to1 

〈𝑨𝑨〉 = � �� 𝑨𝑨ρ1(𝒓𝒓)𝑑𝑑𝒓𝒓
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(1.62) 

1.4.2. Atomic and molecular electric properties 

Electrical properties of materials spam a wide field49 in which their prediction in molecules, as found 
either in an infinitely diluted gas or in a crystal, has for long been of interest. All these properties result 
of the forces that the electric charges exert on each other in a molecular material, and are observables 
of the charge distribution. However, while some of them, like electrostatic moments and interaction 
energies, are consequence of the “intrinsic” interactions among nuclei and electrons, others, such as 
(hyper)polarizabilities, measure how the charge distribution changes as a result of interactions with 
external stimuli, in particular an electric field. In view of their importance for Chapter 2, this and the 
next section are devoted to analyse the most relevant aspects of estimation of electric dipole moments 
and first-order polarizabilities along with some of their applications in materials science.  
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Electrostatic moments are relevant because they provide concise information about the charge 
distribution within a material, with the advantage of being available from a variety of theoretical and 
experimental techniques.50a Additionally, as discussed in Chapter 2, they find applications on 
quantitative rationalization of intra- and intermolecular interactions in molecular crystals or 
aggregates. Electrostatic moments can be fundamentally defined as expectation values of multipole 
moment operators. In Cartesian coordinates, the components of the multipole moment tensors are10b 

〈𝒙𝒙𝑒𝑒𝒚𝒚𝑚𝑚𝒛𝒛𝑛𝑛〉 = �𝑍𝑍𝑘𝑘𝑥𝑥𝑘𝑘𝑒𝑒 𝑦𝑦𝑘𝑘𝑚𝑚𝑧𝑧𝑘𝑘𝑛𝑛 − �𝑥𝑥𝑒𝑒𝑦𝑦𝑚𝑚𝑧𝑧𝑛𝑛ρ1(𝒓𝒓)𝑑𝑑𝒓𝒓
𝑀𝑀

𝑘𝑘=1

 

(1.63) 

where 𝑙𝑙, 𝑚𝑚 and 𝑠𝑠 are integers larger than or equal to zero, and the sum 𝑙𝑙 + 𝑚𝑚 + 𝑠𝑠 determines the type 
of moment, i.e. monopole, dipole, quadrupole, etc. The monopole moment corresponds to the charge 
and it is simply 𝑞𝑞 = 〈𝟏𝟏〉, a quantity that, unlike higher moments, is independent of the coordinate 
system and its origin. The dipole moment 𝛍𝛍 has three components that can be calculated from Eqn. 
1.63, depending on which of 𝑙𝑙, 𝑚𝑚 or 𝑠𝑠 is one, with the others set equal to zero. For example, the 𝑥𝑥 
component is usually denoted by 𝜇𝜇𝑒𝑒, and equals 〈𝒙𝒙〉. Analogously, higher moments can be computed 
from (1.63) by considering the integers 𝑙𝑙, 𝑚𝑚 and 𝑠𝑠 that yield their corresponding tensor components.   

(Hyper)polarizabilities are the fundamental properties that determine most of the optical behaviour of 
the materials. They are the quantities defined at atomic and molecular levels that yield the 
corresponding electric susceptibilities through lattice summation. As for electrostatic moments, they 
are available from both theory and experiment, but, with a few exceptions, measures are not capable 
to provide all their tensor components.50b As anticipated in Eqn. 1.26, the (hyper)polarizabilities can 
be defined in terms of energy derivatives when the perturbation vector 𝐗𝐗 is an electric field. Because 
the first derivative of the energy with respect to the field is the dipole moment, it may be useful to 
express (hyper)polarizabilities as derivatives of 𝛍𝛍. For example, the 𝛼𝛼𝑖𝑖𝑗𝑗 component of the polarizability 
tensor can be alternatively defined as 

𝛼𝛼𝑖𝑖𝑗𝑗 = −
∂2𝐸𝐸

∂𝑋𝑋𝑖𝑖∂𝑋𝑋𝑗𝑗
=
∂𝜇𝜇𝑗𝑗
∂𝑋𝑋𝑖𝑖

 

(1.64) 

Noteworthy, optical properties are generally dependent on the frequency of the oscillating electric field 
used to probe them. However, the polarizabilities considered in this thesis are calculated under static 
electric fields. Furthermore, nuclear relaxations, which also affect optical properties, are not considered 
as well. Although sometimes small, these effects may hamper a direct comparison with experimental 
data.50c 

Because we are interested in identifying the most important atoms and functional groups that 
determine particular properties of a molecule or a crystalline material, it is useful to partition the 
electrostatic moments and (hyper)polarizabilities into their atomic contributions. 
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The pseudo-atom formalism (1.46) is itself an atomic partitioning. Provided that a suitable 
deformation density is considered, the electrostatic moments can be easily calculated for each pseudo-
atom from the parameters refined against either measured or calculated structure-factor amplitudes.20d 
However, because these parameters correlate, sometimes strongly, within a refinement, and different 
combinations of parameters may describe the same electron density distribution, a better estimation 
of atomic moments is obtained from an a posteriori partitioning of the total electron density. 

Interestingly, the application of partitioning schemes to estimate linear optical properties of atoms and 
functional groups in molecules or crystals has a long history. In particular, several approaches have 
been proposed for the calculation of distributed atomic polarizabilities, i.e. the atomic polarizability 
tensors within a molecule or molecular aggregate.51 Notably, Bader and co-workers have calculated 
QTAIM-partitioned polarizabilities and used them to evaluate intermolecular interaction energies and 
transferability of electric properties.52 Keith’s generalization of Bader’s method removed the origin 
dependence from the QTAIM definition of atomic dipoles and polarizabilities, thus making these 
quantities transferable to other systems.53a The procedure has been recently modified and implemented 
in a program called PolaBer,53b used to obtain most of the results shown in Chapter 2. Furthermore, 
PolaBer extends the quantities computed from atomic polarizabilities, including the evaluation of 
bond polarizabilities and refractive indices in crystals.53b-f  

The fuzzy Hirshfeld scheme has also been applied to extract molecular polarizabilities in clusters or 
atomic polarizabilities in large molecular systems such as fullerenes, metallic nanoparticles and 
proteins.54 However, a disadvantage of the Hirshfeld scheme, at least in the current implementations, 
is that the atomic polarizabilities remain origin-dependent. 

We now consider how distributed atomic dipole moments and polarizabilities can be computed from 
the QTAIM partition of the total molecular or crystal charge density distribution. As stated in Eqn. 
1.61, QTAIM defines the expectation value of an observable over each atom in the system. Thus, the 
average value of the dipole moment 𝛍𝛍 over the molecule or the crystal is given as a sum of atomic 
contributions 𝛍𝛍(Ω). Each atomic moment consists of an origin-independent polarization term 
𝛍𝛍𝑝𝑝(Ω), and an origin-dependent charge-translation term 𝛍𝛍𝑒𝑒(Ω).52a That is, 

𝛍𝛍(Ω) = 𝛍𝛍𝑝𝑝(Ω) + 𝛍𝛍𝑒𝑒(Ω) = −� [𝒓𝒓 − 𝑹𝑹Ω]ρ1(𝒓𝒓)𝑑𝑑𝒓𝒓
Ω

+ [𝑹𝑹Ω − 𝑹𝑹0]𝑞𝑞(Ω) 

(1.65) 

where 𝑞𝑞(Ω) is the net charge of the atomic basin Ω, 𝑹𝑹Ω is the nuclear position vector of the basin and 
𝑹𝑹0 is the arbitrary origin of the molecular or crystal coordinate system. Unless 𝑞𝑞(Ω) is zero, 𝛍𝛍𝑒𝑒(Ω) is 
dependent on 𝑹𝑹0. Thus, the atomic dipole moment 𝛍𝛍(Ω) is not generally meaningful because it is 
origin-dependent, just as the total 𝛍𝛍 is not meaningful for charged molecules. However, the origin-
dependent charge-translation term can be converted to an origin-independent definition:53a 

𝛍𝛍𝑒𝑒(Ω) = [𝑹𝑹Ω − 𝑹𝑹0]𝑞𝑞(Ω) = � [𝑹𝑹Ω − 𝑹𝑹BCP]𝑞𝑞(Ω|Λ)
𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑠𝑠

Λ=1

 

(1.66) 
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Figure 1.7. Distributed atomic polarizability ellipsoids obtained after QTAIM partitioning of the molecular p-nitroaniline 
electron density, as obtained from a DFT calculation. The isotropic polarizabilities, obtained as the arithmetical average 
of the main diagonal tensor components, are shown in au. The scaling factor for the ellipsoids is 0.3 Å-2. 

in which 𝑞𝑞(Ω|Λ) is called a bond charge, and can be interpreted as the charge induced at the basin Ω 
due to its interaction with the basin Λ. 𝑹𝑹BCP is the position vector of the bond critical point connecting 
the basins Ω and Λ, and the summation runs over all basins connected to Ω through a bond critical 
point. All quantities in Eqn. 1.66 are uniquely determined by the total charge density distribution 
partitioned according to the zero-flux surfaces (1.59) of QTAIM. The bond charges can be obtained 
by imposing a series of constraints on the atomic and molecular charges.53a,b         

As for the dipole moment, the molecular polarizability tensor can be decomposed into additive atomic 
contributions:53a 

𝛂𝛂 = � 𝛂𝛂(Ω) =
𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑠𝑠

Ω=1

� �𝛂𝛂𝑝𝑝(Ω) + 𝛂𝛂𝑒𝑒(Ω)�
𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑠𝑠

Ω=1

 

(1.67) 

where 𝛂𝛂𝑝𝑝(Ω) and 𝛂𝛂𝑒𝑒(Ω) are the polarization and charge-translation atomic polarizability tensors that 
arise from the derivation of the corresponding 𝛍𝛍𝑝𝑝(Ω) and 𝛍𝛍𝑒𝑒(Ω) atomic dipole moments with respect 
to the applied electric field, according to Eqn. 1.64. Given the linear response of the electron density 
with respect to a sufficiently small field, (1.64) can be calculated numerically, using wavefunctions 
computed at finite electric fields. Thus, the atomic polarizability components 𝛼𝛼𝑖𝑖𝑗𝑗(Ω) are evaluated as: 

𝛼𝛼𝑖𝑖𝑗𝑗(Ω) = lim
𝐸𝐸𝑖𝑖→0

𝜇𝜇𝑗𝑗
𝐸𝐸𝑖𝑖(Ω) − 𝜇𝜇𝑗𝑗0(Ω)

𝐸𝐸𝑖𝑖
 

(1.68) 

in which 𝜇𝜇𝑗𝑗
𝐸𝐸𝑖𝑖(Ω) is the dipole moment component of the atomic basin Ω along the 𝑗𝑗 direction 

computed with an applied electric field in direction 𝑖𝑖. Because polarizabilities have dimensions of 
volume, the atomic and molecular tensors can be visualized as ellipsoids in the same three-dimensional 
space as the molecule, assuming 1 Å3 ≡ 1 Å, although a scaling factor is usually applied to reduce the 
size of the polarizability ellipsoids for visualization purposes.53b Fig. 1.7 shows atomic ellipsoids for the 
p-nitroaniline molecule, as obtained from an isolated-molecule calculation at the CAM-B3LYP/aug-
cc-pVDZ level of theory. 
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However, the use of this procedure to compute atomic polarizabilities through Eqn. 1.68 introduces 
an important drawback: because the ground-state molecular electron density 𝜌𝜌10(𝒓𝒓) and the 

corresponding field-perturbed densities 𝜌𝜌1
𝐸𝐸𝑗𝑗(𝒓𝒓) are “independently” partitioned into their atomic 

contributions, there is no guarantee that the corresponding atomic basins are kept constant in the 
process. Indeed, within this methodology, is very common to observe changes in atomic charge and 

volume of a basin when going from 𝜌𝜌10(𝒓𝒓) to 𝜌𝜌1
𝐸𝐸𝑗𝑗(𝒓𝒓). Such changes can be regarded as the deviation 

of the method from a perfect atomic response theory, and result in slightly asymmetric atomic 
polarizability tensors. Even though the lack of symmetry can be easily corrected through a posteriori 
tensor symmetrization, this by no means guarantee that the QTAIM basins have been retained. 
Interestingly, an alternative scheme that removes this drawback have been recently proposed and 
applied to compute and visualize Hirshfeld-based distributed polarizabilities.54d             

Nevertheless, it has been demonstrated that QTAIM distributed polarizabilities obtained through 
Eqns. 1.65-67 are remarkably exportable among some series of molecules, including amino acids and 
organic optical materials.53c Furthermore, this approach has been successfully applied to understand 
the origin of the refractive indices of molecular crystals in terms of their most fundamental building-
blocks, i.e. atoms and functional groups.53d 

1.4.3. Crystalline electric properties 

High-resolution X-ray diffraction is an established technique for determination of molecular 
electrostatic moments in crystals, with the advantage of providing not only magnitudes, but also all 
their tensor components. Nowadays, these experimental values are often used to benchmark theoretical 
predictions.20d,50a Some time ago, it was proposed that the first-order polarizability α and 
hyperpolarizability β could be estimated for molecules in crystals using respectively the quadrupole 
and octupole electrostatic moments obtained from the electron density model fitted against 
experimental X-ray diffracted intensities.55 However, application of this method to organic non-linear 
optical materials revealed that many of the diagonalized tensor components of α and β calculated from 
X-ray diffraction differ by more than an order of magnitude from theoretical results. Indeed, it was 
later shown that the one-electron density ρ1(𝒓𝒓), obtained from the usual multipolar pseudo-atom 
formalisms, does not yield accurate response properties because electronic correlation is included only 
partially.36a Instead, Jayatilaka and Cole have pursued the X-ray constrained wavefunction approach 
to derive much more accurate ρ1(𝒓𝒓) distributions for a few optical materials, including a metal-organic 
non-linear compound.56 The “experimental” wavefunctions yielded remarkably accurate electric 
properties, indicating the possibility to use constrained molecular orbitals to help engineering this kind 
of materials. As discussed in Chapter 4, in case a scheme is further assumed to localize the constrained 
orbitals in particular atoms or functional groups, they can be exported to much larger systems, thus 
allowing accurate prediction of their electric properties too, which is currently challenging for both 
theory and experiment.       

When the molecular electrostatic moments of a charge density distribution are estimated from first-
principles in an infinitely diluted gas, the agreement with experimental results obtained in crystals, or 
with equivalent simulations performed under periodic boundary conditions, is often poor.50a This is 
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because, not surprisingly, electric moments are typically affected by short- and long-range crystal field 
effects. For example, in the crystalline phase, molecules tend to line up in order to maximize their 
electrostatic attractions, hence often enhancing their dipole moments due to induced polarization of 
their electron density distributions.59c This dipole moment enhancement observed when going from a 
gas-phase molecule to an aggregated environment has been investigated in quite some detail for 2-
methyl-4-nitroaniline, one of the molecular prototypes for linear and non-linear optical materials. A 
careful diffraction study by Spackman reported a significant enhancement of 30-40%.57a While various 
theoretical studies indicate 30% as typical dipole moment enhancement for hydrogen-bonded 
systems,57b many diffraction experiments result in enhancements greater than 100%. However, it is 
recognized that molecular moments are highly dependent on the multipole model fitted against the 
X-ray diffracted intensities, and several studies reporting incredibly large enhancements were 
performed treating the thermal motion of hydrogen atoms as isotropic and without incorporating 
neutron diffraction estimates of X–H distances. 

The redistribution of electronic charge that molecules undergo upon aggregation to other molecules 
or, ultimately, crystallization has also important consequences for estimation of optical properties. 
Studies on organic non-linear optical materials have revealed that the hyperpolarizability of a molecule 
typically enhances by a factor of three when a hydrogen-bonded cluster is considered in its 
surrounding.57c,d Instead, the first-order polarizability α is much less variable, thus being determined 
in a great extent by the intramolecular connectivity rather than the intermolecular forces. 

Crystal-orbital or plane-wave-based calculations are in principle the correct approaches to model the 
crystalline effects, and therefore, to accurately estimate electrostatic and response properties of 
molecules in crystals. However, some problems affect these methods: a) the amount of electronic 
correlation that one can introduce is limited; b) convergence often fails when Bloch-type functions 
use diffuse atomic orbitals; c) plane-wave calculations exclude very localized core-orbital functions and 
therefore their contribution to the properties, which can be quite substantial for hyperpolarizabilities, 
for example. In order to overcome these drawbacks, the so-called supermolecule or cluster method 
have emerged.58 Within this approach, the property of interest of several interacting molecules are 
evaluated as a whole, just like in standard molecular calculations. The properties of the molecules 
embedded in a crystal are estimated to be those of a particular molecule in the cluster, usually chosen 
as the “central” one around which the aggregate is constructed. The electron density of this molecule 
is extracted from the total cluster density by applying a partitioning scheme. In fact, by comparing the 
electric properties of an isolated molecule and that of the molecular cluster, one gains insight into the 
role of short and medium-range intermolecular interactions, crucial for the design of optical 
materials.58 However, this approach suffers from include the crystal field effects only partially as long-
range interactions are neglected. Furthermore, the choice of the molecular aggregate that yield accurate 
molecular properties is usually not unique, a computationally costly pre-screening of at least a few 
clusters are typically necessary. 

An alternative strategy to include crystal field effects in a single-molecule calculation or long-range 
effects in a molecular aggregate, thus allowing the estimation of crystal properties from their molecular 
building-blocks, is firstly to construct an oriented-gas model, one in which non-interacting identical 
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molecules or aggregates lie side-by-side and the solid-state properties are simply appropriate 
combinations of the molecular ones.58 Afterwards, the effects of the surroundings are semi-empirically 
approximated by using local-field factors. Since molecular crystals feature in general only non-covalent 
intermolecular interactions, classical electrostatic models have been successfully adopted to estimate 
dipole moment enhancements and, ultimately, the electric response properties of crystals starting from 
a simple gas-phase calculation.36a,59      

For the purpose of defining the local-field factor, a crystal may be represented as an array of equal 
dipoles distributed over a space lattice.59 A molecule 𝑘𝑘 embedded in the crystal experiences a local-
electric field 𝐄𝐄𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 that, in general, is a sum of any externally applied field 𝐄𝐄, and the internal field 
that results from the dipole moments of all other 𝑁𝑁 molecules in the unit cell,59a,b i.e. 

𝐄𝐄𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘) = 𝐄𝐄 + � 𝐋𝐋(𝑘𝑘,𝑘𝑘′).𝛍𝛍(𝑘𝑘′)
𝑁𝑁

𝑘𝑘′=1

 

(1.69) 

where 𝑘𝑘′ represents the sites that are symmetry-related to 𝑘𝑘 in the crystal. In general, the Lorentz tensors 
𝐋𝐋(𝑘𝑘,𝑘𝑘′) depend on the unit cell parameters, and the positions and orientations of the 𝑘𝑘′ dipoles 
relative to the lattice site 𝑘𝑘 at which the field is determined. Many approaches, either in direct or 
reciprocal space, can be used to perform the lattice summation in (1.69), but the Ewald method is 
typically chosen.59b    

For relatively small values of 𝐄𝐄𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒, the dipole moment 𝛍𝛍𝑖𝑖𝑛𝑛𝑐𝑐 induced at a particular molecule 𝑘𝑘 
depends only on its first-order polarizability, and can be computed as: 

𝛍𝛍𝑖𝑖𝑛𝑛𝑐𝑐(𝑘𝑘) = 𝛂𝛂.𝐄𝐄𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

(1.70) 

The dipole moment of the molecule embedded in a crystal or molecular cluster can be estimated as a 
simple sum of its permanent dipole moment 𝛍𝛍, calculated in gas-phase, with the induced dipole 𝛍𝛍𝑖𝑖𝑛𝑛𝑐𝑐. 
Therefore, Eqns. 1.69 and 1.70 allow the estimation of “in-crystal” dipole moments from the 
knowledge of the polarizability of the constituent molecules and the symmetry operations used to 
construct the aggregate, which determine the 𝐋𝐋(𝑘𝑘,𝑘𝑘′) tensors.  

The formalism using (1.69) and (1.70) is usually called rigorous local field theory (RLFT), and can be 
straightforwardly extended to compute atomic and functional-group induced dipole moments 
𝛍𝛍𝑖𝑖𝑛𝑛𝑐𝑐(Ω,𝑘𝑘) in the 𝑘𝑘 molecule of the crystal, provided that a partitioning scheme is used to calculate 
𝛍𝛍(Ω) and 𝛂𝛂(Ω). In this case, the molecular point-dipole realization of RLFT, i.e. the one in which 
each molecule is considered as a point dipole (RLFT1), would be replaced by a distributed atomic or 
functional-group point-dipole treatment, in which n atomic dipoles are distributed over the molecule 
(RLFTn). The relative accuracy of these approximations depend on the size and shape of the 
molecules. For small compounds, such as urea or benzene,59f,g RLFT1 and RLFTn do not differ 
substantially, whereas RLFTn is typically more accurate to describe the anisotropies of larger systems, 
as shown for m-nitroaniline.59d    
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The first-order polarizabilities of the molecule embedded in its environment can be calculated through 
numerical differentiation of the induced dipole moments estimated through RLFT. Thus, the 
components 𝛼𝛼𝑖𝑖𝑗𝑗(Ω) of the polarizability calculated for the molecule in isolation are perturbed and 
become 𝛼𝛼′𝑖𝑖𝑗𝑗(Ω) in the crystal. Analogously to Eqn. 1.68, 𝛼𝛼′𝑖𝑖𝑗𝑗(Ω) can be computed as: 

𝛼𝛼′𝑖𝑖𝑗𝑗(Ω) = lim
𝐸𝐸𝑖𝑖→0

[𝛼𝛼𝑖𝑖𝑗𝑗(Ω).𝐸𝐸𝑖𝑖,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒]𝐸𝐸𝑖𝑖 − [𝛼𝛼𝑖𝑖𝑗𝑗(Ω).𝐸𝐸𝑖𝑖,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒]0

𝐸𝐸𝑖𝑖
 

(1.71) 

Although the local electric field of Eqn. 1.69 is just a zero-order approximation, only few works have 
attempted to iterate the process, using the dipole moment of the embedded molecule to compute an 
improved approximation to the electric field.59c,d Notably, we used this iterative procedure in Chapter 
2, finding convergence on dipole moments and polarizabilities within 3-4 cycles for amino acid 
aggregates. 

Within RLFT, the first-order electric susceptibility tensor χ of a molecular crystal with 𝑁𝑁 molecules 
per unit cell can be written as: 

χ = � � (𝐚𝐚−1 − Γ)𝑘𝑘𝑘𝑘′
−1

𝑁𝑁

𝑘𝑘′=1

𝑁𝑁

𝑘𝑘=1

 

(1.72) 

where Γ𝑘𝑘𝑘𝑘′  and 𝐚𝐚 are matrices of order 3𝑁𝑁 whose 3 × 3 submatrices are respectively the Lorentz 
tensors 𝐋𝐋(𝑘𝑘, 𝑘𝑘′) and 𝐚𝐚𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘′, in which 𝐚𝐚𝑘𝑘 is the dimensionless reduced polarizability tensor of 
molecule 𝑘𝑘, 𝛂𝛂𝑘𝑘/𝜀𝜀0𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.36a The permittivity tensor is simply obtained as 𝜺𝜺 = 𝟏𝟏 + χ, and the three 
crystalline refractive indices 𝑠𝑠𝑖𝑖 can be calculated from the eigenvalues 𝜀𝜀𝑖𝑖 of the permittivity, 𝑠𝑠𝑖𝑖 = �𝜀𝜀𝑖𝑖.  

The electric susceptibility tensor and refractive indices of crystalline urea have been estimated from a 
variety of approaches.53b Among them, RLFT resulted in values very close to the periodic first-
principles methods, as well as to the experimental values extrapolated to zero frequency. Interestingly, 
the application of RLFT to a urea molecule in a cluster overcorrects the refractive indices. 

Nevertheless, we note that an isotropic refractive index 𝑠𝑠𝐶𝐶𝐶𝐶𝐼𝐼 suffices for many applications, not only 
when dealing with molecules in liquids or gases, which are randomly oriented, but also for 
determination of mean optical properties in crystalline materials. In such cases, the well-known 
Clausius-Mossotti equation is useful for estimating the isotropic molecular polarizabilities from 
measures of 𝑠𝑠𝐶𝐶𝐶𝐶𝐼𝐼, 

𝑠𝑠𝐶𝐶𝐶𝐶𝐼𝐼2 − 1
𝑠𝑠𝐶𝐶𝐶𝐶𝐼𝐼2 + 2

=
1

3𝜀𝜀0
𝑁𝑁
𝑉𝑉
𝛼𝛼𝐶𝐶𝐶𝐶𝐼𝐼 

(1.73) 

in which 𝑁𝑁 𝑉𝑉⁄  is the number density or concentration of the material.20e However, this equation is not 
particularly useful to estimate mean refractive indices of molecules in aggregates from their 
polarizabilities calculated in an infinitely diluted gas. 
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1.4.4. Magnetic properties of metal-organic materials   

Research in molecular magnetism involves engineering and synthesis of materials exhibiting 
preconceived magnetic behavior, often applying strategies based on the quantum-mechanical nature 
of the phenomena.60 Although several classes of materials, including organic free radicals, exhibit 
magnetic behavior,61a of particular appeal are metal-organic coordination compounds in which the 
magnetic centers are transition-metal ions, and the metal-organic or organometallic building blocks 
are connected through covalent bonds, coordination interactions and weaker intermolecular bonds. 
The interplay between chemical interactions of different strength may lead to materials exhibiting 
single-molecule magnetic behavior, low-dimensional magnetism or three-dimensional long-range 
magnetic ordering.60a For example, copper(II) pyrazine nitrate and halide coordination polymers have 
been for long explored as materials,62 even though sometimes based solely on empirical knowledge. 

Therefore, the understanding of magnetic coupling mechanisms, as required to design new materials 
with enhanced properties, relies intimately on the strength and nature of intra- and intermolecular 
interactions, fields in which electron density analysis has obviously a lot to contribute.  

The magnetic properties of molecular systems in that there is a unique magnetic center is well 
described in literature,60a and not further considered here. Instead, we focus on compounds where 
several magnetic centers interact. The magnetic coupling models applied to these systems rely on 
superexchange interactions between two paramagnetic centers whose atomic wavefunctions overlap. 
However, for systems with large metal-metal separation, like in ligand-bridged polymetallic systems, 
no direct bonding can take place between the two metals, and the magnetic interactions are mediated 
by diamagnetic, ideally closed-shell ligands, acting as couplers, rather than as mere spacers. 

The simplest realization of superexchange magnetic interactions can be encountered in dinuclear 
transition-metal complexes, among them, copper(II) compounds being widely investigated.60a In these 
cases, two Cu(II) cations in the same molecule are bridged by a diamagnetic ligand that couples the 
metallic centers. Because of the magnetic coupling, the total spin quantum number 𝑆𝑆, which assumes 
the values 0 or 1, is preferred to describe the phenomena, rather than the local spins 𝑆𝑆Cu = 1/2 (see 
Eqn. 1.37). The energy of the two pair states are generally not the same, but separated by an energy 
gap defined as60a 

𝐽𝐽 = 𝐸𝐸𝐶𝐶=0 − 𝐸𝐸𝐶𝐶=1 

(1.74) 

where 𝐽𝐽 is the exchange-coupling constant of the particular magnetic interaction. When the state with 
𝑆𝑆 = 0 is the ground-state, the interaction is antiferromagnetic (𝐽𝐽 < 0), whereas when the ground-state 
is characterized by 𝑆𝑆 = 1, the interaction is a ferromagnetic one (𝐽𝐽 > 0). In the absence of 
intermolecular interactions and any other magnetic phenomena,60a the macroscopic magnetic 
susceptibility is straightforwardly given by 

χ(𝐹𝐹)[emu mol−1] =
2𝑁𝑁𝑒𝑒𝑔𝑔2𝜇𝜇𝐵𝐵2𝜇𝜇0

𝑘𝑘𝐵𝐵𝐹𝐹[3 + exp (−2𝐽𝐽/𝑘𝑘𝐵𝐵𝐹𝐹)]
 

(1.75) 
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in which the 𝑔𝑔 factor can be calculated from the well-known Landé equation,20e but it is also available 
from magnetization measurements.62 𝑁𝑁𝑒𝑒 is the Avogadro’s number, 𝜇𝜇𝐵𝐵 is the Bohr magneton, 𝑘𝑘𝐵𝐵 is 
the Boltzmann constant, and 𝜇𝜇0 is the permeability of free-space (4𝜋𝜋 × 10−7). Therefore, for the 
rather simple dinuclear complexes, Eqn. 1.75 provides a one-to-one relationship between 
susceptibility, the quantity that characterizes the magnetic behavior of the material, and exchange-
coupling constant, the energy gap that characterizes the magnetic interaction at the molecular level. 

When different pair exchange interactions take place, as it is often the case not only for polynuclear 
magnetic complexes or polymers, but also for mono- or dinuclear compounds interacting through 
intermolecular interactions, the low-spin-high-spin energy gap (1.74) cannot be identified with a single 
type of dimeric interaction, thus the 𝐽𝐽 parameter yielding the susceptibility in (1.75) averages all 
possible microscopic coupling constants. For such systems, crystalline orbital calculations must be 
performed on a series of ferro- and antiferromagnetic phases in order to find the individual pair 
coupling constants as the solution of a system of equations.63a Alternatively, a method has been 
proposed to estimate the crystalline susceptibility from gas-phase calculations on selected dinuclear 
building blocks that are afterwards used to construct the magnetic structure.63b      

Even for an extended magnetic material, the theoretical calculation of pair exchange-coupling constants, 
using dinuclear models properly extracted from the crystal structure, is still worthwhile because it allows 
us to distinguish the most relevant magnetic interactions from those that contribute only marginally 
to the crystal susceptibility. 

Let us consider an open-shell system composed by two paramagnetic centers, each with one unpaired 
electron that, in an unrestricted treatment, occupies one of the two orthogonal magnetic spatial 
orbitals 𝜑𝜑𝑖𝑖=1,2. A spin eigenfunction that describes the singlet (𝑆𝑆 = 0) state assumes the form:64a 

Ψ𝐶𝐶=0
𝑀𝑀𝑆𝑆=0 =

1
√2

(|𝜑𝜑1𝛼𝛼𝜑𝜑2𝛽𝛽⟩ + |𝜑𝜑1𝛽𝛽𝜑𝜑2𝛼𝛼⟩) 

(1.76)   

While the spin eigenfunctions describing the triplet (𝑆𝑆 = 1) states can be written as: 

Ψ𝐶𝐶=1
𝑀𝑀𝑆𝑆=0 =

1
√2

(|𝜑𝜑1𝛼𝛼𝜑𝜑2𝛽𝛽⟩ − |𝜑𝜑1𝛽𝛽𝜑𝜑2𝛼𝛼⟩) 

Ψ𝐶𝐶=1
𝑀𝑀𝑆𝑆=+1 = |𝜑𝜑1𝛼𝛼𝜑𝜑2𝛼𝛼⟩ 

Ψ𝐶𝐶=1
𝑀𝑀𝑆𝑆=−1 = |𝜑𝜑1𝛽𝛽𝜑𝜑2𝛽𝛽⟩ 

(1.77) 

where Dirac notation have been used for the Slater determinants. Therefore, the calculation of the 
exchange-coupling constant as the energy gap between the singlet and triplet states, as shown in Eqn. 
1.74, necessarily involves at least one wavefunction, Ψ𝐶𝐶=0

𝑀𝑀𝑆𝑆=0, that cannot be expressed as a single-Slater 
determinant. For this reason, multi-configurational approaches are in principle the recommended 
methods, but, apart from become prohibitively costly, depending on the dinuclear model of interest, 
the selection of the active space is never straightforward because it usually requires knowledge of the 
magnetic mechanism involved, an information typically not available beforehand. 
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Figure 1.8. A broken-symmetry orbital for a dinuclear model extracted from the Cu(II) pyrazine dinitrate coordination 
polymer. Small contributions (not shown) can be found at the second metallic center and at the corresponding nitrates. 

A possible alternative was proposed by Noodleman,65 who suggested to construct single-Slater 
determinants of mixed spin states that are not intended to represent the true singlet wavefunction (as 
they are not spin eigenfunctions), but are used to estimate the energy and the properties of the correct 
singlet. These wavefunctions are called broken-symmetry solutions because they are typically 
characterized by lowered symmetry with respect to that of the nuclear geometry (see Fig. 1.8). For the 
dinuclear model represented by the states (1.76) and (1.77), the broken-symmetry solutions assume 
the form:64a 

Ψ𝐵𝐵𝐶𝐶
𝑀𝑀𝑆𝑆=0 = |𝜑𝜑1𝛼𝛼𝜑𝜑2𝛽𝛽⟩ 

Ψ𝐵𝐵𝐶𝐶′
𝑀𝑀𝑆𝑆=0 = |𝜑𝜑1𝛽𝛽𝜑𝜑2𝛼𝛼⟩ 

(1.78) 

which can be written as linear combinations of Ψ𝐶𝐶=0
𝑀𝑀𝑆𝑆=0 and Ψ𝐶𝐶=1

𝑀𝑀𝑆𝑆=0. Within unrestricted Hartree-Fock 
theory, Noodleman has shown that the energy of (1.78) is related to that of the true singlet and triplet 
states.65a From this relation, the following expression for the exchange-coupling constant can be 
deduced: 

𝐽𝐽 = 2(𝐸𝐸𝐵𝐵𝐶𝐶 − 𝐸𝐸𝐶𝐶=1) 

(1.79) 

Although capable of predicting the right sign of 𝐽𝐽, Hartree-Fock theory is generally not quantitatively 
accurate.64 However, the extension of the broken-symmetry approach to unrestricted Kohn-Sham 
theory is still debatable, and the following relation is frequently used to estimate coupling constants 
using DFT calculations:64a,b 

𝐽𝐽 = 𝐸𝐸𝐵𝐵𝐶𝐶 − 𝐸𝐸𝐶𝐶=1 

(1.80) 

Fortunately, application of (1.80) to dinuclear systems simulated at DFT level using hybrid functionals 
has found exchange-coupling constants that yield susceptibilities in excellent agreement with 
experimentally reported values.62,66 
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Even though the variety of structural and magnetic data available for polynuclear transition-metal 
complexes has established some structure-property relationships,64a,67 the prediction of their magnetic 
behavior, in particular their exchange-coupling constants and hence their susceptibilities, is far from 
trivial, mainly due to the intricate interplay between different factors that determine the exchange 
processes. From this perspective, the knowledge of the electronic structure of polymetallic materials is 
of particular importance, given that the spin density determines the sign and magnitude of the 
coupling constants.68a Among the experimental techniques available to determine electronic spin 
density distributions, single-crystal polarized neutron diffraction stands apart because it affords 
enormous possibilities to understand the magnetic mechanisms at the atomic and molecular levels. It 
allows reconstruction of the periodic spin density by fitting either a set of atomic wavefunctions or a 
multipolar model at various levels of sophistication.68b,c Noteworthy, the reconstruction of spin-
resolved electron densities is possible nowadays by combining polarized neutron and high-resolution 
X-ray diffractions.9 From the theoretical side, spin density distributions can be found for very large or 
even periodic systems thanks to DFT.68a These studies are crucial because the interpretation of 
magnetic measurements at the atomic and molecular level is not trivial, especially for systems 
containing many paramagnetic centers. In such cases, theoretical spin densities and orbital analyses 
have been demonstrated to be very important.66,67 

Nevertheless, the determination and analysis of the position densities ρ1(𝒓𝒓) alone, either theoretical 
or experimental, have played an important role in advancing chemical bond theory, which directly 
impacts the understanding of superexchange mechanisms. Notably, a method has been developed to 
calculate the occupancy of the transition-metal valence orbitals from the refined multipole population 
parameters.69a Because in a transition-metal complex the overlap density in the metal–ligand 
coordinative bond is usually small, the valence electron density of the transition metal can, to a good 
approximation, be described using only the corresponding one-center density terms in Eqn. 1.14. This 
enables to equate the electron density of the d orbitals at the metal, expressed as atomic orbital 
products, with the pseudo-atomic deformation density (1.50).20d Because all d orbitals are invariant 
with respect to inversion through the nuclear position, only the terms with 𝑙𝑙 even in (1.50) contribute 
to the density of the d orbitals. If it is further assumed that the radial dependency of the valence density 
is the same in both orbital product and multipolar descriptions, the atomic d-orbital populations and 
the multipolar populations are simply related by: 

𝐏𝐏𝑖𝑖𝑗𝑗T = 𝐌𝐌−1𝐏𝐏𝑒𝑒𝑚𝑚±
T  

(1.81) 

where 𝐏𝐏𝑖𝑖𝑗𝑗 represents the row vector of the 15 unique elements of the symmetric 5 × 5 matrix whose 
elements are the population coefficients for the products of the five d orbitals, and 𝐏𝐏𝑒𝑒𝑚𝑚± is the row 
vector containing the coefficients of the 15 spherical harmonic density functions 𝑑𝑑𝑒𝑒𝑚𝑚± with 𝑙𝑙 = 0, 2 
or 4. The 15 × 15 transformation matrix 𝐌𝐌 can be found in Ref. 20a. 

Because the parameters 𝑃𝑃𝑒𝑒𝑚𝑚± depend on the local coordinate system, the d-orbital occupancies are 
necessarily dependent on this choice. For highly symmetric environments, such as perfect octahedral 
or tetrahedral, the choice of local axes is unambiguous and dictated by ligand-field theory 
considerations. For example, in the former, the x, y and z axes are oriented along the metal–ligand 
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directions, while in the latter, they are oriented along the fourfold improper axes bisecting the ligands. 
For environments characterized by much lower or distorted symmetries, the local reference system 
may not be obvious from the ligand positions. In these cases, it has been proposed that the best local 
coordinate system is the one with the smallest crossed d-orbital populations, i.e. the one that minimizes 
the 𝑃𝑃𝑖𝑖𝑗𝑗 terms with 𝑖𝑖 ≠ 𝑗𝑗 in Eqn. 1.81.69b      

Accurate analyses of multipolar densities fitted against experimental structure-factor amplitudes have 
been performed on a few magnetic polynuclear materials.61 While most of these studies focuses on the 
QTAIM topological analysis of the metal–metal interactions, thus providing potential magnetic 
exchange pathways, and on population analysis at the metallic centers, thus identifying the magnetic 
orbital, in Chapter 3 we show that much more information can be extracted from ρ1(𝒓𝒓). If analysed 
in conjunction with the spin density and the orbitals bearing the unpaired electrons, parameters readily 
available from multipolar-fitted electron densities can help elucidating the mechanism of the magnetic 
exchange. This is highly desirable as a tool not only to rationalize the magnetic phenomena at the level 
of the building blocks that compose the material, but also to tune their properties accordingly. 

1.4.5. Other properties from electron densities 

X-ray diffraction and DFT calculations are quite mature techniques to obtain a number of properties 
from the electron density distribution of materials in their crystalline phases. However, some of these 
properties have been recently investigated under a refreshing point of view, particularly focused on 
their applications to rationalize materials behaviour. For example, the electrostatic potential of a 
molecule in a crystal, which can be obtained from both periodically calculated and multipolar fitted 
charge distributions,70a has been used to identify the most favourable binding sites for guests and 
counter-ions in metal-organic frameworks, thus providing a tool for rationally design these materials 
that envisages their application as gas-storage systems.70b  

Another example is the interaction energies among molecules, which have for long been of interest in 
the field of biomolecule modelling, but only recently have been investigated under a materials science 
perspective.71a Spackman introduced a computational approach to accurately estimate intermolecular 
interaction energies that include the popular electrostatic, polarization, dispersion and exchange-
repulsion terms, along with a graphical representation of their topology and strength in molecular 
crystals.71b These so-called energy frameworks highlight the directions related to the strongest 
interactions, thus providing a direct visualisation of the most fundamental building blocks in the 
material. Furthermore, the approach has been applied to examine mechanical properties in molecular 
crystals, in particular bending and shearing, known to be directly related to the anisotropy of the 
intermolecular interactions in the crystal.71c   

From the side of the materials, organic crystals containing larger molecules have been constantly 
investigated. Experimental and theoretical databanks of atomic and functional-group multipolar 
moments have been created to improve the traditional structure refinement of biomolecules and to 
estimate their electrostatic properties in crystals.72 Because the size of the systems for which 
experiments are performed typically excludes straightforward application of most high-accuracy 
quantum-mechanics methods, a number of embedding strategies for multi-level simulations has been 
developed, often based on DFT.73    
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Experimental and theoretical electron density distributions have been also used to understand and 
control the materials behaviour of extended inorganic solids. Scherer, investigating the series of 
carbides Sc3TC4 (T = Fe, Co and Ni), has shown that the Laplacian distribution in the T metal VSCC 
region, which reflects the occupation of the d orbitals, varies significantly along the series, even though 
the compounds are closely related structurally.47 The atomic graph of T has been correlated to the 
density of states and the band structure in these crystals, which has enabled unveiling the mechanism 
governing the structural phase transition that occurs in the Co congener at low temperature, and that 
makes this species a one-dimensional superconductor.74  

Apart from carbides, many other challenging materials have been investigated. For example, Iversen 
has focused on thermoelectric, magnetic and porous compounds.75 Most of these studies are still highly 
demanding because the presence of heavy atoms or structural disorder in the crystals require 
sophisticated experimental and theoretical techniques to obtain accurate electron density distributions. 
However, as both theoretical and experimental techniques continue to evolve, the importance of 
electron density analyses in material science also increases. Nevertheless, Pinkerton have been involved 
in developing the hardware and software, as well as the experimental protocols necessary for “in-house” 
collection of low-temperature, high-resolution X-ray diffraction data for accurate electron density 
analysis in crystals containing elements as heavy as the actinides.29 All research on materials 
crystallography takes advantage of such advances because the main question of how the chemical 
bonding determines materials properties can now be partially answered on a quantitative basis. 
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Chapter 2 

Distributed Atomic Polarizabilities of Amino Acids and 
their Hydrogen-Bonded Aggregates* 
In this chapter, with the purpose of rationally designing linear optical materials, distributed atomic 
polarizabilities of amino acid molecules and their hydrogen-bonded aggregates are calculated in order 
to identify the most efficient functional groups, able to build-up larger electric susceptibilities in 
crystals. Moreover, we carefully analyse how the atomic polarizabilities depend on the one-electron 
basis set or the many-electron Hamiltonian, including both wavefunction and density functional 
theory methods. This is useful for selecting the level of theory that best combines high accuracy and 
low computational costs, very important in particular when using the cluster method to estimate 
susceptibilities of molecular-based materials. 

2.1. Introduction, motivation and specific goals 
The linear and non-linear optical responses are correlated to the electric (hyper)polarizabilities and 
susceptibilities at molecular and macroscopic levels, respectively. With the current computational 
resources, (hyper)polarizabilities of medium-size molecules in the gas-phase can be computed with 
satisfactory accuracy if sufficient electronic correlation is included and extended atomic basis sets are 
used. This has enabled the design of various molecular-based optical materials, but, as stated by 
Champagne and Bishop,1 the knowledge acquired in the field of single-molecule (hyper)polarizability 
calculations must evolve to quantitatively rationalize optical properties of the solid state, a field which 
is far less advanced. In fact, with few exceptions, a useful electro-optical material will be in the solid 
state and, frequently, in a crystalline or partially crystalline phase. For this reason, the ultimate goal is 
the investigation of optical properties in periodically homogeneous systems. 

As discussed in Chapter 1, calculations under periodic boundary conditions are the most adequate 
approaches to model crystalline effects. However, mainly because of the rather limited amount of 
electronic correlation that can be included within these methods, some alternatives have emerged, in 
particular the first-principles supermolecule or cluster method, and the semi-empirical local-field factor 
corrections. This techniques are fully explored in this chapter to help understanding the short- and 
long-range crystal field effects on distributed polarizabilities. 

Because density functional theory (DFT) may be inappropriate for correct evaluation of the 
intermolecular dispersion forces, one of the goals of the present work is to identify the most accurate 
DFT functionals able to estimate optical properties in molecular assemblies, using calculations of high-
level electron correlation as benchmarks. The performance of DFT have been rigorously investigated 
for the polarizabilities of large water clusters.2 It was found that the accuracy of post-Hartree-Fock 
levels of theory was not sufficiently higher than that of DFT to justify the increased computational 
costs. In this chapter, we aim at extend this analysis to amino acid aggregates, through a careful 
estimation of the cost/benefits and the marginal utility of extending the level of theory. 

                                                           
*This chapter was taken and modified from Dos Santos, L. H. R.; Krawczuk, A.; Macchi, P. J. Phys. Chem. A 2015, 119, 
3285-3298. 
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For us, it is also important to breakdown the molecular or crystal polarizability into its atomic or 
functional-group contributions. Visualizing and analysing atomic and bond polarizabilities of a system 
is useful because functional groups represent the way in which chemists reduce molecules for synthetic 
and engineering purposes. In fact, a given molecular property may especially originate from one 
particular group. In this respect, transferability is a key concept that allows exporting quantities, 
calculated with high accuracy in small molecules, to atoms or functional groups belonging to complex 
systems, like macromolecules, polymers or crystals,3 that would be too expensive to calculate ab initio. 

Here, the QTAIM distributed atomic polarizabilities of amino acids and their hydrogen-bonded 
aggregates are calculated at different theoretical levels, using the method proposed by Keith within the 
“atomic response theory”,4a which was modified and implemented in the PolaBer program.4b We focus 
on the first-order polarizability tensor 𝛂𝛂 due to its relative simplicity, its major role in both qualitative 
and quantitative considerations of reaction paths and molecular interactions, and, of course, its 
prominence in determining linear optical properties of materials. For this analysis, we have chosen the 
natural α-amino acids in their zwitterionic form, because the optical properties of their crystals, co-
crystals, salts and metal hybrids have attracted much attention in the last few years.5  

As anticipated in Chapter 1, while some components of the total polarizability tensors are measurable, 
either in the gas or in the condensed phase, no procedure is available for the experimental 
determination of polarizabilities of atoms in molecules. Therefore, for benchmarking the various DFT 
functionals, we use post-Hartree-Fock methods up to coupled-cluster (CC) techniques, known to 
deliver highly accurate polarizabilities.2  

Another purpose of our work is testing the efficiency of Gaussian-type basis sets for the calculations of 
distributed polarizabilities. Both Pople and Dunning families are considered. These investigations 
allow us to propose a protocol for the evaluation of optical properties of molecular materials that is 
both quality- and cost-oriented.  

The last goal of our study is to quantify the perturbation of hydrogen bonds on the molecular 
polarizabilities, analysing the most common aggregation modes of amino acids in the solid state. 

2.2. Theoretical methods 
Electron densities were obtained by molecular-orbital wavefunction calculations at various levels of 
approximation. We used the glycine molecule and three hydrogen-bonded dimers as references in 
order to test various basis-set expansions and to compare results from different DFT functionals 
against those from coupled-cluster (CC), configuration interaction (CI) or perturbation methods 
(second-order Møller-Plesset, MP2). Firstly, the polarizabilities of the glycine monomer and the 
dimers were investigated with increasing level of electron correlation, up to coupled-cluster singles-
and-doubles (CCSD), and increasing basis-set rank, up to quadruple-zeta quality including diffuse 
and polarization functions. Secondly, the polarizability of the glycine monomer was calculated using 
various density functionals and then compared against results at the highest electron-correlated levels. 
Thirdly, results with basis sets from Pople and Dunning families were compared against each other at 
the CAM-B3LYP level of theory, found to be one of the best-performing functionals. Finally, all the 
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20 amino acids and some dimers were investigated at the CAM-B3LYP/d-aug-cc-pVDZ level, which 
was determined to be the best compromise between accuracy and computational costs. 

When available, three-dimensional coordinates were taken from measured single-crystal neutron 
diffraction data and kept frozen. This choice is necessary because the most stable configuration of the 
amino acids in the gas-phase is the neutral one, whereas the zwitterionic forms are the most frequently 
observed species in liquid solutions and crystal phases. Because stationary points for the zwitterionic 
forms are normally not found in gas-phase potential energy surfaces, we could not use optimized 
geometries. For those amino acids in which X-ray structures only are available, the heavier atom 
positions were kept at measured values and the distances to the attached H atoms were normalized to 
the average neutron diffraction values. Because the crystal structure of lysine is not known, the 
calculations were performed for its cationic form, lysinium. Correlated calculations use the frozen-core 
approximation. All the wavefunction calculations were performed using the Gaussian 09 package6a 
and the corresponding charge density distributions were partitioned in keeping with the QTAIM, 
using the AIMAll program.6b  

PolaBer4b was used to calculate distributed atomic polarizabilities according to the procedure discussed 
in Chapter 1, section 1.4.2. The method is based on QTAIM partitioning of the ground-state electron 

density 𝜌𝜌10(𝒓𝒓), and the field-perturbed densities 𝜌𝜌1
𝐸𝐸𝑗𝑗(𝒓𝒓) of a molecular system into their atomic 

contributions. The algorithm was already tested and proved a reliable way to breakdown the molecular 
𝛂𝛂 tensor into atomic contributions.5,7 Because QTAIM is an “exact” partitioning scheme, the sum of 
the atomic polarizabilities must coincide, a part for minor numerical imprecision, to the molecular 
polarizability calculated using the coupled-perturbed Hartree-Fock (CPHF) or Kohn-Sham (CPKS) 
equations. 

In this chapter, atomic polarizability tensors are frequently visualized as ellipsoids in the same three-
dimensional space as the molecule, assuming 1 Å3 ≡ 1 Å, but a scaling factor of 0.4 Å−2 is applied to 
reduce the size of the ellipsoids for visualization purposes. 

All the amino acids under study and their aggregates have 𝐶𝐶1 symmetry. Therefore, the first-order 
polarizability tensors have six different non-zero components. We report the components of the 
diagonalized tensors (𝛼𝛼11, 𝛼𝛼22, 𝛼𝛼33). The isotropic polarizability was estimated as: 

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 =
1
3

Tr𝛂𝛂 =
1
3

( 𝛼𝛼11 + 𝛼𝛼22 + 𝛼𝛼33) 

(2.1) 

While the anisotropy of the polarizability tensor is typically estimated by:8 

∆𝛼𝛼 = �
1
2

[3Tr(𝛂𝛂2) − (Tr𝛂𝛂)2]�
1/2

 

(2.2) 

All polarizabilities are reported in atomic units unless stated otherwise. Sources of error on the 
calculated static polarizabilities are due to the incompleteness of both electronic correlation models 
and basis sets, and the limited accuracy of the atomic basin integration procedures.9  
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Figure 2.1. Atomic polarizability ellipsoids for the amino acids at the CAM-B3LYP/d-aug-cc-pVDZ level of theory. 
Intramolecular hydrogen bonds are shown as dashed lines. 

2.3. Results and discussion 

2.3.1. Atomic and functional-group polarizabilities in amino acid molecules 

One of the main aims of our work is quantifying the contribution of individual atoms and, more 
importantly, of functional groups to specific optical properties, like the refractive index. Distributed 
atomic polarizabilities are particularly useful, because they enable reconstructing the polarizability of 
a functional group in a molecule by simple sum of the atomic tensors. Fig. 2.1 shows the polarizabilities 
for the twenty zwitterionic α-amino acids, calculated at the CAM-B3LYP/d-aug-cc-pVDZ level of 
theory. Noteworthy, atomic polarizabilities are extremely sensitive to the local chemical environment, 
being larger along the directions of covalently bonded atoms. For example, in the carboxylic groups, 
the polarizability ellipsoids of the oxygen atoms are stretched in the direction of the C–O bonds, 
because these bonds are highly polarizable due to the π-bonding character and the large 
electronegativity difference between their atoms. In the carbonylic groups, the oxygen polarizability is 
approximately symmetrical about the C–O bond axis, unless involved in a hydrogen bond. Instead, 
the polarizability ellipsoid of oxydrilic oxygen atoms is slightly rotated due to the O–H bond. The 
hydrogen atoms have extremely prolate ellipsoids along the X–H bond direction, but overall their 
polarizabilities are very small due to their low electronic populations. Intramolecular hydrogen bonds 
increase the polarizability of H atoms, besides them being more positively charged, and modify the 
shape and orientation of the polarizability tensor of the hydrogen bond acceptor. 
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Table 2.1. Average values of functional-group polarizabilities in the 20 amino acids. Standard deviations (SD) and 
maximum absolute differences (MAD) from the mean for polarizability features are given. In parenthesis are the amino 
acids for which the maximum differences occur. Calculations are at the CAM-B3LYP and MP2 levels of theory with the 
d-aug-cc-pVDZ basis set.a 

 Average  MAD   Average  MAD 
 CAM-B3LYP MP2  CAM-B3LYP MP2   CAM-B3LYP MP2  CAM-B3LYP MP2 
             

COO-  OH 
𝛼𝛼11 14.9 ± 0.5 15.4 ± 0.6  1.6 (arg) 1.6 (arg)  𝛼𝛼11 5.3 ± 0.1 5.5 ± 0.1  0.2 (thr) 0.2 (asp) 
𝛼𝛼22 26.9 ± 0.8 28 ± 1  1.8 (tyr) 1.6 (arg)  𝛼𝛼22 6.5 ± 0.6 6.4 ± 0.5  0.9 (tyr) 0.8 (glu) 
𝛼𝛼33 28.8 ± 0.9 29.9 ± 0.9  1.6 (his) 1.9 (gly)  𝛼𝛼33 13 ± 2 14 ± 2  3 (tyr) 3 (tyr) 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 23.5 ± 0.5 24.4 ± 0.5  1.2 (arg) 1.1 (arg)  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 8.6 ± 0.4 8.7 ± 0.4  0.7 (tyr) 0.6 (ser) 
∆𝛼𝛼 13.1 ± 0.7 13.7 ± 0.8  1.3 (try) 1.3 (tyr)  ∆𝛼𝛼 8 ± 2 8 ± 2  3 (tyr) 3 (tyr) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.073 0.073  … …  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.058 0.058  ... ... 
             

NH3
+  C=O 

𝛼𝛼11 7.3 ± 0.8 7.4 ± 0.3  1.9 (cys) 0.8 (gly)  𝛼𝛼11 7.2 ± 0.3 7.3 ± 0.3  0.4 (glu) 0.4 (asn) 
𝛼𝛼22 8 ± 1 8.6 ± 0.9  2.7 (his) 3.4 (his)  𝛼𝛼22 12.7 ± 0.9 13 ± 1  1.7 (asn) 2 (glu) 
𝛼𝛼33 15 ± 1 14.5 ± 0.8  2.8 (cys) 1.5 (cys)  𝛼𝛼33 17 ± 1 17 ± 1  2 (gln) 2 (asp) 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 10.1 ± 0.9 10.2 ± 0.3  2.3 (phe) 0.9 (cys)  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 12.4 ± 0.4 12.6 ± 0.4  0.6 (gln) 0.6 (gln) 
∆𝛼𝛼 6.8 ± 0.9 6.6 ± 0.9  1.7 (his) 1.6 (asp)  ∆𝛼𝛼 8.9 ± 0.9 9 ± 1  1.4 (asp) 1 (asp) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.062 0.062  … …  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.072 0.072  … … 
             

Cα  N(sp2)H2 
𝛼𝛼11 4.3 ± 0.3 4.3 ± 0.3  0.7 (try) 0.7 (pro)  𝛼𝛼11 7.9 ± 0.5 8.3 ± 0.6  0.6 (gln) 0.7 (gln) 
𝛼𝛼22 7.8 ± 0.7 7.5 ± 0.7  2.0 (arg) 1.9 (arg)  𝛼𝛼22 9.1 ± 0.5 9.2 ± 0.6  0.8 (arg) 0.9 (arg) 
𝛼𝛼33 10 ± 1 10 ± 1  3 (arg) 3 (arg)  𝛼𝛼33 17.4 ± 0.9 18.0 ± 0.9  1.6 (arg) 1.6 (arg) 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 7.4 ± 0.3 7.3 ± 0.3  0.6 (thr) 0.5 (tyr)  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 11.5 ± 0.4 11.8 ± 0.4  0.5 (arg) 0.6 (arg) 
∆𝛼𝛼 5 ± 1 5 ± 1  3 (arg) 3 (arg)  ∆𝛼𝛼 8.9 ± 0.9 8.9 ± 0.9  1.3 (arg) 1.3 (arg) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.15 0.15  … …  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.067 0.067  … … 
             

CH3  (C6)phenylb 
𝛼𝛼11 11.7 ± 0.4 11.5 ± 0.5  0.8 (ileu) 0.7 (met)  𝛼𝛼11 29.9 ± 0.7 30.9 ± 0.9  1.1 (try) 1.5 (try) 
𝛼𝛼22 12.2 ± 0.3 12.2 ± 0.4  0.4 (val) 0.7 (ileu)  𝛼𝛼22 51 ± 3 55 ± 1  3 (phe) 1 (phe) 
𝛼𝛼33 17 ± 2 17 ± 2  5 (met) 7 (met)  𝛼𝛼33 72 ± 5 77 ± 4  5 (phe) 4 (tyr) 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 13.6 ± 0.7 13.6 ± 0.8  1.4 (met) 2.0 (met)  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 51 ± 2 54 ± 1  3 (phe) 2 (try) 
∆𝛼𝛼 5 ± 2 5 ± 2  4 (met) 6 (met)  ∆𝛼𝛼 36 ± 5 39 ± 3  5 (phe) 4 (tyr) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.062 0.062  ... ...  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.11 0.11  … … 
             

C(sp3)H2  S 
𝛼𝛼11 8.5 ± 0.9 8.5 ± 0.7  2.1 (cys) 1.6 (gly)  𝛼𝛼11 14 ± 1 15 ± 1  … … 
𝛼𝛼22 10 ± 1 10 ± 1  3 (tyr) 3 (tyr)  𝛼𝛼22 17.6 ± 0.1 17.8 ± 0.2  … … 
𝛼𝛼33 14 ± 2 14 ± 2  5 (met) 6 (met)  𝛼𝛼33 24.2 ± 0.8 24.7 ± 0.2  … … 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 11.0 ± 0.8 11 ± 1  1.6 (tyr) 2 (asp)  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 18.8 ± 0.8 19.1 ± 0.6  … … 
∆𝛼𝛼 5 ± 2 5 ± 2  5 (met) 5 (met)  ∆𝛼𝛼 8.6 ± 0.4 8.8 ± 0.9  … … 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.073 0.073  ... ...  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.089 0.089  … … 
             

C(sp3)H        

𝛼𝛼11 7.7 ± 0.9 7.8 ± 0.7  2.0 (pro) 1.9 (thr)        
𝛼𝛼22 9.3 ± 0.6 9.3 ± 0.5  1.4 (cys) 1.1 (asp)        
𝛼𝛼33 11 ± 1 11 ± 1  4 (arg) 4 (arg)        
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 9.5 ± 0.6 9.5 ± 0.5  1.5 (thr) 1.2 (thr)        
∆𝛼𝛼 3 ± 1 3 ± 1  4 (arg) 3 (arg)        

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  0.10 0.10  … …        
a 𝑉𝑉0.001𝑎𝑎𝑎𝑎 denotes the functional-group volume defined by an electron density isosurface of 0.001 au. SD and MAD values 
relative to the 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  ratio are omitted as they are very small. 
b The transferable features for the phenyl ring were calculated neglecting the H atoms as this allows one to export the group 
for molecules containing more than one substituent in the ring. The polarizability of the H atoms is anyway negligible 
compared to the entire group. 

Fig. 2.1 also shows that each atom belonging to a functional group has very similar polarizabilities in 
all amino acids, suggesting a potentially good transferability. Table 2.1 gathers the average values for 
the diagonalized polarizability tensors of various functional groups. The standard deviation (SD) and 
the maximum absolute difference (MAD) from the mean are good indicators of the similarities. For 
the isotropic polarizability, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼, SD and MAD are sufficiently small (less than 10% and 15% from 
the average values, respectively) for all but the methyl and methylenic functional groups. The 
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anisotropy ∆𝛼𝛼 is instead more variable. The worst outlier is methionine, for which the polarizability 
of the –CH2– and –CH3 groups is significantly larger than the average among all other amino acids. 
This difference is due to the highly polarizable sulfur atom, which increases the polarizability of all the 
atoms chemically bounded to it. 

The average polarizabilities of the groups can be taken as the transferable functional group and used to 
estimate the electric susceptibility of a material, without carrying out a full quantum-mechanical 
calculation. They are shown in Fig. 2.2 at the CAM-B3LYP/d-aug-cc-pVDZ level of theory. These 
quantities were constrained to the idealized symmetry of the fragment by averaging the pertinent 
components of the tensor. For example, the polarizability of the carboxylate group was averaged in 
order to respect the ideal 𝐶𝐶2𝑣𝑣 symmetry of the fragment.  

Table 2.2 shows the calculated molecular polarizability tensors, with full ab initio treatments (CAM-
B3LYP and MP2) or with the transferable-groups. As benchmark, we take the polarizabilities derived, 
using the Clausius-Mossotti equation, from experimental measurements of molar refraction in 
aqueous solution.10 The differences between experimental and calculated values are within 6%, a good 
result given that calculations do not account for wavelength dispersion or solvent effects.11 Our results 
are also in good agreement with other additive models of polarizabilities.11b  

The isotropic polarizabilities computed via the transferable groups (shown in Table 2.2 under the 

heading 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡) compare very well against the ab initio or the experimental values. For each amino 

acid, only small absolute differences occur, in the range of 1-3 au for most of the molecules, 
corresponding approximately to the propagated standard deviations of the transferable groups. 

In order to confirm the validity of the transferable functional groups, we computed the polarizability 
of some molecules, for example β-alanine and α-aminoisobutyric acid, that contain the same 
functional groups but that are outside the set used to construct the database. The results in Table 2.3 
indicate that the transferable groups pass this test as well, with good comparison against experimental 
values, when available.10b 

 

 

 

 

 

 

Figure 2.2. Polarizability ellipsoids for the main functional groups of the amino acids at the CAM-B3LYP/d-aug-cc-pVDZ 
level of theory. Ellipsoids are centered at the corresponding center of mass. 
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Table 2.2. Diagonalized tensor components for the polarizability of the amino acids calculated at CAM-B3LYP and MP2 
levels of theory using the d-aug-cc-pVDZ basis set. 

 CAM-B3LYP/d-aug-cc-pVDZ  MP2/d-aug-cc-pVDZ  Exptl.a 

 𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡  𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 

Glycine 35.78 49.31 57.88 47.66 19.30 45 ± 1   36.26 50.35 57.77 48.13 18.92 46 ± 1  44.3 ± 0.6 

Alanine 47.32 58.45 65.12 56.96 15.58 57 ± 1  47.42 59.44 64.89 57.25 15.48 58 ± 1  55.9 ± 0.7 

Valine 72.23 80.23 86.05 79.50 12.02 80 ± 2   72.10 80.05 86.85 79.67 12.79 81 ± 1  81.5 ± 0.4 

Isoleucine 81.84 91.34 101.33 91.50 16.88 91 ± 2  82.33 91.31 102.10 91.91 17.15 92 ± 2  95.2 ± 0.6 

Leucine 86.17 91.70 97.43 91.77 9.75 91 ± 2  86.94 92.12 98.04 92.37 9.62 92 ± 2  94.5 ± 0.4 

Serine 53.06 63.82 69.10 62.00 14.16 63 ± 1  53.14 64.35 69.09 62.19 14.19 64 ± 1  61.2 ± 0.4 

Threonine 61.73 78.13 79.36 73.07 17.05 72 ± 2  62.19 78.77 80.27 73.74 17.38 73 ± 1  73.7 ± 0.4 

Proline 64.66 73.55 81.65 73.29 14.72 76 ± 2  64.98 74.31 82.39 73.89 15.09 77 ± 2  73.5 ± 0.4 

Aspartic acid 59.04 75.52 86.75 73.77 24.14 75 ± 2  59.71 76.54 87.06 74.44 23.90 76 ± 1  … 

Glutamic acid 74.12 89.84 95.38 86.45 19.10 86 ± 2   74.46 91.01 95.89 87.12 19.45 87 ± 2  90.4 ± 0.4 

Lysinium 81.57 94.85 118.23 98.22 32.15 101 ± 2   81.60 95.15 117.13 97.96 31.06 102 ± 2  101.2 ± 0.5b 

Arginine 99.74 115.89 138.52 118.05 33.74 115 ± 2  101.16 117.81 140.67 119.88 34.36 116 ± 2  115.6 ± 0.2 

Asparagine 70.49 77.53 89.90 79.31 17.02 78 ± 2  71.28 77.83 91.93 80.35 18.28 80 ± 1  79.8 ± 0.7 

Glutamine 82.54 93.28 95.43 90.42 11.96 89 ± 2  83.02 94.91 95.94 91.29 12.44 91 ± 2  91.2 ± 0.6 

Cysteine 57.26 71.38 87.13 77.92 25.88 76 ± 1   63.29 76.78 94.85 78.31 27.43 77 ± 1  … 

Methionine 81.92 97.99 126.78 102.23 39.37 100 ± 2   82.52 98.49 128.26 103.09 40.21 101 ± 2  102.1 ± 0.1 

Tryptophan 104.20 161.57 197.90 154.56 81.82 156 ± 2  106.51 161.07 201.39 156.32 82.48 150 ± 2  157.8 ± 0.5 

Phenylalanine 96.19 122.64 150.18 123.00 46.76 119 ± 2  97.77 124.15 151.63 124.52 46.64 123 ± 2  122.9 ± 0.3 

Tyrosine 95.25 132.60 153.86 127.24 51.39 127 ± 2  97.10 133.03 154.95 128.36 50.59 130 ± 2  … 

Histidine 73.12 104.25 127.63 101.67 47.37 99 ± 1  74.28 105.47 128.48 102.75 47.12 100 ± 1  102.6 ± 0.4 

a Experimental values extracted from the molar refractions, measured in aqueous solution at λ = 589 nm and 25 °C, using 
the Clausius-Mossotti equation, from ref. 10a. 
b Reported value for lysine. 

 

Table 2.3. Diagonalized tensor components for the polarizability of β-alanine and α-aminoisobutyric acid, calculated ab 
initio, at the CAM-B3LYP/d-aug-cc-pVDZ level of theory, and using the transferable-group treatment. 

 CAM-B3LYP/d-aug-cc-pVDZ  Transferable-group treatment   Exptl.a 

 𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼  𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 

β-alanine 44.06 53.92 65.86 54.61 18.91  45.24 53.04 67.62 55.30 19.67  ... 

α-aminoisobutyric acid 56.21 66.23 69.68 64.04 12.11  61.79 68.65 74.35 68.26 10.89  67.34 

a Experimental value extracted from molar refraction, measured in aqueous solution at λ = 578 nm, using the Clausius-
Mossotti equation, from ref. 10b.  

Our analysis enables to ascertain the role of each functional group in the build-up of optical properties. 
The linear susceptibility of a crystal is proportional to the unit-cell polarizability per unit-cell volume, 
a “polarizability density”, which is approximately an additive function. Therefore, the most promising 
functional groups and amino acid molecules are those that maximize their 𝛼𝛼 𝑉𝑉⁄  ratio. In principle, the 
isotropic molecular polarizability and the molecular volume should correlate linearly.3b Fig. 3(a) shows 
the linear regression between the calculated 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and the molecular volume 𝑉𝑉0.001𝑎𝑎𝑎𝑎 (i.e. determined 
by a 0.001 au isosurface of electron density). The regression coefficient is 0.98. However, for some 
amino acids the calculated isotropic polarizabilities exceed the correlation, see also Table 2.2. Cysteine, 
phenylalanine, tyrosine and tryptophan have in fact the largest 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  ratio, see Fig. 3(b). For 
a proper estimation of the optical properties in the solid, one should consider the volume actually 
occupied by the molecule when embedded in the crystal, which depends on the packing ability, 
determined by the number of sites available for strong hydrogen bonding with the neighbours. Fig. 
3(c) shows the polarizability density calculated as 𝑍𝑍𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁄ , where 𝑉𝑉𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the room-
temperature unit-cell volume and 𝑍𝑍 is the number of molecules per unit cell. The polarizability 
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densities of glycine, tryptophan, phenylalanine and tyrosine are larger than those of the other 
molecules, addressing these amino acids as more promising for fabricating optical waveguides or other 
devices requiring high refractive index. Accurate experimental values are available only for few amino 
acids, whereas some preliminary periodic DFT calculations, confirm highest refractive indices for 
tryptophan, glycine, tyrosine and phenylalanine. With the exception of glycine, these molecules 
present aromatic rings, empirically well-known for large, though anisotropic, molecular polarizability. 
Even though high anisotropy is to be avoided in many optical applications, this is by no means a 
limitation on the use of the aromatic amino acids. In fact, molecules may pack in a crystal without 
alignment of the aromatic moieties, thus producing a rather isotropic susceptibility. The high 
𝑍𝑍𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁄  ratio for glycine is due to the relatively large contribution of the Cα  atom to the 
molecular polarizability and the high packing density when compared to other amino acid crystals. In 
fact, as shown in Table 2.1, the Cα atom features the highest 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉0.001𝑎𝑎𝑎𝑎⁄  ratio of all functional 
groups, and in glycine, Cα counts more than in all other amino acids.   

Analogously to the molecular quantities, the polarizability densities of the individual functional groups 
are useful parameters for the rational design of efficient opto-electronic molecules, especially 
concerning polymer-based optical devices, as the optical properties of their molecular subunits can be 
easily tunable by appropriate functionalization.12  

Figure 2.3. (a) Isotropic molecular polarizabilities plotted against the molecular volumes determined by a 0.001 au 
isosurface of electron density. (b) and (c) Polarizability densities for the amino acids. In (b), the molecular volume is 
defined by a 0.001 au isosurface of electron density, while in (c) it is defined by the room-temperature unit-cell volume. 
𝑍𝑍 is the number of molecules per unit cell. All calculations were performed at the CAM-B3LYP/d-aug-cc-pVDZ level. 
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Figure 2.4. Atomic polarizability ellipsoids for glycine dimers at CAM-B3LYP/d-aug-cc-pVDZ level of theory. Hydrogen 
bonds are shown as dashed lines. The N⋅⋅⋅O distance is 2.97 Å in gly-gly-2 and 2.80 Å in gly-gly-1 and gly-gly-3. 

 

Table 2.4. Polarizabilities of the glycine monomer and gly-gly dimers. The isotropic polarizability (𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼) and the anisotropy 
of polarizability (∆𝛼𝛼) are reported for the aug-cc-pVDZ, aug-cc-pVTZ and d-aug-cc-pVDZ basis sets using a variety of 
methods. In the dimers, the polarizabilities for the hydrogen bond donor and acceptor molecules are reported. Due to 
computational costs, full series of correlated calculation was performed only for gly-gly-1 with the aug-cc-pVDZ basis set. 

  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼  ∆𝛼𝛼 

 Method aug-cc-pVDZ aug-cc-pVTZ d-aug-cc-pVDZ  aug-cc-pVDZ aug-cc-pVTZ d-aug-cc-pVDZ 

monomer HF 41.29 41.63 41.80  13.86 13.67 13.72 

 CID 43.31 43.32 43.89  15.67 15.66 15.74 

 CISD 43.44 43.39 44.03  16.09 15.75 15.91 

 CCD 45.24 45.27 45.89  16.89 17.04 17.22 

 CCSD 46.70 46.45 47.38  19.10 18.48 18.87 

 MP2 47.38 47.75 48.13  19.15 18.96 18.92 

  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼  ∆𝛼𝛼 

 
Method 

aug-cc-pVDZ aug-cc-pVTZ d-aug-cc-pVDZ  aug-cc-pVDZ aug-cc-pVTZ d-aug-cc-pVDZ 

 donor acceptor donor acceptor donor acceptor  donor acceptor donor acceptor donor acceptor 

gly-gly-1 HF 41.54 40.49 42.03 40.65 42.01 40.62  14.88 16.17 15.17 16.30 14.88 16.09 

 CID 43.00 41.66 … … 43.53 41.90  16.65 17.70 … … 16.46 17.47 

 CISD 43.03 41.69 … … 43.56 41.93  16.71 17.71 … … 16.50 17.52 

 CCD 45.62 43.96 … … … …  18.72 19.52 … … … … 

 CCSD 46.88 45.11 … … … …  20.35 21.37 … … … … 

 MP2 47.73 45.75 48.17 45.83 48.51 46.04  20.51 21.37 20.53 21.37 20.47 21.31 

               

gly-gly-2 HF 42.41 41.36 42.63 41.52 42.83 41.67  16.63 17.44 16.17 17.20 16.40 17.17 

 MP2 49.46 47.44 49.63 47.62 50.13 47.88  22.72 22.93 22.26 22.69 22.38 22.62 

               

gly-gly-3 HF 41.91 40.84 42.27 41.02 42.36 41.15  9.51 16.80 9.33 16.63 9.14 16.95 

 MP2 48.92 46.82 49.39 46.32 49.46 47.05  13.41 22.29 13.49 21.76 13.12 22.11 

 

2.3.2. Electron correlation and basis-set effects 

An important matter of debate is the role of electron correlation and basis-set completeness for the 
calculation of polarizabilities.13 In order to investigate how much they affect atomic polarizabilities, 
we have analysed an isolated glycine molecule and three dimers (Fig. 2.4), with increasing amount of 
electron correlation and basis-set functions. In all dimers, the molecules are connected through one 
N–H⋅⋅⋅O hydrogen bond: one of them is a “head-to-tail” aggregation, whereas the other two are 
“lateral” aggregations. Table 2.4 gathers the relevant features of molecular polarizability calculated at 
several levels, from Hartree-Fock (HF) to MP2 and CCSD, with augmented correlation-consistent 
basis sets. The isotropic polarizabilities, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼, at CCSD and MP2 levels are ca. 10-15% larger than at 
the HF level. A similar trend is observed for ∆𝛼𝛼. While 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 increases with the basis-set size, the largest 
∆𝛼𝛼 occurs for the smallest aug-cc-pVDZ basis set.       
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Compared with CCSD, the truncated CI methods (CID and CISD) underestimate the magnitude of 
the polarizability tensors and their anisotropy, providing only a smaller increment compared with HF. 
On the other hand, CCSD and MP2 give quite comparable 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼. The trend for the monomer 
is replicated by the dimer gly-gly-1 calculated at many intermediate levels of theory (CID, CISD and 
CCD) using the aug-cc-pVDZ basis set. The increasing correlation level has a very similar effect on 
either the donor or the acceptor molecules, whose polarizabilities are easily determined using the 
distributed atomic ones.   

The highest level of approximation is the iterative introduction of triple or even quadruple excitations 
(CCSDT or CCSDTQ models). However, the trend observed for gly-gly-1 may suggest that high-
order correlation is not likely to play a significant role for larger aggregates because, on going from 
CCD to CCSD, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 increases less for the dimer than for the monomer. As concluded by Hammond 
et al.2 for water clusters at various coupled-cluster levels of theory, triple or higher excitations are less 
significant as the number of molecules increases. Noteworthy, the calculation of amino acid aggregates 
is currently very challenging at the CCSDT level of theory even with the smaller aug-cc-pVDZ basis 
set. While CCSDT/aug-cc-pVDZ calculations are feasible for the glycine monomer, this will likely 
not produce meaningful results due to the imbalance between a high-level correlation method and a 
small/medium size basis set.14 

In light of these findings, MP2 results as the most efficient level of theory, i.e. the one with largest 
accuracy/cost ratio, to estimate the electronic correlation effects on the distributed polarizabilities. 
Therefore, we have selected the MP2 level for benchmarking the various basis sets (see below) and 
DFT functionals (see next section). 

Concerning the selection of a basis set, Table 2.5 lists the results at the HF and MP2 levels of theory 
for very large basis sets, up to quadruple-zeta quality and several levels of augmentation15 within the 
Dunning family for the glycine monomer and the gly-gly-1 dimer. The number of diffuse functions 
is more important to achieve convergence than the valence splitting X for both 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼: for the 
augmented basis sets aug-cc-pVXZ, change in 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼 is still noticeable on going from the double- 
to the triple-zeta quality sets, whereas the d-aug-cc-pVXZ series is already converged with the double-
zeta quality basis set (X = D). 

We can conclude that d-aug-cc-pVDZ is the ideal basis set to calculate the polarizabilities of the larger 
amino acid aggregates, again adopting a criterion of largest accuracy/cost ratio, where cost is here 
represented by the basis-set rank. 

Calculations of the glycine monomer and the gly-gly-1 dimer polarizabilities using the Pople family 
of basis set were also performed. The 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 convergence is extremely slow mainly because the smaller 
Pople basis sets lack the additional diffuse functions present instead in the Dunning family. Only the 
largest Pople basis set, namely 6-311++G(3df,3pd), would be satisfactory, but its rank is quite higher 
than d-aug-cc-pVDZ. For this reason, Pople basis sets are no further considered in our analysis. 
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Table 2.5. Polarizabilities and their anisotropies for the glycine monomer and the gly-gly-1 dimer at HF and MP2 levels 
of theory with the Dunning family of basis sets. In the dimer, the polarizabilities for the hydrogen bond donor and acceptor 
molecules are reported. 

   𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼   ∆𝛼𝛼 

 Basis set Rank HF MP2  HF MP2 

monomer cc-pVDZ 95 32.63 35.95  12.72 16.63 

 cc-pVTZ 220 37.06 41.03  13.26 17.60 

 cc-pVQZ 425 39.29 43.92  13.65 18.40 

 m-aug-cc-pVDZ 115 38.27 44.16  14.01 19.17 

 m-aug-cc-pVTZ 240 40.11 45.84  14.15 19.37 

 m-aug-cc-pVQZ 445 40.88 46.59  13.99 19.21 

 aug-cc-pVDZ 160 41.29 47.38  13.86 19.15 

 aug-cc-pVTZ 345 41.63 47.75  13.67 18.96 

 aug-cc-pVQZ 630 41.71 47.75  13.66 18.84 

 d-aug-cc-pVDZ 225 41.80 48.13  13.72 18.92 

 d-aug-cc-pVTZ 470 41.80 47.97  13.72 18.85 

 d-aug-cc-pVQZ 835 41.75 47.81  13.67 18.81 

   𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼   ∆𝛼𝛼 

 
Basis set Rank 

HF MP2  HF MP2 

 donor acceptor donor acceptor  donor acceptor donor acceptor 

gly-gly-1 cc-pVDZ 190 33.40 32.54 36.77 35.65  15.56 12.60 20.42 16.87 

 cc-pVTZ 440 37.40 36.99 41.45 40.99  16.40 13.93 21.69 18.76 

 m-aug-cc-pVDZ 230 38.59 37.52 44.69 42.64  14.02 14.96 19.55 20.03 

 m-aug-cc-pVTZ 480 40.31 39.32 46.25 44.30  14.66 15.88 20.41 21.05 

 aug-cc-pVDZ 320 41.54 40.49 47.73 45.75  14.88 16.17 20.51 21.37 

 aug-cc-pVTZ 690 42.03 40.65 48.17 45.83  15.17 16.30 20.53 21.37 

 d-aug-cc-pVDZ 450 42.01 40.62 48.51 46.04  14.88 16.09 20.47 21.31 

 

2.3.3. Benchmarking of density functionals for distributed polarizabilities  

Although the correct method to compute polarizabilities requires the explicit treatment of electronic 
correlation, for practical applications on large systems only DFT is feasible. Therefore, a functional is 
desirable that could provide results as close as possible to correlated calculations. We have evaluated 
the performances of the most popular density functionals for the calculation of distributed 
polarizabilities. The main features of the DFT schemes under investigation are described in Table 2.6, 
classified according to Sousa et al.16a As discussed in the previous section, MP2 is taken as benchmark. 
The comparisons refer to calculations performed using the d-aug-cc-pVTZ basis set, one of the most 
complete basis set applied in this study, certainly guaranteeing basis-set convergence as discussed in 
the previous section.  

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼 for glycine calculated with the different density functionals are plotted in Fig. 2.5. The 
LSDA and GGA-based functionals underperform all the other DFT methods, with a clear tendency 
to overestimate both 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼. The meta-GGA functionals provide some improvement, with 
errors ranging approximately from 5% to 13% with respect to the MP2/d-aug-cc-pVTZ benchmark. 
Hybrid functionals, which include part of exact exchange, generally show good performance. Among 
them, the so-called long-range corrected ones, like CAM-B3LYP, or and the highly parameterized 
M06-2X and BMK functionals, predict the most accurate 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝛼𝛼. 

In view of these results and those presented in the previous section, we have selected the CAM-
B3LYP/d-aug-cc-pVDZ level of theory to perform further calculations on dimers and small clusters. 
This is in keeping with the known limitations of “conventional” DFT that significantly overestimates 
(hyper)polarizabilities, especially for systems presenting long-chain lengths.17 In many cases, these 
drawbacks have been largely improved by applying long-range correction schemes18a-c or highly 
parameterized functionals,18d as confirmed by our results. 
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Table 2.6. Summary of the DFT functionals evaluated for the distributed polarizabilities of amino acids.a 

Type Functional χ Exchange Correlation 
LSDA     
 SVWN 0 Slater Vosko-Wilk-Nusair80 
GGA     
 BP86 0 Becke88 Perdew86 
 BLYP 0 Becke88 Lee-Yang-Parr 
 BPW91 0 Becke88 Perdew-Wang91 
 PBE 0 Perdew-Burke-Ernzerhof Perdew-Burke-Ernzerhof 
 HCTH 0 Hamprecht-Cohen-Tozer-Handy Hamprecht-Cohen-Tozer-Handy 
 mPWLYP 0 modified Perdew-Wang91 Lee-Yang-Parr 
 mPWPBE 0 modified Perdew-Wang91 Perdew-Burke-Ernzerhof 
 mPWPW91 0 modified Perdew-Wang91 Perdew-Wang91 
 OLYP 0 OptX Lee-Yang-Parr 
M-GGA     
 BB95 0 Becke88 Becke95 
 VSXC 0 Van Voorhis-Scuseria Van Voorhis-Scuseria 
 TPSS 0 Tao-Perdew-Staroverov-Scuseria Tao-Perdew-Staroverov-Scuseria 
H-GGA     
 B3P86 20 Becke88 Perdew86 
 B3PW91 20 Becke88 Perdew-Wang91 
 B3LYP 20 Becke88 Lee-Yang-Parr 
 PBE0 25 Perdew-Burke-Ernzerhof Perdew-Burke-Ernzerhof 
 B97-2 21 B97-2 B97-2 
 O3LYP 11.6 OptX Lee-Yang-Parr 
 X3LYP 21.8 Becke88 + Perdew-Wang91 Lee-Yang-Parr 
 mPW1LYP 25 modified Perdew-Wang91 Lee-Yang-Parr 
 mPW3PBE 25 modified Perdew-Wang91 Perdew-Burke-Ernzerhof 
HM-GGA     
 TPSSh 10 Tao-Perdew-Staroverov-Scuseria Tao-Perdew-Staroverov-Scuseria 
 BMK 42 BMK BMK 
 M06-2X 54 M06-2X M06-2X 
LC-H-GGA     
 CAM-B3LYPb 19-65 Becke88 Lee-Yang-Parr 
 LC-BLYPc 0-100 Becke88 Lee-Yang-Parr 
 ωB97 0-100 modified B97 B97 

a χ denotes the percentage of Hartree-Fock exchange  in the functional. 
b CAM- refers to the Coulomb attenuation method, ref. 16b. 
c LC- denotes the long-range correction of ref. 16c. 

 
Figure 2.5. Isotropic polarizability and polarizability anisotropy of glycine calculated using various DFT functionals and 
comparison with the MP2 result (red line). All calculations employ the d-aug-cc-pVTZ basis set. 
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Table 2.7. Polarizabilities and their anisotropies for the hydrogen-bonded carboxylate and ammonium groups in the amino 
acid dimers and comparison with the corresponding values for the monomers at the CAM-B3LYP/d-aug-cc-pVDZ level 
of theory (percentage deviations from the monomer values are shown in parenthesis). 

   –COO-  –NH3+ 
   monomer  dimer  monomer  dimer 

dimer  d(N⋅⋅⋅O)a  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 ∆𝛼𝛼  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 ∆𝛼𝛼  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 ∆𝛼𝛼  𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 ∆𝛼𝛼 

gly–gly-1 2.802  

24.56 13.47 

 26.60(8%) 14.45(7%)  

11.06 6.89 

 11.62(5%) 5.18(-24%) 

gly–gly-2 2.970   26.54(8%) 19.10(42%)   11.97(8%) 7.68(11%) 

gly–gly-3 2.807   25.66(4%) 17.44(29%)   11.56(5%) 5.83(-15%) 

              

ala–ala-1  2.828  
23.79 13.32 

 24.02(1%) 16.63(25%)  
10.63 6.93 

 10.99(3%) 5.18(-25%) 

ala–ala-2 2.849   24.31(2%) 16.12(21%)   11.73(10%) 7.63(10%) 

              

leu–leu 2.678  23.33 12.90  22.63(-3%) 14.80(15%)  10.22 7.17  9.48(-7%) 6.04(-16%) 

              

thr–thr 2.917  23.12 12.15  23.61(2%) 17.16(41%)  10.67 7.16  11.47(7%) 6.83(5%) 

              

glu–glu 2.785  23.84 14.29  22.98(-4%) 13.58(-5%)  10.60 7.08  11.15(5%) 5.77(-19%) 

              

cys–cys 2.780  23.93 13.83  23.65(-1%) 15.25(-11%)  7.57 5.65  7.83(3%) 5.33(-6%) 

              

his–his 2.769  24.25 14.44  23.82(-2%) 15.58(8%)  10.89 5.04  11.76(8%) 6.68(20%) 

a d(N⋅⋅⋅O) denotes the distance in Å between the hydrogen bond donor N atom of the –NH3
+ group and the hydrogen-

bond acceptor O atom of the –COO- group. 

2.3.4. Hydrogen bond effects on the distributed polarizability of amino 
acid aggregates 

The intermolecular interactions play a significant role for the susceptibilities of molecular crystals, 
typically enhanced by the cooperative effect of mutually induced polarization. In order to investigate 
this phenomenon from the point of view of distributed atomic polarizabilities, we selected ten 
hydrogen-bonded amino acid dimers with N⋅⋅⋅O donor-acceptor distance in the range 2.68 – 2.97 Å, 
typical of medium-strength hydrogen bonds. The –COO- and –NH3

+ group polarizabilities are 
summarized in Table 2.7, where they are also compared with the corresponding amino acid 
monomers. 

The perturbation of the hydrogen bond linkage is quite significant in all cases. The polarizability of 
the –NH3

+ donor is typically increased (except for the leucine dimer), whereas that of the –COO- 
acceptor is either increased or decreased. There is no strict correlation with the N⋅⋅⋅O distance, given 
that interactions also occur amongst other atoms of the donor or acceptor molecules, even if not 
directly involved in the hydrogen bridge. The perturbation is highly anisotropic, because the 
aggregation occurs along the hydrogen bond direction, therefore all atoms in the donor or acceptor 
molecule increase their polarizability component along this direction.  

Since molecular crystals feature in general only non-covalent intermolecular interactions, classical 
electrostatic local-field factors based on point dipoles have been adopted to estimate the crystal 
susceptibilities starting from the gas-phase molecular (hyper)polarizabilities.19 However, it is important 
to check the consequences of neglecting the intermolecular interactions in the quantum-mechanical 
calculations, and accounting for them only through perturbative local-field corrections. The 
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distributed polarizability method is extremely useful in this respect, because it allows computing 
quantum-mechanically an entire aggregate and extracting the polarizabilities of individual molecules, 
after QTAIM partition. These quantities are then comparable with the approximated polarizabilities 
computed with the classical electrostatic perturbation of a gas-phase, isolated molecule. As discussed 
in Chapter 1, Munn and co-workers20 have derived the so-called rigorous local field theory (RLFT), 
in which the local field experienced by a molecule in a crystal is calculated with point-dipole 
approximation, by summing the fields arising from the surrounding dipoles in the crystal. The induced 
dipole moment due to the embedding of the isolated molecule in a crystal lattice equals the field-
induced polarization of the isolated molecule, according to Eqn. 1.70. The atomic components 
𝛼𝛼𝑖𝑖𝑖𝑖(Ω) of the molecular polarizability tensor are then perturbed and become  𝛼𝛼′𝑖𝑖𝑖𝑖(Ω) in the crystal, 
which can be iteratively calculated following (1.71). 

While the correctness of the RLFT approximation for the long-range interactions is out of discussion, 
the first coordination sphere requires more attention, because point electrostatic models may be 
inadequate. Therefore, we analysed some glycine dimers, in order to test whether RLFT properly 
explains the polarizability changes. Two RLFT models have been employed and compared against the 
results of the “exact” QTAIM partition of the dimer. In RLFT1, each glycine molecule is 
approximated by a single point-dipole and polarizability at the center of mass of the molecule. In 
RLFT3, each glycine molecule is represented by three functional group point-dipoles and 
polarizabilities, each at the corresponding center of mass. Table 2.8 and Fig. 2.6 show the dipole 
moment for the glycine monomer and for the hydrogen-bond donor and acceptor molecules in the 
gly-gly-1 dimer. The head-to-tail aggregation induces an increased dipole moment, while its direction 
changes only slightly. The dipole moments from the QTAIM partitioning of the electron density are 
used as benchmarks, given that they come from a quantum-mechanical calculation of the entire dimer. 

Table 2.8. Components of the dipole moment (au) for the glycine monomer and for the hydrogen-bonded acceptor and 
donor molecules in the gly-gly-1 dimer, along with the predictions calculated using RLFT.  Computations are at the CAM-
B3LYP/d-aug-cc-pVDZ level of theory. 

Monomer  𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦 𝜇𝜇𝑧𝑧 |𝝁𝝁|      

QTAIM total -1.39 0.15 4.47 4.69      

 COO- 0.36 -0.23 2.53 2.57      

 NH3
+ -1.19 0.34 0.49 1.33      

 CH2 -0.56 0.04 1.46 1.57      

Dimer  Donor  Acceptor 

  𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦 𝜇𝜇𝑧𝑧 |𝝁𝝁|  𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦 𝜇𝜇𝑧𝑧 |𝝁𝝁| 
QTAIM total -1.34 0.15 5.20 5.37  -1.25 0.12 4.96 5.11 

 COO- 0.36 -0.24 2.73 2.76  0.53 -0.26 2.85 2.91 

 NH3
+ -1.14 0.32 0.81 1.43  -1.24 0.35 0.55 1.40 

 CH2 -0.55 0.08 1.66 1.75  -0.53 0.03 1.56 1.65 

           

RLFT3 total -1.29 0.15 5.39 5.55  -1.20 0.12 5.01 5.15 

 COO- 0.35 -0.23 2.71 2.74  0.54 -0.25 2.96 3.02 

 NH3
+ -1.06 0.33 0.87 1.44  -1.20 0.34 0.54 1.36 

 CH2 -0.58 0.06 1.81 1.90  -0.54 0.03 1.52 1.61 

           

RLFT1 total -1.36 0.14 4.94 5.13  -1.36 0.14 4.94 5.13 
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Figure 2.6. Dipole moments for the molecules in the gly-gly-1 dimer. Orange arrow: for the monomer; Blue arrow: 
calculated using QTAIM partition; Violet arrow: calculated using the RLFT models. (a) RLFT1 and (b) RLFT3. 

The RLFT1 approximation [see Table 2.8 and Fig. 2.6(a)] does not distinguish the donor and the 
acceptor, of course because the two point dipoles and polarizability tensors are identical. This especially 
means underestimating the dipole moment of the donor. The RLFT3 model is instead able to 
differentiate the donor (with a larger dipole) from the acceptor, given that each group is treated 
separately. Nevertheless, RLFT3 is not completely correct because the dipole moment of the donor is 
overestimated with respect to the QTAIM results; see Table 2.8 and Fig. 2.6(b).  

As indicated in Table 2.9, the RLFT1 and RLFT3 models yield similar polarizabilities, both of which 
overestimate the QTAIM results. Again, RLFT1 does not distinguish donor or acceptor, thus it does 
not predict the enhancement of the donor with respect to the acceptor. On the other hand, RLFT3 
overestimates the polarizability component along the hydrogen bond direction, resulting in too large 
anisotropies. This is not a failure of the distributed model, which is obviously more accurate than the 
model with just a global molecular polarizability. Instead, it is the manifestation of another problem, 
so far not much discussed in the literature, namely the volume contraction. In fact, the molecule in 
isolation is, by default, integrated within the isosurface 𝜌𝜌1(𝒓𝒓) = 0.001 𝑎𝑎𝑎𝑎, which however 
corresponds to a much larger volume than the molecule in aggregation. In the gly-gly-1 example, this 
is particularly true along the hydrogen bond direction, being the other two directions anyway 
unconstrained. It seems therefore necessary to adopt a correction when using gas-phase molecular 
polarizabilities in solid-state calculations: the molecular or group polarizabilities should be rescaled 
proportionally with the volume decrement. 

In a small molecule such as glycine, the central or distributed polarizabilities methods do not differ 
substantially, whereas the distributed method should be more accurate in describing the anisotropies 
of larger molecules. In this sense, our results corroborate earlier findings for small molecules like urea 
and benzene,19a,b,e whereas for a larger and more anisotropic molecule, m-nitroaniline, the spatial 
partitioning of the molecular response has been found to exert crucial influence on the crystal 
susceptibilities.19c 
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Table 2.9. Polarizabilities for the glycine monomer and for the hydrogen-bonded donor and acceptor molecules in the gly-
gly-1 dimer, along with the predictions calculated using RLFT. Computations at the CAM-B3LYP/d-aug-cc-pVDZ level 
of theory. 

Monomer  𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼       

QTAIM total 35.78 49.31 57.88 47.66 19.30       

 COO- 15.71 27.69 30.32 24.57 13.49       

 NH3
+ 8.42 9.19 15.62 11.08 6.85       

 CH2 10.16 11.05 13.72 11.64 3.21       

Dimer  Donor  Acceptor 

  𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼  𝛼𝛼11 𝛼𝛼22 𝛼𝛼33 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∆𝛼𝛼 

QTAIM total 34.86 45.42 59.36 46.55 21.28  32.15 46.69 59.29 46.04 23.52 

 COO- 17.10 25.91 32.22 25.09 13.14  14.72 28.00 32.32 25.01 15.89 

 NH3
+ 8.45 9.55 14.15 10.72 5.24  7.95 8.55 14.13 10.21 5.90 

 CH2 9.30 9.96 12.99 10.75 3.41  9.48 10.14 12.84 10.82 3.08 

             

RLFT3 total 33.41 48.62 64.71 48.91 27.13  33.41 48.36 64.18 48.65 26.65 

 COO- 15.40 28.05 31.04 24.83 14.38  14.36 26.54 36.24 25.71 19.01 

 NH3
+ 8.33 10.19 16.52 11.68 7.43  8.44 9.01 16.05 11.16 7.39 

 CH2 9.48 10.01 17.71 12.40 7.97  9.91 10.67 14.69 11.75 4.52 

             

RLFT1  34.12 48.37 61.72 48.07 23.89  34.12 48.37 61.72 48.07 23.89 

 

In conclusion, our analysis suggests that the classical local field approximation could be improved in 
order to better estimate the polarizability increase of an aggregation (crystal), by taking into account a 
more accurate treatment of the short-range interactions. This will be the subject of further research in 
our group, implementing a hybrid scheme where the local interactions are accounted quantum-
mechanically and included in the distributed atomic polarizabilities (thus automatically including also 
the volume contraction), whereas the long-range ones are evaluated with the classical local field 
approximation. 

2.3.5. Polarizabilities and refractive indices of amino acid salts 

Amino acid salts have also attracted attention for their potential application as linear and non-linear 
optical materials.5 Among them, the organic salt L-histidinium hydrogen-oxalate has been investigated 
in our group. Its crystal structure is mainly characterized by three short-medium intermolecular 
hydrogen bonds: the first is a O–H⋅⋅⋅O bond [2.5052 (5) Å] between hydrogen-oxalates that originates 
anionic chains along the a crystallographic direction; the second is a N–H⋅⋅⋅O bond [2.6089 (7) Å] 
between two L-histidinium cations, through the imidazole nitrogen and the carboxylic oxygen, which 
produces L-histidinium helices, also along the a direction; the third is a N–H⋅⋅⋅O hydrogen bond 
[2.7982 (7) Å] between the ammonium group of the amino acid and the hydrogen-oxalate, thus 
connecting the chains and helices along the c crystallographic direction.5a Here, we report the results 
of distributed atomic polarizabilities calculated for the ions of this species, focusing on the 
intermolecular factors that mainly affect the atomic and functional-group tensors, see Fig. 2.7.  
From Figs. 2.7(a) and (c), we see that O5c (the acceptor in a hydrogen-oxalate dimer) slightly modifies 
the orientation and stretching of its polarizability tensor, due to the hydrogen bond. In general, the 
whole anion changes the shape of the polarizability tensor that becomes larger in the hydrogen-bond 
direction. However, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 does not change significantly. In a hydrogen-oxalate dimer, the two anions 
have 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 49.4 (donor) and 48.8 au (acceptor), whereas 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 48.3 au for an isolated hydrogen-
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oxalate. On the contrary, the anisotropy of the tensor is much more affected: ∆𝛼𝛼 is 28.44 au for an 
isolated anion, but 34.76 au for the acceptor anion in a dimer and 34.05 for the central anion in a 
trimer (acting both as acceptor and donor, not shown in the figure). This means that the hydrogen-
oxalate chain motif should produce larger crystal susceptibility along the direction of the chain (a axis) 
for two reasons: because the chains elongate along the direction of larger component of the anion 
polarizability; and because the hydrogen bond increases the anisotropy of the polarizability in the same 
direction by a factor of about 20%. The second important direction is c because the molecular plane 
of all hydrogen-oxalates is parallel to ac. In fact, the crystal susceptibilities calculated after summation 
of the polarizabilities of the four gas-phase anions as oriented in the unit cell, thus corresponding to a 
simple oriented-gas model, are χ11 = 0.50, χ22 = 0.21 and χ33 = 0.37, showing that the hydrogen-
oxalates would produce a large anisotropy. This is further increased if we use the polarizabilities of 
hydrogen-oxalates computed for the anion embedded in a chain. 
On the other hand, the L-histidinium is itself more isotropic (∆𝛼𝛼 = 19.17 in isolation). Moreover, it 
is not oriented to maximize the polarizability along any specific crystallographic direction. For this 
reason, the contribution to the susceptibility is rather isotropic, χ11 = 0.70, χ22 = 0.64 and χ33 = 
0.67, using the polarizabilities calculated for the isolated cation to construct an oriented-gas model). 
The isotropic molecular polarizability of L-histidinium is not much affected by the hydrogen bond, 
Figs. 2.7(b) and (d): 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 92.6 and 86.5 au, for the donor and acceptor molecules, compared to an 
isotropic polarizability of 89.8 au for the isolated cation. However, the strong hydrogen bond that 
connects the two cations is highly directional (almost parallel to c). If we calculate the contribution to 
the susceptibility using a cation perturbed by two other molecules in the L-histidinium helices, then 
χ33 would be quite enhanced (χ11 = 0.67, χ22 = 0.61 and χ33 = 0.79). 

Figure 2.7. Atomic polarizability ellipsoids for (a) isolated hydrogen-oxalate, (b) isolated L-histidinium, (c) hydrogen-
oxalate dimer, (d) L-histidinium dimer, and (e) L-histidinium hydrogen oxalate motif. 
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The combined effects of L-histidinium and hydrogen-oxalate produce the larger crystal susceptibilities, 
χ11 = 1.17, χ22 = 0.82 and χ33 = 1.16, from which one calculate the corresponding refractive 
indices 𝑛𝑛𝑎𝑎 = 1.47, 𝑛𝑛𝑏𝑏 = 1.35 and 𝑛𝑛𝑐𝑐 = 1.47. If we then consider local-field factors to account for the 
crystalline environment, i.e. increased polarizability due to induced electric moments of all molecules 
in the crystal, see Eqns. 1.69 and 70, the refractive indices become 𝑛𝑛𝑎𝑎 = 1.62, 𝑛𝑛𝑏𝑏 = 1.43 and 𝑛𝑛𝑐𝑐 = 
1.61, quite close to those calculated ab initio from couple-perturbed Kohn-Sham theory (𝑛𝑛𝑎𝑎 = 1.58, 
𝑛𝑛𝑏𝑏 = 1.45 and 𝑛𝑛𝑐𝑐 = 1.63), although 𝑛𝑛𝑎𝑎 results larger, as from the experimental determination (𝑛𝑛𝑎𝑎 = 
1.63, 𝑛𝑛𝑏𝑏 = 1.50 and 𝑛𝑛𝑐𝑐 = 1.60).5a   

Further adjustment of the molecular polarizabilities are possible taking into account also the hydrogen 
bond between the cation and the anion, Fig. 2.7(e), which are however weaker than the two homo-
ionic ones. The isotropic polarizability for the hydrogen-oxalate (hydrogen bond acceptor) is 45.8 au, 
smaller than the isolated anion, whereas 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 for L-histidinium (93.5 au) is larger than in isolation. 
The anisotropy of the hydrogen-oxalate is also increased by this interaction (∆𝛼𝛼 = 29.83 au), which 
reduces the polarizability component along the direction perpendicular to the main plane of the 
molecule, i.e. in the direction of the b axis.  
With this analysis, it can be concluded that the measured or calculated crystalline refractive indices 
reflect mainly the specific orientation of the molecular polarizabilities of the ions, especially of the 
hydrogen-oxalates. The perturbation of the hydrogen bonds is not large, but contributes to stretch the 
polarizability tensors in the ac plane. This features are in keeping with larger 𝑛𝑛𝑎𝑎 and 𝑛𝑛𝑐𝑐, and smaller 
𝑛𝑛𝑏𝑏 refractive indices, and therefore with the significant birefringence of the material. 

2.4. Conclusions and perspectives 
We have carried out a detailed analysis of the distributed atomic and functional group polarizabilities 
in amino acids and some of their hydrogen-bonded aggregates. We focused on the contribution of 
each functional group to the build-up of molecular or supramolecular properties and the effect of 
intermolecular interactions.  

First, we demonstrated a very good transferability of the functional-group polarizabilities. This enabled 
us to identify which group mostly contributes to the global dielectric constant of materials based on 
amino acids, which have recently attracted attention.5 In particular, we found that the Cα atom 
provides a rather large optical density. In keeping with experimental evidence, another highly active 
group is the aromatic ring, which is also quite anisotropic (a feature to be carefully considered in the 
case where low or high birefringence is desirable). On the other hand, the sulfur atom, although itself 
quite polarizable, does not produce a very large molar refraction, because its atomic basin has a large 
volume. However, sulfur plays the role of enhancing the polarizabilities of all neighboring atoms, 
therefore it indirectly contributes to increasing the molecular and the overall crystal refraction.  

Our study was also intended to identify the most quality/cost efficient method to calculate molecular 
and atomic polarizabilities. Careful analysis demonstrated that a hybrid DFT functional with long-
range Coulomb attenuation, like CAM-B3LYP, gives results very close to those obtained with coupled-
cluster techniques. As for the basis set, augmentation with diffuse functions is vital and even more 
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important than valence splitting. Consequently, d-aug-cc-pVDZ is selected as the most efficient, at 
least for the series of molecules we investigated.  

Another outcome of our analysis concerns the perturbation produced by medium strength 
intermolecular hydrogen bonds. A proper quantum-mechanical treatment of the first coordination is 
necessary to correctly estimate the effects of mutual polarization between two molecules. The classically 
adopted local field approximations, even in the more sophisticated distributed group model, 
overestimate the polarizabilities of molecules in aggregation. The reason is that calculations in the gas-
phase assume a too large volume for a molecule and therefore overestimate its polarizability in 
condensed matter. Based on these evidences, we will develop a new hybrid procedure for estimation 
of the crystal susceptibilities, meaning that the first coordination sphere of the molecule in the crystal 
is computed quantum-mechanically and that the semi-empirical local field perturbation is considered 
only for longer-range interactions. 

The distributed polarizabilities of transition metal-amino acid networks are currently been investigated 
by Ernst21 in quite some detail. These quantities are used to understand the effect of the coordination 
to metals on the optical properties of the amino acids, and how it affects the optical behaviour of the 
metallic centers, in view of stablishing cost-efficient strategies to engineering this kind of materials, in 
a similar manner as done in this thesis to design hydrogen-bonded functional organic crystals. In 
particular, correlations have been stablished among the valence electronic distribution of the transition 
metals and their relatively large 𝛼𝛼/𝑉𝑉 ratio. Furthermore, the preferential occupancy of some d orbitals 
over the others are directly related to the polarizability anisotropy of the metal, a subtle observation 
that, although expected, has never been quantified before. Cluster and local-field approaches are also 
being systematically studied for these materials, in view of identifying the most efficient methods to 
include long- and short-range intermolecular interaction effects in the polarizability of their building 
blocks. Although the strong absorption of light in some of the transition-metal crystals may sometimes 
hamper their applications as optical materials, such analyses are anyway worthwhile because the 
developed protocols can be applied to any class of molecules. 

The computational strategy outlined in this chapter is a useful and effective tool for the rational design 
of optical molecular materials, because it enables reasoning in terms of the transferable functional 
groups. Further studies are being performed to check the suitability of the strategy for organometallic 
systems.22 Finally, this protocol may also foster the development of models for the treatment of 
induction effects in force field simulations. 
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Chapter 3 

Electron Density Distributions and Magnetic Properties 
in Copper Pyrazine Nitrate Quasi-Low-Dimensional 
Quantum Magnets* 
In this chapter, electron density distributions and magnetic properties of two metal-organic polymeric 
magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) 
[Cu(pyz)2(NO3)]NO3.H2O, have been investigated by high-resolution single-crystal X-ray diffraction 
and DFT calculations in the crystalline state as well as in the gas phase. QTAIM topological analyses 
enabled the characterization of possible magnetic exchange pathways and the establishment of 
relationships between the electron (charge and spin) densities and the exchange-coupling constants. 
In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively 
explained by the Cu–Cu superexchange pathway mediated by the pyrazine bridging ligands, through 
a σ-type mechanism. The materials can be regarded as low-dimensional magnets for most practical 
purposes, although very weak interchain and interlayer interactions may lead to three-dimensional 
long-range ordering, as detected in a previous experiment. We also employed molecular orbital analysis 
along with calculated spin density distributions to characterize the role of spin delocalization and spin 
polarization in determining the bulk magnetic behaviour of these coordination polymers. 

3.1. Introduction, motivation and specific goals 
Among magnetic metal-organic polymers, quasi-1D or -2D compounds are of particular interest 
because they are intermediate situations between high-nuclearity magnetic clusters and three-
dimensional magnetic frameworks.1 These compounds are characterized by ordered chains or layers 
consisting of metal ions bridged by polydentate ligands. The interchain or interlayer interactions are 
often, but not always, very weak. These architectures lead to predominantly low-dimensional 
ferromagnetic (FM) or antiferromagnetic (AFM) materials, even though weak interchain and 
interlayer couplings can also take place, giving rise to three-dimensional pathways and sometimes 
magnetic ordering, depending on the molecular structure and on the crystal packing.2 Furthermore, 
1D magnets have long been recognized as prototypical for the experimental studies of physics in 
reduced dimensions, with the linear chain Heisenberg antiferromagnet model (LCHAFM) being the 
subject of extensive investigations.1 Quasi-1D Cu-compounds are widely studied,3 but copper(II) 
pyrazine dinitrate, Cu(pyz)(NO3)2 (1), has been the most successful realization of the LCHAFM. This 
material has a relatively small exchange-coupling constant, 𝐽𝐽 = –7.26 cm-1 (–10.4 K), as determined 
from magnetic susceptibility, high-field magnetization and specific heat measurements.4a The ratio of 
interchain to intrachain exchange constants, 𝐽𝐽′/𝐽𝐽, has been estimated to be negligible, thus showing 
that the chains are well isolated. However, evidence for three-dimensional long-range magnetic order 
has been recently detected based on zero-field muon-spin relaxation measurements. This technique 

                                                           
*All magnetic measurements discussed in this chapter were performed and provided by prof. Jamie L. Manson, Eastern 
Washington University, USA. A manuscript based on this chapter has been submitted to J. Am. Chem. Soc. 
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provided an estimate of 𝐽𝐽′/𝐽𝐽 significantly larger than previously thought, although 𝐽𝐽′ = +0.03 cm-1 
(+0.046 K) is still very small.4b On the other hand, the cationic three-dimensional net of cooper(II) 
di(pyrazine) nitrate, [Cu(pyz)2(NO3)]+, is investigated in this thesis for the first time, as obtained in 
single-crystals of the hydrated salt [Cu(pyz)2(NO3)]NO3.H2O (2).  

In this work, we correlate accurate electron density distributions in 1 and 2 with their magnetic 
properties. For 1, both the experimental density (from X-ray diffraction) and theoretical density (from 
quantum mechanical calculations) are investigated. For 2, only theoretical electron densities are 
discussed because single-crystals suitable for accurate high-resolution X-ray diffraction experiments 
could not be obtained. For both samples, crystals suitable for PND could not be grown, therefore the 
experimental spin density cannot be obtained. Nevertheless, calculated spin density distributions are 
also discussed.  

Quantitative reasoning of the chemical bonding, in particular around the metallic center, is achieved 
using the real-space partitioning derived from quantum theory of atoms in molecules (QTAIM). This 
study is particularly devoted to establishing relationships between the electron charge and spin 
densities and the exchange-coupling constants, but our investigation is supplemented by molecular 
orbital analyses. From this work, we also reveal the cooperative nature of spin delocalization and spin 
polarization mechanisms and that they are not mutually exclusive. This finding may be representative 
for a larger class of copper(II) pyrazine quantum magnets. 

3.2. Experimental and computational techniques 

3.2.1. X-ray data collection and structure refinement 

Single-crystals of 1 and 2 were mounted on an Agilent SuperNova diffractometer. The crystals were 
cooled to 100 K (1) and 173 K (2) with N2. The CRYSALIS PRO programs were used to perform 
data collection and reduction. A total of 24441 and 12729 intensities were harvested, respectively for 
1 and 2. While for the latter a standard measure up to resolution of 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/λ = 0.7 Å−1 was 
undertaken, diffraction data for compound 1 was measured up to 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/λ = 1.19 Å−1. A total of 
2487 image frames were obtained from 23 oscillation runs, with four different sets of exposure times. 
These were 2.5 + 2.5, 20 + 20, 40 + 40 and 80 + 80 s per image, totalling 51 h of exposure time. The 
oscillation angle of 1° was used, with ω being the oscillation axis. Batch scaling factors for each 
oscillation run within each of the four sets showed no consistent variation in time, indicating no 
significant sample decay. The high-angle sets utilized the longer exposure times to improve the 
measurement statistics, while the shorter exposure times were used to accurately record the intense 
low-angle data, avoiding pixel overflow or integration failure. The scan sets with small θ offsets were 
measured first in the data collection strategy, in order to alleviate problems with ice rings which may 
gradually build up during the collection. The high-angle images showed no evidence of contamination 
from ice rings. The unit-cell dimensions used for refinement purposes were determined by post-
refinement of 15085 reflections with 3 < 𝜃𝜃 < 57°. The frame images were integrated using spot 
elongation for the high-angle data, in order to, at least partially, account for the Kα1-α2 splitting.  
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Table 3.1. Crystallographic details and refinement results for Cu(pyz)(NO3)2 (1) and [Cu(pyz)2(NO3)]NO3.H2O (2). 

Crystal data Compound 1 Compound 2 
Chemical formula CuC4H4N4O6 (CuC8H8N5O3)NO3.H2O 
Crystal system, space group Orthorhombic, Pmna Orthorhombic, Ima2 
Temperature (K) 100.0 (5) 173.0 (5) 
a, b, c (Å) 6.70122 (7), 5.11854 (5), 11.6351 (1) 13.6081 (5), 9.9487 (4), 9.4287 (3) 
V (Å3) 399.089 (7) 1276.48 (8) 
Z 2 4 

θ range (°) for cell measurement 3.5–37.5 3.0–26.8 

µ (mm−1) 2.757 1.762 
Crystal size (mm) 0.22 × 0.12 × 0.08 0.07 × 0.07 × 0.03  
Data collection 
Absorption correction Numerical Numerical 
Tmin, Tmax 0.962, 0.985 0.897, 0.960 
No. of measured, independent and 
observed [F> 3σ(F)] reflections 

24441, 2933, 2737  12729, 1821, 1503 

Redundancy 8.3 7.0 
Rint 

a 0.018 0.083 

θ values (°) θmax = 57.6, θmin = 1.7 θmax = 29.7, θmin = 4.1 

(sin θ/λ)max (Å-1) 1.188 0.697 

Range of h, k, l h = –15 → 15, k = –12 → 12, l = –27 → 27 h = –18 → 18, k = –13 → 13, l = –12 → 12 

Spherical, independent-atom model refinement 
Refinement on F 2 (for F > 0) F 2 (for F > 0) 

R[F > 3σ(F)], Rall, wR, S b 1.68, 1.92, 2.67, 1.39 5.11, 7.95, 6.08, 1.14 

No. of parameters 48 113 

(Δ/σ)max 0.001 0.001 

Δρmax, Δρmin (e Å−3) 0.53, −1.22 0.94, −0.92 

Extinction coefficient 0.023 (2)  
Multipole refinement 
Refinement on F 2 (for F > 0)  

R[F > 3σ(F)], Rall, wR, S b   0.95, 1.18, 1.40, 0.83  

No. of parameters 175  

(Δ/σ)max 0.002  

Δρmax, Δρmin (e Å−3) 0.28, −0.22  

Extinction coefficient 0.045 (2)  
a𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2 − 〈𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2 〉�𝒉𝒉 ∑ 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2
𝒉𝒉�  (summation is carried out only where more than one symmetry equivalent reflection 

is averaged). b𝑅𝑅(𝐹𝐹) = 100.∑ ��𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝐹𝐹𝒉𝒉,𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐��𝒉𝒉 ∑ �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜�𝒉𝒉� , 𝑤𝑤𝑅𝑅(𝐹𝐹) = 100. �∑ 𝑤𝑤𝒉𝒉��𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝐹𝐹𝒉𝒉,𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐��
2

𝒉𝒉 ∑ 𝑤𝑤𝒉𝒉𝒉𝒉 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2� �

1 2⁄
, 

𝑆𝑆 = �∑ 𝑤𝑤𝒉𝒉�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2 − 𝐹𝐹𝒉𝒉,𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

2 �2𝒉𝒉 (𝑁𝑁 − 𝑃𝑃)� �
1 2⁄

 with 𝑤𝑤𝒉𝒉 = 1 𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2  ⁄ , N as the number of reflections and P as the number of 

parameters. Both in the spherical model and in the multipole model refinements the calculated structure-factor magnitudes 
are properly multiplied by a scale factor 𝜂𝜂 and by an additional factor Y𝒉𝒉(𝜖𝜖) that corrects for secondary extinctions. For 

the spherical model,  Y𝒉𝒉(𝜖𝜖) = �1 + 0.001 𝜖𝜖 𝐹𝐹𝒉𝒉,𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 
 2  𝜆𝜆3 sin(2𝜃𝜃𝒉𝒉)⁄  �−1 4⁄ , while, for the multipole model,  Y𝒉𝒉(𝜖𝜖) has been 

chosen following the Becker and Coppens equations.9 
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Figure 3.1. Experimental molecular structure of crystalline Cu(pyz)(NO3)2 (1) and [Cu(pyz)2(NO3)]NO3.H2O (2). Only 
the asymmetric units are labelled. Local axes at the copper atoms are also shown. For 2, counter-ions and solvent molecules 
are omitted. 

Numerical absorption corrections were applied for both crystals. The resulting data for 1 was 
additionally sorted and merged in Laue group mmm using SORTAV,5 giving 2933 independent 
reflections with a mean redundancy of 8.3. Additional data are tabulated in Table 3.1. Coordinates 
and atomic displacement parameters (ADPs) were refined applying the independent-atom model 
(IAM) as implemented in SHELXL.6 The experimental geometries are shown in Fig. 3.1. 

3.2.2. Multipole refinement 

The IAM parameters were used as initial values for multipole modelling of 1. This was performed 
using the XD2006 program7 and the Hansen-Coppens formalism. The core and spherical valence 
densities are composed of Slater-type atomic relativistic wavefunctions obtained at the PBE/QZ4P 
level of theory for neutral atoms in their ground-state configuration.7 For the Cu-atom, Hartree-Fock 
wavefunctions expanded in single-ζ orbitals with energy-optimized Slater exponents8a are used for 
defining the radial part of the deformation terms as a combination of orbital products.7 The (4s4s) 
product was used to construct the radial portion of the deformation monopole while the (3d3d) 
product was applied in the construction of the quadrupole and the hexadecapole radial densities. By 
crystallographic symmetry restrictions, dipole and octupole functions are not allowed at the metallic 
center.  For all the other atoms, single-ζ orbitals with energy-optimized Slater exponents are used for 
the radial part of the deformation terms.8b A number of models were tested to optimize the fit to the 
experimental intensities. In the final model, the multipole expansion was truncated at the hexadecapole 
level for all the non-H atoms, while only a bond-directed dipole was applied to H1. The 𝜅𝜅 parameters 
were refined for each atomic type. For O, N and C atoms, a single 𝜅𝜅′ was refined for all the 𝑙𝑙 values 
belonging to a defined set while 𝜅𝜅′ for Cu and H1 were constrained to the corresponding refined 𝜅𝜅 
values. A high-order refinement with sin 𝜃𝜃 𝜆𝜆⁄ ≥ 0.7 Å−1 was performed for the non-hydrogen atoms 
to obtain accurate positional and displacement parameters. Afterwards, the H-atom coordinates and 
isotropic ADP were freely refined. An isotropic extinction coefficient was also refined according to the 
Becker-Coppens equations.9 
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The ground-state electronic configuration of Cu corresponds to [Ar]4s13d10 and the 4s orbital is well 
known to contribute to the valence density. However, it is also established that transition metals 
present problems when refining the deformation density because of the significantly different radial 
extensions of the (n-1)d and ns valence orbitals. This would require the treatment of two different 
valence deformation densities or, as it is often the case, that the ns density is constrained to its nominal 
value and formally associated with the frozen core density.10 In 1, scattering from the copper 4s density 
is only significant for 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃/λ < ~0.18 Å−1 and only 14 reflections satisfy this criterion. In view of 
such a small number of reflections, their standard uncertainty and the fact that the monopole 
population 𝑃𝑃00 in Eqn. 1.50 is expected to be a rather small quantity, it is not surprising that attempts 
to refine the 4s population independently through the 𝑙𝑙 = 0 deformation function gave physically 
unrealistic populations. Thus, a model based on the [Ar]4s03d9 electronic distribution for Cu(II) was 
also tested. This gave significantly better residuals and the final model was based on this configuration. 

Anharmonic motion was modelled for the Cu atom by refining Gram-Charlier coefficients up to 
fourth-order.11 It led to an improvement on the residual density distribution in the vicinity of the Cu 
nucleus. In the final refinement, the maximum and minimum residual density peaks were +0.29 and 
–0.22 𝑒𝑒. Å−3 using all data. Residual density maps show only few and small discrepancies that could 
not be removed by any deformation model. Topological properties and integrated atomic charges were 
calculated using the TOPXD module.7 Recent studies suggest an estimate of approximately ±5% for 
the accuracy of the integrated atomic properties.12 

3.2.3. Theoretical calculations 
As discussed in Chapter 1, the exchange-coupling constant 𝐽𝐽 can be related to the energy difference 
between states with different spin multiplicities. For this purpose, accurate unrestricted wavefunctions 
for the high- and low-spin states are required. For our purposes, we assume that the low-spin state can 
be well approximated by a broken-symmetry solution. We have investigated the high-spin and the 
broken-symmetry states in the dinuclear models of compounds 1 and 2 represented in Fig. 3.2. Models 
1-d1 and 2-d1 comprise dimeric versions of the infinite chain structures present in 1 and 2 
respectively. They contain two Cu(II) centers bridged by a pyrazine ligand, while the other models 
account for interchain interactions or intrachain pathways mediated by the nitrate ligand. All systems 
have been investigated within unrestricted Kohn-Shan theory using the B3LYP/6-311G(2d,2p) level 
of theory, as implemented in the Gaussian 09 package.13a The AIMAll software13b has been used to 
partition the corresponding electron densities and to calculate integrated atomic properties. 
CRYSTAL0914a was used to perform periodic DFT calculations on ferro- and antiferromagnetic phases 
of 1 and 2 using the B3LYP hybrid functional. The basis set for the Cu atom is 86-411G(41d),15a 
while for the non-metallic atoms, it is 6-31G(1d).15b Topological analysis of the periodic electron 
densities and integrated atomic properties were calculated using the TOPOND09 software.14b 
Our periodic calculations on 1 considered the magnetic phases schematically represented in Fig. 3.3. 
The ferromagnetic phase (FM) corresponds to the high-spin structure, whereas the antiferromagnetic 
phases (AFM) correspond to low-spin ones. The unit cell of FM and sAFM contain two formula units 
whereas the simulations of the aAFM and the bAFM phases require double cells. Due to prohibitively 
high computational costs, only the phases FM and sAFM were investigated for compound 2, see Fig. 
3.3. The coupling constant can be estimated from the energy gap between the FM phase and the AFM 
phase according to well established protocols that are simply based on Eqn. 1.74.16 To obtain a fair 
comparison with experiment, the calculated structure factors of the FM and AFM phases of 1 were 
also fitted against the best multipolar model derived experimentally. 
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Figure 3.2. Disposition of the dinuclear models in Cu(pyz)(NO3)2 (1) and [Cu(pyz)2(NO3)]NO3.H2O (2). Schematic 
views of the packing in terms of Cu positions and the network generated from the shortest Cu⋅⋅⋅Cu contacts are also shown 
with line thickness representing the relative magnitude of the coupling constants. 

3.3. Results and discussion 
Structural investigations carried out on molecular magnetic materials are often able to correlate the 
exchange-coupling constant to structural parameters, in particular for spin-only or dinuclear systems.17 
Intermetallic distances or angles between metal centers and a bridging ligand are then considered 
within the context of orbital overlap in order to provide an intuitive understanding of the exchange 
mechanism.18 However, as discussed in Chapter 1, only a few studies have been carried out to correlate 
the magnetic behaviour of a material to its electron density distribution, as experimentally obtained 
from high-resolution X-ray diffraction. We begin by briefly describing the crystalline structure of 1 
and 2, then we turn to the analysis of 𝜌𝜌1(𝒓𝒓), either obtained experimentally or theoretically. Finally, 
we complement our study through molecular orbital analysis of the spin density distributions. 

Figure 3.3. Orthorhombic unit cells for magnetic phases of  Cu(pyz)(NO3)2 (1) and [Cu(pyz)2(NO3)]NO3.H2O (2). The 
ferromagnetic (FM) and three possible antiferromagnetic (sAFM, aAFM and bAFM) structures are considered. Red and 
blue arrows indicate spin-up and spin-down Cu(II) moments, respectively. 
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3.3.1. Crystal structures 

Our high-resolution X-ray diffraction data collection on the Cu(pyz)(NO3)2 1D coordination polymer 
implied also a re-determination of the already known4a crystal structure (Fig. 3.1), without finding any 
major difference. Each Cu occupies a 2/m crystallographic site and lies at the center of a distorted 
octahedron formed by two of each Cu–O1 [2.0022 (2) Å], Cu–O2 [2.4796 (3) Å] and Cu–N2 
[1.9765 (2) Å] chemical bonds. Adjacent metallic centers are linked by pyrazines along the 
crystallographic a direction, whereas the nitrates lie at the 0, y, z and ½, y, z mirror planes. Owing to 
the symmetry of Cu, all N2–Cu–O angles are 90°, whereas the O1–Cu–O2 angle of 56.74 (2)° is far 
from the ideal octahedral angle, due to the inherent rigidity of the nitrate ligand. Along the Cu-
pyrazine chain, the Cu atoms are separated by 6.701 (1) Å. Weak C–H⋅⋅⋅O hydrogen bonds [C1⋅⋅⋅O2 
= 3.447 (1) Å] and C⋅⋅⋅O contacts [C1⋅⋅⋅O3 = 3.122 (1) Å] connect adjacent chains along the b 
direction. As discussed in the following, although these interactions may stabilize the three-
dimensional lattice, our results confirm the weak nature of the superexchange pathways. Thus, the 
material would be classified as a 1D quantum magnet. 

The crystal structure of the [Cu(pyz)2(NO3)]NO3.H2O 3D polymer was here determined for the first 
time (Fig. 3.1). The presence of two pyrazine ligands per Cu induces a 3D coordinative network, given 
that each ligand act as a bidentate bridge. The cavities formed by the [Cu(pyz)2(NO3)]+ network are 
filled by the non-coordinating nitrate and a water molecule. Cu lies on a 2-fold axis, at the center of a 
slightly distorted octahedron formed by two of each Cu–O2 [2.337 (4) Å], Cu–N2 [2.039 (9) Å] and 
Cu–N3 [2.038 (9) Å] bonds. The N2–Cu–N3 angle is almost right [88.8 (1)°], whereas O2–Cu–N3 
and O2–Cu–N2 are distorted [83.8 (2)° and 95.3 (2)°, respectively]. The pseudo-tetragonal Cu-
pyrazine layers are perpendicular to direction a and the Cu-pyz-Cu edges elongate along the {011} and 
{01ī} directions, with Cu⋅⋅⋅Cu distances of 6.853 (5) Å. The NO3

- ligands connect the layers (Cu⋅⋅⋅Cu 
distances of 6.804 (2) Å) along the pseudo Jahn-Teller distorted direction. The only relevant 
superexchange pathways are those formed by Cu atoms bridged by pyrazines, addressing the material 
as a 2D quantum magnet. 

3.3.2. Electron density distributions and topological analyses 

Formally, Cu has oxidation state +2 in both 1 and 2. Being a d9 metal, the observed stereochemistry 
can be explained by pseudo-Jahn-Teller distortion, i.e. stabilization of four coordination directions in a 
plane and destabilization of the two remaining out-of-plane directions. The analysis of the electron 
density distribution enables investigating in details these features, going beyond the mere bond 
lengths. The observed electron population of Cu reflects the bonding mechanism of the ligand-to-
metal electron donation and the potential metal-to-ligand back donation. The electron distribution 
around Cu also informs on the specific bonding contribution, identifies the magnetic orbital and 
provides more details of the Jahn-Teller distortion.  

The experimentally refined valence population of Cu in 1 is 9.89 (8) 𝑒𝑒. As already emphasized in 
Chapter 1, the multipolar expansion is itself an atomic partitioning, hence the valence electronic 
population determines the atomic charge, in this case +1.11 (8) 𝑒𝑒 for 1. However, because the 
multipolar parameters correlate, sometimes strongly, within a refinement (indeed, the largest 
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correlation coefficients among different atoms in the multipolar refinement of 1 are significant, 30-
40%) and different combinations of multipolar coefficients may describe the same global electron 
density distribution, a better estimation of the atomic charges comes from the partitioning of the total 
density reconstructed with a multipolar model, because these methods offer more exportable methods 
of determining atomic charges. In Table 3.2, QTAIM charges are shown for the experimental 
multipolar fitted density of 1, as well as for the periodically calculated FM and AFM densities, and 
the dinuclear model densities of 1 and 2. Despite their inherent differences, both QTAIM and pseudo-
atom schemes indicate that Cu(II) receives quite substantial donation, thus reducing its formal charge. 
Pyrazine is slightly positive, and the charge of the nitrate coordinated to the metallic center is largely 
negative, but less than -1. Furthermore, all atoms that directly binds Cu bears rather negative charges. 

Table 3.2. Experimental and theoretical QTAIM charges on relevant atoms and ligands of compounds 1 and 2.a 

  Cu(pyz)(NO3)2 (1)  [Cu(pyz)2(NO3)]NO3.H2O (2) 

  MM Exptl. 
MM 

FM/AFM 
FM/AFM Dinuclear 

Models 
 FM/AFM Dinuclear  

Models 

Cu  +1.08 +1.44 +1.27 +1.19  +1.25 +1.22 
O1  -0.47 -0.44 -0.61 -0.61    
O2  -0.53 -0.52 -0.57 -0.54  -0.61 -0.49 
N2  -1.20 -0.85 -1.33 -1.14  -1.29 -1.07 
N3       -1.30 -0.93 
pyrazine   +0.44 -0.06 +0.38 +0.24  +0.29 +0.20 
nitrate  -0.72 -0.68 -0.82 -0.72  -0.91 -0.85 

aMM Exptl.: 𝜌𝜌1(𝒓𝒓) from the multipole model fitted against the experimental structure factors; MM FM/AFM: 𝜌𝜌1(𝒓𝒓) 
from the multipole model fitted against the periodic B3LYP structure factors; FM/AFM: 𝜌𝜌1(𝒓𝒓) directly from the periodic 
B3LYP calculation; Dinuclear models: 𝜌𝜌1(𝒓𝒓) from the gas-phase B3LYP calculation. 

   

Figure 3.4. Experimental static deformation densities for Cu(pyz)(NO3)2 (1).  Positive contours as solid blue lines, negative 
contours as dotted red lines and zero contours as solid green lines. The contour level is 0.015 au. 
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Beside the charges, the electron distribution around the atoms are useful to identify the features 
affecting the magnetism of the systems. Deformation density maps around Cu(II) (shown in Fig. 3.4 
for 1) address a significant electron density depletion in the copper valence shell towards the directions 
defining the 3𝑑𝑑𝑚𝑚2−𝑦𝑦2 orbital. They correspond to the Cu–O1 and Cu–N2 bond directions for 1 and 
to the two Cu–pyrazine directions for 2, in keeping with the expectations from bond distances. 
Complementarily, the electron density on the ligand-binding atoms is accumulated in these directions. 
More interesting is the electron density distribution along the Jahn-Teller distorted directions (Cu–
O2, for both 1 and 2).  Of course, Cu presents a charge accumulation along its z axis (due to the 3𝑑𝑑𝑧𝑧2 
orbital) that would produce a repulsion with the O2 lone-pair lobe. However, in 1 (and somewhat in 
2 as well), the deformation density on O2 in part interacts with the depletion produced by the 3𝑑𝑑𝑚𝑚2−𝑦𝑦2 
orbital in the xy plane, due to the distorted binding mode of the nitrate. The Laplacian maps (see 
below) and the distorted Cu–O2 bond-path (see Fig. 3.4) fully confirm this evidence. 

The topological analysis of 𝜌𝜌1(𝒓𝒓) (Table 3.3 for 1) is also very useful to clarify the nature of the 
interactions. First we stress that there is no appreciable difference in 𝜌𝜌1(𝒓𝒓) as a function of the spin 
coupling mechanisms (FM or AFM phases), therefore, results of the topological analysis of the periodic 
DFT calculations are collectively tabulated under the heading FM/AFM. The dinuclear models give 
slightly different values. Overall, there is a close agreement between the theoretical and the 
experimental results for 1. As expected,19 the electron density at the bond critical points 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 closely 
correlates with the Cu–X distances. For both 1 and 2, it is easy to differentiate the bonds along the 
pseudo Jahn-Teller distortion (z) from those in the xy plane: Cu–O2 is always associated with a smaller 
amount of electron density in a rather flat region. All the coordinative interactions at Cu are 
characterized by positive Laplacian at the bond critical points (∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏). This is not surprising and, at 
variance with what is often stated in the literature, it does not indicate any predominance of closed-
shell character.19b In fact, the delocalization index20 (DI) of all Cu–X bonds is approximately one-half 
of an electron pair, except for Cu–O2 (DI ca. 0.1) in keeping with the smaller 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 and ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏. As 
anticipated, the Cu–O2 bond path in 1 is significantly bent (Fig. 3.4) towards the magnetic orbital 
𝑑𝑑𝑚𝑚2−𝑦𝑦2, indicating that the Cu–O2 interaction partially involves this orbital whereas no interaction 
with 𝑑𝑑𝑧𝑧2 occurs. Albeit much smaller, a similar bending characterizes the corresponding bond-path in 
2, where not stereochemical constraint forces O2 to deviate from z direction. As a consequence of this 
curvature, the ellipticity of Cu–O2 is considerably larger than for all other Cu–X bonds. 

The atomic graph of Cu (obtained from the topology of 𝐿𝐿(𝒓𝒓) = −∇2𝜌𝜌1(𝒓𝒓)) is quite informative of 
its stereochemistry. For 1, both the experimental (Fig. 3.5) and the periodic DFT calculations support 
a rather distorted octahedral coordination. The emerging graph is in keeping with the expectations of 
ligand field theory: the 3d electrons avoid the charge concentrations of the ligands. In the Cu VSCC 
region, critical points of  𝐿𝐿(𝒓𝒓) are located about 0.28–0.30 Å from the nucleus, being mainly 
determined by the 3d electronic shell. The six (3,+1) critical points (charge depletions) are along the 
4-fold axes of the ideal octahedron, thus in direction of the ligand atoms; the four (3,–3) critical points 
represent charge concentrations in the xy plane whereas, out of this plane, eight (3,–1) critical points 
are found. In the region of valence shell charge depletion (VSCD), six (3,+3) critical points are found 
along the six bond paths emanating from the metallic center and approximately at 0.42 Å from the 
nucleus. This  topology can be compared  with that of a  Cu2+  in a perfectly octahedral environment. 
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Table 3.3. Bond critical point properties for Cu(pyz)(NO3)2 (1)a 

  MM Exptl. MM FM/AFM phases FM/AFM phases Dinuclear models 
Cu–O1      

 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.990 0.998 0.965 0.966 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.068 0.082 0.075 0.074 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.425 0.377 0.447 0.386 
 𝜖𝜖 0.24 0.31 0.10 0.09 
   DI    0.410 

Cu–O2      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 1.237 1.269 1.223 1.235 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.023 0.034 0.027 0.028 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.119 0.108 0.096 0.109 
 𝜖𝜖 1.07 0.75 0.84 0.54 
   DI    0.111 

Cu–N2      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.952 0.974 0.907 0.943 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.094 00123 0.111 0.090 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.445 0.416 0.604 0.417 
 𝜖𝜖 0.13 0.10 0.05 0.05 
   DI    0.444 

N1–O1      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.656 0.639 0.624 0.622 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.436 0.411 0.427 0.426 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –0.454 –0.432 –0.721 –0.722 
 𝜖𝜖 0.19 0.20 0.15 0.13 
   DI    1.290 

N1–O2      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.643 0.621 0.606 0.603 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.468 0.456 0.474 0.474 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –0.557 –0.566 –0.686 –0.881 
 𝜖𝜖 0.17 0.15 0.13 0.12 
   DI    1.495 

N1–O3      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.619 0.616 0.592 0.592 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.495 0.479 0.499 0.499 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –0.601 –0.691 –0.985 –0.976 
 𝜖𝜖 0.16 0.15 0.12 0.12 
   DI    1.628 

N2–C1      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.828 0.844 0.882 0.857 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.332 0.331 0.342 0.331 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –1.123 –1.190 –0.587 –0.825 
 𝜖𝜖 0.07 0.03 0.05 0.09 
   DI    1.240 

C1–C1      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.695 0.693 0.664 0.682 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.319 0.320 0.365 0.317 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –0.892 –0.982 –1.219 –0.910 
 𝜖𝜖 0.12 0.15 0.23 0.22 
   DI    1.304 

C1–H1      
 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 0.719 0.713 0.685 0.694 
 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 0.259 0.295 0.316 0.300 
 ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 –0.901 –1.065 –1.342 –1.105 
 𝜖𝜖 0.05 0.01 0.02 0.02 
   DI    0.916 

a 𝑑𝑑𝑜𝑜𝑐𝑐𝑏𝑏 represents the distance, in Å, of the atom A of the A–B bond to the bond critical point, 𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 and ∇2𝜌𝜌𝑜𝑜𝑐𝑐𝑏𝑏 are the electron density 
and its Laplacian, in au., at the bond critical point, 𝜖𝜖 is the bond ellipticity and DI is the delocalization index. MM Exptl.: 𝜌𝜌1(𝒓𝒓)  from 
multipole model fitted against experimental structure factors. MM FM/AFM: 𝜌𝜌1(𝒓𝒓) from multipole model fitted against theoretical 
structure factors. FM/AFM: 𝜌𝜌1(𝒓𝒓) directly from the periodic B3LYP calculation. Experimental standard uncertainties are omitted as 
they are usually smaller than 10−3 au. 
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Figure 3.5. The atomic graph for Cu in Cu(pyz)(NO3)2 (1) and in a hypothetical octahedral environment. 

The graph of this Jahn-Teller unstable configuration would have the topology of a cube, see Fig. 3.5. 
Upon distortion along z, the (3,–3) critical points lying on the vertexes of the cube collapse onto the 
xy plane defined by the 𝑑𝑑𝑚𝑚𝑦𝑦 orbital. Along z, the (3,–1) charge accumulations remain, two of them 
would be in proximity of the VSCC of O2. Due to repulsion between the Cu (3, –1) and O2 (3,–3) 
charge concentrations, the former critical points assume a distorted topology respect to that observed 
in an 𝑂𝑂ℎ field: the (3,–1) points in the xz plane are closer to the (3,+1) in 1, while the corresponding 
points in the yz plane are farther from the (3,+1) points. However, the distance of the (3,–1) critical 
points to the Cu remains constant (0.28 Å). Moreover, the repulsion between the Cu (3,–1) and O2 
(3,–3) charge concentrations also causes the observed bending of the Cu–O2 bond-path. This means 
that the residual weak Lewis acidity of the Cu(II) in z direction is not used by the second coordination 
of the nitrate, which prefers instead using the stronger Lewis acidity of the magnetic orbital. Although 
smaller, this effect also occurs in 2, where the atomic graph of Cu is a cuboid elongated in the z 
direction, as a consequence of the pseudo-tetragonal symmetry of the Cu(pyz)2 layers. 

3.3.3. d-Orbital populations and magnetic moment 

The d orbital populations of Cu can be calculated from the multipolar parameters refined against 
structure-factor amplitudes, see Eqn. 1.81. Table 3.4 gathers the results obtained from the structure 
factors collected in the X-ray diffraction experiment of 1, along with those obtained directly from 
population analysis of the theoretical electron densities. In both 1 and 2, the choice of local axes (Fig. 
3.1) makes 𝑑𝑑𝑚𝑚2−𝑦𝑦2 the most energetically destabilized orbital, and therefore the least populated. As it 
is often the case, the multipolar model refined populations may exceed the limit of two electrons, 
because they are d-like density functions that are produced not only by the d-orbital of the metal. 

Although the d occupancies have only a qualitative meaning, we can compute an effective magnetic 
moment 𝜇𝜇𝑆𝑆 (Table 3.4) as 𝑔𝑔𝜇𝜇𝐵𝐵�𝑠𝑠𝑆𝑆(𝑆𝑆 + 1), in which 𝑠𝑠 is the “fractional” number of unpaired 
electrons (defined as the excess population when the d orbital occupancy is larger than 2, and as the 
lacking population when the occupancy is less than 2), 𝑆𝑆 = 1/2 for Cu(II), and the experimentally 
derived g-factors (2.18 and 2.11, respectively for 1 and 2) are used. Those values agree quite well with 
experimental measurements of magnetic moments in other complexes of Cu(II) in distorted octahedral 
environments.21 
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Table 3.4. d Atomic orbital populations and spin-only magnetic moments for the Cu center in Cu(pyz)(NO3)2 (1) and 
[Cu(pyz)2(NO3)]NO3.H2O (2), obtained after multipolar refinement of the experimental structure factors of (1), and from 
the periodic DFT calculations. 

 𝑑𝑑𝑚𝑚2−𝑦𝑦2  𝑑𝑑𝑚𝑚𝑧𝑧 𝑑𝑑𝑚𝑚𝑦𝑦  𝑑𝑑𝑦𝑦𝑧𝑧 𝑑𝑑𝑧𝑧2 𝜇𝜇𝑆𝑆/𝜇𝜇𝐵𝐵 
Compound 1 

Exptl. 1.34(2) 2.10(1) 2.22(1) 2.23(1) 2.00(2) 2.15 
FM/AFM 1.55 1.99 1.98 1.98 1.76 1.55 

Compound 2 
FM/AFM 1.43 1.98 1.98 1.98 1.99 1.38 

 

Table 3.5. Exchange-coupling constants computed for the d1-d5 dinuclear models and for the crystal structures of 1 (using 
the aAFM phase) and 2 (using the sAFM phase). Experimental values are also shown for comparison. 

Dinuclear 
model 

Cu(pyz)(NO3)2 (1)  [Cu(pyz)2(NO3)]NO3.H2O (2) 

Cu⋅⋅⋅Cu / Å J(di) / cm-1  Cu⋅⋅⋅Cu / Å J(di) / cm-1 

d1 6.70 –7.66  6.85 –5.54 
d2 5.12 0.12  6.80 –0.12 
d3 6.71 –0.08  9.43 –0.02 
d4 8.43 0.04  9.66 0.00 
d5 8.44 0.00  12.05 0.00 

Periodic DFT  –7.44   –5.59 
Exptl.  –7.26   –5.27 

 

3.3.4. Magnetic exchange-coupling constants 

Five possible interaction pathways between two Cu(II) centers have been identified in 1 and 2, see 
Fig. 3.2. Interactions of type d1 form infinite one-dimensional chains (two of them are present in 
compound 2, thus producing a bi-dimensional network) in that the metallic centers are connected by 
the linearly bridging pyrazine ligands. Instead, interactions of type d2 establish interchain contacts in 
1 along the b crystallographic direction, whereas d2 in 2 corresponds to the direction of coordination 
Cu–nitrate. The remaining interactions d3-d5 are longer range contacts connecting two Cu–pyrazine 
chains. The DFT calculations of the exchange-coupling constants for these dinuclear models afforded 
the values shown in Table 4.5, in perfect agreement with a previous calculation.22 It follows that the 
experimentally observed magnetic behaviour in 1 and 2, antiferromagnet with nearest-neighbour 
exchange constant 𝐽𝐽 equals to –7.26 cm-1 and –5.27 cm-1, respectively, can be almost exclusively 
attributed to interactions of type d1. Therefore, for practical purposes, material 1 can be regarded as 
a quasi-1D spin-1/2 quantum magnet, whereas 2 can be considered a quasi-2D magnet. 

These findings are further confirmed by our periodic calculations on the FM and AFM phases. The 
unit cells corresponding to the aAFM phase of 1 and the sAFM phase of 2 (Fig. 3.3), thus considering 
the spin coupling among two Cu centers to be mediated by the pyrazine ligands, are the most stable 
among the considered systems. When these unit cells are used in conjunction with the corresponding 
FM cells for estimation of the low-spin-high-spin energy gap, a remarkably good agreement is observed 
with the experimental exchange-coupling constants (Table 3.5). Long-range magnetic ordering (LRO) 
has been already demonstrated for Cu(pyz)(NO3)2,4b whereas it was here verified for the first time in 
[Cu(pyz)2(NO3)]NO3.H2O. However, in both cases, the interchain coupling constant estimated by 
zero-field muon-spin relaxation measurements, 𝐽𝐽′ = +0.03 cm-1, is very small. 
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Figure 3.6. Two of the magnetic spin orbitals calculated for the triplet state of the dinuclear model 1-d1. 

3.3.5. Molecular orbital analysis and magnetic-exchange mechanism 

It is now convenient to look at the molecular orbitals relevant to describe the electronic states involved 
in the magnetic phenomena. Because the exchange-coupling constants are related to the energy 
difference between states with different spin multiplicities, one should focus on the orbitals bearing 
the unpaired electrons in the low- and high-spin states. We investigated the dinuclear model 1-d1 
extracted from the infinite Cu(pyz)(NO3)2 chain that is composed of two metallic centers, each one 
coordinated to two nitrates and two pyrazine ligands. In an unrestricted Kohn-Sham calculation, four 
molecular orbitals are required for describing the magnetism of this Cu(II) dinuclear model. We 
adopted the nomenclature proposed by Desplanches and co-workers:18b the singly occupied spin-
orbitals from the unrestricted calculation are called the occupied magnetic spin-orbitals (OMSOs). For 
the triplet state of the 1-d1 dinuclear complex, there are two OMSOs and two unoccupied magnetic 
spin-orbitals (UMSOs). Two of these orbitals are shown in Fig. 3.6. Noteworthy, the pyrazine ligand 
and the O1 atom of the nitrate contribute significantly to the OMSOs, which are of type 𝑑𝑑𝑚𝑚2−𝑦𝑦2 at 
the metallic center, whereas O2, the oxygen atom weakly coordinated to the Cu, has a negligible 
contribution to these orbitals. On the other hand, the UMSOs are much more localized at the pyrazine 
ligands than on the nitrates. At the Cu, the UMSOs clearly present major contributions from the 𝑑𝑑𝑚𝑚𝑦𝑦 
and 𝑑𝑑𝑦𝑦𝑧𝑧 atomic orbitals. The fact that both occupied and unoccupied magnetic orbitals show large 
contribution at the pyrazine ligands, and to a less extent at the O1 atom, confirms the role of this 
ligand as mediator of the Cu⋅⋅⋅Cu superexchange.  

Exchange through heterocyclic diamines was first verified by Hatfield in a series of Cu(II) 1D 
polymers.17a Since then, many studies have confirmed that the superexchange occurs mainly along the 
Cu–diamine–Cu chains.4 Hatfield proposed a π-heterocyclic exchange mechanism, according to 
which the spin coupling would result from the overlap between a π orbital at N and the 3𝑑𝑑𝑦𝑦𝑧𝑧or 3𝑑𝑑𝑚𝑚𝑦𝑦 
orbital of Cu. If the hypothesis was correct, the superexchange strength should be proportional to the 
tilting angle of the pyrazine ring relative to the plane defined by the 𝑑𝑑𝑚𝑚2−𝑦𝑦2 magnetic orbital, with a 
maximum value at 45°. However, in light of new crystal structures and magnetic measurements, it 
became clear that the tilting angle is not correlated to the exchange-coupling constants. Conversely, if 
the spin coupling propagates through a sigma pathway only (thus characterizing a σ-mechanism), the 
tilting angle should have no influence on the coupling constant. Noteworthy, if the overlap between 
the Cu 𝑑𝑑𝑦𝑦𝑧𝑧 or 𝑑𝑑𝑚𝑚𝑦𝑦 orbital and the pyrazine π molecular orbital is significant, the tilting angle might 
be of relevance, in addition to the σ-exchange.23 
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Figure 3.7. Laplacian and bond ellipticity profiles along the Cu–pyrazine bond path of Cu(pyz)(NO3)2 (1). Filled circles 
represent the bond critical point positions. 

The OMSOs of the 1-d1 dinuclear model show significant σ-overlap along the Cu–pyrazine bond 
direction (Fig. 3.6), which could be traced back as the superposition of the 𝑑𝑑𝑚𝑚2−𝑦𝑦2 orbital of Cu with 
the sp2-hybridized orbitals at N. Conversely, the UMSOs are characterized by a π-overlap between 
both 𝑑𝑑𝑦𝑦𝑧𝑧 and 𝑑𝑑𝑚𝑚𝑦𝑦 orbitals of Cu and the 𝑝𝑝𝑧𝑧 orbitals at the pyrazine atoms. Indeed, the tilting angle in 
1 is 51°, very close to the 45° angle that maximizes the π-overlap. Similarly, in 2, the tilting angle of 
the two pyrazine ligands with respect to the 𝑑𝑑𝑚𝑚2−𝑦𝑦2 orbital plane is 53 and 56°. 

In order to evaluate the role of N π density in the Cu-N2 bond, a useful parameter is the bond 
ellipticity (𝜖𝜖), which informs on asymmetric concentration of electron density in directions 
perpendicular to the bond paths. 𝜖𝜖 can be calculated at the bond critical point (see Table 3.3), but its 
evaluation along the bond paths provides more significant information.24 Fig. 3.7 shows the ellipticity 
profiles of the Cu–N2 coordinative bond in the valence shell region of 1. The ellipticity reaches a local 
maximum close to the bond critical point. In the direction BCP–Cu, it decreases only slightly before 
a large jump caused by the unbalanced d occupancy. In the direction BCP–pyrazine, instead, the 
ellipticity drops indicating low preferential accumulation of electronic charge perpendicularly to the 
bond path. While the theoretical results are biased by lack of a multi-configurational treatment, the 
experimental result also suggest negligible π bonding interaction between Cu and pyrazine. In view of 
these results, it seems that the exchange mechanism driven by the π-overlap between the 𝑑𝑑𝑦𝑦𝑧𝑧 and 𝑑𝑑𝑚𝑚𝑦𝑦 
orbitals of Cu and the 𝑝𝑝𝑧𝑧 orbitals at the pyrazine is much less relevant for the magnetic behaviour than 
it is the mechanism based on σ-exchange. 

3.3.6. Spin density distributions 

The most relevant calculated atomic spin populations are in Table 3.6 while the spin density 
distribution for the broken-symmetry singlet state of the dinuclear models 1-d1 and 2-d1 are shown 
in Fig. 3.8. The spin populations in both compounds are very similar. Although the largest part of the 
spin density is located at the copper atoms, there is an important delocalization of the unpaired 
electron, mostly to the N2 donor atoms of the pyrazine ligands, but also to the O1 atom of the nitrate 
ligand in compound 1. The minute participation of the O2 atom in the OMSOs and UMSOs of 1-
d1 is appreciated in its rather small negative spin population. 
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Table 3.6. Calculated spin populations for the dinuclear models 1-d1 and 2-d1, and for the most stable crystalline phase 
of 1 (aAFM) and 2 (sAFM). 

 Cu(pyz)(NO3)2 (1)  [Cu(pyz)2(NO3)]NO3.H2O (2) 
 1-d1 aAFM  2-d1 sAFM 
Cu 0.649 0.624  0.696 0.652 
O1 0.101 0.095  0.001 0.001 
O2 –0.003 –0.002  –0.001 0.000 
O3 0.011 0.005    
N1 –0.003 –0.004  –0.002 0.000 
nitrate 0.106 0.094  –0.003 0.001 
C1 –0.003 –0.015  –0.004 0.000 
C2    0.006 0.011 
C3    0.006 0.014 
C4    –0.006 –0.015 
N2 0.071 0.102  0.082 0.093 
N3    0.077 0.090 
pyrazine 0.138 0.148  0.164 0.190 

 

Figure 3. 8. Spin density distributions for the d1 models of 1 and 2, in the broken-symmetry singlet state, represented at 
an isodensity value of 0.003 au. 

The spin density distribution features observed in Table 3.6 and in Fig. 3.8 can be rationalized in 
terms of two mechanisms, which explain how the unpaired 3d electron of the Cu places some spin 
density at the other atoms of the molecule.25 On the one hand, the molecular orbital that hosts the 
unpaired electron density, even with major contribution from the 𝑑𝑑𝑚𝑚2−𝑦𝑦2 orbital of the copper center, 
presents expressive contributions from the ligands, mostly from the N2 donor atoms. If one adopts 
the convention that the unpaired electron has a positive spin, its delocalization results in a distribution 
of positive spin density throughout the whole system, as determined by the composition of the 
OMSOs. This behaviour characterizes the so-called spin delocalization mechanism. On the other hand, 
the positive spin at the paramagnetic center may induce some spin density of opposite sign at the 
atoms bonded to it, through a spin polarization mechanism. This results from the exchange term 
introduced by the Pauli principle, which disfavours the probability of finding two electrons of identical 
spin in the same region of space. Therefore, the spin of a bonding electron pair is polarized, in such a 
way that the positive spin is concentrated close to the paramagnetic center, whereas a concentration 
of negative spin is favoured around the atoms bonded to it. Because this effect also propagates through 
the system away from the metallic center, the net spin density at a particular atom, resulting from the 
combination of the two mechanisms, can be either positive or negative. Table 3.6 shows that the spin 
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delocalization mechanism dominates most of the atomic spin populations, remarkably in the 𝑥𝑥𝑥𝑥 plane 
defined by the Cu–O1 and Cu–N2 bonds, in 1, and by only Cu–N2 bonds in 2. However, spin 
polarization is predominant in the region of the atoms N1, O2 and C1 for compound 1, and in the 
atoms N1, C1 and C4 for compound 2. 

3.4. Conclusions and perspectives 
In this chapter, the electron density distribution in the low-dimensional quantum magnets 
Cu(pyz)(NO3)2 and [Cu(NO3)(pyz)2]NO3·H2O have been determined from a combination of high-
resolution single-crystal X-ray diffraction and DFT calculations. The magnetic properties have been 
examined and correlated to the QTAIM topological and integrated properties of the electronic 
distributions. This has enabled the detailed rationalization of the experimental antiferromagnetic 
exchange-coupling constants in terms of the intrachain Cu⋅⋅⋅Cu superexchange interactions. 
Molecular orbitals and spin density analyses have been used to identify the atomic and group sources 
of the magnetism. In particular, pyrazine acts as a typical non-innocent ligand, with large part of the 
spin density developed on its atoms. Noteworthy in Cu(pyz)(NO3)2, the O1 and N2 atoms, which are 
directly coordinated to the transition-metal center towards the lobes of the magnetic orbital, have 
significant spin populations, due to spin delocalization, whereas O2, the weakest coordinated atom, 
has negligible spin population. In [Cu(NO3)(pyz)2]NO3·H2O, only N2 atoms are coordinated to the 
Cu through the magnetic orbital and they feature quite large spin densities.  

From this study, it is clear that electron density analyses on magnetic transition-metal compounds 
could lead to a better understanding of the superexchange mechanisms. Firstly, QTAIM topological 
analyses are not only able to locate and characterize intra- and intermolecular contacts that can mediate 
magnetic couplings in the crystal, but also to relate the electron density distributions with the ligand 
field splitting of the orbitals at the metal centers, as discussed here for the topology of the negative 
Laplacian (atomic graph) of Cu(II) in compounds 1 and 2. This kind of information is particularly 
valuable for the relevant cases where (pseudo)Jahn-Teller distortion takes place because the field 
splitting may not be particularly clear from the spatial disposition of the ligands around the metal. 
Secondly, the deformation density at the transition-metal site allows derivation of the d orbital 
occupancies, thus informing on the magnetic orbitals. Finally, if analysed in conjunction with the 
molecular orbitals bearing the unpaired electrons, 𝜌𝜌1(𝒓𝒓) is also able to provide insight on the orbitals 
involved in the magnetic exchange. Even though the knowledge of the spin density distribution, that 
could be obtained from experimental techniques such as NMR spectroscopy or polarized neutron 
diffraction, but also from DFT calculations, is required to quantitatively predict the magnetic 
behaviour of a material, it is our believe that electron density-property relationships can be successfully 
established as the number of this kind of studies grow. We are presently investigating a larger series of 
transition-metal compounds in order to examine the influence of ligand type and metal nature on the 
magnetic properties, as well as to identify rigorous signature of magnetic interactions in the electron 
density distributions. In a long term view, we expect to develop electron density-based methodologies 
to rationally design magnetic transition-metal molecular materials. 
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Chapter 4 

Unconstrained and X-ray Constrained Extremely 
Localized Molecular Orbitals: Analysis of the 
Reconstructed Electron Density* 
The recently developed X-ray constrained Extremely Localized Molecular Orbital (XC-ELMO) 
technique is a potentially useful tool for the determination and analysis of experimental electron 
densities. Molecular orbitals strictly localized on atoms, bonds or functional groups allow to combine 
the quantum-mechanical rigor of the wavefunction-based approaches with the easy chemical 
interpretability typical of the multipole models, with the additional advantage of being largely 
transferable among systems. In this chapter, using very high-quality X-ray diffraction data for the 
glycylglycine crystal, a detailed assessment of capabilities and limitations of this new method is given. 
In particular, the effects of constraining the ELMO wavefunctions to experimental X-ray structure-
factor amplitudes and the ability of the method to reproduce benchmark electron distributions have 
been accurately investigated. Topological analysis of the XC-ELMO electron densities and of the 
QTAIM integrated charges and dipole moments show that the new strategy is already reliable, 
provided that sufficiently flexible basis sets are used. These analyses also open new questions and call 
for further improvements of the method towards applications in materials science. 

The following abbreviations are frequently used in this chapter: 

General  
ELMO Extremely Localized Molecular Orbital 
XC-ELMO X-ray Constrained Extremely Localized Molecular Orbital 
IAM Independent Atom Model 
MM Multipole Model 
�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜�, �𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� Set of experimentally observed or calculated structure-factor amplitudes 
𝜎𝜎�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 �,𝜎𝜎�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 

 2 � Standard uncertainty associated with the experimental amplitude 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 or with the corresponding 
intensity 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 

 2  
𝜂𝜂 Overall 𝐡𝐡-independent scale factor which multiplies the calculated structure-factor amplitudes 
One-electron densities  
𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋  Multipole-fitted (X-ray constrained) electron density; refined against experimental structure factors 
𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 Multipole-fitted periodic B3LYP electron density; refined against B3LYP/6-31G(2d,2p) crystal-

phase calculated structure factors   
𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 Multipole-fitted ELMO electron density; refined against ELMO gas-phase calculated structure 

factors 
 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 Multipole-fitted XC-ELMO electron density; refined against XC-ELMO calculated structure 

factors 
𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 Electron density calculated directly from the periodic B3LYP/6-31G(2d,2p) computation 
𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 Electron density calculated directly from an ELMO gas-phase wavefunction 
𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 Electron density calculated directly from an XC-ELMO wavefunction 
𝜌𝜌𝐻𝐻𝐻𝐻 Electron density calculated directly from a Hartree-Fock gas-phase wavefunction 
𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻 Electron density calculated directly from an XC-Hartree-Fock wavefunction 
𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 Independent Atom Model density; sum of spherically averaged electron densities of isolated atoms 

                                                           
*This chapter was taken and modified from Dos Santos, L. H. R.; Genoni, A.; Macchi, P. Acta Cryst. Sect. A 2014, 70, 
532-551. 
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4.1. Introduction, motivation and specific goals 
As discussed in Chapter 1, even though the wavefunction is the fundamental entity that contains all 
the information of a system, Hohenberg and Kohn have shown that the ground-state electron density 
and the wavefunction of an electronic system can be used alternatively as full descriptors of the ground-
state and, therefore, it would be possible to obtain all properties of a material from its electron density 
distribution, which is an observable and, unlike the wavefunction, is a simple three-dimensional 
function of the spatial coordinates.1  

The prominence conferred by the Hohenberg-Kohn theorems to the electron density together with 
the observation that the knowledge of the electron distribution and of its properties has profound 
consequences for the understanding of chemical bonding has significantly increased the importance 
of accurate determination of electron densities in crystals by means of high-resolution X-ray diffraction 
experiments.2 Nevertheless, as also discussed in Chapter 1, the observed diffraction intensities do not 
directly provide the electron density because only a finite number of structure factors can be collected 
and, within the kinematic approximation, their phase cannot be measured. Consequently, the electron 
distribution in the unit cell can be accurately reconstructed only by fitting a model against the collected 
X-ray diffraction intensities. The parameters of this model electron density are usually obtained 
minimizing the difference between experimentally observed and calculated structure factors.  

Within this context, the multipole models are by far the most widely adopted approaches.2 Since the 
total electron distribution is the sum of the aspherical atom-centered density functions (also known as 
pseudo-atoms, see Eqn. 1.46), the resulting ground-state electron density of a molecule is simply 
approximated by the sum of atomic electron distributions deformed by the presence of chemical 
interactions. This is the main reason why these models offer an easy chemical interpretability. 
Notwithstanding this advantage, they also exhibit a non-negligible drawback: the number of properties 
directly available from the model electron density is limited because the exact functional relation 
between the ground-state electron distribution and the ground-state wavefunction is practically 
unknown. Furthermore, the parameters of a multipole expansion may strongly correlate with the 
atomic displacement parameters (ADPs). 

A possible solution to overcome these drawbacks is offered by a work which dates back to 1969, thus 
even before the appearance of multipole models. Clinton et al.3 proposed to derive wavefunctions or 
one-electron density matrices constrained to experimental or theoretical X-ray diffraction data. Since 
then, many researchers drew inspiration from the Clinton’s ideas.4 Within this framework, the most 
promising method is the X-ray constrained wavefunction approach developed by Jayatilaka and co-
workers.5 As discussed in Chapter 1, the method exploits the Lagrange multiplier technique to provide 
a single-Slater determinant which, other than minimizing the corresponding energy, reproduces a set 
of experimentally collected X-ray structure-factor amplitudes within a predefined precision. In 
particular, the Lagrange multiplier is iteratively adjusted until the desired agreement level is achieved 
between the structure-factor amplitudes obtained from the diffraction experiment and those calculated 
from the single-Slater determinant ansatz. Therefore, the constrained wavefunction reproduces the 
experimental data within a given precision, and, as it possesses all the quantum-mechanical features of 
a wavefunction, it can be used to compute also those properties that are not directly related to the 
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experimental structure factors used to determine the wavefunction itself.6 Compared to the multipole 
models, the approach enables to obtain quantum-mechanically rigorous electron densities, but it is 
affected by a reduced chemical interpretability because the canonical molecular orbitals are usually 
completely delocalized over the whole system. Therefore, they are far from the traditional and intuitive 
picture of a molecule constituted by atoms, bonds and functional groups, typical of the pseudo-atom 
approaches.  

Genoni has recently devised a new technique to extract from X-ray diffraction data a single-Slater 
determinant built-up with molecular orbitals strictly localized (without tails) on molecular fragments, 
such as atoms, bonds or functional groups.7a,b This strategy can be considered as a combination of the 
experimentally constrained wavefunction approach proposed by Jayatilaka with the method developed 
by Stoll for the determination of extremely localized molecular orbitals (ELMOs).8 This synergy should 
be useful to solve the above-mentioned drawback associated with the X-ray constrained canonical 
molecular orbitals. Moreover, due to the complete absence of tails, the ELMOs are directly 
transferable, thus they can be computed on fragments of small model molecules and afterwards 
properly exported to subunits belonging to more complex systems.7c,d The ELMOs transferability is 
analogous to the well-known pseudo-atoms transferability within the framework of the multipole 
models. In this view, new databases could be constructed from X-ray constrained ELMOs (XC-
ELMOs) and used as complement to the existing experimental9 or theoretical10 libraries of pseudo-
atoms, succesfully used for the refinement of macromolecular crystallographic structures and for the 
evaluation of electrostatic properties in crystals.  

In this chapter, we present a comprehensive assessment of the performances of XC-ELMO technique. 
In particular, we analyse the machinery of the constraint procedure, evaluating how much the 
unconstrained and the X-ray constrained wavefunctions differ and to what extent the XC-ELMO 
electron density is able to reproduce the “exact” crystal electron density. The latter is approximated 
with two well-established methods, namely the multipole model density fitted or, in analogy with the 
wavefunction approach, constrained*to the experimental structure factors, hereinafter 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋, and the 
electron density directly obtained from a periodic DFT calculation with a standard hybrid functional, 
𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃. To accomplish this task we have investigated the α-glycylglycine crystal, already known 
from X-ray and neutron diffraction experiments.11 Except for a qualitative deformation electron 
density study by Kvick11c and a spherical 𝜅𝜅-formalism refinement by Coppens,11d to the best of our 
knowledge, no complete electron density refinement for this system has been reported in literature.  

The chapter is structured as it follows. First, we summarize the theory of the X-ray constrained ELMO 
technique. Afterwards, we describe the experimental and computational methodologies and then we 
analyse the results. We initially focus on the effects of the fitting procedure, comparing the residual 

                                                           
*Here we adopt the terminology currently used in the literature: the wavefunction fitted to the X-ray structure factors is 
called constrained, and not restrained as it would have been more intuitive for crystallographers. The traditional multipolar 
fitting can also be considered as an “X-ray constrained density function”. Therefore, we will call the traditional multipolar 
model fitted to the X-ray structure factors as “X-ray constrained multipolar model” (MM/XC). Of course, this 
nomenclature does not imply an additional constraint equation to be satisfied, other than the least squares minimization 
functions and those already present in the multipolar fitting (e.g. electroneutrality condition). When discussing about local 
symmetry constraints on the multipolar model, which implies that some parameters are not refined, we will refer to them 
as rigid constraints to avoid ambiguity. 
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features and the topological properties computed from unconstrained or X-ray constrained ELMO 
electron densities (from now on, 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸, respectively). In a second step, we compare 
𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 with the density from a periodic calculation (𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃). In a third step, we 
project 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 in terms of multipoles, thus obtaining 𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and  𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 
respectively, and we compare these densities with multipole electron distributions fitted against the 
experimental intensities (𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋) or against theoretical structure factors obtained from the periodic 
calculation (𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃). This procedure allows us to compare all the densities equally affected by 
the limitations of the multipolar model. Finally, we investigate how the choice of initial parameters 
(fractional coordinates and ADPs of the atoms in the unit cell) affects the XC-ELMO results and the 
convergence of the fitting process. In the last section, we draw some conclusions and discuss 
perspectives offered by this new strategy. 

4.2. Extremely localized molecular orbitals 
The extremely localized molecular orbitals (ELMOs) method proposed by Stoll8 can be considered 
one of the many theoretical approaches that have been developed to decompose the global electronic 
wavefunction into functions describing smaller subsets of electrons,12 with the purpose of recovering 
concepts such as bonds, atoms and functional groups in molecules, which are inherently lost when 
canonical molecular orbitals are computed. ELMOs are a priori localized only on a selected set of 
atoms and are variationally determined under this constraint, at variance with the so-called localized 
molecular orbitals (LMOs), obtained from a posteriori transformation of the delocalized orbitals. Even 
though LMOs recover to a great extent the concepts of atoms, functionals groups, bonds, etc., they 
are not directly transferable because they preserve tails on the entire molecule, thus their transferability 
to other systems requires the tail deletion. On the other hand, the complete absence of tails makes 
ELMOs the best orbitals consistent with a chosen localization scheme, besides being directly 
transferable among the same atoms or functional groups in different molecules.7e  

Let us consider an N-electron closed-shell molecule and introduce a localization scheme that 
subdivides the system into 𝑓𝑓 fragments (e.g., atoms, bonds or functional groups) that can overlap. Due 

to this fragmentation, each subunit 𝑗𝑗 is characterized by a local basis set {φ𝜇𝜇
𝑗𝑗 (𝒓𝒓)}, which is constituted 

by the only 𝐾𝐾𝑗𝑗 atomic basis functions centred on the atoms belonging to the fragment, see Eqn. 1.13 
for a direct analogy to canonical orbitals. Consequently, the ELMOs describing the subunit are 

expanded on φ𝜇𝜇
𝑗𝑗  and, therefore, the generic 𝑖𝑖-th ELMO for the 𝑗𝑗-th fragment can be written as7 

𝜑𝜑𝑖𝑖
𝑗𝑗(𝒓𝒓) = �𝐶𝐶𝜇𝜇𝑖𝑖

𝑗𝑗 φ𝜇𝜇
𝑗𝑗 (𝒓𝒓)

𝐾𝐾𝑗𝑗

𝜇𝜇=1

 

(4.1) 

It should be observed that pre-defined subunits may overlap and, consequently, share atomic orbitals, 
which leads to a natural non-orthogonality between ELMOs associated with different fragments. 
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Following Stoll,8 the wavefunction describing the system is a normalized single-Slater determinant (see 
Eqns. 1.10 and 11) built-up with ELMOs: 

Ψ𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸(𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁) =
1

√𝑁𝑁!𝑑𝑑𝑑𝑑𝑑𝑑[𝑺𝑺] �
�
χ𝑖𝑖
𝑗𝑗(𝐱𝐱1) χ𝑘𝑘

𝑐𝑐 (𝐱𝐱1) … χ𝑚𝑚
𝑓𝑓 (𝐱𝐱1)

χ𝑖𝑖
𝑗𝑗(𝐱𝐱2) χ𝑘𝑘

𝑐𝑐 (𝐱𝐱2)
⋮             ⋮

χ𝑖𝑖
𝑗𝑗(𝐱𝐱𝑁𝑁) χ𝑘𝑘

𝑐𝑐 (𝐱𝐱𝑁𝑁)

… χ𝑚𝑚
𝑓𝑓 (𝐱𝐱2)
⋮

… χ𝑚𝑚
𝑓𝑓 (𝐱𝐱𝑁𝑁)

�
� 

(4.2) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑺𝑺] is the determinant of the overlap matrix between the occupied ELMOs. The coefficients 
in (4.1) are obtained variationally minimizing the energy associated with the ELMO wavefunction, 
which is equivalent to solve self-consistently the following Hartree-Fock equations for each subunit: 

𝐟𝐟𝑖𝑖
𝑗𝑗χ𝑖𝑖

𝑗𝑗(𝐱𝐱) = 𝜀𝜀𝑖𝑖
𝑗𝑗χ𝑖𝑖

𝑗𝑗(𝐱𝐱) 

(4.3) 

with 𝐟𝐟𝑖𝑖
𝑗𝑗 being the modified one-electron operator for the generic fragment 𝑗𝑗 that can be seen as the 

sum of a local contribution, which depends only on the occupied ELMOs of the fragment, and a global 
contribution, which depends on all the occupied ELMOs of the system. Because of the latter term, 
Eqn. 4.3 couples all the modified Hartree-Fock equations associated with the different subunits, 
similarly to Eqn. 1.16. However, due to the non-orthogonality of the ELMOs, convergence problems 
and instabilities may arise when solving (4.3). To overcome these drawbacks, different strategies have 
been implemented.7e 

Of course, the localization scheme is rather arbitrary and dependent on the applications. Usual 
schemes can be obtained from the Lewis formula of the molecule and defining one ELMO for each 
bond or lone pair.7a,b 

Finally, we note that because the procedure of determination of ELMOs is based on a reduction in 
the number of variational coefficients used to describe them, the electronic energy of Ψ𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 is 
necessarily larger than the corresponding Hartree-Fock energy. 

For the determination of X-ray constrained extremely localized molecular orbitals (XC-ELMOs), one 
simply searches for the ELMOs that minimize the functional (1.55). Similarly to the case of canonical 
orbitals, this is equivalent to solve self-consistently a new set of eigenvalue problems (4.3) for each 
fragment, modified according to the constraint (1.56) associated with the X-ray diffracted intensities. 
Noteworthy, previous application of this technique to amino acids and other materials have shown 
that the experimental constraint entails significant redistribution of the electronic charge.7b This result 
has been discussed in light of the potential ability of XC-ELMOs to include electronic correlation and 
crystal field effects in gas-phase molecular ELMO calculations, but systematic investigation in this 
direction is still lacking. This possibility is also addressed in this chapter for the case of glycylglycine. 
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Figure 4.1. Experimental molecular structure of crystalline α-glycylglycine (a) and strongest hydrogen bond network (b). 
Thermal ellipsoids are drawn at 70% probability level. Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z+1; (iii) −x+1, 
−y, −z+1; (iv) −x+1, y+1/2, −z+3/2. 

4.3. Experimental and computational details 

4.3.1. X-ray data collection and processing 

α-Glycylglycine, Fig. 4.1(a), was recrystallized by slow evaporation of an n-propanol-water mixture. 
We have re-determined the crystal structure by single-crystal X-ray diffraction at 100 K. The 
temperature was stable within ± 0.5 K. Details of data collection and refinement procedures are given 
in Table 4.1. Measurements were carried out on an Agilent SuperNova diffractometer equipped with 
a MoKα Al-filtered micro-source13 and an Oxford Cryo-system 700 cryostream for low temperature. 
Data collection, reduction and cell refinement were performed using the CRYSALIS PRO programs. 
A total of 2765 image frames were obtained from 33 ω scan sets (1.0° oscillation angle) using three 
different exposure times. The scan sets with low detector 𝜃𝜃 offsets were measured for 10 + 10 s, 
intermediate-angle images were collected for 30 + 30 s and the high-angle images were measured for 
60 + 60 s. The unit-cell dimensions were determined by post-refinement of 18946 reflections (2.7° < 
𝜃𝜃 < 52.4°). An analytical absorption correction was applied using a multifaceted crystal model based 
on expressions derived by Clark and Reid14 as implemented in SCALE3 ABSPACK scaling algorithm. 
A total of 38933 reflections were collected with a mean redundancy of 5.9. The resulting data were 
merged using SORTAV15 giving 6597 independent reflections until resolution of 
sin𝜃𝜃𝑚𝑚𝑐𝑐𝑚𝑚 𝜆𝜆 = 1.12 Å−1⁄  (𝜃𝜃𝑚𝑚𝑐𝑐𝑚𝑚 = 52.6° for MoKα radiation). 

4.3.2. Spherical, independent atom refinement 

Atomic coordinates and ADPs were taken from Ref. 11a and refined on 𝐹𝐹2 applying the independent 
atom model (IAM) and using all data with full-matrix least-squares as implemented in SHELXL,16a 

within the WINGX package.16b The weighting scheme 𝑤𝑤𝒉𝒉 = �𝜎𝜎2�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 
 2 � + (𝐴𝐴𝐴𝐴)2 + 𝐵𝐵𝐴𝐴�

−1
 was 

applied, where 𝐴𝐴 = 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 
 2 3⁄ + 2𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 2 3⁄  and 𝐴𝐴 = 0.0606, 𝐵𝐵 = 0.0360. All non-hydrogen atoms 
were refined anisotropically. X–H distances and hydrogen ADPs were fixed according to experimental 
neutron diffraction data.11b As recommended by Blessing,17 the H-atom ADPs were scaled against the 
ADPs obtained for the heavier atoms from the two experiments. An isotropic extinction parameter 
was also refined according to the empirical expression implemented in SHELXL, where  𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is 

multiplied by 𝜂𝜂�1 +  0.001 𝜖𝜖 𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 2  𝜆𝜆3 sin(2𝜃𝜃𝒉𝒉)⁄  �

−1 4⁄
, with 𝜂𝜂 as the overall scale factor and 𝜖𝜖 as 

the extinction parameter, which was refined to 0.007 (4). 
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Table 4.1. Crystallographic details and results of IAM and multipolar refinements for glycylglycine. 

Crystal data 
Crystal system, space group Monoclinic, P21/c 

a, b, c (Å) 7.9798 (1), 9.5201 (1), 7.7643 (1) 

β (°) 106.151 (1) 

V (Å3) 566.56 (1) 
Z 4 

θ range (°) for cell measurement 2.7–52.4 

µ (mm−1) 0.13 

Crystal size (mm) 0.20 × 0.17 × 0.07 

Data collection 
Absorption correction Analytical (Clark and Reid, 1995) 

Tmin, Tmax 0.974, 0.991 
No. of measured, independent and 
observed [F> 3σ(F)] reflections 

38933, 6597, 5467  

Redundancy 5.9 

Rint
a 0.029 

θ values (°) θmax = 52.6, θmin = 2.1 

(sin θ/λ)max (Å-1) 1.118 

Range of h, k, l h = –17 → 17, k = –21 → 21, l = –17 → 17  

Spherical, independent atom refinement 
Refinement on F 2 (for F > 0) 

R[F > 3σ(F)], Rall, wR, S, χ2 b 2.82, 4.15, 4.16, 1.06, 2.60 

No. of parameters 107 

(Δ/σ)max  0.001 

Δρmax, Δρmin (e Å−3) 0.54, −0.37 

Extinction coefficient 0.007 (4) 
Multipole refinement 

Refinement on F 2 (for F > 3σ(F)) 

R[F > 3σ(F)], Rall, wR, S, χ2 b   
1.97, 3.30, 2.14, 1.03, 0.91 (MM1) 
1.72, 2.93, 1.71, 0.80, 0.57 (MM2) 
1.70, 2.91, 1.68, 0.80, 0.55 (MM3) 

No. of parametersc 271 

(Δ/σ)max c 0.00001 

Δρmax, Δρmin (e Å−3)c 0.14, −0.14 

Extinction coefficientc 0.315 (15) 
a𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2 − 〈𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2 〉�𝒉𝒉 ∑ 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2
𝒉𝒉�  (summation is carried out only where more than one symmetry equivalent reflection 

is averaged). b𝑅𝑅(𝐹𝐹) = 100.∑ ��𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��𝒉𝒉 ∑ �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜�𝒉𝒉� , 𝑤𝑤𝑅𝑅(𝐹𝐹) = 100. �∑ 𝑤𝑤𝒉𝒉��𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� − �𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��
2

𝒉𝒉 ∑ 𝑤𝑤𝒉𝒉𝒉𝒉 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2� �

1 2⁄
, 

𝑆𝑆 = �∑ 𝑤𝑤𝒉𝒉�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2 − 𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 �2𝒉𝒉 (𝑁𝑁 − 𝐴𝐴)� �
1 2⁄

 with 𝑤𝑤𝒉𝒉 = 1 𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2  ⁄ , N as the number of reflections and P as the number of 

parameters. 𝜒𝜒2 is given by Eqn. 1.56.  Both in the spherical model and in the multipole model refinements the calculated 

structure-factor magnitudes are properly multiplied by a scale factor 𝜂𝜂 and by an additional factor Y𝒉𝒉(𝜖𝜖) that corrects for 

secondary extinctions. For the spherical model,  Y𝒉𝒉(𝜖𝜖) = �1 + 0.001 𝜖𝜖 𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 2  𝜆𝜆3 sin(2𝜃𝜃𝒉𝒉)⁄  �−1 4⁄

, while, for the 

multipole model,  Y𝒉𝒉(𝜖𝜖) has been chosen following the Becker and Coppens equations.20 c For MM2 model. 
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4.3.3. Multipole refinement 

The multipole refinement was performed using the XD2006 program18 and the Hansen-Coppens 
formalism. The core and spherical valence density (ρ1

𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐 and ρ1
𝑣𝑣𝑐𝑐𝑐𝑐 , respectively, see Eqn. 1.48) are 

composed of Hartree-Fock wavefunctions expanded in Slater-type orbitals.19a The valence shell is 
either contractible or expandable by the use of the 𝜅𝜅 parameter. Single-zeta orbitals with energy-
optimized Slater exponents are used for the radial part of the deformation terms.19b Additional radial 
parameters 𝜅𝜅′ are defined for each angular momentum l in order to deal with the radial expansion or 
contraction of the deformation density. Several multipole models were tested, see Section 4.4. 

The function minimized in the least-squares procedure was ∑ 𝑤𝑤𝒉𝒉𝒉𝒉 �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2 − 𝜂𝜂 Y𝒉𝒉(𝜖𝜖) 𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 �
2
  where 

the statistical weight  𝑤𝑤𝒉𝒉 = 1 𝜎𝜎 
2�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2 �⁄   was applied and where only those reflections characterized 
by 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 > 3𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� were included. Furthermore, 𝜂𝜂 is the overall scale factor while Y𝒉𝒉(𝜖𝜖) is 
the correction for secondary extinctions according to the model proposed by Becker and Coppens.20 
This model depends on the isotropic extinction parameter 𝜖𝜖, which was refined to 0.315 (15), 
corresponding to a mosaicity spread of 10". 

The multipole expansion was truncated at the hexadecapole level for all the non-H atoms, while bond-
directed dipoles and quadrupoles were applied to all the H-atoms. The 𝜅𝜅 and 𝜅𝜅′ parameters were 
initially set to proper reference values21 and posteriorly refined. A single 𝜅𝜅′ was refined for all the l 
values belonging to a defined set while 𝜅𝜅′ for the H-atoms was not refined. The X–H distances were 
initially set to neutron diffraction averages but then freely refined. A high-order refinement with 
sin𝜃𝜃 𝜆𝜆⁄ ≥ 0.7 Å−1 was performed for the non-H atoms to obtain accurate positional and 
displacement parameters. In the next step, the H-atom ADPs were estimated by the SHADE routine22 
and the obtained values were used as fixed parameters in the subsequent refinements. 

4.3.4. Ab initio periodic calculation and multipole refinement of theoretical 
structure factors 

In order to provide an additional and reliable benchmark for the XC-ELMO calculations, a single-
point periodic calculation was performed on the final multipole model geometry without including 
thermal smearing, using the CRYSTAL09 package23 at the density functional theory level using the 
B3LYP functional. The calculation was carried out using the standard 6-31G(2d,2p) basis-set. 

In order to mimic the experimental refinement as much as possible, the calculation of theoretical 
structure factors was limited to the 𝐡𝐡 directions observed experimentally and, afterwards, a static 
multipole model refinement (i.e., ADPs set to zero) of the theoretical data was performed without 
optimizing atomic positions, thus eliminating an important source of correlation between parameters. 
As for the experimental refinement, the multipole expansion was truncated at the hexadecapole level 
for the non-H atoms and only bond-directed dipoles and quadrupoles were refined for the H-atoms. 
Both 𝜅𝜅 and 𝜅𝜅′  parameters were refined independently for each heavy atom, while only one 𝜅𝜅 was 
refined for all the H-atoms. The rigid local symmetry constraints and chemical equivalences were also 
consistent with the experimental refinement (see Section 4.4). 
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4.3.5. Unconstrained and X-ray constrained ELMO and Hartree-Fock 
calculations 

The X-ray constrained ELMO strategy has been implemented by Dr. Alessandro Genoni (University 
of Lorraine, France) modifying the version 8 of the GAMESS-UK quantum chemistry package,24 
which has been used to perform all the unconstrained (𝜆𝜆 = 0) and constrained (𝜆𝜆 ≠ 0) ELMO 
calculations that will be discussed.  

In order to assess the fitting effects on the ELMO electron density of the glycylglycine molecule, 
ELMO and XC-ELMO calculations have been performed using the 6-31G, 6-31G(d,p) and cc-pVDZ 
basis sets and considering both the IAM and the MM experimental molecular geometries obtained 
from the X-ray diffraction experiment. Electron density-related properties derived from the 
constrained ELMO wavefunctions were afterwards compared to the ones corresponding to the 
unconstrained ELMO wavefunctions.  

For all the ELMO calculations, the adopted localization scheme almost corresponds to the Lewis 
structure of the molecule, with atomic fragments, which describes the core electrons and the lone-pairs 
associated with each atom, and with bond subunits, which describe all the electron pairs between each 
couple of nuclei. The only exceptions are represented by two three-atom fragments: one for the 𝜎𝜎 and 
the 𝜋𝜋 electrons of the amide group O1–C2–N2 (comprising also the electrons for the delocalized lone 
pair of the nitrogen atom) and another one for the 𝜎𝜎 and the 𝜋𝜋 electrons of the carboxylic group O2–
C4–O3. The same localization scheme has been used for all the XC-ELMO calculations for which the 
unit cell parameters and the ADPs associated with the different refinement models were also taken 
into account. Concerning the experimental structure-factors amplitudes used to constrain the ELMO 
wavefunctions, only those characterized by 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 > 3𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜�𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� were selected (overall 5467 
reflections). As anticipated, the set of amplitudes �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜� was previously corrected for secondary 
extinctions. Furthermore, the scale factor 𝜂𝜂 was properly optimized during the XC-ELMO 
computations. 

For sake of comparison, using the Tonto package,25 we have computed unconstrained and X-ray 
constrained Hartree-Fock electron densities (𝜌𝜌𝐻𝐻𝐻𝐻  and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻, respectively) for the three selected basis 
sets. These densities are to be compared with the corresponding ELMO and XC-ELMO densities.* 

4.3.6. Topological analyses 

QTAIM has been exploited to analyze all the obtained charge distributions. In particular, the TOPXD 
module26 was used to partition and integrate the atomic basins of all the multipole-fitted electron 
densities. The TOPOND98 software27 was used to perform the topological analysis of the periodic 
B3LYP/6-31G(2d,2p) electron density 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃, while the analyses of all the 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸, 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸, 𝜌𝜌𝐻𝐻𝐻𝐻  
and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻 electron distributions were performed with the AIMAll software.28  

                                                           
*XC-HF wavefunctions were computed at the same 𝜆𝜆𝑚𝑚𝑐𝑐𝑚𝑚  values as the corresponding XC-ELMO wavefunctions, except 
for the 6-31G basis set, for which SCF convergence could not be achieved for λ ≥ 0.40 (see Table 4.2).  
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Given the complexity associated with the definition of zero-flux surfaces in the electron density and 
with the subsequent integration,29 the numerical integration error of the atomic basins, which is 
defined by 

𝐿𝐿(Ω) = −
1
4

 �∇2𝜌𝜌(𝒓𝒓) 𝑑𝑑𝒓𝒓
 

Ω
 

(4.4) 

and which should be zero for an ideal integration, was also carefully monitored. In this work, the 
values of 𝐿𝐿(Ω) approximately ranged from 3 × 10-6 to 2 × 10-3 au. 

4.4. Fitting effects on the multipole model 
In this section, we analyse the effects of fitting several Hansen-Coppens multipole models against the 
experimentally collected structure factors. In other words, we investigate step-by-step the relaxation of 
the local symmetries of atoms from spherical and neutral to aspherical and charged. After the spherical 
atom refinement (Section 4.3.2), an initial multipole model (MM1) was refined using several rigid 
constraints on the local symmetry of the atomic density functions (mm2 for O1, O2, O3 and C4; m 
for C1, C2, C3 and N2; 3m for N1; see Fig. 4.1(a) for atomic labels) and chemical equivalences (O2 
= O3, C1 = C3). These constraints imply sp2 hybridization for N2, C4 and for all the O atoms and 
sp3 hybridization for N1, C1 and C3 (however, a “perfect” hybridization includes here an asymmetric 
polarization induced by chemical bonds to atoms of different electronegativity). The H-atoms were 
treated with cylindrical symmetry (m∞) and those bonded to equivalent heavier atoms were also 
treated as equivalent.  

The atomic symmetries were progressively reduced, using the statistical parameters 𝑅𝑅 and 𝑤𝑤𝑅𝑅 and the 
residual density maps as guides to select the best refinement model. The chemical equivalences were 
then removed and the following local symmetries were used (MM2 model): mm2 for C4, 3m for N1 
and m for all the other non-H atoms and m∞ for all the H's. This implies sp2 hybridization for C4, 
sp3 for N1, C1 and C3 but a mixed character for all the O atoms and N2. In the last cycle, the 
coordinates and the ADPs for all the non-H atoms, the coordinates for the H-atoms, the 𝜅𝜅 and 𝜅𝜅′  
parameters, the multipole populations, the extinction parameter 𝜖𝜖 and the overall scale factor 𝜂𝜂 were 
refined together, for an overall optimization of 271 parameters. A satisfactory deconvolution of 
thermal motion from the deformation electron density distribution has been obtained, as shown by 
the Hirshfeld rigid-bond test.30 In fact, the largest differences of mean-squares displacement 
amplitudes (DMSDA) was 5 × 10-4 Å2, which is lower than the limit of 0.001 Å2 suggested by 
Hirshfeld. Additionally, the comparison between the final ADPs of the MM2 model with those 
previously published for the neutron diffraction on glycylglycine11b shows a mean absolute difference 
of 0.0008(14) Å2, taking however into account that the temperatures of the two experiments are 
different (100 K of the current X-ray diffraction vs. 82 K for the neutron diffraction). The neutron 
and X-ray geometries are in good agreement, but, as expected, larger discrepancies occur for positions 
of H atoms: in fact, X–H distances are on average 0.04(2) Å shorter in the MM2 model with respect 
to the neutron diffraction geometry. The maximum and minimum residual peaks are +0.14 and –0.14 
𝑑𝑑. Å−3, with the residual density maps showing only few and small discrepancies that could not be 
removed by any deformation model. 
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Figure 4.2. Normalized residuals of the structure-factor amplitudes vs. the scattering resolution for the (a) IAM and the 
different multipole models (b) MM1, (c) MM2 and (d) MM3 refined against the experimental set of structure factors. 

For the sake of completeness, we have also performed a multipole refinement up to hexadecapole level 
for all non-H atoms and up to the quadrupole level for the H-atoms without imposing any local 
symmetry constraint (MM3), namely we have refined all the corresponding multipoles, accounting 
423 parameters overall. The final statistical agreements (see Table 4.1) are very close to those obtained 
in the last refinement cycle of the symmetry constrained MM2 model described above. 

Fig. 4.2 shows scatter plots of the difference between experimental and calculated structure-factor 
amplitudes normalized by the experimental standard deviations as a function of the sin𝜃𝜃 𝜆𝜆⁄  resolution 
for the IAM and the three MM refinements. It is obvious that the multipolar refinement improves the 
agreement between measured and calculated structure factors compared to the IAM, Fig. 4.2(a), even 
when rigid local symmetry constraints are extensively applied, MM1 model, Fig. 4.2(b). The 
progressive reduction of the local symmetries and the removal of equivalences (MM2) further improve 
the agreement, Fig. 4.2(c), whereas a model without any local symmetry constraint (MM3) does not 
further reduce the normalized residuals, Fig. 4.2(d). In fact, the number of reflections computed 
within ±1𝜎𝜎 from the observed ones is 3336, 3888, 4236 and 4276, for IAM, MM1, MM2 and MM3, 
respectively. The Hamilton significance test31 also indicates that removing the local symmetry 
constraints from MM2 does not lead to a significant model improvement, despite using 152 additional 
parameters. Therefore, the models MM2 and MM3 are not statistically different and from now on, 
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we only refer to the results obtained using the local symmetry constrained multipole model MM2 just 
described. A similar conclusion can be reached refining the P-B3LYP structure factors with these two 
models, meaning that also the theoretical crystal density shows such a local symmetry for all the atoms. 

Attempts to refine core deformations were not carried out, as this would be beyond the scope of this 
paper. Such a study would require even higher resolution and, at present, has been applied only on 
smaller and more symmetric crystals.32  

Based on the difference density maps, the residual density analysis33a and the normal probability 
plots,33b one can easily conclude that both the measured intensities and the refined multipole models 
are of extremely good quality and therefore could be a very good benchmark for the XC-ELMO 
calculations. 

4.5. Fitting effects on the ELMO wavefunctions 

4.5.1. Agreement statistics and energy 

The agreement statistics and the energies for all the X-ray constrained computations on glycylglycine, 
using the geometry and the ADPs from MM2 refinement, are reported in Table 4.2. For each basis 
set, the XC-ELMO calculations are of course in better agreement with the measured intensities. For 
the 6-31G basis set, however, the desired agreement cannot be reached (𝜒𝜒2 = 1.27 for 𝜆𝜆𝑚𝑚𝑐𝑐𝑚𝑚 =0.40, 
with an asymptote above 1.0), whereas it is quite smoothly obtained for the larger and more flexible 
basis sets 6-31G(d,p) and cc-pVDZ (𝜒𝜒2 ≤ 1 for 𝜆𝜆 as large as 0.12), see Fig. 4.3. Here we point out 
that for the 6-31G basis set the second termination criterion in (1.58) is satisfied, while in the other 
two cases we have observed the fulfillment of the more traditional condition 𝜒𝜒2 < 1. 

𝜒𝜒2 rapidly decreases as λ increases, showing that even a weak constraint to the X-ray data is sufficient 
to improve significantly the agreement. The asymptotic value of 𝜒𝜒2 is slightly above the limit obtained 
for the multipolar models (0.57 and 0.55 for MM2 and MM3, respectively) and smaller than for the 

Table 4.2. Statistical agreementsa and energy values corresponding to all the unconstrained and constrained calculations 
performed on the glycylglycine considering the geometry and the ADPs resulting from the Multipole Model refinement. 

Basis set 𝜒𝜒2 %R(F) %wR(F) Energy (au)  𝜆𝜆𝑚𝑚𝑐𝑐𝑚𝑚  𝜒𝜒2 %R(F) %wR(F) Energy (au) 
 ELMO Calculationsb  XC-ELMO Calculations 
6-31G 2.56 2.62 3.44 -489.161  0.40 1.27 2.17 2.43 -489.060 
6-31G(d,p) 1.74 2.38 2.84 -489.385  0.12 1.00 2.04 2.15 -489.357 
cc-pVDZ 1.66 2.36 2.78 -489.394  0.12 0.98 2.03 2.13 -489.368 
 Hartree-Fock Calculationsb  XC-Hartree-Fock Calculations 
6-31G 2.11 2.47 3.13 -489.310  0.38c 1.15 2.05 2.17 -489.227 
6-31G(d,p) 1.41 2.25 2.56 -489.549  0.12 0.85 1.93 1.98 -489.528 
cc-pVDZ 1.31 2.20 2.47 -489.574  0.12 0.83 1.93 1.97 -489.556 

a𝜒𝜒2 = �1 �𝑁𝑁𝑐𝑐 − 𝑁𝑁𝑝𝑝�⁄ �  ∑ 𝑤𝑤𝒉𝒉�𝜂𝜂 �𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � −  �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 ��
2 𝒉𝒉 , %𝑅𝑅(𝐹𝐹) = 100 �∑  �𝜂𝜂�𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � −  �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 ��𝒉𝒉 ∑ � 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 �𝒉𝒉� �, 

%𝑤𝑤𝑅𝑅(𝐹𝐹) = 100 �𝜒𝜒2 ∑ 𝑤𝑤𝒉𝒉 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝒉𝒉� �1 2⁄
 with 𝑤𝑤𝒉𝒉 = 1 𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2 (𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 )⁄ . b The scale factors 𝜂𝜂 have been optimized using the 
density matrices obtained from the corresponding unconstrained calculations. c 𝜒𝜒2 reaches an asymptotic values above λ = 
0.3 but no SCF convergence is found for λ ≥ 0.40. 
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Figure 4.3. The variation of χ2 agreement with the Lagrange multiplier λ for the XC-ELMO 6-31G (green), 6-31G(d,p) 
(blue) and cc-pVDZ (red) calculations, using geometry and ADPs from the Multipole Model MM2. 

IAM (2.60). The agreement indexes 𝑅𝑅 and 𝑤𝑤𝑅𝑅 shown in Table 4.2 mirror the behaviour of the χ2 
statistics, but they are much less sensitive to λ and, therefore, less useful to compare the quality of the 
different constrained wavefunctions. On the other hand, 𝑅𝑅 and 𝑤𝑤𝑅𝑅 can be used for comparison against 
the multipole models (see Table 4.1), which of course give better agreements because they do not have 
to satisfy an energy minimization criterion and, above all, because they are not subject to the 
termination criterion 𝜒𝜒2 ≤ 1 imposed by Eqn. 1.58. Furthermore, 𝑅𝑅 and 𝑤𝑤𝑅𝑅 confirm that XC-
ELMO performs much better than an IAM refinement.   

Fig. 4.4 shows the normalized differences between experimental and ELMO or XC-ELMO structure-
factor amplitudes in function of the resolution. Almost all the structure-factor amplitudes computed 
from the 6-31G(d,p) and cc-pVDZ XC-ELMO wavefunctions, Fig. 4.4(e) and (f), are within ±5𝜎𝜎 
from the experimental values without any obvious resolution dependence. The number of reflections 
within the ±1𝜎𝜎 range is 4149 and 4240 for the 6-31G(d,p) and the cc-pVDZ basis sets, respectively, 
contrasting with 3663 and 3764 reflections within ±1𝜎𝜎 for the unconstrained ELMO 6-31G(d,p) 
and cc-pVDZ wavefunctions, respectively. On the other hand, for the XC-ELMO/6-31G 
wavefunction, for which 𝜒𝜒2 = 1.27, only the structure-factor amplitudes calculated at resolution 
sin𝜃𝜃 𝜆𝜆⁄ > 0.5 Å−1 agree with the experimental values within ±5𝜎𝜎, while many low-angle structure 
factors significantly exceed the 5𝜎𝜎 limit, Fig. 4.4(d). Moreover, the XC-ELMO/6-31G plot shows a 
distribution of normalized residuals quite similar to that associated with the unconstrained ELMO 
wavefunctions (respectively 3689 and 3954 reflections are within the ±1𝜎𝜎 range for the unconstrained 
and the X-ray constrained ELMO 6-31G wavefunctions, respectively), meaning that the X-ray 
constraining procedure was actually not particularly effective, despite the better agreement indexes. In 
this respect, the comparison between Fig. 4.4(d) with 4.4(b) and 4.4(c) is extremely elucidative because 
it shows that an X-ray constrained wavefunction is not better than an unconstrained one in the absence 
of polarization functions in the basis set. This demonstrates that the ELMO/6-31G wavefunction is 
definitely not flexible enough to fit the experimental data. On the contrary, if sufficient variational 
flexibility is present in the basis set, even unconstrained ELMO wavefunctions better reproduce the 
experimentally collected structure factors. 
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Figure 4.4. Normalized residuals of the structure-factor amplitudes vs. the scattering resolution for the unconstrained 
ELMO (a) 6-31G, (b) 6-31G(d,p) and (c) cc-pVDZ wavefunctions and for the XC-ELMO (d) 6-31G, (e) 6-31G(d,p) 
and (f) cc-pVDZ wavefunctions. 

The constraint to strictly localize the molecular orbitals on molecular subunits introduces additional 
approximations over the usual Hartree-Fock method, which enables full delocalization of the canonical 
molecular orbitals. In order to quantify this effect, we have computed unconstrained and X-ray 
constrained Hartree-Fock electron densities (𝜌𝜌𝐻𝐻𝐻𝐻  and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻, respectively) for the three selected basis 
sets and compared them with the corresponding ELMO and XC-ELMO densities. Both 
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unconstrained and X-ray constrained Hartree-Fock electron densities produce better statistical 
agreements than the corresponding ELMO and XC-ELMO electron distributions. Moreover, the gap 
between 𝜌𝜌𝐻𝐻𝐻𝐻  and 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 is roughly constant as a function of λ, see Table 4.2. These results suggest 
that 𝜌𝜌𝐻𝐻𝐻𝐻  and 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 are equally able to incorporate the information from the experimental structure- 
factor amplitudes. 

In Table 4.2 the energies associated with all the unconstrained and constrained wavefunctions are also 
reported. As already observed, the energies of constrained wavefunctions are always higher, in keeping 
with what is expected in a variational procedure when a constraint is added without introducing a new 
variational parameter. 

4.5.2. Electron density distribution and its topology 

Fig. 4.5 shows three-dimensional plots of 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 for the 6-31G and the 6-31G(d,p) basis 
sets, the distribution associated with the cc-pVDZ case is very similar to the 6-31G(d,p) one. While 
for the 6-31G(d,p) basis set the main consequences of the fitting consist in a large redistribution of 
the electron density around the nuclei and in only small rearrangements in the bonding regions, the 
6-31G fitting procedure entails significant changes of the electron density both in the core and in the 
bonding domains. This is especially evident for the oxygen atoms, for which a depletion of electron 
density in the lone-pairs regions is noteworthy. Other important fitting effects are the reduction of 
electron density associated with the C–H bonds and the shifting of electronic charge from the H atoms 
to the N atoms. Shifts of electron density from C3 to C4 and, analogously, from C2 to N2 and from 
N1 to C1 are also observed. 

Topological properties at the bond critical points of 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸are gathered in Table 4.3 
and they are compared to the results obtained from the periodic B3LYP/6-31G(2d,2p) computation 
(𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃). The properties obtained from the XC-ELMO wavefunctions are in general similar to 
those obtained from the corresponding unconstrained ELMO calculations, especially the electron 
density at the bond critical points, 𝜌𝜌(𝒓𝒓𝑜𝑜). Upon closer inspection, we see that the XC-ELMO 𝜌𝜌(𝒓𝒓𝑜𝑜) 
generally approach the P-B3LYP limit for the more complete and polarized basis sets. 

The analysis of the Laplacian at the bond critical points, ∇2𝜌𝜌(𝒓𝒓𝑜𝑜), show much larger discrepancies. 
As previously discussed,34 this is a consequence of the intrinsic nature of the Laplacian, especially for 
polar bonds. Fig. 4.6 depicts the plots of 𝐿𝐿 = −∇2𝜌𝜌(𝒓𝒓), which shows regions of electron density 
concentration (L > 0) and depletion (L < 0), in the plane of the glycylglycine carboxylate group. The 
constrained or unconstrained plots are qualitatively very similar, showing regions of electronic charge 
concentration along the C–C, and C–O bonds as well as in the lone-pairs regions of the oxygen atoms. 
The atomic graphs of C4, O2 and O3 have the expected trigonal arrangement of three charge 
concentration maxima in both constrained and unconstrained cases. Nevertheless, because polar bond 
critical points lie close to nodal surfaces of the Laplacian, small changes in the position of these bond 
critical points may lead to large changes of ∇2𝜌𝜌(𝒓𝒓𝑜𝑜). This explains the large differences between 
constrained and unconstrained ∇2𝜌𝜌(𝒓𝒓𝑜𝑜) values found in Table 4.3 and stress the importance of 
correctly locating the critical point along the corresponding bond path.34b 
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Figure 4.5. Three-dimensional plots of the electron density difference 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 for the (a) 6-31G and the (b) 
6-31G(d,p) basis sets. The isosurface value is 0.005 au, with negative isosurfaces in red and positive isosurfaces in blue.  

For sake of completeness, we have also computed the topological properties for both the 𝜌𝜌𝐻𝐻𝐻𝐻  and 
𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻 electron densities. The comparison with the corresponding ELMO and XC-ELMO densities 
indicates that the ELMO approximation does not introduce significant changes in the electron 
distributions, in keeping with the small differences between the agreement indices reported in Table 
4.2. For example, the difference in electron density at the bond critical points between 𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 
𝜌𝜌𝐻𝐻𝐻𝐻  and between 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐻𝐻𝐻𝐻 are usually less than 5% for the 6-31G basis set and even 
less for the larger 6-31G(d,p) and cc-pVDZ basis sets. 

Figure 4.6. Plots of 𝐿𝐿 = −∇2𝜌𝜌(𝒓𝒓) for the (a) ELMO/6-31G(d,p) and (b) XC-ELMO/6-31G(d,p) wavefunctions of 
glycylglycine in the carboxylate plane. Contours are drawn at intervals of (± 2, ± 4, ± 8) × 10n e.Å-5 (n = – 3 to 3). Blue 
lines denote regions of charge concentration (𝐿𝐿 > 0) and red lines denote regions of charge depletion (𝐿𝐿 < 0). 

 

 



4     Unconstrained and X-ray Constrained Extremely Localized Molecular Orbitals 

 

120 
 

Table 4.3. Bond critical point dataa for all glycylglycine electron densities resulting from unconstrained and constrained 
ELMO calculations. Data for the 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃  density are also shown. 

 𝜌𝜌6−31𝐺𝐺(2𝑑𝑑,2𝑝𝑝)
𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃  𝜌𝜌6−31𝐺𝐺𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸  𝜌𝜌6−31𝐺𝐺(𝑑𝑑,𝑝𝑝)

𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸  𝜌𝜌𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸  𝜌𝜌6−31𝐺𝐺𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 𝜌𝜌6−31𝐺𝐺(𝑑𝑑,𝑝𝑝)
𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸  𝜌𝜌𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 

O1–C2        
dA 0.825 0.799 0.833 0.835 0.806 0.835 0.837 
ρ(rb) 0.397 0.386 0.406 0.401 0.398 0.405 0.404 

– ∇2ρ(rb) 0.409 0.922 0.346 0.243 0.917 0.158 0.123 
O2–C4        

dA 0.837 0.811 0.849 0.850 0.819 0.851 0.851 
ρ(rb) 0.380 0.368 0.388 0.383 0.375 0.389 0.387 

– ∇2ρ(rb) 0.532 0.908 0.387 0.330 0.842 0.217 0.229 
O3–C4        

dA 0.834 0.807 0.845 0.846 0.813 0.846 0.847 
ρ(rb) 0.385 0.374 0.395 0.389 0.381 0.393 0.390 

– ∇2ρ(rb) 0.519 0.952 0.413 0.342 0.888 0.223 0.194 
N1–C1        

dA 0.879 0.957 1.012 1.004 0.907 1.000 0.981 
ρ(rb) 0.252 0.218 0.240 0.235 0.233 0.249 0.246 

– ∇2ρ(rb) 0.642 0.326 0.271 0.307 0.521 0.502 0.575 
N2–C2        

dA 0.836 0.798 0.885 0.879 0.854 0.890 0.888 
ρ(rb) 0.350 0.335 0.363 0.355 0.327 0.346 0.344 

– ∇2ρ(rb) 1.282 1.110 1.153 1.213 0.959 0.846 0.927 
N2–C3        

dA 0.874 0.957 0.995 0.989 0.897 0.988 0.975 
ρ(rb) 0.263 0.227 0.248 0.243 0.250 0.259 0.256 

– ∇2ρ(rb) 0.712 0.259 0.203 0.253 0.629 0.429 0.528 
C1–C2        

dA 0.747 0.777 0.786 0.788 0.757 0.749 0.751 
ρ(rb) 0.256 0.242 0.277 0.270 0.240 0.267 0.262 

– ∇2ρ(rb) 0.560 0.509 0.862 0.772 0.505 0.770 0.703 
C3–C4        

dA 0.757 0.787 0.797 0.802 0.776 0.764 0.771 
ρ(rb) 0.254 0.240 0.275 0.268 0.238 0.266 0.260 

– ∇2ρ(rb) 0.551 0.503 0.867 0.778 0.505 0.771 0.705 
N1–H1        

dA 0.808 0.771 0.792 0.804 0.776 0.798 0.807 
ρ(rb) 0.322 0.322 0.354 0.339 0.316 0.336 0.326 

– ∇2ρ(rb) 1.849 -1.590 2.094 1.925 1.553 1.900 1.825 
N1–H2        

dA 0.785 0.741 0.763 0.774 0.741 0.768 0.776 
ρ(rb) 0.352 0.346 0.378 0.364 0.342 0.353 0.346 

– ∇2ρ(rb) 2.083 1.710 2.232 2.001 1.679 1.937 1.837 
N1–H3        

dA 0.804 0.763 0.784 0.797 0.768 0.793 0.803 
ρ(rb) 0.325 0.324 0.356 0.342 0.324 0.338 0.330 

– ∇2ρ(rb) 1.873 1.581 2.085 1.855 1.600 1.887 1.802 
C1–H4        

dA 0.708 0.696 0.692 0.697 0.695 0.709 0.723 
ρ(rb) 0.269 0.268 0.297 0.290 0.267 0.287 0.284 

– ∇2ρ(rb) 0.893 0.817 1.163 1.142 0.813 1.114 1.134 
C1–H5        

dA 0.692 0.680 0.674 0.684 0.676 0.690 0.703 
ρ(rb) 0.287 0.282 0.312 0.304 0.276 0.298 0.294 

– ∇2ρ(rb) 1.036 0.921 1.290 1.255 0.878 1.188 1.197 
N2–H6        

dA 0.789 0.750 0.768 0.779 0.759 0.779 0.788 
ρ(rb) 0.331 0.332 0.363 0.348 0.332 0.349 0.339 

– ∇2ρ(rb) 1.899 1.610 2.093 1.815 1.640 1.942 1.814 
C3–H7        

dA 0.678 0.641 0.629 0.639 0.647 0.655 0.667 
ρ(rb) 0.289 0.298 0.327 0.318 0.285 0.300 0.297 

– ∇2ρ(rb) 1.041 1.019 1.396 1.330 0.973 1.168 1.179 
C3–H8        

dA 0.646 0.631 0.619 0.638 0.620 0.630 0.642 
ρ(rb) 0.317 0.316 0.345 0.335 0.289 0.303 0.301 

– ∇2ρ(rb) 1.277 1.172 1.565 1.489 1.013 1.187 1.205 
aFor each bond critical point A–B, dA is its distance from the nucleus A in Å, ρ(rb) is its electron density value in au and 
∇2ρ(rb) is its Laplacian value in au. 
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Figure 4.7. Integrated atomic charges (au) from unconstrained (𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) and constrained (𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) ELMO densities and 
from the ab initio periodically calculated density (𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃).  

 
Figure 4.8. Atomic dipole moments (au) from unconstrained (𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) and constrained (𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) ELMO densities and 
from the ab initio periodically calculated density (𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃). 

4.5.3. QTAIM atomic charges and dipoles 

Bar-graphs of the atomic charges are shown in Fig. 4.7. Overall, charges from ELMO and XC-ELMO 
wavefunctions are qualitatively similar, addressing negatively charged oxygen and nitrogen atoms, 
positively charged carbon and hydrogen atoms of the amino group and basically neutral methylenic 
hydrogens. For the O, N and C atoms, the XC-ELMO/6-31G charges are relatively close to the 
ELMO/6-31G results with the largest discrepancy around 0.13 au. The differences are even smaller 
for the polarized and more flexible basis sets. For the hydrogen atoms, the relative changes are larger, 
but these charges are very small, so the largest absolute differences are around 0.04 au. Furthermore, 
the results obtained from the 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 densities are similar for all the basis sets, with 
the XC-ELMO charges slightly larger in absolute values. Surprisingly, the best agreement with the 
𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 results is found for the charges calculated using the smaller 6-31G basis set. However, the 
results previously discussed indicate that this better agreement must be just incidental.  

Magnitudes of atomic dipole moments are given as bar-graphs in Fig. 4.8. For oxygen atoms, 
ELMO/6-31G and XC-ELMO/6-31G dipole moments are markedly underestimated compared to 
the more polarized basis sets and P-B3LYP. For these atoms, the extra d functions are therefore vital 
to describe the internal polarization. Using 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 as benchmark, we see that the X-ray constraining 
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improves the dipole moments of oxygen atoms for the 6-31G(d,p) and the cc-pVDZ ELMO 
wavefunctions, although they remain considerably overestimated. The largest discrepancies between 
unconstrained and constrained calculations are always observed for the carbonylic oxygen O1, with 
decrements of 0.06 and 0.03 au for the 6-31G(d,p) and cc-pVDZ basis-sets, respectively.  

On the contrary, for the nitrogen atoms, the XC-ELMO/6-31G wavefunction gives a dipole moment 
closer to the one associated with 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃. For N1 and N2, the X-ray constraining is helpful, whereas 
the polarization functions are not so necessary. The largest difference between ELMO and XC-ELMO 
dipole moments is 0.07 au for N1, the amino nitrogen involved as “donor” atom in some hydrogen 
bonds with neighboring molecules.  

For carbon and hydrogen atoms, the polarized basis sets usually perform better and the dipole moment 
magnitude improves after the fitting procedure. The directions of the atomic dipole moments is 
substantially similar for all methods, with a maximum difference smaller than 2°. 

Magnitudes of the molecular dipole moments for glycylglycine are given as bar-graphs in Fig. 4.9(a). 
As discussed in Chapter 1, Spackman et al.35 have shown that typical enhancements of molecular 
dipole moments from gas-phase to crystals are within 10-40%, depending on the polarizability of the 
molecule and its specific packing in the solid state. The gas-phase B3LYP/6-312G(2d,2p) molecular 
dipole moment of glycylglycine is 9.445 au whereas the P-B3LYP molecular dipole moment, using 
the same basis set, is 11.337 au, corresponding to an enhancement of 20%. In our work, the difference 
between 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 and 𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 dipole moments may inform us on the ability of XC-ELMO 
wavefunctions to account for intermolecular crystal field effects. In fact, from Fig. 4.9(a), we see that 
the X-ray constraining procedure makes the molecular dipole moment quite closer to the P-B3LYP 
value, but the increase is smaller than 10% for all the basis sets. The value obtained with the 6-31G 
basis set is closer to the P-B3LYP one, but this seems again a consequence of the fortuitous agreement 
on atomic charges described before. In reality, we learn from Fig. 4.9(a) that, as the basis sets become 
more complete and flexible, the dipole moments obtained through the X-ray constrained 
wavefunctions converges to a value that is ca. 5% smaller than the P-B3LYP one. 

 

Figure 4.9. Molecular dipole moments (au) from unconstrained (𝜌𝜌𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) and constrained (𝜌𝜌𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸) ELMO densities 
and from the ab initio periodically calculated density (𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃). Dipole moments calculated from both (a) the primary 
densities and (b) the multipole-projected densities are shown. 
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Figure 4.10. Three-dimensional plots of deformation electron densities (a) 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 and (b) 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 
for glycylglycine. The isosurface value is set to 0.02 au, with negative isosurfaces in red and positive isosurfaces in blue. 

4.6. Fitting effects on the multipole model-projected ELMO 
electron densities 

In order to avoid potential ambiguities due to the multipolar expansion used to model the benchmark 
experimental electron density, we have also projected the P-B3LYP, all the ELMO and XC-ELMO 
electron densities in terms of Hansen-Coppens multipoles, using the very same MM2 model discussed 
in Section 4.4.  This will enable us to compare all the densities, affected in the same way by the 
inherent limitations of the multipolar expansion.32 Of course, all the atomic coordinates and ADPs 
(for XC-ELMO) were kept fixed to those from the MM2 refinement against experimental data. 

4.6.1. Deformation density 

Fig. 4.10 shows the deformation densities 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 and 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 for 
glycylglycine. As expected, the plots clearly show an accumulation of electron density in all the covalent 
bonds and in the lone-pairs domains of the oxygen atoms. Electron density depletions are mainly 
concentrated around the nuclei. 

In Fig. 4.11, we show the deformation density plots 𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 and 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 
using the 6-31G and 6-31G(d,p) basis sets. At the ELMO/6-31G level, Fig. 4.11(a), the electron 
accumulation in the bonding regions is significantly smaller, especially for the N2–C3 and all the C–
O bonds. The experimental constraint gives only a slight improvement, Fig. 4.11(b). This result 
confirms that constraining an ELMO wavefunction to experimental structure factors leads to a 
meaningful electron density distribution only if the basis set is sufficiently flexible. In fact, the 
deformation densities derived from the unconstrained and constrained ELMO/6-31G(d,p) 
wavefunctions, Figs. 4.11(c) and 4.11(d), are significantly closer to the 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 and 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 
deformation densities.  

The 𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 deformation density calculated with the polarized 6-31G(d,p) basis set, Fig. 4.11(c), 
is already very similar to the 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 deformation density, Fig. 4.10(b), although only the latter 
takes into account crystalline environment effects through a fully periodic approach.  
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Figure 4.11. Deformation electron densities for glycylglycine obtained from unconstrained 𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 and 
constrained 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 − 𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀 ELMO wavefunctions. (a) ELMO/6-31G; (b) XC-ELMO/6-31G; (c) ELMO/6-
31G(d,p); (d) XC-ELMO/6-31G(d,p). The isosurface value is set to 0.02 au, with negative isosurfaces in red and positive 
isosurfaces in blue. 

A finer analysis shows that Fig. 4.11(d) (deformation density for 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 with 6-31G(d,p) basis 
set) is closer to Fig. 4.10(a) (𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋) than to Fig. 4.10(b) (𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃), in particular for the lone 
pair domains of the O atoms. This means that some features of the deformation densities are genuinely 
due to the X-ray constraint rather than to a crystal field effect (at least if calculated at B3LYP level). 
This is particularly encouraging because it shows the ability of XC-ELMO to extract information from 
experimental intensities. 

4.6.2. Topological properties, charges and dipoles 

The results for the topological analysis of all the electron density distributions projected to the Hansen-
Coppens MM2 multipole model are in good agreement with the topological features shown in Table 
4.3, i.e. the multipole model projections are not significantly different from the corresponding non-
projected electron distributions: 𝜌𝜌(𝒓𝒓𝑜𝑜) differ by less than 5%, the positions of the bond critical points 
are on average within 0.08 au. As expected, ∇2𝜌𝜌(𝒓𝒓𝑜𝑜) change more significantly. In general, 
𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 are closer to the 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 and 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 benchmark densities than 𝜌𝜌𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 and, 
more importantly, the agreement is better when the larger basis sets 6-31G(d,p) and cc-pVDZ are 
used.  
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Table 4.4. Bond critical point dataa corresponding to all the unconstrained and constrained multipole model-projected 
electron densities for the shortest hydrogen bonds in the crystal structure of glycylglycine. Data for the 𝜌𝜌𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃  density 
are also shown. 

 𝜌𝜌6−31𝐺𝐺(2𝑑𝑑,2𝑝𝑝)
𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃  𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 𝜌𝜌6−31𝐺𝐺(2𝑑𝑑,2𝑝𝑝)

𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 𝜌𝜌6−31𝐺𝐺
𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 𝜌𝜌6−31𝐺𝐺(𝑑𝑑,𝑝𝑝)

𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸  𝜌𝜌𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑀𝑀𝑀𝑀/𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 𝜌𝜌6−31𝐺𝐺

𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 𝜌𝜌6−31𝐺𝐺(𝑑𝑑,𝑝𝑝)
𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 𝜌𝜌𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 

H1···O2i          

dH 0.713 0.680 0.695 0.679 0.663 0.661 0.675 0.665 0.663 

ρ(rb) 0.024 0.030(3) 0.033 0.032 0.029 0.029 0.031 0.030 0.030 

∇2ρ(rb) 0.081 0.109(1) 0.102 0.105 0.098 0.097 0.109 0.098 0.097 

λ3 0.14 0.20 0.20 0.20 0.18 0.18 0.20 0.19 0.18 

H2···O3ii          

dH 0.610 0.650 0.644 0.641 0.624 0.624 0.651 0.628 0.630 

ρ(rb) 0.038 0.043(4) 0.041 0.041 0.037 0.038 0.042 0.039 0.040 

∇2ρ(rb) 0.130 0.115(1) 0.103 0.126 0.116 0.107 0.116 0.109 0.103 

λ3 0.24 0.26 0.24 0.26 0.24 0.23 0.25 0.24 0.23 

H3···O2iii          

dH 0.627 0.666 0.679 0.652 0.647 0.644 0.641 0.646 0.642 

ρ(rb) 0.038 0.036(4) 0.038 0.037 0.033 0.033 0.039 0.033 0.034 

∇2ρ(rb) 0.107 0.111(1) 0.110 0.134 0.129 0.126 0.116 0.119 0.117 

λ3 0.22 0.23 0.23 0.25 0.22 0.22 0.24 0.22 0.22 

H6···O1iv          

dH 0.904 0.964 0.968 0.950 0.944 0.946 0.942 0.953 0.954 

ρ(rb) 0.014 0.011(1) 0.011 0.011 0.010 0.011 0.012 0.011 0.011 

∇2ρ(rb) 0.046 0.047(1) 0.047 0.048 0.044 0.045 0.051 0.046 0.047 

λ3 0.07 0.07 0.07 0.07 0.06 0.07 0.08 0.07 0.07 

aFor each bond critical point H···O, dH is its distance from the nucleus H in Å, ρ(rb) is its electron density value in au, 
∇2ρ(rb) is its Laplacian value in au and λ3 is its positive curvature in au. Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, 
y, z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+3/2.  

Having multipolar projected electron densities, it is possible to thoroughly analyze the hydrogen bonds 
and comment on the performances of the XC-ELMO approach, in particular verifying if there is any 
improvement upon the fitting. Fig. 4.1(b) shows the pattern of strongest hydrogen bonds in the crystal 
structure of glycylglycine and Table 4.4 collects their topological features. All these bonds are of N–
H···O type, with H···O distance ranging from 1.77 (2) to 1.98 (2) Å.  

Topological features of hydrogen bonds from experimental electron density analyses have been often 
used to classify various types of interactions.36 However, Spackman observed that for many medium-
weak hydrogen bonds, the electron density, its topology and the local energy densities can be well 
approximated even using the pro-molecule, that is the electron density distribution calculated from 
IAM model.37 As a matter of facts, the topological properties of hydrogen bonds calculated from all 
the electron density models for glycylglycine are rather similar. Wavefunctions computed with the 6-
31G basis set provide slightly larger electron densities than the 6-31G(d,p) and the cc-pVDZ ones. 
However, the effect of X-ray constraining is extremely small. This observation, along with the small 
dipole moment enhancements discussed in above, suggests that the long-range crystal interactions do 
not polarize the electron density in the bond critical point region of the H-bond. This is quite different 
from what happens in the electron lone-pairs and intramolecular bonding regions, where the effects 
due to the crystal field or the X-ray constraining are more evident. Jayatilaka briefly discussed the 
effects of long-range interactions on the electron density of oxalic acid dihydrate by means of a 
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relatively large molecular cluster calculation.5d He concluded that, even when considering the electron 
distributions of intramolecular bonds and lone-pairs, the influence of the crystalline environment is 
not significant, at least when the long-range interactions are modeled at DFT level. However, in our 
opinion, much more work is needed before finding a more general understanding. 

Integrated atomic charges calculated from the Hansen-Coppens multipole model-projected electron 
densities differ by 5-10% from those calculated from the respective primary densities, corresponding 
to an average absolute value of about 0.1 au. The largest differences are observed for the oxygen atoms 
at the 6-31G level. In this respect, the influence of the basis set on the integrated charges is much more 
pronounced than the influence of the multipole projection itself, see Fig. 4.7. For all the basis sets, the 
atomic charges obtained from X-ray constrained calculations are closer to the 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 ones.   

The atomic dipole moments from the multipole-projected ELMO and XC-ELMO electron densities 
are in reasonable agreement with those from the respective primary densities using the 6-31G(d,p) 
and cc-pVDZ basis sets (differences in the 10-20% range), whereas larger discrepancies (up to 80%) 
are observed for the 6-31G basis set. As for the non-projected densities, the multipole-projected atomic 
dipole moments calculated for oxygen atoms using the 6-31G basis set are markedly underestimated 
compared to the values determined using the larger basis sets or P-B3LYP. Again, the 𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋−𝐸𝐸𝐿𝐿𝑀𝑀𝐸𝐸 
electron distributions generally give more accurate atomic dipole moment magnitudes. 

Molecular dipole moment magnitudes obtained from the multipole-projected electron densities are 
shown in Fig. 4.9(b). Both unconstrained and constrained ELMO dipole moments are larger than the 
𝜌𝜌𝑀𝑀𝑀𝑀/𝑋𝑋𝑋𝑋 and 𝜌𝜌𝑀𝑀𝑀𝑀/𝑃𝑃−𝐵𝐵3𝐿𝐿𝐿𝐿𝑃𝑃 values. Compared to the values obtained from the primary densities, Fig. 
4.9(a), the multipole projection produces an underestimation of the molecular dipole moments of 
about 20%, corresponding to ca. 1.5 au. The underestimation due to multipolar projection is even 
larger for P-B3LYP. 

4.7. Influence of fractional coordinates and ADPs on the X-ray 
constrained calculations 

Since the current version of the X-ray constrained ELMO strategy does not allow to refine atomic 
positions and thermal parameters, all the XC-ELMO wavefunctions considered in the previous 
sections have been carried out using parameters refined from the multipole model MM2 (Section 4.4).  

On the contrary, if XC-ELMO computations are performed using the IAM coordinates and ADPs, 
the statistical agreements and the energy values (Table 4.5) do not sensitively change, but the 
convergence toward 𝜒𝜒2 = 1 is much slower, as it occurs for a larger 𝜆𝜆𝑚𝑚𝑐𝑐𝑚𝑚 . On the other hand, since 
the desired agreements is anyway reached (at least for the more flexible basis sets), the small biases in 
the initial coordinates and ADPs have been artificially “absorbed” into the wavefunction and this 
would affect the electron density and its topology: 𝜌𝜌(𝒓𝒓𝑜𝑜) are not much affected (with changes smaller 
than 0.03 au); the distances of the bond critical points from the nuclei differ by less than 5%; 
∇2𝜌𝜌(𝒓𝒓𝑜𝑜) change more significantly (up to 15%, corresponding to about 0.05 au). The same holds 
true for atomic dipole moment magnitudes, the largest differences being of the order of 3%, 
representing absolute differences around 0.04 au.  
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Table 4.5. Statistical agreementsa and energy values corresponding to all the unconstrained and constrained calculations 
performed on the glycylglycine considering the geometry and the ADPs resulting from the Independent Atom Model 
refinement. 

 ELMO Calculationsb  XC-ELMO Calculations 
Basis set 𝜒𝜒2 %R(F) %wR(F) Energy (au)  𝜆𝜆𝑚𝑚𝑐𝑐𝑚𝑚 𝜒𝜒2 %R(F) %wR(F) Energy (au) 
6-31G 3.04 2.83 3.75 -489.158  0.42 1.45 2.29 2.59 -489.036 
6-31G(d,p) 2.03 2.52 3.06 -489.384  0.18 0.98 2.04 2.14 -489.335 
cc-pVDZ 2.01 2.51 3.05 -489.396  0.18 0.98 2.04 2.13 -489.350 

a𝜒𝜒2 = �1 �𝑁𝑁𝑐𝑐 − 𝑁𝑁𝑝𝑝�⁄ �  ∑ 𝑤𝑤𝒉𝒉�𝜂𝜂 �𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � −  �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 ��
2 𝒉𝒉 , %𝑅𝑅(𝐹𝐹) = 100 �∑  �𝜂𝜂�𝐹𝐹𝒉𝒉,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � −  �𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 ��𝒉𝒉 ∑ � 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 �𝒉𝒉� �, 

%𝑤𝑤𝑅𝑅(𝐹𝐹) = 100 �𝜒𝜒2 ∑ 𝑤𝑤𝒉𝒉 𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝒉𝒉� �1 2⁄
 with 𝑤𝑤𝒉𝒉 = 1 𝜎𝜎𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜

2 (𝐹𝐹𝒉𝒉,𝑜𝑜𝑜𝑜𝑜𝑜 )⁄ . b The scale factors 𝜂𝜂 have been optimized using the 
density matrices obtained from the corresponding unconstrained calculations. 

It is important to point out that the IAM was refined against a high-resolution dataset and therefore 
non-hydrogen atomic positions and ADPs are already quite accurate, certainly more than those of 
typical crystal structure determinations. Significantly different results are expected in case of an IAM 
refined against structure factors up to a lower resolution, for which a multipolar model would also not 
be reliable. 

4.8. Conclusions and perspectives 
We have demonstrated that XC-ELMO is a new and potentially useful tool for the determination and 
the analysis of experimental electron densities. All the X-ray constrained wavefunction methods use 
the X-ray data in order to capture, at least in part, the effects of electron correlation and crystal 
environment. XC-ELMO has the additional advantage to resume the atomistic interpretation typical 
of the pseudo-atom approaches, since the orbitals are one-electron functions accounting for the 
electron distributions of atoms, bonds or functional groups, depending on the localization scheme. 

This work is part of a long project aiming at studying the efficiency of XC-ELMO wavefunctions in 
molecular crystals and testing the transferability of the ELMOs to larger systems in order to devise 
new strategies for refining crystallographic structures and electron densities of macromolecules, such 
as proteins or polymers. In this first step, we have performed a detailed comparison between 
unconstrained and X-ray constrained ELMO wavefunctions, using traditional multipolar electron 
density or periodic density functional as benchmarks. The main conclusions can be summarized as 
follows: 

1) Sufficiently flexible basis sets are fundamental to obtain a meaningful fitting of the wavefunction. 
In fact, all calculations confirm that the desired agreements with the experimental data is reached only 
if polarized basis functions are used. 

2) The fractional coordinates and ADPs used for XC-ELMO have a strong influence on the 
convergence: the more accurate the initial parameters are, the faster the convergence is. The inaccuracy 
of the initial set of coordinates and ADPs is absorbed into the molecular orbital coefficients, thus 
affecting the electron density. A strategy for the direct refinement of atomic coordinates and ADPs in 
the framework of the XC-ELMO strategy is currently in preparation. 

3) When 𝜒𝜒2 = 1 is reached, the constrained ELMO wavefunction is of course in much better 
agreement with the X-ray data than the unconstrained one, but in less good agreement than a standard 
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multipole model, for which there is not a strict “control” on the desired precision. In fact, while XC-
ELMO only partially uses (through λ) the information contained in the X-ray intensities, the 
multipole models MM2 and MM3 fully exploit the experimental observations through global least 
square refinements of the available diffraction data, which leads to 𝜒𝜒2 values much lower than 1.0. 
Therefore, for a definitive and fair comparison with the traditional multipole models, we should push 
the X-ray constrained computations beyond the usual 𝜒𝜒2 = 1.0 limit (namely, we should consider 
larger 𝜆𝜆). Whitten et al.35b have proposed to pursue the fitting until the weighted residual 𝑤𝑤𝑅𝑅 values 
approach that obtained in the multipole refinement of the same X-ray structure-factor magnitudes. 
This idea could be reformulated using 𝜒𝜒2 as a criterion, but, unfortunately, this is partially hampered 
by the problem of determining the optimal value for the Lagrange multiplier 𝜆𝜆 (see final discussion in 
Section 1.3.4). However, also in this case, theoretical approaches to overcome this last important 
drawback are under investigation.  

4) The multipolar models seem to be much more sensitive to the valence electron density than the 
XC-ELMO strategy. Fig. 4.2 shows that the two most flexible multipolar models reproduce the low 
angle diffracted intensities much better than the high angle ones, whereas this is not true for the XC-
ELMO technique that seems more “tempered”. This might be interpreted as an over-fitting of the low 
angle data by the multipolar models, which, in fact, converge to lower 𝜒𝜒2, or otherwise as the evidence 
of a too restricted model that could be improved by a more flexible treatment of the core electrons, as 
suggested by Fischer.32 A model with strictly hybridized atoms, MM1, is instead closer to 𝜒𝜒2 = 1, and 
shows a more uniform agreement with the observed structure factors, like the XC-ELMO calculations 
(Fig. 4.4). However, one would normally consider MM1 as too rigid (i.e., insufficient to exhaust the 
present data quality) and many indicators address the more flexible MM2 (or the statistically 
equivalent MM3) as more reliable. Once more, this observation prompts a revision of the current 
recipes for the X-ray constrained wavefunction calculations that could be too much biased by the 
quantum-mechanical part of the functional in Eqn. 1.55, and not sufficiently influenced by the 
experimental data, the second part of the functional. 

5) Many properties of the XC-ELMO reconstructed electron density suggests that the constrained 
wavefunction approaches the “exact” electron density in the crystal, using as benchmark the 
experimental multipole model or the periodic calculations at density functional level. However, some 
atomic charges and molecular dipole moments are not properly reproduced. In particular the XC-
ELMO calculations generally underestimate the molecular dipole moment and this might be ascribed 
to the inability of XC-ELMO to include all the effects of the crystalline environment, in particular the 
polarization of the molecule. Interestingly, also the multipolar model underestimate the dipole 
moment in this case. 

6) For the intermolecular interactions, here represented by medium strength N-H···O hydrogen 
bonds, there is limited perturbation by the crystal packing, therefore it is not possible to judge the 
efficiency of the X-ray constrained procedure. 

Although X-ray constrained methods have been known and used for more than a decade, until now it 
has not been reported such an accurate comparison with respect to traditional multipolar expansions 
refined against X-ray intensities or theoretical calculations with periodic boundary conditions. 
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Therefore, we believe that our results could be important not only to appreciate the advantages of XC-
ELMO, but more generally to understand the necessities and pitfalls of all kinds of X-ray constrained 
wavefunction calculations. 

In view of these results, we plan to further investigate the XC-ELMO technique in order to better 
analyse the ability of the XC-ELMO wavefunctions to include electronic correlation and crystal field 
effects into the electron density. This may enable us to establish better criteria for the best Lagrange 
multiplier, which is a crucial parameter in the X-ray constrained wavefunction strategies. Moreover, 
we will analyse the performances of the XC-ELMO wavefunctions on a broad spectrum of molecules, 
including metal complexes and stronger hydrogen bond adducts. 
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General conclusions and outlook 
If one considers that the field of electron density analysis was born in middle 60’s, when Phillip 
Coppens published the first accurate deformation density maps in simple organic compounds,1 and 
when Hohenberg and Kohn demonstrated their theorems,2 then it is fair saying that during the 20 
years that followed, a few notable progresses occurred in this area, such as the development of many 
deformation density models, the quantum theory of atoms in molecules, and the Kohn-Sham 
reformulation of DFT. However, mainly due to the inherent limitations in hardware and software, 
electron density analysis was certainly far from being a routine technique. Nevertheless, an enormous 
amount of work was dedicated to establish the nature and strength of chemical bonding in crystals, 
mostly focused on organic compounds,3a but a few concerned with chemical bonds in inorganic or 
metal-organic materials.3b Such problems, seeking ever more accurate experimental data and 
theoretical models, were in part responsible for the technical developments seen during the 90’s in the 
field of electron density analysis. In theoretical chemistry, one could cite the long-range corrections 
applied to DFT, which aimed at accurately treat large systems bound by weak intermolecular 
interactions. In X-ray crystallography, area detectors certainly stood apart. Due to these progresses, in 
1998, Coppens described electron density analysis as a technique ready for application to a wide range 
of problems in chemistry, physics and biology.4 

Indeed, the last 15 years have shown that electron density analysis has entered the stage of 
applications.5 For the chemists, this particularly means applying electron density distributions to 
understand the intricate mechanisms governing the phenomena of relevance for materials science and 
biochemistry, the two outstanding sub-fields of chemical science. Following this tendency, and 
motivated by the obvious importance of such studies, this thesis aimed at correlating observable 
properties of organic and metal-organic materials with their ground-state electron density 
distributions. In particular, we have focused on optical and magnetic properties of crystals, but the 
methodologies developed here can be applied to a wider range of properties. The studied compounds 
have been selected based on their recent applications as materials: amino acid molecules and derivatives 
have received some attention due to their linear and non-linear optical properties,6a while copper(II) 
pyrazine nitrate coordination polymers are particularly useful realizations of low-dimensional 
quantum magnets.6b  

With the purpose of designing linear optical materials, we have calculated atomic and functional group 
polarizabilities of amino acids and their hydrogen bonded aggregates.7 Our study has enabled the 
identification of the most efficient functional groups, able to build-up the largest susceptibilities in the 
crystal, as well as the creation of a databank for distributed polarizabilities, thus allowing the prediction 
of most of the linear optical behaviour of a material prior to its synthesis. Furthermore, we have 
quantified the role played by intermolecular interactions on modifying the polarizability of the isolated 
building blocks, and identified the most relevant parameters that should be controlled or corrected 
when such perturbations are applied semi-empirically, thus allowing accurate prediction of “in-crystal” 
properties from the constituent molecules calculated in an infinitely diluted gas. Finally, the 
dependence of the distributed polarizabilities on the one-electron basis set and the many-electron 
Hamiltonian was carefully analysed for selecting the most efficient level of theory to estimate the 
susceptibilities in this kind of materials. 
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In future, the transferable polarizabilities calculated in this work could be further explored, for example 
to estimate the dispersive component of the interaction energy between molecules in aggregates, or to 
map the most reactive sites in a material. Moreover, the analyses carried out here should be extended 
for the relevant cases of non-linear optical materials, whose corresponding non-linear polarizabilities 
and susceptibilities are much more challenging to be estimated, either from first-principles or semi-
empirically, because the effects of intermolecular interactions are typically much more pronounced. 

Aiming at designing magnetic materials, relationships have been established between the electron 
density distribution and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers.8 
QTAIM was used to identify the possible magnetic exchange pathways, and DFT calculations of the 
corresponding pairwise exchange-coupling constants enabled us to recognize the most fundamental 
building blocks that determine the magnetism in these crystals. The occupancy of the d orbitals at the 
metallic center, which is a direct manifestation of the deformation density at that atom, was used to 
identify the magnetic orbital, and the fine structure of  ∇2𝜌𝜌1(𝒓𝒓) has revealed in detail the consequences 
of the pseudo-Jahn-Teller distortion to the electron density distribution of the copper(II). The 
ellipticity profile, available after a QTAIM topological analysis of 𝜌𝜌1(𝒓𝒓), was used, along with 
molecular orbital and spin density analyses, to shed light on the mechanism governing the exchange 
interaction in the family of copper(II) pyrazine magnetic materials. Even though a quantitative 
elucidation of the magnetism necessarily seeks the experimental spin density distribution, this finding 
is of relevance because it indicates that some aspects of the magnetic phenomena may be correlated to 
features of the position charge density, thus being in principle available from a multipolar electron 
density fitted against the set of experimentally collected structure factors. 

Much more work in this area must be performed in the future. In particular, other copper(II) 
coordination polymers should be analysed to clarify the role played by the 𝜎𝜎 and the potential 𝜋𝜋 
mechanism on determining the magnetic properties of these materials. We note that some 
coordination compounds containing ligands closely related to pyrazine, such as 1,4-diazabicyclo-
octane, may prevent a 𝜋𝜋 mechanism. The Cu(II) congener has been already synthesized, but its 
magnetism has yet not been investigated properly. A few other materials are currently under 
investigation in our group, Cu(pyz)2(ClO4)2 and [Cu(pyz)2Cl].BF4, but the lower quality of their 
crystals make the accurate electron density analyses more challenging. 

In the last chapter of this thesis, we have investigated the recently proposed X-ray constrained 
extremely localized molecular orbitals (XC-ELMOs) technique.9 Although also useful for the 
determination and analysis of experimental electron densities, we plan to use this tool to derive 
transferable orbitals that, having no tails, are strictly localized on atoms or functional groups. Here, 
we have analysed in detail the effect of constraining the ELMO wavefunctions to high-quality 
experimental X-ray structure-factor amplitudes, and its ability to reproduce very accurate benchmark 
electron densities. Among our findings, we mention the need of sufficient flexible basis sets to obtain 
a meaningful fit of the wavefunction, and of an accurate set of atomic coordinates and ADPs to reliably 
predict the electron densities, as the inaccuracy of these initial parameters is easily absorbed into the 
orbital coefficients, thus affecting the resultant density. Analyses of χ2 values obtained from the 
traditional multipolar fitting and from the XC-ELMO fitting reveal that, because the former fully 
exploit the experimental observations, while the latter is controlled by the desired agreement ∆, the 
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traditional multipole fittings typically achieve smaller χ2 values. Therefore, a fair comparison among 
the electron densities can only be obtained when pushing the X-ray constrained computations beyond 
the usual χ2 = 1.0 limit. This finding is of relevance because it may help design more suitable 
termination criteria for the ELMO fitting against the experimental observations. 

We plan to further investigate the XC-ELMO technique in order to quantify the ability of the 
constrained wavefunctions to include electronic correlation and crystal field effects into the electron 
density, and to test whether such effects could be reliably retrieved from the X-ray collected intensities. 
This would be highly desirable as a new approach to, for example, include intermolecular interactions 
effects on gas-phase molecular calculations. 

We believe that this work furnishes, at least partially, the prerequisites for understanding materials 
properties from the electron density distribution of their building blocks. This could be particularly 
important to engineering new functional materials based on specific desired behaviours, or to predict 
the properties of materials already prepared. Our approach is expected to mainly contribute to the 
future research in supramolecular chemistry, crystal engineering and electron density analysis, but the 
synergy among experiment and theory stressed here is certainly of relevance for the broader fields of 
materials science and chemical crystallography.                    
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