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Introduction

The objects of study in this thesis are knots and links. More pre-
cisely, torus knots and links, a subclass of algebraic links, which in turn
are a subclass of closures of positive braids. One part of this thesis is
concerned with studying how the signature, a classical link invariant,
behaves on closures of positive braids. In the other part we study ad-
jacency of algebraic links—in fact, mainly of torus knots—in different
contexts; namely in two topological and two algebraic settings.

The text is organized as follows. In the introduction we present the
main results of this thesis, while keeping definitions at a minimum. The
reader may find definitions in Chapter 1, where we also recall results
that are used later on. The signature of closures of positive braids is
discussed in Chapter 2. Chapter 3 is on Gordian adjacency of torus
knots. In Chapter 4, algebraic notions of adjacency are introduced and
their connections to Gordian adjacency and subsurface adjacency are
discussed. Finally, subsurface adjacency is inspected in Chapter 5.

To improve readability we restrict the presentation of our results to
knots.

Lower bounds on the signature of positive braid knots

We denote the standard generators of the braid group on b strands by
a1, . . . , ab−1. A positive braid is an element in the braid group that can
be written as a positive braid word as1as2 · · ·asl with si ∈ {1, · · · , b−1}.
Every knot is the closure of a braid by a result of Alexander [Ale23].
Knots that are closures of positive braids are called positive braid knots.
Torus knots T (p, q), where p and q are coprime positive integers, are
examples of positive braid knots.

We compare two classical knot invariants, the genus g and the sig-
nature σ, for positive braid knots. The genus of a positive braid knot
K is fully understood. If K is the closure of a positive braid β on b
strands of length l, then g(K) = l−b+1

2
holds by Bennequin’s inequal-

ity [Ben83]. Our main result on positive braid knots establishes a
linear lower bound for the signature in terms of the genus. It is sub-
mitted for publication [Fel13].

4



INTRODUCTION 5

Theorem 2.1. For all positive braid knots K, we have

2g(K) ≥ σ(K) ≥ g(K)

50
.

For a knot K we denote by g4t (K) the topological 4-ball genus—the
minimal genus of oriented surfaces F that are topologically locally-flat
embedded in the 4-ball B4 with boundary ∂F = K ⊂ ∂B4 = S3.

The topological 4-ball genus of positive braid knots is in most cases
strictly smaller than their genus. For example, the family of torus knots
T (5, 5n+ 1) has the property that

g4t (T (5, 5n+ 1)) ≤ 9

10
g(T (5, 5n+ 1))

for all positive integers n; see Remark 2.3.
It is therefore interesting to know that g4t is linearly bounded from

below in terms of g, which we get as a consequence of Theorem 2.1 by

using that g4t (K) ≥ |σ(K)|
2

holds for all knots K, a result of Kauffman
and Taylor [KT76].

Corollary 2.2. For all positive braid knots K, we have

g4t (K) ≥ g(K)

100
.

We emphasize that this is a topological locally-flat result. The
smooth 4-ball genus and the genus agree on positive braid knots by
Rudolph’s slice-Bennequin inequality [Rud93].

Adjacency

The study of singularities, i.e. the study of the local behavior of
polynomial maps f : Cn → C, has a long history going back to the
pioneer work of Leibniz, Newton and Oldenburg in the 17th century.
After endowing polynomials or holomorphic function germs f : Cn → C
(say up to local biholomorphic coordinate changes around the origin)
with a topology, one can ask for a fixed germ f , what classes of germs
g can be found arbitrarily close to f? This is known as the adjacency
problem. It is only understood for very restricted classes of singularities
even when n = 2. For example, Arnol’d described all adjacencies
between simple singularities—those corresponding to Dynkin diagrams
An, Dn, E6, E7, E8 [Arn72].

We introduce two notions of adjacency for knots, results on them,
and motivation for their study in purely 3-dimensional-topology terms.
However, the name “adjacency” and the main motivation for the study
of these 3-dimensional notions in this thesis stem from the connection
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to algebraic adjacency notions and the adjacency problem, which is
discussed afterward.

3-dimensional notions of adjacency. The unknotting number of
a knot K, denoted by u(K), is the minimal number of crossing changes
needed to get from K to the unknot O. It was already studied by
Wendt [Wen37]. Generalizing this, the Gordian distance dG(K,L) of
two knots K and L is the minimal number of crossing changes needed
to get from K to L. The structure of the discrete metric space given
by Gordian distance on the set of isotopy classes of knots is not well
understood. We study the following concept for torus knots.

Definition. Let K and L be knots. We say K is Gordian adjacent
to L, denoted by K ≤G L, if dG(K,L) = u(L)− u(K).

Our main results on Gordian adjacency for torus knots are the
following; they are published in [Fel14].

Theorem 3.2. Let (n,m) and (a, b) be pairs of coprime positive
integers with n ≤ a and m ≤ b. Then the torus knot T (n,m) is Gordian
adjacent to the torus knot T (a, b).

Theorem 3.3. Let n and m be positive integers with n odd and m
not a multiple of 3. Then the torus knot T (2, n) is Gordian adjacent
to the torus knot T (3, m) if and only if n ≤ 4m+1

3
.

As a consequence of Theorem 3.2, Gordian adjacency and Gordian
distance for torus knots of a fixed braid index are completely described.
Indeed, if a positive integer a ≥ 2 is fixed, then

T (a, b) ≤G T (a, c) if and only if b ≤ c

for all b, c coprime to a. Hence,

dG(T (a, b), T (a, c)) = |u(T (a, b))− u(T (a, c))| = (a− 1)|b− c|
2

,

where the second equality follows from the Milnor conjecture, which
determines the unknotting number of torus knots; see equation (1)
below.

An obvious motivation for finding Gordian adjacencies is that, by
definition, every Gordian adjacency determines the Gordian distance of
the involved knots. Gordian adjacencies can also lead to good estimates
of Gordian distances between non-adjacent torus knots. For example,
the adjacencies T (2, 7) ≤G T (2, 9) and T (2, 7) ≤G T (3, 5) yield

dG(T (2, 9), T (3, 5)) ≤ u(T (2, 9))− u(T (2, 7)) + u(T (3, 5))− u(T (2, 7))

= 4− 3 + 4− 3 = 2.
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In fact, dG(T (2, 9), T (3, 5)) = 2, which can be proven using signatures.
Trying to generalize this example for any two torus knots T1 and T2,
we look for the highest unknotting number u(K) realized by a knot K
adjacent to both T1 and T2, and ask if u(T1)− u(K) + u(T2)− u(K) is
close to the Gordian distance dG(T1, T2). An ambitious future goal is to
use such Gordian adjacencies to determine Gordian distances between
all torus knots up to a constant factor, similarly to what was done for
the cobordism distance by Baader [Baa12].

There is a weaker 3-dimensional notion of adjacency for torus knots.
One can ask, when can a knot K be obtained from another knot L
by applying 2(u(L) − u(K)) saddle moves. This yields a notion of
adjacency that is implied by Gordian adjacency since every crossing
change can be realized by two saddle moves, see Remark 1.1. For torus
knots, all examples of such adjacencies we know come from a more
restrictive notion, which we define now.

Definition. For two knots K and L, K is subsurface adjacent to
L if a genus-minimizing Seifert surface FK for K can be obtained from
a genus-minimizing Seifert surface FL for L by removing 1-handles.

Our main results on subsurface adjacency is a complete description
of adjacencies of torus knots of braid index 2 to torus knots of braid
index less or equal than 4. We also provide examples of torus knots
T (2, n) that are adjacent to torus knots T (m,m + 1) with n roughly

equal to 2m2

3
. Such examples are not known in the algebraic case, see

below.
A motivation for the study of subsurface adjacency comes from the

following question. Given a Seifert surface FL of a knot, we denote
the number of positive and negative eigenvalues of the symmetrized
Seifert form on H1(FL) by p and n, respectively. When can one find an
H1-injective subsurface FK such that the symmetrized Seifert form re-
stricted to H1(FK) realizes all the positive (negative) eigenvalues, that
is H1(FK) has rank p (q) and all eigenvalues of the symmetrized Seifert
form are positive (negative)? Our results on subsurface adjacency im-
ply that for the genus-minimizing Seifert surfaces of the torus knots
T (3, 6k+ 1), T (3, 6k+ 2) and T (4, 4k+ 1), all positive eigenvalues are
realized by a subsurface that is isotopic to the fiber surface of a T (2, n)
torus link.

Algebraic notions of adjacency. Torus knots are algebraic knots.
That is, for a torus knot K there exists a polynomial function f : C2 →
C such that K is isotopic to K(f) = V (f) ∩ S3

ε ⊂ S3
ε
∼= S3 for small

enough ε, where V (f) ⊆ C2 denotes the zero-set of f and S3
ε denotes

the 3-sphere of radius ε centered at the origin in C2. Indeed, for p, q
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coprime the knot K(f) associated with the polynomial f = yq − xp is
the torus knot T (p, q).

The adjacency problem for polynomial maps from C2 to C yields a
notion of adjacency for algebraic knots.

Definition. Let K1 and K2 be algebraic knots. We say K1 is
algebraically adjacent to K2, if there exists a smooth family of square-
free polynomials ft : C2 → C such that K2 = K(f0) and K1 = K(ft)
for t 6= 0 small.

For a small but fixed t 6= 0, the zero-set V (ft−η) for small non-zero
η in C is a smooth algebraic curve F in C2 such that K1 and K2 are
realized as transversal intersection of F with two spheres around the
origin of different radii r1 < r2, i.e.

Ki = F ∩ {(x, y) ∈ C2 | ‖x‖2 + ‖y‖2 = r2i }
⊂ {(x, y) ∈ C2 | ‖x‖2 + ‖y‖2 = r2i } ∼= S3.

Denote by g4s(K) the smooth 4-ball genus of a knot K—the minimal
genus of oriented and smoothly embedded surfaces F in the 4-ball B4

with ∂F = K ⊂ ∂B4 = S3. By the Thom conjecture [KM93], the
smooth 4-ball genus of Ki equals the genus of the intersection of F with
the ball in C2 centered at the origin of radius ri. Thus, the cobordism

F ∩ {(x, y) ∈ C2 | r21 ≤ ‖x‖2 + ‖y‖2 ≤ r22}
in

{(x, y) ∈ C2 | r21 ≤ ‖x‖2 + ‖y‖2 ≤ r22} ∼= S3 × [0, 1]

has minimal genus g4s(K2)− g4s(K1). By the Milnor conjecture, a con-
sequence of the Thom conjecture, the smooth 4-ball genus and the
unknotting number u of torus knots are equal, i.e. one has

(1) u(T (n,m)) = g4s(T (n,m)) =
(n− 1)(m− 1)

2

for all coprime natural numbers n,m.
In summary, we know that u and g4s coincide on torus knots and that

Gordian adjacency and algebraic adjacency, which could be thought of
as relative versions of u and g4s , respectively, have similar properties.
For example, for both notions it holds that if a torus knotK1 is adjacent
to a torus knot K2, then u(K1) = g4s(K1) ≤ u(K2) = g4s(K2) and
the cobordism distance—the minimal genus of oriented and smoothly
embedded surfaces F in S3×[0, 1] with ∂F = K×{0}∪L×{1}—equals
u(K2) − u(K1) = g4s(K2) − g4s(K1). Furthermore, for both notions
T (n,m) is adjacent to T (a, b) if n ≤ a and m ≤ b. For Gordian
adjacency this is Theorem 3.2. For algebraic adjacency it is immediate;
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compare Proposition 4.3. It is then natural to wonder whether the
two concepts of adjacency coincide on torus knots. In Chapter 4 we
answer in the negative by providing families of algebraic adjacencies
that are not Gordian adjacencies; see Proposition 4.5. However, we
give a heuristic argument supporting the conjecture that if two torus
knots are Gordian adjacent, then they are algebraically adjacent; see
Remark 4.7.

On the other hand we show that a more restrictive algebraic notion
of adjacency, that is δ-constant adjacency, implies Gordian adjacency,
up to a well controlled concordance; and that algebraic adjacency of
knots K and L implies that L is obtained from K by 2u(L) − 2u(K)
saddle moves, again up to a well controlled concordance. Finally, we
discuss the suspicion that algebraic adjacency implies subsurface adja-
cency and that δ-constant adjacency implies Gordian adjacency.

A motivation for the study of algebraic adjacency is provided by
the following general question. What topological types of singulari-
ties can arise on polynomials f : C2 → C of fixed degree d; see for
example [GLS98][GZN00]. The topological type of a singularity f
is uniquely determined by K(f). The simplest family of singulari-
ties are the An−1-singularities, which are given by the polynomials
y2 − xn. They correspond to the T (2, n) torus links. Asking what
An−1-singularities can arise on polynomials of fixed degree d is very
close to asking for which n the torus link T (2, n) is algebraically adja-

cent to T (d, d). For example if d is even, the polynomial yd− (x
d
2 − y)2

of degree d has an A d2

2
−1
-singularity at 0 and it is part of the family of

polynomials yd − (x
d
2 − ty)2, which show that T (2, d

2

2
) is algebraically

adjacent to T (d, d); see Proposition 4.5 and its proof. Let k be the
maximal constant such that for big degrees d one can find polynomials
with An-singularities with n ∼ kd2. The above shows for example that
k ≥ 1

2
. In fact, 15

28
≤ k ≤ 3

4
by a result of Gusein-Zade and Nekhoro-

shev [GZN00]. Finding algebraic adjacencies that are analogs of the

subsurface adjacencies of T (2, n) to T (m,m + 1) with n ∼ 2m2

3
could

lead to k ≥ 2
3
. The upper bound k ≤ 3

4
is the same as one gets for

adjacency using signatures, compare Remark 4.6.



CHAPTER 1

Preliminaries

In this chapter we set notations and recall facts that are used later
on. All maps and manifolds are assumed to be smooth.

1. Links and braids

A link is a 1-dimensional manifold embedded in a 3-dimensional
manifold. Links are always oriented and non-empty. A knot is a con-
nected link. If nothing else is specified, we study links in the Euclidean
3-space R3 or in the 3-sphere S3 = R3 ∪ {∞}. Mostly, no distinction
will be drawn between a link and its smooth isotopy class. We denote
the number of components of a link by r and the number of pieces of a
link that can be separated by 2-spheres by c. Of course, c is less than
or equal to r. A link with c 6= 1 is called a split link .

Every link is the closure of a braid by a very classical result of
Alexander [Ale23]. The braid index of a link L is the minimal number
of strands among braids with closure L. We recall the definition of
braids and their closures. A nice reference for braid theory is provided
by Birman [Bir74]. Let D denote the closed unit disc in C centered
at 0. For a positive integer b, fix a set P ⊂ [−1, 1] ⊂ D of b points.
A braid on b strands or b-braid β is an embedding of b disjoint closed
intervals—the strands—into the cylinder [0, 1]×D such that the pro-
jection of β to the middle line [0, 1] × {0} is a b-fold cover and such
that β intersects the 0 and the 1 level of [0, 1] × D exactly in P . We
consider braids up to isotopy fixing {0, 1} × D. Braids on b strands
form a group, where composition is given by stacking cylinders on top
of each other. This group, the braid group on b strands , is denoted by
Bb. A group presentation with generators a1, . . . , ab−1 and relations

aiaj = ajai for |i− j| ≥ 2 and aiajai = ajaiaj for |i− j| = 1,

was introduced by Artin [Art25]. The generator ai corresponds to
the braid in which strands i and i + 1 make a half turn around each
other; see Figure 1. When we speak of a “generator” of the braid group
we always mean such an ai. The closure of a braid β ⊂ [0, 1] × D is
obtained by identifying {0}×D with {1}×D yielding a link in the solid

10



1. LINKS AND BRAIDS 11

· · · · · ·

Figure 1. A generator of the braid group. The “axis”
of the cylinder [0, 1]×D, that is the first factor, is drawn
vertically in R3.

torus S1 ×D. The closure of a braid is easily understood to be a link
in R3 or S3 via a standard embedding of the solid torus S1 ×D in R3

or S3. We speak of a closed braid when we want to view the closure in
S1×D up to isotopy. Two elements of the braid group define the same
closed braid if and only if they are conjugate. We orient all strands
of braids in the same direction, say upwards, and links that arise as
closures of braids are oriented accordingly. The (algebraic) length of a
braid β, denoted by l(β), is defined to be the number of occurrences of
generators ai minus the number of occurrences of inverses of generators
a−1
i in a braid word for β. This is independent of the choice of braid

word.
A positive braid on b strands is an element β in Bb that can be

given by a positive braid word as1as2 · · · asl with si ∈ {1, · · · , b − 1}.
Knots and links that are closures of positive braids are called positive
braid knots and positive braid links , respectively.

Torus links are those links that can be isotoped to lie in the stan-
dard torus S1 × S1 ⊂ R3 such that all components define the same
homology class on the torus. They are uniquely determined by how
they wind along the standard meridian and longitude of the torus. Up
to reflection they are positive braid links. For two natural numbers
n ≥ 2 and m ≥ 2, we denote by T (n,m) = T (m,n) the (positive) torus
link obtained as the closure of the n-strand positive braid (a1 · · · an−1)

m

or alternatively as the link of the singularity xn − ym, see Section 4.
The braid index of a torus link T (n,m) is the minimum of n and m,
see [FW87, Corollary 2.4]. The torus link T (n,m) is a knot if and
only if n and m are coprime.

Let β be a b-braid and γ be a d-braid. The split union β ⊔ γ of
β and γ is the (b + d)-braid that is β on the first b strands and γ on
the other d strands. The connected sum β♯γ of β and γ is the (b+ d)-
braid given by ab(β⊔γ), that is, it is the split union with an additional
generator that “connects” the two braids. Corresponding notions for
links K and L are defined by choosing braids β and γ that close to K
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and L, respectively. Note that connected sums of links are only well
defined if one specifies which components of the links to connect.

All surfaces in this text are compact and orientable. For a surface
F , we denote by b1(F ), g(F ) and χ(F ) the first Betti number, the
genus and the Euler characteristic of F , respectively. A subsurface
F of a surface H is called H1-injective if the embedding induces a
injective map on the first integer homology H1(·,Z). If H has no closed
components, this is equivalent to the fact that F can be obtained from
H by removing 1-handles and 0-handles.

The first Betti number of a link L, denoted by b1(L), is defined to
be the smallest first Betti number of Seifert surfaces for L. For a braid
β, we denote by b1(β) the first Betti number of the closure of β. Here,
a Seifert surface for a link L in R3 is an oriented, embedded surface
with oriented boundary L. In Section 3 of this chapter and Chapter 2,
Seifert surfaces need not be connected, which allows in a natural way
to associate unique Seifert surfaces to positive braid links even if they
are split links, see Section 3, and which allows the inclusion of split
links in Theorem 2.1 without extra considerations. In the rest of the
thesis, Seifert surfaces are assumed to be connected.

Seifert surfaces that realize the first Betti number of their boundary
are called minimal Seifert surfaces . The genus of a knot K, denoted
by g(K), is half its first Betti number.

2. Distances of knots and links

Let K and L be knots. Their Gordian distance dG(K,L) is the min-
imal number of crossing changes needed to get from K to L, see e.g.
Murakami [Mur85]. A crossing change on a knot K is the following
operation. Fix some ball B in R3 such that the pair (B,K ∩B) is dif-
feomorphic to either one of the pairs depicted in Figure 2. Then replace

↔

Figure 2. A crossing change.

this pair by the other pair in Figure 2. There are two kind of cross-
ing changes. Changing from left to right (right to left) in Figure 2
is called a positive-to-negative crossing change (negative-to-positive
crossing change). Accordingly, crossings in a link diagram of a link
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in R3—a generic projection of the link to R2 with crossing informa-
tion—are called positive (negative) if they look as depicted in the left
(right) of Figure 2.

The unknotting number u(K) of a knot K, which was already stud-
ied by Wendt [Wen37], is the distance dG(K,O), where O denotes the
unknot—the unique knot with genus 0. The Gordian distance induces
a metric on the set of (isotopy classes of) all knots.

The cobordism distance dc between two links K and L is defined to
be the minimal |χ| of all cobordisms between K and L. A cobordism
between K and L is an oriented and smoothly embedded surface C in
S3 × [0, 1] with ∂C = K × {0} ∪ L × {1} such that every component
of C has boundary both in S3 × {0} and S3 × {1}. We note that
defining cobordism distance for knots using the genus instead of |χ|,
as is done in the introduction, yields a difference of a factor of 2. The
cobordism distance of a link L to the unknot is equal to the smooth
4-ball first Betti number b4

1(L) of L—the minimal first Betti number of
all connected, oriented and smoothly embedded surfaces F in B4 with
∂F = L ⊂ ∂B4 = S3. The smooth 4-ball genus g4s of a knot is defined to

be
b41
2
. Links that have cobordism distance zero are called concordant, a

cobordism realizing this is called a concordance. As an abstract surface
a concordance is just a disjoint union of annuli. For two knots K and
L we have dc(K,L) = 2g4s(K♯−L), where −L denotes the reflection of
L obtained by reflecting L through a plane and reversing orientation.
In particular, for every knot K one has g4s(K♯ − K) = 0, i.e. every
connected sum of a knot K with his reflection is concordant to the
unknot, see for example [Rol90].

A saddle move on a link is the operation given by changing the link
in a ball as indicated in Figure 3. Every cobordism can be isotoped

↔

Figure 3. A saddle move.

in S3 × [0, 1] such that the projection to [0, 1] is a Morse function,
i.e. it has a finite number of non-degenerate singular points projecting
to different singular values, which correspond to handle attachments.
Viewing [0, 1] as time parameter one can see such a cobordism as a
movie of S3. Such a movie consists of isotopies on the regular open
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intervals between the singular values. Going over a singular value an
unknotted component appears, a saddle move happens or an unknotted
component disappears corresponding to relative minima, saddles and
relative maxima in the cobordism, respectively.

Conversely, every such movie defines a cobordism. In particular, a
finite sequence of saddle moves changing a link K to a link L defines
a cobordism from K to L. For example, if a Seifert surface FK of K
is an H1-injective subsurface of a Seifert surface FL of L, then L can
be obtained from K by b1(FL)− b1(FK) saddle moves since removing
a 1-handle in a Seifert surface corresponds to doing a saddle move
on the link and to removing a 1-handle (a saddle) in the cobordism,
respectively. Of course, not every cobordism is given by saddle moves
only as any concordance between two non-isotopic knots shows.

Remark 1.1. The Gordian distance of two knots is larger than half
their cobordism distance. This follows from the fact that a crossing
change can be realized by two saddle moves and so by a cobordism of
genus 1.

More generally, even two crossing changes can be realized by a
cobordism of genus 1, as long as the two crossing changes are of opposite
kind. This can be seen as follows. Let B1 and B2 be two disjoint balls
where the crossing changes happen. We isotope B2 along the knot until
it sits inside B1. Since the two crossing changes are of opposite kind
the situation is as in the leftmost in Figure 4. Figure 4 indicates how

= −→−→

Figure 4. The ball B2 is isotoped into B1 (left). Two
saddle moves (indicated by arrows) realize the crossing
changes in B2 and B1.

two saddle moves, which together yield a genus 1 cobordism, achieve
the two crossing changes. Finally, one isotopes B2 back.

3. Minimal Seifert surfaces and fence diagrams for positive
braids

In this section we recall how to switch between three ways of viewing
positive braids; namely by their braid diagrams, by their associated
minimal Seifert surfaces and their fence diagrams.
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A braid diagram is a representation of a braid β in [0, 1]×D as the
projection to [0, 1] × [−1, 1] keeping the crossing information. When
drawing braid diagrams for a braid ai1ai2 · · ·ail , we start with the left-
most generator ai drawn as in Figure 1, then draw the second generator
on top, and so on. For example, the positive 3-braid a1a2 is represented

by the diagram , where the generators a1 and a2 are represented by

and a2 = , respectively. Since in a diagram associated with a
positive braid word all over-crossing strands go from left to right, re-
placing every crossing in the diagram with a horizontal line still allows
one to recover the positive braid. This yields fence diagrams of positive
braids as used by Rudolph [Rud98]. Let Fβ denote the Seifert surface
for the closure of β that is given by replacing every vertical line of the
fence diagram with a long vertical disc and every horizontal line with
a band connecting two discs. The fence diagram of a positive braid
β, seen as graph in R3, is a deformation retract of Fβ . We feel that
all the above becomes very clear by considering an example. Figure 5
provides the braid diagram, the fence diagram and the Seifert surface

Figure 5. The braid diagram, the fence diagram and
Fβ for the positive 4-braid word a1a2a1a3a2a2a1a3. This
image is based on a template by Sebastian Baader.

Fβ of the closure, for the positive 4-braid β = a1a2a1a3a2a2a1a3.
In fact, Fβ is the unique (up to isotopy) minimal Seifert surface

for the closure of the positive braid β. This follows from the fact
(due to Stallings [Sta78]) that every component of the surface Fβ is a
fiber surface, which always is the unique minimal Seifert surface for its
boundary.
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In particular, the first Betti number of a positive braid is equal to
the first Betti number of the corresponding fence diagram. Hence,

(2) b1(β) = l(β)− b+ c for every positive braid β,

where l(β) is the length of β, b is the number of strands of β and
c equals 1 plus the number of generators ai that are not used in a
positive braid word for β. For positive braids β, this c is equal to the
number c of pieces of the closure of β that can be separated by spheres.
Equality (2) also follows from Bennequin’s inequality [Ben83].

As there are several positive braid words for most positive braids,
there are also several fence diagrams. Two fence diagrams for the same
positive braid are related by moves corresponding to the braid relations.
The relation aiaj = ajai for |i − j| ≥ 2 is incorporated by looking at

fence diagrams up to planar isotopy, e.g. = = .
The braid relation aiajai = ajaiaj for |i − j| = 1 corresponds to the

move = .

4. Algebraic knots and links

We recall the notion of an algebraic knot or link following Mil-
nor [Mil68]. Let f : (C2, 0) → (C, 0) be a polynomial function or
a holomorphic function germ that is square-free in the ring of holo-
morphic function germs C{x, y} and has an isolated singularity at the
origin (in fact, “isolated” follows from “square-free”). We abbreviate
this by calling such an f a singularity . The transversal intersection
of its zero-set V (f) ⊆ C2 with a sufficiently small sphere around the
origin Sε = {(x, y) ∈ C2 | ‖x‖2+‖y‖2 = ε2} is a well-defined link K(f)
in Sε

∼= S3 called the link of the singularity f . Such a sufficiently small
sphere and the closed ball Bε that the sphere encloses are called Mil-
nor sphere andMilnor ball , respectively. The number of components of
K(f) is equal to the number of irreducible factors of f in C{x, y}. For
example, the torus link T (n,m) is the link of the singularity xn − ym.
In this case the Milnor sphere can be taken to be the standard unit
sphere S3; thus,

T (n,m) = S3 ∩ {(x, y) ∈ C2 | xn − ym = 0} ⊂ S3.

Knots and links that arise as links of singularities are called algebraic.
They are positive braid links, compare Remark 4.16; however, most
positive braid links are not algebraic links. An explicit description of
algebraic links is, for example, provided in [BK86]. The pair equiva-
lence class of (Bε, f

−1{0} ∩ Bε) up to homeomorphism of topological
pairs is called the topological type of the singularity . Two singularities
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are of the same topological type if and only if their links are isotopic.
The Milnor number µ of a singularity f is defined to be the first Betti
number of the smooth surface Bε ∩ f−1(η) for small η 6= 0. In fact, µ
is equal to the first Betti number of the link K(f) of the singularity
since Milnor showed that Bε ∩ f−1(η) is diffeomorphic to the minimal
Seifert surface of K(f) for small η 6= 0. The multiplicity m ≥ 1 of f is
the minimal degree of monomials in the power series f with non-zero
coefficient. In particular, m > 1 if and only if f is singular, that is
Df(0) = 0. In fact, the multiplicity of f is equal to the braid index of
K(f), which is a consequence of [FW87, Corollary 2.4] as explained
in [Wil88].

For a singularity f in C{x, y} with r irreducible factors, one denotes
µ+r−1

2
by δ. Roughly speaking this δ-invariant measures how much

genus (of the zero-set of f) is “hidden” in the singularity. Note that
δ = 0 for non-singular f since µ = b1(O) = 0 and r = 1, and that
δ = 1 for the ordinary double point singularity f = y2 − x2 since
µ = b1(T (2, 2)) = 1 and r = 2.

Let f be a singularity that is irreducible in C{x, y}. We now de-
scribe how f can be “prepared” for study by a small linear coordinate
change. This will only be used in the proofs of Proposition 4.9 and
Proposition 4.12. References are [BK86] and [GLS07]. If f is non-
singular at 0, the zero-set V (f) is locally parametrized as a graph,
i.e. after a small linear coordinate change the points of V (f) are lo-
cally parametrized by (x, y(x)) for a holomorphic function germ y(x)
in C{x}. If f is singular at 0 with multiplicity m, one still has the
following.

Lemma 1.2. After a small linear coordinate change, there exists a
germ y(s) in C{s} such that locally around the origin V (f)∩ (Dε×C)
is the image of

φ : D
ε

1
m
⊂ C→ C2, s 7→ (sm, y(s)).

The map φ is called normalization or resolution of the singularity.
Lemma 1.2 follows from the Weierstrass preparation theorem, which
states that after a small linear coordinate change we have

f = u(x, y)(ym + cm−1(x)y
m−1 + · · ·+ c0(x))

where u and ci are unique germs in C{x, y} and C{x}, respectively,
with u(0, 0) 6= 0 and ci(0) = 0. The germ f can be recovered from y(s)
up to the unit u. Indeed,

ym + cm−1(x)y
m−1 + · · ·+ c0(x) =

∏

ξm=1

(
y − y(ξx

1
m )
)
.
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The power series with rational powers given by y(x
1
m ) is called Puiseux

expansion of f .

Remark 1.3. Two germs f0 and f1 have the same link of singularity
if and only if there is a family of germs ft (depending smoothly on
t ∈ [0, 1]) such that µ is constant on this family. Indeed, if two germs
can be connected by a µ-constant path, then the associated algebraic
links are isotopic [TR76]. The converse follows by reducing to the
case when the germs f0 and f1 are irreducible with Puiseux expansions
y0(x

1
m ) and y1(x

1
m ) and using that Puiseux expansions for singularities

with the same knot can be connected by a family yt(x
1
m ) that have all

the same knot, in particular the same µ; see e.g. [BK86]. This yields

a µ-constant family of germs ft =
∏

ξm=1

(
y − yt(ξx

1
m )
)
∈ C{x, y}.

Remark 1.4. Fix a Milnor ball B for an irreducible germ f such
that V (f) ∩ B is a subset of the image of a normalization

φ : D
ε

1
m
→ C2, s 7→ (sm, y(s)).

As f is irreducible we have δ = µ
2
. A small generic deformation

of y(s), say ỹ(s), yields an immersion φ̃ : D
ε

1
m
→ C2 for which all

multiple points are transversal double points. This means that for

g =
∏

ξm=1

(
y − ỹ(ξx

1
m )
)
, the zero-set V (g) ∩ B has only ordinary

double point singularities. Also, the number of such double points is
equal to δ, which follows from the fact that the zero-set V (g) cannot
have genus other than what is “hidden” in its ordinary double points
as it is the image of an open disc in C under φ̃, see e.g. [GLS07].

From this point of view, ordinary double points are the generic
singularities. If f is not irreducible, the above can be done to every
factor of f independently such that the irreducible pieces intersect in
ordinary double points and the total number of double points is δ.

5. Signatures of links

In this section, we introduce the signature, and more generally the
Levine-Tristram signatures. Signatures are present in this thesis in two
ways. Firstly, the signature is studied on the class of all positive braid
links, see Chapter 2. Secondly, we use signatures as obstructions to
adjacency between torus links.

The signature of a link L in R3 is defined as follows. Choose
any Seifert surface F for L and define a bilinear form S : H1(F,Z) ×
H1(F,Z) → Z on the first homology group of F as follows. The form
S assigns to two (classes of sums of) curves γ, δ in F the value of the
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linking number of γ with a curve in R3\F that is obtained by moving
δ a small amount along the normal vector field of F . Writing S in a
basis for H1(F,Z) yields an integer matrix A, called a Seifert matrix
for L. The number of positive eigenvalues minus the number of neg-
ative eigenvalues of the symmetrization of A is an integer-valued link
invariant, called the signature, see [Tro62][Mur65]. The signature of
a link L is denoted by σ(L). The signature of a braid β, denoted by
σ(β), is the signature of its closure. There is an issue with the sign
convention for the signature in the literature. We choose sign conven-
tions (for example in the definition of the linking number) such that
all (positive) torus knots have positive signature, e.g. σ(T (2, 3)) = 2
rather than σ(T (2, 3)) = −2.

More generally, Levine and Tristram defined for every ω in S1\{1}
a notion of signature as follows [Lev69][Tri69].

Definition 1.5. Let A be a Seifert matrix of a link L and let ω be
in S1\{1} ⊂ C. The ω-signature σω(L) ∈ Z is defined to be the number
of positive eigenvalues minus the number of negative eigenvalues of the
Hermitian matrix (1− ω)A+ (1− ω)At.

The ω-signature is also independent of the choice of Seifert matrix,
i.e. it is a link invariant. One has σω = σω. Setting ω = −1 one recovers
the classical signature σ = σ−1.

For a fixed link L the signature σω(L) is piecewise-constant in ω,
“jumping” at a finite number of ω. For a Seifert matrix A of a knot
K, if ω is a root of unity of prime order, then (1 − ω)A + (1 − ω)At

is invertible, and so σω(K) is even and σω(K) does not jump at ω.
From now on, every ω is a root of unity of prime order. As roots of
unity of prime order are dense in S1, one only loses information on
“jumping”-points.

We collect some properties of the signatures. The ω-signatures are
additive on split union and connected sums1 of links and reflection of
a link changes the sign of the signature.

Lemma 1.6. Let L be a link. If L is a split union or a connected
sum of links L1, . . . , Lk, then σω(L) =

∑k
i=1 σω(Li). If −L is the link

obtained from L by reflection and changing all (or none) of the orien-
tations, then σω(−L) = −σω(L).

Lemma 1.6 follows from the fact that the direct sum of Seifert
matrices Ai for Li provides a Seifert matrix A = ⊕k

i=1Ai for L and that
if A is a Seifert matrix for L, then −A is a Seifert matrix for −L.

1The connected sum L of links with more than one component is not well-
defined, but all possible resulting links L have the same signature.
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The fact that deleting the first row and the first column of a Her-
mitian matrix changes its signature by at most ±1 yields the following
Lemma, see e.g. [Tri69].

Lemma 1.7. If a Seifert surface FK for a link K is obtained from
a Seifert surface FL for a link L by adding or deleting a 1-handle, then

σω(K)− 1 ≤ σω(L) ≤ σω(K) + 1.

The following result by Tristram is the basis for signature obstruc-
tions to adjacency.

Lemma 1.8. [Tri69] Let K and L be links. If there is a cobordism
C in S3×[0, 1] from K×{0} to L×{1}, then |σω(L)−σω(K)| ≤ |χ(C)|.
In particular, |σω(L)− σω(K)| ≤ dc(K,L).

We finish this section by providing results on signatures of torus
links, which are rather well understood. The following Lemma pro-
vides a combinatorial formula for the Levine-Tristram signatures of
torus links; see Gambaudo and Ghys [GG05]. For σ = σ−1 it is orig-
inally due to Brieskorn and Hirzebruch [Bri66][Hir95]. We denote
the cardinality of a finite set S by ♯S. In what follows cardinality is
counted with multiplicity, e.g. ♯{1, 1, 2} = 3.

Lemma 1.9. Let n ≥ 2 and m ≥ 2 be integers and set S = { k
n
+

l
m
| 1 ≤ k ≤ n− 1 and 1 ≤ l ≤ m− 1} ⊂ [0, 2]. Then for θ ∈ [0, 1]

we have

σe2πiθ(T (n,m)) = ♯ (S ∩ [θ, θ + 1])− ♯ (S\(θ, θ + 1)) .

Calculations using this can be tedious, as the reader will experi-
ence in Section 3 of Chapter 3. For the classical signature σ, Gordon,
Litherland and Murasugi provided the following recursive formulas.

Lemma 1.10. [GLM81, Theorem 5.2] Let n, q > 0.
(I) Suppose 2q < n.
If q is odd, then σ(T (n, q)) = σ(T (n− 2q, q)) + q2 − 1.
If q is even, then σ(T (n, q)) = σ(T (n− 2q, q)) + q2.
(II) σ(T (2q, q)) = q2 − 1.
(III) Suppose q ≤ n < 2q.
If q is odd, then σ(T (n, q)) + σ(T (2q − n, q)) = q2 − 1.
If q is even, then σ(T (n, q)) + σ(T (2q − n, q)) = q2 − 2.
(IV) σ(T (n, q)) = σ(T (q, n)), σ(T (n, 1)) = 0, and σ(T (n, 2)) = n− 1.

Remark 1.11. For a torus link T we have σ(T ) = b1(T ) if and
only if T has braid index less than or equal to 2 or is one of three links
T (3, 3), T (3, 4) and T (3, 5). Another family of positive braid links that
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we use later on and for which the signature equals the first Betti number
is {Dn}n≥2, where Dn is the closure of the 3-braid an−2

1 a2a1a1a2. See,
for example, Baader’s minor description of positive braid links with
b1 = σ [Baa14].



CHAPTER 2

The signature of positive braids is linearly

bounded by their first Betti number

In this chapter we provide a linear lower bound for the signature of
positive braids in terms of the first Betti number. As a corollary we get
a linear lower bound on the topological 4-ball genus of positive braid
knots, where the topological 4-ball genus g4t (K) of a knot K in S3 is
the minimal genus of topologically locally-flat embeddings of oriented
surfaces F in the 4-ball B4 with boundary ∂F = K ⊂ ∂B4 = S3.

For positive braids, the first Betti number is fully understood since
b1(β) = l(β) − b + c for every positive braid β, see (2). On the other
hand the signature is not well understood for positive braids, even
though its calculable for concrete examples.

We relate the first Betti number and the signature for positive
braids up to a linear factor. One can restrict considerations to braids
with non-split closure (i.e. c = 1) because the first Betti number and
the signature are additive on split unions of braids, see Lemma 1.6.
By the definition of the signature, one has that −b1 ≤ σ ≤ b1 holds
for all links. Rudolph showed that the signature is strictly positive
for non-trivial positive braids [Rud82], and Stoimenow provided a

monotonically growing function f : N → R≥0 of order n
1
3 such that

σ(β) ≥ f(b1(β)) [Sto08]. Here non-triviality of a positive braid β just
means b1(β) > 0, i.e. the closure of β is not a split union of unknots.

Murasugi’s result that half the signature is a lower bound for the
smooth 4-ball genus [Mur65], as stated in Lemma 1.8, was general-
ized to the topological 4-ball genus by Kauffman and Taylor [KT76].
Thus, Stoimenow’s result provides a lower bound for the topological
4-ball genus of positive braid knots that grows monotonically to in-
finity in terms of their genus. In the stronger, smooth setting much
more is known. In fact, on positive braids the smooth 4-ball genus
and smooth 4-ball first Betti number even agree with the genus and
the first Betti number, respectively, by Rudolph’s slice-Bennequin in-
equality [Rud93], which is based on the Thom conjecture as proved
by Kronheimer and Mrowka [KM93].

22
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All that follows is motivated by the following (maybe optimistic)
conjecture.

Conjecture 1. For all non-trivial positive braids β, the signature
is linearly bounded as follows b1(β) ≥ σ(β) > 1

2
b1(β).

This would be optimal, as there are families of positive braids on
which the ratio σ

b1
gets arbitrarily close to 1

2
. For example, positive

braids βn that have the T (n, n+1) torus knots as closures. We provide
a linear lower bound as in the conjecture. However, the linear factor is
smaller than 1

2
.

Theorem 2.1. For all positive braids β, the signature is linearly

bounded from below as follows σ(β) ≥ b1(β)
100

.

As half the signature is a lower bound for the topological 4-ball
genus, Theorem 2.1 has the following immediate corollary.

Corollary 2.2. The topological 4-ball genus of positive braid knots
is at least one percent of their genus. I.e. for a knot K that is obtained
as the closure of a positive b-braid β, we have

gt4(K) ≥ g(K)

100
=

l(β)− b+ 1

200
.

Corollary 2.2 complements the following Remark.

Remark 2.3. It is interesting to notice that the topological 4-ball
genus of positive braid knots is generally strictly smaller than their
genus. In fact, one can find families of positive braid knots for which
the topological 4-ball genus is linearly bounded away from the genus.
For example,

g4s(T (5, 5n+ 1)) ≤ 9n =
9

10
g(T (5, 5n+ 1))

holds for all positive integers n. This is seen as follows. There is a
knot K with Alexander polynomial 1 and a minimal Seifert surface
F of genus 1 such that the Seifert surface Fn = F♯ · · · ♯F of the n-
times connected sum Kn = K♯ · · · ♯K is an H1-injective subsurface
of the minimal Seifert surface of T (5, 5n + 1). In particular, there
is a cobordism of genus g(T (5, 5n + 1)) − n = 10n − n = 9n from
T (5, 5n + 1) to Kn. The knot Kn has Alexander polynomial 1 and,
therefore, g4t (Kn) is 0 as a consequence of Freedman’s work [Fre82].
Hence, g4t (T (5, 5n + 1)) is less than or equal to 9n. A possible choice
for K is the closure of the 6-braid

(a2a3a4)a5(a2a3a4)
−1a1a2a

−1
1 a5a2a3a

−1
2 a3a4(a1a2)a3(a1a2)

−1.
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Figure 1 shows how a minimal Seifert surface of K is a H1-injective
subsurface of the minimal Seifert surface of T (6, 5). In a similar way,

Figure 1. The Seifert surface of T (5, 6) (right) with in-
dications what arcs (red) to cut open to obtain a genus 1
Seifert surface for K (left).

the minimal Seifert surface ofKn is seen to be a H1-injective subsurface
of the minimal Seifert surface of T (5n+ 1, 5).

We prove Theorem 2.1 via the study of the asymptotic signature.
Gambaudo and Ghys observed that on the b-strand braid group the
signature is a quasi-morphism of defect b− 1, i.e. for any two b-braids
α, β we have

|σ(αβ)− σ(α)− σ(β)| ≤ b− 1, see [GG04, Proposition 5.1].

Therefore, the homogenization

σ̃(β) = lim
i→∞

σ(βi)

i
,
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called the asymptotic signature of β, is well-defined. Noting that

lim
i→∞

b1(β
i)

i
= lim

i→∞
l(βi)

i
= l(β),

we see that Conjecture 1 implies the following homogenized analog.

Conjecture 2. For all positive braids β, the homogenization of
the signature is linearly bounded as follows l(β) ≥ σ̃(β) ≥ 1

2
l(β).

We provide such a linear bound, but our factor is 1
16

rather than 1
2
.

Theorem 2.4. For every positive braid β, we have σ̃(β) ≥ 1
16
l(β).

First, let us recapitulate known linear bounds for the signature of
a non-trivial positive braid β in Bb, which of course yield analogs for
the homogenization. If b = 2, then the closure of β is the torus link
T (2, l(β)) and σ(β) = b1(β) = l(β) − 1, see Lemma 1.10. For b =
3, Stoimenow (and by different methods Yoshiaki Uchida) has shown
σ(β) > 1

2
b1(β) [Sto08]. This can also be proven with an argument

similar to the proof of Proposition 2.15. The case b = 4 is our main
concern in this chapter and the following is our main result.

Theorem 2.5. For every positive 4-braid β, we have σ̃(β) ≥ 5
12
l(β).

Our interest in Theorem 2.5 stems from the fact that it implies
Theorem 2.1 and Theorem 2.4. Indeed, Theorem 2.4 follows immedi-
ately from Theorem 2.5 and the following observation, which we prove
at the end of Section 2.

Lemma 2.6. Let C be a positive constant such that σ(β) > Cb1(β)
(respectively σ̃(β) ≥ Cl(β)) holds for all non-trivial positive b-braids.
Then

σ(β) > C̃b1(β)
(
respectively σ̃(β) ≥ C̃l(β)

)
, where C̃ = C(b−1)−1

b
,

holds for all non-trivial positive braids β.

Remark 2.7. Lemma 2.6 remains true when the strict inequalities
are replaced by inequalities.

The upshot of Theorem 2.5 is that it provides a bound with a factor
that is strictly bigger than 1

3
. If one is only interested in the fact that

some linear bound exists for positive 4-braids, Stoimenow provided
such a bound with the factor 2

11
in [Sto08]. In fact, we establish

(3) σ(β) >
1

3
b1(β) for all non-trivial positive 4-braids β,

without relying on Theorem 2.5, see Proposition 2.15. However, these
results do not provide linear bounds for general positive braids when
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combined with Lemma 2.6. For example, Lemma 2.6 applied to (3)
just recovers Rudolph’s positivity result, i.e. σ(β) > 0 for all non-trivial
positive braids β.

In Section 1 we use Theorem 2.5 to prove Theorem 2.1. Section 2
contains generalities on the signature of positive braids, which are ap-
plied to 4-braids in Section 3 to prove (3) and Theorem 2.5.

We conclude the introductory part of this chapter with some ev-
idence to support the conjectured 1

2
b1-bound. For positive 3-braids

the conjecture holds. And for positive 4-braids up to 17 crossings it
is also checked, compare Stoimenow’s table in [Sto08]. All non-trivial
torus links satisfy σ > 1

2
b1, which can be checked using the Gordon-

Litherland-Murasugi reduction formulas [GLM81, Theorem 5.2], see
Lemma 1.10. More generally, the conjecture holds for all algebraic
links. This can be checked using the formula provided by Shinohara,
see [Shi71], which calculates the signature of a satellite knot in terms
of the signatures of its companion and its pattern. Using Shinohara’s
formula one can also check that the conjecture holds for a lot of other
families of positive braid knots that are cables of positive braid knots.
An improved version of the first inequality of [Baa13, Theorem 3]
shows that the conjecture holds for positive braids that are given by
a positive braid word in which generators appear with power at least
2, i.e. a braid word of the form ak1s1 · · · akrsr with ki ≥ 2. This in par-
ticular includes “sufficiently complicated” positive braids as studied
in [FKP13].

1. From asymptotic signature to signature

In this section we provide consequences of Theorem 2.5 for the
(non-homogenized) signature, including a proof of Theorem 2.1. Ad-
ditionally to Theorem 2.5 this uses Proposition 2.15 and Lemma 2.6,
which are proven in Section 2 and Section 3.

Having a linear bound σ ≥ Cb1 for all positive braids on b or
fewer strands yields a bound σ̃ ≥ Cl for all positive braids on b or
fewer strands. The converse is true, if one allows an error of adding an
additive constant.

Lemma 2.8. Let C be a positive constant such that

σ̃(β) = lim
i→∞

σ(βi)

i
≥ Cl(β)

for all positive b-braids β. Then, for every positive b-braid β, we have

σ(β) ≥ Cl(β)− b+ 1.
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Lemma 2.8 is an immediate consequence of the fact that the signa-
ture and its homogenization stay close. That is, for every β in Bb, we
have

|σ(β)− σ̃(β)| ≤ b− 1,

which follows from σ being a quasi-morphism of defect b− 1.
For positive 4-braids with non-split closure (i.e. c = 1), applying

Lemma 2.8 to Theorem 2.5 and using (2) yields σ(β) ≥ 5
12
(b1(β)+3)−3.

Therefore, we get the following affine signature bound for positive 4-
braids.

Corollary 2.9. If β is a positive 4-braid, then σ(β) ≥ 5
12
b1(β)− 7

4
.

Corollary 2.9 can be used to prove the following Proposition.

Proposition 2.10. If β is a positive 4-braid, then

σ(β) ≥ (
1

3
+

1

75
)b1(β).

In turn, Proposition 2.10 implies Theorem 2.1 by Lemma 2.6 since
we have

C̃ =
C(4− 1)− 1

4
=

1

100
for C =

1

3
+

1

75
.

Proof of Proposition 2.10. Set C = 1
3
+ 1

75
. Corollary 2.9 can

be written as

(4) σ(β) ≥ 5

12
b1(β)−

7

4
= Cb1(β) + (

5

12
− C)b1(β)−

7

4

for all positive 4-braids β. The constant C is chosen such that (4) yields
σ(β) ≥ Cb1(β) whenever b1(β) ≥ 25. On the other hand, we have

σ(β) > b1(β)
3

for all non-trivial positive 4-braids, see Proposition 2.15,

which can be written as σ(β) ≥ b1(β)
3

+ 1
3
. In particular,

σ(β) ≥ b1(β)

3
+

1

75
b1(β)

for all positive 4-braids with b1 ≤ 25. �

If one were able to strengthen Corollary 2.9 to a linear bound for
the signature with factor 5

12
or even 1

2
, then Theorem 2.1 would follow

immediately from Lemma 2.6 with factor 1
16

or 1
8
, respectively, rather

than 1
100

.
Applying Lemma 2.8 to Theorem 2.4 yields the following affine

linear bound.
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Corollary 2.11. For every positive braid β on at most b strands,
we have

σ(β) ≥ 1

16
b1(β)−

15

16
(b− 1).

Corollary 2.11 can also be proved by applying a slight modification
of the proof of Lemma 2.6 to Corollary 2.9. With this, the constant
15
16
(b − 1) is improved to be 7

4
⌊ b
4
⌋. We remark that Corollary 2.11

shows that the topological 4-ball genus of positive braid knots grows
asymptotically at least as fast as 1

16
of the genus.

2. Signature of positive braids

In this section we discuss properties of the signature of braids
and prove Lemma 2.6. Firstly, if we permute braids cyclically, then
they have the same closure and thus the same signature. I.e. let
β = aε1i1 a

ε2
i2
· · ·aεlil be a braid, then aε2i2 · · ·a

εl
il
aε1i1 has the same closure

and thus the same signature as β. If we add or delete a generator in a
braid word, then the signature of the corresponding braid changes by
at most ±1; this is a consequence of Lemma 1.7. As mentioned above,
σ is a quasi-morphism on the b-strand braid group.

Lemma 2.12. For any two b-braids α, β, we have

|σ(αβ)− σ(α)− σ(β)| ≤ b− 1.

Using the fact that cyclic permutations of a braid have the same
signature we can state this as follows.

Corollary 2.13. For b-braids α, β, γ, we have

|σ(αγβ)− σ(αβ)− σ(γ)| ≤ b− 1.

Lemma 2.12 is based on Lemma 1.7 and the fact that there is a
Seifert surface for αβ that can be obtained from the connected sum of
Seifert surfaces for α and β by adding b− 1 1-handles, see Gambaudo
and Ghys for a proof [GG04, Proof of Proposition 5.1].

Remark 2.14. If α or β can be written as a braid word without
one or several generators ai, then the statement of Lemma 2.12 is true
with defect strictly smaller than b− 1 by the same proof. In fact,

|σ(αβ)− σ(α)− σ(β)| ≤ b−max{c(α), c(β)},
where c(α) and c(β) denote 1 plus the number of generators that are
not needed in a braid word for α and β, respectively.

In particular, for any α, β in Bb and any integer n we have

|σ(αani β)− σ(αβ)− σ(ani )| ≤ 1.
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Before using the above on positive 4-braids to prove Theorem 2.5,
we prove Lemma 2.6.

Proof of Lemma 2.6. We only prove the statement for σ, the
proof for σ̃ is similar. Let β be a non-trivial positive braid word in
some braid group Bn. Without loss of generality c = 1, i.e. every
generator ai with 1 ≤ i ≤ n− 1 is contained in β at least once.

The idea of the proof is to delete generators in β such that a con-
nected sum of braids on b or fewer strands remains.

For i in {1, 2, . . . , b}, we denote by β(i) the braid obtained from β
by deleting all but one (say the leftmost) ak for all k in {i, i + b, i +
2b, i + 3b, . . .}. Figure 2 illustrates how β(i) is obtained from β. The

Figure 2. A fence diagram of a positive braid β on 8
strands (left) with indications (red) what generators to
delete to obtain β(3) (right) if b = 3. The closure of β(3)
is a connected sum of the closures of two 3-braids and a
2-braid.

closure of such a β(i) is a connected sum of closures of positive braids

on b or fewer strands. Since we have b1(β) =
∑n−1

k=1(♯{ak in β} − 1),
there is an i such that

(5) b1(β(i)) ≥
b− 1

b
b1(β).

We fix such an i. Let B1, . . . , Bl be positive braids on at most b strands
such that the closure of β(i) is the connected sum of the closures of
the Bj . Thus, additivity of the first Betti number and the signature
on connected sums (see Lemma 1.6), the assumption σ > Cb1 for non-
trivial positive braids on b strands, and (5) yield

σ(β(i)) =

l∑

j=1

σ(Bj) >

l∑

j=1

Cb1(Bj) = Cb1(β(i)) ≥
C(b− 1)

b
b1(β).

The braid β(i) is obtained from β by deleting b1(β)−b1(β(i)) ≤ 1
b
b1(β)

of the generators. Since by Lemma 1.7 deleting one generator changes
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the signature by at most ±1, we get

σ(β) ≥ −1
b
b1(β) + σ(β(i))

> −1
b
b1(β) +

C(b− 1)

b
b1(β)

=
C(b− 1)− 1

b
b1(β). �

3. Signature of positive 4-braids

In this section we provide a 1
3
-linear bound for the signature of pos-

itive 4-braids and we prove Theorem 2.5. Note that positive braids are
represented by fence diagrams as described in Section 3 of Chapter 1.

Proposition 2.15. For all non-trivial positive 4-braids β, we have
σ(β) > 1

3
b1(β).

For b1 > 21, Proposition 2.15 follows from Corollary 2.9. We pro-
vide a complete proof, which is independent of Corollary 2.9.

Proof of Proposition 2.15. Let β be a positive 4-braid and
choose a positive braid word w = ai1ai2 · · · ail for β or cyclic permu-
tations of β such that the number of a2 in this braid word is minimal
among all possible such positive braid words. Without loss of gener-
ality we assume that w does contain all three generators ai at least
once. Also, we may assume (by cyclic permutation and using the braid
relations) that the first two letters of w are not a2, e.g. we consider

a1a1a3a2a2 = instead of a2a1a1a3a2 = . Let B1, . . . , Bn

be the blocks of consecutive a2 and ki the number of ai in w. Of course
k2 ≥ n holds, and, by the assumption of minimality of the number of
a2 in w, we have at least two generators between two consecutive Bi,
which yields k1 + k3 ≥ 2n. Therefore,

(6)
k1 + k2 + k3

3
≥ n.

We first show σ(β) ≥ 1
3
b1(β). Let β ′ denote the braid obtained

from β by removing B2, B3, . . . , and Bn. By Remark 2.14 we have

σ(β) ≥ σ(β ′) +
k∑

i=2

σ(Bi)− (n− 1)

= σ(β ′) +
k∑

i=2

(l(Bi)− 1)− (n− 1).
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The closure of β ′ is a connected sum of the torus links

T (2, k1), T (2, l(B1)) and T (2, k3).

This yields σ(β ′) = k1−1+k3−1+ l(B1)−1 by Lemma 1.6. Therefore,

σ(β) ≥ k1 − 1 + k3 − 1 + l(B1)− 1 +
k∑

i=2

(l(Bi)− 1)− (n− 1)

= k1 − 1 + k3 − 1 +

k∑

i=1

(l(Bi)− 1)− (n− 1)

= k1 − 1 + k3 − 1 + k2 − n− (n− 1)

= k1 + k2 + k3 − 2n− 1 ≥ k1 + k2 + k3
3

− 1 =
b1(β)

3
,

where in the last line (6) and b1(β) = k1 + k2 + k3 − 3 are used.
We observe that if inequality (6) is a strict inequality, then the

above calculation proves σ(β) > 1
3
b1(β). Thus, it remains to consider

w satisfying k1+k2+k3
3

= n, which implies that the inequalities k2 ≥ n
and k1 + k3 ≥ 2n are equalities. Therefore, the blocks Bi consist
of a single a2 and in w we have exactly two generators between two
consecutive Bi. We write w as ai1aj1a2ai2aj2a2 · · · ainajna2, for some
il, jl in {1, 3}.

Since β contains all types of generators and is non-trivial we have
k2 = n ≥ 2. Removing all but the last two a2 in w yields a positive
4-braid β ′′ with

l(β ′′) = l(β)− (n− 2) = 3n− (n− 2) = 2n+ 2.

The braid β ′′ satisfies σ = b1, which is seen as follows. The braid β ′′

equals ai1a
j
3a2γa2 with i + j = 2n − 2, where γ is a1a3, a

2
1 or a23. The

closure of ai1a
j
3a2a1a3a2 with i + j = 2n− 2 is the torus link T (2, 2n),

for which σ = b1 holds. The closure of ai1a
j
3a2a1a1a2 is a connected

sum of the torus link T (2, j) and the closure of the 3-braid ai1a2a1a1a2,
which both satisfy σ = b1 by Remark 1.11. Similarly, the closure of
ai1a

j
3a2a3a3a2 is a connected sum of the torus link T (2, i) and the closure

of the 3-braid aj1a2a1a1a2.
Using Lemma 1.7, σ(β ′′) = b1(β

′′) and b1(β) = k1 + k2 + k3 − 3 we
calculate

σ(β) ≥ σ(β ′′)− (n− 2) = b1(β
′′)− n+ 2 = 2n− 1− n + 2

= n + 1 =
k1 + k2 + k3

3
+ 1 =

b1(β)

3
+ 2. �
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The strategy for the proof of Theorem 2.5 is the following. To
a braid β we add roughly 1

2
l(β) generators such that the resulting

braid β̃ is simple enough that one can prove σ̃(β̃) ≥ 2
3
l(β̃) = l(β).

Since σ̃(β) ≥ −1
2
l(β) + σ̃(β̃) holds by Lemma 1.7, we conclude that

σ̃(β) ≥ 1
2
l(β) holds. In fact, this only works for a part of the braid

(at least for 2
3
of the braid in terms of length) and for the rest of

the braid we are only able to prove σ̃ ≥ 1
4
l. Combining this yields

σ̃(β) ≥ 2
3
1
2
l(β) + 1

3
1
4
l(β) = 5

12
l(β).

The braid β̃ will be obtained from β using the following Lemma.

Lemma 2.16. Let B be a positive 4-braid of length 4. If B is not

a2a1a1a2 = or a2a3a3a2 = ,

then one can add two generators to B such that it becomes

∆ = a1a3a2a1a3a2 = ,

L = a1a2a3a1a2a3 = , or R = a3a2a1a3a2a1 = .

Here, ‘adding a generator to a positive braid β’ means choosing
some positive braid word for β and then adding a generator ai some-
where in this word.

Proof. We assume that B is represented as a braid word such

that the number of a2 in B is minimal, e.g. a2a1a2a1 = is not

considered because it represents the same braid as a1a2a1a1 = .

We group all possible B according to the number of a2 contained in B
and proceed case by case. Cases are only consider up to rotations and
reflections. Newly added generators are marked in red.

• The braids of length 4 with no a2 are , , and .

In we first add one a2 to get = and then add a a3

to get = = = L. In the other cases we add two

a2 as follows.

= L and = ∆.
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• The following are all B with one a2. We have always indicated
how to add two generators (red) yielding L,R, or ∆.

= L, = L, = L, and = L

• If B contains two a2, but is not

a2a1a1a2 = or a2a3a3a2 = ,

then it is one of the following (as before it is indicated in red which
generators to add).

= L, = ∆, = ∆, = ∆, = L.

• Finally, there are only two B with 3 or 4 a2. Namely

= L and = L. �

Proof of Theorem 2.5. Let β = ai1ai2 · · · ail be a positive 4-
braid of length l. We fix a positive integer n that is a multiple of 4
and study βn, which is a braid of length nl. First, we write βn as
B1B2 · · ·Bnl

4
, where every Bi is a positive braid of length 4. Let k be

the number of a2a1a1a2 = and a2a3a3a2 = among the Bi.

We may assume that k is less than or equal to 1
3
nl
4

= nl
12
. For if

this were not the case, we switch βn to one of the cyclic permutations
βn
1 = a−1

i1
βnai1 or βn

2 = a−1
i2
a−1
i1
βnai1ai2 , which have the same closure as

βn. It is easy to see that if we decompose βn, βn
1 , and βn

2 into blocks

of length 4 and add up the number of and in all three

decompositions, we get at most nl
4
; thus, k ≤ 1

3
nl
4

for at least one of
βn, βn

1 , and βn
2 .

Now, we apply Lemma 2.16 to change βn to β̃n = B̃1B̃2 · · · B̃nl
4
,

where the B̃i are braid words of length 4 or 6 that are chosen as follows.

If Bi is or , then B̃i is Bi. Otherwise, B̃i is equal to L,R,

or ∆ such that B̃i can be obtained from Bi by adding 2 generators,
which is possible by Lemma 2.16. By Lemma 1.7 we have

σ(βn) ≥ σ(β̃n)− 2(
nl

4
− k).
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For a braid α, let αrot denote the braid represented by the braid
diagram that is obtained by rotating a braid diagram for α by 180
degrees, where braid diagrams are understood to lie in R2 and the
rotation is the usual 180 degree rotation of R2. The following holds

(7) σ(β̃n(β̃n)rot) ≥ 2k + σ(∆2(nl
4
−k)) = 2k + 8(

nl

4
− k)− 1.

Before proving (7), we use it to finish the proof. Since β̃n and (β̃n)rot

have the same closure (up to changing the orientation) and σ is a quasi-
morphism of defect 3, we get

2σ(β̃n) = σ(β̃n) + σ(β̃n
rot
) ≥ σ(β̃n(β̃n)rot)− 3

(7)

≥
(
2k + 8(nl

4
− k)− 1

)
− 3 = −6k + 2nl − 4.

Therefore,

σ(βn) ≥ σ(β̃n)− 2(
nl

4
− k) ≥ −3k + nl − 2− 2(

nl

4
− k)

= −k +
nl

2
− 2 ≥ −nl

12
+

nl

2
− 2 =

5nl

12
− 2,

and thus

σ̃(β) = lim
n→∞

σ(βn)

n
≥ 5l

12
=

5

12
l(β).

It remains to prove (7). For this we use that the full twist on 4
strands

LL = RR = ∆∆ = ∆2

commutes with every 4-braid, i.e. for all α in B4 we have α∆2 = ∆2α,
compare [Gar69].

Let us study β̃n(β̃n)rot = B̃1B̃2 · · · B̃nl
4
B̃nl

4

rot · · · B̃1

rot
. The braids

L,R, and ∆ are equal to their rotation by 180 degrees, i.e.

L = = Lrot, R = = Rrot and ∆ = = = ∆rot.

Therefore, if B̃nl
4
is L,R, or ∆, then B̃nl

4
(B̃nl

4
)rot = ∆2; and thus,

β̃n(β̃n)rot = B̃1B̃2 · · · B̃nl
4
−1∆

2B̃nl
4
−1

rot

· · · B̃1

rot

= ∆2B̃1B̃2 · · · B̃nl
4
−1B̃nl

4
−1

rot

· · · B̃1

rot
.
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Otherwise, i.e. if B̃nl
4
is or , we apply Corollary 2.13 to

get

σ(β̃n(β̃n)rot) ≥ −3+σ(B̃nl
4
B̃nl

4

rot
)+σ(B̃1B̃2 · · · B̃nl

4
−1B̃nl

4
−1

rot

· · · B̃1

rot
),

where
σ(B̃nl

4
B̃nl

4

rot
) = b1(B̃nl

4
B̃nl

4

rot
) = 5

since the closure of B̃nl
4
(B̃nl

4
)rot is a connected sum of two T (2, 2) and

one T (2, 4). Therefore, we have

σ(β̃n(β̃n)rot) ≥ 2 + σ(B̃1B̃2 · · · B̃nl
4
−1B̃nl

4
−1

rot

· · · B̃1

rot
).

Applying the same argument to B̃1B̃2 · · · B̃nl
4
−1B̃nl

4
−1

rot

· · · B̃1

rot
or

∆2B̃1B̃2 · · · B̃nl
4
−1B̃nl

4
−1

rot

· · · B̃1

rot
, respectively, and continuing induc-

tively, we get

σ(β̃n(β̃n)rot) ≥ 2k + σ(∆2(nl
4
−k)).

Now (7) follows from Murasugi’s formula for the signature of torus
links of braid index 4, which implies that σ(∆2j) = σ(T (4, 4j)) = 8j−1
holds for all positive integers j, see [Mur74, Proposition 9.2] or use
Lemma 1.10. �



CHAPTER 3

Gordian Adjacency

In this chapter we study Gordian adjacency for knots, which can
be defined via Gordian distance of knots. The structure of the discrete
metric space given by Gordian distance on the set of isotopy classes of
knots is badly understood. However, it is known to be “big” globally
and locally. For example, for every positive integer n the lattice Zn

embeds quasi-isometrically into it [GG05], and infinitely many knots
are between any two knots of distance two [Baa06].

We restrict our study of this metric space to the subset consisting
of torus knots, asking the following question. ‘When is the triangle
inequality dG(K,L) ≥ dG(L,O)− dG(K,O) an equality?’

Definition 3.1. Let K and L be knots. We say K is Gordian
adjacent to L, denoted by K ≤G L, if dG(K,L) = u(L)− u(K).

Equivalently, a knot K is Gordian adjacent to another knot L if L
can be unknotted via K, that is, if there exists a minimal unknotting
sequence for L that contains K. A minimal unknotting sequence for
a knot L is a sequence of u(L) + 1 knots starting with L and ending
with the unknot O such that any two consecutive knots are related
by a crossing change, see Baader [Baa10]. The name ‘Gordian adja-
cency’ is motivated by the connection to algebraic adjacency; compare
Chapter 4. Gordian adjacency is a partial order.

We prove the following results on Gordian adjacency for torus knots.

Theorem 3.2. Let (n,m) and (a, b) be pairs of coprime positive
integers with n ≤ a and m ≤ b. Then the torus knot T (n,m) is Gordian
adjacent to the torus knot T (a, b).

Theorem 3.3. Let n and m be positive integers with n odd and m
not a multiple of 3. Then the torus knot T (2, n) is Gordian adjacent
to T (3, m) if and only if n ≤ 4m+1

3
.

The core of the proof of Theorem 3.2, given in Section 2, is a gener-
alization to knots in S1× S1 ×R of the following elementary fact. If a
knot K in R3 has a knot diagram with n crossings, then u(K) ≤ n−1

2
.

The proof of Theorem 3.3 relies on explicit constructions of the required

36
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adjacencies, given in Section 1, and on Levine-Tristram signatures as
obstructions to Gordian adjacency, see Section 3.

As a consequence of Theorem 3.2, Gordian adjacency and Gordian
distance for torus knots of a fixed braid index are completely described.
More precisely, if a positive integer a is fixed, then

T (a, b) ≤G T (a, c) if and only if b ≤ c

for all b, c coprime to a. Hence,

dG(T (a, b), T (a, c)) = |u(T (a, b))− u(T (a, c))| = (a− 1)|b− c|
2

,

where the second equation follows from the Milnor conjecture,

(8) u(T (n,m)) = g4s(T (n,m)) =
(n− 1)(m− 1)

2
.

Note that to decide whether a knot is Gordian adjacent to another
knot, the unknotting numbers of the involved knots should certainly
be known; thus, even ignoring the connection to algebraic adjacency
discussed in the introduction, equality (8) is relevant to the study of
Gordian adjacency for torus knots. It is used throughout this chapter.

For torus knots T (a, b) and T (c, d) of different braid indices, it is
in general not clear how Gordian adjacency is characterized in terms
of a, b, c, and d. Theorem 3.3 provides such a characterization for the
case of braid index 2 and 3.

Remark 3.4. To completely determine Gordian adjacency for torus
knots of braid index 2 and 3, additionally to Theorem 3.3, one has
to show that no torus knot of braid index 3 is adjacent to a torus
knot of braid index 2. More generally, Borodzik and Livingston show
that a torus knot cannot be Gordian adjacent to a torus knot of
strictly smaller braid index [BL13]. For this, they use a semiconti-
nuity property that they prove using the Heegaard Floer correction
term d—a Spinc-3-manifold invariant which was defined by Ozsváth
and Szabó [OS03]. Using signature obstructions one can only par-
tially prove this result, see Section 3.

We calculate the signature obstruction to Gordian adjacencies be-
tween torus knots of higher braid indices, see Section 4, which (at least
asymptotically) yields that Gordian adjacencies are algebraic adjacen-
cies, see Remark 4.7.

1. Examples of Gordian adjacencies.

By definition, the unknot O is adjacent to every knot K. Let k be a
positive integer. The unknotting number of the torus knot T (2, 2k+1)
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is k. A minimal unknotting sequence of T (2, 2k + 1) is provided by

T (2, 2k + 1)→ T (2, 2k − 1)→ · · · → T (2, 5)→ T (2, 3)→ O.

Consequently, T (2, 2l + 1) ≤G T (2, 2k + 1) for all l ≤ k, a simple in-
stance of Theorem 3.2. We now construct explicit examples of Gordian
adjacencies that are not provided by Theorem 3.2. Let ⌊·⌋ denote the
integer part of a real number.

Proposition 3.5. For every natural number k, we have

T (2, 2k + 1) ≤G T (3, ⌊3
2
k + 1⌋).

Proof. The knot T (2, 2k+1) is the closure of the braid

k − 3 { ...

k − 3 { ...

,

where k − 3 denotes the number of the crossings not drawn. We in-
troduce a crossing change for knots containing a part that looks (in an
appropriate braid diagram) like the above T (2, 2k + 1).

(9)

...

...

=

...

...

=

...

...

crossing change←−

...

...

=

...

...

=

...

...

,

where the first and the two last equalities are obtained by applying the
braid relation

a2a1a2 = =
.
= a1a2a1.
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First consider the case when k is odd. We use (9) inductively.

T (2, 2k + 1)←−

k − 5 { ...

k − 5 { ...

=

k − 5 { ...

k − 5 { ...

←−

k − 7 { ...

k − 7 { ...

=

k − 7 { ...

k − 7 { ...

←− · · · ←−︸ ︷︷ ︸
k−5
2

crossing changes

T (3, 3
k − 1

2
+ 2),

where every arrow indicates a crossing change as in (9) and the equali-

ties are obtained by using that the full twist commutes with every
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3-braid. Thus,

dG(T (2, 2k + 1), T (3, 3
k − 1

2
+ 2)) ≤ k − 1

2
= (3

k − 1

2
+ 1)− k

(8)
= u(T (3, 3

k − 1

2
+ 2))− u(T (2, 2k + 1)).

The case when k is even has essentially the same proof except that the
last crossing change does not use (9) but a slight variation of it. �

2. Unknotting on the torus and proof of Theorem 3.2

Knots in R3 can be studied via knot diagrams on R2 up to Reide-
meister equivalence. Similarly, for a surface F knots in F × R can be
studied via knot diagrams on F .

In a knot diagram on R2 with n crossings one needs to change at
most ⌊n−1

2
⌋ of the crossings to get the unknot. This is easily proved

geometrically by drawing a knot in R3 that projects to the curve on
R2 given by the diagram and that descends (or ascends) monotonically
except over one point in the diagram, see Figure 1, and remarking that

p p−→

Figure 1. Any curve c in R2 is the projection of the
unknot in R3 given by starting at any point p in R3 that
projects to c and then descending while following c.

such a knot is the unknot. To prove Theorem 3.2, which is a statement
entirely about knots in R3, one is surprisingly led to ask whether a
similar fact holds for knots in S1 × S1 × R. We provide such a result,
which we then use to prove Theorem 3.2.

Let F be a surface. In what follows a closed smooth curve c : [0, 1]→
F is called presimple if its lift c̃ : R→ F̃ to the universal cover F̃ of F
is injective and if c is homotopic to a simple closed curve. A knot in
F × R that is isotopic to a knot that projects to a simple closed curve
on F is called unknotted .

Remark 3.6. There is at most one unknot (up to isotopy) in ev-
ery homotopy class of closed curves in F × R. This follows from the
fact that homotopic simple closed curves in surfaces are isotopic, see
Epstein [Eps66].
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In the case of the torus we can be more precise. A homotopy
class of closed curves in S1 × S1 × R contains an unknot, which is
unique up to isotopy, if and only if (via the usual identification of
π1(S

1 × S1) ∼= π1(S
1 × S1 × R) with Z2) the corresponding element

in Z2 has coprime entries or is (0, 0). This is a reformulation of the
classification of simple closed curves in S1 × S1, written, for example,
in Rolfsen’s textbook [Rol90].

Lemma 3.7. For every presimple curve c in S1×S1 there is a knot
O in S1 × S1 × R that projects to c on S1 × S1 and that is unknotted.

Remark 3.8. In terms of knot diagrams Lemma 3.7 means that
if a knot K in S1 × S1 × R projects to a presimple diagram with n
crossings on S1 × S1, then one can get the diagram of the unknot by
changing at most ⌊n

2
⌋ of the n crossings.

To prove this, we use Lemma 3.7 to get the unknot O with the same
diagram as K, except it differs in the choice of crossings. If this new
diagram differs from the original one in less than half of the crossings,
we are done. Otherwise, we switch all crossings in the diagram of O
yielding a knot diagram of a knot O. The knot O is also unknotted,
as the following shows. Let Ht be an isotopy that changes O to a knot
that projects to a simple closed curve on S1 × S1. Then parametrize
O in S1×S1×R exactly the same way as O, except changing the sign
in the R coordinate. The same isotopy Ht as for O (with a change of
sign in the last coordinate) shows that O is unknotted.

Clearly the assumption that c is homotopic to a simple closed curve
is necessary in Lemma 3.7. We conjecture that Lemma 3.7 holds for all
curves c that are homotopic to a simple closed curve and, furthermore,
that Lemma 3.7 generalizes to all surfaces.

Proof of Lemma 3.7. Denote S1 × S1 by F . Our strategy is to
construct a presimple homotopy ht of c (meaning that ht is presimple
for every t ∈ [0, 1]) to a simple closed curve and then to find an isotopy
Ht of knots in F × R that has ht as projection.

We first lift the curve c to a mapping c̃ : R→ F̃ , where ϕ : F̃ → F
denotes the universal covering map. Since c is presimple, c̃ : R→ F̃ is
injective and there exists a simple closed curve g : [0, 1] → F that is
homotopic to c. We take g such that g(0) = g(1) = c(0) = c(1) and
denote by g̃ : R → F̃ its lift to F̃ with g̃(k) = c̃(k) for all k ∈ Z. Let

h̃t : R→ F̃ be an equivariant1 isotopy between c̃ and g̃ that is constant
on Z, see Figure 2. Of course ht = ϕ ◦ h̃t : [0, 1] → F is a presimple

1I.e. h̃t(s + 1) = D(h̃t(s)) for all s in R, where D denotes the unique deck
transformation sending c̃(0) to c̃(1).
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c̃(0) = g̃(0)

c̃(1) = g̃(1)

Figure 2. An equivariant isotopy (green) of c̃ (black)
to g̃ (red) is indicated.

homotopy.
The idea for building Ht is to measure how far away from g points

p = ht(s) are and then to put this distance d(p) in the second coordinate
of Ht. We need a metric to make this precise and the distance will
actually be measured in the universal cover. Put a Riemannian metric
on F with constant curvature 0 such that g is a simple closed geodesic
of length 1. The universal cover F̃ is identified with the Euclidean
plane R2 such that ϕ : F̃ → F is locally an isometry. Let d : F̃ → R
denote the oriented distance to the straight line g̃.2 We claim that the
homotopy

Ht : [0, 1]→ F × R, s 7→ (ht(s), d(h̃t(s))),

which projects to the homotopy ht on F , is an isotopy. This claim
implies that H0 : [0, 1]→ F ×R is an unknot O that projects to h0 = c;
therefore, it finishes the proof.

In order to prove that Ht is an isotopy, we assume towards a con-
tradiction that Ht is not injective for some fixed t. Without loss of
generality we assume t = 0, i.e. h̃t = c̃. If there exist s 6= r ∈ [0, 1)
such that H0(s) = H0(r), then, by definition ofH0, the points p̃1 = c̃(s)
and p̃2 = c̃(r) in F̃ satisfy

ϕ(p̃1) = ϕ(p̃2) and d(p̃1) = d(p̃2).

As d(p̃1) = d(p̃2), there is a geodesic segment parallel to g̃ from p̃1 to
p̃2. The length of this segment is an integer k since ϕ(p̃1) = ϕ(p̃2).
It follows that p̃2 = c̃(k + s) if the sign of k is chosen correctly. This

2Ordinary Euclidean distance of points in F̃ = R2 to the straight line g̃ with a
sign depending on whether the point is on the left or the right of g̃.
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is seen by lifting c to F̃ such that the lift starts at g̃(k) = c̃(k), see
Figure 3 for a case with k = 1. However, c̃(r) = c̃(k+ s) and k+ s 6= r

g̃

c̃

g̃(0)

g̃(k)

p̃1

p̃2

|d(p̃1)|

|d(p̃2)|

Lift of c starting at g̃(k)

Figure 3. The curve c̃|[0,1] (black) intersects c̃|[k,k+s]

(blue) in p̃2.

contradict the injectivity of h̃t = c̃.
�

Let us shortly introduce notations and the general strategy for the
proof of Theorem 3.2. In the following S1 × S1 denotes the standard
torus in R3 and N(S1×S1) a tubular neighborhood of S1×S1. Also, we
denote the curve obtained by projecting a knotK in N(S1×S1) to S1×
S1 by π(K). Such a curve π(K) (together with crossing information)
provides a knot diagram on S1 × S1 for the knot K in N(S1 × S1) ∼=
S1 × S1 × R.

To show the adjacency K1 ≤G K2 for the knots K2 = T (a, b) and
K1 = T (n,m), i.e. to show that dG(K2, K1) is less than or equal (and
thus equal) to u(K2) − u(K1), we proceed as follows. We isotope K2

and K1 into N(S1 × S1) in such a way that

(I) π(K1) is simple closed (thus, K1 is unknotted in N(S1 × S1)),
(II) K2 is homotopic to K1 in N(S1 × S1),
(III) and π(K2) has 2(u(K2)− u(K1)) crossings.

In all our cases π(K2) will have an injective lift to the universal cover
R2. This together with (I) and (II) yields that π(K2) is a presimple
curve in S1 × S1. Hence, Remark 3.8 applies and, because of (III),
guaranties the existence of u(K2)− u(K1) crossing changes in N(S1 ×
S1) ∼= S1×S1×R changingK2 to the unknot. This unknot is homotopic
to K1 by (II) and thus isotopic to K1 by Remark 3.6.

Before giving a proof of Theorem 3.2, we apply this strategy in a
concrete example.



44 3. GORDIAN ADJACENCY

Example 3.9. We show that T (3, 5) is Gordian adjacent to T (3, 7).
As u(T (3, 7)) − u(T (3, 5)) = 2 we need to show that we can change
T (3, 7) to T (3, 5) via 2 crossing changes. First we isotope T (3, 7) into
N(S1 × S1) as shown on the left-hand side of Figure 4. Projecting

=

Figure 4. Knots contained in a tubular neighborhood
of the standard torus (green) that are homotopic in this
neighborhood. Five arcs (red) are on the upper half of
the torus, the rest of the knots (black) lie on the lower
half. Left: The knot T (3, 7) with 4 crossings when pro-
jected on to the torus. Right: Two isotopic (in a neigh-
borhood of the torus) occurrences of the knot T (3, 5),
one of them without crossings.

this T (3, 7) to S1 × S1 yields a curve π(T (3, 7)) with 4 crossings. The
curve π(T (3, 7)) is presimple since it has an injective lift to R2 and
is homotopic to the standard embedding of the torus knot T (3, 5).
Thus, by Remark 3.8 changing 2 of the crossings suffices to produce
a knot K in N(S1 × S1) that is unknotted. As the knot K and the
standard T (3, 5) are homotopic unknots in N(S1×S1) they are isotopic
in N(S1×S1) by Remark 3.6. In particular, K and T (3, 5) are isotopic
as knots in R3; thus, dG(T (3, 5), T (3, 7)) = 2. In this example with only
4 crossings one can quickly exhibit the knot K explicitly. E.g. the right-
hand side of Figure 4 provides a knot K that is obtained from the knot
on the left-hand side of Figure 4 by performing two crossing changes in
N(S1×S1) and that is isotopic to the standard T (3, 5) as predicted by
Remark 3.8. This last isotopy can be seen by applying braid relations
(similarly as in the proof of Proposition 3.5) and checking that these
can be realized while staying within N(S1 × S1).
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Proof of Theorem 3.2. By assumption we have pairs of co-
prime positive integers (a, b) and (n,m) such that n ≤ a and m ≤ b.
Without loss of generality we suppose that a < b and n < m.

Let us first consider the case n = a, for which we proceed as in
Example 3.9. We need to show that dG(T (a, b), T (n,m)) is equal to

u(T (a, b))− u(T (n,m)) =
(b− 1)(a− 1)

2
− (m− 1)(n− 1)

2

=
(b−m)(a− 1)

2
.

We consider the knot T (a, b) as the closure of the braid (a1a2 · · · aa−1)
b

and isotope it into a neighborhood N(S1 × S1) of the standard torus
S1 × S1 in R3. More precisely, we isotope m arcs on the upper half
of the torus and the rest of T (a, b) on the lower half of the torus, in
such a way that the curve π(T (a, b)) winds m times around the core
of S1 × S1 and n = a times in the direction of the core of S1 × S1,
see left-hand side of Figure 4. Since n and m are coprime, there is
a simple closed curve in S1 × S1 that is homotopic to π(T (a, b)) by
the second part of Remark 3.6, namely the standard embedding of the
torus knot T (n,m) in S1 × S1. Also, π(T (a, b)) lifts injectively to the
universal cover R2; thus, π(T (a, b)) is presimple. The m arcs do not
intersect the rest of the curve π(T (a, b)) on the torus, so π(T (a, b))
has (b − m)(a − 1) crossings on the torus. By Remark 3.8 we need

to change at most (b−m)(a−1)
2

crossings in the diagram on the torus
(which correspond to crossing changes in N(S1 × S1) ∼= S1 × S1 × R)
to get an unknot K in N(S1 × S1). As the unknotted K and the
standard T (n,m) are homotopic in N(S1 × S1) they are also isotopic
by Remark 3.6. Of course K is isotopic to T (n,m) in R3 via the same
isotopy as in N(S1 × S1). Therefore,

dG(T (a, b), T (n,m)) ≤ (b−m)(a− 1)

2

as we wanted. The same argument works if m = b or a = m.
This leaves the case n < a and m < b. In the first case we inter-

preted T (a, b) as the closure of a braid on a strands, in the following we
see T (a, b) = T (b, a) as a braid on b strands. We may assume m > b−a,
otherwise we replace (inductively) a, b by a, b−a (respectively by b−a, a
if b − a < a) since by the first case T (a, b − a) ≤G T (a, b). To apply
the same idea as before we reduce the braid on b strands to one on m
strands. More precisely, the representation of T (a, b) as the closure of
the b-strand braid

(10) (a1 · · · ab−1)
a = aa · · · a1(a2 · · · ab−1)

a,
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has the same closure as the b− 1-strand braid

τb−1 = aa−1 · · · a1(a1 · · ·ab−2)
a,

see Figure 5. If m = b − 1, we isotope T (a, b) (seen as the closure of

= =

a+ 1 a

a
aa

bb b− 1

Figure 5. The first equality is the pictorial version of
equation (10). The second equality is meant to hold for
the closures only.

τb−1) into N(S1×S1) such that n of the a over-passing arcs in the right
part of Figure 5 project to the upper half of the torus and the rest of
π(T (a, b)), including a− 1 + (a− n)(b− 2) crossings, lies on the lower
half. The curve π(T (a, b)) is presimple since it winds n respectively
m times around the torus, i.e. it is homotopic in N(S1 × S1) to the
standard embedding of the knot T (n,m), and π(T (a, b)) lifts injectively
to R2. Therefore, we can use Remark 3.8 to get T (n,m) by at most
a−1+(a−n)(b−2)

2
crossing changes. Thus, dG(T (n,m), T (a, b)) is less than

or equal to

a− 1 + (a− n)(b− 2)

2
=

(a− 1)(b− 1)

2
− (n− 1)(b− 2)

2
= u(T (a, b))− u(T (n,m)).

Suppose now m < b− 1. We no longer isotope T (a, b) into N(S1 ×
S1). We first apply some crossing changes in R3 and then isotope the
result into N(S1 × S1). More precisely, we apply a crossing change to
τb−1 that yields
(11)

aa−1 · · · a2a−1
1 (a1 · · · ab−2)

a = aa−1 · · · a2a2 · · · ab−2(a1 · · · ab−2)
a−1.

Then, we replace the part (a1 · · · ab−2)
a−1 on the left-hand side of (11)

by aa−1 · · ·a1(a2 · · · ab−2)
a−1 as in (10), which has the same closure as

the b− 2 braid

τb−2 = (aa−2 · · · a1a1 · · · ab−3)
2(a1 · · · ab−3)

a−2,

see Figure 6. Ifm = b−2, we isotope the closure of τb−2 into N(S1×S1)
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= =

a− 1

a− 1 a− 1

−→

a
a a

a a

b− 1
b− 1b− 1

b− 2

Figure 6. The arrow −→ indicates the changing of the
marked (red) crossing. The two equalities are seen as in
Figure 5. The two marked (green) crossings on the right
side indicate the crossing changes that are necessary to
obtain τb−3 from τb−2, which is needed when m < b− 2.

in such away that it is homotopic to T (n,m), namely such that n of
the a over-passing arcs get to lie on the upper part of the torus and
the reminding part (including 2(a− 2) + (a− n)(b − 3) crossings) lies
on the lower part. Therefore, Remark 3.8 implies that T (n,m) can be

obtained from the closure of τb−2 by changing 2(a−2)+(a−n)(b−3)
2

crossings.
Thus, dG(T (n,m), T (a, b)) is less than or equal to

1 +
2(a− 2) + (a− n)(b− 3)

2
=

2a− 2 + (a− n)(b− 3)

2

=
2a− 2 + (a− 1)(b− 3)

2

− (n− 1)(b− 3)

2

=
(a− 1)(b− 1)

2
− (n− 1)(b− 3)

2
= u(T (a, b))− u(T (n,m)).

For general m > b− a it follows similarly that we need to change

1 + 2 + · · ·+ (b−m− 1) =
(b−m)(b−m− 1)

2

crossings of T (a, b) to get the closure of the m braid

τm = (aa−(b−m) · · · a1a1 · · ·am−1)
b−m(a1 · · · am−1)

a−(b−m),

see Figure 7. For example, the closure of τb−3 is obtain from the clo-
sure of τb−2 by the two crossing changes that are indicated (green) in
Figure 6. We isotope the closure of τm into N(S1 × S1) such that
n of the a over-passing arcs lie on the upper half of the torus and
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m

b−m a− (b−m)

a− (b−m) + 1

Figure 7. The braid τm, which can be obtained from
T (a, b) by 1 + 2 + · · ·+ (b−m− 1) crossing changes.

(b−m)(a−(b−m))+(a−n)(m−1) crossings on the lower half. There-

fore, we get T (n,m) from τm by changing (b−m)(a−(b−m))+(a−n)(m−1)
2

crossings by Remark 3.8. Combined we have that dG(T (n,m), T (a, b))
is less than or equal to

(b−m)(b−m− 1) + (b−m)(a− (b−m)) + (a− n)(m− 1)

2
,

which is equal to u(T (a, b))− u(T (n,m)). �

3. Signatures as obstructions to Gordian adjacency

The goal of this section is to describe how Levine-Tristram signa-
tures [Lev69][Tri69] yield obstructions to Gordian adjacency and to
use this to prove Theorem 3.3.

The Gordian distance of two knots is greater than or equal to twice
their cobordism distance since every crossing change can be realized
by a cobordism of genus one, see Remark 1.1. Therefore, Lemma 1.8
yields the following obstruction to Gordian adjacency.

Corollary 3.10. For knots K and L, we have that∣∣∣∣
σω(L)− σω(K)

2

∣∣∣∣ ≤ dG(K,L).

In particular, if K is Gordian adjacent to L, then∣∣∣∣
σω(L)− σω(K)

2

∣∣∣∣ ≤ u(L)− u(K).

As a consequence of Corollary 3.10 we prove that most torus knots
are not adjacent to torus knots of braid index two as claimed in Re-
mark 3.4. For braid index two torus knots the signature equals twice

the unknotting number, that is σ(T (2,n))
2

= u(T (2, n)) = n−1
2
; see

Lemma 1.10. This is also true for T (3, 4) and T (3, 5), but for all other
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torus knots T there is a signature defect, i.e. u(T ) > σ(T )
2

. Thus, by
Corollary 3.10, we have

dG(T (2, n), T ) ≥
σ(T (2, n))

2
− σ(T )

2
> u(T (2, n))− u(T )

for all torus knots T not equal to T (3, 4), T (3, 5) or some T (2, m).
As Corollary 3.10 is a consequence of Lemma 1.8, similar results will

hold for other adjacency notions as well. We now provide a signature
obstruction to Gordian adjacency, which fails for algebraic adjacency
and subsurface adjacency, compare Proposition 4.5 and Proposition 5.4.
Let us denote by s(K) the Rasmussen invariant of a knot K [Ras10].
The next lemma shows how ω-signatures and s behave with respect to
crossing changes.

Lemma 3.11. IfK− is obtained fromK+ via one positive-to-negative
crossing change, then

σω(K−) ∈ {σω(K+), σω(K+)− 2}.
The same holds for the Rasmussen invariant.

Rasmussen used an observation by Livingston [Liv04, Corollary 2
and 3] to prove Lemma 3.11 for s [Ras10]. Of course Corollary 3.10
is an immediate consequence of Lemma 3.11. In the literature one
finds direct proofs for Corollary 3.10, see [Kaw96, Theorem 11.2.1]
and [GG05], but we found no proof for the ω-signatures statement
of Lemma 3.11. At the end of this section we provide a proof of
Lemma 3.11 using a variation of Livingston’s observation. The fol-
lowing proposition explains how Lemma 3.11 yields another obstruc-
tion to Gordian adjacency of torus knots, which is often better than
Corollary 3.10.

Proposition 3.12. Let K ≤G L be a Gordian adjacency of positive
braid knots. Then σω(K) ≤ σω(L) holds.

Proof. For positive braid knots we have s
2
= u [Ras10]. Thus,

Lemma 3.11 yields that a minimal unknotting sequence of any positive
braid knot involves only positive-to-negative crossing changes since s
has to drop by 2 with every crossing change. Let

L = Ku(L) → Ku(L)−1 → · · · → K → · · · → K1 → K0 = O

be a minimal unknotting sequence for L that containsK. As it involves
only positive-to-negative crossing changes we have

σω(L) ≥ σω(Ku(L)−1) ≥ · · · ≥ σω(K) ≥ · · · ≥ σω(O) = 0

by Lemma 3.11. Therefore, σω(K) ≤ σω(L) holds. �
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Remark 3.13. By the above proof, Proposition 3.12 remains true

for any knot K with s(K)
2

= u(K). Instead of half the Rasmussen
invariant we could have used any other knot invariant that satisfies the
conditions of Lemma 3.15 and that is equal to the unknotting number
on positive braid knots, compare [Liv04].

Proposition 3.12 provides obstructions that are strong enough to
prove Theorem 3.3.

Proof of Theorem 3.3. Fix n = 2k + 1 and note that m =
⌊3
2
k + 1⌋ is minimal with n ≤ 4

3
m+ 1

3
. By Proposition 3.5 we have

T (2, 2k + 1) ≤G T (3, ⌊3
2
k + 1⌋).

Together with

T (3, ⌊3
2
k + 1⌋) ≤G T (3, m) for all m ≥ ⌊3

2
k + 1⌋,

an easy instance of Theorem 3.2, we conclude that

T (2, 2k + 1) ≤G T (3, m) for all m ≥ ⌊3
2
k + 1⌋.

For the other direction we let n = 2k + 1 be any odd number
and write m = ⌈3

2
k − 1⌉, which is the largest m that does not satisfy

n ≤ 4
3
m+ 1

3
. Thus, we have to show that T (2, 2k+1) �G T (3, m). For

k ≤ 4 calculating unknotting numbers yields

T (2, 5) �G T (3, 2), T (2, 7) �G T (3, 4), and T (2, 9) �G T (3, 5).

If k ≥ 5 we distinguish two cases. Either, k equals 1 or 2 modulo 4, or
k equals 3 or 4 modulo 4.

For k = 1+4l, 2+4l with l ≥ 1, Murasugi’s formula for torus knots
of braid index 3, see [Mur74, Proposition 9.1] or use Lemma 1.10,
provides

σ(T (3, m)) = 2k − 2,

which is strictly less than

σ(T (2, 2k + 1)) = 2k.

Thus, Proposition 3.12 yields T (2, 2k + 1) �G T (3, m).
For k = 3 + 4l, 4 + 4l with l ≥ 1, Murasugi’s formula gives

(12) σ(T (3, m)) = 2k = σ(T (2, 2k + 1)).

In this case σ does not suffice as obstruction directly, but we use (12)
to calculate σω(T (3, m)) for ω close to −1, which yields the desired
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obstruction. More precisely, set

ω = e2πiθ with

{
θ ∈ (1

2
− 2

3m
, 1
2
− 1

3m
) for m even, i.e. k = 3 + 4l

θ ∈ (1
2
− 3

6m
, 1
2
− 1

6m
) for m odd, i.e. k = 4 + 4l

.

(13)

By Lemma 1.9 the value of σω(T (3, m)) is the same for all these ω.

Claim 3.14. For all m = 4+ 6l, 5 + 6l with l ≥ 1 and ω as in (13),
we have σω(T (3, m)) = σ(T (3, m))− 2.

Lemma 1.9 shows that the above ω can be chosen such that

σ(T (2, 2k + 1)) = σω(T (2, 2k + 1)).

Hence, Claim 3.14 and (12) yield

σω(T (3, m)) = σ(T (3, m))− 2 < σ(T (3, m))

= σ(T (2, 2k + 1)) = σω(T (2, 2k + 1)).

Therefore, T (2, 2k + 1) �G T (3, m) by Proposition 3.12. It remains to
prove Claim 3.14.

For the case when m is even, Lemma 1.9 applied to the knot

T = T (3, m) = T (3, 4 + 6l)

yields that σ(T ) is

♯
(
S ∩ [1

2
− 1

3m
+ ε, 3

2
− 1

3m
+ ε]

)
− ♯
(
S\(1

2
− 1

3m
+ ε, 3

2
− 1

3m
+ ε)

)

and that σω(T ) is

♯
(
S ∩ [1

2
− 1

3m
− ε, 3

2
− 1

3m
− ε]

)
− ♯
(
S\(1

2
− 1

3m
− ε, 3

2
− 1

3m
− ε)

)

for ε small enough. Observe that

3

2
− 1

3m
=

2

3
+

5m− 2

6m
=

2

3
+

5(4 + 6l)− 2

6(4 + 6l)

=
2

3
+

3 + 5l

4 + 6l
=

2

3
+

3 + 5l

m
∈ S

and
1

2
− 1

3m
= · · · = 1

3
+

l

m
+

1

3

1

m
/∈ S.

This means
(
S ∩ [1

2
− 1

3m
− ε, 3

2
− 1

3m
− ε]

)
∪̇{3

2
− 1

3m
} = S ∩ [1

2
− 1

3m
+ε, 3

2
− 1

3m
+ε]

and

S\(1
2
− 1

3m
− ε, 3

2
− 1

3m
− ε) =

(
S\(1

2
− 1

3m
+ ε, 3

2
− 1

3m
+ ε)

)
∪̇{3

2
− 1

3m
}.

Therefore, σ(T ) = 2 + σω(T ) holds.



52 3. GORDIAN ADJACENCY

If m is odd, we have m = 5+ 6l. Similarly to the even case, we get

3

2
− 1

6m
=

2

3
+

4 + 5l

m
∈ S, but

1

2
− 1

6m
/∈ S.

The rest of the argument is as in the case when m is even. �
In the reminder of the section we prove Lemma 3.11 using the fol-

lowing variant of an observation by Livingston.

Lemma 3.15. Let τ be a integer valued knot invariant satisfying

• τ(K1♯K2) = τ(K1) + τ(K2) and τ(−K1) = −τ(K1) for all
knots K1 and K2,
• τ(K) ≤ g4s(K) for all knots K,
• there exists a knot K with τ(K) = 1 that can be transformed
to the unknot O by a positive-to-negative crossing change.

Then τ is a concordance invariant, |τ(K)| ≤ g4s(K) for all knots K,
and

0 ≤ τ(K+)− τ(K−) ≤ 1

whenever K− is a knot obtained from K+ by a positive-to-negative
crossing change.

Lemma 3.15 is a variation of Corollaries 2 and 3 in [Liv04]. The
first two assertions are given in [Liv04, Corollary 2]. The proof of the
third assertion given in [Liv04] needs to be modified as follows to yield
a proof Lemma 3.15.

Proof of the third assertion. Let K+ and K− differ by a
positive-to-negative crossing change. Therefore, we have

g4s(K+♯(−K−)) =
dc(K+, K−)

2
≤ 1

since a crossing change can be realized by a cobordism of genus 1.
Choose a knotK such that τ(K) = 1 and such thatK can be unknotted
by a positive-to-negative crossing change. Now we take K+♯−K+ and
do a negative-to-positive crossing change (in the −K+ -part) and a
positive-to-negative crossing change such that we get K+♯−K−♯−K.
These two crossing changes can be realized by a cobordism of genus 1
since they are of opposite kind, compare Remark 1.1. This together
with g4s(K+♯−K+) = 0 yields g4s(K+♯−K−♯−K) ≤ 1. Thus, we have

|τ(K+)− τ(K−)| = |τ(K+♯−K−)| ≤ g4s(K+♯−K−) ≤ 1

and

|τ(K+)− τ(K−)− 1| = |τ(K+♯−K−♯−K)|
≤ g4s(K+♯−K−♯−K) ≤ 1,
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which can be combined to give

0 ≤ τ(K+)− τ(K−) ≤ 1.

�
This proof is from [Liv04, Corollary 3], except that the knot T (2, 3)

was replaced by a knot K with τ(K) = 1 that can be unknotted by a
positive-to-negative crossing change. This is necessary since we do not
want to assume that τ(T (2, 3)) = 1.

Proof of Lemma 3.11. Rasmussen proves all conditions of Lem-

ma 3.15 for τ = s
2
in [Ras10] (note that s(T (2,3))

2
= 1).

For ω-signatures the first condition is provided by Lemma 1.6. The
second is contained in Lemma 1.8. If ω = −1, we can choose K to be
T (2, 3) for the third condition since σ(T (2, 3)) = 2. In general, fix a
root of unity ω of prime order. For a positive integer k let T (2k − 1)
be the positive twist knot with 2k − 1 half-twists, see Figure 8. These

Figure 8. The twist knot T (5).

knots can be unknotted by a positive-to-negative crossing change and

A =

[
k 1
0 1

]

is a Seifert matrix for T (2k−1). For sufficiently large k both eigenvalues
of the Hermitian matrix (1 − ω)A + (1 − ω)At are positive. Thus,
choosing K to be T (2k− 1) for a sufficiently large k provides the third
condition. �

4. A bound on Gordian adjacency for torus knots of higher
braid indices

This section is concerned with the question, when is T (a, n) ≤G

T (b,m) for fixed a < b and n,m large? Concretely, we study the
numbers

k(a, b) = lim inf
m→∞

n(m)

m
and k(a, b) = lim sup

m→∞

n(m)

m
,
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where n(m) denotes the largest integer such that

T (a, n(m)) ≤G T (b,m).

We suspect, but cannot prove, that

k(a, b) = k(a, b) for all a < b ∈ N.

Certainly, we have k(2, 3) = k(2, 3) = 4
3
by Theorem 3.3. We also note

that 1 ≤ k(a, b) by Theorem 3.2 and k(a, b) ≤ b−1
a−1

since

(a− 1)(n(m)− 1)

2
= u(T (a, n(m))) ≤ u(T (b,m)) =

(b− 1)(m− 1)

2
.

Using ω-signatures we get an upper bound for k(a, b) that is strictly
better than b−1

a−1
.

Proposition 3.16. If a ≤ b ∈ N, then

k(a, b) ≤ a⌈ b
a
⌉2 − (a+ 2b)⌈ b

a
⌉+ b(b+ 1)

(a− 1)b
≤ b

a
.

A calculation shows that
a⌈ b

a
⌉2−(a+2b)⌈ b

a
⌉+b(b+1)

(a−1)b
= b

a
if and only if a

divides b. If for example b− a equals 1, Proposition 3.16 yields

k(a, a+ 1) ≤ a + 2

a + 1
.

This is better than b
a
= a+1

a
or even b−1

a−1
, but we only know it to be opti-

mal for a = 2, namely k(2, 3) = k(2, 3) = 4
3
. Note that Proposition 3.16

is strictly better than what one gets using the classical signature. For
example, the signature provides only k(3, 4) ≤ 3

2
since σ(T (3, n)) ∼ 4

3
n

and σ(T (4, m)) ∼ 2m by Lemma 1.10, which is the same factor one
gets when using that the unknotting number has to decrease.

Proof. We use the following approximation by Gambaudo and
Ghys [GG05, Proposition 5.2]. Let l be a positive integer and θ a real
number with l−1

b
< θ ≤ l

b
, then

(14)

∣∣∣∣σe2πiθ(T (b,m))−m

(
2(b− (2l − 1))θ +

2l(l − 1)

b

)∣∣∣∣ ≤ 2b.

In fact, the complicated looking part on the left-hand side is the asymp-
totic e2πiθ-signature of T (b,m). This means that (14) states precisely
that the asymptotic signature and the signature stay close, compare
Chapter 2.
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Proposition 3.12 yields σω(T (b,m)) − σω(T (a, n(m))) ≥ 0. By the
approximation we get

m

(
2(b− (2l − 1))θ +

2l(l − 1)

b

)

−n(m)

(
2(a− (2l′ − 1))θ +

2l′(l′ − 1)

a

)
≥ −2(a + b),

(15)

where l and l′ are positive integers with l−1
b

< θ ≤ l
b
and l′−1

a
< θ ≤ l′

a
,

respectively. Choosing θ = 1
a
inequality (15) becomes

m

(
2
(b− (2⌈ b

a
⌉ − 1))

a
+ 2
⌈ b
a
⌉(⌈ b

a
⌉ − 1)

b

)
− n(m)2

a− 1

a
≥ −2(a+ b)

or equivalently

(16)
n(m)

m
≤ a⌈ b

a
⌉2 − (a+ 2b)⌈ b

a
⌉+ b(b+ 1)

(a− 1)b
+

a(a + b)

m(a− 1)
.

This proves the first inequality.3 The second inequality can be checked
by a calculation. �

Remark 3.17. Our choice θ = 1
a
is the best possible and yields

the optimal bound for k(a, b) that can be achieved using the properties
of signatures from Lemma 3.11. This can be checked using the above
approximation from [GG05].

In order to determine k(a, b) and k(a, b) for (a, b) 6= (2, 3), we now
wish to find geometric constructions in the spirit of Section 1 that at
least for some a and b yield a lower bound for k(a, b) that is equal to
the upper bound given by Proposition 3.16. So far we have only found
constructions giving lower bounds that do not coincide with the upper
bounds, e.g. 5

3
≤ k(2, 4) ≤ k(2, 4) ≤ 2 and 9

8
≤ k(3, 4) ≤ k(3, 4) ≤ 5

4
.

3Note the following technical point. If ω = e2πi
1
a is not a root of unity of

prime order, then Lemma 3.11 cannot be applied as above. Instead one chooses a
sequence of θk tending to 1

a , such that every e2πiθk is a root of unity of prime order.



CHAPTER 4

Algebraic adjacency notions

In this chapter we study algebraic adjacency. The relation between
algebraic and Gordian adjacency is discussed. In particular, Proposi-
tion 4.5 provides an infinite family of examples of algebraically adja-
cent torus knots that are not Gordian adjacent. On the other hand,
we prove that δ-constant adjacency—a more restrictive notion than
algebraic adjacency—implies Gordian adjacency, up to well-behaved
concordances.

1. Algebraic adjacency

Arnol’d studied adjacency of singular function germs [Arn72, Def-
inition 2.1], see also [Sie74]. As we are interested in knots and links,
we study singular function germs only up to topological type, i.e. up to
the isotopy class of their links of singularity. Thus, we use the following
version of adjacency.

A deformation of a singularity f in C{x, y} is a family ft of singu-
larities with f0 = f depending smoothly on a positive real parameter
t ≥ 0.

Definition 4.1. Let K and L be algebraic links. We say K is
algebraically adjacent to L, denoted by K ≤a L, if there exists a singu-
larity f in C{x, y} with L as link of the singularity and a deformation
ft of f , such that for small non-zero t the germ ft has K as link of the
singularity.

In the classical algebraic or holomorphic setting the deformations
often depend holomorphically on t and singularities are studied up
to local biholomorphic base changes. All adjacencies in this stronger
sense are in particular adjacencies as defined in Definition 4.1; and
so, consequences of algebraic adjacency in this chapter hold for these
notions as well.

Remark 4.2. Algebraic links can be identified canonically with
µ-constant-homotopy classes of square-free germs in C{x, y}, see Re-
mark 1.3. With this identification algebraic adjacency for algebraic

56



1. ALGEBRAIC ADJACENCY 57

links corresponds to the concept of µ-adjacency studied by Siersma
in [Sie74].

As described in the introduction, algebraic adjacency has similar
properties as Gordian adjacency. For example, Theorem 3.2 is known
and easy to show for ≤a instead of ≤G.

Proposition 4.3. If n ≤ a and m ≤ b, then T(n,m) ≤a T (a, b).

Proof. The torus link T (a, b) is the link of the singularity ya−xb.
We choose as deformation ft(x, y) = ya − xb + t(yn − xm). For t small
(but fixed) we perform, in a small chart around the origin, a biholo-
morphic coordinate change, which does not change the topological type
of the singularity, such that ft = yn(t+ ya−n)− xm(t+ xb−m) becomes
yn − xm. To be explicit, the coordinate change is given as the inverse
of the holomorphic map (x, y) 7→ (x m

√
t+ xb−m, y n

√
t+ ya−n). �

The obstruction to Gordian adjacency given in Corollary 3.10 also
holds for algebraic adjacency.

Lemma 4.4. Let K and L be algebraic links. If there exists an
adjacency K ≤a L, then

|σω(L)− σω(K)| ≤ b1(L)− b1(K).

This follows from Lemma 1.8 and the fact that every adjacency
K ≤a L yields a cobordism C in S3 × [0, 1] between K and L with
|χ(C)| = b1(L) − b1(K), which is seen as follows. Let ft be the
deformation that realizes the algebraic adjacency K ≤a L and let
SL be a Milnor sphere for L, i.e. an arbitrarily small sphere with
L = SL ∩V (f0). Then, by transversality, t can be chosen small enough
such that SL ∩V (ft) is still L and K = SK ∩ V (ft) for a Milnor sphere
SK for K. By a small perturbation of ft the zero-set V (ft) becomes
a smooth algebraic curve F with L = SL ∩ F and K = SK ∩ F . The
cobordism between K and L that is given by C = F ∩BL \BK satisfies
|χ(C)| = b1(L)−b1(K) and this realizes the cobordism distance by the
Thom conjecture as proved by Kronheimer and Mrowka [KM93]. More
precisely, by the Thom conjecture the first Betti numbers of F ∩ BK

and F ∩BL realize b4
1(K) = b1(K) and b4

1(L) = b1(L), respectively. In
particular, |χ(C)| = b1(L)−b1(K). There cannot exist a cobordism C ′

with |χ(C ′)| < b1(L)−b1(K) as otherwise F ∩BK glued together with
C ′ would yield a surface F ′ bounding L in B4 with b1(F

′) < b4
1(L),

which is impossible by the definition of b4
1.

Despite similarities Gordian adjacency and algebraic adjacency do
not agree for algebraic knots or even torus knots. The obstruction given
in Proposition 3.12 does not hold for algebraic adjacency. Concretely,



58 4. ALGEBRAIC ADJACENCY NOTIONS

we have T (2, 15) �G T (3, 10) by Theorem 3.3, but T (2, 15) ≤a T (3, 10),
which we show now. The next proposition generalizes the algebraic
adjacency T (2, 6) ≤a T (3, 4) calculated by Arnol’d [Arn72, A5 ←
E6]. This gives a large class of examples of algebraic adjacencies of
torus links, including T (2, 15) ≤a T (3, 10), which are not covered by
Proposition 4.3.

Proposition 4.5. Let a, b, c be positive integers with a ≤ b. Then
T (a, bc) ≤a T (b, ac).

In particular, T (2, 3c) ≤a T (3, 2c) for all positive integers c and

T (2, d
2

2
) ≤a T (d, d) for all even positive integers d.

Remark 4.6. By the signature obstructions given in Lemma 4.4
much more would be “allowed”. For example, if T (2, n) ≤a T (d, d),

Lemma 4.4 only yields n ≤ 3d2

4
. This is seen as follows. By Lemma 1.10

the signature of T (d, d) is ⌊d2−1
2
⌋. Therefore, σ(T (2, n))−σ(T (d, d)) ≤

b1(T (d, d))−b1(T (2, n)) is equivalent to n−1−⌊d
2−1
2
⌋ ≤ (d−1)2−n−1,

which implies 2n ≤ 3
2
d2.

Proof of Proposition 4.5. Suppose a < b, and choose ft =
yb−(xc−ty)a as deformation. Since T (b, ac) is the link of the singularity
f0 = yb − xac, it remains to show that for small t 6= 0, the link of
the singularity ft is T (a, bc). We fix an arbitrary t > 0 and change
coordinates locally around the origin by (x, y) 7→ (x, xc−y

t
). With this

ft becomes (x
c−y
t

)b − ya. For all monomials of ft except −ya, the bi-
degree—the tuple of integers consisting of the x degree and y degree of
a monomial—lies on the line in Z2 that goes through (bc, 0) and (0, b).
This shows that ft and xbc− ya have the same two monomials with bi-
degree on the line (bc, 0) and (0, a) and all other bi-degrees lie strictly
above this line. Therefore, they have the same link of singularity by a
result of Kouchnirenko [Kou76, Corollaire 1.22]. �

Proposition 4.5 gives an algebraic proof of an observation by Baader
(see also Proposition 5.4), which states that the cobordism distance of
T (a, bc) and T (b, ac) is equal to

bc+ a− ac− b = (b− a)(c− 1)

and which is a key proposition in [Baa12].

Remark 4.7. Proposition 4.5 shows that if we define an algebraic
counterpart of k(a, b) in Section 4, it is larger or equal to b

a
, whereas in

the Gordian setting k(a, b) is smaller or equal to b
a
by Proposition 3.16.

Thus, asymptotically, whenever T (a, n) ≤G T (b,m) for a ≤ b we get
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roughly n ≤ b
a
m and, therefore, T (a, n) ≤a T (b,m). We take this as

evidence to conjecture that for torus knots Gordian adjacency implies
algebraic adjacency.

There is a more restrictive algebraic notion of adjacency. A defor-
mation ft of f is called δ-constant if for every small enough Milnor ball
B for f , there is a t0 > 0 such that for every t ≤ t0 the sum

∑

z∈V (f)∩B
δz

is constant. Here δz denotes the δ-invariant of z in V (f), which is zero
if z is a smooth point of V (f).

This notion arises naturally. Let f be irreducible in C{x, y}. If V (f)
is locally parametrized by a normalization φ as described in Lemma 1.2,
then a natural notion of deformation would be to study smooth families
φt instead of smooth families ft. Such a deformation φt can be used to
yield a deformation ft, but then ft is necessarily δ-constant; compare
Remark 1.4. In fact, if ft is holomorphic in the t-variable, then ft is
δ-constant if and only if there is a parametric deformation φt yielding
ft, see e.g. [GLS07].

Definition 4.8. Let K and L be algebraic links. We say K is
δ-constant adjacent to L, denoted by K ≤δ L, if there exists a singu-
larity f in C{x, y} with L as link of the singularity and a δ-constant
deformation ft of f such that for small non-zero t the germ ft has K
as link of the singularity.

For example one has T (2, 2n) ≤δ T (2, 2n+1). Indeed, the deforma-
tion ft = y2−x2n+1−tx2n is δ-constant since for all t the zero-set V (ft)
is non-singular outside the origin and the δ-invariant at the origin is
n. In fact, if t = 0, then the link of the singularity at the origin is
the knot T (2, 2n + 1), which yields µ = b1(T (2, 2n + 1) = 2n, and so
δ = 2n+1−1

2
= n. If t 6= 0, then the link of the singularity at the origin

is the link T (2, 2n), which has µ = 2n− 1, and so δ = (2n−1)+2−1
2

= n.
Our motivation to study δ-constant adjacency is the connection to

Gordian adjacency discussed in the next section.

2. From algebraic adjacency to 3-dimensional notions

Topological (but in some sense 4-dimensional) consequences of al-
gebraic adjacency and δ-constant adjacency are known. Algebraically
adjacent links K ≤a L have cobordism distance b1(L)− b1(K) by the
Thom conjecture, as elaborated in Section 1. For the stronger condition
δ-constant adjacency, one has a stronger conclusion. In fact, Borodzik
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and Livingston proved that if a knot K is δ-constant adjacent to a
knot L, then L can be obtained from K by a so called positively self-
intersecting concordance between the involved knots. This corresponds
to changing u(L)− u(K) crossings and some concordances [BL13].

In this section we describe in braid theoretic terms, how algebraic
and Gordian adjacencies look like.

Proposition 4.9. Let K ≤a L be an algebraic adjacency of links
K and L with multiplicities mK and mL, respectively. Then there exist
positive mL-braid words βL and βK such that the following holds. The
closure of βL is L; the closure of βK is the split union of K andmL−mK

unknots; and, up to conjugation, βL can be obtained by adding

l(βL)− l(βK) = mL −mK + b1(L)− b1(K)

conjugates of generators to βK.

We illustrate this lengthy proposition with an example.

Example 4.10. The link T (2, 6) of the singularity y2 − x6 with
multiplicity 2 is adjacent to the knot T (3, 4) of the singularity y3 − x4

of multiplicity 3 via the deformation ft = y2 − (x2 + ty)2; see Proposi-
tion 4.5. One can add two generators (marked red below) to the 3-braid

βT (2,6) = a61 = such that the result is

a21a2a
3
1a2a1 = = = a1a2a1a2a1a2a1a2 = βT (3,4).

The 3-braid βT (2,6) closes to the split union of T (2, 6) and an unknot.
The 3-braid βT (3,4) closes to T (3, 4). Therefore, we checked that Propo-
sition 4.9 is true for this concrete adjacency. In fact, the proof of
Proposition 4.9 produces precisely these braids when applied to the
deformation ft.

Note that one can first add one generator to get β̃T (2,6) = a21a2a
4
1,

which closes to T (2, 6), and then add the second generator to get
a21a2a

3
1a2a1 = βT (3,4).

Remark 4.11. In Proposition 4.9 the addition of generators can
be organized as follows. First mL − mK conjugates of generators are
added such that in the closure one has saddle moves connecting the
mL − mK unknots to the rest of the link. The result is a braid with
closure K̃ that is obtained from K by first adding mL−mK unknotted
components and then connecting them to K, i.e. a concordance from
K to K̃. Hence, L is obtained from K by first doing a concordance
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(with mL −mK minima and mL −mK saddles) and then a cobordism
with |χ| = b1(L) − b1(K) given by saddle moves only. In particular,
no maxima are needed.

If in addition the adjacency is δ-constant and the involved links are
knots, we get a stronger conclusion.

Proposition 4.12. Notations are as in Proposition 4.9. If K ≤δ L
is a δ-constant adjacency of knots, then the addition of conjugates in
Proposition 4.9 can be arranged as follows. First, mL−mK conjugates
of generators are added to βK . Then u(L)−u(K) conjugates of squares
of generators are added yielding a conjugate of βL.

Note that adding conjugates of squares corresponds to crossing
changes. Hence, we get (as in Remark 4.11) that L is obtained from
K by first doing a rather well understood concordance (with mL−mK

minima and mL − mK saddles) to a knot K̃ and then u(L) − u(K)
crossing changes.

As a consequence we have that a δ-constant adjacency of knots K
and L with the same multiplicity implies the existence of a Gordian
adjacency. However, one is more interested in adjacencies that change
the multiplicity as, for example, Gordian adjacency of torus knots of
the same braid index (which corresponds to multiplicity) is fully un-
derstood by Theorem 3.2.

Remark 4.13. Proposition 4.9 and Proposition 4.12 give a more
precise description than the statement that there is a cobordism with
|χ| = b1(L) − b1(K) or the existence of a “positively self-intersecting
concordance” in the sense of [BL13]. However, our main interest in
these two propositions comes from the suspicion that the addition of
the first mL − mK conjugates of generators can be done such that

K = K̃, as it is the case in Example 4.10. In particular, this would
yield that δ-constant adjacency implies Gordian adjacency.

The hope is that, instead of adding conjugates of (squares) of gen-
erators in Proposition 4.9 (Proposition 4.12), one finds positive braid
words βK and βL such that βL can be obtained from βK by adding
(squares) of generators. This would imply that if K ≤a L, then the
minimal Seifert surface of K can be obtained from the minimal Seifert
surface FβL

of L by removing 1-handles corresponding to generators.
In particular, K ≤a L would imply that K is subsurface adjacent to
L, compare Chapter 5. Also, a δ-constant adjacency K ≤δ L would
imply that K is obtained from L by u(L)−u(K) crossing changes that
are seen on FβL

as deplumbings of the minimal Seifert surface for the
trefoil knot.
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The main motivation for the above propositions are of a speculative
nature and their proofs are rather long. The next section is devoted to
these proofs.

3. Proof of Propositions 4.9 and 4.12

We now prepare the notions needed for the proofs of Proposition 4.9
and Proposition 4.12. The main tool is Rudolph’s description of the
intersection of the zero-set V (f) of a polynomial f : C2 → C with
∂Z = γ × C as a closed (quasi-positive) braid, where γ is a simple
closed curve in C. The beautiful original source is [Rud83].

Let f : Dε × C→ C be a square-free holomorphic map of the form

f = ym + cm−1(x)y
m−1 + · · ·+ c0(x),

where ck(x) are holomorphic on a neighborhood of the disc Dε ⊂ C of
radius ε.

We study the zero-set of f in the cylinder Zε = Dε×C. For a given
x in Dε the equation f = 0 (as a polynomial equation in y) has m
solutions when counted with multiplicity. Following Rudolph we study

certain subsets of
◦
Dε. Note that Rudolph named these sets B and B+.

We change the notation from “B” to “S” since 4-balls in C2 are already
denoted by B. The subsets are:
• The finite set S of all x such that some of the m solutions

y1, . . . , ym of f(x, y) = 0 coincide.
• The semi real-analytic set S+ of all x such that the m solutions

of f(x, y) = 0 do not have m distinct real parts.
• Sgen the semi real-analytic open subset of S+ given by those x

that are not in S and have precisely m − 1 different real parts among
the real parts of y1, . . . , ym.

By definition we have Sgen ⊆ S+ and S ⊆ S+ \ Sgen. The set S is
the image of the projection onto the x-coordinate of the finite set C of
all points in Zε where V (f) is singular or has a vertical tangent. By a
small affine change of coordinates we can make sure that the following
conditions are satisfied, compare also [Ore96, Appendix].

(I) No two points of C lie over the same point of S.
(II) For a point (x0, y0) in C that is a singularity of V (f) with mul-

tiplicity m0, we have locally

f = u(x, y)
(
(y − y0)

m0 + cm0−1(x)(y − y0)
m0−1 + · · ·+ c0(x)

)

with u(x0, y0) 6= 0 and ci(x0) = 0, compare Lemma 1.2.
(III) At a smooth point z0 = (x0, y0) in V (f) that is in C, i.e. that

has a vertical tangent, the vertical tangent is simple, i.e. we have
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locally f = u(x, y) (c(x, y)(y − y0)
2 − (x− x0)) with u(x0, y0) 6=

0 6= c(x0, y0).
(IV) The set S+ \ Sgen is finite.
(V) In a small neighborhood of a point x in S, no two different local

solutions yi, yj have the same real part, except when they both
tend to the point z ∈ C above x, i.e. yi(x) = yj(x) = z.

In fact, changing f only slightly one could even achieve that there are
no singularities on V (f), rendering condition (II) obsolete. This is
what Rudolph does. We do not do this since we are actually interested
in what happens around a singularity.

As examples we consider the polynomials f = y2 + x, g = y2 − x2

and h = y3− x4 on D×C, where D is the unit disc centered at 0 ∈ C.
Their sets S+ are depicted in Figure 1.

ppp

γγ γ

1 1

11

1 1 1

2

2

2

2

Figure 1. The set S+ (black) for y2 + x (left), y2 − x2

(middle) and y3 − x4 (right). For all three polynomials
the subset S consists of a single point.

For every closed oriented curve γ in Dε, the intersection V (f) ∩
(γ × C) is a closed m-braid in S1 × D via the identification γ × C ∼=
S1 ×

◦
D. Similarly, for every oriented arc α in Dε \ S with endpoints

in Dε \ S+ (which guarantees that at endpoints the m-solutions have
different real parts), the intersection V (f) ∩ (α × C) ⊂ α × C is a

m-braid by identifying α × C with [0, 1] ×
◦
D. Note that for this to

be well-defined, the identification should preserve the order of the real
parts in the second factor. An endpoint-fixing homotopy of two arcs
and a homotopy of two closed curves in Dε\S correspond to an isotopy
of braids and an isotopy of closed braids, respectively.

Rudolph shows that S+ is a graph and that its edges can be oriented
and labeled meaningfully. The set of vertices is S+ \ Sgen and the
components of Sgen are the edges. Note that this allows edges that do
not end in a vertex if the edge tends to ∂Dε. For x in Sgen we label
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the unique edge containing x by 1, . . . , m−1 according to which of the
m−1 real parts of the yi(x) (ordered as real numbers) has multiplicity 2.
These labels have the following interpretation. If a short oriented arc α
intersects an edge with label i once transversely, then the corresponding
m-braid V (f)∩ (α×C) is ai or a−1

i . An edge labeled i is oriented such
that the edge orientation followed by the orientation of an oriented arc
α intersecting it transversely provides the standard orientation of C if
and only if the corresponding braid is ai rather than a−1

i .
For a curve γ in Dε \ S that hits S+ only in Sgen and only trans-

versely, one obtains a braid word for a braid that closes to V (f)∩(γ×C)
by following γ and reading off the labels of the edges of S+ crossed by
γ. More precisely, if γ crosses an edge labeled i such that the orien-
tation of the edge followed by the orientation of γ gives the standard
orientation of C, we write ai in the braid word, otherwise we write a−1

i .
We describe how to read off braid words by following curves in

Dε = D for the three examples f, g and h from above.

Example 4.14. For the polynomials f = y2 + x, g = y2 − x2, and
h = y3 − x4 on D × C we consider the curve γ that goes counter-
clockwise around the origin starting and ending at the point p (defined

in Figure 1). We read off the 2-braids = a1, = a21 and the

3-braid = a1a2a1a2a1a2a1a2, respectively. The closures of these

braids are the unknot, T (2, 2) and T (3, 4), respectively, which are the
corresponding links of the singularities f, g and h.

Remark 4.15. We now discuss how S+ looks in a small neighbor-
hood of points x0 in S. If x0 corresponds to a z0 in C that is a smooth
point of V (f), then S+ consists of a single edge pointing out of x0 as
for the standard example y2 + x, compare Figure 1 (left). This follows
from condition (III). If x0 corresponds to a z0 in C that is a singular
point of V (f), then S+ consists of several edges pointing out of x0,
compare for example Figure 1 (middle and right). Note that this is not
discussed by Rudolph as he assumes that V (f) is smooth. We indicate
how to establish this.

Let z0 = (x0, y0) be a singular point in V (f) with multiplicity n > 1.
We assume z0 is the origin and f(z0) = 0, in particular x0 = 0, and
that the germ in C{x, y} defined by f is irreducible. Locally around
(0, 0) we can parametrize V (f) by φ : D

ε
1
n
→ C2, (s 7→ sn, y(s)) for

some holomorphic y : D
ε
1
n
⊂ C → C with y(0) = 0; see Lemma 1.2.

This means that for x 6= 0 in Dε the n solutions yi of f = 0 are locally
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given by the Puiseux expansion y(x
1
n ). In particular, yj − yi can be

understood as a holomorphic function w(x
1
n ) = y(ξx

1
n ) − y(x

1
n ) in x

with w(0) = 0, where ξ is a nth-root of unity and x
1
n is a local n-root of

x. The set S+ is given by those x for which w(x
1
n ) is purely imaginary.

Letting x move along an arc α that goes counter clockwise around 0
on a very small circle, will make w(x

1
n ) turn counter-clockwise around

0 as well. This follows by expanding w(s) = aks
k + ak+1s

k+1 + · · · =
aks

k + o(sk+1). Therefore, close to the origin, S+ is a union of lines
going out of the origin. In fact, this means that any two solutions yj(x)
and yi(x) of any singularity spiral counter-clockwise around each other,
when following a counter-clockwise arc α. And so all lines pointing out
of the origin are (as edges of the graph) oriented in the same direction;
in fact, they are all oriented outward. This means that (after shrinking
Dε) S

+ consist of one vertex x0 with edges pointing out of it.
This type of argument (local parametrization by Puiseux expan-

sions) can be used to fully understand what types of links can arise as
links of singularities, see Brieskorn and Knörrer for a detailed account
of this [BK86].

Remark 4.16. Generalizing the examples given in Figure 1, we
describe the situation for Milnor balls of singularities. Let f in C{x, y}
be a singularity. Let L be the link of singularity, m the multiplicity.
Here we are (a priori) not in Rudolph’s setting.

After a small linear change of coordinates we have f = u(x, y)(ym+
cm−1(x)y

m−1 + · · · + c0(x)) on a Milnor ball Bε′ by the Weierstrass
preparation Theorem, where u(x, y) is a nowhere vanishing holomor-
phic function on Bε′, ck(x) are defined on a disc in C of radius bigger
than ε′, and ck(0) = 0; see Lemma 1.2. As we wish to study the zero-set
V (f) on the Milnor ball we may assume that u ≡ 1, i.e.

f = ym + cm−1(x)y
m−1 + · · ·+ c0(x).

For small enough ε < ε′, we have that if x is in Dε, then the m
(counted with multiplicity) solutions y1, . . . , ym of f = 0 are in Bε′; see

Figure 2. So, studying V (f) intersected with Z̃ε = (Dε × C) ∩ Bε′ is
the same as intersected with Zε = Dε × C and, therefore, we are in
Rudolph’s setting and can study S+ for f .

After possible shrinking ε, S+ ⊂ Dε consists of one vertex with
edges pointing outwards by Remark 4.15. In particular, the m-braid
βL obtained following ∂Dε counter-clockwise around 0 is given by a
positive braid word. The closure of βL is L. This is true since the

bounded cylinder Z̃ε is a Milnor ball, i.e. the pair (Z̃ε, Z̃ε ∩ V (f)) is
homeomorphic to (Bε, Bε ∩ V (f)); see e.g. [BK86].
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x

y

Bε′

Zε

Figure 2. In the cylinder Zε = Dε×C over the disk Dε

(red) the zero-set V (f) (black) is contained in Bε′ .

Proof of Proposition 4.9. Let ft be a deformation realizing
the algebraic adjacency K ≤a L of links K and L with multiplicity
mK and mL, respectively. We choose a Milnor ball Bε′ and a disk Dε

for f0 such that after a small change of coordinates f0 = u0(x, y)(y
m+

c0,m−1(x)y
m−1 + · · · + c0(x)) as in Remark 4.16. For small enough

t > 0 we have ft = ut(x, y)(y
m + ct,m−1(x)y

m−1 + · · ·+ ct,0(x)), where
some ct,k(0) might be non-zero. Fix such a small t > 0. After a small
coordinate change to guarantee conditions (I) to (V) if necessary, we
study S+ ⊂ Dε for ft = ym + ct,m−1(x) + · · · + ct,0(x). Close to the
boundary of Dε the set S+ looks the same for f0 and ft. Figure 3
depicts S+ qualitatively for f0 = y3 − x4 and ft = y3 − (x2 − ty)2.
Let Bη′ be a Milnor ball for the singularity at 0 of ft. Note that by
imposing conditions (I) to (V), we guaranteed that for a small enough
disc Dη around 0 the situation in Bη′ is as in Remark 4.16.

We denote by γK the curve given by counter-clockwise parametriza-
tion of ∂Dη. Similarly, γL denotes the curve given by counter-clockwise
parametrization of ∂Dε. Additionally, we fix starting points pK and pL
on the curves γK and γL. Figure 4 illustrates this for ft = y3−(x2−ty)2.
This allows us to read off positive mL-braid words βK and βL, which
have as corresponding closed braids V (ft)∩ (γK×C) and V (ft)∩ (γL×
C), respectively. Since close to γL the graph S+ looks the same for ft
and f0, the braid βL is the same for both f0 and ft. Its closure is L.
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Figure 3. The set S+ for y3−x4 (left) and y3−(x2−ty)2
(right). For y3− (x2 − ty)2 the set S consists of 3 points
and there are two vertices in S+ that are not in S or Sgen.
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Figure 4. The set S+ (black) and the curves γK and γL
(blue) for y3 − (x2 − ty)2. The curve γ that is obtained
as a modification (red) of γK is homotopic to γL in Dε\S.

Similarly, V (ft)∩(γK×C) intersected with Bη′ is an mK-braid β̃K with
closure K. However, in the intersection of V (ft) ∩ (γK × C) with Bε′

there are mL −mK additional local solutions yi yielding the mL-braid
βK . By condition (V), these extra mL −mK local solutions have pair-
wise different real parts and their real part is bounded away from the
real part of the mK solutions that are in Bη′ . Therefore, the mL-braid

βK is given by themK-braid β̃K with mL−mK additional braid strands
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that never cross another strand. In particular, the closure of βK is a
split union of K and mL −mK unknots.

We choose disjoint paths from ∂Dη to the points of S \ {0} and
change γK as follows yielding a closed curve γ. The curve γ is equal
to γK except that it makes detours along the paths to the points of
S \ {0} as indicated in Figure 5. The braid word β that we read off

γK 1

1

2 3

Figure 5. The curve γK (blue) is modified (red) to fol-
low paths (green) to the points in S\{0}. In this example
βK is changed by inserting a conjugate of a1; namely by
inserting (a1a

−1
2 a2a

−1
3 )a1(a3a

−1
2 a2a

−1
1 ).

following γ starting at pK is βK with a conjugate of a positive braid
word inserted for every path-detour γ makes.

The curve γ is homotopic to γL in the complement of S since it
incloses all of S, see Figure 4. Therefore, the closed braids obtained
as closures of β and βL are the same and so β and βL are conjugate.
Adding a conjugate of a generator changes the length of a braid by one.
Of course, a conjugate of a positive braid word ωai1 · · ·ailω−1 can be
written as a product of conjugates of generators ωai1ω

−1 · · ·ωailω−1.
Thus, β is obtained from βK by adding

l(β)− l(βK) = l(βL)− l(βK) = b1(L) +mL − 1− (b1(K) +mK − 1)

conjugates of generators since

l(βL) = b1(L) +mL − 1 and l(βK) = l(β̃K) = b1(K) +mK − 1, by (2).

�
For the proof of Proposition 4.12 we need the following.

Remark 4.17. Fix a Milnor ball Bε′ for a singularity of some f . By
Remark 1.4 one can change f slightly to another holomorphic function
g such that f and g stay close in a neighborhood of ∂Bε′ and such
that g has δ(f) ordinary double points. Double point singularities are
y2−x2 up to topological type, i.e. have T (2, 2) as link of singularity. In
particular, they have δ = 1 and multiplicity 2. In terms of Rudolph’s
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S+-graph this means the following (a small coordinate change to guar-
antee conditions (I) to (V) is done if necessary). Close to the boundary
of Dε the set S+ for g is the same as for f (up to a small isotopy). In
neighborhoods of points x in S that correspond to singularities of the
zero-set V (g), the graph consists of one vertex x with valency 2 with
two edges with the same label pointing away from x since all singu-
larities are double points. The other points of S have valency 1 since
they correspond to smooth points of V (g) with a vertical tangent. For
f = y3− x4 , which has δ = 3, Figure 6 indicates qualitatively how S+

might look like for g.

1

1 1

1

1 1 11

2

22

22

2 2

2

Figure 6. The set S+ for the singularity y3 − x4 (left)
changes to have 3 points in S that correspond to an ordi-
nary double point and 2 points that correspond to non-
singular points on V (g) that have a vertical tangent
(right).

Proof of Proposition 4.12. We use the notions of the proof for
Proposition 4.9. Now K and L are knots. This means the δ-invariants

of the singularities are half their Milnor number, i.e. δK = b1(K)
2

and

δL = b1(L)
2

. Furthermore, we assume that the deformation ft is δ-
constant, i.e. the sum of the δ of the singularities of V (ft) \ {0} is
δL − δK . Choose Milnor balls B1, . . . , Bk around every singularity of
V (ft) \ {0} and small discs D1, . . .Dk in Dε around the corresponding
points in S. We use Remark 4.17 to change the graph S+. Inside a
small disc Dj we replace S

+ with what we obtain by changing ft to a gj
that has only double points as described in Remark 4.17. This new S+

has the following properties. All points of S \ {0} that correspond to
singularities are ordinary double points. The number of such points is
δL− δK since ft is δ-constant. The set Ss of points in S corresponding
to smooth points that have a vertical tangent has precisely mL −mK
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elements, which is seen as follows. Points in Ss have one edge pointing
out of them, i.e. they contribute one conjugate of a single generator to
themL-braid β obtained by following γ. Every double point contributes
one conjugate of the square of a generator. This means that the length
of β is l(βK)+ ♯Ss+2(δL− δK). As β is conjugate to βL, they have the
same length. Using l(βL) = b1(L)+mL−1 and l(βK) = b1(K)+mK−1,
see (2), we conclude that ♯Ss = mL −mK .

Adding a conjugate of the square of a generator in a braid word does
not change the number of components of the closure. Therefore, chang-
ing the mL-braid word βK by adding all conjugates of single generators

corresponding to points in Ss yields a braid word β̃K , which closes to

a knot. This follows since adding conjugates of squares to β̃K gives β,
which closes to the knot L. As the closure of βK has 1 + mL − mK

components, all of the mL − mK conjugates of single generators that

are added to βK to yield β̃K have to connect different components of
the closure of βK . �



CHAPTER 5

Subsurfaces of Seifert surfaces

In this chapter we discuss an adjacency notion for links given by
studying H1-injective subsurfaces of Seifert surfaces.

Definition 5.1. For links K and L, we say K is subsurface adja-
cent to L, denoted by K ≤s L, if a minimal Seifert surface FK of K
is isotopic to a H1-injective subsurface of a minimal Seifert surface FL

of L.

The number of 1-handles that are removed from FL to get FK is
b1(FL) − b1(FK) and, therefore, Lemma 1.7 yields the following ob-
struction to subsurface adjacency.

Lemma 5.2. Let K and L be links. If there exists an adjacency
K ≤s L, then

|σω(L)− σω(K)| ≤ b1(L)− b1(K) = b1(FL)− b1(FK),

where FL and FK denote minimal Seifert surfaces of L and K, respec-
tively.

Again we restrict our studies to torus links and we denote by F (a, b)
the unique minimal Seifert surface of T (a, b). All the examples of such
adjacencies will be provided by starting with a positive braid that
closes to L and then removing generators—corresponding to remov-
ing 1-handles in the minimal Seifert surface—until we reach a positive
braid that closes to K.

In the introduction we motivated the study of subsurface adjacency
by a question about geometric realization of eigenvalues of the sym-
metrized Seifert form. Another motivation for this study is our sus-
picion that if two links K,L are algebraically adjacent, then they are
also subsurface adjacent, see Remark 4.13. At least something weaker
is true. Every algebraic adjacency K ≤a L yields a cobordism with |χ|
equal to b1(L)− b1(K), i.e. dc(K,L) = b1(L)− b1(K). It is therefore
interesting to study for which pairs of algebraic links, or more specifi-
cally torus links, we have dc(K,L) = b1(L)− b1(K). And then to ask
whether this can be realized by an algebraic adjacency. All examples

71
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of torus links K and L with dc(K,L) = b1(L) − b1(K) we know of,
come in fact from an adjacency K ≤s L.

1. First examples

As a first example, we notice that the analog of Theorem 3.2 and
Proposition 4.3 is immediate.

Proposition 5.3. Let n,m, a, b be positive integers. If n ≤ a and
m ≤ b, then T (n,m) ≤s T (a, b).

This is proved by deleting generators in the positive a-braid word
(a1 · · · aa−1)

b, which has closure T (a, b); until one reaches a positive
braid word with closure T (n,m). We illustrate this for the adjacency
T (4, 5) ≤s T (7, 7).

−→ ,

where the arrow indicates the removal of the generators marked in red.
As in the case of Gordian adjacency Proposition 5.3 describes ≤s for all
pairs of torus knots of the same braid index and the simplest questions
for different indices is, what torus links of braid index 2 are adjacent
to a given torus link of braid index a > 2. Section 2 gives a precise
answer for small a. A proposition due to Baader provides examples of
subsurface adjacencies.

Proposition 5.4. [Baa12] Let a, b, c be natural numbers with a ≤
b. Then T (a, bc) ≤s T (b, ac) holds.

This proposition led to the suspicion that a similar statement could
hold for algebraic adjacency, which led to Proposition 4.5.

2. Subsurface adjacencies for torus links of braid index 3
and 4

We provide examples of T (2, n) that are subsurface adjacent to
T (3, m) and T (4, m), respectively, and that do not follow from Propo-
sition 5.3 or Proposition 5.4. Concretely, we show that T (2, n) ≤s

T (3, m) and T (2, n) ≤s T (4, m) if roughly n ≤ 5
3
m and n ≤ 5

2
m, re-

spectively. In fact, the factors 5
3
and 5

2
are optimal, which is shown

using the adjacency obstruction given in Lemma 5.2.
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Proposition 5.5. Let n and m be positive integers. If n ≤ 5m−1
3

,
then the surface F (2, n) is an H1-injective subsurface of F (3, m).

Proposition 5.6. Let n and m be positive integers. If n ≤ 5m−3
2

,
then F (2, n) is an H1-injective subsurface of F (4, m).

The two propositions above are optimal, at least when T (3, m) and
T (4, m), respectively, are knots.

Theorem 5.7. Let n,m be positive integers. If m is not a multiple
of 3, then T (2, n) is subsurface adjacent to T (3, m) if and only if n ≤
5m−1

3
. Similarly, if m is odd, then T (2, n) is subsurface adjacent to

T (4, m) if and only if n ≤ 5m−3
2

.

Proof of Proposition 5.5. We denote the 3-strand full twist
(a1a2a1)

2 by ∆2. The full twist commutes with every other 3-braid.
Let us first consider the case where m = 3l for some positive integer

l. The torus link T (3, 3l) is the closure of ∆2l. Note that

∆2∆2 = a1a2a1a1a2a1∆
2 = a1a2a1a1a2∆

2a1.

Adding another full twist yields

∆2∆2∆2 = a1a2a1a1a2∆
2∆2a1 = a1a2a1a1a2(a1a2a1a1a2∆

2a1)a1

and inductively we get ∆2l = (a1a2a1a1a2)
l(a1)

l. The subword a2a1a2
occurs l − 1 times in (a1a2a1a1a2)

l(a1)
l. Applying l − 1 time the braid

relation a2a1a2 = a1a2a1 produces the braid word

w = a1a2a1a1(a1a2a1a1a1)
l−1a2(a1)

l.

Deleting all but the first a2 in w yields a1a2a
5l−2
1 , which has T (2, 5l−1)

as closure. Since deleting generators in a positive braid word corre-
sponds to removing 1-handles in its minimal Seifert surface, we con-
clude that F (2, 5l− 1) is an H1-injective subsurface of F (3, 3l).

For the case m = 1 mod 3, we write T (3, 3l + 1) as the closure of

a1a2∆
2l = a1a2w = a1a2

(
a1a2a1a1(a1a2a1a1a1)

l−1a2(a1)
l
)

= a1a1a2a1a1a1(a1a2a1a1a1)
l−1a2(a1)

l

Deleting all but the first a2 yields a1a1a2(a1)
5l−1, which has closure

T (2, 5l + 1).
Finally, for m = 2 mod 3, we write the closure of T (3, 3l + 2) as

a1a2a1a2∆
2l = a1a1a2a1∆

2l = a1(a1a2∆
2l)a1

= a1
(
a1a1a2a1a1a1(a1a2a1a1a1)

l−1a2(a1)
l
)
a1.

Deleting all but the first a2 yields a1a1a1a2(a1)
5l, which has T (2, 5l+3)

as closure. �
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Proof of Proposition 5.6. We view T (4, 2l+ 1) as the closure
of the 4-braid (a1a3a2)

2l+1. Using the fact that the half twist on 4
strands

∆ = a1a3a2a1a3a2 = a1a2a1a3a2a1

anti-commutes with every other 4-braid, i.e. a1∆ = ∆a3, a3∆ = ∆a1,
and a1∆ = ∆a3, we have that

∆k = a1a2a1a3a2a1∆
k−1 = a1a2a1a3a2∆

k−1a2+(−1)k−1

= a1a2a1a3a2

(
a1a2a1a3a2∆

k−2a2+(−1)k−2

)
a2+(−1)k−1

= (a1a2a1a3a2)
2∆k−2a1a3 = · · · = (a1a2a1a3a2)

ka
⌊k+1

2
⌋

1 a
⌊k
2
⌋

3 .

With this we can write (a1a3a2)
2l+1 as follows.

(a1a3a2)
2l+1 = (a1a3a2)

2a1a3a2(a1a3a2)
2(l−1)

= (a1a3a2)
2a1a3a2(a1a2a1a3a2)

l−1a
⌊ l
2
⌋

1 a
⌊ l−1

2
⌋

3

= (a1a3a2)
2a1a3(a2a1a2a1a3)

l−1a2a
⌊ l
2
⌋

1 a
⌊ l−1

2
⌋

3

= (a1a3a2)
2a1a3(a1a2a1a1a3)

l−1a2a
⌊ l
2
⌋

1 a
⌊ l−1

2
⌋

3 .

Deleting the last l occurrences of a2 in this braid word gives

(a1a3a2)
2a1a3(a1a1a1a3)

l−1a
⌊ l
2
⌋

1 a
⌊ l−1

2
⌋

3 = (a1a3a2)
2a

3l−2+⌊ l
2
⌋

1 a
l+⌊ l−1

2
⌋

3 ,

which has closure

T

(
2, 4 + (3l − 2 + ⌊ l

2
⌋) + (l + ⌊ l − 1

2
⌋)
)

= T (2, 5l + 1).

Since deleting generators in a positive braid word corresponds to remov-
ing 1-handles in its minimal Seifert surface, we conclude that F (2, 5l+1)
is an H1-injective subsurface of F (4, 2l + 1).

Similarly, the torus link T (4, 2l + 2) is the closure of

(a1a3a2)
2l+2 = (a1a3a2)

2a1a3a2a1a3(a1a2a1a1a3)
l−1a2a

⌊ l
2
⌋

1 a
⌊ l−1

2
⌋

3 .

Deleting the last l + 1 occurrences of a2 yields a braid word that has
closure T (2, 5l + 3). �

Proof of Theorem 5.7. By Proposition 5.5 and Proposition 5.6
it remains to show that F (2, 5l+2) is neither anH1-injective subsurface
of F (3, 3l + 1) nor of F (4, 2l + 1), and that F (2, 5l + 4) is not an H1-
injective subsurface of F (3, 3l + 2).
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First, we consider the case that l = 2k is even. By Murasugi’s
calculation of the signature for torus knots of braid index 3 and 4,
see [Mur74, Proposition 9.1 and Proposition 9.2], we have

σ(T (3, 3l + 1)) = 8k = 4l,

σ(T (3, 3l + 2)) = 8k + 2 = 4l + 2,

and σ(T (4, 2l + 1)) = 8k = 4l;

compare also Lemma 1.10. Therefore we get the following.

σ(T (2, 5l + 2))− σ(T (3, 3l + 1)) = b1(T (2, 5l + 2))− σ(T (3, 3l + 1))

= 5l + 1− 4l > l − 1

= b1(T (3, 3l + 1))− b1(T (2, 5l + 2)),

σ(T (2, 5l + 4))− σ(T (3, 3l + 2)) = b1(T (2, 5l + 4))− σ(T (3, 3l + 2))

= 5l + 3− (5l − 2) > l − 1

= b1(T (3, 3l + 2))− b1(T (2, 5l + 4)),

σ(T (2, 5l + 2))− σ(T (4, 2l + 1)) = b1(T (2, 5l + 2))− σ(T (4, 2l + 1))

= 5l + 1− 4l > l − 1

= b1(T (4, 2l + 1))− b1(T (2, 5l + 2)).

Thus, F (2, 10k + 2) = F (2, 5l + 2) is not an H1-injective subsurface
of F (3, 6k + 1) = F (3, 3l + 1) or F (4, 4k + 1) = F (4, 2l + 1) and
F (2, 10k+4) = F (2, 5l+4) is not anH1-injective subsurface of F (3, 6k+
2) = F (3, 3l + 2) by Lemma 5.2.

Now for the case that l = 2k + 1 is odd. Murasugi’s calculation
of the signature for torus knots of braid index 3 and 4, see [Mur74,
Proposition 9.1 and Proposition 9.2] or Lemma 1.10, provides

σ(T (3, 3l + 1)) = 8k − 2 = 4l − 2,

σ(T (3, 3l + 2)) = 8k = 4l,

σ(T (4, 2l + 1)) = 8k − 2 = 4l − 2.

These signature calculations do not suffice as obstruction. However,
they can be used to show the following. There exist ω in S1\{1} such
that

(17) σω(T (3, 3l+1)) = 8k = 4l and σω(T (2, 5l+2)) = σ(T (2, 5l+2)),

(18)
σω(T (3, 3l+2)) = 8k+2 = 4l+2 and σω(T (2, 5l+4)) = σ(T (2, 5l+4)),

and

(19) σω(T (4, 2l+1)) = 8k = 4l and σω(T (2, 5l+2)) = σ(T (2, 5l+2))
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hold, respectively. From this we can conclude as in the first case using
σω instead of σ. We now specify how to choose ω such that (17), (18),
and (19) hold, respectively. For

ω = e2πiθ with

{
θ ∈ (1

2
− 2

3m
, 1
2
− 1

3m
) for m = 3l + 1 = 6k + 4

θ ∈ (1
2
− 3

6m
, 1
2
− 1

6m
) for m = 3l + 2 = 6k + 5

,

we have

σω(T (3, 3l + 1))− 2 = σ(T (3, 3l + 1))

and σω(T (3, 3l + 1))− 2 = σ(T (3, 3l + 1)),

see Claim 3.14. Additionally, by choosing the above θ close to

1

2
− 1

3m
and

1

2
− 1

6m
, respectively,

we get that

σω(T (2, 5l + 2)) = σ(T (2, 5l + 2))

and σω(T (2, 5l + 4)) = σ(T (2, 5l + 4)),

respectively, by Lemma 1.9. Thus, (17) and (18) hold for this choice
of ω. For

ω = e2πiθ with θ ∈ (
1

2
− 3

8m
,
1

2
− 1

8m
),

wherem = 2l+1 = 4k+1, we have σω(T (4, 2l+1))−2 = σ(T (4, 2l+1)).
This can be proved using Lemma 1.9 in a similar way as in the proof
of Claim 3.14. Choosing θ close to 1

2
− 1

8m
yields σω(T (2, 5l + 2)) =

σ(T (2, 5l + 2)). Therefore, (19) holds for this choice of ω. �

3. Subsurface adjacency for the torus link T (m,m)

In this section, we study which T (2, n) is subsurface adjacent to

T (m,m). The result is roughly that when ever n ≤ 2m2

3
, then T (2, n) ≤s

T (m,m). Using Proposition 5.4 one gets T (2, n) ≤s T (m,m) only for

n ≤ m2

2
.

Proposition 5.8. Let m and n be positive integers. If n ≤ 2m2+4
3
−

m, then T (2, n) is subsurface adjacent to T (m,m).

We do not know whether the factor 2
3
is optimal. If it is, the signa-

ture obstructions are not strong enough to show this since Lemma 5.2
only yields n ≤ 3

4
m2, compare Remark 4.6. Our interest in Proposi-

tion 5.8 is that it is better than what is known to exist in the algebraic
adjacency setting.
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Proof. We denote by ∆m the half twist on m strands

(a1a2 · · · am−1)(a1a2 · · ·am−2) · · · (a1a2)a1.
The torus link T (m,m) is the closure of the full twist on m strands
∆2

m.
The main step in the proof consists of deleting generators in ∆m

yielding a split union of positive 2-braids for which the first Betti num-
ber is roughly 2

3
of the first Betti number of ∆m. More precisely, we

delete the generator am−1 in ∆m and then apply braid relations to get
the positive braid word

(a21a2 · · · am−2) · · · (a21a2)a21 in Bm.

Then, we delete all a2 yielding a split union of a
2(m−2)
1 on strands 1 and

2, a half twist on the strands 3 to m− 1, and strand m. We illustrate
this for m = 7.
(20)

∆7 = −→ = −→ ,

where arrows indicate the deletion of the generators marked in red. To
the remaining half twist, which we readily identify with ∆m−3, we apply
the same procedure. And we do this inductively until the remaining
half twist is ∆3,∆2, or ∆1, where ∆1 is just the trivial 1-strand braid.
Applying the procedure to ∆3 just yields the split union of a21 and one
strand. On ∆2 = a21 and ∆1 it does not do anything. This inductive
procedure yields a braid βm, which closes to split union of T (2, k) torus
links. As before we illustrate this for m = 7, again the generators that
are removed are marked in red.

(21) ∆7 =
(20)−→ −→ · · · −→ = β7

The length l(βm) of βm is described by the following formula, where we
write m as 3l, 3l + 1, or 3l + 2, respectively.

l(βm) = 2(m− 2) + 2(m− 5) + 2(m− 8) + · · ·

=





(3l − 1)l for m = 3l
(3l + 1)l for m = 3l + 1
(3l + 3)l + 1 for m = 3l + 2

.
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We use the above to obtain a braid γm that closes to a T (2, k) by
deleting generators in ∆2

m, which shows that F (2, k) is an H1-injective
subsurface of F (m,m). For this we write ∆2

m as

∆m∆m = (a1a2 · · · am−1)(a1a2 · · · am−2)∆̃m−2∆m,

where ∆̃m−2 is a half twist on the first m − 2 strands. Now, we apply

the above deleting algorithm to ∆̃m−2, which is seen as ∆m−2, and ∆m

yielding

γm = (a1a2 · · · am−1)(a1a2 · · · am−2)β̃m−2βm,

where β̃m−2 is the m strand braid which is obtained by having βm−2 on
the first m− 2 strands. The braid γm is of the form

γm = (a1a2 · · · am−1)(a1a2 · · ·am−2)a
α1
1 aα3

3 · · ·aα2k−1

2k−1 ,

where k = ⌊m
2
⌋ and αk are positive integers. As above we illustrate

this for m = 7, again the generators that are removed are marked in
red.

∆7∆7 = −→ =

−→ (21)−→ = γ7

The closure of γm is a torus link T (2, n). This follows from observing
that the closure of (a1a2 · · ·am−1)(a1a2 · · · am−2) is T (2, m− 1). Since

l(γm)− l((a1a2 · · · am−1)(a1a2 · · · am−2)) = l(βm) + l(βm−2)

we see that n = m− 1 + l(βm−2) + l(βm), i.e. the closure of γm is

T (2, n) = T (2, m− 1 + l(βm−2) + l(βm)).
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With the above calculations for l(βm) we get

n = 3l − 1 + (3l − 2)(l − 1) + (3l − 1)l = 6l2 − 3l + 1,

n = (3l + 1− 1) + (3l)(l − 1) + 1 + (3l + 1)l = 6l2 + l + 1,

n = (3l + 2− 1) + (3l − 1)l + (3l + 3)l + 1 = 6l2 + 5l + 2,

for m = 3l, m = 3l+ 1, and m = 3l+ 2, respectively. This finishes the
proof since n is the largest integer with n ≤ 2m2+4

3
−m. �
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Translated and revised from the 1990 Japanese original by the author.

[KM93] P. B. Kronheimer and T. S. Mrowka. Gauge theory for embedded surfaces.
I. Topology, 32(4):773–826, 1993.
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anderen als die angegebenen Quellen benutzt habe. Alle Stellen, die
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